WO2015033414A1 - 気液分離装置 - Google Patents

気液分離装置 Download PDF

Info

Publication number
WO2015033414A1
WO2015033414A1 PCT/JP2013/073888 JP2013073888W WO2015033414A1 WO 2015033414 A1 WO2015033414 A1 WO 2015033414A1 JP 2013073888 W JP2013073888 W JP 2013073888W WO 2015033414 A1 WO2015033414 A1 WO 2015033414A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
oil
mixed fluid
compressed air
Prior art date
Application number
PCT/JP2013/073888
Other languages
English (en)
French (fr)
Inventor
利明 カー萩原
Original Assignee
ボルボ ラストバグナー アクチエボラグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ ラストバグナー アクチエボラグ filed Critical ボルボ ラストバグナー アクチエボラグ
Priority to PCT/JP2013/073888 priority Critical patent/WO2015033414A1/ja
Publication of WO2015033414A1 publication Critical patent/WO2015033414A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions

Definitions

  • the present invention relates to a gas-liquid separator that separates a gas mixture containing a liquid into a gas and a liquid.
  • pneumatic equipment that operates when compressed air is supplied, such as a pneumatic brake or an air suspension, has been used.
  • the compressed air supplied to the pneumatic equipment is required not to contain impurities. Therefore, in order to remove impurities from the compressed air, a gas-liquid separator that separates a liquid such as oil contained in the compressed air is used.
  • JP2001-246216A includes a cyclone chamber in which a gas is introduced to generate a vortex, a baffle plate that vertically partitions the cyclone chamber, and a gas outlet pipe that guides and discharges the gas below the baffle plate upward.
  • a liquid separation device is disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the performance of a gas-liquid separator that separates liquid contained in a mixed fluid using a swirling flow.
  • a gas-liquid separation device that separates a mixed fluid containing a liquid in a gas into a gas and a liquid, a supply member that forms a supply passage to which the mixed fluid is supplied, and a spiral shape
  • a guide member that forms a guide passage having a spiral wall formed on the outer periphery and guides the mixed fluid supplied from the supply passage as a swirl flow along the inside of the spiral wall; and an inner periphery of the guide member
  • a discharge member that forms a discharge passage that is spaced apart from the spiral wall and discharges the mixed fluid supplied from the guide passage in a direction opposite to the direction of the swirl flow along the inside of the guide wall.
  • a gas-liquid separator is provided.
  • FIG. 1 is a configuration diagram of a compressed air supply circuit to which a gas-liquid separator according to an embodiment of the present invention is applied.
  • FIG. 2 is a front view of the gas-liquid separation device according to the embodiment of the present invention.
  • 3 is a cross-sectional view of FIG.
  • the oil mist separator 100 separates a mixed fluid containing a liquid in a gas into a gas and a liquid. Specifically, the oil mist separator 100 removes oil as a liquid from compressed air as a mixed fluid.
  • This oil includes not only those chemically classified as oil but also those whose chemical properties have changed from that of oil due to the influence of heat or the like.
  • the compressed air supply circuit 1 is mounted on a large vehicle such as a bus or a truck.
  • the compressed air supply circuit 1 supplies compressed air to a pneumatic device 9 such as a pneumatic brake or an air suspension.
  • the compressed air supplied to the pneumatic device 9 is required not to contain impurities. Therefore, the compressed air supply circuit 1 uses the oil mist separator 100 to remove the oil contained in the compressed air.
  • the compressed air supply circuit 1 includes a compressor 2 that discharges compressed air, an oil mist separator 100 that removes oil from the compressed air discharged by the compressor 2, and an air dryer 3 that removes moisture from the compressed air from which oil has been removed. Prepare.
  • a check valve 4 is provided between the oil mist separator 100 and the air dryer 3 to prevent the backflow of compressed air.
  • the compressor 2 sucks and compresses air in the atmosphere and discharges the compressed air. Oil is used for the compressor 2 for lubrication. Therefore, the compressed air protruding from the compressor 2 may contain a small amount of oil. Therefore, an oil mist separator 100 is disposed downstream of the compressor 2 so as to remove oil contained in the compressed air.
  • the air dryer 3 is for drying the compressed air to remove moisture in the compressed air.
  • the air dryer 3 includes a desiccant (not shown) that removes moisture from the compressed air, a check valve 5 that prevents a backflow of the compressed air supplied to the pneumatic device 9, and a catch tank 6 in which the removed moisture is stored. .
  • the catch tank 6 is provided with a drain 7 that releases the accumulated water to the atmosphere after a certain period of time.
  • a valve (not shown) provided in the drain 7 is opened, and the pressure of the compressed air is transmitted to the compressor 2.
  • the compressor 2 stops operating due to the pressure of the compressed air. Therefore, when moisture is released from the catch tank 6 into the atmosphere, the compressor 2 is prevented from continuing to supply compressed air.
  • the oil mist separator 100 includes a supply member 10 that forms a supply passage 11 to which compressed air is supplied, a guide member 20 that forms a guide passage 21 that guides the compressed air supplied from the supply passage 11 as a swirling flow, and a guide. And a discharge member 30 that forms a discharge passage 31 that is provided on the inner periphery of the member 20 and discharges the compressed air supplied from the guide passage 21 in a direction opposite to the direction of travel of the swirl flow.
  • the oil mist separator 100 also includes an oil adsorbing rubber 40 as a liquid adsorbing material that adsorbs oil in the compressed air when the compressed air that has flowed inside the spiral wall 22 collides with the oil separated from the compressed air. And a tank 50 to be stored.
  • an oil adsorbing rubber 40 as a liquid adsorbing material that adsorbs oil in the compressed air when the compressed air that has flowed inside the spiral wall 22 collides with the oil separated from the compressed air.
  • a tank 50 to be stored.
  • the supply member 10 supplies the compressed air discharged from the compressor 2 to the guide passage 21 of the guide member 20.
  • the supply member 10 is connected to the upper side surface of the guide member 20 from the tangential direction of the guide member.
  • the supply passage 11 is connected to the upper side surface of the guide member 20.
  • the guide member 20 guides the mixed fluid supplied from the supply passage 11 downward.
  • the guide member 20 includes a spiral wall 22 formed in a spiral shape on the outer periphery, and a cylindrical portion 23 formed continuously from the spiral wall 22 downstream of the spiral wall 22.
  • the guide member 20 guides the compressed air supplied from the supply passage 11 as a swirl flow along the inside of the spiral wall 22 in the guide passage 21.
  • the guide passage 21 is provided with a first tapered portion 32 of the discharge member 30, which will be described later, so that the flow path area is reduced toward the downstream. Thereby, the flow velocity of the compressed air flowing through the guide passage 21 increases as it goes downstream.
  • the spiral wall 22 is formed in an arc-shaped cross section that swells toward the outer periphery. Thereby, the guide passage 21 becomes a substantially semicircular passage whose outer periphery is formed in an arc shape.
  • the spiral wall 22 is continuously formed in an annular shape. In the present embodiment, the spiral wall 22 is formed in a spiral shape that extends substantially four times.
  • the spiral wall 22 is formed so as to swell toward the outer periphery, the surface area of the outer peripheral surface is increased as compared with the case where the spiral wall 22 is formed straight without any irregularities. Therefore, the cooling efficiency of the guide member 20 is improved.
  • the oil in the compressed air adheres to the inside of the spiral wall 22 due to the collision of the compressed air guided as the swirling flow by the centrifugal force.
  • the oil adhering to the inside of the spiral wall 22 flows down through the spiral wall 22 formed continuously in the vertical direction.
  • the cylindrical portion 23 includes a holding portion 23a formed in an annular shape from the lower end of the cylindrical portion 23 toward the inner periphery, and an oil guide portion 23b extending downward from the inner periphery of the holding portion 23a.
  • the holding part 23a holds the oil adsorbing rubber 40 on the upper part thereof.
  • a through hole is formed at the center of the holding portion 23a.
  • the oil guide part 23b is formed in a cylindrical shape on the inner periphery of the through hole of the holding part 23a.
  • the oil guide portion 23b is formed in a tapered shape whose inner circumference becomes narrower as the distance from the holding portion 23a increases.
  • the discharge member 30 discharges the compressed air from which oil has been removed in the guide passage 21 toward the air dryer 3.
  • the discharge member 30 is provided on the inner periphery of the guide member 20 so as to be separated from the spiral wall 22.
  • the discharge member 30 has a first tapered portion 32 formed in a tapered shape whose outer diameter decreases from the upstream toward the downstream, and an outer diameter formed continuously from the upstream of the first tapered portion 32 toward the downstream from the upstream. And a second tapered portion 33 formed in a tapered shape.
  • the first taper portion 32 is provided in a cylindrical shape facing the inside of the spiral wall 22 of the guide member 20.
  • the first taper portion 32 guides the compressed air flowing from the second taper portion 33 to the pneumatic device 9.
  • the first taper portion 32 is formed to have a larger outer diameter at a portion located downstream of the guide passage 21. That is, the first tapered portion 32 has a lower end having the largest diameter and an upper end having the smallest diameter. Thereby, the flow path area of the guide passage 21 is reduced toward the downstream.
  • the second taper portion 33 is provided in a cylindrical shape facing the inner periphery of the cylindrical portion 23 of the guide member 20.
  • the upper end of the second tapered portion 33 is formed with the same diameter as the lower end of the first tapered portion 32.
  • the second taper portion 33 is formed integrally with the first taper portion 32.
  • the second taper portion 33 guides the compressed air flowing from the guide passage 21 to the first taper portion 32.
  • the second taper portion 33 faces the inner periphery of the oil adsorption rubber 40.
  • the second tapered portion 33 has a lower end formed with the smallest diameter and an upper end formed with the largest diameter.
  • the oil adsorbing rubber 40 is formed in an annular shape and attached to the inner periphery of the cylindrical portion 23 downstream of the spiral wall 22.
  • the inner periphery of the oil adsorbing rubber 40 faces the outer periphery of the second tapered portion 33 and is formed in a tapered shape corresponding to the second tapered portion 33.
  • the swirling flow of compressed air that has flowed along the inside of the spiral wall 22 collides with the oil adsorbing rubber 40.
  • Oil absorption rubber 40 is a rubber that absorbs oil in compressed air.
  • the oil adsorbing rubber 40 is formed of a rubber material having a property of easily adsorbing oil.
  • the liquid adsorbent may be formed of a resin material or the like having a property of easily adsorbing oil.
  • the oil in the compressed air is removed when the compressed air collides with the inside of the spiral wall 22 by centrifugal force and the oil adheres.
  • the oil adsorbing rubber 40 is removed by adsorbing oil that could not be removed by the spiral wall 22.
  • the oil adsorbing rubber 40 needs to be replaced after adsorbing a certain amount of oil. Therefore, in the oil mist separator 100, the oil adsorbing rubber 40 can be replaced by removing the tank 50 attached to the guide member 20.
  • the tank 50 is provided below the guide member 20.
  • the tank 50 is provided so as to be removable from the guide member 20.
  • a screwing portion 51 is formed that is screwed into the lower end of the cylindrical portion 23 of the guide member 20. Therefore, the tank 50 can be detached and attached by rotating relative to the guide member 20.
  • Compressed air discharged from the compressor 2 is supplied to the guide passage 21 on the inner periphery of the guide member 20 through the supply passage 11.
  • the compressed air flows into the guide passage 21 from the tangential direction of the side surface of the upper end portion of the guide member 20.
  • the compressed air that has flowed into the guide passage 21 is guided downward as a swirl flow along the spiral wall 22 formed in an arcuate cross section that swells toward the outer periphery.
  • the compressed air is guided so as to collide with the inside of the spiral wall 22 by centrifugal force. Therefore, the oil contained in the compressed air adheres to the inside of the spiral wall 22. Therefore, the oil contained in the compressed air is removed.
  • the oil adhering to the inside of the spiral wall 22 flows down along the inside of the spiral wall 22 formed over substantially four turns.
  • the compressed air supplied from the supply passage 11 to the guide passage 21 is guided as a swirl flow along the inside of the spiral wall 22 formed in a spiral shape. Therefore, the compressed air can generate a stable swirl flow in the guide passage 21. Therefore, the oil removal performance of the oil mist separator 100 can be improved.
  • the first taper portion 32 of the discharge member 30 has a lower end with the largest diameter and an upper end with the smallest diameter. Thereby, the flow path area of the guide passage 21 is reduced toward the downstream. Therefore, the flow rate of the compressed air flowing through the guide passage 21 increases as it goes downstream. Therefore, oil that could not be removed upstream of the guide passage 21 can be removed downstream of the flow velocity.
  • Compressed air in the guide passage 21 is guided as a swirling flow inside the spiral wall 22 and then collides with an oil adsorbing rubber 40 provided on the inner periphery of the cylindrical portion 23.
  • the oil adsorbing rubber 40 collides with compressed air having a high flow velocity downstream of the guide passage 21. Since the oil adsorbing rubber 40 is formed of a rubber material having a property of easily adsorbing oil, it is possible to adsorb and remove oil that could not be removed in the guide passage 21. Therefore, the oil removal performance of the oil mist separator 100 can be further improved.
  • the oil flowing down the inside of the spiral wall 22 flows on the inner peripheral surface of the oil adsorbing rubber 40. Therefore, when the small particle oil collides with the large particle oil, larger oil particles are formed. Thereby, not only large oil particles but also small oil particles can be removed from the compressed air.
  • the compressed air from which the oil has been removed as described above flows into the discharge passage 31 from the lower end opening of the second tapered portion 33 of the discharge member 30. Then, the compressed air is guided to the first taper portion 32 and discharged from the upper end opening of the first taper portion 32 toward the air dryer 3.
  • the oil flowing down from the spiral wall 22 through the surface of the oil adsorbing rubber 40 flows into the tank 50 and is stored.
  • the operator removes the tank 50 screwed into the guide member 20 and discards the accumulated oil.
  • the air dryer 3 contains a desiccant that needs to be replaced periodically. Therefore, how much compressed air has flowed through the air dryer 3 is detected using a sensor (not shown) such as a flow meter. Therefore, it may be detected using a signal from the sensor of the air dryer 3 that a certain amount of oil has accumulated in the tank 50. At this time, it may be displayed so that the driver can visually recognize that the oil in the tank 50 needs to be discarded.
  • the compressed air supplied from the supply passage 11 to the guide passage 21 is guided as a swirl flow along the inside of the spiral wall 22 formed in a spiral shape. Therefore, the compressed air can generate a stable swirl flow in the guide passage 21. Therefore, the performance of the oil mist separator 100 can be improved.
  • the first taper portion 32 of the discharge member 30 has a lower end with the largest diameter and an upper end with the smallest diameter. Thereby, the flow path area of the guide passage 21 is reduced toward the downstream. Therefore, the flow rate of the compressed air flowing through the guide passage 21 increases as it goes downstream. Therefore, oil that could not be removed upstream of the guide passage 21 can be removed downstream of the flow velocity.
  • Compressed air in the guide passage 21 is guided as a swirling flow inside the spiral wall 22 and then collides with an oil adsorbing rubber 40 provided on the inner periphery of the cylindrical portion 23.
  • the oil adsorbing rubber 40 collides with compressed air having a high flow velocity downstream of the guide passage 21. Since the oil adsorbing rubber 40 is formed of a rubber material having a property of easily adsorbing oil, it is possible to adsorb and remove oil that could not be removed in the guide passage 21. Therefore, the oil removal performance of the oil mist separator 100 can be further improved.
  • the gas-liquid separator is used as the oil mist separator 100 that removes oil from the compressed air.
  • a gas-liquid separator may be used, for example, to separate blow-by gas and engine oil in the engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cyclones (AREA)
  • Compressor (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

 気液分離装置は、気体中に液体を含む混合流体を気体と液体とに分離させる。気液分離装置は、混合流体が供給される供給通路と、螺旋状に形成される螺旋壁を有し前記供給通路から供給された混合流体を前記螺旋壁の内側に沿った旋回流として案内する案内通路と、前記案内通路の内周に前記螺旋壁から離間して設けられ前記案内通路から供給される混合流体を前記案内壁の内側に沿った旋回流の進行方向と対向する方向に排出する排出通路と、を備える。

Description

気液分離装置
 本発明は、気体中に液体を含む混合気体を気体と液体とに分離させる気液分離装置に関する。
 従来から、例えば空気圧ブレーキやエアサスペンションなど、圧縮空気が供給されることによって作動する空気圧機器が用いられている。空気圧機器に供給される圧縮空気には、不純物が含まれていないことが要求される。そのため、圧縮空気から不純物を取り除くために、圧縮空気中に含まれるオイル等の液体を分離させる気液分離装置が用いられている。
 JP2001-246216Aには、気体が導入されて渦流を発生させるサイクロン室と、サイクロン室を上下に区画するバッフルプレートと、バッフルプレートの下方の気体を上方に導いて排出するガス導出管とを備える気液分離装置が開示されている。
 しかしながら、JP2001-246216Aの気液分離装置では、円筒状のサイクロン室内には、ガス導出管の外周との間に環状の空間が形成されているだけである。そのため、気体中に液体を含む混合流体がサイクロン室に導入されても、安定した旋回流が発生せず、混合流体に含まれる液体を充分に取り除けないおそれがある。
 本発明は、上記の問題点に鑑みてなされたものであり、混合流体に含まれる液体を旋回流を用いて分離させる気液分離装置の性能を向上させることを目的とする。
 本発明のある態様によれば、気体中に液体を含む混合流体を気体と液体とに分離させる気液分離装置であって、混合流体が供給される供給通路を形成する供給部材と、螺旋状に形成される螺旋壁を外周に有し前記供給通路から供給された混合流体を前記螺旋壁の内側に沿った旋回流として案内する案内通路を形成する案内部材と、前記案内部材の内周に前記螺旋壁から離間して設けられ前記案内通路から供給される混合流体を前記案内壁の内側に沿った旋回流の進行方向と対向する方向に排出する排出通路を形成する排出部材と、を備える気液分離装置が提供される。
図1は、本発明の実施の形態に係る気液分離装置が適用される圧縮空気供給回路の構成図である。 図2は、本発明の実施の形態に係る気液分離装置の正面図である。 図3は、図2における断面図である。
 以下、図面を参照して、本発明の実施の形態に係る気液分離装置としてのオイルミストセパレータ100について説明する。
 オイルミストセパレータ100は、気体中に液体を含む混合流体を気体と液体とに分離させるものである。具体的には、オイルミストセパレータ100は、混合流体としての圧縮空気から液体としてのオイルを除去するものである。このオイルとは、化学的にオイルに分類されるものの他、熱等の影響によってオイルから化学的な性質が変化したものも含むものである。
 まず、図1を参照して、オイルミストセパレータ100が適用される圧縮空気供給回路1について説明する。
 圧縮空気供給回路1は、例えばバスやトラック等の大型車に搭載される。圧縮空気供給回路1は、圧縮空気を空気圧ブレーキやエアサスペンション等の空気圧機器9に供給する。空気圧機器9に供給される圧縮空気には、不純物が含まれていないことが要求される。そこで、圧縮空気供給回路1では、オイルミストセパレータ100を用いて、圧縮空気中に含まれるオイルを除去している。
 圧縮空気供給回路1は、圧縮空気を吐出するコンプレッサ2と、コンプレッサ2が吐出した圧縮空気からオイルを除去するオイルミストセパレータ100と、オイルが除去された圧縮空気から水分を除去するエアドライヤ3とを備える。オイルミストセパレータ100とエアドライヤ3との間には、圧縮空気の逆流を防止する逆止弁4が設けられる。
 コンプレッサ2は、大気中の空気を吸い込んで圧縮し、圧縮空気を吐出する。コンプレッサ2には、潤滑のためにオイルが用いられる。そのため、コンプレッサ2から突出される圧縮空気には、微量のオイルが含まれることがある。そこで、コンプレッサ2の下流にオイルミストセパレータ100を配置し、圧縮空気中に含まれるオイルを除去するようにしている。
 エアドライヤ3は、圧縮空気を乾燥させて圧縮空気中の水分を除去するものである。エアドライヤ3は、圧縮空気から水分を除去する乾燥材(図示省略)と、空気圧機器9に供給した圧縮空気の逆流を防止する逆止弁5と、除去した水分が溜められるキャッチタンク6とを備える。
 キャッチタンク6には、一定の時間が経つと溜められた水分を大気中に開放するドレン7が設けられる。キャッチタンク6から水分が大気中に開放される際には、ドレン7に設けられたバルブ(図示省略)が開き、圧縮空気の圧力がコンプレッサ2に伝達される。この圧縮空気の圧力によって、コンプレッサ2は動作を停止する。よって、キャッチタンク6から水分が大気中に開放される際に、コンプレッサ2が圧縮空気を供給し続けることが防止される。
 次に、図2及び図3を参照して、オイルミストセパレータ100について説明する。
 オイルミストセパレータ100は、圧縮空気が供給される供給通路11を形成する供給部材10と、供給通路11から供給された圧縮空気を旋回流として案内する案内通路21を形成する案内部材20と、案内部材20の内周に設けられ案内通路21から供給される圧縮空気を旋回流の進行方向と対向する方向に排出する排出通路31を形成する排出部材30とを備える。
 また、オイルミストセパレータ100は、螺旋壁22の内側を流れてきた圧縮空気が衝突して圧縮空気中のオイルを吸着する液体吸着材としてのオイル吸着ゴム40と、圧縮空気から分離されたオイルを溜めるタンク50とを備える。
 供給部材10は、コンプレッサ2から吐出された圧縮空気を案内部材20の案内通路21に供給する。供給部材10は、案内部材20の上部の側面に、案内部材の接線方向から連結される。これにより、供給通路11が、案内部材20の上部の側面に連結される。
 案内部材20は、供給通路11から供給された混合流体を下方に向けて案内する。案内部材20は、外周に螺旋状に形成される螺旋壁22と、螺旋壁22の下流に螺旋壁22から連続して形成される円筒部23とを有する。案内部材20は、供給通路11から供給された圧縮空気を案内通路21内で螺旋壁22の内側に沿った旋回流として案内する。
 案内通路21は、後述する排出部材30の第一テーパ部32が設けられることによって、下流に向かうほど流路面積が小さくされる。これにより、案内通路21を流れる圧縮空気の流速は、下流にゆくほど速くなる。
 螺旋壁22は、外周に向かって膨らむ円弧状の断面に形成される。これにより、案内通路21は、外周が円弧状に形成される略半円形の通路となる。螺旋壁22は、環状に連続して形成される。本実施の形態では、螺旋壁22は、略四周にわたる螺旋状に形成される。
 螺旋壁22は、外周に向かって膨らむように形成されるため、凹凸がなくストレートに形成される場合と比較して、外周面の表面積が大きくなる。よって、案内部材20の冷却効率が向上する。
 螺旋壁22の内側には、旋回流として案内される圧縮空気が遠心力によって衝突することにより、圧縮空気中のオイルが付着する。螺旋壁22の内側に付着したオイルは、上下に連続して形成される螺旋壁22を伝って下方に流下する。
 円筒部23は、円筒部23の下端から内周に向けて環状に形成される保持部23aと、保持部23aの内周から下方に延設されるオイルガイド部23bとを有する。
 保持部23aは、その上部にオイル吸着ゴム40を保持する。保持部23aの中心には貫通孔が形成される。
 オイルガイド部23bは、保持部23aの貫通孔の内周に円筒状に形成される。オイルガイド部23bは、保持部23aから離間するほど内周が狭くなるテーパ形状に形成される。オイルガイド部23bが設けられることによって、タンク50に溜められたオイルが案内通路21や排出通路31に逆流することが防止される。
 排出部材30は、案内通路21にてオイルが除去された圧縮空気をエアドライヤ3に向けて排出する。排出部材30は、案内部材20の内周に螺旋壁22から離間して設けられる。排出部材30は、上流から下流に向けて外径が小さくなるテーパ状に形成される第一テーパ部32と、第一テーパ部32の上流に連続して形成され上流から下流に向けて外径が大きくなるテーパ状に形成される第二テーパ部33とを有する。
 第一テーパ部32は、案内部材20の螺旋壁22の内側に臨んで円筒状に設けられる。第一テーパ部32は、第二テーパ部33から流入する圧縮空気を空気圧機器9に案内する。第一テーパ部32は、案内通路21の下流に位置する部分ほど外径が大きく形成される。つまり、第一テーパ部32は、下端が最も大径に形成され、上端が最も小径に形成される。これにより、案内通路21は、下流に向かうほど流路面積が小さくされる。
 第二テーパ部33は、案内部材20の円筒部23の内周に臨んで円筒状に設けられる。第二テーパ部33の上端は、第一テーパ部32の下端と同径に形成される。第二テーパ部33は、第一テーパ部32と一体に形成される。第二テーパ部33は、案内通路21から流入する圧縮空気を第一テーパ部32に案内する。第二テーパ部33は、オイル吸着ゴム40の内周に臨む。第二テーパ部33は、下端が最も小径に形成され、上端が最も大径に形成される。
 オイル吸着ゴム40は、環状に形成され、螺旋壁22の下流の円筒部23の内周に取り付けられる。オイル吸着ゴム40の内周は、第二テーパ部33の外周に臨み第二テーパ部33に対応するテーパ形状に形成される。オイル吸着ゴム40には、螺旋壁22の内側に沿って流れてきた圧縮空気の旋回流が衝突する。
 オイル吸着ゴム40は、圧縮空気内のオイルを吸収するゴムである。オイル吸着ゴム40は、オイルを吸着しやすい性質を有するゴム材料によって形成される。ゴム材料に代えて、オイルを吸着しやすい性質を有する樹脂材料等によって液体吸着材を形成してもよい。圧縮空気内のオイルは、螺旋壁22の内側に遠心力によって圧縮空気が衝突してオイルが付着することにより除去される。オイル吸着ゴム40は、螺旋壁22にて除去しきれなかったオイルを、吸着することによって除去する。
 オイル吸着ゴム40は、一定量のオイルを吸着すると交換が必要である。そのため、オイルミストセパレータ100では、案内部材20に取り付けられるタンク50を取り外すことによってオイル吸着ゴム40を交換可能としている。
 タンク50は、案内部材20の下部に設けられる。タンク50は、案内部材20に対して脱着可能に設けられる。タンク50の開口部には、案内部材20の円筒部23の下端に螺合する螺合部51が形成される。よって、タンク50は、案内部材20に対して相対回転させることで脱着が可能である。
 次に、オイルミストセパレータ100の作用について説明する。
 コンプレッサ2から吐出された圧縮空気は、供給通路11を通じて案内部材20の内周の案内通路21に供給される。圧縮空気は、案内部材20の上端部の側面の接線方向から案内通路21に流入する。案内通路21に流入した圧縮空気は、外周に向かって膨らむ円弧状の断面に形成される螺旋壁22に沿った旋回流として下方に案内される。
 このとき、案内通路21では、圧縮空気が遠心力によって螺旋壁22の内側に衝突するように案内される。そのため、圧縮空気内に含まれるオイルが、螺旋壁22の内側に付着する。よって、圧縮空気に含まれるオイルが除去される。螺旋壁22の内側に付着したオイルは、略四周にわたって形成される螺旋壁22の内側を順に伝って下方へ流下する。
 このように、オイルミストセパレータ100では、供給通路11から案内通路21に供給された圧縮空気は、螺旋状に形成される螺旋壁22の内側に沿った旋回流として案内される。よって、圧縮空気が案内通路21内で安定した旋回流を発生することができる。したがって、オイルミストセパレータ100のオイル除去性能を向上させることができる。
 また、排出部材30の第一テーパ部32は、下端が最も大径に形成され、上端が最も小径に形成される。これにより、案内通路21は、下流に向かうほど流路面積が小さくされる。そのため、案内通路21を流れる圧縮空気の流速は、下流にゆくほど速くなる。よって、案内通路21の上流で除去しきれなかったオイルを、流速が速くなる下流にて除去することが可能となる。
 案内通路21内の圧縮空気は、螺旋壁22の内側を旋回流として案内された後、円筒部23の内周に設けられるオイル吸着ゴム40に衝突する。オイル吸着ゴム40には、案内通路21の下流にて流速が速くなった圧縮空気が衝突する。オイル吸着ゴム40は、オイルを吸着しやすい性質を有するゴム材料によって形成されるため、案内通路21内で除去しきれなかったオイルを吸着して除去することができる。したがって、オイルミストセパレータ100のオイル除去性能を更に向上することができる。
 このとき、オイル吸着ゴム40の内周面には、螺旋壁22の内側を流下してきたオイルが流れる。よって、大きな粒子のオイルに小さな粒子のオイルが衝突することによって、更に大きなオイルの粒子を形成する。これにより、大きな粒子のオイルだけでなく、小さな粒子のオイルも圧縮空気から除去することができる。
 以上のようにしてオイルが除去された圧縮空気は、排出部材30の第二テーパ部33の下端開口から排出通路31に流入する。そして、圧縮空気は、第一テーパ部32へと案内され、第一テーパ部32の上端開口からエアドライヤ3に向けて排出される。
 一方、螺旋壁22からオイル吸着ゴム40の表面を通過して流下したオイルは、タンク50内に流入して溜められる。作業者は、タンク50内のオイルが一定の量となったら、案内部材20に螺合するタンク50を取り外して、溜まったオイルを廃棄する。
 なお、エアドライヤ3には、定期的に交換が必要な乾燥材が入っている。そのため、エアドライヤ3内をどれくらいの圧縮空気が流れたかを流量計等のセンサ(図示省略)を用いて検出している。よって、タンク50内に一定の量のオイルが溜まったことを、エアドライヤ3のセンサからの信号を用いて検出するようにしてもよい。このとき、タンク50内のオイルを廃棄する必要があることを、運転者が視認可能なように表示してもよい。
 以上の実施の形態によれば、以下に示す効果を奏する。
 オイルミストセパレータ100では、供給通路11から案内通路21に供給された圧縮空気は、螺旋状に形成される螺旋壁22の内側に沿った旋回流として案内される。よって、圧縮空気が案内通路21内で安定した旋回流を発生することができる。したがって、オイルミストセパレータ100の性能を向上させることができる。
 また、排出部材30の第一テーパ部32は、下端が最も大径に形成され、上端が最も小径に形成される。これにより、案内通路21は、下流に向かうほど流路面積が小さくされる。そのため、案内通路21を流れる圧縮空気の流速は、下流にゆくほど速くなる。よって、案内通路21の上流で除去しきれなかったオイルを、流速が速くなる下流にて除去することが可能となる。
 案内通路21内の圧縮空気は、螺旋壁22の内側を旋回流として案内された後、円筒部23の内周に設けられるオイル吸着ゴム40に衝突する。オイル吸着ゴム40には、案内通路21の下流にて流速が速くなった圧縮空気が衝突する。オイル吸着ゴム40は、オイルを吸着しやすい性質を有するゴム材料によって形成されるため、案内通路21内で除去しきれなかったオイルを吸着して除去することができる。したがって、オイルミストセパレータ100のオイル除去性能を更に向上することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、気液分離装置を圧縮空気からオイルを除去するオイルミストセパレータ100として用いている。これに代えて、気液分離装置を、例えばエンジン内のブローバイガスとエンジンオイルとを分離するために用いてもよい。

Claims (7)

  1.  気体中に液体を含む混合流体を気体と液体とに分離させる気液分離装置であって、
     混合流体が供給される供給通路を形成する供給部材と、
     螺旋状に形成される螺旋壁を外周に有し前記供給通路から供給された混合流体を前記螺旋壁の内側に沿った旋回流として案内する案内通路を形成する案内部材と、
     前記案内部材の内周に前記螺旋壁から離間して設けられ前記案内通路から供給される混合流体を前記案内壁の内側に沿った旋回流の進行方向と対向する方向に排出する排出通路を形成する排出部材と、を備える気液分離装置。
  2.  請求項1に記載の気液分離装置であって、
     前記螺旋壁は、外周に向かって膨らむ円弧状の断面に形成される気液分離装置。
  3.  請求項1又は2に記載の気液分離装置であって、
     前記排出部材は、上流から下流に向けて外径が小さくなるテーパ状に形成される第一テーパ部を有し、
     前記案内通路は、前記第一テーパ部が設けられることによって、下流に向かうほど流路面積が小さくなる気液分離装置。
  4.  請求項3に記載の気液分離装置であって、
     前記螺旋壁の下流に設けられ前記螺旋壁の内周を流れてきた混合流体が衝突して混合流体中の液体を吸着する液体吸着材を更に備える気液分離装置。
  5.  請求項4に記載の気液分離装置であって、
     前記案内部材は、前記螺旋壁の下流に前記螺旋壁から連続して形成される円筒部を更に有し、
     前記液体吸着材は、環状に形成されて前記円筒部の内周に取り付けられる気液分離装置。
  6.  請求項5に記載の気液分離装置であって、
     前記排出部材は、前記第一テーパ部の上流に連続して形成され上流から下流に向けて外径が大きくなるテーパ状に形成される第二テーパ部を有し、
     前記液体吸着材の内周は、前記第二テーパ部の外周に臨み前記第二テーパ部に対応するテーパ形状に形成される気液分離装置。
  7.  請求項1から6のいずれか一つに記載の気液分離装置であって、
     前記供給通路は、前記案内部材の上部の側面に連結され、
     前記案内部材は、前記供給通路から供給された混合流体を下方に向けて案内し、
     前記案内部材の下部には、混合流体から分離された液体を溜めるタンクが、前記案内部材に対して脱着可能に設けられる気液分離装置。
     
PCT/JP2013/073888 2013-09-05 2013-09-05 気液分離装置 WO2015033414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073888 WO2015033414A1 (ja) 2013-09-05 2013-09-05 気液分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073888 WO2015033414A1 (ja) 2013-09-05 2013-09-05 気液分離装置

Publications (1)

Publication Number Publication Date
WO2015033414A1 true WO2015033414A1 (ja) 2015-03-12

Family

ID=52627921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073888 WO2015033414A1 (ja) 2013-09-05 2013-09-05 気液分離装置

Country Status (1)

Country Link
WO (1) WO2015033414A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105233575A (zh) * 2015-10-14 2016-01-13 中国科学院广州能源研究所 Mvr系统气液分离装置
CN106014539A (zh) * 2016-06-28 2016-10-12 蔡婕 一种设有圆锥螺旋通道的油气分离器
JP2017039077A (ja) * 2015-08-19 2017-02-23 日野自動車株式会社 気液分離装置
CN106474830A (zh) * 2016-11-07 2017-03-08 核工业理化工程研究院华核新技术开发公司 气固分离装置
JP2017080657A (ja) * 2015-10-26 2017-05-18 日野自動車株式会社 気液分離装置
WO2017198250A1 (de) * 2016-05-20 2017-11-23 Esta Apparatebau Gmbh & Co. Kg Absauggerät mit einem einen prozessraum umschliessenden gehäuse
CN107756203A (zh) * 2016-08-15 2018-03-06 苏州宝时得电动工具有限公司 净化机构及电动工具
CN107899307A (zh) * 2017-12-05 2018-04-13 西安石油大学 一种螺旋式气液分离器
CN109331547A (zh) * 2018-11-08 2019-02-15 周琦人 油分罐结构
JP2020536006A (ja) * 2017-10-04 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置
JP2020536004A (ja) * 2017-09-29 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置および放出物処理方法
CN112156565A (zh) * 2020-09-14 2021-01-01 浙江佳运能源技术有限公司 一种段塞流捕集器的捕雾装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516809U (ja) * 1978-07-19 1980-02-02
JPS5522360U (ja) * 1978-08-01 1980-02-13
JPS56129846U (ja) * 1980-02-29 1981-10-02
JPS5738918A (en) * 1980-08-15 1982-03-03 Seitai Kagaku Kenkyusho:Kk Flow separating device for removing powder and/or granule and mist
JPS6068024A (ja) * 1983-08-25 1985-04-18 エービー テトラ パック 微粒子分離装置
JPS63181421U (ja) * 1987-05-13 1988-11-22
JPH0370718U (ja) * 1989-11-15 1991-07-16
JPH03115022U (ja) * 1990-03-06 1991-11-27
JPH11147014A (ja) * 1997-11-14 1999-06-02 Tlv Co Ltd 流速可変の気液分離器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516809U (ja) * 1978-07-19 1980-02-02
JPS5522360U (ja) * 1978-08-01 1980-02-13
JPS56129846U (ja) * 1980-02-29 1981-10-02
JPS5738918A (en) * 1980-08-15 1982-03-03 Seitai Kagaku Kenkyusho:Kk Flow separating device for removing powder and/or granule and mist
JPS6068024A (ja) * 1983-08-25 1985-04-18 エービー テトラ パック 微粒子分離装置
JPS63181421U (ja) * 1987-05-13 1988-11-22
JPH0370718U (ja) * 1989-11-15 1991-07-16
JPH03115022U (ja) * 1990-03-06 1991-11-27
JPH11147014A (ja) * 1997-11-14 1999-06-02 Tlv Co Ltd 流速可変の気液分離器

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039077A (ja) * 2015-08-19 2017-02-23 日野自動車株式会社 気液分離装置
CN105233575A (zh) * 2015-10-14 2016-01-13 中国科学院广州能源研究所 Mvr系统气液分离装置
CN105233575B (zh) * 2015-10-14 2017-10-27 中国科学院广州能源研究所 Mvr系统气液分离装置
JP2017080657A (ja) * 2015-10-26 2017-05-18 日野自動車株式会社 気液分離装置
CN109153025A (zh) * 2016-05-20 2019-01-04 Esta设备制造有限两合公司 具有围绕处理室的壳体的抽吸装置
WO2017198250A1 (de) * 2016-05-20 2017-11-23 Esta Apparatebau Gmbh & Co. Kg Absauggerät mit einem einen prozessraum umschliessenden gehäuse
RU2733965C2 (ru) * 2016-05-20 2020-10-08 Эста Аппаратебау Гмбх Унд Ко. Кг Аспирационная установка с охватывающим рабочую камеру корпусом
CN106014539B (zh) * 2016-06-28 2018-12-04 蔡婕 一种设有圆锥螺旋通道的油气分离器
CN106014539A (zh) * 2016-06-28 2016-10-12 蔡婕 一种设有圆锥螺旋通道的油气分离器
CN107756203A (zh) * 2016-08-15 2018-03-06 苏州宝时得电动工具有限公司 净化机构及电动工具
CN107756203B (zh) * 2016-08-15 2023-12-08 苏州宝时得电动工具有限公司 净化机构及电动工具
CN106474830B (zh) * 2016-11-07 2019-02-01 华核(天津)新技术开发有限公司 气固分离装置
CN106474830A (zh) * 2016-11-07 2017-03-08 核工业理化工程研究院华核新技术开发公司 气固分离装置
JP2020536004A (ja) * 2017-09-29 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置および放出物処理方法
JP7358341B2 (ja) 2017-09-29 2023-10-10 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置および放出物処理方法
JP2020536006A (ja) * 2017-10-04 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置
JP7199429B2 (ja) 2017-10-04 2023-01-05 ベンディックス コマーシャル ビークル システムズ エルエルシー 車両空気ブレーキ充填システム用の放出物処理装置
CN107899307A (zh) * 2017-12-05 2018-04-13 西安石油大学 一种螺旋式气液分离器
CN109331547A (zh) * 2018-11-08 2019-02-15 周琦人 油分罐结构
CN112156565A (zh) * 2020-09-14 2021-01-01 浙江佳运能源技术有限公司 一种段塞流捕集器的捕雾装置

Similar Documents

Publication Publication Date Title
WO2015033414A1 (ja) 気液分離装置
WO2016151882A1 (ja) エレメント組立体およびフィルタ
JP2008178825A (ja) 気泡分離器
US11083975B2 (en) Fluid inlet device for use in gas liquid separators
WO2008029262A3 (en) Three-phase cyclonic separator with a debris trap
CA2895242C (en) Gas desander
CN212039405U (zh) 用于净化气态流体的多级流体过滤器的多旋风分离器和多级流体过滤器
WO2013094161A1 (ja) 気液分離装置
TWI645890B (zh) 過濾器及其元件組件
CN107847842A (zh) 油分离器
US20130312609A1 (en) Apparatus and methods for filtration of solid particles and separation of liquid droplets and liquid aerosols from a gas stream
RU2320395C2 (ru) Высокоэффективный жидкостно-газовый сепаратор "сцв-7"
RU2310516C1 (ru) Устройство для отделения частиц жидкости из газожидкостного потока
JP2011500320A5 (ja)
KR100988331B1 (ko) 오일 분리기를 구비한 공기 정화 유닛 및 압축 공기 공급유닛
CN202113731U (zh) 高效油水分离器
KR100908883B1 (ko) 압축공기용 수분분리기
KR100780839B1 (ko) 컴프레서용 필터
JP2005147482A (ja) 気液分離器
JP2022169837A (ja) 圧縮空気圧回路システム
RU2659988C1 (ru) Газодинамический вихревой сепаратор (варианты)
RU2740198C2 (ru) Газовый сепаратор
JP6558799B2 (ja) 気液分離装置
RU2736035C2 (ru) Газодинамический сепаратор (варианты)
CN211462666U (zh) 一种化工生产用气液分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893180

Country of ref document: EP

Kind code of ref document: A1