WO2015032198A1 - 一种阵列基板及其制造方法、柔性显示器件及电子设备 - Google Patents

一种阵列基板及其制造方法、柔性显示器件及电子设备 Download PDF

Info

Publication number
WO2015032198A1
WO2015032198A1 PCT/CN2014/074890 CN2014074890W WO2015032198A1 WO 2015032198 A1 WO2015032198 A1 WO 2015032198A1 CN 2014074890 W CN2014074890 W CN 2014074890W WO 2015032198 A1 WO2015032198 A1 WO 2015032198A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
cross
data
data line
lines
Prior art date
Application number
PCT/CN2014/074890
Other languages
English (en)
French (fr)
Inventor
秦纬
周伟峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/402,971 priority Critical patent/US9472134B1/en
Publication of WO2015032198A1 publication Critical patent/WO2015032198A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Definitions

  • Embodiments of the present invention relate to flexible display technologies, and more particularly to an array substrate and a method of fabricating the same, a flexible display device, and an electronic device.
  • Flexible dismays are a class of ffi flexible substrates that can be fabricated into ultra-thin, oversized, bendable display devices or display technologies.
  • the main features of a flexible display can be described in three words: thin, light, and soft.
  • Prior art flexible substrates are generally divided into two regions: one portion is a non-bent region and the other portion is a bendable region. As shown in FIG. 1, the array substrate 1 is in a non-bendable area at a position where the drive module 4 is disposed.
  • the driving module 4 is connected to the data line 2 and the gate line 3, respectively, to drive the thin film transistor TFT 5 provided in the panel.
  • the data line 2 and the squall line 3 are disposed perpendicular to one side of the flexible substrate.
  • the gate line 3 therein is bent in the manner shown in Fig. 2.
  • the metal forming the gate line has a certain tensile property, when the bending exceeds a certain level, the gate line is liable to be broken, resulting in equipment damage. If you start with materials, the high tensile properties of the metal are higher, which will increase the overall cost of the device.
  • an embodiment of the present invention provides an array substrate including at least a flexible substrate and an array layer formed on the flexible substrate.
  • the array layer includes: a signal transmission line, including multiple a stripe data line and a plurality of gate lines intersecting each other to form a plurality of sub-pixel regions on the flexible substrate; and thin film transistors disposed in each of the plurality of sub-pixel regions, respectively, and corresponding data lines and Grid connection.
  • An angle of at least a portion of the signal transmission lines relative to any one of the sides of the flexible substrate is substantially not equal to 90 degrees.
  • each of the plurality of data lines and each of the plurality of lines are perpendicular to each other, and each of the plurality of data lines and the flexible
  • the angle of one side of the substrate is between about 30 degrees and about 60 degrees.
  • the angle between each of the plurality of data lines and one side of the flexible substrate is about 45 degrees.
  • the plurality of data lines include a first data line connected to the first number of thin film transistors and a second data line connected to the second number of thin film transistors.
  • the column substrate further includes a driving module, the number of sub-signals in the data driving signal outputted by the driving module to the first data line is a first quantity, and the driving module is to the second data line The number of sub-signals in the output data drive signal is the second number.
  • the array substrate wherein the plurality of data lines comprise a first data line and a second data line having a length greater than a length of the first data line; and the plurality of gate lines comprise a first gate line and a length greater than the first a second gate line of the length of the gate line.
  • a cross-sectional area of the second data line is larger than a cross-sectional area of the first data line, such that a first transmission delay difference between the first data line and the second data line having different cross-sectional areas a second transmission delay difference between the first data line and the second data line having the same cross-sectional area; and a cross-sectional area of the second gate line is larger than a cross-sectional area of the first » line, such that the cross-sectional area is different
  • the third transmission delay difference between the first gate line and the second gate line is smaller than the fourth transmission delay difference between the first gate line and the second » line having the same cross-sectional area.
  • the cross-sectional width of the second data line is greater than the cross-sectional width of the first data line; or when the cross-sectional width is the same, the cross-sectional height of the second data line is greater than the cross-sectional height of the first data line; or When the width and height are different, the product of the cross-sectional width and height of the second data line is greater than the product of the cross-sectional width and height of the first data line.
  • the cross-sectional width of the second gate line is greater than the cross-sectional width of the first gate line; or when the cross-sectional width is the same, the cross-sectional height of the second gate line is greater than the cross-section of the first gate line; Or when the cross-sectional width and height are different, the product of the cross-sectional width and height of the second » line is greater than the product of the cross-sectional width and height of the first » line.
  • the flexible substrate is divided into a bendable display area and a non-bendable peripheral area, and the array substrate further includes a driving module disposed in the peripheral area.
  • the driving module includes a first driving module and a second driving module corresponding to opposite sides of the flexible substrate, and the first driving module and the second driving module are adjacent to each other.
  • the principle of connection is respectively connected to the plurality of data lines and the plurality of » lines.
  • an embodiment of the present invention further provides a flexible display device, including the above.
  • an embodiment of the present invention further provides an electronic device, including the above flexible display device.
  • an embodiment of the present invention further provides a method for fabricating an array substrate, comprising the steps of: forming a magnetic field by a magnetic strip, in a direction in which the data lines/twist lines to be fabricated are arranged, the magnetic field The magnetic field strength first becomes smaller and then becomes smaller; the plasma-inert gas accelerated by the electric field strikes the target, and the impinging atom is deposited on the surface of the substrate to form a metal thin film layer under the action of the magnetic field;
  • the oblique magnetic strip is arranged in the same direction as the data line/gate line to be fabricated, and a magnetic field is formed between the magnetic strips, and the plasma density is high at a position of a strong magnetic field, and the film thickness is high;
  • a metal film layer having a regular wavy film thickness is formed, wherein a relatively thick film thickness is formed on a long trace, and a relatively thin film thickness is formed on a short trace, thereby achieving uniform signal delay.
  • the degree of bending of the signal transmission line in the case where the substrate is bent is reduced, and the bending performance of the substrate is improved.
  • FIG. 1 is a schematic structural view of a prior art flexible array substrate
  • FIG. 2 is a schematic view showing a bending state of a signal transmission line when a flexible array substrate of the prior art is bent;
  • FIGS. 4a-4b are schematic structural views of the two array substrates according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of comparison of effects of an array substrate according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an array substrate provided with two driving modules according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a nearby connection when two driving modules are provided according to an embodiment of the present invention
  • FIG. 8 is a view showing flexibility of an embodiment of the present invention
  • a schematic diagram of different numbers of thin film transistors connected to different data lines in an array substrate
  • FIG. 9 is a schematic view showing a data line of a flexible array substrate according to an embodiment of the present invention divided into two parts;
  • FIG. 10 is a timing diagram of a data driving signal according to an embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a metal thin film layer having different thicknesses formed in the embodiment of the present invention
  • Figure 12 is a schematic view showing the structure of a signal transmission line having different thicknesses formed by using the metal thin film layer shown in the embodiment of the present invention.
  • the flexible display device, and the electronic device of the embodiment of the present invention since a part of the signal transmission line is disposed obliquely with respect to one side of the flexible substrate, it is perpendicular to the flexible array with respect to the prior art.
  • the arrangement of the sides of the substrate, when the flexible array substrate is bent, the bending radius of these obliquely arranged signal transmission lines is larger. That is to say, in the case of the same bending, the degree of bending of the signal transmission line in the array substrate of the embodiment of the present invention is relatively small, so that the bending ability of the array substrate is improved.
  • the angle between the line and the line involved is defined as in the specific embodiment of the present invention, and the range of the angle between the data line and one side of the flexible substrate is defined as [0, 90 degrees], taking the line of the display area and the side of the flexible substrate equivalent to a straight line (or line segment) as an example.
  • the range of the angle between the data line and one side of the flexible substrate is defined as [0, 90 degrees], taking the line of the display area and the side of the flexible substrate equivalent to a straight line (or line segment) as an example.
  • a is assumed to be a side of the flexible substrate, and the angle between the signal transmission lines b and a is defined as Theta i in Fig. 3a.
  • the angle between the signal transmission lines b and a is defined as Theta 2 in Fig. 3b.
  • a and b are perpendicular, the angle between a and b is positioned at 90 degrees, and a and b are parallel or coincident. , the angle between a and b is positioned at 0 degrees.
  • An array substrate includes a flexible substrate 6 and an array layer formed on the flexible substrate 6.
  • the array layer includes a display area and a non-display area.
  • the column layer includes;
  • a signal transmission line comprising a plurality of data lines 2 and a plurality of gate lines 3, the data lines 2 and the gate lines 3 intersecting each other to form a plurality of sub-pixel regions on the flexible substrate;
  • the angle between at least a portion of the signal transmission lines with respect to any one of the sides of the flexible substrate 6 is substantially not equal to 90 degrees.
  • the angle between all the gate lines 3 and any one of the sides of the flexible substrate 6 is not equal to 90 degrees. That is to say, the angle ⁇ between the gate line 3 and any one of the sides of the flexible substrate satisfies the following relationship: 0° ⁇ ⁇ ⁇ 90°.
  • the gate of the thin film transistor 5 is connected to the gate line 3
  • the source (or drain) of the thin film transistor is connected to the data line 2
  • the drain (or source) of the thin film transistor 5 is connected to the pixel electrode (not shown). Out) Connect. Since the drain and source of the thin film transistor 5 are substantially the same in the fabrication process, they can be interchanged in name.
  • the angle ⁇ between the gate line 3 and the side of the flexible substrate 6 is preferably between about 30° and 60°. In a specific embodiment of the invention, the angle ⁇ between the gate line 3 and the side of the flexible substrate is preferably about 45°.
  • Fig. 4a only the gate lines 3 are arranged obliquely. However, it should be understood that the data line 2 can also be arranged in an oblique direction.
  • the angle between all the gate lines 3 and any one of the sides of the flexible substrate 6 is not equal to 90 degrees. Ffi is to say that the angle ⁇ between the gate line 3 and any one of the sides of the flexible substrate 6 satisfies the following relationship: 0° ⁇ ⁇ ⁇ 90°.
  • the angle ⁇ between the data line 2 and any one of the sides of the flexible substrate 6 satisfies the following relationship: 0° ⁇ ⁇ ⁇ 90°.
  • the data line 2 and the » line 3 may be disposed perpendicular to each other, and the angle between the data line 2 and one side of the flexible substrate 6 is about 30. Degree to about 60 degrees.
  • the angle of the data line to one side of the flexible substrate is preferably about 45 degrees.
  • 51 denotes a first signal transmission line which is disposed perpendicular to one side of the flexible substrate
  • 52 denotes one of the embodiments of the present invention with respect to the flexible substrate.
  • a second signal transmission line disposed obliquely to the side.
  • the second signal transmission line 52 has a ratio of the first signal transmission line 5]
  • the radius of curvature R1 is larger than the radius of curvature R2. That is, the degree of bending of the second signal transmission line 52 is lower than that of the first signal transmission line 51.
  • the radius of curvature of the second signal transmission line 52 is about 4. 4 times the radius of curvature of the second signal transmission line 51. .
  • the embodiment of the present invention reduces the degree of bending of the signal transmission line in the case where the substrate is bent by providing the signal transmission line obliquely with respect to one side of the flexible substrate, thereby improving the bending performance of the substrate.
  • the second signal transmission line is the same as the first signal transmission line of the prior art, and the same as ffi (for example, both are used as data lines), but is not limited thereto.
  • the flexible substrate in order to protect the driving module, may be divided into a bendable display area and a non-bendable peripheral area, and the driving module is disposed in the peripheral area.
  • the strength of the peripheral region is large, the possibility of bending with respect to the display region is small, and the provision of the driving module to the peripheral region can improve the protection of the driving module.
  • the driving module may be one, but may be two or more.
  • two drive modules are included, correspondingly disposed on opposite sides of the flexible substrate, and the two drive modules are respectively connected to the data line 2 and the gate line 3 on the principle of near connection.
  • FIG. 6 An array substrate including two drive modules is shown in FIG. 6. It can be found that the two drive modules are respectively connected to the data line 2 and the gate line 3 in the principle of the nearest connection.
  • the data line 2 may be connected to the left drive module through the first connection line 71, or may be connected to the right drive module through the second connection line 72.
  • the length di of the first connecting line 71 is obviously smaller than the length d2 of the second connecting line 72. Therefore, according to the nearest connection principle, the data line 2 in Fig. 7 is driven by the drive module on the left.
  • the gate line 3 is connected to the right drive module through the third connection line 73. It is also possible to connect to the left drive module via the fourth connection line 74. However, it is obvious that the length d3 of the third connecting line 73 is obviously smaller than the length of the fourth connecting line 74 (14. Therefore, according to the principle of the nearest connection, the gate line 3 in the drawing is driven by the driving module on the right side.
  • connection distance to the currently connected drive module will be less than or equal to the minimum connection distance to the other drive module.
  • this connection method greatly reduces the difference in length between the different signal transmission lines and the driving module, and also reduces the transmission of signals transmitted by the driving module to different signal transmission lines. Delay, improving system performance.
  • the above-described driving module simultaneously drives the data line 2 and the gate line 3.
  • the drive module in the embodiment of the present invention may also include a data drive module for driving the data line 2 alone and a gate drive module for driving the cabinet line 3 alone.
  • the gate driving module can be a stand-alone chip or integrated into the array substrate by GOA (Gate on Array).
  • At least two data lines 2 may have different lengths; and - at least two gate lines 3 Can also have different lengths;
  • At least two data lines 2 are respectively connected to the different number of thin film transistors 5, and/or at least two turns 3 are respectively connected to the number of thin film transistors 5.
  • the plurality of data lines include at least: a first data line connected to the first number of thin film transistors, and a second data line connected to the second number of thin film transistors.
  • first and second indicate unequal when comparing numerical relationships, and relative positional relationship is relative, not specific.
  • the first number is not equal to the second number.
  • the data line 81 may be referred to as a first data line
  • the data line 82 may be referred to as a second data line.
  • data line 82 may be referred to as a first data line
  • data line 83 may be referred to as a second data line.
  • the first data line (or the first » line) may refer to one of the data lines (or gate lines), or may be connected to the same number of thin film transistors (or the same length), etc.
  • the drive module outputs a data drive letter to the first data line within one frame time
  • the number of sub-signals in the number is the first number.
  • the number of sub-signals in the data driving signal output by the driving module to the second data line in one frame time is a second quantity.
  • the sub signal refers to a signal that the drive module inputs to the pixel electrode through a TFT.
  • the uppermost data line 81 is connected to seven TFTs, and the middle data line 82 is connected to eight TFTs, and the lowermost data line 83 is connected to nine TTTs.
  • the number of sub-signals in the data driving signal outputted by the driving module to the uppermost data line 81 is seven, and the driving module is in the middle of the data line 82.
  • the number of sub-signals in the output data drive signal is eight, and the number of sub-signals in the data drive signal output from the drive module to the lowermost data line 83 is nine.
  • the uppermost data line 81 is connected to seven TFTs, and the middle data line 82 is connected to eight TFTs, and the lowermost data line 83 is connected to nine TFTs.
  • the gate line 811 is connected to one TFT, the gate line 812 is connected to two TFTs, and the turns line 813 is connected to three TFTs.
  • the array substrate according to the embodiment of the present invention is subjected to line-by-line scanning.
  • the driving module inputs a gate driving signal to the gate line 811 to turn on a thin film transistor.
  • the driving module inputs a data driving signal to the data line 83, and the number of sub-signals output by the driving module is one.
  • the number of sub-signals that the driving module inputs the gate driving signal to the gate line 812 is two.
  • the driving module inputs the data driving signal to the data lines 82 and 83, and the number of sub-signals output by the driving module. It is two. By analogy, it will not be repeated.
  • the driving module determines the number of sub-signals in the data driving signal according to the number of thin film transistors connected by the data lines, and can meet the driving requirements of the array substrate with different numbers of thin film transistors connected by the data lines, as opposed to The prior art has better flexibility.
  • a diagonal line 93 of the flexible substrate is used as a dividing line, and the data line is divided into a first portion 91 and a second portion 92.
  • the data line located in the upper left half of the flexible substrate is the first portion
  • the data line located in the lower right half of the flexible substrate is the second portion.
  • the number of thin film transistors connected to the preceding data lines is smaller than the number of thin film transistors connected to the subsequent data lines in the order from top to bottom.
  • the previous data The number of line-connected thin film transistors is greater than the number of thin film transistors connected to the subsequent data lines. That is to say, in the direction in which the data lines are arranged, the number of transistors connected to the data lines first increases and then decreases.
  • the number of transistors connected to the data lines is firstly equal.
  • Pi increases, and then decreases according to the difference value P2 (P1 and P2 are positive integers greater than or equal to).
  • the difference value is equal to P1 and P2, that is, the number of transistors connected to the data lines is symmetrically arranged with respect to the diagonal.
  • the number of sub-signals included in the drive signal transmitted by the drive module is first increased and then decreased.
  • a plurality of data lines/twist lines are present, and a first signal transmission line and a second signal transmission line having a length greater than a length of the first signal transmission line are present. That is:
  • first gate line and a second gate line having a length greater than a length of the first » line; and/or a first data line, and a second data line having a length greater than a length of the first data line.
  • the cross-sectional area of the second signal transmission line is larger than the cross-sectional area of the first signal transmission line, so that the first signal transmission line with different cross-sectional areas is
  • the first transmission delay difference between the second signal transmission lines is smaller than the second transmission delay difference between the first signal transmission line and the second signal transmission line having the same cross-sectional area.
  • the cross-sectional area of the second data line is larger than the cross-sectional area of the first data line, such that the first transmission delay difference between the first data line and the second data line having different cross-sectional areas is smaller than the first cross-sectional area The second transmission delay difference between the data line and the second data line.
  • the cross-sectional area of the second gate line is larger than the cross-sectional area of the first gate line, such that the third transmission delay difference between the first gate line and the second gate line having different cross-sectional areas is smaller than the first cross-sectional area A fourth transmission delay difference between the gate line and the second line.
  • the cross-sectional area of the signal transmission lines of different lengths is controlled during the manufacturing process according to the length of the two.
  • Longer signal transmission lines have a larger cross-sectional area, so their impedance effects are correspondingly reduced. Therefore, it is possible to compensate for the delay due to its long length, reduce the delay difference between different signal transmission lines, and improve the display performance.
  • any two data lines/cassettes of different lengths may be provided.
  • the cross-sectional area of the longer data line/gate line is larger than the cross-sectional area of the shorter data line/gate line.
  • the cross-sectional width of the second signal transmission line is greater than the cross-sectional width of the first signal transmission line
  • the cross-sectional height of the second signal transmission line is greater than the cross-sectional height of the first signal transmission line
  • the product of the cross-sectional width and height of the second signal transmission line is larger than the product of the cross-sectional width and height of the first signal transmission line.
  • the signal transmission line as a data line as an example.
  • the cross-sectional area of the data lines may first increase and then decrease in an equal or equal relationship.
  • the cross-sectional area of the data line is symmetrically arranged with respect to the diagonal.
  • the method for fabricating the array substrate having the above features includes: forming a metal thin film layer;
  • the plurality of data lines/gate lines include a first signal transmission line and a second signal transmission line having a length greater than a length of the first signal transmission line, and a cross-sectional area of the second signal transmission line is greater than a cross section of the second signal transmission line area.
  • any two data lines/gate lines having different lengths, and a longer length data line Z gate line have a cross-sectional area larger than a shorter length data line/ ⁇ line cross-sectional area.
  • the length of the data line first increases and then decreases.
  • the width of each data line is the same during the etching process, the thickness of the data line first increases and then decreases in the direction in which the data lines are arranged.
  • the step of forming a metal thin film layer may be performed by a sputtering process.
  • the step of forming a metal thin film layer specifically includes:
  • a magnetic field is formed by the magnetic strip, and the magnetic field strength of the magnetic field first becomes larger and smaller in the direction in which the data lines/gate lines are to be formed.
  • the plasma-inert gas accelerated by the electric field is struck against the target, and the impinging atoms are deposited on the surface of the substrate to form the metal thin film layer under the action of the magnetic field.
  • an oblique magnetic strip is disposed behind the substrate in the same direction as the data line/gate line to be fabricated.
  • a magnetic field is formed between the magnetic strips, and when the plasma density is high at a strong magnetic field, the film thickness is high.
  • Fig. 11 is a schematic cross-sectional view of the metal thin film layer formed after the above process, in the direction in which the data lines are arranged, it can be found that the thickness of the formed metal thin film layer 111 first increases and then decreases, and is symmetrically arranged.
  • the metal thin film layer formed by the deposition is divided into two parts according to the arrangement direction of the data line/gate line to be fabricated.
  • the thickness of a portion of the metal thin film layer is gradually increased, and the thickness of the other portion of the metal thin film layer is gradually decreased.
  • This regular wave-shaped film thickness can achieve the effect shown in Fig. 12 after the etching is completed. Among them, there is a relatively thick film thickness on the long trace, a relatively thin film thickness on the short trace, and a uniform signal delay.
  • Embodiments of the present invention also provide a flexible display device including any of the above array substrates.
  • the structure and working principle of the array substrate are the same as those in the foregoing embodiment, and details are not described herein again.
  • the structure of other parts of the flexible display device can refer to the prior art, and will not be described in detail herein.
  • the flexible display device can be: a product or a component having any display function such as a liquid crystal panel, an electronic paper, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, or the like.
  • Embodiments of the present invention also provide an electronic device including the above flexible display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板包括柔性基板(6)和形成在柔性基板(6)上的阵列层。阵列层包括:信号传输线,包括多条数据线(2)和多条栅线(3),相互交叉在柔性基板(6)上形成多个子像素区;以及设置于所述子像素区中的薄膜晶体管(5),与对应的数据线(2)和栅线(3)连接。至少一部分信号传输线相对于柔性基板(6)的任意一个侧边的夹角不等于90度。

Description

本发明实施例涉及柔性显示技术, 特别是一种阵列基板及其制造方法、 柔性显示器件及电子设备。
柔板显示(Flexible dismays) 是指一类使 ffi柔性基板, 可以制造成超薄、 超大、可弯曲的显示器件或显示技术。 柔性显示的最主要特点可以用三个字 来描述: 薄、 轻、 柔。
现有技术的柔性基板一般分为两个区域: 一部分是非弯折区域, 另一部 分是可弯折区域。 如图 1所示, 阵列基板 1其中在设置驱动模块 4的位置为 不可弯折区。 该驱动模块 4与数据线 2以及栅线 3分别连接, 来驱动面板中 设置的薄膜晶体管 TFT 5。
如图 1所示, 在现有技术中, 数据线 2以及欐线 3是以垂直于柔性基板 的一个侧边的方式而设置。 在这种情况下, 如图 2所示, 当显示器件以图 2 所示的方式弯折时, 其中的栅线 3会以图 2所示的方式弯折。
虽然在现有技术中, 形成栅线的金属具有一定的拉伸性能, 但当弯折超 过一定程度时, 容易导致栅线断裂, 造成设备损坏。 如果从材料方面入手, 高拉伸性能的金属价格较高, 会丛整体上提高器件成本。
(一) 要解决的技术问题
本发明实施例的目的在于提供一种阵列基板及其制造方法、 柔性显示器 件及电子设备, 在不增加器件成本的情况下提高柔性显示基板的弯折能力。
(二) 技术方案
本发明实施例所提供的技术方案如下:
为了实现上述目的, 本发明实施例提供了一种阵列基板, 至少包括柔性 基板和在柔性基板上形成的阵列层。 所述阵列层包括: 信号传输线, 包括多 条数据线和多条栅线, 相互交叉在所述柔性基板上形成多个子像素区; 以及 设置于所述多个子像素区中的每个子像素区当中的薄膜晶体管, 分别与对应 的数据线和栅线连接。 所述信号传输线中的至少一部分信号传输线相对于所 述柔性基板的任意一个侧边的夹角实质上不等于 90度。
上述的阵列基板, 其中, 所述多条数据线中的每一条数据线和所述多条 櫥线中的每一条栅线相互垂直, 且多条数据线中的每一条数据线与所述柔性 基板的一个侧边的夹角在大约 30度到大约 60度之间。
上述的阵列基板, 其中, 所述多条数据线中的每一条数据线与所述柔性 基板的一个侧边的夹角为大约 45度。
上述的阵列基板, 其中, 所述多条数据线包括与第一数量的薄膜晶体管 连接的第一数据线和与第二数量的薄膜晶体管连接的第二数据线。
上述的阵列基板, 其中, 所述 列基板还包括驱动模块, 所述驱动模块 向第一数据线输出的数据驱动信号中的子信号的数量为第一数量, 所述驱动 模块向第二数据线输出的数据驱动信号中的子信号的数量为第二数量。
上述的阵列基板, 其中, 所述多条数据线包括第一数据线和长度大于第 一数据线的长度的第二数据线; 并且所述多条栅线包括第一栅线和长度大于 第一栅线的长度的第二栅线。
上述的阵列基板, 其中, 所述第二数据线的截面面积大于所述第一数据 线的截面面积, 使得截面面积不同的第一数据线与第二数据线之间的第一传 输时延差小于截面面积相同的第一数据线与第二数据线之间的第二传输时延 差; 并且所述第二栅线的截面面积大于所述第一 »线的截面面积, 使得截面 面积不同的第一栅线与第二栅线之间的第三传输时延差小于截面面积相同的 第一栅线与第二 »线之间的第四传输时延差。
其中, 当截面高度相同时, 第二数据线的截面宽度大于第一数据线的截 面宽度; 或者当截面宽度相同时, 第二数据线的截面高度大于第一数据线的 截面高度; 或者当截面宽度和高度均不相同时, 第二数据线的截面宽度和高 度的乘积大于第一数据线的截面宽度和高度的乘积。
其中, 当截面高度相同时, 第二栅线的截面宽度大于第一栅线的截面宽 度; 或者当截面宽度相同时, 第二栅线的截面高度大于第一栅线的截面髙度; 或者当截面宽度和高度均不相同时, 第二 »线的截面宽度和高度的乘积大于 第一 »线的截面宽度和高度的乘积。
上述的阵列基板, 其中, 所述柔性基板划分为可弯折的显示区和不可弯 折的外围区, 所述阵列基板还包括设置于所述外围区的驱动模块。
上述的阵列基板, 其中, 所述驱动模块包括对应设置于所述柔性基板的 相对的两个侧边的第一驱动模块和第二驱动模块, 所述第一驱动模块和第二 驱动模块以就近连接的原则与所述多条数据线和所述多条»线分别连接。
为了实现上述目的, 本发明实施例还提供了一种柔性显示器件, 包括上 为了实现上述目的, 本发明实施例还提供了一种电子设备, 包括上述的 柔性显示器件。
为了实现上述目的, 本发明实施例还提供了一种阵列基板的制作方法, 包括如下歩骤:通过磁条形成一磁场,在待制作的数据线 /榲线的排列方向上, 所述磁场的磁场强度先变大后变小; 利用被电场加速后的等离子化惰性气体 撞击靶材, 撞击出原子在所述磁场的作用下在基板的表面沉积形成金属薄膜 层; 通过在所述基板后面设置斜向的磁条, 其排列方向与待制作的数据线 /栅 线的排列方向相同, 通过磁条之间形成磁场, 在强磁场的位置则等离子体密 度高, 则成膜厚度高; 以及刻蚀有规律的波浪形的成膜厚度的金属薄膜层, 其中在长的走线上有比较厚的膜厚, 在短的走线上有比较薄的膜厚, 从而实 现均一的信号延迟。
(三) 有益效果
本发明实施例至少具有如下有益效果:
在本发明实施例中, 由于至少一部分的信号传输线相对于柔性基板的一 个侧边斜向设置, 因此降低了基板弯折情况下信号传输线的弯曲程度, 丛而 改善了基板的弯曲性能。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例描述中所需要使 )¾的附图作筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不^出创 造性劳动的前提下, 还可以根据这些 图获得其他的 图。
图 1表示现有技术的柔性阵列基板的结构示意图;
图 2 表示现有技术的柔性阵列基板弯折时信号传输线的弯曲情况示意 图;
图 3a 3b表示本发明实施例的信号传输线与柔性基板侧边夹角的示意图; 图 4a- 4b表示本发明实施例的两种阵列基板的结构示意图;
图 5为本发明实施例的阵列基板的效果比较示意图;
图 6为本发明实施例的设置有两个驱动模块的阵列基板的结构示意图; 图 7为本发明实施例的设置有两个驱动模块时就近连接的示意图; 图 8表示本发明实施例的柔性阵列基板中不同数据线连接的薄膜晶体管 的数量不同的示意图;
图 9 表示本发明实施例的柔性阵列基板的数据线划分为两部分的示意 图;
图 10为本发明实施例的数据驱动信号的时序示意图;
图 11为本发明实施例中形成的厚度不一的金属薄膜层的结构示意图; 图 12为本发明实施例中利用图 Π所示的金属薄膜层形成的厚度不一的 信号传输线的结构示意图。
下面结合 图和实施例, 对本发明的具体实施方式做进一步描述。 以下 实施例仅用于说明本发明, 但不 来限制本发明的范围。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的 图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员所获得的所有其他实施例, 都属 于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一 "、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"或者 "一" 等类似词语 ffi不表示数量限制, 而是表示存在至少一个。 "连接"或者 "相连" 等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右"等仅用于表示相对位置 关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也相应地改变。
以下结合 f†图对本发明的原理和特征进行描述, 所举实例只用于解释本 发明, 并非用于限定本发明的范围。
在本发明实施例的阵列基板及其制造方法、柔性显示器件及电子设备中, 由于一部分信号传输线相对于所述柔性基板的一个侧边斜向设置, 因此相对 于现有技术的垂直于柔性阵列基板的侧边的布置方式, 当柔性阵列基板弯折 时, 这些斜向布置的信号传输线的弯曲半径更大。 也就是说, 在相同的弯折 情形下, 本发明实施例的阵列基板中的信号传输线的弯折程度相对较小, 所 以提高了阵列基板的弯折能力。
在本发明的具体实施例中, 先对其中涉及到的线与线之间的夹角定义如 在本发明的具体实施例中, 定义数据线与柔性基板的一个侧边的夹角的 范围为 [0, 90度], 均以显示区数据线和柔性基板侧边等效为直线 (或线段) 为例。 解释如下。
如图 3a所示, 假定 a为柔性基板的一个侧边, 则信号传输线 b和 a的夹 角定义为图 3a中的 Theta i。 而图 3b中, 信号传输线 b和 a的夹角定义为图 3b中的 Theta 2, 当 a和 b垂直时, 则 a和 b的夹角定位为 90度, 而 a禾口 b 平行或重合时, a和 b的夹角定位为 0度。
本发明实施例的一种阵列基板, 如图 4a- 4e所示, 包括柔性基板 6和形 成在柔性基板 6上的阵列层。 阵列层包括显示区和非显示区。在显示区域内, 所述 列层包括;
信号传输线, 包括多条数据线 2和多条栅线 3, 数据线 2和栅线 3相互 交叉在所述柔性基板上形成多个子像素区; 以及
设置于所述子像素区中的薄膜晶体管 5, 与对应的数据线 2和栅线 3分 别连接。
这里, 至少一部分的信号传输线相对于所述柔性基板 6的任意一个侧边 的夹角实质上不等于 90度。
如图 4a所示,其中所有的栅线 3与柔性基板 6的任意一个侧边的夹角都 不等于 90度。 也就是说, 栅线 3与柔性基板的任意一个侧边的夹角 Φ都满 足如下的关系: 0°<Φ<90°。
可以理解的是, 本发明实施例中是简化了薄膜晶体管 5与数据线 2、 栅 线 3的结构关系。 一般情况下, 薄膜晶体管 5的栅极与栅线 3连接, 薄膜晶 体管的源极 (或漏极) 与数据线 2连接, 而薄膜晶体管 5的漏极 (或源极) 与像素电极 (未示出) 连接。 由于薄膜晶体管 5的漏极和源极在制作工艺基 本相同, 因此可以在名称上互换。
当然, 考虑到在柔性基板上必须有足够的像素点, 因此, 所述栅线 3与 柔性基板 6的侧边的夹角 Φ取大约 30°- 60°之间为宜。在本发明的一个具体实 施例中, 该栅线 3与柔性基板的侧边的夹角 Φ优选取大约 45°。
在图 4a中, 仅有栅线 3是斜向布置。 但应当理解的是, 数据线 2也可以 是斜向布置。如图 4b所示, 其中所有的栅线 3与柔性基板 6的任意一个侧边 的夹角都不等于 90度。 ffi就是说, 栅线 3与柔性基板 6的任意一个侧边的夹 角 Φ都满足如下的关系: 0°<Φ<90°。 而同时, 数据线 2与柔性基板 6的任意 一个侧边的夹角 Ψ都满足如下的关系: 0°<Ψ<90°。
在图 4b所示的结构中, 在本发明的具体实施例中, 可以设置数据线 2和 »线 3相互垂直, 且数据线 2与所述柔性基板 6的一个侧边的夹角在大约 30 度到大约 60度之间。
在本发明的一个具体实施例中, 数据线与所述柔性基板的一个侧边的夹 角优选为大约 45度。
本发明实施例提及的线与线之间的角度关系、长度、 数量的比较关系等, 都是以在显示区域为例进行说明。 下面对本发明实施例的斜向布置的信号传 输线的弯折说明如下。
如图 5所示, 假定图 5中, 51表示现有技术的垂直于柔性基板的一个侧 边布置的第一信号传输线,而 52表示本发明实施例的相对于柔性基板的一个 侧边斜向布置的第二信号传输线。 从图中可以发现, 由于第二信号传输线 52 的长度大于第一信号传输线 51的长度, 则在如图 5所示的基板弯折情况下, 第二信号传输线 52具有比第一信号传输线 5】的曲率半径 R1更大的曲率半径 R2。 也就是说, 第二信号传输线 52的弯曲程度比第一信号传输线 51的弯曲 程度要低。
按照几何原理,如果第二信号传输线 52相对于柔性基板的一个侧边的夹 角为 45度,则第二信号传输线 52的曲率半径大概是第二信号传输线 51的曲 率半径的〗.4倍左右。
因此, 本发明实施例通过相对于柔性基板的一个侧边斜向设置信号传输 线, 降低了在基板弯折情况下, 信号传输线的弯曲程度, 因此改善了基板的 弯曲性能。 当然, 本发明实施中以第二信号传输线与现有技术的第一信号传 输线材质相同, ϋ作 ffi相同 (例如都作为数据线) 为例进行介绍, 但并不以 此为限。
在本发明的具体实施例中, 为了保护驱动模块, 可以将柔性基板划分为 可弯折的显示区和不可弯折的外围区, 并将驱动模块设置于所述外围区。
由于外围区的强度较大, 因此相对于显示区弯折的可能性较小, 将驱动 模块设置于所述外围区能够提高对驱动模块的保护。
在本发明的具体实施例中, 所述驱动模块可以是一个, 但也可以是两个 或两个以上。 以包括两个驱动模块为例, 对应设置于所述柔性基板的相对的 两个侧边, 两个驱动模块以就近连接的原则与所述数据线 2和所述栅线 3分 别连接。
包括有两个驱动模块的阵列基板如图 6所示。 可以发现, 两个驱动模块 以就近连接的原则与所述数据线 2和所述栅线 3分别连接。
下面以图 7中的数据线 2和栅线 3针对就近连接原则解释如下。
如图 7所示,数据线 2有可能通过第一连接线 71连接到左边的驱动模块, 也有可能通过第二连接线 72连接到右边的驱动模块。但很明显, 第一连接线 71的长度 di很明显会小于第二连接线 72的长度 d2。 因此, 按照就近连接原 则, 图 7中的数据线 2由左边的驱动模块进行驱动。
如图 7所示, 栅线 3有可能通过第三连接线 73连接到右边的驱动模块, 也有可能通过第四连接线 74连接到左边的驱动模块。但很明显, 第三连接线 73的长度 d3很明显会小于第四连接线 74的长度 (14。 因此, 按照就近连接原 则, 图 Ί中的栅线 3由右边的驱动模块进行驱动。
也就是说, 对于任意一条信号传输线而言, 按照就近连接原则, 其到当 前连接的驱动模块的连接距离会小于或等于其到另一驱动模块的最小连接距 离。
结合图 6和图 7所示, 这种连接方式, 大大降低了不同信号传输线与驱 动模块之间的连接线的长度差异, 也就降低了驱动模块发送的信号传输到不 同信号传输线之间的传输时延, 提高了系统性能。
在上述的实施例中, 上述的驱动模块同时驱动数据线 2和栅线 3。 但应 当理解的是, 本发明实施例中的驱动模块也可以包括单独用于驱动数据线 2 的数据驱动模块和单独用于驱动櫥线 3的栅极驱动模块。 该栅极驱动模块可 以是独立存在的芯片, 也可以是通过 GOA ( Gate on Array) 方式集成于阵列 基板。
在本发明的具体实施例中, 上述的数据线 2和 /或栅线 3斜向设置之后, 会使得至少有两条数据线 2可以具有不同的长度; 并—巨.至少两条栅线 3也可 以具有不同的长度;
进一步的, 使得至少有两条数据线 2分别连接数量不同的薄膜晶体管 5, 和 /或, 至少两条欐线 3分别连接数量不同的薄膜晶体管 5。
例如, 多条数据线中至少包括: 与第一数量的薄膜晶体管连接的第一数 据线, 以及与第二数量的薄膜晶体管连接的第二数据线。
可以理解的是, "第一 "和 "第二"在比较数值关系时表示不相等, 在相 互位置关系是相对而言, 并非特指。 例如, 第一数量不等于第二数量。 如图 8所示, 数据线 81可以称为第一数据线, 数据线 82可以称为第二数据线。 相对而言, 数据线 82可以称为第一数据线, 数据线 83可以称为第二数据线。 此外, 第一数据线 (或第一 »线) 可以是指其中一条数据线 (或栅线), 也可 以指连接相同数量薄膜晶体管 (或长度相同) 等功能作] ¾基本相同的数据线 进一步的, 所述驱动模块在一帧时间内向第一数据线输出的数据驱动信 号中的子信号的数量为第一数量。 所述驱动模块在一帧时间内向第二数据线 输出的数据驱动信号中的子信号的数量为第二数量。
子信号指的是驱动模块通过一个 TFT输入到像素电极的信号。
以图 8所示的情况为例, 最上方的数据线 81与 7个 TFT连接, 而中间 的数据线 82与 8个 TFT连接, 最下方的数据线 83与 9个 TTT连接。 此时, 根据本发明实施例的 列基板, 在一^时间内, 驱动模块向最上方的数据线 81输出的数据驱动信号中的子信号的数量为 7个, 驱动模块向中间的数据线 82输出的数据驱动信号中的子信号的数量为 8个, 驱动模块向最下方的数据 线 83输出的数据驱动信号中的子信号的数量为 9个。
下面从驱动模块的角度来进一步描述如下。
以图 8所示的情况为例, 最上方的数据线 81与 7个 TFT连接, 而中间 的数据线 82与 8个 TFT连接, 最下方的数据线 83与 9个 TFT连接。 栅线 811与 1个 TFT连接,栅线 812与 2个 TFT连接,欐线 813与 3个 TFT连接。 此时, 根据本发明实施例的阵列基板, »线逐行扫描。 在 U时间, 驱动模块 向栅线 811 输入栅极驱动信号, 打开一个薄膜晶体管, 此时驱动模块向数据 线 83输入数据驱动信号, 则驱动模块输出的子信号数量为 1个。 同理, 在 t2 时间, 驱动模块向栅线 812输入栅极驱动信号的子信号的数量为 2个, 此时 驱动模块向数据线 82、 83输入数据驱动信号, 则驱动模块输出的子信号数量 为 2个。 以此类推, 不再贅述。
在本发明实施例中, 驱动模块根据数据线连接的薄膜晶体管的数量来决 定数据驱动信号中的子信号的数量, 能够满足数据线连接的薄膜晶体管的数 量不同的阵列基板的驱动需求, 相对于现有技术具有更好的灵活性。
如图 9所示, 在本发明的具体实施例中, 按照所述数据线的排列方向, 以柔性基板的对角线 93为分割线, 所述数据线分为第一部分 91和第二部分 92。 例如, 位于所述柔性基板左上半部分的数据线为第一部分, 位于所述柔 性基板右下半部分的数据线为第二部分。
其中第一部分 91所包括的数据线中, 按照从上到下的顺序来看, 在先的 数据线连接的薄膜晶体管的数量小于在后的数据线连接的薄膜晶体管的数 量。 第二部分 92所包括的数据线中, 按照认上到下的顺序来看, 在先的数据 线连接的薄膜晶体管的数量大于在后的数据线连接的薄膜晶体管的数量。 也就是说, 在数据线的排列方向上, 数据线连接的晶体管数量先增大, 后减小。
优选的, 数据线的排列方向上, 数据线连接的晶体管数量先等差数值为
Pi增大, 后按照等差数值为 P2减小 (P1和 P2均为大于等于〗的正整数)。
进一步的, 等差数值为 P1与 P2相等, 即数据线连接的晶体管数量相对 对角线呈对称排列。 例如, P1 =P2=2。
假定有 2m条数据线, 在数据线的排列方向上, 依次连接的晶体管数量 为: 】、 3、 5、 …、 2Ώ- 3、 2η 1、 2η- 1、 2Ώ- 3、 …、 5、 3、 1 ( niSim,其中 η 和 m均为正整数), 则对应的本发明实施例的数据驱动信号如图 10所示。
从图 10可以发现, 在数据线的排列方向上, 驱动模块发送的驱动信号包 括的子信号的数量先是增大, 然后减小。
在本发明的具体实施例中, 上述的数据线斜向设置之后, 会导致多条数 据线 /榲线中, 存在第一信号传输线, 和长度大于第一信号传输线的长度的第 二信号传输线。 也就是说:
存在第一栅线, 和长度大于第一 »线的长度的第二栅线; 和 /或; 第一数据线, 和长度大于第一数据线的长度的第二数据线。
此时为了降低信号传输线之间的时延, 在本发明具体实施例中, 所述第 二信号传输线的截面面积大于所述第一信号传输线的截面面积, 使得截面面 积不同的第一信号传输线与第二信号传输线之间的第一传输时延差小于截面 面积相同的第一信号传输线与第二信号传输线之间的第二传输时延差。
也就是说:
所述第二数据线的截面面积大于所述第一数据线的截面面积, 使得截面 面积不同的第一数据线与第二数据线之间的第一传输时延差小于截面面积相 同的第一数据线与第二数据线之间的第二传输时延差。
所述第二栅线的截面面积大于所述第一栅线的截面面积, 使得截面面积 不同的第一栅线与第二栅线之间的第三传输时延差小于截面面积相同的第一 栅线与第二極线之间的第四传输时延差。
在本发明实施例所述的阵列基板中, 当存在长度不同的信号传输线时, 根据二者长度的不同, 在制作过程中控制生成的长度不同的信号传输线的截 面面积。 较长的信号传输线的截面面积较大, 因此其阻抗效应相应减小。 因 此能够弥补由于其长度较长带来的时延, 降低了不同信号传输线之间的时延 差, 提高了显示性能。
在本发明的具体实施例中, 可以设置任意两条长度不同的数据线 /櫥线。 长度较长的数据线 /栅线的截面面积大于长度较短的数据线 /栅线的截面面积。
在本发明的具体实施例中, 为了保证第一信号传输线和第二信号传输线 的截面面积不同, 可以采用如下方式:
当截面高度相同时, 第二信号传输线的截面宽度大于第一信号传输线的 截面宽度; 或者
当截面宽度相同时, 第二信号传输线的截面高度大于第一信号传输线的 截面高度; 或者
当截面宽度和高度均不相同时, 第二信号传输线的截面宽度和高度的乘 积大于第一信号传输线的截面宽度和高度的乘积。
以信号传输线为数据线为例。 例如, 在数据线的排列方向上, 数据线的 截面面积可以呈等差或等比的关系先增大后减小。
进一歩的, 数据线的截面面积相对对角线呈对称排列。 例如图 u所示。 在本发明实施例中, 具有上述特征的阵列基板的制作方法包括: 形成金属薄膜层;
对所述金属薄膜层进行蚀刻处理, 形成多条数据线 /栅线;
其中, 所述多条数据线 /栅线中包括第一信号传输线和长度大于第一信号 传输线的长度的第二信号传输线, 所述第二信号传输线的截面面积大于所述 第二信号传输线的截面面积。
在本发明的具体实施例中, 任意两条长度不同的数据线 /栅线, 长度较长 的数据线 Z栅线的截面面积大于长度较短的数据线 /榲线的截面面积。
按照上述的方式, 结合图 9所示, 以数据线为例, 在图 9中箭头所示的 方向上, 数据线的长度先增大, 后减小。 按照本发明实施例的技术方案, 如 果在刻蚀过程中, 每条数据线的宽度相同, 则在数据线的排列方向上, 数据 线的厚度先增大, 然后减小。 在本发明的具体实施例中, 所述形成金属薄膜层的步骤可以通过溅射工 艺制作。
上述的阵列基板的制作方法, 其中, 所述形成金属薄膜层的步骤具体包 括:
通过磁条形成一磁场, 在待制作的数据线 /栅线的排列方向上, 所述磁场 的磁场强度先变大后变小。
利用被电场加速后的等离子化惰性气体撞击靶材, 撞击出原子在所述磁 场的作用下在基板的表面沉积形成所述金属薄膜层。
在本发明实施例中, 通过在基板后面设置斜向的磁条, 其排列方向与待 制作的数据线 /栅线的排列方向相同。 通过磁条之间形成磁场, 在强磁场的位 置则等离子体密度高, 则成膜厚度高。 通过将基板背后的磁条斜向设置, 这 样就可以正好对应到玻璃基板上的膜厚规律, 形成如图 1】所示的金属膜厚。
如图 11所示, 为上述工艺过程之后形成的金属薄膜层的剖面示意图, 在 数据线排列方向上, 可以发现, 形成的金属薄膜层 111 的厚度先增大, 然后 减小, 呈对称排列。
其中, 沉积形成的金属薄膜层, 按照待制作的数据线 /栅线的排列方向, 分为两个部分。
在所述数据线/栅线的排列方向上, 其中一部分金属薄膜层的厚度逐渐增 大, 而另一部分金属薄膜层的厚度逐渐减小。
这种有规律的波浪形的成膜厚度, 在刻蚀完成后, 可以实现如图 12所示 的效果。其中在长的走线上有比较厚的膜厚, 在短的走线上有比较薄的膜厚, 丛而实现均一的信号延迟。
当然, 应当理解的是, 上述的数据线 /栅线也可以通过打印或其他的方式 来实现, 在本发明具体实施例中不做具体限定。
本发明实施例还提供了一种柔性显示器件, 包括上述任意的阵列基板。 其中, 阵列基板的结构以及工作原理同上述实施例, 在此不再赘述。 另外, 柔性显示器件其他部分的结构可以参考现有技术, 对此本文不再详细描述。 该柔性显示器件可以为: 液晶面板、 电子纸、 液晶电视、 液晶显示器、 数码 相框、 手机、 平板电脑等具有任何显示功能的产品或部件。 本发明实施例还提供了一种电子设备, 包括上述的柔性显示器件。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若千改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

1 . 一种阵列基板, 至少包括柔性基板和形成在所述柔性基板上的阵列
Figure imgf000015_0001
信号传输线, 包括多条数据线和多条»线, 相互交叉在所述柔性基板上 来形成多个子像素区; 以及
设置于所述多个子像素区中的每个子像素区当中的薄膜晶体管, 分别与 对应的数据线和櫥线连接,
其中, 所述信号传输线中的至少一部分信号传输线相对于所述柔性基板 的任意一个侧边的夹角实质上不等于 90度。
2. 根据权利要求 1所述的 列基板, 其中, 所述多条数据线中的每一条 数据线和所述多条栅线中的每一条櫥线相互垂直, ϋ所述多条数据线中的每 一条数据线与所述柔性基板的一个侧边的夹角在大约 30度到大约 60度之间。
3. 根据权利要求 2所述的 列基板, 其中, 所述多条数据线中的每一条 数据线与所述柔性基板的一个侧边的夹角为大约 45度。
4. 根据权利要求 1 3中任一项所述的阵列基板, 其中, 所述多条数据线 包括与第一数量的薄膜晶体管连接的第一数据线, 和与第二数量的薄膜晶体 管连接的第二数据线。
5. 根据权利要求 4所述的阵列基板, 其中, 所述 列基板还包括驱动模 块, 所述驱动模块在一愤时间内向第一数据线输出的数据驱动信号中的子信 号的数量为第一数量, 所述驱动模块在一帧时间内向第二数据线输出的数据 驱动信号中的子信号的数量为第二数量。
6. 根据权利要求 1-3中任一项所述的阵列基板, 其中,
所述多条数据线包括第一数据线和长度大于第一数据线的长度的第二数 据线。
7. 根据权利要求 1-3中任一项所述的阵列基板, 其中,
所述多条栅线包括第一栅线和长度大于第一極线的长度的第二栅线。
8. 根据权利要求 4-7中任一项所述的阵列基板, 其中,
所述第二数据线的截面面积大于所述第一数据线的截面面积, 使得截面 面积不同的第一数据线与第二数据线之间的第一传输时延差小于截面面积相 同的第一数据线与第二数据线之间的第二传输时延差。
9. 根据权利要求 8所述的 列基板, 其中,
当截面高度相同时,第二数据线的截面宽度大于第一数据线的截面宽度; 或者
当截面宽度相同时,第二数据线的截面高度大于第一数据线的截面高度; 或者
当截面宽度和高度均不相同时, 第二数据线的截面宽度和高度的乘积大 于第一数据线的截面宽度和高度的乘积。
10. 根据权利要求 4- 7中任一项所述的阵列基板, 其中,
所述第二栅线的截面面积大于所述第一栅线的截面面积, 使得截面面积 不同的第一栅线与第二栅线之间的第三传输时延差小于截面面积相同的第一 »线与第二栅线之间的第四传输时延差。
11. 根据权利要求 10所述的 列基板, 其中,
当截面高度相同时, 第二栅线的截面宽度大于第一 »线的截面宽度; 或 者
当截面宽度相同时, 第二栅线的截面高度大于第一 »线的截面高度; 或 者
当截面宽度和高度均不相同时, 第二 »线的截面宽度和高度的乘积大于 第一 *线的截面宽度和高度的乘积。
12. 根据权利要求 1-4中任一项所述的阵列基板, 其中,所述柔性基板划 分为可弯折的显示区和不可弯折的外围区, 所述阵列基板还包括设置于所述 外围区的驱动模块。
13. 根据权利要求 12所述的阵列基板, 其中, 所述驱动模块包括对应设 置于所述柔性基板的相对的两个侧边的第一驱动模块和第二驱动模块, 所述 第一驱动模块和第二驱动模块以就近连接的原则与所述多条数据线和所述多 条栅线分别连接。
14. 一种柔性显示器件, 包括权利要求 1-13中任一项所述的阵列基板。
15. 一种电子设备, 包括权利要求 14所述的柔性显示器件。
1 6. 一种阵列基板的制作方法, 包括如下步骤:
通过磁条形成一磁场, 在待制作的数据线 /栅线的排列方向上, 所述磁场 的磁场强度先变大后变小;
利用被电场加速后的等离子化惰性气体撞击靶材, 撞击出原子在所述磁 场的作用下在基板的表面沉积形成金属薄膜层;
通过在所述基板后面设置斜向的磁条, 其排列方向与待制作的数据线 /栅 线的排列方向相同, 通过磁条之间形成磁场, 在强磁场的位置则等离子体密 度高, 则成膜厚度高; 以及
刻蚀有规律的波浪形的成膜厚度的金属薄膜层, 其中在长的走线上有比 较厚的膜厚, 在短的走线上有比较薄的膜厚, 从而实现均一的信号延迟。
PCT/CN2014/074890 2013-09-04 2014-04-08 一种阵列基板及其制造方法、柔性显示器件及电子设备 WO2015032198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/402,971 US9472134B1 (en) 2013-09-04 2014-04-08 Array substrate and method for manufacturing the same, flexible display device and electronic product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310397778.6 2013-09-04
CN201310397778.6A CN103454821B (zh) 2013-09-04 2013-09-04 一种阵列基板、柔性显示器件及电子设备

Publications (1)

Publication Number Publication Date
WO2015032198A1 true WO2015032198A1 (zh) 2015-03-12

Family

ID=49737366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074890 WO2015032198A1 (zh) 2013-09-04 2014-04-08 一种阵列基板及其制造方法、柔性显示器件及电子设备

Country Status (3)

Country Link
US (1) US9472134B1 (zh)
CN (1) CN103454821B (zh)
WO (1) WO2015032198A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454822B (zh) * 2013-09-04 2016-03-30 京东方科技集团股份有限公司 阵列基板及其驱动方法、柔性显示器件及电子设备
CN103454821B (zh) * 2013-09-04 2016-06-15 京东方科技集团股份有限公司 一种阵列基板、柔性显示器件及电子设备
CN103730476A (zh) * 2013-12-27 2014-04-16 京东方科技集团股份有限公司 阵列基板及显示装置
KR102220152B1 (ko) * 2014-03-13 2021-02-26 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN103926774B (zh) * 2014-04-02 2016-11-16 京东方科技集团股份有限公司 阵列基板、柔性显示器件及电子设备
CN104090439B (zh) * 2014-06-27 2017-08-08 京东方科技集团股份有限公司 阵列基板及其驱动方法、柔性显示器件及电子设备
TWI574094B (zh) * 2016-07-28 2017-03-11 友達光電股份有限公司 顯示面板
KR102645817B1 (ko) * 2016-12-06 2024-03-08 한화로보틱스 주식회사 로봇의 비헤이비어 관리 방법 및 장치
CN106486500B (zh) * 2016-12-28 2018-11-16 京东方科技集团股份有限公司 柔性阵列基板及其制造方法、柔性显示面板和显示装置
CN106783890A (zh) * 2017-02-07 2017-05-31 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN106952607B (zh) * 2017-05-25 2020-04-17 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN108181769B (zh) * 2018-01-29 2020-11-10 武汉华星光电技术有限公司 一种阵列基板、显示面板及电子设备
US10831074B2 (en) 2018-01-29 2020-11-10 Wuhan China Star Optoelectronics Technology Co., Ltd. Array substrate, display panel, and electronic apparatus
KR102484880B1 (ko) * 2018-06-08 2023-01-05 엘지디스플레이 주식회사 신축 가능한 표시장치, 패널 구동회로 및 구동방법
CN109345993A (zh) * 2018-09-18 2019-02-15 深圳华信嘉源科技有限公司 一种矩阵显示屏及其显示控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536453U (zh) * 2009-09-24 2010-07-28 北京京东方光电科技有限公司 Cof柔性电路板
CN101807582A (zh) * 2009-02-16 2010-08-18 元太科技工业股份有限公司 可挠性像素阵列基板与可挠性显示器
CN201765413U (zh) * 2010-09-16 2011-03-16 深圳市飞格达电子有限公司 一种高性能的液晶模组结构
CN202056680U (zh) * 2011-04-15 2011-11-30 郎应红 一种新型背光结构
CN102637633A (zh) * 2011-06-17 2012-08-15 京东方科技集团股份有限公司 一种阵列基板制造方法及系统
CN103022047A (zh) * 2011-09-23 2013-04-03 元太科技工业股份有限公司 驱动基板及使用该驱动基板的显示设备
CN103454821A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 一种阵列基板、柔性显示器件及电子设备
CN103456743A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、柔性显示器件及电子设备
CN103454822A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 阵列基板及其驱动方法、柔性显示器件及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069768A (ja) * 2007-09-18 2009-04-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR101320501B1 (ko) * 2009-11-23 2013-10-23 엘지디스플레이 주식회사 플렉서블 표시장치 및 그 제조 방법
US9601557B2 (en) * 2012-11-16 2017-03-21 Apple Inc. Flexible display
CN203519983U (zh) * 2013-09-04 2014-04-02 京东方科技集团股份有限公司 一种阵列基板、柔性显示器件及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807582A (zh) * 2009-02-16 2010-08-18 元太科技工业股份有限公司 可挠性像素阵列基板与可挠性显示器
CN201536453U (zh) * 2009-09-24 2010-07-28 北京京东方光电科技有限公司 Cof柔性电路板
CN201765413U (zh) * 2010-09-16 2011-03-16 深圳市飞格达电子有限公司 一种高性能的液晶模组结构
CN202056680U (zh) * 2011-04-15 2011-11-30 郎应红 一种新型背光结构
CN102637633A (zh) * 2011-06-17 2012-08-15 京东方科技集团股份有限公司 一种阵列基板制造方法及系统
CN103022047A (zh) * 2011-09-23 2013-04-03 元太科技工业股份有限公司 驱动基板及使用该驱动基板的显示设备
CN103454821A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 一种阵列基板、柔性显示器件及电子设备
CN103456743A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、柔性显示器件及电子设备
CN103454822A (zh) * 2013-09-04 2013-12-18 京东方科技集团股份有限公司 阵列基板及其驱动方法、柔性显示器件及电子设备

Also Published As

Publication number Publication date
CN103454821A (zh) 2013-12-18
US20160284262A1 (en) 2016-09-29
CN103454821B (zh) 2016-06-15
US9472134B1 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
WO2015032198A1 (zh) 一种阵列基板及其制造方法、柔性显示器件及电子设备
US9570021B2 (en) Array substrate, flexible display device and electronic device
US9514694B2 (en) Array substrate, method for driving the same, flexible display device and electronic equipment
WO2018149144A1 (zh) 一种阵列基板、显示面板和显示装置
TWI553881B (zh) 薄膜電晶體基板
CN109524446B (zh) 显示面板及其制作方法、显示装置
WO2020062719A1 (zh) 柔性显示面板及柔性显示装置
WO2017121009A1 (zh) Ips型tft-lcd阵列基板的制作方法及ips型tft-lcd阵列基板
WO2015196683A1 (zh) 阵列基板及其驱动方法、柔性显示器件及电子设备
WO2016141705A1 (zh) 阵列基板及其制造方法和显示装置
WO2016065798A1 (zh) 阵列基板及其制造方法、显示装置
WO2019085700A1 (zh) 阵列基板及其制造方法和显示装置及其制造方法
CN105389057A (zh) 一种集成触控显示面板及触控显示设备
CN203519983U (zh) 一种阵列基板、柔性显示器件及电子设备
CN103456743B (zh) 阵列基板及其制作方法、柔性显示器件及电子设备
WO2014153844A1 (zh) 阵列基板及显示装置
WO2020118915A1 (zh) 像素电极及阵列基板、显示面板
US9425166B2 (en) GOA layout method, array substrate and display device
WO2022027779A1 (zh) 柔性显示面板及可卷曲显示装置
CN105280648A (zh) 阵列基板及其制作方法、显示面板和显示装置
CN110068971B (zh) 显示面板
WO2019062320A1 (zh) 阵列基板及其制备方法、显示装置
CN203445121U (zh) 阵列基板、柔性显示器件及电子设备
TWI679763B (zh) 可撓性電子裝置
WO2013017066A1 (zh) 阵列基板和液晶显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14402971

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM F1205A DATED 11.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14842513

Country of ref document: EP

Kind code of ref document: A1