WO2015033587A1 - 角速度センサ - Google Patents

角速度センサ Download PDF

Info

Publication number
WO2015033587A1
WO2015033587A1 PCT/JP2014/052201 JP2014052201W WO2015033587A1 WO 2015033587 A1 WO2015033587 A1 WO 2015033587A1 JP 2014052201 W JP2014052201 W JP 2014052201W WO 2015033587 A1 WO2015033587 A1 WO 2015033587A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
velocity sensor
electrode
plane
fixed
Prior art date
Application number
PCT/JP2014/052201
Other languages
English (en)
French (fr)
Inventor
山中 聖子
希元 鄭
雅秀 林
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015033587A1 publication Critical patent/WO2015033587A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion

Definitions

  • the present invention relates to an angular velocity sensor that is a micro vibrating body composed of a movable body and a support beam formed by a semiconductor microfabrication technique.For example, a physical quantity related to displacement of a movable body that is generated in response to application of an angular velocity is obtained.
  • the present invention relates to an angular velocity sensor which is a micro electro mechanical system (MEMS (Micro Electro Mechanical Systems)) that measures an applied angular velocity by detection.
  • MEMS Micro Electro Mechanical Systems
  • the angular velocity sensor uses a mechanical system that uses the precession of a rotating body, an optical system that uses changes in the light reception timing associated with the rotation of the laser light that circulates within the housing, and is used for sensing within the housing.
  • a fluid type or the like that injects a gas into a heat ray and detects a phenomenon in which the amount of injection changes due to the rotation of the casing based on the heat ray temperature.
  • Patent Document 1 the demand for angular velocity sensors that detect vehicle direction and posture in car navigation, vehicle skid prevention systems, and balance control systems such as biped robots and unicycles has increased rapidly in recent years.
  • Patent Document 1 cheaper, lighter, and smaller vibration type angular velocity sensors (Patent Document 1) are becoming mainstream.
  • the angular velocity sensor As an application destination of the angular velocity sensor, there is a car navigation system, for example. Monitoring of the current position by GPS (Global Positioning System) can detect a macro change in the direction of travel of the vehicle, but cannot follow a sudden change in direction at an intersection or the like. Therefore, in the car navigation system, a method is used in which the turning motion of the vehicle is detected by an angular velocity sensor, and the angle of direction change is traced by temporal integration of the angular velocity.
  • GPS Global Positioning System
  • Another example is a vehicle skid prevention system.
  • the value of the steering angle sensor mounted on the steering wheel (command value) is compared with the output value (actual value) of the angular velocity sensor incorporated in the skid prevention system, thereby reducing the side slip of the car.
  • a control method is used in which the engine output and the braking force of each of the four wheels are controlled based on the result of the determination and the vehicle motion is optimized.
  • balance control system for unicycles and biped robots.
  • rotation or movement of the center of gravity occurs due to wind, inclination, cargo, etc.
  • measure the rotation angle and the amount of movement of the center of gravity with an angular velocity sensor or acceleration sensor move the wheel in the rotation direction, or move the center of gravity
  • a method is used in which the balance is controlled by generating a strong force with the actuator in the direction.
  • the drive vibration direction and the detection direction of the excitation element and the axial direction to which the measured angular velocity is applied need to be orthogonal to each other. That is, when the driving vibration direction of the excitation element is the x direction and the axial direction to which the angular velocity is applied is the z direction, the Coriolis force is the x direction that is the driving vibration direction and the z direction that is the axial direction to which the angular velocity is applied. It occurs in the y direction orthogonal to the direction.
  • the angular velocity sensor described in Patent Document 2 is configured as a detection element that is displaced in the y direction by applying an angular velocity around the z-axis direction when the driving vibration direction of the excitation element is in the x direction.
  • the angular velocity sensors described in Patent Document 3 and Patent Document 4 are configured as an excitation element whose driving vibration direction is the x direction and a detection element that is displaced in the z direction by applying an angular velocity around the y-axis direction. Moreover, in order to detect the angular velocity around the x-axis direction, the angular velocity sensor around the y-axis direction described in Patent Literature 3 and Patent Literature 4 is mounted by rotating 90 degrees in the xy plane. Can do.
  • ECUs Electronic Control Units
  • angular velocity sensor for detecting a side slip of an automobile
  • angular velocity sensor for detecting a rollover
  • sensor clustering that integrates sensors required by an ECU mounted on an automobile on a board different from various ECUs. That is, it is necessary to mount a plurality of angular velocity sensors having different detection directions on one mounting board. In this case, since the mounting area of the angular velocity sensor is limited, a smaller angular velocity sensor is required.
  • the angular velocity around the z-axis direction is set to detect both sideslip and rollover of the automobile. It is conceivable that the in-plane angular velocity sensor to be detected and the out-of-plane angular velocity sensor to detect the angular velocity around the axial direction included in the xy plane are mounted on one mounting board.
  • an object of the present invention is to improve the performance of an out-of-plane angular velocity sensor that can detect an angular velocity around the x-axis direction or an angular velocity around the y-axis direction.
  • An angular velocity sensor includes a first semiconductor chip.
  • the first semiconductor chip includes (a) a support substrate, (b) a device layer disposed above the support substrate, (c) a cap layer disposed above the device layer, and (d) a support substrate and a device layer. And a cavity formed between the device layer and the cap layer.
  • the device layer includes (b1) an excitation element capable of vibrating in the first plane including the thickness direction of the support substrate, and (b2) around the rotation axis included in the second plane perpendicular to the first plane.
  • a detection unit that captures a displacement in the second plane based on the Coriolis force generated due to the angular velocity as a change in capacitance is formed.
  • a fixed electrode for driving to which a voltage for vibrating the excitation element in the first plane is applied is formed on the cap layer.
  • the performance of the out-of-plane angular velocity sensor can be improved.
  • FIG. 4 is a plan view showing a configuration of a semiconductor chip on which the angular velocity sensor element in the first embodiment is formed.
  • FIG. (A) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is a cross-sectional view schematically showing drive vibration in the zx plane of the excitation element.
  • (A) is a cross-sectional view taken along the line BB of FIG. 1, and (b) is a cross-sectional view schematically showing drive vibration in the zx plane of the excitation element.
  • (A) is a cross-sectional view taken along line C1-C1 in FIG. 1, and (b) is a cross-sectional view taken along line C2-C2 in FIG.
  • FIG. 3 is a diagram illustrating a signal processing circuit related to driving vibration of the angular velocity sensor in the first embodiment.
  • 3 is a diagram for explaining a signal processing circuit related to detection of angular velocity by the angular velocity sensor in Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a mounting configuration of the semiconductor device in which the angular velocity sensor in the first embodiment is formed.
  • FIG. It is sectional drawing which shows typically the state of the semiconductor chip contained in a semiconductor device.
  • FIG. 14A is a cross-sectional view taken along the line AA in FIG. 13, and FIG.
  • FIG. 14B is a cross-sectional view schematically showing drive vibration in the zx plane of the excitation element.
  • FIG. 14A is a cross-sectional view taken along line BB in FIG. 13, and
  • FIG. 14B is a cross-sectional view schematically showing drive vibration in the zx plane of the excitation element. It is sectional drawing which shows the mounting structure of the semiconductor device in which the angular velocity sensor in Embodiment 3 was formed.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • an in-plane angular velocity sensor may have a configuration in which the x direction is the driving vibration direction of the excitation element and the y direction is a detection direction for detecting a displacement based on the Coriolis force.
  • the out-of-plane angular velocity sensor that the inventor has focused on, for example, as a configuration for detecting an angular velocity around the x-axis direction
  • the y direction is the driving vibration direction of the excitation element
  • the z direction is displacement based on the Coriolis force.
  • a first configuration in which the detection direction is detected and a second configuration in which the z direction is the driving vibration direction of the excitation element and the y direction is a detection direction for detecting displacement based on the Coriolis force are conceivable.
  • the above-described second configuration is more advantageous than the above-described first configuration from the viewpoint of improving performance.
  • Transfer mold technology is the following manufacturing technology. That is, first, a lead frame in which a first semiconductor chip on which an angular velocity sensor made of MEMS is formed and a second semiconductor chip on which a signal processing circuit of the angular velocity sensor is formed is placed in a mold. Then, the warmed resin is injected by high pressure and filled into a mold. Subsequently, when the resin is cooled and solidified, the resin has a lead frame in which a first semiconductor chip in which an angular velocity sensor made of MEMS is formed and a second semiconductor chip in which a signal processing circuit is formed is stacked. It becomes the sealing body to seal.
  • This transfer mold technology has higher mass productivity than the ceramic package technology used in MEMS, and is an effective technology for reducing the manufacturing cost of the angular velocity sensor.
  • the filling pressure of the resin used as the sealing body is as high as several Pa to several tens Pa
  • the semiconductor chip on which the angular velocity sensor is formed is deformed.
  • the interface between the two becomes distorted due to the difference between the thermal expansion coefficient of the resin used as the sealing body and the thermal expansion coefficient of the semiconductor chip on which the angular velocity sensor is formed. Occurs.
  • the resin that becomes the sealing body has a feature that the volume expands due to moisture absorption and the volume shrinks due to drying, when the humidity of the environment where the sealing body is installed fluctuates, the resin expands and contracts, Distortion occurs in the semiconductor chip on which the angular velocity sensor is formed.
  • the function is complicated by adding a correction arithmetic circuit to the signal processing circuit, the development period of the signal processing circuit becomes longer, which has a demerit that increases the manufacturing cost of the angular velocity sensor.
  • a correction adjustment process is added at the time of inspection before shipment of the angular velocity sensor in order to establish the correction calculation, the adjustment cost and the adjustment time increase, and there is a demerit that the manufacturing cost of the angular velocity sensor increases.
  • a change with time which is difficult to cope with with correction calculation may lead to a decrease in performance of the angular velocity sensor.
  • the in-plane angular velocity sensor described in Patent Document 2 since the in-plane angular velocity sensor described in Patent Document 2 has the drive vibration direction in the x direction and the detection direction in the y direction, it can detect the angular velocity around the z-axis direction. Therefore, when the angular velocity sensor is mounted on the mounting board installed so as to be parallel to the motion plane of the vehicle body, it is possible to detect the side slip of the automobile.
  • both the drive vibration and the detected displacement are in the xy plane, and therefore the drive electrode that generates the drive vibration, the detected displacement All the constituent elements including the detection electrode for detecting s are not formed in the z direction in which deformation is likely to occur when the sealing body is formed, but in the xy plane of the device layer in which deformation is not likely to occur. Therefore, even if the transfer mold technique is applied to the manufacture of the angular velocity sensor, the influence on the performance and reliability of the angular velocity sensor due to the pressure, temperature, humidity and the like when forming the sealing body is relatively small. That is, in the in-plane angular velocity sensor, it can be considered that there are few factors that hinder the application of the transfer mold technology.
  • the situation changes completely with the out-of-plane angular velocity sensor that the present inventors have focused on.
  • the out-of-plane angular velocity sensor described in Patent Document 3 when the driving vibration direction is the x direction and an angular velocity around the y axis direction is applied, the z direction becomes a detection direction in which displacement based on Coriolis force occurs. That is, when mounted on the same plane as the angular velocity sensor described in Patent Document 1, it is possible to detect the rollover of the automobile.
  • the out-of-plane angular velocity sensor described in Patent Document 3 includes a device layer in which an excitation element and a detection unit are formed, a support substrate that supports the device layer, a cap layer in which a detection fixed electrode is formed, It is comprised from the laminated structure of 3 layers provided with a cavity part.
  • the out-of-plane angular velocity sensor is configured as a three-layer laminated structure, and the detection fixed electrode for measuring the displacement of the detection unit on the side (cap layer side) that receives pressure by the resin used in the transfer molding technology
  • the detection unit occupying an important position in terms of improving the performance of the out-of-plane angular velocity sensor is deformed. It is easy to cause side effects when the transfer mold technology is adopted.
  • the detection part is not formed in the z direction, which is likely to be deformed by the transfer mold technology. It is thought that there are few side effects represented by the decrease. From this, when focusing on the out-of-plane angular velocity sensor, the second out-of-plane angular velocity sensor with the detection direction in the xy plane is compared to the out-of-plane angular velocity sensor with the detection direction in the z-direction. It is considered that it has an advantage from the viewpoint of suppressing performance degradation.
  • a device for realizing an out-of-plane angular velocity sensor having a second configuration that is superior from the viewpoint of performance improvement is provided.
  • the out-of-plane angular velocity sensor described in Patent Document 4 is similar to the angular velocity sensor described in Patent Document 3, when the driving vibration direction is in the x direction and the angular velocity around the y-axis direction is applied, the z direction This is the detection direction in which displacement based on Coriolis force occurs.
  • the out-of-plane angular velocity sensor described in Patent Document 4 is different from the out-of-plane angular velocity sensor described in Patent Document 3 having the detection fixed electrode on the cap layer side.
  • the device has a structure in which a detection fixed electrode is also provided in a device layer where elements, detection movable electrodes, and the like are formed.
  • the detection movable electrode and the capacitive element are formed between the detection movable electrode in the device layer having the same height, and the detection is performed with a constant interval.
  • the magnitude of the displacement in the z direction (the direction of going out of the plane from the xy plane of the device layer) at the detection unit can be known, but there is a problem that the direction of the displacement is not known.
  • a thin film in which internal stress is strongly generated is formed on the detection fixed electrode formed in the device layer, and an initial displacement is created in the detection fixed electrode. ing.
  • the detection fixed electrode and the detection movable electrode are formed in the same device layer, but a difference occurs between the height of the detection fixed electrode and the height of the detection movable electrode. Can be detected.
  • the out-of-plane angular velocity sensor described in Patent Document 4 Since the out-of-plane angular velocity sensor described in Patent Document 4 has all the components in the device layer, it has an influence on the pressure caused by the formation of the sealing body by the transfer molding technique and deformation caused by other factors. It is hard to receive. Therefore, even when using an inexpensive sealing body manufactured by the transfer mold technique, the out-of-plane angular velocity sensor described in Patent Document 4 can be expected to exhibit stable performance.
  • the out-of-plane angular velocity sensor described in Patent Document 4 causes stress relaxation over time of a thin film having a large internal stress used for making an initial displacement in the device layer, and performance changes associated with the stress relaxation occur. There is a fear. Furthermore, the control of the initial displacement by the thin film having a large internal stress may cause a large individual difference in each angular velocity sensor.
  • the excitation element (movable part) of the angular velocity sensor element is integrated as a whole, and the zx plane (first plane) having the y-axis direction as the rotation axis while the support beam is deformed with the fixed part at the center as a fulcrum. Rotating vibration inside. When the rotation angle is small, the movement of the excitation element can be regarded as vibration in the z direction. That is, in the first embodiment, the excitation element is configured to be able to vibrate in the z direction, which is the thickness direction of the semiconductor chip.
  • the drive electrode that plays a role of inducing drive vibration that is rotational vibration of the excitation element in the zx plane
  • a drive amplitude monitor unit that plays a role of detecting the amplitude of the drive vibration
  • the excitation element exhibits a rotational displacement in the xy plane (second plane) with the z-axis direction as the rotation axis, with deformation of the support beam, with the fixed portion at the center as a fulcrum.
  • the detecting unit plays a role of detecting the rotational displacement in the xy plane.
  • an electrode that generates an electrostatic force in the direction opposite to the rotational displacement direction is installed so as to cancel the rotational displacement in the xy plane.
  • the voltage applied to the electrode is calculated by a semiconductor chip for a signal processing circuit connected to the semiconductor chip on which the angular velocity sensor is formed, and finally an output signal corresponding to the angular velocity is obtained.
  • the servo unit plays a role of generating an electrostatic force in a direction opposite to the rotational displacement direction in the xy plane.
  • the angular velocity in the first embodiment is determined by combining a semiconductor chip (first semiconductor chip) on which an angular velocity sensor element having a MEMS structure is formed and a semiconductor chip (second semiconductor chip) on which a signal processing circuit is formed.
  • a sensor is configured.
  • FIG. 1 is a plan view showing a configuration of a semiconductor chip CHP1 on which an angular velocity sensor element according to the first embodiment is formed.
  • a cavity 102 and a dummy part 116 are formed so as to be surrounded by the frame part 101.
  • a fixing portion 103 is provided inside the hollow portion 102, and a support beam 104 that is an elastic deformation portion is connected to the fixing portion 103. Further, the support beam 104 is connected to the excitation element 105 of the angular velocity sensor element.
  • the excitation element 105 is formed integrally with, for example, the detection units DTU1 to DTU2 that detect displacement in the xy plane based on the Coriolis force, and the excitation element 105 and the detection unit DTU1.
  • a movable part including DTU2 is configured.
  • the angular velocity sensor element includes a driving movable electrode 106 a and a driving movable electrode 107 a that constitute a part of the excitation element 105.
  • An electrostatic force is applied by applying a voltage between the driving movable electrode 106a and the driving fixed electrode not shown in FIG. 1 and between the driving movable electrode 107a and the driving fixed electrode not shown in FIG.
  • drive vibration By generating the excitation element 105, drive vibration (rotational vibration) occurs in the zx plane including the z direction that is the thickness direction of the semiconductor chip CHP1.
  • the angular velocity sensor element according to the first embodiment has a plurality of drive amplitude monitor units. Specifically, the angular velocity sensor element according to the first embodiment has four drive amplitude monitor units MU1 to MU4 as shown in FIG.
  • the drive amplitude monitor unit MU1 includes a drive amplitude monitor movable electrode 108a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 108b fixed to the support substrate.
  • the drive amplitude monitor unit MU2 includes a drive amplitude monitor movable electrode 109a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 109b fixed to the support substrate.
  • the monitor unit MU3 includes a drive amplitude monitor movable electrode 110a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 110b fixed to the support substrate.
  • the drive amplitude monitor unit MU4 includes a drive amplitude monitor movable electrode 111a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 111b fixed to the support substrate. That is, each of the four drive amplitude monitor units MU1 to MU4 is a capacitive element including a movable electrode for drive amplitude monitor and a fixed electrode for drive amplitude monitor, and is excited by these drive amplitude monitor units MU1 to MU4. The amplitude of the drive vibration in the zx plane of the element 105 is detected as a change in the capacitance value of the capacitive element.
  • the angular velocity sensor element has two detection units DTU1 to DTU2.
  • the detection unit DTU1 includes a displacement detection movable electrode 112a formed integrally with the excitation element 105, and a displacement detection fixed electrode 112b fixed to the support substrate
  • the detection unit DTU2 includes the excitation It is composed of a displacement detection movable electrode 113a formed integrally with the element 105, and a displacement detection fixed electrode 113b fixed to the support substrate. That is, each of the two detection units DTU1 to DTU2 is a capacitive element composed of a displacement detection movable electrode and a displacement detection fixed electrode.
  • the excitation unit 105 based on the Coriolis force is detected by these detection units DTU to DTU2. Is detected as a change in the capacitance value of the capacitive element. That is, when an angular velocity is applied around the rotation axis direction included in the xy plane perpendicular to the zx plane, the detection units DTU1 to DTU2 detect the displacement in the xy plane based on the Coriolis force generated due to the angular velocity. It is configured to be regarded as a change in capacitance.
  • the angular velocity sensor element according to the first embodiment has two servo units SVU1 to SUV2.
  • the servo unit SVU1 includes a servo electrode movable unit 114a formed integrally with the excitation element 105 and a servo electrode fixed unit 114b fixed to the support substrate.
  • the servo unit SVU2 is integrated with the excitation element 105.
  • the servo electrode movable portion 115a is formed on the support substrate, and the servo electrode fixed portion 115b is fixed to the support substrate.
  • each of the servo units SVU1 to SUV is configured to generate an electrostatic force in a direction opposite to the rotational displacement direction in the xy plane, and thereby, in the xy plane due to the Coriolis force.
  • the rotational displacement is canceled out by the electrostatic force generated in each of the servo units SVU1 to SUV2.
  • the angular velocity sensor element configured in this manner is processed using a silicon deep etching (DRIE) technique.
  • DRIE silicon deep etching
  • connection angle between the excitation element 105 and the support beam 104 is adjusted so as not to be an acute angle for the purpose of reducing the individual difference in the natural frequency caused by DRIE processing variation.
  • the excitation element 105 of the angular velocity sensor element according to the first embodiment is connected to the support substrate only through the fixed portion 103, and the support substrate is affected by the temperature variation of the environment where the angular velocity sensor is placed and the influence of mounting distortion. Even when the support substrate is deformed due to distortion, stress distribution due to deformation of the excitation element 105 and the support beam 104 is difficult to occur. That is, the angular velocity sensor element according to the first embodiment has a structure in which the natural frequency of the excitation element 105 is unlikely to vary.
  • the driving vibration mode (rotational vibration mode) in the zx plane or the rotational displacement mode in the xy plane is the first natural frequency of the excitation element 105. 1 mode. Therefore, in the angular velocity sensor element according to the first embodiment, there is no characteristic frequency to which the excitation element 105 responds in a band equal to or lower than the operating frequency of the angular velocity sensor element. For this reason, the angular velocity sensor element according to the first embodiment has a feature that is strong against mechanical vibration noise from the outside.
  • the dummy portion 116 has a role of adjusting a removal area by etching to reduce processing variations of components of the angular velocity sensor typified by an excitation element and fixing a potential. Thus, it also serves as a shield for removing electromagnetic noise from the surroundings. Furthermore, in the angular velocity sensor element according to the first embodiment, the dummy unit 116 is mounted when the semiconductor chip CHP1 is mounted due to the point of adopting the transfer mold technique or the distortion of the semiconductor chip CHP1 due to temperature or humidity fluctuations. Also, it has a role of configuring the support so that the components of the angular velocity sensor installed in the layer in contact with the resin constituting the sealing body do not deform.
  • FIG. 2A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3A is a cross-sectional view taken along the line BB in FIG.
  • the semiconductor chip CHP1 on which the angular velocity sensor element is formed has a support substrate 1S made of, for example, single crystal silicon.
  • An insulating layer 131 made of, for example, a silicon oxide film is formed on the surface (upper surface, main surface) of the support substrate 1S, and a device layer DL is formed above the insulating layer 131, and above the device layer DL.
  • a cap layer CAPL is formed.
  • a cavity 102 is formed between the support substrate 1S and the device layer DL and between the device layer DL and the cap layer CAPL.
  • the device layer DL includes a frame portion 101 made of single crystal silicon, a fixed portion 103, an excitation element 105, servo electrode movable portions 114a and 115a, servo electrode fixed portions 114b and 115b, driving movable electrodes 106a and 107a, and displacement. Components such as the movable electrodes for detection 112a and 113a and the fixed electrodes for displacement detection 112b and 113b shown in FIG. 1 are formed. Further, the drive amplitude monitor movable electrodes 108a to 111a, the drive amplitude monitor fixed electrodes 108b to 111b, the support beam 104, and the like are formed in the device layer DL.
  • the cap layer CAPL is a fixed electrode for driving 106b, 107b to which a voltage for vibrating the cap part 140 made of single crystal silicon, the insulating layer 141, the conductive film 142, the protective film 143, and the excitation element 105 in the zx plane is applied. , And through electrodes are formed.
  • the cap portion 140 and the device layer DL are joined, and the angular velocity sensor element is protected by the cap portion 140.
  • the support substrate 1S and the device layer DL are joined in the connection region CR1, and the device is connected in the connection region CR2.
  • the layer DL and the cap layer CAPL are connected.
  • the excitation element 105 of the angular velocity sensor element disposed in the cavity portion 102 is connected to the fixed portion 103 via the support beam 104, and the fixed portion 103 is connected to the support substrate 1S via the insulating layer 131.
  • the excitation element 105 is not completely fixed to the support substrate 1S, and is configured to be displaceable. Since the excitation element 105 is made of single crystal silicon, the excitation element 105 is electrically connected at any location in the structure.
  • a through electrode is formed so as to penetrate the cap part 140, and this through electrode is formed by embedding the insulating layer 141 in the cap part 140 and electrically separating it.
  • the potential applied to the excitation element 105 is supplied from a pad formed on the conductive film 142 through a through electrode connected to the fixed portion 103.
  • through electrodes are also formed in the drive amplitude monitoring fixed electrodes 108b to 111b, the displacement detection fixed electrodes 112b and 113b, and the servo electrode fixing portions 114b and 115b, respectively.
  • the drive amplitude monitoring fixed electrodes 108b to 111b, the displacement detection fixed electrodes 112b and 113b, and the servo electrode fixing portions 114b and 115b are electrically connected to the pads formed on the conductive film 142 through the through electrodes. Connected. Therefore, the potentials of the drive amplitude monitoring fixed electrodes 108b to 111b, the displacement detection fixed electrodes 112b and 113b, and the servo electrode fixing portions 114b and 115b are equal to the potentials of the pads.
  • the excitation element 105 and each of the fixed electrodes described above are changed according to the capacitance change caused by the drive vibration of the excitation element 105 in the zx plane and the capacitance change caused by the displacement of the excitation element 105 in the xy plane. Charges will flow into or out of the surface.
  • the surface of the conductive film 142 is covered and protected by the protective film 143 except for the pad portion.
  • the device layer DL and the cap layer CAPL are bonded together to be bonded.
  • direct bonding between single crystal silicons is used for bonding the device layer DL and the cap layer CAPL.
  • bonding is also used for bonding the device layer DL and the support substrate 1S.
  • fusion bonding of a silicon oxide film obtained by oxidizing the surface of single crystal silicon at a high temperature and single crystal silicon is used for bonding the device layer DL and the support substrate 1S.
  • the semiconductor chip CHP1 in the first embodiment unlike the conventional bonding method using an adhesive or the glass-silicon anodic bonding method, the semiconductor chip CHP1 becomes a gas generation source during bonding. Organic substances such as adhesives are not required. Therefore, in the semiconductor chip CHP1 in the first embodiment, the cavity 102 can be formed by a method that does not include a degassing component inside the cavity 102. Further, even when the residual liquid in the cleaning process performed before the bonding process or the residual resist in the photolithography process adheres to the inner wall of the cavity 102, the direct bonding between the single crystal silicons is usually 1000. Since it is carried out by applying heat of at least ° C., the above-mentioned residual liquid and residual resist are burned out.
  • the cavity 102 can be formed without containing a degassing component in the interior of the 102.
  • the inside of the cavity 102 in which the excitation element 105 of the angular velocity sensor element is disposed is sealed with a low pressure of, for example, 100 Pa or less, preferably 10 Pa or less.
  • a low pressure for example, 100 Pa or less, preferably 10 Pa or less.
  • the pressure in the cavity 102 is lowered as compared with the bonding method using an adhesive material used conventionally and the glass-silicon anodic bonding method. be able to.
  • an adsorbent that adsorbs gas molecules inside the cavity 102 where the excitation element 105 is installed is used. It is not necessary to introduce a certain getter to maintain the degree of vacuum, and an increase in cost due to the use of the getter material can be suppressed.
  • the driving electrodes (driving movable electrode and driving fixed electrode) of the angular velocity sensor element according to the first embodiment are parallel plate types and have an electrode structure that exhibits squeezed film type damping that is highly attenuated in gas.
  • the sealing pressure can be lowered instead of the conventional bonding method using an adhesive or the glass-silicon anodic bonding method. Direct bonding of single crystal silicon that can be performed and fusion bonding of a silicon oxide film and single crystal silicon are used.
  • the excitation element 105 according to the first embodiment is disposed inside the cavity 102 having a degree of vacuum that hardly contributes to gas damping, the drive electrode has a parallel plate type electrode structure. Nevertheless, a large Q value can be realized in the drive vibration mode of the excitation element 105.
  • driving movable electrodes 106a and 107a are formed in a region of the excitation element 105 indicated by a broken line.
  • the driving fixed electrode 106b is located above the driving movable electrodes 106a and 107a formed in the device layer DL and at a position facing the driving movable electrodes 106a and 107a.
  • a driving fixed electrode 107b is formed.
  • a capacitive element is formed by the driving movable electrode 106a and the driving fixed electrode 106b, and a capacitive element is formed by the driving movable electrode 107a and the driving fixed electrode 107b.
  • a periodic drive represented by Vcom + Vb + Vd is provided between the drive movable electrode 106a and the drive fixed electrode 106b that form a capacitive element by facing each other.
  • a signal is applied, and a periodic drive signal represented by Vcom + Vb ⁇ Vd is applied between the drive movable electrode 107a and the drive fixed electrode 107b.
  • a voltage represented by Vcom is applied to the fixed portion 103 that is electrically connected to the excitation element 105 through the through electrode.
  • electrostatic force alternately acts between the drive movable electrode 106a and the drive fixed electrode 106b and between the drive movable electrode 107a and the drive fixed electrode 107b.
  • the excitation element 105 undergoes drive vibration (rotational vibration) in the zx plane.
  • the driving movable electrode 106a and the driving fixed electrode 106b, and the driving movable electrode 107a and the driving fixed electrode 107b are In the zx plane, the excitation element 105 is installed at a position farthest from the fixed portion 103 that is the center of rotation.
  • the angular velocity sensor element according to the first embodiment includes a capacitive element including the driving movable electrode 106a and the driving fixed electrode 106b, and a driving movable electrode 107a and the driving fixed electrode 107b. The rotational torque resulting from the electrostatic force acting between the capacitive elements increases.
  • the area of the driving fixed electrode 106b and the driving fixed electrode 107b can be reduced, and thereby the semiconductor chip CHP in which the angular velocity sensor element is formed.
  • the advantage of reducing the size of the is obtained.
  • the capacitive element configured by the driving movable electrode 106a and the driving fixed electrode 106b or the capacitive element configured by the driving movable electrode 107a and the driving fixed electrode 107b has the excitation element 105 in the zx plane. It functions as a forced vibration generating unit that forcibly generates drive vibration.
  • the excitation element 105 is formed with drive amplitude monitor movable electrodes 108a to 111a formed integrally with the excitation element 105.
  • the drive amplitude monitor fixed electrodes 108b to 111b are formed so as to face the drive amplitude monitor movable electrodes 108a to 111a.
  • four capacitive elements are formed by each of the drive amplitude monitor movable electrodes 108a to 111a and each of the drive amplitude monitor fixed electrodes 108b to 111b, and these four capacitive elements are formed in the device layer DL.
  • the four drive amplitude monitor units MU1 to MU4 are provided.
  • the capacitance value changes when the excitation element 105 is displaced in the z direction by the drive vibration in the zx plane.
  • FIG. 4A is a cross-sectional view taken along line C1-C1 of FIG.
  • the drive amplitude monitor movable electrode 108a has a notch on the ⁇ z direction side
  • the drive amplitude monitor movable electrode 108b has a notch on the + z direction side.
  • the center position in the z direction (thickness direction) of the drive amplitude monitor movable electrode 108a is shifted from the center position in the z direction (thickness direction) of the drive amplitude monitor fixed electrode 108b. It can also be expressed as being.
  • the height of these notches needs to be larger than the amplitude of the drive vibration in the zx plane of the excitation element 105.
  • FIG. 4B is a cross-sectional view taken along line C2-C2 of FIG.
  • the drive amplitude monitor movable electrode 109a has a cutout on the + z direction side
  • the drive amplitude monitor fixed electrode 109b has a cutout on the ⁇ z direction side. Therefore, when the excitation element 105 is rotated counterclockwise in the zx plane, the drive amplitude monitor movable electrode 109a is displaced in the + z direction. Therefore, the drive amplitude monitor unit MU2 is increased as the rotation angle is increased. The capacitance value of the capacitive element that constitutes increases.
  • the drive amplitude monitor movable electrode 110a has a notch on the + z direction side
  • the drive amplitude monitor fixed electrode 110b has a notch on the ⁇ z direction side. Therefore, as shown in FIG. 3B, when the excitation element 105 is rotated counterclockwise in the zx plane, the drive amplitude monitor movable electrode 110a is displaced in the ⁇ z direction. As the value increases, the capacitance value of the capacitive element constituting the drive amplitude monitor unit MU3 decreases.
  • the drive amplitude monitor movable electrode 111a has a notch on the ⁇ z direction side
  • the drive amplitude monitor fixed electrode 111b has a notch on the + z direction side. Therefore, when the excitation element 105 rotates counterclockwise in the zx plane, the drive amplitude monitor movable electrode 111a is displaced in the ⁇ z direction, so that the drive amplitude monitor unit increases as the rotation angle increases.
  • the capacitance value of the capacitive element constituting MU4 increases.
  • the capacitance values of the four capacitive elements formed from each of the drive amplitude monitor movable electrodes 108a to 111a and each of the drive amplitude monitor fixed electrodes 108b to 111b change. That is, in the first embodiment, the capacitive elements constituting each of the four drive amplitude monitoring units MU1 to MU4 are not only when the excitation element 105 vibrates in the zx plane, but also by the Coriolis force. The capacitance value also changes when the displacement occurs in the xy plane.
  • the capacitance value of the capacitive element composed of the drive amplitude monitor movable electrode 108a and the drive amplitude monitor fixed electrode 108b increases, and the drive amplitude monitor movable
  • the capacitance value of the capacitive element composed of the electrode 109a and the drive amplitude monitoring fixed electrode 109b decreases.
  • the capacitance value of the capacitive element composed of the drive amplitude monitor movable electrode 110a and the drive amplitude monitor fixed electrode 110b decreases, and the capacity composed of the drive amplitude monitor movable electrode 111a and the drive amplitude monitor fixed electrode 111b.
  • the capacitance value of the element increases.
  • the total capacitance value obtained by electrically connecting the drive amplitude monitor fixed electrode 108b and the drive amplitude monitor fixed electrode 110b, and the drive amplitude monitor It is necessary to perform differential detection between the total capacitance value in which the fixed electrode 109b for driving and the fixed electrode 111b for driving amplitude monitoring are electrically connected. According to this differential detection, the change in the capacitance value due to the rotational displacement of the excitation element 105 in the xy plane can be canceled before being input to the signal processing circuit (arithmetic circuit).
  • the drive amplitude monitoring units MU1 to MU4 in the first embodiment eliminate the influence of the rotational displacement in the xy plane, and the capacitance value due to the drive vibration in the zx plane. Only the amount of change can be detected. Thus, only the drive vibration in the zx plane of the excitation element 105 can be monitored by the drive amplitude monitoring units MU1 to MU4.
  • a signal processing circuit is formed in the semiconductor chip electrically connected to the semiconductor chip CHP1 in which the angular velocity sensor element is formed.
  • the signal processing circuit is connected to the above-described drive amplitude monitoring units MU1 to MU4. Based on the change in the capacitance value corresponding to the drive amplitude in the zx plane of the obtained excitation element 105, feedback control is performed by automatic amplitude control (Automatic Gain Control: AGC), and the vibration amplitude of the excitation element 105 is always kept constant. ing.
  • AGC Automatic Gain Control
  • the drive vibration in the zx plane of the excitation element 105 can be monitored by the drive amplitude monitoring units MU1 to MU4, so that the accuracy of the feedback control by the automatic amplitude control described above is achieved. Can be improved.
  • the drive amplitude monitor movable electrodes 108a to 111a and the drive amplitude monitor fixed electrodes 108b to 111b are all formed in the device layer DL which is the same layer as the excitation element 105 and is not easily affected by the distortion. For this reason, even if the semiconductor chip CHP1 on which the angular velocity sensor element is formed is distorted due to the adoption of the transfer mold technique, the temperature and humidity being fluctuated, the drive amplitude monitor movable The distance between the electrode and the drive amplitude monitor fixed electrode is unlikely to fluctuate, and the capacitance value of the capacitive element composed of the drive amplitude monitor movable electrode and the drive amplitude monitor fixed electrode also fluctuates due to distortion of the semiconductor chip CHP1. Hard to do. In other words, the capacitance value of the capacitive element that detects the amplitude of the rotational vibration in the zx plane of the excitation element 105 is not easily affected by the distortion of the semiconductor chip CHP1.
  • the driving movable electrodes 106a and 107a are formed on the device layer DL that is not easily affected by the distortion
  • the driving fixed electrodes 106b and 107b are formed on the cap layer CAPL that is easily affected by the distortion. Is formed.
  • the semiconductor chip CHP1 in which the angular velocity sensor element is formed is distorted due to the fact that the transfer mold technique is employed and the temperature and humidity vary. When this occurs, the distance between the driving movable electrodes 106a and 107a and the driving fixed electrodes 106b and 107b may fluctuate due to distortion.
  • the capacitance value of the capacitive element constituted by the driving movable electrode 106a and the driving fixed electrode 106b and the capacitance value of the capacitive element constituted by the driving movable electrode 107a and the driving fixed electrode 107b vary. There is a fear.
  • automatic amplitude control is performed based on outputs from the drive amplitude monitor units MU1 to MU4 formed in the device layer DL that is not easily affected by distortion. That is, in the first embodiment, application is performed so that the vibration amplitude of the excitation element 105 is constant based on the output from the drive amplitude monitor units MU1 to MU4 formed in the device layer DL that is not easily affected by distortion.
  • the electrostatic force applied between the driving movable electrodes 106a and 107a and the driving fixed electrodes 106b and 107b is adjusted by adjusting the driving signal Vd.
  • the first embodiment even if the distance between the driving movable electrodes 106a and 107a and the driving fixed electrodes 106b and 107b varies due to the distortion generated in the semiconductor chip CHP1.
  • the influence on the output of the angular velocity sensor due to the distortion of the semiconductor chip CHP1 can be reduced.
  • the driving electrodes (moving driving electrode and driving fixed electrode) of the angular velocity sensor element in the first embodiment have a parallel plate type electrode structure.
  • the excitation element 105 is installed inside the low-pressure cavity 102 that is hardly affected by gas damping, and thus the Q value of the excitation element 105 is large. Therefore, according to the first embodiment, in the parallel plate type electrode structure, the driving vibration is applied to the excitation element 105 using a small electrostatic force in a linear region where a linear relationship is established between the displacement and the electrostatic force. Even when this occurs, the amplitude of the drive vibration of the excitation element 105 can be sufficiently secured with a large Q value.
  • the driving vibration is generated in the excitation element 105 using a linear region where the driving force (electrostatic force) is linear with respect to the displacement
  • the automatic amplitude control becomes unstable. The fear can be reduced.
  • the minute displacement is generated with a small electrostatic force and the amplitude of the drive vibration of the excitation element 105 is secured with a large Q value, the drive electrodes are bonded to each other. The so-called pull-in phenomenon can be suppressed.
  • a detection unit DTU1 is configured by the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b, and the detection unit is configured by the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b.
  • DTU2 is configured. That is, the detection unit DTU1 includes a capacitive element composed of the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b. The capacitance value of the capacitive element changes according to the angular velocity input to the semiconductor chip CHP1. To do. Similarly, the detection unit DTU2 includes a capacitive element composed of a displacement detection movable electrode 113a and a displacement detection fixed electrode 113b. The capacitance value of this capacitive element depends on the angular velocity input to the semiconductor chip CHP1. Change.
  • the mechanism in which the capacitance values of the detection unit DTU1 and the detection unit DTU2 change according to the angular velocity around the x-axis direction is as follows. That is, when an angular velocity around the x-axis direction is input to the excitation element 105 that vibrates in the zx plane, a portion having a speed in the + z direction in the excitation element 105 has a Coriolis force in the ⁇ y direction. The Coriolis force in the + y direction acts on the portion of the excitation element 105 having a velocity in the ⁇ z direction.
  • the displaceable direction of the excitation element 105 is a rotational displacement in the zx plane with the fixed portion 103 as the center and a rotational displacement in the xy plane with the fixed portion 103 as the center. For this reason, the Coriolis force based on the angular velocity applied to the excitation element 105 is manifested as a rotational moment obtained by multiplying the square of the distance from the fixed portion 103 for all the components of the exciting element 105 that is vibrating.
  • the Coriolis force based on the angular velocity applied to the excitation element 105 functions as a torque in the z direction that acts on the fixed portion 103. Accordingly, the excitation element 105 rotates in the xy plane with the fixed portion 103 as the center of rotation in accordance with the magnitude of the z-direction torque acting on the fixed portion 103. In this way, when the excitation element 105 is displaced in the y direction by the rotational movement in the xy plane, the capacitance value of the capacitive element constituting the detection unit DTU1 and the capacitance of the capacitive element constituting the detection unit DTU2 are described. The value changes.
  • the rotational motion in the xy plane is generated by the combined torque from all the components of the excitation element 105. Therefore, in the first embodiment, the electrostatic force generated between the driving movable electrode 106a and the driving fixed electrode 106b, or between the driving movable electrode 107a and the driving fixed electrode 107b, is Even if they are not equal due to variations in processing and the distance between the electrodes, the influence on the rotational motion of the excitation element 105 in the xy plane is reduced.
  • FIG. 5A is a cross-sectional view taken along the line DD in FIG.
  • the displacement detection movable electrode 112a integrated with the excitation element 105 has no stepped portion, but the displacement detection fixed electrode 112b has an upper end and a lower end in the z direction.
  • a stepped portion DIF having the same shape is formed in each portion.
  • the height h of the stepped portion DIF is larger than the amplitude of rotational vibration in the zx plane of the excitation element 105. Therefore, as shown in FIG.
  • the displacement detection movable electrode 113a integrated with the excitation element 105 has no stepped portion, but the displacement detection fixed electrode 113b has an upper end portion and a lower end portion in the z direction.
  • a stepped portion DIF having the same shape is formed.
  • the height h of the stepped portion DIF is larger than the amplitude of the drive vibration in the zx plane of the excitation element 105. Therefore, even if the excitation element 105 is drivingly vibrated in the zx plane, the capacitance value of the capacitive element constituted by the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b hardly changes, and the semiconductor chip CHP1.
  • the capacitance value varies only according to the angular velocity applied to the.
  • a step DIF is provided in the displacement detection movable electrode 112a, and the height of the step DIF. h is configured to be larger than the amplitude of the drive vibration in the zx plane of the excitation element 105.
  • the displacement detection movable electrodes 112 a and 113 a are excited in the vicinity of the rotation axis (fixed portion 103) having a small vibration amplitude among the excitation elements 105 that drive and vibrate in the zx plane. It is connected to the element 105.
  • the detection unit DTU1 and the detection unit DTU2 in the first embodiment are installed at positions facing the driving movable electrodes 106a and 107a and the driving movable electrodes 106a and 107a in the z direction on the xy plane.
  • the fixed electrode for driving and the driving amplitude monitor units MU1 to MU4 are arranged at positions closer to the fixed unit 103.
  • the displacement detection movable electrode 112a even if there are processing variations occurring at the upper and lower ends of the displacement detection movable electrodes 112a and 113a. , 113a, the influence of the fluctuation of the capacitance value due to the difference in the leakage electric field from the end portion can be suppressed.
  • the displacement detection fixed electrodes 112b and 113b are fixed to the support substrate only at positions where the through electrodes are formed, and the displacement detection fixed electrodes other than the fixed portion are fixed. Holes are formed in the electrodes 112b and 113b.
  • the natural frequency of the displacement detection fixed electrodes 112b and 113b can be increased by reducing the weight of the displacement detection fixed electrodes 112b and 113b.
  • the detection unit DTU1 and the detection unit DTU2 in Embodiment 1 have a structure that is not easily affected by external mechanical vibration noise.
  • the capacitance value of the capacitive element configured by the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b, or the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b is configured.
  • the capacitance value of the capacitive element is less likely to fluctuate with respect to external mechanical vibration noise.
  • the displacement detection movable electrodes 112a and 113a and the displacement detection fixed electrodes 112b and 113b are formed in the device layer DL on which the excitation element 105 is formed. Therefore, even when distortion occurs in the semiconductor chip CHP1 on which the angular velocity sensor element is formed due to the point that the transfer mold technology is employed and the temperature and humidity fluctuate, the displacement detection movable The distance between the electrode 112a and the displacement detection fixed electrode 112b and the distance between the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b are unlikely to vary, and the capacitance value is also unlikely to vary.
  • the capacitance value of the capacitive element that constitutes the detection unit DTU1 and the capacitance value of the capacitive element that constitutes the detection unit DTU2 are characterized by being hardly affected by the distortion of the semiconductor chip CHP1.
  • servo electrode movable portions 114 a and 115 a formed integrally with the excitation element 105 are formed in the excitation element 105.
  • Servo electrode fixing portions 114b and 115b are formed to face the servo electrode movable portions 114a and 115a.
  • the angular velocity sensor element according to the first embodiment includes the servo unit SVU1 including the servo electrode movable unit 114a and the servo electrode fixed unit 114b, and the servo unit SVU2 including the servo electrode movable unit 115a and the servo electrode fixed unit 115b. And have.
  • a signal processing circuit is formed on a semiconductor chip electrically connected to the semiconductor chip CHP1 on which the angular velocity sensor element is formed.
  • This signal processing circuit includes a capacitance value of a capacitive element composed of the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b, and a capacitive element composed of the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b. Control is performed so that the capacitance value is always kept constant.
  • the signal processing circuit described above can move between the servo electrode movable portion 114a and the servo electrode fixed portion 114b or move the servo electrode so that the excitation element 105 is not displaced according to the input angular velocity around the x-axis direction.
  • the voltage applied between the portion 115a and the servo electrode fixing portion 115b is controlled.
  • the signal processing circuit applies a periodic servo signal represented by Vcom + Vsb + Vsd between the servo electrode movable part 114a and the servo electrode fixing part 114b that form a capacitive element by facing each other,
  • a periodic servo signal represented by Vcom + Vsb ⁇ Vsd is applied between the servo electrode movable portion 115a and the servo electrode fixing portion 115b.
  • the signal processing circuit adjusts Vsd so that the excitation element 105 is not displaced.
  • the signal processing circuit includes the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b described above.
  • the capacitance value of the capacitive element to be controlled and the capacitance value of the capacitive element constituted by the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b are controlled to be constant.
  • Vsd has a value proportional to the angular velocity applied to the excitation element 105
  • an output value obtained by multiplying Vsd by an appropriate proportional coefficient in the signal processing circuit is a value corresponding to the angular velocity.
  • This is a control technique called a zero method.
  • the excitation element 105 is not displaced even if it receives the Coriolis force, the influence of the stress distribution generated inside the support beam 104 due to the increase of the rotation angle in the xy plane is eliminated. can do. For this reason, the influence of the non-linear output of the displacement with respect to the rotational force can be removed, and according to the angular velocity sensor element in the first embodiment, the non-linearity of the output value can be reduced.
  • the electrostatic force acting between the servo electrode movable part 114a and the servo electrode fixed part 114b or between the servo electrode movable part 115a and the servo electrode fixed part 115b can be regarded as hardly changing due to temperature fluctuation, It is possible to obtain an advantage that the sensitivity of the angular velocity sensor in the first embodiment does not depend on temperature fluctuation.
  • the servo electrode movable parts 114 a and 115 a and the servo electrode fixing parts 114 b and 115 b are formed in the same device layer DL as the excitation element 105. Therefore, even if the semiconductor chip CHP1 on which the angular velocity sensor element is formed is distorted due to the fact that the transfer mold technology is adopted and the temperature and humidity fluctuate, the servo electrode movable portion The distance between 114a and the servo electrode fixing portion 114b and the distance between the servo electrode movable portion 115a and the servo electrode fixing portion 115b are unlikely to vary, and the capacitance value is also unlikely to vary.
  • the capacitance values of the capacitive elements constituting the servo units SVU1 and SVU2 each having a function of canceling the rotational movement of the excitation element 105 in the xy plane according to the input angular velocity by adjusting the voltage in the signal processing circuit are
  • the semiconductor chip CHP1 is hardly affected by the distortion generated.
  • the servo part SVU 1 and the servo part SVU 2 are formed in a portion near the fixed part 103 in the excitation element 105. For this reason, the force generated in the servo unit SVU1 and the servo unit SVU2 needs to be larger than the Coriolis force generated in the excitation element 105. According to the angular velocity sensor in the first embodiment, the sensitivity of the angular velocity sensor is increased. The advantage that can be increased is obtained.
  • FIG. 6 is a diagram illustrating a signal processing circuit related to driving vibration of the angular velocity sensor according to the first embodiment.
  • a modulation signal generation unit 211 that generates a modulation signal (carrier wave) is formed in the semiconductor chip CHP2.
  • a bias voltage is applied to the modulation signal generated by the modulation signal generator 211 and applied to the excitation element 105.
  • the modulation signal generation unit 211 is configured to generate a modulation signal of several hundred kHz, for example, but the modulation signal of several hundred kHz is larger than the natural frequency of the excitation element 105 of the angular velocity sensor element.
  • the excitation element 105 is not displaced by the modulation signal.
  • the capacitance value of the capacitive element formed between the electrodes can be measured while removing environmental noise.
  • drive signal generators 210a and 210b that generate drive signals are formed in the semiconductor chip CHP2.
  • the drive signal generators 210a and 210b are configured to generate a drive signal of several tens of kHz, for example.
  • the drive signal generation unit 210b generates a signal obtained by converting the phase of the drive signal generated by the drive signal generation unit 210a by 180 degrees.
  • a bias voltage is applied to the drive signal generated by the drive signal generation unit 210a and applied to the driving fixed electrode 106b.
  • the drive signal generated by the drive signal generation unit 210b is applied with a bias voltage and applied to the driving fixed electrode 107b.
  • the excitation element 105 of the angular velocity sensor element according to the first embodiment is driven to vibrate in the zx plane by a drive signal of several tens of kHz.
  • a calculation unit 212 is formed in the semiconductor chip CHP2.
  • the calculation unit 212 is connected to the drive amplitude monitoring fixed electrodes 108b and 111b and detects a change in capacitance corresponding to the amplitude of the rotational vibration of the excitation element 105.
  • the calculation unit 212 includes a capacitance voltage conversion unit (C / V conversion unit), an A / D conversion unit, a differential detection unit, and a synchronous detection unit.
  • the capacitance-voltage conversion unit is configured by an operational amplifier that converts capacitance changes of the capacitive elements C8 and C11 into voltage signals. Subsequently, the A / D conversion unit is configured to convert the analog signal output from the capacitance voltage conversion unit into a digital signal. Further, the differential detection unit takes a difference between the voltage signal corresponding to the capacitance change of the capacitive element C8 and the voltage signal corresponding to the capacitance change of the capacitive element C11 which is opposite to the capacitance change of the capacitive element C8. The synchronous detection unit is configured to restore the original low frequency signal from the signal converted into the high frequency signal by the modulation signal generated by the modulation signal generation unit 211.
  • the periodic drive signal generated by the drive signal generation units 210a and 210b and applied to the excitation element 105 is preferably the resonance frequency of the excitation element 105 of the angular velocity sensor element. . This is because the input energy can be efficiently used by increasing the drive displacement by using the resonance magnification (Q value), thereby realizing low power consumption of the angular velocity sensor in the first embodiment. Because it can.
  • automatic frequency control Automatic Frequency Control: AFC
  • phase locked circuit Phase Locked Loop: PLL
  • the frequency of the drive signal generated by the drive signal generators 210a and 210b is made to follow the resonance frequency of the excitation element 105 to compensate for the change in the resonance frequency due to the environmental temperature change.
  • automatic amplitude control is performed.
  • the magnitude (Vd) of the drive signal generated by the drive signal generators 210a and 210b is adjusted, and the amplitude of the periodic forced vibration of the excitation element 105 is always kept constant.
  • the sensitivity of the angular velocity sensor in the first mode is kept constant.
  • the driving movable electrodes 106a and 107a are formed on the device layer DL, while the driving fixed electrodes 106b and 107b are formed on the cap layer CAPL that is easily affected by distortion. Therefore, the distance between the driving movable electrode 106a and the driving fixed electrode 106b and the distance between the driving movable electrode 107a and the driving fixed electrode 107b are likely to fluctuate. It is considered that the capacitance value of the generated capacitive element is likely to fluctuate.
  • the amplitude of the excitation element 105 is controlled by the automatic amplitude control. Since the amplitude of the periodic rotational vibration can always be kept constant, the sensitivity of the angular velocity sensor is less affected by the distortion of the semiconductor chip CHP1.
  • FIG. 7 is a diagram for explaining a signal processing circuit related to detection of angular velocity by the angular velocity sensor in the first embodiment.
  • a calculation unit 213 is formed in the semiconductor chip CHP2.
  • the calculation unit 213 is electrically connected to the displacement detection fixed electrodes 112b and 113b, and is configured to detect a change in capacitance corresponding to the rotational displacement of the excitation element 105 in the xy plane caused by the Coriolis force. .
  • the calculation unit 213 includes a capacity voltage conversion unit (C / V conversion unit), an A / D conversion unit, a differential detection unit, and a synchronous detection unit.
  • the capacitive voltage conversion unit is configured by an operational amplifier that converts a capacitance change between the capacitive element C12 and the capacitive element C13 into a voltage signal.
  • the A / D conversion unit is configured to convert the analog signal output from the capacitance voltage conversion unit into a digital signal.
  • the differential detection unit is configured to take a difference between a voltage signal corresponding to the capacitance change of the capacitive element C12 and a voltage signal corresponding to the capacitance change of the capacitive element C13 which is opposite to the capacitance change of the capacitive element C12.
  • the synchronous detection unit is configured to restore the original low frequency signal from the signal converted into the high frequency signal by the modulation signal generated by the modulation signal generation unit 211.
  • the signal processing circuit formed in the semiconductor chip CHP2 includes a servo signal calculation unit 215 (SVO) that calculates a servo signal based on a signal output from the calculation unit 213, and an output from the servo signal calculation unit 215. After the signal to be D / A converted, the D / A converter that outputs the D / A converted signal to the servo signal generators 214a and 214b is provided.
  • SVO servo signal calculation unit 215
  • the signal processing circuit formed in the semiconductor chip CHP2 has servo signal generation units 214a and 214b that generate servo signals (servo voltages).
  • the servo signal generation units 214a and 214b are configured to generate a signal having a frequency synchronized with a drive signal of several tens of kHz, for example.
  • the servo signal generation unit 214b generates a servo signal obtained by converting the phase of the servo signal generated by the servo signal generation unit 214a by 180 degrees.
  • the servo signal generated by the servo signal generation unit 214a is applied with a bias voltage and applied to the servo electrode fixing unit 114b.
  • the servo signal generated by the servo signal generation unit 214b is applied with a bias voltage and applied to the servo electrode fixing unit 115b.
  • the rotational displacement in the xy plane caused by the Coriolis force is canceled by the servo signal synchronized with the drive signal of several tens of kHz.
  • the servo signal output from the servo signal calculation unit 215 is subjected to signal processing by an LPF low band pass filter (LPF) and then output from the angular velocity sensor.
  • LPF low band pass filter
  • FIG. 8 is a cross-sectional view showing a mounting configuration of the semiconductor device SA1 in which the angular velocity sensor according to the first embodiment is formed
  • FIG. 9 is a cross-sectional view showing the semiconductor chip CHP1 included in the semiconductor device SA1.
  • a chip mounting portion TAB is disposed inside a sealing body MR made of resin, and leads LD are also disposed. A part of the lead LD protrudes from the sealing body MR, and the lead LD functions as an external connection terminal.
  • a semiconductor chip CHP2 on which a signal processing circuit is formed is mounted on the chip mounting portion TAB.
  • the semiconductor chip CHP2 an integrated circuit including transistors and passive elements is formed in order to realize a signal processing circuit.
  • the signal processing circuit formed in the semiconductor chip CHP2 has a function of calculating an output signal from the angular velocity sensor element and outputting a control signal to the angular velocity sensor element, and finally outputs an angular velocity signal. It is a circuit to do. This angular velocity signal is output to an external device via, for example, the lead LD.
  • the pad PD1 formed on the semiconductor chip CHP2 is electrically connected to the lead LD by a wire W.
  • the semiconductor chip CHP1 is mounted on the semiconductor chip CHP2.
  • the semiconductor chip CHP1 is formed with a structure constituting an angular velocity sensor element.
  • the pad PD2 formed on the semiconductor chip CHP1 and the pad PD1 formed on the semiconductor chip CHP2 are electrically connected by, for example, a wire W.
  • the sealing body MR is made of, for example, a resin material.
  • This sealing body MR has a structure in which a semiconductor chip CHP2 and a semiconductor chip CHP1 are mounted on a chip mounting portion TAB in a mold, and a resin material melted at a high temperature in the mold is about 1 to 10 MPa. After injection with pressure, the resin material is cooled and cured. That is, the sealing body MR is formed by a transfer mold technique.
  • the cap layer CAPL in contact with the sealing body MR made of the resin material is pressed by the pressure when the resin material is injected into the mold, as shown in FIG. Transforms into
  • the resin material constituting the sealing body MR is characterized in that the volume expands due to temperature fluctuation and moisture absorption, and the volume shrinks due to drying. Therefore, when the temperature and humidity of the environment in which the semiconductor device SA1 is arranged fluctuate, distortion occurs in the semiconductor chip CHP1 arranged inside the sealing body MR due to expansion and contraction of the sealing body MR, and FIG.
  • the magnitude of the deformation shown varies. That is, when the sealing body MR is formed, or when the temperature and humidity of the environment in which the semiconductor device SA1 is installed fluctuates, it occurs in the drive movable electrodes 106a and 107a formed in the device layer DL and the semiconductor chip CHP1.
  • the distance between the driving fixed electrodes 106b and 107b formed on the cap layer CAPL that is susceptible to the influence of the distortion fluctuates, and the capacitance value of the capacitive element that generates driving vibration in the excitation element 105 varies.
  • the signal processing circuit is formed in the semiconductor chip CHP2 electrically connected to the semiconductor chip CHP1 in which the angular velocity sensor element is formed.
  • the amplitude of the drive vibration of the excitation element 105 is always kept constant based on the capacitance change corresponding to the drive vibration amplitude of the excitation element 105 obtained from the drive amplitude monitoring units MU1 to MU4. Automatic amplitude control is performed.
  • the drive amplitude monitor units MU1 to MU4 described above are formed in the device layer DL that is not easily affected by the distortion generated in the semiconductor chip CHP1, the drive amplitude monitor units MU1 to MU4 are There is an advantage that highly accurate automatic amplitude control can be realized without being easily influenced by the distortion generated in the semiconductor chip CHP1. That is, according to the angular velocity sensor in the first embodiment, distortion is generated in the semiconductor chip CHP1 in which the angular velocity sensor element is formed due to the point that the transfer mold technology is adopted and the temperature and humidity fluctuate. Thus, for example, even if the distance between the driving movable electrode 106a and the driving fixed electrode 106b varies, there is an advantage that the influence on the output of the angular velocity sensor can be reduced.
  • the drive amplitude monitor units MU1 to MU4 are formed in the same device layer DL as the excitation element 105, the capacitance values of the drive amplitude monitor units MU1 to MU4 due to distortion generated in the semiconductor chip CHP1. Also difficult to fluctuate. That is, the capacitance value of the capacitive element that detects the amplitude of the drive vibration in the zx plane of the excitation element 105 is not easily affected by the distortion of the semiconductor chip CHP1.
  • the displacement detection movable electrodes 112a and 113a and the displacement detection fixed electrodes 112b and 113b are also formed in the same device layer DL as the excitation element 105, the point that adopts the transfer molding technique, temperature, and humidity vary. Even if distortion occurs in the semiconductor chip CHP1 in which the angular velocity sensor element is formed due to the point, the capacitance values of the capacitive elements constituting the detection units DTU1 and DTU2 are not easily changed. That is, the detection units DTU1 and DTU2 whose capacitance values change according to the angular velocity applied to the semiconductor chip CHP1 are not easily affected by the distortion of the semiconductor chip CHP1.
  • the transfer mold technique is employed, and the temperature and humidity fluctuate. As a result, even if distortion occurs in the semiconductor chip CHP1 in which the angular velocity sensor element is formed, the capacitance values of the capacitive elements constituting each of the servo units SVU1 and SVU2 are not easily changed.
  • the servo units SVU1 and SVU2 having a function of canceling the rotational movement of the excitation element 105 in the xy plane according to the input angular velocity by voltage adjustment are not easily affected by the distortion of the semiconductor chip CHP1.
  • the excitation element 105 when a plane parallel to the surface of the semiconductor chip CHP1 is defined as the xy plane, the excitation element 105, the drive amplitude monitoring units MU1 to MU4, and the detection unit DTU1 are defined on the xy plane.
  • DTU2 servo units SVU1 to SUV2, and the like.
  • the angular velocity around the rotation axis direction included in the xy plane is applied while driving the excitation element 105 (rotational vibration) in the zx plane perpendicular to the xy plane.
  • the displacement corresponding to the Coriolis force generated in the detection direction orthogonal to the rotation axis direction is detected in the xy plane, and the angular velocity is output based on the detected displacement.
  • the angular velocity sensor of the first embodiment configured as described above, for example, even when the transfer mold technology advantageous for downsizing and cost reduction of the angular velocity sensor is applied, the performance of the angular velocity sensor A decrease in reliability can be suppressed.
  • the angular velocity sensor according to the first embodiment is not affected by resin filling pressure, resin expansion and contraction due to changes in environmental temperature and humidity, and resin deformation caused by changes in material properties over time. The influence on the performance and reliability of the angular velocity sensor can be suppressed.
  • the transfer mold technique can be applied without causing a decrease in performance and reliability, so that the angular velocity sensor can be reduced in size and cost.
  • FIG. 10 is a plan view showing the configuration of the semiconductor chip CHP1 in which the angular velocity sensor element according to the second embodiment is formed.
  • a hollow portion 102 and a dummy portion 116 are formed so as to be surrounded by the frame portion 101.
  • a fixing portion 103 is provided inside the cavity portion 102, and a support beam 104 that is an elastic deformation portion is connected to the fixing portion 103.
  • the support beam 104 is connected to the excitation element 105 of the angular velocity sensor element.
  • the excitation element 105 is formed integrally with, for example, the detection units DTU1 to DTU4 that detect displacement in the xy plane based on the Coriolis force, and the excitation element 105 and the detection unit DTU1.
  • a movable portion including DTU4 is configured.
  • the support beam 104 has, for example, a structure in which two beams are extended from the fixed portion 103 in the y direction.
  • the angular velocity sensor element according to the second embodiment that constitutes the support beam 104 is deformed to the support beam 104 when, for example, the angular velocity sensor element receives an impact, and one of the two beams. Is destroyed, the resonance frequency changes to 1 / ⁇ 2 times, so that an advantage of easily grasping the failure of the angular velocity sensor element can be obtained.
  • the angular velocity sensor element includes a driving movable electrode 106 a and a driving movable electrode 107 a that constitute a part of the excitation element 105.
  • An electrostatic force is applied by applying a voltage between the driving movable electrode 106a and the driving fixed electrode not shown in FIG. 10 and between the driving movable electrode 107a and the driving fixed electrode not shown in FIG.
  • drive vibration By generating the excitation element 105, drive vibration (rotational vibration) occurs in the zx plane including the z direction that is the thickness direction of the semiconductor chip CHP1.
  • the angular velocity sensor element in the second embodiment has two drive amplitude monitor units MU1 to MU2 as shown in FIG.
  • the drive amplitude monitor unit MU1 includes a drive amplitude monitor movable electrode 108a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 108b fixed to the support substrate.
  • the drive amplitude monitor unit MU2 includes a drive amplitude monitor movable electrode 109a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 109b fixed to the support substrate.
  • the angular velocity sensor element according to the second embodiment has four detection units DTU1 to DTU4.
  • the detection unit DTU1 includes a displacement detection movable electrode 112a formed integrally with the excitation element 105, and a displacement detection fixed electrode 112b fixed to the support substrate
  • the detection unit DTU2 includes the excitation It is composed of a displacement detection movable electrode 112c formed integrally with the element 105, and a displacement detection fixed electrode 112d fixed to the support substrate.
  • the detection unit DTU3 includes a displacement detection movable electrode 113a formed integrally with the excitation element 105 and a displacement detection fixed electrode 113b fixed to the support substrate
  • the detection unit DTU4 includes an excitation.
  • the displacement detection movable electrode 113c is formed integrally with the element 105, and the displacement detection fixed electrode 113d is fixed to the support substrate.
  • the angular velocity sensor element according to the second embodiment has two servo units SVU1 to SUV2.
  • the servo unit SVU1 includes a servo electrode movable unit 114a formed integrally with the excitation element 105 and a servo electrode fixed unit 114b fixed to the support substrate.
  • the servo unit SVU2 is integrated with the excitation element 105.
  • the servo electrode movable portion 115a is formed on the support substrate, and the servo electrode fixed portion 115b is fixed to the support substrate.
  • FIG. 11A is a cross-sectional view taken along line AA in FIG.
  • the semiconductor chip CHP1 in which the angular velocity sensor element is formed has a support substrate 1S made of, for example, single crystal silicon.
  • An insulating layer 131 made of, for example, a silicon oxide film is formed on the surface (upper surface, main surface) of the support substrate 1S, and a device layer DL is formed above the insulating layer 131, and above the device layer DL.
  • a cap layer CAPL is formed.
  • a cavity 102 is formed between the support substrate 1S and the device layer DL and between the device layer DL and the cap layer CAPL.
  • the device layer DL includes a frame portion 101 made of single crystal silicon, a fixed portion 103, an excitation element 105, servo electrode movable portions 114a and 115a, servo electrode fixed portions 114b and 115b, driving movable electrodes 106a and 107a, and displacement.
  • Components such as the movable electrodes for detection 112a, 112c, 113a, 113c and the fixed electrodes for displacement detection 112b, 112d, 113b, 113d shown in FIG. 10 are formed.
  • the drive amplitude monitor movable electrodes 108a to 109a, the drive amplitude monitor fixed electrodes 108b to 109b, the support beam 104, and the like are formed in the device layer DL.
  • the cap layer CAPL is a fixed electrode for driving 106b, 107b to which a voltage for vibrating the cap part 140 made of single crystal silicon, the insulating layer 141, the conductive film 142, the protective film 143, and the excitation element 105 in the zx plane is applied. , And through electrodes are formed.
  • the cap portion 140 and the device layer DL are joined, and the angular velocity sensor element is protected by the cap portion 140.
  • the support substrate 1S and the device layer DL are joined in the connection region CR1
  • the device layer DL and the cap layer CAPL are joined in the connection region CR2. And are connected.
  • a region of the cap unit 140 that is opposite to a portion where the maximum amplitude is generated when the excitation element 105 vibrates in the zx plane (rotational vibration) is a driving force applied to the excitation element 105.
  • the driving fixed electrodes 106b and 107b providing the above are recessed.
  • the distance between the driving movable electrode 106a and the driving fixed electrode 106b and the distance between the driving movable electrode 107a and the driving fixed electrode 107b are: It is desirable to be as close as possible.
  • the driving fixed electrodes 106b and 107b are installed in a location near the fixed portion 103 that is the rotational vibration axis in the zx plane, and the end portion of the excitation element 105
  • the region of the cap part 140 opposite to the structure is recessed. Therefore, according to the angular velocity sensor element of the second embodiment, the distance between the driving movable electrode 106a and the driving fixed electrode 106b, or the distance between the driving movable electrode 107a and the driving fixed electrode 107b.
  • the driving amplitude at the end of the excitation element 105 can be increased.
  • driving movable electrodes 106a and 107a are formed in a region of the excitation element 105 indicated by a broken line.
  • the fixed driving electrode 106b is positioned above the movable driving electrodes 106a and 107a formed in the device layer DL and at a position facing the movable driving electrodes 106a and 107a.
  • a driving fixed electrode 107b is formed.
  • a capacitive element is formed by the driving movable electrode 106a and the driving fixed electrode 106b, and a capacitive element is formed by the driving movable electrode 107a and the driving fixed electrode 107b.
  • a periodic drive represented by Vcom + Vb + Vd is provided between the drive movable electrode 106a and the drive fixed electrode 106b that form a capacitive element by facing each other.
  • a signal is applied, and a periodic drive signal represented by Vcom + Vb ⁇ Vd is applied between the drive movable electrode 107a and the drive fixed electrode 107b.
  • a voltage represented by Vcom is applied to the fixed portion 103 that is electrically connected to the excitation element 105 through the through electrode.
  • electrostatic force alternately acts between the drive movable electrode 106a and the drive fixed electrode 106b and between the drive movable electrode 107a and the drive fixed electrode 107b.
  • the excitation element 105 performs drive vibration (rotational vibration) in the zx plane.
  • the electrostatic force Fe can be expressed by (Formula 1).
  • the Coriolis force Fc acting on the excitation element 105 that is driving vibration is input angular velocity ⁇ , the mass of the excitation element 105 m, the driving vibration frequency (angular frequency) ⁇ d, the amplitude of the driving vibration Ad
  • the Coriolis force Fc can be expressed by (Equation 2).
  • the fixed electrodes for driving 106b and 107b are, for example, on the rotational vibration axis in the zx plane more than the driving amplitude monitoring units MU1 to MU2. It is installed at a location close to a fixed portion 103. Therefore, the angular velocity sensor element according to the second embodiment reduces the distance between the driving movable electrode 106a and the driving fixed electrode 106b and the distance between the driving movable electrode 107a and the driving fixed electrode 107b.
  • the amplitude of the drive vibration at the end of the excitation element 105 can be increased.
  • the excitation element 105 is formed with drive amplitude monitor movable electrodes 108a and 109a formed integrally with the excitation element 105.
  • the drive amplitude monitor fixed electrodes 108b and 109b are formed on the device layer DL on which the excitation element 105 is formed so as to face the drive amplitude monitor movable electrodes 108a and 109a. Each is formed.
  • two capacitive elements are formed by each of the drive amplitude monitor movable electrodes 108a and 109a and each of the drive amplitude monitor fixed electrodes 108b and 109b, and these two capacitive elements are formed in the device layer DL.
  • the two drive amplitude monitor units MU1 to MU2 are provided. At this time, in the two capacitive elements constituting each of the two drive amplitude monitoring units MU1 and MU2, the capacitance value changes when the excitation element 105 is displaced in the z direction by the drive vibration in the zx plane.
  • the drive amplitude monitor movable electrode 108a has a step DIF1 formed at the upper end on the + z direction side
  • the drive amplitude monitor fixed electrode 108b has ⁇
  • a step portion DIF2 is formed at the lower end on the z direction side.
  • the rotational direction of the excitation element 105 can be distinguished by providing the above-described step portion DIF1 and step portion DIF2.
  • a step DIF1 is formed at the upper end on the + z direction side in the drive amplitude monitor movable electrode 109a
  • a step DIF2 is formed at the lower end on the ⁇ z direction side also in the drive amplitude monitor fixed electrode 109b.
  • the device layer DL including the excitation element 105 is processed by silicon deep etching (DRIE), it is processed by irradiating ions from the + z direction side of the excitation element 105. For this reason, the machining shape of the excitation element 105 on the ⁇ z direction side tends to vary. Therefore, in the angular velocity sensor element according to the second embodiment, by forming the stepped portion DIF1 at the upper end portion on the + z direction side of the excitation element 105, an effect of reducing mass variation of the excitation element 105 due to processing variation is obtained. be able to. That is, in the angular velocity sensor element according to the second embodiment, fluctuations in the natural frequency of the excitation element 105 due to processing variations can be suppressed.
  • DRIE silicon deep etching
  • a signal processing circuit is also formed in the semiconductor chip CHP2 electrically connected to the semiconductor chip CHP1 in which the angular velocity sensor element is formed.
  • this signal processing circuit automatic amplitude control is performed based on the capacitance change obtained from the drive amplitude monitor units MU1 and MU2, and the amplitude of the drive vibration of the excitation element 105 is kept constant.
  • the automatic frequency control is performed based on the capacitance change obtained from the drive amplitude monitor units MU1 and MU2, and the vibration frequency of the excitation element 105 is kept constant.
  • the components of the drive amplitude monitor units MU1 and MU2 are formed in the same device layer DL as the excitation element 105.
  • the drive amplitude monitoring units MU1 to MU2 are configured.
  • the capacitance value of the capacitive element to be changed is also difficult to change. That is, in the angular velocity sensor element according to the second embodiment, the capacitance value of the capacitive element that detects the amplitude of the drive vibration in the zx plane of the excitation element 105 is not easily affected by the distortion of the semiconductor chip CHP1.
  • the angular velocity sensor element according to the second embodiment is based on the capacitance change from the drive amplitude monitor units MU1 to MU2 formed in the device layer DL that is not easily affected by the distortion of the semiconductor chip CHP1. Since the automatic amplitude control is performed, the influence on the output of the angular velocity sensor can be reduced.
  • displacement detection movable electrodes 112 a, 112 c, 113 a, and 113 c formed integrally with the excitation element 105 are formed on the excitation element 105.
  • the displacement detection fixed electrodes 112b, 112d, 113b, and 113d are formed so as to face the displacement detection movable electrodes 112a, 112c, 113a, and 113c, respectively.
  • a detection unit DTU1 is configured by the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b, and the detection unit is configured by the displacement detection movable electrode 112c and the displacement detection fixed electrode 112d.
  • DTU2 is configured. That is, the detection unit DTU1 includes a capacitive element composed of the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b. The capacitance value of the capacitive element changes according to the angular velocity input to the semiconductor chip CHP1. To do.
  • the detection unit DTU2 includes a capacitive element composed of a displacement detection movable electrode 112c and a displacement detection fixed electrode 112d. The capacitance element has a capacitance value according to the angular velocity input to the semiconductor chip CHP1. Change.
  • the detection unit DTU3 is configured by the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b
  • the detection unit DTU4 is configured by the displacement detection movable electrode 113c and the displacement detection fixed electrode 113d.
  • the detection unit DTU3 includes a capacitive element composed of the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b. The capacitance value of this capacitive element changes according to the angular velocity input to the semiconductor chip CHP1.
  • the detection unit DTU4 includes a capacitive element including a displacement detection movable electrode 113c and a displacement detection fixed electrode 113d. The capacitance element has a capacitance value according to an angular velocity input to the semiconductor chip CHP1. Change.
  • FIG. 12A is a cross-sectional view taken along the line BB in FIG.
  • the displacement detection fixed electrode 112b has no notch, but the displacement detection movable electrode 112a integrated with the excitation element 105 has a + z direction side and a ⁇ z direction. There is a notch on the side.
  • the length of the displacement detection movable electrode 112a in the z direction is smaller than the length of the displacement detection fixed electrode 112b in the z direction.
  • the height h of the notch is larger than the amplitude of the drive vibration (rotational vibration) in the zx plane of the excitation element 105. Therefore, as shown in FIG. 12B, the displacement detection movable electrode 112a does not protrude from the displacement detection fixed electrode 112b even when the excitation element 105 is driven to vibrate (rotation vibration) in the zx plane. . As a result, the capacitance value of the capacitive element formed by the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b does not vary, and the capacitance value varies only in accordance with the angular velocity input to the semiconductor chip CHP1. .
  • the angular velocity sensor element according to the second embodiment has a feature that the vibration state of the excitation element 105 is robust (not easily influenced) with respect to mechanical vibration noise in a low frequency band.
  • the detection units DTU1 to DTU4 in the second embodiment are farther from the fixed unit 103, which is the center of rotation in the xy plane, than the movable driving electrodes 106a and 107a in the xy plane. It is formed in the position. From this, the detection units DTU1 to DTU4 in the second embodiment are compared with the case where the detection unit DTU1 to DTU4 is formed at a position close to the fixed unit 103 that is the rotation center in the xy plane, the semiconductor chip CHP1 in which the angular velocity sensor element is formed. The initial capacitance value when the angular velocity applied to is zero is the same, but the change in the capacitance value that occurs when the angular velocity applied to the semiconductor chip CHP1 is not zero can be increased.
  • the constituent elements of the detection units DTU1 to DTU4 are formed in the same device layer DL as the excitation element 105. For this reason, each of the detection units DTU1 to DTU4 is configured even if distortion occurs in the semiconductor chip CHP1 on which the angular velocity sensor element is formed due to the point that the transfer mold technology is employed and the temperature and humidity fluctuate. The capacitance value of the capacitive element to be changed is also difficult to change.
  • the capacitance values of the capacitive elements constituting each of the detection units DTU1 to DTU4 are influenced by the distortion generated in the semiconductor chip CHP1. It is hard to receive.
  • servo electrode movable portions 114 a and 115 a formed integrally with the excitation element 105 are formed in the excitation element 105.
  • Servo electrode fixing portions 114b and 115b are formed to face the servo electrode movable portions 114a and 115a.
  • the angular velocity sensor element according to the second embodiment includes a servo unit SVU1 including the servo electrode movable unit 114a and the servo electrode fixed unit 114b, and a servo unit SVU2 including the servo electrode movable unit 115a and the servo electrode fixed unit 115b. And have.
  • a signal processing circuit is formed on a semiconductor chip electrically connected to the semiconductor chip CHP1 on which the angular velocity sensor element is formed.
  • This signal processing circuit controls so that the capacitance values of the capacitive elements constituting each of the detection units DTU1 to DTU4 are always kept constant. That is, the signal processing circuit described above controls the voltage applied to the servo unit SVU1 and the servo unit SVU2 so that the excitation element 105 is not displaced according to the input angular velocity around the x-axis direction.
  • the components of the servo units SVU1 to SVU2 are formed in the same device layer DL as the excitation element 105. For this reason, each of the servo units SVU1 to SVU2 is configured even if distortion occurs in the semiconductor chip CHP1 on which the angular velocity sensor element is formed due to the adoption of the transfer mold technique and the variation in temperature and humidity.
  • the capacitance value of the capacitive element to be changed is also difficult to change. That is, the servo units SVU1 to SVU2 that cancel the displacement in the xy plane of the excitation element 105 according to the input angular velocity by voltage adjustment are not easily affected by the distortion generated in the semiconductor chip CHP1.
  • the angular velocity sensor according to the second embodiment for example, even when the transfer mold technique advantageous for downsizing and cost reduction of the angular velocity sensor is applied, the performance and reliability of the angular velocity sensor are applied. Can be suppressed.
  • the angular velocity sensor according to the second embodiment is not affected by resin filling pressure, resin expansion and contraction due to changes in environmental temperature and humidity, and resin deformation caused by changes in material properties over time. The influence on the performance and reliability of the angular velocity sensor can be suppressed.
  • the transfer mold technique can be applied without incurring a decrease in performance and reliability, so that the angular velocity sensor can be reduced in size and cost.
  • Embodiment 3 ⁇ Basic operation> First, the outline
  • the excitation element (movable part) of the angular velocity sensor element is integrated as a whole, and the zx plane (first plane) with the fixed part at the center as a fulcrum and the deformation of the drive beam as the rotation axis in the y-axis direction. Rotating vibration inside. When the rotation angle is small, the movement of the excitation element can be regarded as vibration in the z direction. That is, in the third embodiment, the excitation element is configured to be able to vibrate in the z direction, which is the thickness direction of the semiconductor chip.
  • the drive electrode that plays a role of inducing drive vibration that is rotational vibration of the excitation element in the zx plane
  • a drive amplitude monitor unit that plays a role of detecting the amplitude of the drive vibration.
  • the angular velocity in the third embodiment is determined by a combination of a semiconductor chip (first semiconductor chip) on which an angular velocity sensor element having a MEMS structure is formed and a semiconductor chip (second semiconductor chip) on which a signal processing circuit is formed.
  • a sensor is configured.
  • FIG. 13 is a plan view showing the configuration of the semiconductor chip CHP1 in which the angular velocity sensor element according to the third embodiment is formed.
  • the cavity 102 and the dummy part 116 are formed in the semiconductor chip CHP ⁇ b> 1 so as to be surrounded by the frame part 101.
  • a fixing portion 103a and a fixing portion 103b are provided inside the cavity portion 102.
  • a driving beam 104a that is an elastic deformation portion is connected to the fixed portion 103a, and a driving beam 104b that is an elastic deformation portion is connected to the fixing portion 103b.
  • the drive beam 104 a and the drive beam 104 b are connected to the excitation element 105.
  • the excitation element 105 is connected to the detection units DTU1 to DTU2 via a detection beam 118 that is an elastic deformation unit.
  • the detection unit DTU1 and the detection unit DTU2 are connected by a link beam 119.
  • the angular velocity sensor element includes a driving movable electrode 106a and a driving movable electrode 107a that constitute a part of the excitation element 105.
  • An electrostatic force is applied by applying a voltage between the driving movable electrode 106a and the driving fixed electrode not shown in FIG. 13 and between the driving movable electrode 107a and the driving fixed electrode not shown in FIG.
  • drive vibration By generating the excitation element 105, drive vibration (rotational vibration) occurs in the zx plane including the z direction that is the thickness direction of the semiconductor chip CHP1.
  • the angular velocity sensor element in the third embodiment has four drive amplitude monitoring units MU1 to MU4 as shown in FIG.
  • the drive amplitude monitor unit MU1 includes a drive amplitude monitor movable electrode 108a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 108b fixed to the support substrate.
  • the drive amplitude monitor unit MU2 includes a drive amplitude monitor movable electrode 109a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 109b fixed to the support substrate.
  • the drive amplitude monitor unit MU3 includes a drive amplitude monitor movable electrode 110a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 110b fixed to the support substrate.
  • the drive amplitude monitor unit MU4 includes a drive amplitude monitor movable electrode 111a formed integrally with the excitation element 105, and a drive amplitude monitor fixed electrode 111b fixed to the support substrate.
  • the angular velocity sensor element according to the third embodiment has two detection units DTU1 to DTU2.
  • the detection unit DTU1 includes a displacement detection movable electrode 112a connected to the excitation element 105 via the detection beam 118, and a displacement detection fixed electrode 112b fixed to the support substrate
  • the detection unit DTU2 Is composed of a displacement detection movable electrode 113a connected to the excitation element 105 via a detection beam 118, and a displacement detection fixed electrode 113b fixed to the support substrate.
  • the fixed portion 103a and the fixed portion 103b are connected via the excitation element 105 made of conductive single crystal silicon and the detecting portions DTU1 to DTU2 made of conductive single crystal silicon. Are electrically connected. Accordingly, a first pad electrically connected to the fixing portion 103a via the through electrode and a second pad electrically connected to the fixing portion 103b via the through electrode are provided, and the first pad and the second pad are provided. By flowing a current between the pads, the electrical connection between the fixed portion 103a and the fixed portion 103b via the excitation element 105 and the detection portions DTU1 to DTU2 can be confirmed.
  • the drive movable electrodes 106a and 107a that need to have a large area to generate an electrostatic force, and detection units DTU1 to DTU2 that detect the Coriolis force proportional to the input angular velocity and mass. Except for the above, the structure constituting the angular velocity sensor element according to the third embodiment is made lighter by making holes, and the natural frequency of the excitation element 105 is increased.
  • FIG. 14A is a cross-sectional view taken along the line AA in FIG. 13, and FIG. 15A is a cross-sectional view taken along the line BB in FIG.
  • the semiconductor chip CHP1 on which the angular velocity sensor element is formed has a support substrate 1S made of, for example, single crystal silicon.
  • An insulating layer 131 made of, for example, a silicon oxide film is formed on the surface (upper surface, main surface) of the support substrate 1S, and a device layer DL is formed above the insulating layer 131, and above the device layer DL.
  • a cap layer CAPL is formed.
  • a cavity 102 is formed between the support substrate 1S and the device layer DL and between the device layer DL and the cap layer CAPL.
  • the device layer DL includes a frame portion 101 made of single crystal silicon, fixed portions 103a and 103b, an excitation element 105, driving movable electrodes 106a and 107a, displacement detecting movable electrodes 112a and 113a, and a displacement detecting fixed electrode 112b. , 113b and the like shown in FIG. 13 are formed. Further, the drive amplitude monitor movable electrodes 108a to 111a, the drive amplitude monitor fixed electrodes 108b to 111b, the drive beams 104a and 104b, the detection beam 118, the link beam 119, and the like are formed in the device layer DL.
  • the cap layer CAPL is a fixed electrode for driving 106b, 107b to which a voltage for vibrating the cap part 140 made of single crystal silicon, the insulating layer 141, the conductive film 142, the protective film 143, and the excitation element 105 in the zx plane is applied. , And through electrodes are formed.
  • the cap portion 140 and the device layer DL are joined, and the angular velocity sensor element is protected by the cap portion 140.
  • the support substrate 1S and the device layer DL are bonded in the connection region CR1, and the device is connected in the connection region CR2.
  • the layer DL and the cap layer CAPL are connected.
  • driving movable electrodes 106 a and 107 a are formed in a region of the excitation element 105 indicated by a broken line.
  • the fixed driving electrode 106b is positioned above the movable driving electrodes 106a and 107a formed in the device layer DL and at a position facing the movable driving electrodes 106a and 107a.
  • a driving fixed electrode 107b is formed.
  • a capacitive element is formed by the driving movable electrode 106a and the driving fixed electrode 106b, and a capacitive element is formed by the driving movable electrode 107a and the driving fixed electrode 107b.
  • a periodic drive represented by Vcom + Vb + Vd is formed between the drive movable electrode 106a and the drive fixed electrode 106b that form a capacitive element by facing each other.
  • a signal is applied, and a periodic drive signal represented by Vcom + Vb ⁇ Vd is applied between the drive movable electrode 107a and the drive fixed electrode 107b.
  • a voltage represented by Vcom is applied to the fixed portion 103a and the fixed portion 103b that are electrically connected to the excitation element 105 through the through electrode.
  • electrostatic force alternately acts between the drive movable electrode 106a and the drive fixed electrode 106b and between the drive movable electrode 107a and the drive fixed electrode 107b.
  • the excitation element 105 performs drive vibration (rotational vibration) in the zx plane.
  • the excitation element 105 is formed with movable electrodes 108a to 111a for driving amplitude monitoring formed integrally with the excitation element 105.
  • the drive amplitude monitoring fixed electrodes 108b to 111b are formed in the device layer DL on which the excitation element 105 is formed so as to face the drive amplitude monitoring movable electrodes 108a to 111a, respectively.
  • each of the drive amplitude monitor movable electrodes 108a to 111a and each of the drive amplitude monitor fixed electrodes 108b to 111b are formed in the device layer DL.
  • the four drive amplitude monitor units MU1 to MU4 are provided. At this time, in the four capacitive elements constituting each of the four drive amplitude monitoring units MU1 to MU4, the capacitance value changes when the excitation element 105 is displaced in the z direction by the drive vibration in the zx plane.
  • a signal processing circuit is formed in the semiconductor chip CHP2 electrically connected to the semiconductor chip CHP1 in which the angular velocity sensor element is formed.
  • this signal processing circuit automatic amplitude control is performed based on the capacitance change obtained from the drive amplitude monitor units MU1 to MU4, and the amplitude of the drive vibration of the excitation element 105 is kept constant.
  • the automatic frequency control is performed based on the capacitance change obtained from the drive amplitude monitoring units MU1 to MU4, and the vibration frequency of the excitation element 105 is kept constant.
  • the components of the drive amplitude monitoring units MU1 to MU4 are formed in the same device layer DL as the excitation element 105. For this reason, even if distortion occurs in the semiconductor chip CHP1 on which the angular velocity sensor element is formed due to the adoption of the transfer mold technique and the variation in temperature and humidity, the drive amplitude monitoring units MU1 to MU4 are configured.
  • the capacitance value of the capacitive element to be changed is also difficult to change. That is, also in the angular velocity sensor element according to the third embodiment, the capacitance value of the capacitive element that detects the amplitude of the drive vibration in the zx plane of the excitation element 105 is not easily affected by the distortion of the semiconductor chip CHP1.
  • the angular velocity sensor element according to the third embodiment is based on the capacitance change from the drive amplitude monitor units MU1 to MU4 formed in the device layer DL that is not easily affected by the distortion of the semiconductor chip CHP1. Since the automatic amplitude control is performed, the influence on the output of the angular velocity sensor can be reduced.
  • the detection unit DTU1 includes a displacement detection movable electrode 112a connected to the excitation element 105 via the detection beam 118, and a displacement detection disposed so as to face the displacement detection movable electrode 112a.
  • the capacitive element comprised from the fixed electrode 112b for use is included.
  • the detection unit DTU2 includes a displacement detection movable electrode 113a connected to the excitation element 105 via the detection beam 118, and a displacement detection fixed electrode 113b arranged to face the displacement detection movable electrode 113a.
  • the capacitive element comprised from these is included.
  • the displacement detection movable electrodes 112a and 113a have no stepped portion, but the displacement detection fixed electrodes 112b and 113b have an upper end portion and a lower end portion in the z direction.
  • a stepped portion DIF having the same shape is formed.
  • the height of the step DIF is larger than the amplitude of the rotational vibration in the zx plane of the excitation element 105. Accordingly, as shown in FIG. 14B, even if the excitation element 105 is driven to vibrate in the zx plane, the capacitance value of the capacitive element constituted by the displacement detection movable electrode 112a and the displacement detection fixed electrode 112b.
  • the capacitance value fluctuates only in accordance with the angular velocity applied to the semiconductor chip CHP1.
  • the capacitance value of the capacitive element constituted by the displacement detection movable electrode 113a and the displacement detection fixed electrode 113b hardly changes, and the semiconductor chip.
  • the capacitance value varies only according to the angular velocity applied to CHP1.
  • the detection unit DTU1 and the detection unit DTU2 are arranged at positions symmetrical with respect to the central axis extending in the y direction. And the detection part DTU1 and the detection part DTU2 are mutually connected by the link beam 119, and the tuning fork structure is formed. Therefore, the capacitance value of the capacitive element configuring the detection unit DTU1 and the capacitive element configuring the detection unit DTU2 varies only depending on the angular velocity applied to the semiconductor chip CHP1, but is caused by vibration noise applied to the semiconductor chip CHP1. Since the fluctuation of the capacitance value to be canceled is cancelled, the angular velocity sensor element according to the third embodiment has a feature that is robust to disturbance vibration.
  • the detection unit DTU1 includes two displacement detection fixed electrodes 112b divided in the xy plane, and each of the two displacement detection fixed electrodes 112b. It is electrically connected through the connected through electrode.
  • the detection unit DTU2 also has two displacement detection fixed electrodes 113b divided in the xy plane, and is electrically connected through a through electrode connected to each of the two displacement detection fixed electrodes 113b. Has been. Therefore, since both the shape of the detection unit DTU1 and the shape of the detection unit DTU2 have a symmetrical structure, the angular velocity sensor element according to the third embodiment generates unnecessary vibration modes other than the drive vibration and the detection vibration. It has the advantage that it can be suppressed.
  • the constituent elements of the detection units DTU1 to DTU2 are formed in the same device layer DL as the excitation element 105. For this reason, each of the detection units DTU1 to DTU2 is configured even when distortion occurs in the semiconductor chip CHP1 on which the angular velocity sensor element is formed due to the adoption of the transfer mold technique and the variation in temperature and humidity. The capacitance value of the capacitive element to be changed is also difficult to change.
  • the capacitance values of the capacitive elements constituting the detection units DTU1 to DTU2 are influenced by the distortion generated in the semiconductor chip CHP1. It is hard to receive.
  • FIG. 16 is a cross-sectional view showing a mounting configuration of the semiconductor device SA2 in which the angular velocity sensor according to the third embodiment is formed.
  • a chip mounting portion TAB is disposed inside a sealing body MR made of resin, and leads LD are also disposed. A part of the lead LD protrudes from the sealing body MR, and the lead LD functions as an external connection terminal.
  • a semiconductor chip CHP2 on which a signal processing circuit is formed is mounted on the chip mounting portion TAB.
  • an integrated circuit including transistors and passive elements is formed in order to realize a signal processing circuit.
  • the signal processing circuit formed in the semiconductor chip CHP2 has a function of calculating an output signal from the angular velocity sensor element and outputting a control signal to the angular velocity sensor element, and finally outputs an angular velocity signal. It is a circuit to do. This angular velocity signal is output to an external device via, for example, the lead LD.
  • the pad PD2 formed on the semiconductor chip CHP2 is electrically connected to the lead LD by a wire W.
  • the semiconductor chip CHP1 is mounted on the semiconductor chip CHP2.
  • the semiconductor chip CHP1 is formed with a structure constituting an angular velocity sensor element.
  • the protruding electrode BMP bump electrode
  • the semiconductor chip CHP1 is connected to the protruding electrode BMP.
  • the semiconductor chip CHP1 is mounted on the semiconductor chip CHP2 in a face-down state by the protruding electrodes BMP.
  • a sealing body MR is formed so as to cover the semiconductor chip CHP1.
  • the support substrate 1S which is a component of the semiconductor chip CHP1
  • the sealing body MR covers the support substrate 1S. Is formed.
  • the sealing body MR is made of, for example, a resin material.
  • This sealing body MR has a structure in which a semiconductor chip CHP2 and a semiconductor chip CHP1 are mounted on a chip mounting portion TAB in a mold, and a resin material melted at a high temperature in the mold is about 1 to 10 MPa. After injection with pressure, the resin material is cooled and cured. That is, the sealing body MR is formed by a transfer mold technique.
  • the support substrate 1S that is in contact with the sealing body MR made of a resin material is pressed by the pressure when the resin material is injected into the mold, as shown in FIG. Transforms into
  • the resin material constituting the sealing body MR is characterized in that the volume expands due to temperature fluctuation and moisture absorption, and the volume shrinks due to drying. Therefore, when the temperature and humidity of the environment in which the semiconductor device SA2 is disposed vary, the semiconductor chip CHP1 disposed inside the sealing body MR is distorted due to the expansion and contraction of the sealing body MR. That is, when the sealing body MR is formed or when the temperature and humidity of the environment in which the semiconductor device SA2 is installed fluctuates, the semiconductor chip CHP1 is distorted.
  • the support substrate 1S of the semiconductor chip CHP1 is in direct contact with the sealing body MR as shown in FIG.
  • the support substrate 1S is deformed (distorted).
  • the structure constituting the angular velocity sensor element is formed in the device layer DL and the cap layer CAPL.
  • the structure constituting the angular velocity sensor element is not formed on the support substrate 1S.
  • the angular velocity sensor according to the third embodiment has a structure in which the performance degradation of the angular velocity sensor due to the distortion generated in the semiconductor chip CHP1 hardly occurs.
  • the angular velocity sensor according to the third embodiment for example, even when the transfer mold technology advantageous for downsizing and cost reduction of the angular velocity sensor is applied, the performance and reliability of the angular velocity sensor are achieved. Can be suppressed.
  • the angular velocity sensor according to the third embodiment is not affected by resin filling pressure, resin expansion and contraction due to changes in environmental temperature and humidity, and resin deformation caused by changes in material properties over time. The influence on the performance and reliability of the angular velocity sensor can be suppressed.
  • the transfer mold technique can be applied without incurring a decrease in performance and reliability, so that the angular velocity sensor can be reduced in size and cost.
  • the embodiment includes the following forms.
  • a first semiconductor chip is (A) a support substrate; (B) a device layer disposed above the support substrate; (C) a cap layer disposed above the device layer; (D) a cavity formed between the support substrate and the device layer and between the device layer and the cap layer; Including In the device layer, (B1) an excitation element capable of vibrating in a first plane including the thickness direction of the support substrate; (B2) When an angular velocity is applied around the rotation axis included in the second plane perpendicular to the first plane, the displacement in the second plane based on the Coriolis force generated due to the angular velocity is electrostatically Detection unit that captures changes in capacity, Formed, The angular velocity sensor, wherein a driving fixed electrode to which a voltage for vibrating the excitation element in the first plane is applied is formed on the cap layer.
  • the pressure in the cavity is an angular velocity sensor that is 100 Pa or less.
  • the support substrate, the device layer, and the cap layer are angular velocity sensors formed of a silicon material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

 x軸方向周りの角速度、あるいは、y軸方向周りの角速度を検出できる面内角速度センサの性能向上を図る。 角速度センサ素子が形成された半導体チップCHP1は、デバイス層DLとキャップ層CAPLとを含む。デバイス層DLには、支持基板1Sの厚さ方向を含むzx平面内で振動可能な励振素子105と、zx平面に垂直なxy平面内に含まれる回転軸周りに角速度が印加された際、角速度に起因して発生するコリオリ力に基づくxy平面内の変位を静電容量の変化として捉える検出部とが形成されている。キャップ層CAPLには、励振素子105をzx平面内で振動させるための電圧が印加される駆動用固定電極106b、107bが形成されている。

Description

角速度センサ
 本発明は、半導体微細加工技術により形成された可動体と支持梁で構成されるマイクロ振動体である角速度センサに関し、例えば、角速度の印加に応じて生起される可動体の変位に関連する物理量を検出することにより、印加された角速度を測定する微小電気機械システム(MEMS(Micro Electro Mechanical Systems))である角速度センサに関する。
 角速度センサ(ジャイロ)の方式には、回転体の歳差運動を利用する機械式、筐体内で周回するレーザー光の筐体回転に伴う受光タイミングの変化を利用する光学式、筐体内でセンシング用のガスを熱線に噴射し、その噴射量が筐体の回転により変化する現象を熱線温度で検知する流体式などが知られている。
 この点に関し、カーナビゲーションや車の横滑り防止システム、二足歩行ロボットや一輪乗り物などのバランス制御システムにおける車両方向や姿勢を検知する角速度センサの需要が近年急速に高まっており、上述した方式と比較して、より安価で軽量かつ小型な振動式の角速度センサ(特許文献1)が主流となりつつある。
 振動式の角速度センサは、予め定められた駆動振動方向(x方向)に振動する励振素子(振動子)にその駆動振動方向と直交する軸方向(z方向)周りの角速度が印加されたとき、駆動振動方向(x方向)および角速度が印加される軸方向(z方向)と直交する検出方向(y方向)へのコリオリ力に基づく新たな変位成分を検出し、この変位成分に基づいて角速度情報を出力するものである。
 例えば、角速度センサの応用先として、例えば、カーナビゲーションシステムがある。GPS(Global Positioning System)による現在位置のモニタリングは、車両のマクロな進行方向の変化を検知することはできても、交差点などにおける急な方向変化には追従することができない。したがって、カーナビゲーションシステムでは、車両の旋回運動を角速度センサで検知し、その角速度の時間的な積分により、方向転換の角度をトレースする方式が用いられている。
 別の例として、車の横滑り防止システムがある。この横滑り防止システムでは、ハンドルに装着されている操舵角センサの値(指令値)と、横滑り防止システムに組み込まれている角速度センサの出力値(実測値)を比較することにより、車の横滑りを判定し、その結果に基づいて、エンジン出力や四輪それぞれの制動力を制御し、車体運動を適正化する制御方式が用いられている。
 さらに、別の例として、一輪乗り物や二足歩行ロボットのバランス制御システムがある。風や、傾斜、積荷などによって、回転や重心の移動が発生した場合には、角速度センサや加速度センサで回転角度や重心の移動量を計測し、回転方向に車輪を動かす、若しくは、重心が移動した方向のアクチュエータにより強い力を発生させることにより、バランスを制御する方式が用いられている。
 ここで、上述したそれぞれの応用先では、測定すべき角速度の軸方向と、角速度センサを取り付ける角度が異なる場合が多いと考えられる。上述した角速度センサの原理からも分かるように、励振素子の駆動振動方向と検出方向、そして、計測される角速度が印加される軸方向は、それぞれ直交する必要がある。すなわち、励振素子の駆動振動方向をx方向とし、角速度が印加される軸方向をz方向とした場合、コリオリ力は、駆動振動方向であるx方向と、角速度が印加された軸方向であるz方向とに直交するy方向に発生する。その反面、励振素子の駆動振動方向をx方向とし、角速度が印加される軸方向をy方向とした場合には、z方向にコリオリ力が発生することになる。したがって、上述した応用先では、測定すべき角速度が印加される方向と、被測定物への角速度センサの取り付け方向を考慮して対応する角速度センサを選定する必要がある。
 例えば、特許文献2に記載された角速度センサは、励振素子の駆動振動方向がx方向で、z軸方向周りの角速度の印加によって、y方向に変位する検出素子として構成される。
 特許文献3と特許文献4に記載された角速度センサは、駆動振動方向がx方向である励振素子と、y軸方向周りの角速度の印加によって、z方向に変位する検出素子として構成される。また、x軸方向周りの角速度を検出するためには、特許文献3と特許文献4に記載されたy軸方向周りの角速度センサを、xy平面内で90度回転させて取り付けることにより実現することができる。
米国特許4,524,619号明細書 特開2009-002834号公報 国際公開第2012/004825号 特開2006-84326号公報
 上述した様々な応用でも同じことが言えるが、ここでは、特に、説明が明確で分かりやすい自動車の横滑りと横転とを検出する角速度センサを取り上げて説明する。
 最近、自動車では、ブレーキやエンジン、エアバックなどを制御するECU(Electronic Control Unit)を1つに統合する傾向がある。したがって、自動車の横滑りを検知する角速度センサと横転を検知する角速度センサも、1つのECU上に実装されることが増えている。さらに、様々なECUとは別の基板上に、自動車に搭載されたECUが必要とするセンサ類を統合するセンサクラスター化の傾向もある。すなわち、1つの実装基板上に検出方向が異なる複数の角速度センサを搭載する必要がある。この場合、角速度センサの実装面積に制限があるため、より小型の角速度センサが要求される。
 例えば、実装基板の表面に並行する平面をxy平面と定義し、xy平面に垂直な方向をz方向と定義する場合、自動車の横滑りと横転を共に検知するために、z軸方向周りの角速度を検出する面内角速度センサと、xy平面内に含まれる軸方向周りの角速度を検出する面外角速度センサとを1つの実装基板上に搭載することが考えられる。
 ここで、本発明者は、1つの実装基板に搭載される面外角速度センサと面内角速度センサのうち、特に、面外角速度センサに着目して、面外角速度センサの性能向上を図ることを検討している。つまり、本発明の目的は、x軸方向周りの角速度、あるいは、y軸方向周りの角速度を検出できる面外角速度センサの性能向上を図ることにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態における角速度センサは、第1半導体チップを備える。第1半導体チップは、(a)支持基板、(b)支持基板の上方に配置されたデバイス層、(c)デバイス層の上方に配置されたキャップ層、(d)支持基板とデバイス層との間、および、デバイス層とキャップ層との間に形成された空洞部、を含む。ここで、デバイス層には、(b1)支持基板の厚さ方向を含む第1平面内で振動可能な励振素子、(b2)第1平面に垂直な第2平面内に含まれる回転軸周りに角速度が印加された際、角速度に起因して発生するコリオリ力に基づく第2平面内の変位を静電容量の変化として捉える検出部、が形成されている。さらに、キャップ層には、励振素子を第1平面内で振動させるための電圧が印加される駆動用固定電極が形成されている。
 一実施の形態によれば、面外角速度センサの性能向上を図ることができる。
実施の形態1における角速度センサ素子が形成された半導体チップの構成を示す平面図である。 (a)は、図1のA-A線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 (a)は、図1のB-B線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 (a)は、図1のC1-C1線で切断した断面図であり、(b)は、図1のC2-C2線で切断した断面図である。 (a)は、図1のD-D線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 実施の形態1における角速度センサの駆動振動に関する信号処理回路を説明する図である。 実施の形態1における角速度センサでの角速度の検出に関する信号処理回路を説明する図である。 実施の形態1における角速度センサが形成された半導体装置の実装構成を示す断面図である。 半導体装置内に含まれる半導体チップの状態を模式的に示す断面図である。 実施の形態2における角速度センサ素子が形成された半導体チップの構成を示す平面図である。 (a)は、図10のA-A線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 (a)は、図10のB-B線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 実施の形態3における角速度センサ素子が形成された半導体チップの構成を示す平面図である。 (a)は、図13のA-A線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 (a)は、図13のB-B線で切断した断面図であり、(b)は、励振素子のzx平面内での駆動振動を模式的に示す断面図である。 実施の形態3における角速度センサが形成された半導体装置の実装構成を示す断面図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。
 (実施の形態1)
 <本発明に関連する検討事項>
 例えば、面内角速度センサでは、x方向を励振素子の駆動振動方向とし、y方向をコリオリ力に基づく変位を検出する検出方向とする構成が考えられる。一方、本発明者が着目している面外角速度センサでは、例えば、x軸方向周りの角速度を検出する構成として、y方向を励振素子の駆動振動方向とし、z方向をコリオリ力に基づく変位を検出する検出方向とする第1構成と、z方向を励振素子の駆動振動方向とし、y方向をコリオリ力に基づく変位を検出する検出方向とする第2構成とが考えられる。
 この点に関し、本発明者が検討をした結果、面外角速度センサにおいて、上述した第1構成よりも、上述した第2構成の方が性能向上を図る観点から利点があることを見出した。
 以下では、まず、この点について説明する。例えば、システムに搭載するセンサ数の増加に伴って、各センサに対しては、低コスト化の要求が増加してきている。このようなシステム側の小型化や低コスト化の要求を満たすために、LSIのパッケージング方法として用いられている、熱硬化性樹脂を使用したパッケージ技術(トランスファモールド技術)が、MEMSからなる角速度センサにも適用することが検討されている。
 トランスファモールド技術とは、以下のような製造技術である。すなわち、まず、MEMSからなる角速度センサを形成した第1半導体チップと、角速度センサの信号処理回路が形成された第2半導体チップとを積層配置したリードフレームを金型の中に設置する。そして、温めた樹脂を高圧により射出し、金型の中に充填する。続いて、この樹脂が冷却されて固まることにより、樹脂は、MEMSからなる角速度センサが形成された第1半導体チップと、信号処理回路が形成された第2半導体チップとを積層配置したリードフレームを封止する封止体となる。このトランスファモールド技術は、MEMSで用いられているセラミックパッケージ技術よりも量産性が高く、角速度センサの製造コストを低減する上で有効な技術である。
 しかし、封止体となる樹脂の充填圧力は、数Paから数十Paと高圧であるため、MEMSからなる角速度センサをトランスファモールド技術で製造する場合、角速度センサが形成された半導体チップに変形が発生する。また、封止体が設置される環境の温度が変動すると、封止体となる樹脂の熱膨張係数と、角速度センサが形成された半導体チップとの熱膨張係数の差により、両者の界面に歪みが発生する。さらに、封止体となる樹脂は、吸湿により体積が膨張するとともに、乾燥により体積が収縮する特徴があるため、封止体が設置される環境の湿度が変動すると、樹脂の膨張と収縮により、角速度センサが形成された半導体チップに歪みが発生する。
 半導体チップに発生するこれらの歪みは、角速度センサのゼロ点変動や感度変動を引き起こす原因となる。温度変動によるゼロ点変動や、湿度変動によるゼロ点変動の発生は、信号処理回路で補正することができる。ところが、信号処理回路に温度センサや湿度センサを搭載すると、搭載する面積の分だけ、半導体チップの面積が増大するとともに、材料費も高くなる結果、信号処理回路の製造コストが高くなるデメリットがある。
 また、信号処理回路に補正演算回路を追加して機能を複雑化すると、信号処理回路の開発期間が長くなり、これによって、角速度センサの製造コストが高くなるデメリットがある。さらに、補正演算を成立させるため、角速度センサの出荷前検査時に補正調整工程を追加すると、調整費用と調整時間が増大することになり、角速度センサの製造コストが高くなるデメリットがある。また、補正演算では対応が困難な経時変化は、角速度センサの性能低下につながるおそれがある。
 例えば、特許文献2に記載された面内角速度センサは、駆動振動方向がx方向で、検出方向がy方向であるため、z軸方向周りの角速度を検出することができる。したがって、車体の運動平面と並行するように設置された実装基板上に角速度センサを搭載する場合には、自動車の横滑りを検出することができる。ここで、角速度センサが搭載される実装基板の主面をxy平面と定義した場合、駆動振動と検出変位とが共にxy平面内の動きとなるため、駆動振動を発生させる駆動電極と、検出変位を検出する検出電極とを含むすべての構成要素を、封止体を形成する際に変形が生じやすいz方向ではなく、変形が生じにくいデバイス層のxy平面内に形成することができる。したがって、角速度センサの製造にトランスファモールド技術を適用しても、封止体を形成する際の圧力や温度や湿度などによる角速度センサの性能や信頼性への影響が比較的に少ない。つまり、面内角速度センサでは、トランスファモールド技術の適用を妨げる要因は少ないと考えることができる。
 一方、本発明者が着目している面外角速度センサでは、状況が一変する。例えば、特許文献3に記載された面外角速度センサは、駆動振動方向がx方向で、y軸方向周りの角速度が印加されると、z方向がコリオリ力に基づく変位が生じる検出方向となる。すなわち、特許文献1に記載された角速度センサと同じ平面上に実装する場合、自動車の横転を検知ことができる。z方向の変位は、コリオリ力によってz方向に変位する検出可動電極と、検出可動電極と対向するように配置される検出固定電極で構成される容量素子の容量値の変化を検出することで計測することができる。すなわち、特許文献3に記載された面外角速度センサは、励振素子や検出部などが形成されるデバイス層と、このデバイス層を支持する支持基板と、検出固定電極が形成されるキャップ層と、空洞部とを備える3層の積層構造から構成される。
 ところが、このように面外角速度センサが3層の積層構造として構成され、トランスファモールド技術で使用される樹脂により圧力を受ける側(キャップ層側)に検出部の変位を測定するための検出固定電極が形成されている場合、トランスファモールド技術で封止体を形成する際の成形圧力、樹脂に発生する内部応力、環境温度の変動、経時的な応力緩和などによって、検出固定電極が形成されたキャップ層には変形が発生し、面外角速度センサの性能や信頼性に重大な問題を発生させるおそれがある。つまり、z方向を検出方向とする第1構成の面外角速度センサでは、トランスファモールド技術を適用する際、面外角速度センサの性能を向上する点で重要な位置を占める検出部に変形が発生しやすく、トランスファモールド技術を採用する場合の副作用が懸念される。
 これに対し、xy平面内に検出方向を有する第2構成の面外角速度センサでは、トランスファモールド技術による変形が発生しやすいz方向に検出部が形成されないため、トランスファモールド技術を採用する場合の性能低下に代表される副作用が少ないと考えられる。このことから、面外角速度センサに着目した場合、z方向に検出方向がある第1構成の面外角速度センサに比べて、xy平面内に検出方向がある第2構成の面外角速度センサは、性能低下を抑制する観点から優位性を有していると考えられる。
 そこで、本実施の形態1では、性能向上の観点から優位性のある第2構成の面外角速度センサを実現する工夫を施している。
 なお、特許文献4に記載された面外角速度センサは、特許文献3に記載された角速度センサと同様に、駆動振動方向がx方向で、y軸方向周りの角速度が印加されると、z方向にコリオリ力に基づく変位が発生する検出方向となる。ただし、z方向の変位を検出する方法としては、キャップ層側に検出固定電極を有する特許文献3に記載の面外角速度センサとは異なり、特許文献4に記載された面外角速度センサでは、励振素子や検出可動電極などが形成されるデバイス層内に検出固定電極も有する構造となっている。
 ところが、特許文献4に記載された面外角速度センサでは、同じ高さを有するデバイス層内に検出可動電極と、この検出可動電極との間で容量素子を形成するように一定間隔を持って検出固定電極を形成する場合、検出部でのz方向(デバイス層のxy平面から面外に抜け出る方向)の変位の大きさは分かるが、変位の方向が分からない問題が発生する。このため、特許文献4に記載された面外角速度センサでは、デバイス層に形成されている検出固定電極の上に内部応力を強く発生させた薄膜を成膜し、検出固定電極に初期変位を作っている。これによって、検出固定電極と検出可動電極とは、同じデバイス層内に形成されながらも、検出固定電極の高さと検出可動電極の高さの間に差が発生するため、z方向の変位の方向を検出することができる。
 特許文献4に記載された面外角速度センサは、デバイス層内にすべての構成要素を有するため、トランスファモールド技術で封止体を形成する際の圧力や、その他の要因に起因する変形に影響を受けにくい。したがって、トランスファモールド技術で製造された安価な封止体を用いる場合でも、特許文献4に記載された面外角速度センサは、安定した性能を発揮することが期待できる。
 ところが、特許文献4に記載された面外角速度センサは、デバイス層に初期変位を作るために用いられる大きい内部応力を有する薄膜の経時的な応力緩和と、この応力緩和に伴う性能変化が発生するおそれがある。さらに、大きい内部応力を有する薄膜による初期変位の制御は、各角速度センサでの個体差が大きいおそれがある。
 以上のことから、上述した様々な現状の面外角速度センサでは、性能向上を図る観点から改善の余地が存在することがわかる。そこで、本実施の形態1では、面外角速度センサにおいて、性能向上を図る観点から優位性のある第2構成の面外角速度センサに着目し、この第2構成の面外角速度センサを実現する工夫を施している。以下では、この工夫を施した実施の形態1における面外角速度センサについて説明する。
 <基本動作>
 まず、本実施の形態1における角速度センサ素子の動作の概要について説明する。角速度センサ素子の励振素子(可動部)は、全体が一体化し、中央部にある固定部を支点として、支持梁の変形を伴いながら、y軸方向を回転軸とするzx平面(第1平面)内で回転振動をしている。回転角度が小さいとき、励振素子の運動は、z方向の振動とみなすことができる。つまり、本実施の形態1において、励振素子は、半導体チップの厚さ方向であるz方向に振動可能なように構成されていることになる。
 ここで、zx平面内の励振素子の回転振動である駆動振動を誘起する役割を担うのが駆動電極であり、駆動振動の振幅を検出する役割を担うのが駆動振幅モニタ部である。次に、角速度センサ素子が形成された半導体チップの外部からx軸方向を回転軸とする角速度が入力されると、zx平面内で駆動振動している励振素子には、y方向のコリオリ力が働く。この場合、励振素子は、中央部にある固定部を支点として、支持梁の変形を伴いながら、z軸方向を回転軸とするxy平面(第2平面)内での回転変位を示す。xy平面内の回転変位を検出する役割を担うのが検出部である。
 続いて、本実施の形態1における角速度センサ素子では、xy平面内の回転変位を打ち消すように、回転変位方向とは逆方向に静電気力を発生する電極が設置される。この電極に印加する電圧を角速度センサが形成された半導体チップに接続される信号処理回路用の半導体チップで演算し、最終的に角速度に対応した出力信号を得る。xy平面内における回転変位方向とは逆方向に静電気力を発生する役割を担うのがサーボ部である。
 なお、MEMS構造からなる角速度センサ素子が形成された半導体チップ(第1半導体チップ)と、信号処理回路が形成された半導体チップ(第2半導体チップ)との組み合わせによって、本実施の形態1における角速度センサが構成されている。
 <角速度センサ素子の平面構成>
 次に、本実施の形態1における角速度センサ素子が形成される半導体チップの構成と、この半導体チップに形成される各電極の役割について、図面を参照しながら説明する。
 図1は、本実施の形態1における角速度センサ素子が形成された半導体チップCHP1の構成を示す平面図である。図1において、本実施の形態1における角速度センサ素子には、枠部101に囲まれるように空洞部102とダミー部116とが形成されている。そして、この空洞部102の内部には、固定部103が設けられており、この固定部103には、弾性変形部である支持梁104が接続されている。さらに、支持梁104は、角速度センサ素子の励振素子105と接続されている。ここで、本実施の形態1における励振素子105は、例えば、コリオリ力に基づくxy平面内の変位を検出する検出部DTU1~DTU2と一体的に形成されており、この励振素子105と検出部DTU1~DTU2とを含む可動部が構成される。
 続いて、図1に示すように、本実施の形態1における角速度センサ素子は、励振素子105の一部を構成する駆動用可動電極106aと駆動用可動電極107aとを有している。駆動用可動電極106aと、図1では示されない駆動用固定電極との間、および、駆動用可動電極107aと、図1では示されない駆動用固定電極との間に電圧を印加して静電気力を発生させることにより、励振素子105は、半導体チップCHP1の厚さ方向であるz方向を含むzx平面内で駆動振動(回転振動)することになる。
 さらに、本実施の形態1における角速度センサ素子は、複数の駆動振幅モニタ部を有している。具体的に、本実施の形態1における角速度センサ素子は、図1に示すように、4つの駆動振幅モニタ部MU1~MU4を有している。このとき、駆動振幅モニタ部MU1は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108aと、支持基板に固定された駆動振幅モニタ用固定電極108bと、から構成されている。同様に、駆動振幅モニタ部MU2は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極109aと、支持基板に固定された駆動振幅モニタ用固定電極109bと、から構成され、駆動振幅モニタ部MU3は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極110aと、支持基板に固定された駆動振幅モニタ用固定電極110bと、から構成されている。また、駆動振幅モニタ部MU4は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極111aと、支持基板に固定された駆動振幅モニタ用固定電極111bと、から構成されている。つまり、4つの駆動振幅モニタ部MU1~MU4のそれぞれは、駆動振幅モニタ用可動電極と駆動振幅モニタ用固定電極とからなる容量素子となっており、これらの駆動振幅モニタ部MU1~MU4によって、励振素子105のzx平面内での駆動振動の振幅が容量素子の容量値の変化として検出される。
 次に、図1に示すように、本実施の形態1における角速度センサ素子は、2つの検出部DTU1~DTU2を有している。このとき、検出部DTU1は、励振素子105と一体的に形成された変位検出用可動電極112aと、支持基板に固定された変位検出用固定電極112bと、から構成され、検出部DTU2は、励振素子105と一体的に形成された変位検出用可動電極113aと、支持基板に固定された変位検出用固定電極113bと、から構成されている。つまり、2つの検出部DTU1~DTU2のそれぞれは、変位検出用可動電極と変位検出用固定電極とからなる容量素子となっており、これらの検出部DTU~DTU2によって、コリオリ力に基づく励振素子105のxy平面内での変位が容量素子の容量値の変化として検出される。すなわち、検出部DTU1~DTU2は、zx平面に垂直なxy平面内に含まれる回転軸方向周りに角速度が印加された際、この角速度に起因して発生するコリオリ力に基づくxy平面内の変位を静電容量の変化として捉えるように構成されている。
 さらに、図1に示すように、本実施の形態1における角速度センサ素子は、2つのサーボ部SVU1~SUV2を有している。サーボ部SVU1は、励振素子105と一体的に形成されたサーボ電極可動部114aと、支持基板に固定されたサーボ電極固定部114bと、から構成され、サーボ部SVU2は、励振素子105と一体的に形成されたサーボ電極可動部115aと、支持基板に固定されたサーボ電極固定部115bと、から構成されている。この場合、サーボ部SVU1~SUVのそれぞれは、xy平面内における回転変位方向とは逆方向に静電気力を発生するように構成されることになり、これによって、コリオリ力に起因するxy平面内の回転変位がサーボ部SVU1~SUV2のそれぞれで発生する静電気力によって打ち消されることになる。
 このように構成されている角速度センサ素子は、シリコン深堀エッチング(Deep Reactive Ion Etching:DRIE)技術を用いて加工される。
 なお、励振素子105と支持梁104の接続角度は、DRIEの加工バラツキに起因する固有振動数の個体差を低減する目的で、鋭角とならないように調整されている。
 また、本実施の形態1における角速度センサ素子の励振素子105は、固定部103だけを介して支持基板と接続されており、角速度センサが置かれた環境の温度変動や実装歪みの影響によって支持基板に歪みが生じて、支持基板が変形した場合でも、励振素子105や支持梁104の変形による応力分布が生じにくい構造となっている。つまり、本実施の形態1における角速度センサ素子は、励振素子105の固有振動数が変動しにくい構造となっている。
 さらに、本実施の形態1における角速度センサ素子の励振素子105では、zx平面内の駆動振動モード(回転振動モード)、もしくは、xy平面内の回転変位モードが、励振素子105の固有振動数の第1モードとなる。したがって、本実施の形態1における角速度センサ素子では、角速度センサ素子の動作周波数以下の帯域に、励振素子105が応答する特徴的な周波数が存在しない。このことから、本実施の形態1における角速度センサ素子は、外部からの機械的な振動ノイズに強い特徴を有していることになる。
 なお、ダミー部116は、角速度センサ素子を形成する際に、エッチングによる除去面積を調整して、励振素子に代表される角速度センサの構成要素の加工バラツキを低減する役割を有するとともに、電位を固定して周辺からの電磁波ノイズを除去するシールドとしての役割も有する。さらに、本実施の形態1における角速度センサ素子において、ダミー部116は、トランスファモールド技術を採用する点や、温度あるいは湿度の変動などに起因する半導体チップCHP1の歪みによって、半導体チップCHP1を実装する際、封止体を構成する樹脂と接する層に設置される角速度センサの構成要素が変形しないように支持体を構成する役割も有する。
 <角速度センサ素子の断面構成>
 次に、本実施の形態1における角速度センサ素子の断面構造について、図面を参照しながら説明する。図2(a)は、図1のA-A線で切断した断面図であり、図3(a)は、図1のB-B線で切断した断面図である。
 図2(a)、あるいは、図3(a)に示すように、角速度センサ素子が形成される半導体チップCHP1は、例えば、単結晶シリコンからなる支持基板1Sを有している。この支持基板1Sの表面(上面、主面)には、例えば、酸化シリコン膜からなる絶縁層131が形成されており、この絶縁層131の上方にデバイス層DLが形成され、デバイス層DLの上方にキャップ層CAPLが形成されている。そして、支持基板1Sとデバイス層DLとの間、および、デバイス層DLとキャップ層CAPLとの間には、空洞部102が形成されている。
 デバイス層DLには、単結晶シリコンで形成される枠部101、固定部103、励振素子105、サーボ電極可動部114a、115a、サーボ電極固定部114b、115b、駆動用可動電極106a、107a、変位検出用可動電極112a、113a、変位検出用固定電極112b、113bなどの図1に示される構成要素が形成されている。さらに、デバイス層DLには、駆動振幅モニタ用可動電極108a~111a、駆動振幅モニタ用固定電極108b~111b、および、支持梁104なども形成されている。
 キャップ層CAPLは、単結晶シリコンからなるキャップ部140、絶縁層141、導電膜142、保護膜143、励振素子105をzx平面内で振動させるための電圧が印加される駆動用固定電極106b、107b、および、貫通電極などが形成されている。
 本実施の形態1における角速度センサ素子では、キャップ部140とデバイス層DLとを接合し、角速度センサ素子をキャップ部140で保護する。特に、本実施の形態1における角速度センサ素子では、図2(a)や図3(a)に示すように、接続領域CR1で支持基板1Sとデバイス層DLとが接合され、接続領域CR2でデバイス層DLとキャップ層CAPLとが接続されている。
 ここで、空洞部102内に配置される角速度センサ素子の励振素子105は、支持梁104を介して固定部103と接続され、固定部103は、絶縁層131を介して支持基板1Sと接続される。つまり、励振素子105は、支持基板1Sに対して完全に固定されてはおらず、変位可能なように構成されている。そして、励振素子105は、単結晶シリコンから形成されているため、励振素子105は、構造体中のいずれの場所であっても電気的に接続されている。
 また、キャップ部140を貫通するように貫通電極が形成されており、この貫通電極は、キャップ部140に、絶縁層141を埋め込んで電気的に分離することにより形成される。
 なお、励振素子105に印加される電位は、固定部103と接続される貫通電極を介して、導電膜142に形成されるパッドから供給される。
 また、駆動振幅モニタ用固定電極108b~111b、変位検出用固定電極112b、113b、および、サーボ電極固定部114b、115bにも、それぞれ、貫通電極が形成されている。駆動振幅モニタ用固定電極108b~111b、変位検出用固定電極112b、113b、および、サーボ電極固定部114b、115bのそれぞれは、貫通電極を介して、導電膜142に形成されるパッドと電気的に接続される。このことから、駆動振幅モニタ用固定電極108b~111b、変位検出用固定電極112b、113b、および、サーボ電極固定部114b、115bのそれぞれの電位は、パッドの電位と等しい。このため、励振素子105がzx平面内で駆動振動することで生じる容量変化や、励振素子105がxy平面内で変位することで生じる容量変化に応じて、励振素子105および上述した各固定電極の表面には、電荷が流入あるいは流出することになる。
 なお、本実施の形態1における角速度センサ素子が形成された半導体チップCHP1は、パッドの部分を除いて、導電膜142の表面が保護膜143によって覆われて保護されている。
 例えば、本実施の形態1における半導体チップCHP1では、デバイス層DLとキャップ層CAPLとを貼り合せることにより接合する。具体的に、デバイス層DLとキャップ層CAPLとの貼り合せには、単結晶シリコン同士の直接接合が使用される。一方、デバイス層DLと支持基板1Sの接合にも貼り合せが使用される。デバイス層DLと支持基板1Sの貼り合せには、例えば、単結晶シリコンの表面を高温で酸化して得られる酸化シリコン膜と単結晶シリコンとのフュージョン接合が使用される。
 この結果、本実施の形態1における半導体チップCHP1では、従来から使用されている接着材を用いた接合方式やガラス-シリコンの陽極接合方式と異なり、貼り合せの際に、ガスの発生源となる接着材などの有機物が不要となる。このことから、本実施の形態1における半導体チップCHP1では、空洞部102の内部に脱ガス成分を含まない方法で空洞部102を形成することができる。また、貼り合せ工程の前に実施する洗浄工程における残留液体や、フォトリソグラフィ工程における残留レジストが、空洞部102の内壁に付着する場合であっても、単結晶シリコン同士の直接接合は、通常1000℃以上の熱を加えて実施されるため、上述した残留液体や残留レジストは、焼失してしまう。このことから、本実施の形態1における半導体チップCHP1では、ガスの発生源となる接着材などの有機物が不要となる点と、残留液体や残留レジストが高温の熱処理によって焼失する点から、空洞部102の内部に脱ガス成分を含むことなく、空洞部102を形成できる。
 したがって、角速度センサ素子の励振素子105が配置される空洞部102の内部は、例えば、100Pa以下、望ましくは、10Pa以下という低い圧力で封止されることになる。この結果、本実施の形態1における半導体チップCHP1では、従来から使用されている接着材を用いた接合方式や、ガラス-シリコンの陽極接合方式と比較して、空洞部102内の圧力を低くすることができる。このことから、本実施の形態1における半導体チップCHP1では、空洞部102の内部の圧力を低くするために、励振素子105が設置される空洞部102の内部に、気体分子を吸着する吸着材であるゲッタを導入して、真空度を保つ必要がなく、ゲッタ材料を使用することによるコスト増加を抑制することができる。
 本実施の形態1で実現される10Pa以下の圧力において、MEMS振動体のようにマイクロスケールの寸法を持つ構造体のエネルギー減衰は、ガスダンピングによる寄与はほとんどなく、構造ダンピングが主体となる。構造ダンピングによる減衰は、アンカーロスと呼ばれる支持部からの振動漏れによる減衰と、Thermal Elastic Dampingと呼ばれる変形部からの熱拡散による減衰とが主体であるが、これらの減衰は、ガスダンピングによる減衰と比較して、ダンピング係数が充分に小さい。したがって、励振素子105の質量をm、支持梁104のばね定数をk、ダンピング係数をCとしたとき、Q=√mk/Cであるため、本実施の形態1における励振素子105のQ値は、一般的に高くなる。例えば、励振素子105の構造や寸法にも依存するが、10Pa以下の圧力では、通常、10000以上のQ値を実現することができる。
 本実施の形態1における角速度センサ素子の駆動用電極(駆動用可動電極と駆動用固定電極)は、平行平板型であり、気体中では減衰の大きなスクイズドフィルム型のダンピングを示す電極構造である。しかし、上述したように、本実施の形態1における角速度センサ素子では、従来から使用されている接着材を用いた接合方式やガラス-シリコンの陽極接合方式ではなく、封止圧力を低くすることができる単結晶シリコン同士の直接接合や、酸化シリコン膜と単結晶シリコンとのフュージョン接合が使用されている。このため、本実施の形態1における励振素子105は、ガスダンピングの寄与がほとんどない真空度の空洞部102の内部に配置されることから、駆動用電極の構成として、平行平板型の電極構造でありながら、励振素子105の駆動振動モードで大きなQ値を実現できる。
 <駆動電極の構成>
 続いて、本実施の形態1における駆動電極の構成について説明する。図1において、励振素子105のうち、破線で示された領域には、駆動用可動電極106a、107aが形成されている。図2(a)に示すように、デバイス層DLに形成されている駆動用可動電極106a、107aの上方で、かつ、駆動用可動電極106a、107aと対向する位置には、駆動用固定電極106bおよび駆動用固定電極107bが形成されている。
 このように配置することにより、駆動用可動電極106aと駆動用固定電極106bとによって容量素子が形成されるとともに、駆動用可動電極107aと駆動用固定電極107bとによって容量素子が形成される。
 例えば、本実施の形態1における角速度センサ素子では、互いに対向することにより容量素子を形成している駆動用可動電極106aと駆動用固定電極106bとの間に、Vcom+Vb+Vdで表される周期的な駆動信号が印加され、駆動用可動電極107aと駆動用固定電極107bとの間にVcom+Vb-Vdで表される周期的な駆動信号が印加される。さらに、本実施の形態1における角速度センサ素子では、励振素子105と電気的に接続されている固定部103に、貫通電極を介してVcomで表される電圧が印加される。これにより、駆動用可動電極106aと駆動用固定電極106bとの間、および、駆動用可動電極107aと駆動用固定電極107bとの間には、交互に静電気力が働く。この結果、図2(b)の破線で示すように、励振素子105は、zx平面内で駆動振動(回転振動)することになる。
 ここで、本実施の形態1における角速度センサ素子では、図2(a)に示すように、駆動用可動電極106aと駆動用固定電極106b、および、駆動用可動電極107aと駆動用固定電極107bは、zx平面内での励振素子105の回転中心である固定部103から最も離れた位置に設置される。この結果、本実施の形態1における角速度センサ素子においては、駆動用可動電極106aと駆動用固定電極106bとから構成される容量素子、および、駆動用可動電極107aと駆動用固定電極107bから構成される容量素子の間に働く静電気力に起因する回転トルクが大きくなる。このことから、本実施の形態1における角速度センサ素子によれば、駆動用固定電極106bと駆動用固定電極107bの面積を小さくすることができ、これによって、角速度センサ素子が形成される半導体チップCHPのサイズを小さくできる利点が得られる。
 以上より、駆動用可動電極106aと駆動用固定電極106bとから構成される容量素子、あるいは、駆動用可動電極107aと駆動用固定電極107bとから構成される容量素子は、励振素子105をzx平面内で強制的に駆動振動を発生させる強制振動生成部として機能することになる。
 <駆動振幅モニタ部の構成>
 次に、本実施の形態1における駆動振幅モニタ部の構成について説明する。図1に示すように、励振素子105には、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108a~111aが形成されている。そして、この駆動振幅モニタ用可動電極108a~111aと対向するように、駆動振幅モニタ用固定電極108b~111bが形成されている。これにより、駆動振幅モニタ用可動電極108a~111aのそれぞれと、駆動振幅モニタ用固定電極108b~111bのそれぞれによって、4つの容量素子が形成され、これらの4つの容量素子が、デバイス層DLに形成される4つの駆動振幅モニタ部MU1~MU4となる。ここで、4つの駆動振幅モニタ部MU1~MU4のそれぞれを構成する4つの容量素子では、励振素子105がzx平面内での駆動振動によりz方向に変位すると、容量値が変化する。
 ここで、図4(a)は、図1のC1-C1線で切断した断面図である。図4(a)に示すように、駆動振幅モニタ用可動電極108aには、-z方向側に切り欠きがあり、駆動振幅モニタ用可動電極108bには+z方向側に切り欠きがある。言い換えれば、zx平面内において、駆動振幅モニタ用可動電極108aのz方向(厚さ方向)の中心位置と、駆動振幅モニタ用固定電極108bのz方向(厚さ方向)の中心位置とがずれていると表現することもできる。これらの切り欠きの高さは、励振素子105のzx平面内での駆動振動の振幅よりも大きい必要がある。
 例えば、図3(b)および図4(a)に示すように、励振素子105がzx平面内で反時計まわりの回転変位をする場合、駆動振幅モニタ用可動電極108aが+z方向に変位するため、回転角度の増加に伴って、駆動振幅モニタ部MU1を構成する容量素子の容量値は減少する。
 一方、図4(b)は、図1のC2-C2線で切断した断面図である。図4(b)に示すように、駆動振幅モニタ用可動電極109aは、+z方向側に切り欠きがあり、駆動振幅モニタ用固定電極109bは、-z方向側に切り欠きがある。したがって、励振素子105がzx平面内で反時計まわりの回転変位をする場合には、駆動振幅モニタ用可動電極109aは+z方向に変位するため、回転角度の増加に伴って、駆動振幅モニタ部MU2を構成する容量素子の容量値は増加する。
 また、駆動振幅モニタ用可動電極110aには、+z方向側に切り欠きがあり、駆動振幅モニタ用固定電極110bには、-z方向側に切り欠きがある。したがって、図3(b)に示すように、励振素子105がzx平面内で反時計まわりの回転変位をする場合には、駆動振幅モニタ用可動電極110aが-z方向に変位するため、回転角度の増加に伴って、駆動振幅モニタ部MU3を構成する容量素子の容量値が減少する。
 一方、駆動振幅モニタ用可動電極111aには、-z方向側に切り欠きがあり、駆動振幅モニタ用固定電極111bには、+z方向側に切り欠きがある。したがって、励振素子105がzx平面内で反時計まわりの回転変位をする場合には、駆動振幅モニタ用可動電極111aが-z方向に変位するため、回転角度の増加に伴って、駆動振幅モニタ部MU4を構成する容量素子の容量値が増加する。
 ここで注意が必要なのは、角速度センサ素子が形成された半導体チップCHP1に角速度が印加されてコリオリ力が発生し、コリオリ力に基づいて、励振素子105にxy平面内での回転変位が生じる場合においても、駆動振幅モニタ用可動電極108a~111aのそれぞれと、駆動振幅モニタ用固定電極108b~111bのそれぞれから形成される4つの容量素子の容量値が変化することである。つまり、本実施の形態1において、4つの駆動振幅モニタ部MU1~MU4のそれぞれを構成する容量素子は、励振素子105がzx平面内で駆動振動する場合だけでなく、コリオリ力によって、励振素子105がxy平面で変位する場合も、容量値が変化してしまうのである。
 励振素子105がxy平面内で反時計まわりに回転変位するとき、駆動振幅モニタ用可動電極108aと駆動振幅モニタ用固定電極108bから構成される容量素子の容量値は増加し、駆動振幅モニタ用可動電極109aと駆動振幅モニタ用固定電極109bから構成される容量素子の容量値は減少する。一方、駆動振幅モニタ用可動電極110aと駆動振幅モニタ用固定電極110bから構成される容量素子の容量値は減少し、駆動振幅モニタ用可動電極111aと駆動振幅モニタ用固定電極111bから構成される容量素子の容量値は増加する。したがって、励振素子105のzx平面内での駆動振動の振幅を得るには、駆動振幅モニタ用固定電極108bと駆動振幅モニタ用固定電極110bとを電気的に接続した合計容量値と、駆動振幅モニタ用固定電極109bと駆動振幅モニタ用固定電極111bを電気的に接続した合計容量値との間で差動検出をする必要がある。この差動検出によれば、励振素子105のxy平面内での回転変位による容量値の変化を、信号処理回路(演算回路)に入力する前にキャンセルすることができる。つまり、上述した差動検出を行なうことにより、本実施の形態1における駆動振幅モニタ部MU1~MU4は、xy平面内での回転変位の影響をなくしながら、zx平面内での駆動振動による容量値の変化分だけを検出することができる。これにより、駆動振幅モニタ部MU1~MU4によって、励振素子105のzx平面内での駆動振動だけをモニタリングすることができる。
 ここで、角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップには、信号処理回路が形成されており、この信号処理回路は、上述した駆動振幅モニタ部MU1~MU4から得られる励振素子105のzx平面内の駆動振幅に対応する容量値の変化に基づいて、自動振幅制御(Automatic Gain Control:AGC)によるフィードバック制御を行い、励振素子105の振動振幅を常に一定に保っている。この点に関し、本実施の形態1では、駆動振幅モニタ部MU1~MU4によって、励振素子105のzx平面内での駆動振動だけをモニタリングすることができるので、上述した自動振幅制御によるフィードバック制御の精度を向上させることができる。
 また、駆動振幅モニタ用可動電極108a~111aと、駆動振幅モニタ用固定電極108b~111bは、すべて、励振素子105と同じ層であって、歪みの影響を受けにくいデバイス層DLに形成される。このため、トランスファモールド技術を採用する点や、温度、湿度が変動する点などに起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じる場合であっても、駆動振幅モニタ用可動電極と駆動振幅モニタ用固定電極との間の距離は変動しにくく、半導体チップCHP1の歪みによって、駆動振幅モニタ用可動電極と駆動振幅モニタ用固定電極とから構成される容量素子の容量値も変動しにくい。つまり、励振素子105のzx平面内での回転振動の振幅を検出している容量素子の容量値は、半導体チップCHP1の歪みによる影響を受けにくい。
 一方、本実施の形態1では、歪みの影響を受けにくいデバイス層DLに駆動用可動電極106a、107aが形成されているものの、歪みの影響を受けやすいキャップ層CAPLに駆動用固定電極106b、107bが形成されている。このことから、本実施の形態1における角速度センサ素子では、トランスファモールド技術を採用する点や、温度、湿度が変動する点などに起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生した場合、歪みによって、駆動用可動電極106a、107aと駆動用固定電極106b、107bとの間の距離が変動するおそれがある。この場合、駆動用可動電極106aと駆動用固定電極106bとから構成される容量素子の容量値や、駆動用可動電極107aと駆動用固定電極107bとから構成される容量素子の容量値が変動するおそれがある。
 この点に関し、本実施の形態1では、歪みの影響を受けにくいデバイス層DLに形成されている駆動振幅モニタ部MU1~MU4からの出力に基づいて、自動振幅制御を行なっている。つまり、本実施の形態1では、歪みの影響を受けにくいデバイス層DLに形成されている駆動振幅モニタ部MU1~MU4からの出力に基づいて、励振素子105の振動振幅が一定となるように印加する駆動信号Vdを調整して、駆動用可動電極106a、107aと駆動用固定電極106b、107bとの間に印加される静電気力を調整している。この結果、本実施の形態1によれば、たとえ、半導体チップCHP1に発生する歪みによって、駆動用可動電極106a、107aと駆動用固定電極106b、107bとの間の距離が変動する場合であっても、半導体チップCHP1の歪みによる角速度センサの出力への影響を小さくできる利点が得られる。
 また、本実施の形態1における角速度センサ素子の駆動用電極(駆動用可動電極と駆動用固定電極)は、平行平板型の電極構造をしている。しかし、本実施の形態1では、上述したように、励振素子105は、ガスダンピングの影響をほとんど受けない低い圧力の空洞部102の内部に設置されるため、励振素子105のQ値は大きい。このことから、本実施の形態1によれば、平行平板型の電極構造において、変位と静電気力の間に線形関係が成立する線形領域での小さな静電気力を利用して励振素子105に駆動振動を発生させる場合であっても、大きなQ値で励振素子105の駆動振動の振幅を充分に確保することができる。特に、本実施の形態1では、変位に対して駆動力(静電気力)が線形である線形領域を利用して励振素子105に駆動振動を発生させているため、自動振幅制御が不安定化するおそれを低減できる。また、本実施の形態1における角速度センサ素子によれば、小さな静電気力で微小変位を発生させ、大きなQ値で励振素子105の駆動振動の振幅を確保しているため、駆動用電極同士がくっついてしまう、いわゆるプルイン現象の発生を抑制することができる。
 <検出部の構成>
 続いて、本実施の形態1における検出部の構成について説明する。図1に示すように、励振素子105には、励振素子105と一体的に形成された変位検出用可動電極112a、113aが形成されている。そして、図3(a)に示すように、この変位検出用可動電極112a、113aのそれぞれと対向するように、励振素子105と同じデバイス層DLに、変位検出用固定電極112b、113bのそれぞれが形成されている。図1に示すように、変位検出用可動電極112aと、変位検出用固定電極112bとによって、検出部DTU1が構成され、変位検出用可動電極113aと、変位検出用固定電極113bとによって、検出部DTU2が構成される。つまり、検出部DTU1は、変位検出用可動電極112aと変位検出用固定電極112bとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。同様に、検出部DTU2は、変位検出用可動電極113aと変位検出用固定電極113bとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。
 例えば、本実施の形態1において、x軸方向周りの角速度に応じて、検出部DTU1および検出部DTU2の容量値が変化するメカニズムは、以下の通りである。すなわち、zx平面内で駆動振動する励振素子105に対して、x軸方向周りの角速度が入力されると、励振素子105のうち+z方向に速度を持つ部分には、-y方向のコリオリ力が働き、励振素子105のうち-z方向に速度を持つ部分には、+y方向のコリオリ力が働く。励振素子105の変位可能方向は、固定部103を中心としたzx平面内での回転変位と、固定部103を中心としたxy平面内での回転変位である。このため、励振素子105に印加された角速度に基づくコリオリ力は、振動している励振素子105のすべての構成部分について、固定部103からの距離の2乗を乗じた回転モーメントとして顕在化する。
 この結果、励振素子105に印加された角速度に基づくコリオリ力は、固定部103に働くz方向のトルクとして機能する。したがって、励振素子105は、固定部103に働くz方向のトルクの大きさに応じて、固定部103を回転中心としたxy平面内での回転運動をすることになる。このようにして、励振素子105が、xy平面内での回転運動によって、y方向に変位すると、上述した検出部DTU1を構成する容量素子の容量値と、検出部DTU2を構成する容量素子の容量値が変化する。
 なお、xy平面内での回転運動は、励振素子105のすべての構成部分からの合成トルクにより発生する。このため、本実施の形態1では、上述した駆動用可動電極106aと駆動用固定電極106bとの間、あるいは、駆動用可動電極107aと駆動用固定電極107bとの間で発生する静電気力が、加工バラツキや電極間距離の変動により等しくなかったとしても、励振素子105のxy平面内での回転運動への影響は少なくなる。
 ここで、図5(a)は、図1のD-D線で切断した断面図である。図5(a)に示すように、励振素子105と一体化されている変位検出用可動電極112aには、段差部がないが、変位検出用固定電極112bには、z方向の上端部と下端部とに、同じ形状の段差部DIFが形成されている。この段差部DIFの高さhは、励振素子105のzx平面内の回転振動の振幅より大きい。したがって、図5(b)に示すように、励振素子105がzx平面内で駆動振動をしていても、変位検出用可動電極112aと変位検出用固定電極112bから構成される容量素子の容量値は、ほとんど変動せず、半導体チップCHP1に印加される角速度に応じてのみ容量値が変動する。
 同様に、図示はしないが、励振素子105と一体化されている変位検出用可動電極113aには、段差部がないが、変位検出用固定電極113bには、z方向の上端部と下端部とに、同じ形状の段差部DIFが形成されている。この段差部DIFの高さhは、励振素子105のzx平面内の駆動振動の振幅より大きい。したがって、励振素子105がzx平面内で駆動振動をしていても、変位検出用可動電極113aと変位検出用固定電極113bから構成される容量素子の容量値は、ほとんど変動せず、半導体チップCHP1に印加される角速度に応じてのみ容量値が変動する。
 つまり、本実施の形態1における検出部DTU1および検出部DTU2では、例えば、図5(a)に示すように、変位検出用可動電極112aに段差部DIFを設け、かつ、段差部DIFの高さhを、励振素子105のzx平面内の駆動振動の振幅より大きく構成している。これにより、本実施の形態1における検出部DTU1および検出部DTU2は、励振素子105のzx平面内での駆動振動の影響をほとんど受けることなく、コリオリ力に起因する励振素子105の変位だけを、容量素子の容量値の変化として検出することができる。
 ここで、例えば、図1に示すように、変位検出用可動電極112a、113aは、zx平面内で駆動振動する励振素子105のうち、振動振幅が小さい回転軸(固定部103)付近で、励振素子105と接続されている。言い換えれば、本実施の形態1における検出部DTU1および検出部DTU2は、xy平面において、駆動用可動電極106a、107aや、駆動用可動電極106a、107aとz方向に対向する位置に設置されている駆動用固定電極や、駆動振幅モニタ部MU1~MU4よりも固定部103に近い位置に配置されている。したがって、例えば、変位検出用可動電極112a、113aに段差部DIFを形成する際、変位検出用可動電極112a、113aの上端部と下端部で生じる加工バラツキがあっても、変位検出用可動電極112a、113aの端部からの漏れ電界の差異による容量値の変動の影響を抑制することができる。
 また、例えば、図1に示すように、変位検出用固定電極112b、113bは、貫通電極が形成されている位置でのみ支持基板と固定されており、固定されている部分以外の変位検出用固定電極112b、113bの部分には、穴が開けられている。このように、本実施の形態1では、変位検出用固定電極112b、113bを軽量化することにより、変位検出用固定電極112b、113bの固有振動数を高めることができる。このため、本実施の形態1における検出部DTU1および検出部DTU2は、外部からの機械的振動ノイズに影響を受けににくい構造となっている。つまり、本実施の形態1において、変位検出用可動電極112aと変位検出用固定電極112bから構成される容量素子の容量値や、変位検出用可動電極113aと変位検出用固定電極113bから構成される容量素子の容量値は、外部からの機械的振動ノイズに対して変動しにくくなっている。
 さらに、本実施の形態1における角速度センサ素子では、変位検出用可動電極112a、113aと、変位検出用固定電極112b、113bは、励振素子105が形成されているデバイス層DLに形成されている。このことから、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生する場合であっても、変位検出用可動電極112aと変位検出用固定電極112bとの間の距離や、変位検出用可動電極113aと変位検出用固定電極113bとの間の距離は変動しにくく、容量値も変動しにくい。すなわち、本実施の形態1において、検出部DTU1を構成する容量素子の容量値や、検出部DTU2を構成する容量素子の容量値は、半導体チップCHP1の歪みによる影響を受けにくい特徴がある。
 <サーボ部の構成>
 次に、本実施の形態1におけるサーボ部の構成について説明する。例えば、図1に示すように、励振素子105には、励振素子105と一体的に形成されたサーボ電極可動部114a、115aが形成されている。そして、サーボ電極可動部114a、115aと対向するように、サーボ電極固定部114b、115bが形成されている。これにより、本実施の形態1における角速度センサ素子は、サーボ電極可動部114aとサーボ電極固定部114bとからなるサーボ部SVU1と、サーボ電極可動部115aとサーボ電極固定部115bとからなるサーボ部SVU2とを有している。
 角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップには、信号処理回路が形成されている。この信号処理回路は、変位検出用可動電極112aと変位検出用固定電極112bから構成される容量素子の容量値や、変位検出用可動電極113aと変位検出用固定電極113bから構成される容量素子の容量値を常に一定に保つように制御している。つまり、上述した信号処理回路は、入力されるx軸方向周りの角速度に応じて、励振素子105が変位しないように、サーボ電極可動部114aとサーボ電極固定部114bとの間や、サーボ電極可動部115aとサーボ電極固定部115bの間に印加する電圧を制御している。
 具体的に、信号処理回路は、互いに対向することにより容量素子を形成しているサーボ電極可動部114aとサーボ電極固定部114bの間に、Vcom+Vsb+Vsdで表される周期的なサーボ信号を印加し、サーボ電極可動部115aとサーボ電極固定部115bの間に、Vcom+Vsb-Vsdで表される周期的なサーボ信号を印加する。そして、励振素子105が接続されている固定部103に貫通電極を介して、Vcomで表される電圧を印加することにより、サーボ電極可動部114aとサーボ電極固定部114bとの間、および、サーボ電極可動部115aとサーボ電極固定部115bとの間には、交互に静電気力が働く。このようにして、信号処理回路は、Vsdを調整して、励振素子105が変位しないように、言い換えれば、信号処理回路は、上述した変位検出用可動電極112aと変位検出用固定電極112bから構成される容量素子の容量値と、変位検出用可動電極113aと変位検出用固定電極113bから構成される容量素子の容量値を一定に保つように制御している。このとき、Vsdは、励振素子105に印加される角速度に比例した値を有していることから、信号処理回路でVsdに適切な比例係数を乗算した出力値が角速度に対応した値となる。これは、ゼロ位法と呼ばれる制御手法である。このゼロ位法によれば、励振素子105がコリオリ力を受けても変位しないことから、xy平面内での回転角度の増加に起因して、支持梁104の内部に応力分布が生じる影響を除去することができる。このため、回転力に対する変位の非線形出力の影響を除去することができ、これによって、本実施の形態1における角速度センサ素子によれば、出力値の非線形性を低減できる。
 また、サーボ電極可動部114aとサーボ電極固定部114bとの間、あるいは、サーボ電極可動部115aとサーボ電極固定部115bとの間に働く静電気力は、温度変動によって、ほとんど変化しないとみなせるため、本実施の形態1における角速度センサの感度が温度変動に依存しない利点を得ることができる。
 本実施の形態1における角速度センサ素子では、サーボ電極可動部114a、115aと、サーボ電極固定部114b、115bとは、励振素子105と同じデバイス層DLに形成されている。このことから、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生する場合であっても、サーボ電極可動部114aとサーボ電極固定部114bとの間の距離や、サーボ電極可動部115aとサーボ電極固定部115bとの間の距離は変動しにくく、容量値も変動しにくい。つまり、入力される角速度に応じた励振素子105のxy平面内での回転運動を、信号処理回路での電圧調整により打ち消す機能を有するサーボ部SVU1、SVU2のそれぞれを構成する容量素子の容量値は、半導体チップCHP1に発生する歪みの影響を受けにくい特徴がある。
 さらに、本実施の形態1における角速度センサ素子では、図1に示すように、サーボ部SVU1およびサーボ部SVU2が、励振素子105の中でも固定部103に近い部分に形成されている。このため、サーボ部SVU1やサーボ部SVU2で発生する力は、励振素子105に発生するコリオリ力と比べて大きくする必要があり、本実施の形態1における角速度センサによれば、角速度センサの感度を大きくすることができる利点が得られる。
 <信号処理回路の構成および動作>
 続いて、本実施の形態1における角速度センサの信号処理回路の構成と動作について、本実施の形態1における角速度センサに関連する箇所のみを抜粋して説明する。
 図6は、本実施の形態1における角速度センサの駆動振動に関する信号処理回路を説明する図である。図6において、半導体チップCHP2には、変調信号(搬送波)を生成する変調信号生成部211が形成されている。そして、変調信号生成部211で生成された変調信号には、バイアス電圧が印加されて、励振素子105に印加される。この変調信号生成部211は、例えば、数百kHzの変調信号を生成できるように構成されているが、数百kHzの変調信号は、角速度センサ素子の励振素子105の固有振動数よりも大きいため、変調信号によって励振素子105は変位しない。このように、変調信号を使用すると、環境ノイズを除去しながら、電極間に形成される容量素子の容量値を測定することができる。
 また、半導体チップCHP2には、駆動信号を生成する駆動信号生成部210a、210bが形成されている。この駆動信号生成部210a、210bは、例えば、数十kHzの駆動信号を生成できるように構成されている。駆動信号生成部210bは、駆動信号生成部210aで生成された駆動信号の位相を180度変換した信号を生成する。駆動信号生成部210aで生成された駆動信号には、バイアス電圧が印加されて、駆動用固定電極106bに印加される。また、駆動信号生成部210bで生成された駆動信号は、バイアス電圧が印加されて、駆動用固定電極107bに印加される。これにより、本実施の形態1における角速度センサ素子の励振素子105は、数十kHzの駆動信号によりzx平面内で駆動振動することになる。
 さらに、半導体チップCHP2には、演算部212が形成されている。この演算部212は、駆動振幅モニタ用固定電極108b、111bに接続され、励振素子105の回転振動の振幅に対応する容量変化を検出する。この演算部212は、容量電圧変換部(C/V変換部)、A/D変換部、差動検出部、同期検波部を有している。
 容量電圧変換部は、容量素子C8と容量素子C11の容量変化を電圧信号に変換するオペアンプにより構成されている。続いて、A/D変換部は、容量電圧変換部から出力されたアナログ信号をデジタル信号に変換するように構成されている。また、差動検出部は、容量素子C8の容量変化に対応した電圧信号と、容量素子C8の容量変化とは逆である容量素子C11の容量変化に対応した電圧信号との差分を取るように構成されており、同期検波部は、変調信号生成部211で生成された変調信号によって高周波信号に変換された信号から、元の低い周波数の信号を復元するように構成されている。
 ここで、本実施の形態1において、駆動信号生成部210a、210bで生成され、励振素子105に印加される周期的な駆動信号は、角速度センサ素子の励振素子105の共振周波数とすることが望ましい。これは、共振倍率(Q値)を利用して、駆動変位を増大させることにより、入力エネルギーを効率的に利用でき、これによって、本実施の形態1における角速度センサの低消費電力化を実現することができるからである。
 このため、半導体チップCHP2に形成されている信号処理回路では、駆動振幅モニタ用固定電極108b、111bより得られる励振素子105の駆動振動の振幅に対応する容量素子C8と容量素子C11との容量変化に基づいて、位相同期回路(Phase Locked Loop:PLL)を用いた自動周波数制御(Automatic Frequency Control:AFC)によるフィードバック制御を行っている。この自動周波数制御により、駆動信号生成部210a、210bで生成される駆動信号の周波数を励振素子105の共振周波数に追従させて、環境温度変動による共振周波数の変動を補償している。
 また、半導体チップCHP2に形成されている信号処理回路では、駆動振幅モニタ用固定電極108b、111bより得られる励振素子105の駆動振動の振幅に対応する容量素子C8と容量素子C11との容量変化に基づいて、自動振幅制御を行っている。この自動振幅制御により、駆動信号生成部210a、210bで生成された駆動信号の大きさ(Vd)を調整して、励振素子105の周期的な強制振動の振幅を常に一定に保ち、本実施の形態1における角速度センサの感度を一定に保持している。
 ここで、例えば、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生する場合を考える。このとき、駆動用可動電極106a、107aは、デバイス層DLに形成されている一方、駆動用固定電極106b、107bは、歪みの影響を受けやすいキャップ層CAPLに形成されている。このことから、駆動用可動電極106aと駆動用固定電極106bとの間の距離や、駆動用可動電極107aと駆動用固定電極107bとの間の距離は、変動しやすく、これによって、駆動振動を発生させる容量素子の容量値も変動しやすくなると考えられる。
 この点に関し、本実施の形態1では、たとえ、半導体チップCHP1に発生する歪みによって、駆動振動を発生させる容量素子の容量値が変動する場合であっても、自動振幅制御によって、励振素子105の周期的な回転振動の振幅を常に一定に保つことができるため、角速度センサの感度は、半導体チップCHP1の歪みによる影響を受けにくくなる。
 次に、図7は、本実施の形態1における角速度センサでの角速度の検出に関する信号処理回路を説明する図である。図7に示すように、半導体チップCHP2には、演算部213が形成されている。この演算部213は、変位検出用固定電極112b、113bと電気的に接続され、コリオリ力によって生じる励振素子105のxy平面内での回転変位に対応する容量変化を検出するように構成されている。
 この演算部213は、容量電圧変換部(C/V変換部)、A/D変換部、差動検出部、同期検波部を有している。容量電圧変換部は、容量素子C12と容量素子C13との容量変化を電圧信号に変換するオペアンプにより構成されている。続いて、A/D変換部は、容量電圧変換部から出力されたアナログ信号をデジタル信号に変換するように構成されている。差動検出部は、容量素子C12の容量変化に対応した電圧信号と、容量素子C12の容量変化とは逆である容量素子C13の容量変化に対応した電圧信号との差分を取るように構成されており、同期検波部は、変調信号生成部211で生成された変調信号によって高周波信号に変換された信号から、元の低い周波数の信号を復元するように構成されている。
 また、半導体チップCHP2に形成されている信号処理回路には、演算部213から出力される信号に基づいて、サーボ信号を演算するサーボ信号演算部215(SVO)と、サーボ信号演算部215から出力される信号をD/A変換した後、D/A変換された信号をサーボ信号生成部214a、214bに出力するD/A変換部を有している。
 さらに、半導体チップCHP2に形成されている信号処理回路は、サーボ信号(サーボ電圧)を生成するサーボ信号生成部214a、214bを有している。このサーボ信号生成部214a、214bは、例えば、数十kHzの駆動信号と同期した周波数の信号を生成できるように構成されている。サーボ信号生成部214bは、サーボ信号生成部214aで生成されたサーボ信号の位相を180度変換したサーボ信号を生成する。サーボ信号生成部214aで生成されたサーボ信号は、バイアス電圧が印加されて、サーボ電極固定部114bに印加される。一方、サーボ信号生成部214bで生成されたサーボ信号は、バイアス電圧が印加されて、サーボ電極固定部115bに印加される。
 本実施の形態1における角速度センサ素子の励振素子105では、数十kHzの駆動信号と同期したサーボ信号によって、コリオリ力によって生じるxy平面内での回転変位が打ち消されている。なお、サーボ信号演算部215から出力されるサーボ信号は、LPF低帯域通過フィルタ(LPF)で信号処理された後、角速度センサの出力となる。
 <角速度センサの実装構成>
 次に、本実施の形態1における角速度センサの実装構成について説明する。図8は、本実施の形態1における角速度センサが形成された半導体装置SA1の実装構成を示す断面図であり、図9は、半導体装置SA1内に含まれる半導体チップCHP1を示す断面図である。まず、図8に示すように、半導体装置SA1は、例えば、樹脂からなる封止体MRの内部にチップ搭載部TABが配置されるとともに、リードLDも配置されている。このリードLDの一部は、封止体MRから突き出ており、リードLDは、外部接続端子として機能する。チップ搭載部TAB上には、信号処理回路が形成された半導体チップCHP2が搭載されている。半導体チップCHP2には、信号処理回路を実現するために、トランジスタや受動素子からなる集積回路が形成されている。この半導体チップCHP2に形成されている信号処理回路は、角速度センサ素子からの出力信号を演算して、角速度センサ素子に制御信号を出力する機能を有しており、最終的に、角速度信号を出力する回路である。この角速度信号は、例えば、リードLDを介して、外部機器に出力される。
 図8に示すように、半導体チップCHP2に形成されているパッドPD1は、リードLDとワイヤWで電気的に接続されている。
 さらに、半導体チップCHP2上には、半導体チップCHP1が搭載されている。この半導体チップCHP1には、角速度センサ素子を構成する構造体が形成されている。なお、半導体チップCHP1に形成されているパッドPD2と、半導体チップCHP2に形成されているパッドPD1とは、例えば、ワイヤWで電気的に接続されている。
 封止体MRは、例えば、樹脂材料からなる。この封止体MRは、チップ搭載部TAB上に半導体チップCHP2と半導体チップCHP1とを搭載した構造体を金型に設置し、この金型内に高温で溶融した樹脂材料を1~10MPa程度の圧力で射出した後、樹脂材料を冷却して硬化させることにより形成される。つまり、封止体MRは、トランスファモールド技術によって形成される。
 このトランスファモールド技術は、従来のセラミックパッケージ技術よりも量産性が高いため、角速度センサの製造コストを低減する上で有効な技術である。しかし、空洞部102を有する半導体チップCHP1のうち、樹脂材料からなる封止体MRと接するキャップ層CAPLは、樹脂材料を金型内に射出する際の圧力で圧迫されて、図9に示すように変形する。また、封止体MRを構成する樹脂材料は、温度変動と吸湿によって体積が膨張するととともに、乾燥によって体積が収縮する特徴がある。したがって、半導体装置SA1が配置される環境の温度や湿度が変動すると、封止体MRの膨張と収縮により、封止体MRの内部に配置された半導体チップCHP1に歪みが発生し、図9に示す変形の大きさが変動する。つまり、封止体MRを形成する際や、半導体装置SA1が設置される環境の温度や湿度が変動する場合、デバイス層DLに形成される駆動用可動電極106a、107aと、半導体チップCHP1に発生する歪みの影響を受けやすいキャップ層CAPLに形成されている駆動用固定電極106b、107bとの間の距離は変動し、励振素子105に駆動振動を発生させる容量素子の容量値が変動する。
 この点に関し、本実施の形態1では、角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップCHP2に信号処理回路が形成されている。そして、この信号処理回路では、駆動振幅モニタ部MU1~MU4から得られる励振素子105の駆動振動の振幅に対応する容量変化に基づいて、励振素子105の駆動振動の振幅を常に一定に保つように自動振幅制御を行なっている。特に、本実施の形態1では、上述した駆動振幅モニタ部MU1~MU4が、半導体チップCHP1に発生する歪みの影響を受けにくいデバイス層DLに形成されているため、駆動振幅モニタ部MU1~MU4は、半導体チップCHP1に発生する歪みの影響を受けにくく、精度の高い自動振幅制御を実現できる利点がある。つまり、本実施の形態1における角速度センサによれば、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生して、例えば、駆動用可動電極106aと駆動用固定電極106bの間の距離が変動しても、角速度センサの出力への影響を少なくすることができる利点が得られる。
 また、本実施の形態1において、駆動振幅モニタ部MU1~MU4は、励振素子105と同じデバイス層DLに形成されるため、半導体チップCHP1に生じる歪みによって、駆動振幅モニタ部MU1~MU4の容量値も変動しにくい。つまり、励振素子105のzx平面内での駆動振動の振幅を検出している容量素子の容量値は、半導体チップCHP1の歪みによる影響を受けにくい。
 さらに、変位検出用可動電極112a、113aと変位検出用固定電極112b、113bも、励振素子105と同じデバイス層DLに形成されるため、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生しても、検出部DTU1、DTU2のそれぞれを構成する容量素子の容量値も変動しにくい。つまり、半導体チップCHP1に印加される角速度に応じて容量値が変化する検出部DTU1、DTU2は、半導体チップCHP1の歪みの影響を受けにくい。
 同様に、サーボ電極可動部114a、115aとサーボ電極固定部114b、115bも、励振素子105と同じデバイス層DLに形成されるため、トランスファモールド技術を採用する点や、温度、湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが発生しても、サーボ部SVU1、SVU2のそれぞれを構成する容量素子の容量値も変動しにくい。つまり、入力される角速度に応じた励振素子105のxy平面内での回転運動を電圧調整によって打ち消す機能を有するサーボ部SVU1、SVU2は、半導体チップCHP1の歪みによる影響を受けにくい。
 以上のことから、本実施の形態1における角速度センサは、半導体チップCHP1の表面と並行な平面をxy平面として定義する場合、xy平面に励振素子105、駆動振幅モニタ部MU1~MU4、検出部DTU1~DTU2、サーボ部SVU1~SUV2などを有する。そして、本実施の形態1における角速度センサは、xy平面に垂直なzx平面内で、励振素子105を駆動振動(回転振動)させながら、xy平面内に含まれる回転軸方向周りの角速度が印加された際、xy平面内において回転軸方向とは直交する検出方向に生じるコリオリ力に対応した変位を検出し、検出した変位に基づいて角速度を出力する。
 このように構成されている本実施の形態1における角速度センサによれば、例えば、角速度センサの小型化や低コスト化に有利なトランスファモールド技術を適用する場合であっても、角速度センサの性能や信頼性の低下を抑制することができる。言い換えれば、本実施の形態1における角速度センサは、樹脂の充填圧力、環境温度や湿度の変動による樹脂の膨張や収縮、経時的な材料物性の変化に起因にする樹脂の変形などが生じても、角速度センサの性能や信頼性への影響を抑制することができる。このため、本実施の形態1における角速度センサによれば、性能や信頼性の低下を招くことなく、トランスファモールド技術を適用できるため、角速度センサの小型化や低コスト化を図ることができる。
 (実施の形態2)
 <角速度センサ素子の平面構成>
 次に、本実施の形態2における角速度センサ素子について、図面を参照しながら説明する。図10は、本実施の形態2における角速度センサ素子が形成された半導体チップCHP1の構成を示す平面図である。図10において、枠部101に囲まれるように空洞部102とダミー部116とが形成されている。そして、空洞部102の内部には、固定部103が設けられており、この固定部103には、弾性変形部である支持梁104が接続されている。支持梁104は、角速度センサ素子の励振素子105と接続されている。ここで、本実施の形態2における励振素子105は、例えば、コリオリ力に基づくxy平面内の変位を検出する検出部DTU1~DTU4と一体的に形成されており、この励振素子105と検出部DTU1~DTU4とを含む可動部が構成される。
 支持梁104は、例えば、固定部103からy方向に2本の梁を伸ばした構造からなる。このように支持梁104を構成する本実施の形態2における角速度センサ素子は、例えば、角速度センサ素子が衝撃を受けることにより、支持梁104に変形が加わって、2本の梁のうちの1本が破壊されると、共振周波数が1/√2倍に変化するため、角速度センサ素子の故障を把握しやすいという利点が得られる。
 図10に示すように、本実施の形態2における角速度センサ素子は、励振素子105の一部を構成する駆動用可動電極106aと駆動用可動電極107aとを有している。駆動用可動電極106aと、図10では示されない駆動用固定電極との間、および、駆動用可動電極107aと、図10では示されない駆動用固定電極との間に電圧を印加して静電気力を発生させることにより、励振素子105は、半導体チップCHP1の厚さ方向であるz方向を含むzx平面内で駆動振動(回転振動)することになる。
 そして、本実施の形態2における角速度センサ素子は、図10に示すように、2つの駆動振幅モニタ部MU1~MU2有している。このとき、駆動振幅モニタ部MU1は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108aと、支持基板に固定された駆動振幅モニタ用固定電極108bと、から構成されている。同様に、駆動振幅モニタ部MU2は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極109aと、支持基板に固定された駆動振幅モニタ用固定電極109bと、から構成されている。
 さらに、図10に示すように、本実施の形態2における角速度センサ素子は、4つの検出部DTU1~DTU4を有している。このとき、検出部DTU1は、励振素子105と一体的に形成された変位検出用可動電極112aと、支持基板に固定された変位検出用固定電極112bと、から構成され、検出部DTU2は、励振素子105と一体的に形成された変位検出用可動電極112cと、支持基板に固定された変位検出用固定電極112dと、から構成されている。同様に、検出部DTU3は、励振素子105と一体的に形成された変位検出用可動電極113aと、支持基板に固定された変位検出用固定電極113bと、から構成され、検出部DTU4は、励振素子105と一体的に形成された変位検出用可動電極113cと、支持基板に固定された変位検出用固定電極113dと、から構成されている。
 また、図10に示すように、本実施の形態2における角速度センサ素子は、2つのサーボ部SVU1~SUV2を有している。サーボ部SVU1は、励振素子105と一体的に形成されたサーボ電極可動部114aと、支持基板に固定されたサーボ電極固定部114bと、から構成され、サーボ部SVU2は、励振素子105と一体的に形成されたサーボ電極可動部115aと、支持基板に固定されたサーボ電極固定部115bと、から構成されている。
 <角速度センサ素子の断面構成>
 続いて、本実施の形態2における角速度センサ素子の断面構造について、図面を参照しながら説明する。図11(a)は、図10のA-A線で切断した断面図である。図11(a)に示すように、角速度センサ素子が形成される半導体チップCHP1は、例えば、単結晶シリコンからなる支持基板1Sを有している。この支持基板1Sの表面(上面、主面)には、例えば、酸化シリコン膜からなる絶縁層131が形成されており、この絶縁層131の上方にデバイス層DLが形成され、デバイス層DLの上方にキャップ層CAPLが形成されている。そして、支持基板1Sとデバイス層DLとの間、および、デバイス層DLとキャップ層CAPLとの間には、空洞部102が形成されている。
 デバイス層DLには、単結晶シリコンで形成される枠部101、固定部103、励振素子105、サーボ電極可動部114a、115a、サーボ電極固定部114b、115b、駆動用可動電極106a、107a、変位検出用可動電極112a、112c、113a、113c、変位検出用固定電極112b、112d、113b、113dなどの図10に示される構成要素が形成されている。さらに、デバイス層DLには、駆動振幅モニタ用可動電極108a~109a、駆動振幅モニタ用固定電極108b~109b、および、支持梁104なども形成されている。
 キャップ層CAPLは、単結晶シリコンからなるキャップ部140、絶縁層141、導電膜142、保護膜143、励振素子105をzx平面内で振動させるための電圧が印加される駆動用固定電極106b、107b、および、貫通電極などが形成されている。
 本実施の形態2における角速度センサ素子では、キャップ部140とデバイス層DLとを接合し、角速度センサ素子をキャップ部140で保護する。特に、本実施の形態2における角速度センサ素子では、図11(a)に示すように、接続領域CR1で支持基板1Sとデバイス層DLとが接合され、接続領域CR2でデバイス層DLとキャップ層CAPLとが接続されている。
 図11(a)に示すように、キャップ部140のうち、励振素子105がzx平面内で駆動振動(回転振動)する場合に最大振幅が生じる部分に相対する領域は、励振素子105に駆動力を与える駆動用固定電極106b、107bよりも、凹んだ構造となっている。少ない電極占有面積で大きな静電気力を得るためには、駆動用可動電極106aと駆動用固定電極106bとの間の距離や、駆動用可動電極107aと駆動用固定電極107bとの間の距離は、なるべく近いことが望ましい。一方、角速度センサの感度を高くするためには、励振素子105の駆動振動の振幅が大きいことが望ましい。
 この点に関し、本実施の形態2における角速度センサ素子では、駆動用固定電極106b、107bがzx平面内の回転振動軸である固定部103に近い場所に設置され、かつ、励振素子105の端部に相対するキャップ部140の領域が凹んだ構造をしている。このため、本実施の形態2における角速度センサ素子によれば、駆動用可動電極106aと駆動用固定電極106bとの間の距離や、駆動用可動電極107aと駆動用固定電極107bとの間の距離を近くしながら、励振素子105の端部での駆動振幅を大きくすることができる利点が得られる。
 <駆動電極の構成>
 次に、本実施の形態2における駆動電極の構成について説明する。図10において、励振素子105のうち、破線で示された領域には、駆動用可動電極106a、107aが形成されている。図11(a)に示すように、デバイス層DLに形成されている駆動用可動電極106a、107aの上方で、かつ、駆動用可動電極106a、107aと対向する位置には、駆動用固定電極106bおよび駆動用固定電極107bが形成されている。
 このように配置することにより、駆動用可動電極106aと駆動用固定電極106bとによって容量素子が形成されるとともに、駆動用可動電極107aと駆動用固定電極107bとによって容量素子が形成される。
 例えば、本実施の形態2における角速度センサ素子では、互いに対向することにより容量素子を形成している駆動用可動電極106aと駆動用固定電極106bとの間に、Vcom+Vb+Vdで表される周期的な駆動信号が印加され、駆動用可動電極107aと駆動用固定電極107bとの間にVcom+Vb-Vdで表される周期的な駆動信号が印加される。さらに、本実施の形態2における角速度センサ素子では、励振素子105と電気的に接続されている固定部103に、貫通電極を介してVcomで表される電圧が印加される。これにより、駆動用可動電極106aと駆動用固定電極106bとの間、および、駆動用可動電極107aと駆動用固定電極107bとの間には、交互に静電気力が働く。この結果、図11(b)の破線で示すように、励振素子105は、zx平面内で駆動振動(回転振動)することになる。
 ここで、例えば、電極間の対向面積をS、電極間距離をd、真空の誘電率をε0、電極間物質の比誘電率をεr、電極間の電位差をVとした場合、電極間に働く静電気力Feは、(式1)で表すことができる。
 Fe=ε0・εr・S・V/(2・d)     ・・・(式1)
 この(式1)から、少ない電極占有面積で大きな静電気力を得るためには、駆動用可動電極106aと駆動用固定電極106bとの間の距離、および、駆動用可動電極107aと駆動用固定電極107bとの間の距離は小さいことが望ましいことがわかる。
 一方、駆動振動している励振素子105に働くコリオリ力Fcは、入力される角速度をΩ、励振素子105の質量をm、駆動振動の周波数(角振動数)をωd、駆動振動の振幅をAdとした場合、コリオリ力Fcは、(式2)で表すことができる。
 Fc=2・m・Ω・Ad・ωd          ・・・(式2)
 この(式2)から、角速度センサの感度を高くするにためには、駆動振動の振幅が大きいことが望ましいことがわかる。したがって、(式1)から少ない電極占有面積で大きな静電気力を得る観点からは、電極間距離は小さくすることが望ましい一方、(式2)から角速度センサの感度を高くする観点からは、電極間距離を大きくすることにより、駆動振動の振幅を大きくすることが望ましいことになる。つまり、少ない電極占有面積で大きな静電気力を得ることと、角速度センサの感度を向上することとは、トレードオフの関係にあることになる。
 この点に関し、本実施の形態2において、図11(a)に示すように、駆動用固定電極106b、107bは、例えば、駆動振幅モニタ部MU1~MU2よりも、zx平面内の回転振動軸である固定部103に近い場所に設置されている。したがって、本実施の形態2における角速度センサ素子は、駆動用可動電極106aと駆動用固定電極106bとの間の距離、および、駆動用可動電極107aと駆動用固定電極107bとの間の距離を小さくしながら、励振素子105の端部における駆動振動の振幅を大きく取ることができる特徴がある。
 <駆動振幅モニタ部の構成>
 続いて、本実施の形態2における駆動振幅モニタ部の構成について説明する。図10に示すように、励振素子105には、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108a、109aが形成されている。そして、図11(a)に示すように、この駆動振幅モニタ用可動電極108a、109aのそれぞれと対向するように、励振素子105が形成されたデバイス層DLに駆動振幅モニタ用固定電極108b、109bのそれぞれが形成されている。これにより、駆動振幅モニタ用可動電極108a、109aのそれぞれと、駆動振幅モニタ用固定電極108b、109bのそれぞれによって、2つの容量素子が形成され、これらの2つの容量素子が、デバイス層DLに形成される2つの駆動振幅モニタ部MU1~MU2となる。このとき、2つの駆動振幅モニタ部MU1~MU2のそれぞれを構成する2つの容量素子では、励振素子105がzx平面内での駆動振動によりz方向に変位すると、容量値が変化する。
 ここで、図11(a)に示すように、例えば、駆動振幅モニタ用可動電極108aには、+z方向側の上端部に段差部DIF1が形成され、駆動振幅モニタ用固定電極108bには、-z方向側の下端部に段差部DIF2が形成されている。これにより、例えば、励振素子105がzx平面内で反時計回りに回転する場合、駆動振幅モニタ用可動電極108aと駆動振幅モニタ用固定電極108bとから構成される容量素子の容量値は増加する。一方、励振素子105がzx平面内で時計回りに回転する場合、駆動振幅モニタ用可動電極108aと駆動振幅モニタ用固定電極108bとから構成される容量素子の容量値は減少する。したがって、本実施の形態2によれば、上述した段差部DIF1と段差部DIF2を設けることにより、励振素子105の回転方向を区別することができる。
 また、駆動振幅モニタ用可動電極109aにも、+z方向側の上端部に段差部DIF1が形成され、駆動振幅モニタ用固定電極109bにも、-z方向側の下端部に段差部DIF2が形成されている。これにより、例えば、励振素子105がzx平面内で反時計回りに回転する場合、駆動振幅モニタ用可動電極109aと駆動振幅モニタ用固定電極109bとから構成される容量素子の容量値は減少する。一方、励振素子105がzx平面内で時計回りに回転する場合、駆動振幅モニタ用可動電極109aと駆動振幅モニタ用固定電極109bとから構成される容量素子の容量値は増加する。
 本実施の形態2において、励振素子105を含むデバイス層DLをシリコン深堀エッチング(DRIE)で加工する際には、励振素子105の+z方向側からイオンを照射して加工する。このため、励振素子105の-z方向側の加工形状にバラツキが生じやすい。したがって、本実施の形態2における角速度センサ素子では、段差部DIF1を励振素子105の+z方向側の上端部に形成することにより、加工バラツキに起因する励振素子105の質量バラツキを低減する効果を得ることができる。つまり、本実施の形態2における角速度センサ素子では、加工バラツキによる励振素子105の固有振動数の変動を抑制することができる。
 なお、本実施の形態2においても、角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップCHP2には、信号処理回路が形成されている。そして、この信号処理回路では、駆動振幅モニタ部MU1~MU2から得られる容量変化に基づいて、自動振幅制御を行って、励振素子105の駆動振動の振幅を一定に保っている。また、本実施の形態2においても、駆動振幅モニタ部MU1~MU2から得られる容量変化に基づいて、自動周波数制御を行って、励振素子105の振動周波数を一定に保っている。さらに、本実施の形態2でも、駆動振幅モニタ部MU1~MU2の構成要素が、励振素子105と同じデバイス層DLに形成されている。このため、トランスファモールド技術を採用する点や、温度や湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じても、駆動振幅モニタ部MU1~MU2を構成する容量素子の容量値も変動しにくい。つまり、本実施の形態2における角速度センサ素子も、励振素子105のzx平面内における駆動振動の振幅を検出している容量素子の容量値は、半導体チップCHP1の歪みによる影響を受けにくい。
 一方、角速度センサ素子が形成された半導体チップCHP1に歪みが発生して、デバイス層DLに形成されている駆動用可動電極106a、107aと、キャップ層CAPLに形成されている駆動用固定電極106b、107bとの間の距離が変動して、容量値が変動することが考えられる。ただし、この場合であっても、本実施の形態2における角速度センサ素子は、半導体チップCHP1の歪みの影響を受けにくいデバイス層DLに形成された駆動振幅モニタ部MU1~MU2からの容量変化に基づいて、自動振幅制御を行なっているため、角速度センサの出力への影響を少なくすることができる。
 <検出部の構成>
 次に、本実施の形態2における検出部の構成について説明する。図10に示すように、励振素子105には、励振素子105と一体的に形成された変位検出用可動電極112a、112c、113a、113cが形成されている。そして、この変位検出用可動電極112a、112c、113a、113cのそれぞれと対向するように、変位検出用固定電極112b、112d、113b、113dのそれぞれが形成されている。
 図1に示すように、変位検出用可動電極112aと、変位検出用固定電極112bとによって、検出部DTU1が構成され、変位検出用可動電極112cと、変位検出用固定電極112dとによって、検出部DTU2が構成される。つまり、検出部DTU1は、変位検出用可動電極112aと変位検出用固定電極112bとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。同様に、検出部DTU2は、変位検出用可動電極112cと変位検出用固定電極112dとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。
 また、変位検出用可動電極113aと、変位検出用固定電極113bとによって、検出部DTU3が構成され、変位検出用可動電極113cと、変位検出用固定電極113dとによって、検出部DTU4が構成される。つまり、検出部DTU3は、変位検出用可動電極113aと変位検出用固定電極113bとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。同様に、検出部DTU4は、変位検出用可動電極113cと変位検出用固定電極113dとからなる容量素子を含んでおり、この容量素子は、半導体チップCHP1に入力される角速度に応じて容量値が変化する。
 図12(a)は、図10のB-B線で切断した断面図である。図12(a)に示すように、変位検出用固定電極112bには、切り欠きがないが、励振素子105と一体化されている変位検出用可動電極112aには、+z方向側と-z方向側とに切り欠きがある。言い換えれば、zx平面内において、変位検出用可動電極112aのz方向の長さは、変位検出用固定電極112bのz方向の長さよりも小さくなっているということもできる。
 そして、切り欠きの高さhは、励振素子105のzx平面内での駆動振動(回転振動)の振幅よりも大きくなっている。したがって、図12(b)に示すように、励振素子105がzx平面内で駆動振動(回転振動)をしていても、変位検出用可動電極112aは、変位検出用固定電極112bからはみ出さない。この結果、変位検出用可動電極112aと変位検出用固定電極112bから形成される容量素子の容量値は変動せず、半導体チップCHP1に入力される角速度に応じてのみ容量値が変動することになる。
 なお、切り欠きが励振素子105と一体化されている変位検出用可動電極112aに形成されているため、励振素子105の質量を低減することができ、これによって、本実施の形態2における角速度センサ素子では、励振素子105の固有振動数を高めることができる。したがって、本実施の形態2における角速度センサ素子は、低周波帯域の機械的振動ノイズに対して、励振素子105の振動状態がロバストとなる(影響を受けにくい)特徴を有することになる。
 また、図10に示すように、本実施の形態2における検出部DTU1~DTU4は、xy平面内において、駆動用可動電極106a、107aよりも、xy平面内の回転中心である固定部103から離れた位置に形成されている。このことから、本実施の形態2における検出部DTU1~DTU4は、xy平面内の回転中心である固定部103に近い位置に形成される場合と比べて、角速度センサ素子が形成された半導体チップCHP1に印加される角速度がゼロの場合の初期容量値は同じでありながら、半導体チップCHP1に印加される角速度がゼロではない場合に生じる容量値の変化を大きくすることができる。
 本実施の形態2における角速度センサ素子でも、検出部DTU1~DTU4の構成要素が、励振素子105と同じデバイス層DLに形成されている。このため、トランスファモールド技術を採用する点や、温度や湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じても、検出部DTU1~DTU4のそれぞれを構成する容量素子の容量値も変動しにくい。つまり、半導体チップCHP1に印加される角速度に応じて容量値が変化する検出部DTU1~DTU4において、検出部DTU1~DTU4のそれぞれを構成する容量素子の容量値は、半導体チップCHP1に生じる歪みの影響を受けにくい。
 <サーボ部の構成>
 続いて、本実施の形態2におけるサーボ部の構成について説明する。例えば、図10に示すように、励振素子105には、励振素子105と一体的に形成されたサーボ電極可動部114a、115aが形成されている。そして、サーボ電極可動部114a、115aと対向するように、サーボ電極固定部114b、115bが形成されている。これにより、本実施の形態2における角速度センサ素子は、サーボ電極可動部114aとサーボ電極固定部114bとからなるサーボ部SVU1と、サーボ電極可動部115aとサーボ電極固定部115bとからなるサーボ部SVU2とを有している。
 角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップには、信号処理回路が形成されている。この信号処理回路は、検出部DTU1~DTU4のそれぞれを構成する容量素子の容量値を常に一定に保つように制御している。つまり、上述した信号処理回路は、入力されるx軸方向周りの角速度に応じて、励振素子105が変位しないように、サーボ部SVU1やサーボ部SVU2に印加する電圧を制御している。
 本実施の形態2における角速度センサでも、サーボ部SVU1~SVU2の構成要素が、励振素子105と同じデバイス層DLに形成されている。このため、トランスファモールド技術を採用する点や、温度や湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じても、サーボ部SVU1~SVU2のそれぞれを構成する容量素子の容量値も変動しにくい。つまり、入力される角速度に応じた励振素子105のxy平面内での変位を電圧調整により打ち消すサーボ部SVU1~SVU2は、半導体チップCHP1に生じる歪みの影響を受けにくい。
 以上のことから、本実施の形態2における角速度センサによれば、例えば、角速度センサの小型化や低コスト化に有利なトランスファモールド技術を適用する場合であっても、角速度センサの性能や信頼性の低下を抑制することができる。言い換えれば、本実施の形態2における角速度センサは、樹脂の充填圧力、環境温度や湿度の変動による樹脂の膨張や収縮、経時的な材料物性の変化に起因にする樹脂の変形などが生じても、角速度センサの性能や信頼性への影響を抑制することができる。このため、本実施の形態2における角速度センサによれば、性能や信頼性の低下を招くことなく、トランスファモールド技術を適用できるため、角速度センサの小型化や低コスト化を図ることができる。
 (実施の形態3)
 <基本動作>
 まず、本実施の形態3における角速度センサ素子の動作の概要について説明する。角速度センサ素子の励振素子(可動部)は、全体が一体化し、中央部にある固定部を支点として、駆動梁の変形を伴いながら、y軸方向を回転軸とするzx平面(第1平面)内で回転振動をしている。回転角度が小さいとき、励振素子の運動は、z方向の振動とみなすことができる。つまり、本実施の形態3において、励振素子は、半導体チップの厚さ方向であるz方向に振動可能なように構成されていることになる。
 ここで、zx平面内の励振素子の回転振動である駆動振動を誘起する役割を担うのが駆動電極であり、駆動振動の振幅を検出する役割を担うのが駆動振幅モニタ部である。次に、角速度センサ素子が形成された半導体チップの外部からy軸方向を回転軸とする角速度が入力されると、zx平面内で駆動振動している励振素子には、x方向のコリオリ力が働く。この場合、検出梁を介して励振素子と接続されている検出部は、検出梁の変形を伴いながら、x方向に平行変位する。x方向の平行変位を検出する役割を担うのが、上述した検出部である。このx方向の平行変位を信号処理回路で演算することにより、角速度に対応した出力信号が角速度センサから出力される。
 なお、MEMS構造からなる角速度センサ素子が形成された半導体チップ(第1半導体チップ)と、信号処理回路が形成された半導体チップ(第2半導体チップ)との組み合わせによって、本実施の形態3における角速度センサが構成されている。
 <角速度センサ素子の平面構成>
 次に、本実施の形態3における角速度センサ素子の平面構成について説明する。
 図13は、本実施の形態3における角速度センサ素子が形成された半導体チップCHP1の構成を示す平面図である。図13に示すように、半導体チップCHP1には、枠部101に囲まれるように空洞部102とダミー部116が形成されている。空洞部102の内部には、固定部103aと固定部103bとが設けられている。固定部103aには、弾性変形部である駆動梁104aが接続され、固定部103bには、弾性変形部である駆動梁104bが接続されている。そして、駆動梁104aおよび駆動梁104bは、励振素子105と接続されている。励振素子105は、弾性変形部である検出梁118を介して、検出部DTU1~DTU2と接続されている。検出部DTU1と検出部DTU2とは、リンク梁119で接続されている。
 図13に示すように、本実施の形態3における角速度センサ素子は、励振素子105の一部を構成する駆動用可動電極106aと駆動用可動電極107aとを有している。駆動用可動電極106aと、図13では示されない駆動用固定電極との間、および、駆動用可動電極107aと、図13では示されない駆動用固定電極との間に電圧を印加して静電気力を発生させることにより、励振素子105は、半導体チップCHP1の厚さ方向であるz方向を含むzx平面内で駆動振動(回転振動)することになる。
 そして、本実施の形態3における角速度センサ素子は、図13に示すように、4つの駆動振幅モニタ部MU1~MU4有している。このとき、駆動振幅モニタ部MU1は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108aと、支持基板に固定された駆動振幅モニタ用固定電極108bと、から構成されている。また、駆動振幅モニタ部MU2は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極109aと、支持基板に固定された駆動振幅モニタ用固定電極109bと、から構成されている。同様に、駆動振幅モニタ部MU3は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極110aと、支持基板に固定された駆動振幅モニタ用固定電極110bと、から構成されている。また、駆動振幅モニタ部MU4は、励振素子105と一体的に形成された駆動振幅モニタ用可動電極111aと、支持基板に固定された駆動振幅モニタ用固定電極111bと、から構成されている。
 さらに、図13に示すように、本実施の形態3における角速度センサ素子は、2つの検出部DTU1~DTU2を有している。このとき、検出部DTU1は、検出梁118を介して励振素子105と接続された変位検出用可動電極112aと、支持基板に固定された変位検出用固定電極112bと、から構成され、検出部DTU2は、検出梁118を介して励振素子105と接続された変位検出用可動電極113aと、支持基板に固定された変位検出用固定電極113bと、から構成されている。
 ここで、固定部103aと固定部103bは、導電性を有する単結晶シリコンから形成されている励振素子105と、導電性を有する単結晶シリコンから形成されている検出部DTU1~DTU2とを介して、電気的に接続されている。したがって、固定部103aと貫通電極を介して電気的に接続される第1パッドと、固定部103bと貫通電極を介して電気的に接続される第2パッドとを設け、第1パッドと第2パッドとの間に電流を流すことにより、励振素子105および検出部DTU1~DTU2を介した固定部103aと固定部103bとの電気的な接続を確認することができる。
 なお、励振素子105のうち、静電気力を発生させるために面積を大きくする必要のある駆動用可動電極106a、107aと、入力される角速度と質量に比例したコリオリ力を検出する検出部DTU1~DTU2を除いて、本実施の形態3における角速度センサ素子を構成する構造体には、穴があけられて軽量化が図られており、励振素子105の固有振動数が高められている。
 <角速度センサ素子の断面構成>
 続いて、本実施の形態3における角速度センサ素子の断面構造について、図面を参照しながら説明する。図14(a)は、図13のA-A線で切断した断面図であり、図15(a)は、図13のB-B線で切断した断面図である。
 図14(a)および図15(a)に示すように、角速度センサ素子が形成される半導体チップCHP1は、例えば、単結晶シリコンからなる支持基板1Sを有している。この支持基板1Sの表面(上面、主面)には、例えば、酸化シリコン膜からなる絶縁層131が形成されており、この絶縁層131の上方にデバイス層DLが形成され、デバイス層DLの上方にキャップ層CAPLが形成されている。そして、支持基板1Sとデバイス層DLとの間、および、デバイス層DLとキャップ層CAPLとの間には、空洞部102が形成されている。
 デバイス層DLには、単結晶シリコンで形成される枠部101、固定部103a、103b、励振素子105、駆動用可動電極106a、107a、変位検出用可動電極112a、113a、変位検出用固定電極112b、113bなどの図13に示される構成要素が形成されている。さらに、デバイス層DLには、駆動振幅モニタ用可動電極108a~111a、駆動振幅モニタ用固定電極108b~111b、および、駆動梁104a、104b、検出梁118、リンク梁119なども形成されている。
 キャップ層CAPLは、単結晶シリコンからなるキャップ部140、絶縁層141、導電膜142、保護膜143、励振素子105をzx平面内で振動させるための電圧が印加される駆動用固定電極106b、107b、および、貫通電極などが形成されている。
 本実施の形態3における角速度センサ素子では、キャップ部140とデバイス層DLとを接合し、角速度センサ素子をキャップ部140で保護する。特に、本実施の形態3における角速度センサ素子では、図14(a)や図15(a)に示すように、接続領域CR1で支持基板1Sとデバイス層DLとが接合され、接続領域CR2でデバイス層DLとキャップ層CAPLとが接続されている。
 <駆動電極の構成>
 次に、本実施の形態3における駆動電極の構成について説明する。図13において、励振素子105のうち、破線で示された領域には、駆動用可動電極106a、107aが形成されている。図15(a)に示すように、デバイス層DLに形成されている駆動用可動電極106a、107aの上方で、かつ、駆動用可動電極106a、107aと対向する位置には、駆動用固定電極106bおよび駆動用固定電極107bが形成されている。
 このように配置することにより、駆動用可動電極106aと駆動用固定電極106bとによって容量素子が形成されるとともに、駆動用可動電極107aと駆動用固定電極107bとによって容量素子が形成される。
 例えば、本実施の形態3における角速度センサ素子では、互いに対向することにより容量素子を形成している駆動用可動電極106aと駆動用固定電極106bとの間に、Vcom+Vb+Vdで表される周期的な駆動信号が印加され、駆動用可動電極107aと駆動用固定電極107bとの間にVcom+Vb-Vdで表される周期的な駆動信号が印加される。さらに、本実施の形態3における角速度センサ素子では、励振素子105と電気的に接続されている固定部103aと固定部103bに、貫通電極を介してVcomで表される電圧が印加される。これにより、駆動用可動電極106aと駆動用固定電極106bとの間、および、駆動用可動電極107aと駆動用固定電極107bとの間には、交互に静電気力が働く。この結果、図15(b)の破線で示すように、励振素子105は、zx平面内で駆動振動(回転振動)することになる。
 <駆動振幅モニタ部の構成>
 続いて、本実施の形態3における駆動振幅モニタ部の構成について説明する。図13に示すように、励振素子105には、励振素子105と一体的に形成された駆動振幅モニタ用可動電極108a~111aが形成されている。そして、駆動振幅モニタ用可動電極108a~111aのそれぞれと対向するように、励振素子105が形成されたデバイス層DLに駆動振幅モニタ用固定電極108b~111bのそれぞれが形成されている。これにより、駆動振幅モニタ用可動電極108a~111aのそれぞれと、駆動振幅モニタ用固定電極108b~111bのそれぞれによって、4つの容量素子が形成され、これらの4つの容量素子が、デバイス層DLに形成される4つの駆動振幅モニタ部MU1~MU4となる。このとき、4つの駆動振幅モニタ部MU1~MU4のそれぞれを構成する4つの容量素子では、励振素子105がzx平面内での駆動振動によりz方向に変位すると、容量値が変化する。
 なお、本実施の形態3においても、角速度センサ素子が形成された半導体チップCHP1と電気的に接続される半導体チップCHP2には、信号処理回路が形成されている。そして、この信号処理回路では、駆動振幅モニタ部MU1~MU4から得られる容量変化に基づいて、自動振幅制御を行って、励振素子105の駆動振動の振幅を一定に保っている。また、本実施の形態3においても、駆動振幅モニタ部MU1~MU4から得られる容量変化に基づいて、自動周波数制御を行って、励振素子105の振動周波数を一定に保っている。さらに、本実施の形態3でも、駆動振幅モニタ部MU1~MU4の構成要素が、励振素子105と同じデバイス層DLに形成されている。このため、トランスファモールド技術を採用する点や、温度や湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じても、駆動振幅モニタ部MU1~MU4を構成する容量素子の容量値も変動しにくい。つまり、本実施の形態3における角速度センサ素子も、励振素子105のzx平面内における駆動振動の振幅を検出している容量素子の容量値は、半導体チップCHP1の歪みによる影響を受けにくい。
 一方、角速度センサ素子が形成された半導体チップCHP1に歪みが発生して、デバイス層DLに形成されている駆動用可動電極106a、107aと、キャップ層CAPLに形成されている駆動用固定電極106b、107bとの間の距離が変動して、容量値が変動することが考えられる。ただし、この場合であっても、本実施の形態3における角速度センサ素子は、半導体チップCHP1の歪みの影響を受けにくいデバイス層DLに形成された駆動振幅モニタ部MU1~MU4からの容量変化に基づいて、自動振幅制御を行なっているため、角速度センサの出力への影響を少なくすることができる。
 <検出部の構成>
 次に、本実施の形態2における検出部の構成について説明する。図13に示すように、検出部DTU1は、検出梁118を介して励振素子105と接続される変位検出用可動電極112aと、変位検出用可動電極112aと対向するように配置されている変位検出用固定電極112bとから構成される容量素子を含んでいる。同様に、検出部DTU2は、検出梁118を介して励振素子105と接続される変位検出用可動電極113aと、変位検出用可動電極113aと対向するように配置されている変位検出用固定電極113bとから構成される容量素子を含んでいる。
 ここで、図14(a)に示すように、変位検出用可動電極112a、113aには、段差部がないが、変位検出用固定電極112b、113bには、z方向の上端部と下端部とに、同じ形状の段差部DIFが形成されている。この段差部DIFの高さは、励振素子105のzx平面内の回転振動の振幅より大きい。したがって、図14(b)に示すように、励振素子105がzx平面内で駆動振動をしていても、変位検出用可動電極112aと変位検出用固定電極112bから構成される容量素子の容量値は、ほとんど変動せず、半導体チップCHP1に印加される角速度に応じてのみ容量値が変動する。同様に、励振素子105がzx平面内で駆動振動をしていても、変位検出用可動電極113aと変位検出用固定電極113bから構成される容量素子の容量値も、ほとんど変動せず、半導体チップCHP1に印加される角速度に応じてのみ容量値が変動する。
 なお、図13に示すように、検出部DTU1と検出部DTU2は、y方向に延在する中心軸に対して対称な位置に配置されている。そして、検出部DTU1と検出部DTU2は、互いにリンク梁119によって接続されることにより、音叉構造が形成されている。したがって、検出部DTU1を構成する容量素子と、検出部DTU2を構成する容量素子は、半導体チップCHP1に印加される角速度に応じてのみ容量値が変動する一方、半導体チップCHP1に加わる振動ノイズに起因する容量値の変動は、キャンセルされるため、本実施の形態3における角速度センサ素子は、外乱振動にロバストな特徴がある。
 また、図13や図14(a)に示すように、検出部DTU1は、xy平面内で分断された2つの変位検出用固定電極112bを有し、2つ変位検出用固定電極112bのそれぞれと接続された貫通電極を介して電気的に接続されている。同様に、検出部DTU2も、xy平面内で分断された2つの変位検出用固定電極113bを有し、2つの変位検出用固定電極113bのそれぞれと接続された貫通電極を介して電気的に接続されている。したがって、検出部DTU1の形状と検出部DTU2の形状の両方が、対称構造をしているため、本実施の形態3における角速度センサ素子は、駆動振動および検出振動以外の不要な振動モードの発生を抑制できる利点を有する。
 本実施の形態3における角速度センサ素子でも、検出部DTU1~DTU2の構成要素が、励振素子105と同じデバイス層DLに形成されている。このため、トランスファモールド技術を採用する点や、温度や湿度が変動する点に起因して、角速度センサ素子が形成された半導体チップCHP1に歪みが生じても、検出部DTU1~DTU2のそれぞれを構成する容量素子の容量値も変動しにくい。つまり、半導体チップCHP1に印加される角速度に応じて容量値が変化する検出部DTU1~DTU2において、検出部DTU1~DTU2のそれぞれを構成する容量素子の容量値は、半導体チップCHP1に生じる歪みの影響を受けにくい。
 <角速度センサの実装構成>
 次に、本実施の形態3における角速度センサの実装構成について説明する。図16は、本実施の形態3における角速度センサが形成された半導体装置SA2の実装構成を示す断面図である。まず、図16に示すように、半導体装置SA2は、例えば、樹脂からなる封止体MRの内部にチップ搭載部TABが配置されるとともに、リードLDも配置されている。このリードLDの一部は、封止体MRから突き出ており、リードLDは、外部接続端子として機能する。チップ搭載部TAB上には、信号処理回路が形成された半導体チップCHP2が搭載されている。半導体チップCHP2には、信号処理回路を実現するために、トランジスタや受動素子からなる集積回路が形成されている。この半導体チップCHP2に形成されている信号処理回路は、角速度センサ素子からの出力信号を演算して、角速度センサ素子に制御信号を出力する機能を有しており、最終的に、角速度信号を出力する回路である。この角速度信号は、例えば、リードLDを介して、外部機器に出力される。
 図16に示すように、半導体チップCHP2に形成されているパッドPD2は、リードLDとワイヤWで電気的に接続されている。
 さらに、半導体チップCHP2上には、半導体チップCHP1が搭載されている。この半導体チップCHP1には、角速度センサ素子を構成する構造体が形成されている。具体的に、本実施の形態3では、図16に示すように、半導体チップCHP1のキャップ層CAPLと接するように突起電極BMP(バンプ電極)が形成されており、半導体チップCHP1は、突起電極BMPを半導体チップCHP2のパッドPD1に接続させながら、キャップ層CAPLを半導体チップCHP2の主面(上面)に対向させた状態で、半導体チップCHP2の上方に搭載されている。すなわち、本実施の形態3における角速度センサでは、半導体チップCHP2上に半導体チップCHP1が突起電極BMPによってフェイスダウン状態で搭載されている。
 さらに、図16に示すように、本実施の形態3における角速度センサにおいては、半導体チップCHP1を覆うように封止体MRが形成されている。具体的に、本実施の形態3では、半導体チップCHP1の構成要素である支持基板1Sが上方(+z方向)を向くように配置されており、この支持基板1Sを覆うように封止体MRが形成されている。
 ここで、封止体MRは、例えば、樹脂材料からなる。この封止体MRは、チップ搭載部TAB上に半導体チップCHP2と半導体チップCHP1とを搭載した構造体を金型に設置し、この金型内に高温で溶融した樹脂材料を1~10MPa程度の圧力で射出した後、樹脂材料を冷却して硬化させることにより形成される。つまり、封止体MRは、トランスファモールド技術によって形成される。
 このトランスファモールド技術は、従来のセラミックパッケージ技術よりも量産性が高いため、角速度センサの製造コストを低減する上で有効な技術である。しかし、空洞部102を有する半導体チップCHP1のうち、樹脂材料からなる封止体MRと接する支持基板1Sは、樹脂材料を金型内に射出する際の圧力で圧迫されて、図16に示すように変形する。また、封止体MRを構成する樹脂材料は、温度変動と吸湿によって体積が膨張するととともに、乾燥によって体積が収縮する特徴がある。したがって、半導体装置SA2が配置される環境の温度や湿度が変動すると、封止体MRの膨張と収縮により、封止体MRの内部に配置された半導体チップCHP1に歪みが発生する。つまり、封止体MRを形成する際や、半導体装置SA2が設置される環境の温度や湿度が変動する場合、半導体チップCHP1に歪みが発生する。
 この点に関し、本実施の形態3における角速度センサでは、図16に示すように、半導体チップCHP1の支持基板1Sが封止体MRと直接接触しているため、封止体MRの膨張と収縮によって、この支持基板1Sに変形(歪み)が発生する。しかし、本実施の形態3における角速度センサは、支持基板1Sではなく、デバイス層DLとキャップ層CAPLに角速度センサ素子を構成する構造体が形成されている。言い換えれば、支持基板1Sには、角速度センサ素子を構成する構造体は形成されていない。そして、たとえ、支持基板1Sに変形(歪み)が発生しても、支持基板1Sとデバイス層DLとの間には、空洞部102が形成されているため、支持基板1Sの変形がデバイス層DLに与える影響は少なくなる。つまり、本実施の形態3における角速度センサは、半導体チップCHP1に発生する歪みに起因する角速度センサの性能低下が起こりにくい構造をしているということができる。
 以上のことから、本実施の形態3における角速度センサによれば、例えば、角速度センサの小型化や低コスト化に有利なトランスファモールド技術を適用する場合であっても、角速度センサの性能や信頼性の低下を抑制することができる。言い換えれば、本実施の形態3における角速度センサは、樹脂の充填圧力、環境温度や湿度の変動による樹脂の膨張や収縮、経時的な材料物性の変化に起因にする樹脂の変形などが生じても、角速度センサの性能や信頼性への影響を抑制することができる。このため、本実施の形態3における角速度センサによれば、性能や信頼性の低下を招くことなく、トランスファモールド技術を適用できるため、角速度センサの小型化や低コスト化を図ることができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 前記実施の形態は、下記の形態を含む。
 (付記1)
 第1半導体チップを備え、
 前記第1半導体チップは、
 (a)支持基板、
 (b)前記支持基板の上方に配置されたデバイス層、
 (c)前記デバイス層の上方に配置されたキャップ層、
 (d)前記支持基板と前記デバイス層との間、および、前記デバイス層と前記キャップ層との間に形成された空洞部、
 を含み、
 前記デバイス層には、
 (b1)前記支持基板の厚さ方向を含む第1平面内で振動可能な励振素子、
 (b2)前記第1平面に垂直な第2平面内に含まれる回転軸周りに角速度が印加された際、前記角速度に起因して発生するコリオリ力に基づく前記第2平面内の変位を静電容量の変化として捉える検出部、
 が形成され、
 前記キャップ層には、前記励振素子を前記第1平面内で振動させるための電圧が印加される駆動用固定電極が形成されている、角速度センサ。
 (付記2)
 付記1に記載の角速度センサにおいて、
 前記空洞部内の圧力は、100Pa以下である、角速度センサ。
 (付記3)
 付記1に記載の角速度センサにおいて、
 前記支持基板と前記デバイス層とは、第1接続領域において、絶縁層を介して接続され、
 前記デバイス層と前記キャップ層とは、第2接続領域において、直接接続されている、角速度センサ。
 (付記4)
 付記3に記載の角速度センサにおいて、
 前記支持基板、前記デバイス層、および、前記キャップ層は、シリコン材料から形成されている、角速度センサ。
 1S 支持基板
 101 枠部
 102 空洞部
 103 固定部
 103a 固定部
 103b 固定部
 104 支持梁
 104a 駆動梁
 104b 駆動梁
 105 励振素子
 106a 駆動用可動電極
 106b 駆動用固定電極
 107a 駆動用可動電極
 107b 駆動用固定電極
 108a 駆動振幅モニタ用可動電極
 108b 駆動振幅モニタ用固定電極
 109a 駆動振幅モニタ用可動電極
 109b 駆動振幅モニタ用固定電極
 110a 駆動振幅モニタ用可動電極
 110b 駆動振幅モニタ用固定電極
 111a 駆動振幅モニタ用可動電極
 111b 駆動振幅モニタ用固定電極
 112a 変位検出用可動電極
 112b 変位検出用固定電極
 112c 変位検出用可動電極
 112d 変位検出用固定電極
 113a 変位検出用可動電極
 113b 変位検出用固定電極
 113c 変位検出用可動電極
 113d 変位検出用固定電極
 114a サーボ電極可動部
 114b サーボ電極固定部
 115a サーボ電極可動部
 115b サーボ電極固定部
 116 ダミー部
 118 検出梁
 119 リンク梁
 131 絶縁層
 140 キャップ部
 141 絶縁層
 142 導電膜
 143 保護膜
 210a 駆動信号生成部
 210b 駆動信号生成部
 211 変調信号生成部
 212 演算部
 213 演算部
 214a サーボ信号生成部
 214b サーボ信号生成部
 215 サーボ信号演算部
 BMP 突起電極
 CAPL キャップ層
 CHP1 半導体チップ
 CHP2 半導体チップ
 CR1 接続領域
 CR2 接続領域
 C8 容量素子
 C11 容量素子
 C12 容量素子
 C13 容量素子
 DIF 段差部
 DIF1 段差部
 DIF2 段差部
 DL デバイス層
 DTU1 検出部
 DTU2 検出部
 LD リード
 MR 封止体
 MU1 駆動振幅モニタ部
 MU2 駆動振幅モニタ部
 MU3 駆動振幅モニタ部
 MU4 駆動振幅モニタ部
 PD1 パッド
 PD2 パッド
 SA1 半導体装置
 SVU1 サーボ部
 SVU2 サーボ部
 TAB チップ搭載部
 W ワイヤ

Claims (15)

  1.  第1半導体チップを備え、
     前記第1半導体チップは、
     (a)支持基板、
     (b)前記支持基板の上方に配置されたデバイス層、
     (c)前記デバイス層の上方に配置されたキャップ層、
     (d)前記支持基板と前記デバイス層との間、および、前記デバイス層と前記キャップ層との間に形成された空洞部、
     を含み、
     前記デバイス層には、
     (b1)前記支持基板の厚さ方向を含む第1平面内で振動可能な励振素子、
     (b2)前記第1平面に垂直な第2平面内に含まれる回転軸周りに角速度が印加された際、前記角速度に起因して発生するコリオリ力に基づく前記第2平面内の変位を静電容量の変化として捉える検出部、
     が形成され、
     前記キャップ層には、前記励振素子を前記第1平面内で振動させるための電圧が印加される駆動用固定電極が形成されている、角速度センサ。
  2.  請求項1に記載の角速度センサにおいて、
     さらに、前記デバイス層には、前記励振素子の振動の振幅を検出する駆動振幅モニタ部が形成されている、角速度センサ。
  3.  請求項1に記載の角速度センサにおいて、
     さらに、前記デバイス層には、前記検出部における前記第2平面内の変位を打ち消す静電気力を発生させるサーボ部が形成されている、角速度センサ。
  4.  請求項1に記載の角速度センサにおいて、
     さらに、前記キャップ層を覆う樹脂封止体を有する、角速度センサ。
  5.  請求項1に記載の角速度センサにおいて、
     さらに、前記第1半導体チップと電気的に接続される第2半導体チップを有し、
     前記第1半導体チップの前記キャップ層の上方には、突起電極が形成され、
     前記第1半導体チップは、前記突起電極を介して前記キャップ層を前記第2半導体チップの主面に対向させた状態で、前記第2半導体チップの上方に搭載されている、角速度センサ。
  6.  請求項5に記載の角速度センサにおいて、
     さらに、前記第1半導体チップの前記支持基板を覆う樹脂封止体が形成されている、角速度センサ。
  7.  請求項2に記載の角速度センサにおいて、
     前記駆動振幅モニタ部は、
     (e1)前記励振素子と一体的に形成された駆動振幅モニタ用可動電極、
     (e2)前記駆動振幅モニタ用可動電極と対向するように、前記デバイス層に形成された駆動振幅モニタ用固定電極、
     を有し、
     前記第1平面内において、前記駆動振幅モニタ用可動電極の前記厚さ方向の中心位置と、前記駆動振幅モニタ用固定電極の前記厚さ方向の中心位置とがずれている、角速度センサ。
  8.  請求項2に記載の角速度センサにおいて、
     前記駆動振幅モニタ部は、
     (f1)前記励振素子と一体的に形成された駆動振幅モニタ用可動電極、
     (f2)前記駆動振幅モニタ用可動電極と対向するように、前記デバイス層に形成された駆動振幅モニタ用固定電極、
     を有し、
     前記第1平面内において、前記駆動振幅モニタ用可動電極の上端部には、第1段差部が形成され、
     前記第1平面内において、前記駆動振幅モニタ用固定電極の下端部には、第2段差部が形成されている、角速度センサ。
  9.  請求項1に記載の角速度センサにおいて、
     前記検出部は、
     (g1)前記励振素子と一体的に形成された変位検出用可動電極、
     (g2)前記変位検出用可動電極と対向するように、前記デバイス層に形成された変位検出用固定電極、
     を有し、
     前記第1平面内において、前記変位検出用固定電極の上端部と下端部とには、同じ形状の段差部が形成されている、角速度センサ。
  10.  請求項9に記載の角速度センサにおいて、
     前記第1平面内において、前記段差部の前記厚さ方向の高さは、前記第1平面内における前記変位検出用可動電極の振動の振幅よりも大きい、角速度センサ。
  11.  請求項1に記載の角速度センサにおいて、
     前記検出部は、
     (h1)前記励振素子と一体的に形成された変位検出用可動電極、
     (h2)前記変位検出用可動電極と対向するように、前記デバイス層に形成された変位検出用固定電極、
     を有し、
     前記第1平面内において、前記変位検出用可動電極の前記厚さ方向の長さは、前記変位検出用固定電極の前記厚さ方向の長さよりも小さい、角速度センサ。
  12.  請求項11に記載の角速度センサにおいて、
     前記第1平面内において、前記変位検出用可動電極が前記第1平面内で振動する場合であっても、前記変位検出用可動電極は、前記変位検出用固定電極からはみ出さない、角速度センサ。
  13.  請求項1に記載の角速度センサにおいて、
     前記励振素子は、弾性変形部を介して、前記支持基板に固定された固定部と接続され、
     前記第1平面内において、前記駆動用固定電極は、前記固定部から最も離れた位置に配置されている、角速度センサ。
  14.  請求項2に記載の角速度センサにおいて、
     前記励振素子は、弾性変形部を介して、前記支持基板に固定された固定部と接続され、
     前記第1平面内において、前記駆動用固定電極は、前記駆動振幅モニタ部よりも前記固定部に近い位置に配置されている、角速度センサ。
  15.  請求項1に記載の角速度センサにおいて、
     前記励振素子は、弾性変形部を介して、前記支持基板に固定された固定部と接続され、かつ、前記励振素子は、前記厚さ方向において、前記駆動用固定電極と対向する位置に存在する駆動用可動電極を含み、
     前記第2平面内において、前記検出部は、前記駆動用可動電極よりも前記固定部から離れた位置に配置されている、角速度センサ。
PCT/JP2014/052201 2013-09-05 2014-01-31 角速度センサ WO2015033587A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184484A JP6285128B2 (ja) 2013-09-05 2013-09-05 角速度センサ
JP2013-184484 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033587A1 true WO2015033587A1 (ja) 2015-03-12

Family

ID=52628082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052201 WO2015033587A1 (ja) 2013-09-05 2014-01-31 角速度センサ

Country Status (2)

Country Link
JP (1) JP6285128B2 (ja)
WO (1) WO2015033587A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705283B2 (ja) 2016-05-20 2020-06-03 株式会社デンソー ジャイロセンサ装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221637A (ja) * 2000-02-04 2001-08-17 Toyota Motor Corp 物理量検出装置
JP2006153798A (ja) * 2004-12-01 2006-06-15 Denso Corp 回転振動型角速度センサ
JP2008046078A (ja) * 2006-08-21 2008-02-28 Hitachi Ltd 微小電気機械システム素子およびその製造方法
JP2008294455A (ja) * 2002-03-15 2008-12-04 Toyota Central R&D Labs Inc 可動電極を有する装置、可動ミラー装置、振動型ジャイロスコープ及びこれらの製造方法
JP2010025733A (ja) * 2008-07-18 2010-02-04 Epson Toyocom Corp ジャイロセンサ
JP2010107521A (ja) * 2010-02-01 2010-05-13 Panasonic Electric Works Co Ltd 微小電気機械デバイス
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
JP2011022137A (ja) * 2009-06-15 2011-02-03 Rohm Co Ltd Mems装置及びその製造方法
JP2011112455A (ja) * 2009-11-25 2011-06-09 Seiko Epson Corp Memsセンサー及びその製造方法並びに電子機器
JP2011242371A (ja) * 2010-05-21 2011-12-01 Hitachi Automotive Systems Ltd 複合センサおよびその製造方法
JP2012194032A (ja) * 2011-03-16 2012-10-11 Murata Mfg Co Ltd センサ装置
JP2012225851A (ja) * 2011-04-21 2012-11-15 Denso Corp 静電容量式センサ、及び、その製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431004B1 (ko) * 2002-02-08 2004-05-12 삼성전자주식회사 회전형 비연성 멤스 자이로스코프
JP4310325B2 (ja) * 2006-05-24 2009-08-05 日立金属株式会社 角速度センサ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221637A (ja) * 2000-02-04 2001-08-17 Toyota Motor Corp 物理量検出装置
JP2008294455A (ja) * 2002-03-15 2008-12-04 Toyota Central R&D Labs Inc 可動電極を有する装置、可動ミラー装置、振動型ジャイロスコープ及びこれらの製造方法
JP2006153798A (ja) * 2004-12-01 2006-06-15 Denso Corp 回転振動型角速度センサ
JP2008046078A (ja) * 2006-08-21 2008-02-28 Hitachi Ltd 微小電気機械システム素子およびその製造方法
JP2010025733A (ja) * 2008-07-18 2010-02-04 Epson Toyocom Corp ジャイロセンサ
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
JP2011022137A (ja) * 2009-06-15 2011-02-03 Rohm Co Ltd Mems装置及びその製造方法
JP2011112455A (ja) * 2009-11-25 2011-06-09 Seiko Epson Corp Memsセンサー及びその製造方法並びに電子機器
JP2010107521A (ja) * 2010-02-01 2010-05-13 Panasonic Electric Works Co Ltd 微小電気機械デバイス
JP2011242371A (ja) * 2010-05-21 2011-12-01 Hitachi Automotive Systems Ltd 複合センサおよびその製造方法
JP2012194032A (ja) * 2011-03-16 2012-10-11 Murata Mfg Co Ltd センサ装置
JP2012225851A (ja) * 2011-04-21 2012-11-15 Denso Corp 静電容量式センサ、及び、その製造方法

Also Published As

Publication number Publication date
JP2015052484A (ja) 2015-03-19
JP6285128B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
JP5898283B2 (ja) 微小電気機械システム
JP5301767B2 (ja) 慣性センサ
US7513155B2 (en) Inertial sensor
US9182421B2 (en) Inertia sensor
JP5444199B2 (ja) 複合センサ
US9709595B2 (en) Method and apparatus for detecting linear and rotational movement
US8943890B2 (en) Inertial sensor
JP2010127763A (ja) 半導体力学量検出センサ及びそれを用いた制御装置
JP2005283481A (ja) センサシステム
US9804188B2 (en) Inertial sensor
JP5889396B2 (ja) 角速度センサ
JP6125914B2 (ja) 角速度センサ
JP6285128B2 (ja) 角速度センサ
US20170261528A1 (en) Damped linear accelerometer
JPWO2011074099A1 (ja) 角速度検出装置
JP2004132792A (ja) センサユニットの構造
JP2011127942A (ja) 角速度センサ
WO2015178118A1 (ja) 角速度センサ
JP2015040812A (ja) 電子デバイス、電子機器および移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842102

Country of ref document: EP

Kind code of ref document: A1