WO2015030206A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2015030206A1
WO2015030206A1 PCT/JP2014/072821 JP2014072821W WO2015030206A1 WO 2015030206 A1 WO2015030206 A1 WO 2015030206A1 JP 2014072821 W JP2014072821 W JP 2014072821W WO 2015030206 A1 WO2015030206 A1 WO 2015030206A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
resin
layer
thermochromic
mass
Prior art date
Application number
PCT/JP2014/072821
Other languages
English (en)
French (fr)
Inventor
圭吾 大鷲
直之 永谷
孫 仁徳
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US14/893,575 priority Critical patent/US20160129673A1/en
Priority to CN201480037697.8A priority patent/CN105358502B/zh
Priority to JP2014547609A priority patent/JP6475495B2/ja
Priority to DE112014003948.9T priority patent/DE112014003948T5/de
Publication of WO2015030206A1 publication Critical patent/WO2015030206A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10477Variable transmission thermochromic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating

Definitions

  • the present invention relates to an interlayer film for laminated glass used for laminated glass for automobiles, buildings, etc., and more specifically, excellent thermochromic properties can be maintained over a long period of time, and a laminated glass member
  • the present invention relates to an interlayer film for laminated glass that can have an appropriate adhesiveness, and a laminated glass using the interlayer film for laminated glass.
  • Vanadium dioxide or substituted vanadium dioxide in which some of the vanadium atoms of vanadium dioxide are replaced with other atoms has a thermochromic property that causes a phase transition from a semiconductor to a metal at a specific temperature or higher, greatly reducing infrared transmittance.
  • Patent Document 1 That is, for example, when a vanadium dioxide film is formed on glass, the visible light and infrared transmittances are high below the phase transition temperature, but the visible light transmittance is high when the phase transition temperature is exceeded. Deteriorating properties.
  • Patent Document 2 Conventionally, production of an interlayer film for laminated glass using the thermochromic properties of vanadium dioxide has been attempted (for example, Patent Document 2).
  • vanadium dioxide is finely dispersed in the interlayer film for laminated glass, the transmittance of visible light and infrared rays is high at a temperature lower than the phase transition temperature of vanadium dioxide. It is expected that an interlayer film for laminated glass exhibiting the property of decreasing the infrared transmittance is obtained.
  • the interlayer film for laminated glass having a thermochromic property as described in Patent Document 2 has a problem that the thermochromic property is lowered when the vanadium dioxide particles are deteriorated by moisture when used for a long time. Therefore, the conventional interlayer film for laminated glass as in Patent Document 2 has a problem that it cannot be used for a long period of time. On the other hand, it is conceivable to suppress the deterioration of the vanadium dioxide particles by lowering the moisture content of the entire interlayer film for laminated glass, but if the moisture content of the interlayer film for laminated glass is low, the interlayer film and the laminated glass The problem that the adhesiveness with a member became strong too much and the scattering prevention property of the laminated glass fell newly arose.
  • the present invention provides an interlayer film for laminated glass capable of maintaining excellent thermochromic properties over a long period of time and having an appropriate adhesion to a laminated glass member, and the laminated film It aims at providing the laminated glass using the intermediate film for glass.
  • the present invention is an interlayer film for laminated glass in which a first resin layer containing a thermoplastic resin, a thermochromic layer, and a second resin layer containing a thermoplastic resin are laminated in this order in the thickness direction.
  • the thermochromic layer contains a thermoplastic resin and vanadium dioxide particles, and the water content is less than 0.4% by mass, and the water content of the first resin layer and the second resin layer is An interlayer film for laminated glass having a moisture content higher than that of the thermochromic layer.
  • the present invention is described in detail below.
  • thermochromic layer containing vanadium dioxide particles is sandwiched between a first resin layer and a second resin layer, and the moisture content of these layers is specified.
  • FIG. 1 is a partially cutaway sectional view schematically showing an example of the interlayer film for laminated glass of the present invention.
  • the intermediate film 1 shown in FIG. 1 includes a thermochromic layer 2, a first resin layer 3 disposed on one surface 2 a (first surface) side of the thermochromic layer 2, and the other of the thermochromic layer 2. And a second resin layer 4 disposed on the surface 2b (second surface) side.
  • the intermediate film 1 is used to obtain a laminated glass.
  • the intermediate film 1 is an intermediate film for laminated glass. Note that the intermediate film may have a stacked structure of four or more layers.
  • the thermochromic layer 2 contains a thermoplastic resin and vanadium dioxide particles 5.
  • the first resin layer 3 contains a thermoplastic resin.
  • the second resin layer 4 contains a thermoplastic resin.
  • the thermochromic layer 2 is not in direct contact with the laminated glass member and has excellent long-term stability. It will be a thing. As in the past, just making a laminated glass using an interlayer film containing vanadium dioxide particles reduces the thermochromic properties due to moisture when the resulting laminated glass is used for a long period of time.
  • thermochromic layer 2 By adopting a configuration in which the thermochromic layer 2 is sandwiched between the two resin layers 3 and 4, excellent thermochromic properties can be maintained for a long period of time.
  • two resin layers are installed on the interlayer film for laminated glass, and the thermochromic layer is sandwiched so that the thermochromic layer does not directly contact the laminated glass member in the case of laminated glass. It can be made into a simple shape. Since the surface of the glass used for the laminated glass member is hydrophilic, it tends to contain moisture, but the movement of moisture from the glass can be prevented through the resin layer.
  • the interlayer film for laminated glass of the present invention has a first resin layer containing a thermoplastic resin.
  • the thermoplastic resin include polyvinyl acetal resin, ethylene-vinyl acetate copolymer, ethylene-acrylic copolymer, polyurethane resin, polyvinyl alcohol resin, and polyester resin.
  • the thermoplastic resin is preferably a polyvinyl acetal resin or an ethylene-vinyl acetate copolymer.
  • the thermoplastic resin is preferably a polyvinyl acetal resin.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol is generally in the range of 80 to 99.8 mol%.
  • the preferable lower limit of the polymerization degree of the polyvinyl alcohol is 200, the more preferable lower limit is 500, the preferable upper limit is 3,000, and the more preferable upper limit is 2,500.
  • the polymerization degree is 200 or more, the penetration resistance of the laminated glass can be improved.
  • the polymerization degree is 3,000 or less, the moldability of the interlayer film for laminated glass is improved.
  • the aldehyde is not particularly limited. In general, an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • Examples of the aldehyde having 1 to 10 carbon atoms include propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, and n-nonylaldehyde.
  • propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable
  • propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferable
  • n-butyraldehyde is still more preferable.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin is in the range of 15 to 40 mol%. It is preferable. The more preferable lower limit of the hydroxyl group content is 18 mol%, and the more preferable upper limit is 35 mol%.
  • the adhesive force of each layer can be improved as the said hydroxyl group is 15 mol% or more. Further, when the hydroxyl group is 40 mol% or less, the flexibility of the interlayer film for laminated glass is enhanced, and the handling is improved.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring the amount of ethylene group to which the hydroxyl group of polyvinyl alcohol as a raw material is bonded in accordance with JIS K6726 “Testing method for polyvinyl alcohol”. it can.
  • the preferable lower limit of the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin is 0.1 mol%, the more preferable lower limit is 0.3 mol%, the still more preferable lower limit is 0.5 mol%, and the preferable upper limit is 30 mol%. A more preferable upper limit is 25 mol%, and a further preferable upper limit is 20 mol%.
  • the degree of acetylation is 0.1 mol% or more, the compatibility between the polyvinyl acetal resin and the plasticizer can be enhanced.
  • the acetylation degree is 30 mol% or less, the moisture resistance of the interlayer film is increased.
  • the degree of acetylation is obtained by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups of the main chain, It is a value indicating the mole fraction obtained by dividing by the percentage.
  • the amount of ethylene group to which the acetal group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin (the degree of butyralization in the case of polyvinyl butyral resin) is 60 mol%, the more preferable lower limit is 63 mol%, the preferable upper limit is 85 mol%, and the more preferable upper limit is 75 mol%. A more preferred upper limit is 70 mol%.
  • the degree of acetalization is 60 mol% or more, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
  • the reaction time required in order to manufacture polyvinyl acetal resin as the said acetalization degree is 85 mol% or less can be shortened.
  • the degree of acetalization is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which acetal groups are bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the degree of acetalization was determined by measuring the degree of acetylation (acetyl group content) and the hydroxyl group content (vinyl alcohol content) according to JIS K6728 “Testing methods for polyvinyl butyral”. The fraction can be calculated and then calculated by subtracting the degree of acetylation and the hydroxyl content from 100 mol%.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the acetalization degree (butyralization degree) and acetylation degree (acetyl group amount) were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the result.
  • polyester resin examples include polyalkylene terephthalate resin and polyalkylene naphthalate resin.
  • the polyalkylene terephthalate resin examples include polyethylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate.
  • the polyalkylene terephthalate resin is preferably a polyethylene terephthalate resin because it is chemically stable and the long-term stability of the vanadium dioxide particles when vanadium dioxide particles are dispersed is further enhanced.
  • the polyalkylene naphthalate resin examples include polyethylene naphthalate and polybutylene naphthalate.
  • the interlayer film for laminated glass of the present invention has a second resin layer containing a thermoplastic resin.
  • the thermochromic layer is sandwiched between the first and second resin layers, and as a result, moisture is transferred to the thermochromic layer on both sides of the intermediate film. Can be effectively prevented.
  • thermoplastic resin contained in the second resin layer the same thermoplastic resin as that contained in the first resin layer can be used.
  • the thermoplastic resin contained in the second resin layer is preferably a polyvinyl acetal resin or an ethylene-vinyl acetate copolymer.
  • the thermoplastic resin contained in the second resin layer is preferably a polyvinyl acetal resin.
  • the affinity between the thermochromic layer and the second resin layer is enhanced, and the adhesion between the thermochromic layer and the second resin layer can be further enhanced.
  • the interlayer film for laminated glass of the present invention has a thermoplastic resin and a thermochromic layer containing vanadium dioxide particles.
  • thermoplastic resin contained in the thermochromic layer the same thermoplastic resin as that contained in the first resin layer can be used.
  • the thermoplastic resin contained in the thermochromic layer is preferably a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer resin, or a polyester resin.
  • the thermoplastic resin contained in the thermochromic layer is preferably a polyester resin.
  • the polyester resin can suppress the deterioration of the vanadium dioxide particles contained in the thermochromic layer as compared with other thermoplastic resins such as a polyvinyl acetal resin and an ethylene-vinyl acetate copolymer. Stability can be further enhanced.
  • the thermoplastic resin contained in the thermochromic layer is preferably a polyalkylene terephthalate resin.
  • the first and second thermoplastic resins and the third thermoplastic resin may be the same or different.
  • the content of hydroxyl groups (hydroxyl content) in the polyvinyl acetal resin is preferably in the range of 15 to 40 mol%.
  • the more preferable lower limit of the hydroxyl group content is 18 mol%, the more preferable upper limit is 35 mol%, the still more preferable upper limit is 30 mol% or less, and the particularly preferable upper limit is 24 mol% or less. If the content rate of the said hydroxyl group is more than the said preferable minimum, the adhesive force of the thermochromic layer with respect to another layer can be improved.
  • the hydroxyl group content is less than or equal to the preferable upper limit, the flexibility of the interlayer film for laminated glass is increased, the handling becomes good, and the vanadium dioxide particles when the vanadium dioxide particles are dispersed are long-term. Stability is further increased.
  • the preferred lower limit of the acetylation degree (acetyl group amount) of the polyvinyl acetal resin is 0.1 mol%, and the more preferred lower limit is 0.00. 3 mol%, more preferred lower limit is 0.5 mol%, particularly preferred lower limit is 1 mol%, most preferred lower limit is 5 mol%, preferred upper limit is 30 mol%, more preferred upper limit is 25 mol%, still more preferred upper limit is 20 mol% Mol%.
  • the compatibility between the polyvinyl acetal resin and the plasticizer can be increased, and the long-term stability of the vanadium dioxide particles when the vanadium dioxide particles are dispersed can be improved. It will increase even more.
  • the upper limit of the said acetylation degree is the said preferable range, the moisture resistance of an intermediate film will become high.
  • the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin is 60 mol%
  • a preferable lower limit is 63 mol%
  • a preferable upper limit is 85 mol%
  • a more preferable upper limit is 75 mol%
  • a further preferable upper limit is 70 mol%.
  • the compatibility between the polyvinyl acetal resin and the plasticizer is increased, and the long-term stability of the vanadium dioxide particles when vanadium dioxide particles are dispersed is further enhanced.
  • the reaction time required for producing a polyvinyl acetal resin can be shortened.
  • thermochromic layer contains vanadium dioxide particles. Since the vanadium dioxide particles have thermochromic properties, excellent thermochromic properties can be imparted to the interlayer film for laminated glass and laminated glass of the present invention. Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays. However, infrared rays have a large thermal effect, and once infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
  • infrared rays heat rays
  • infrared rays heat rays
  • the vanadium dioxide particles may be vanadium dioxide particles having a purity of 100%, or may be substituted vanadium dioxide particles obtained by substituting some of the vanadium atoms in vanadium dioxide with metal atoms other than vanadium.
  • metal atoms other than vanadium are not particularly limited, and examples thereof include tungsten, molybdenum, niobium, and tantalum.
  • the metal atom other than vanadium is preferably at least one selected from tungsten, molybdenum, niobium and tantalum.
  • Vanadium dioxide has various crystal phases, but monoclinic crystals and tetragonal crystals (rutile type) reversibly undergo phase transition. Its phase transition temperature is about 68 ° C. The phase transition temperature can be adjusted by substituting some of the vanadium atoms in vanadium dioxide with metal atoms other than vanadium.
  • thermochromic property of the interlayer film for laminated glass obtained can be controlled by appropriately selecting vanadium dioxide particles or substituted vanadium dioxide particles, or by appropriately selecting the atomic species and substitution rate to be substituted in the substituted vanadium dioxide particles. can do.
  • the preferable lower limit of the metal atom substitution rate is 0.1 atomic%, and the preferable upper limit is 10 atomic%.
  • the substitution rate is 0.1 atomic% or more, the phase transition temperature of the substituted vanadium dioxide particles can be easily adjusted, and when it is 10 atomic% or less, excellent thermochromic properties can be obtained.
  • the substitution rate is a value indicating the ratio of the number of substituted atoms to the total of the number of vanadium atoms and the number of substituted atoms, expressed as a percentage.
  • the vanadium dioxide particles or the substituted vanadium dioxide particles may be substantially composed of vanadium dioxide or substituted vanadium dioxide. Also good.
  • the core particles include silicon oxide, silica gel, titanium oxide, glass, zinc oxide, zinc hydroxide, aluminum oxide, aluminum hydroxide, titanium hydroxide, zirconium oxide, zirconium hydroxide, zirconium phosphate, and hydrotalcite compound. , A fired product of a hydrotalcite compound, and inorganic particles such as calcium carbonate.
  • the preferable lower limit of the average particle diameter of the vanadium dioxide particles is 0.01 ⁇ m, the more preferable lower limit is 0.02 ⁇ m, the preferable upper limit is 100 ⁇ m, and the still more preferable lower limit is 0.1 ⁇ m.
  • the average particle diameter is equal to or more than the preferable lower limit, thermochromic properties can be sufficiently enhanced. If an average particle diameter is below the said preferable upper limit, the dispersibility of a vanadium dioxide particle can be improved.
  • the “average particle diameter” indicates a volume average particle diameter.
  • the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
  • the content of the vanadium dioxide particles in the thermochromic layer is not particularly limited, the preferable lower limit of the content of the vanadium dioxide particles is 0.01 parts by mass, and the more preferable lower limit is 100 parts by mass of the thermoplastic resin. 0.1 mass part, a preferable upper limit is 3 mass parts, and a more preferable upper limit is 2 mass parts.
  • the thermochromic property can be sufficiently enhanced.
  • the content of the vanadium dioxide particles in 100% by mass of the thermochromic layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 1% by mass or more, and particularly preferably 1%.
  • thermochromic property can be sufficiently enhanced.
  • the thermochromic layer may contain a dispersant such as glycerin ester or polycarboxylic acid for the purpose of improving the dispersibility of the vanadium dioxide particles.
  • the glycerin ester is not particularly limited.
  • decaglycerin monostearic acid ester, decaglycerin tristearic acid ester, decaglycerin decastearic acid ester hexaglycerin monostearic acid ester, hexaglycerin distearic acid ester, hexaglycerin tristearic acid Ester, hexaglycerin pentastearate, tetraglyceryl monostearate, tetraglyceryl tristearate, tetraglycerin pentastearate, polyglyceryl stearate, glycerol monostearate, decaglycerin monooleate, decaglycerin Decaoleate, hexaglycerin monoole
  • glycerin esters commercially available products include, for example, SY Glycer CR-ED (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., condensed ricinoleic acid polyglyceric acid ester), SY Glyster PO-5S (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., hexaglycerin oleate) Ester) and the like.
  • the polycarboxylic acid is not particularly limited, and examples thereof include a polycarboxylic acid polymer obtained by grafting polyoxyalkylene to a polymer having a carboxyl group in the main chain skeleton.
  • the content of the dispersant in the thermochromic layer is preferably 1 part by weight, preferably 10,000 parts by weight, more preferably 10 parts by weight, and more preferably 1000 parts by weight, with respect to 100 parts by weight of the vanadium dioxide particles.
  • Part by mass a more preferred lower limit is 30 parts by mass, and a more preferred upper limit is 300 parts by mass.
  • the content of the dispersant is equal to or higher than the lower limit, the dispersibility of the vanadium dioxide particles is improved, so that the transparency of the thermochromic layer is improved and the transparency of the interlayer film for laminated glass is increased.
  • the content of the dispersant is equal to or lower than the upper limit, precipitation of the dispersant can be suppressed, so that the transparency of the thermochromic layer is improved and the transparency of the interlayer film for laminated glass is increased.
  • the thermochromic layer has a moisture content of less than 0.4% by mass.
  • a preferable upper limit of the water content is 0.39% by mass.
  • the minimum of the said moisture content is not specifically limited, It is preferable that it is 0.001 mass%.
  • the moisture content can be measured by the following method. About 10 g of a test piece is taken from the thermochromic layer. The obtained test piece is left still in a desiccator with a silica gel inside, and the lid of the desiccator is firmly closed. Then, this desiccator is left still in the thermostatic chamber adjusted to 23 degreeC. By this method, the test piece is dried.
  • the moisture content of the first resin layer and the second resin layer is higher than the moisture content of the thermochromic layer.
  • the minimum with a preferable moisture content is 0.01 mass%, and a preferable upper limit is 10 mass%. Adhesiveness with a laminated glass member can be made moderate by the said moisture content being in the said range.
  • the water content of the first and second resin layers can also be measured by the same method as that for the thermochromic layer.
  • the lower limit of the moisture content is more preferably 0.1% by mass, still more preferably 0.2% by mass, and particularly preferably 0.3% by mass.
  • the upper limit of the moisture content is more preferably 5% by mass, further preferably 3% by mass, and particularly preferably 1% by mass.
  • thermochromic layer and the 1st and 2nd resin layer contain a plasticizer from a viewpoint of raising the adhesive force of each layer further.
  • thermoplastic resin contained in the thermochromic layer is a polyvinyl acetal resin, it is particularly preferable to contain a plasticizer.
  • the plasticizer is not particularly limited, and a conventionally known plasticizer can be used. Only 1 type may be used for the said plasticizer and it may use 2 or more types together.
  • the plasticizer include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and phosphate plasticizers such as organic phosphate plasticizers and organic phosphorous acid plasticizers. It is done. Of these, organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the monobasic organic acid ester is not particularly limited.
  • examples include esters.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • the polybasic organic acid ester is not particularly limited, and examples thereof include an ester compound of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • Examples of the polybasic organic acid include adipic acid, sebacic acid, and azelaic acid.
  • the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n- Octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethyl butyrate, 1,3-propylene glycol di -2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl hexanoate, dipropylene glycol Di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetra
  • Organophosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably at least one of triethylene glycol di-2-ethylhexanoate (3GO) and triethylene glycol di-2-ethylbutyrate (3GH), and triethylene glycol di-2 More preferred is ethylhexanoate.
  • the content of the plasticizer in the thermochromic layer and the first and second resin layers is not particularly limited.
  • a preferable lower limit of the plasticizer content is 25 parts by mass, a more preferable lower limit is 30 parts by mass, a preferable upper limit is 80 parts by mass, and a more preferable upper limit is 60 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • fills the said preferable minimum the penetration resistance of a laminated glass can be improved further.
  • the plasticizer contents in the thermochromic layer and the first and second resin layers may be different from each other. For example, when the content of the plasticizer in at least one of the thermochromic layer and the first and second resin layers is 55 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin, sound insulation of the laminated glass Can increase the sex.
  • the first and second resin layers may contain an ultraviolet shielding agent.
  • the ultraviolet shielding agent includes an ultraviolet absorber.
  • Conventionally known general ultraviolet shielding agents include, for example, metal ultraviolet shielding agents, metal oxide ultraviolet shielding agents, benzotriazole ultraviolet shielding agents, benzophenone ultraviolet shielding agents, triazine ultraviolet shielding agents, Examples thereof include benzoate-based ultraviolet shielding agents, malonic ester-based ultraviolet shielding agents, and oxalic acid anilide-based ultraviolet shielding agents.
  • the metallic ultraviolet shielding agent examples include platinum particles, particles in which the surface of the platinum particles is coated with silica, palladium particles, particles in which the surface of the palladium particles is coated with silica, and the like.
  • the ultraviolet shielding agent is preferably not a heat shielding particle.
  • the ultraviolet shielding agent is preferably a benzotriazole ultraviolet shielding agent, a benzophenone ultraviolet shielding agent, a triazine ultraviolet shielding agent or a benzoate ultraviolet shielding agent, and more preferably a benzotriazole ultraviolet shielding agent.
  • Examples of the metal oxide ultraviolet shielding agent include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
  • Examples of the coating material on the surface of the metal oxide ultraviolet shielding agent include insulating metal oxides, hydrolyzable organosilicon compounds, and silicone compounds. Examples of the insulating metal oxide include silica, alumina and zirconia. The insulating metal oxide has a band gap energy of 5.0 eV or more, for example.
  • Examples of the benzotriazole ultraviolet shielding agent include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5 ′).
  • Tinvin 320 manufactured by BASF
  • 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole manufactured by BASF " Tinuvin 326 "
  • 2- (2'-hydroxy-3 ', 5'-di-amylphenyl) benzotriazole Tinvin 328 "manufactured by BASF) and the like.
  • the ultraviolet shielding agent is preferably a benzotriazole-based ultraviolet shielding agent containing a halogen atom, more preferably a benzotriazole-based ultraviolet shielding agent containing a chlorine atom, because of its excellent performance of absorbing ultraviolet rays.
  • benzophenone-based ultraviolet shielding agent include octabenzone (“Chimasorb 81” manufactured by BASF).
  • triazine-based ultraviolet screening agent include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol (manufactured by BASF, “Tinuvin 1577FF”). ]) And the like.
  • Examples of the benzoate-based ultraviolet shielding agent include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (manufactured by BASF, “tinuvin 120”).
  • Examples of the malonic ester-based ultraviolet shielding agent include malonic acid [(4-methoxyphenyl) -methylene] -dimethyl ester (manufactured by Clariant Japan, Hostavin PR-25).
  • Examples of the oxalic anilide-based ultraviolet shielding agent include 2-ethyl 2′-ethoxy-oxalanilide (manufactured by Clariant Japan, Sanduvor V SU).
  • thermochromic layer mentioned later may contain the ultraviolet shielding agent, and does not need to contain it. From the viewpoint of further improving the long-term stability of thermochromic properties, the thermochromic layer preferably contains an ultraviolet shielding agent.
  • the content of the ultraviolet shielding agent in the thermochromic layer and the first and second resin layers is not particularly limited.
  • the preferable lower limit of the content of the ultraviolet shielding agent is 0.3 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the more preferable lower limit is 0.4.
  • the lower limit is 0.5 parts by mass
  • the preferred upper limit is 3 parts by mass
  • the more preferred upper limit is 2.5 parts by mass
  • the more preferred upper limit is 2 parts by mass.
  • the content of the ultraviolet shielding agent in 100% by mass of the first and second resin layers is preferably 0.1% by mass or more, more preferably 0.00%. 2% by mass or more, more preferably 0.3% by mass or more, particularly preferably 0.5% by mass or more, preferably 2.5% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less, Especially preferably, it is 0.8 mass% or less.
  • the content of the ultraviolet shielding agent is 100% by mass or more in 100% by mass of the first and second resin layers, a decrease in thermochromic properties after aging of the laminated glass can be remarkably suppressed.
  • the content of the ultraviolet shielding agent in 100% by mass of the thermochromic layer is preferably 0.1% by mass or more, more preferably 0.2% by mass or more. More preferably 0.3% by mass or more, particularly preferably 0.5% by mass or more, preferably 2.5% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less, particularly preferably 0. 0.8 mass% or less.
  • the content of the ultraviolet shielding agent is 0.3% by mass or more in 100% by mass of the thermochromic layer, it is possible to remarkably suppress the decrease in thermochromic properties of laminated glass after aging.
  • the first and second resin layers may contain an adhesive strength adjusting agent for the purpose of adjusting the adhesive strength with the laminated glass member.
  • an organic metal or an inorganic acid alkali metal salt, alkaline-earth metal salt, etc. are used suitably, for example. It does not specifically limit as said alkali metal salt and alkaline-earth metal salt, For example, salts, such as potassium, sodium, magnesium, are mentioned.
  • the organic acid is not particularly limited, and examples thereof include carboxylic acids such as octylic acid, hexyl acid, butyric acid, acetic acid, and formic acid. It does not specifically limit as said inorganic acid, For example, hydrochloric acid, nitric acid, etc. are mentioned. These adhesive strength modifiers may be used alone or in combination of two or more.
  • alkali metal salts and alkaline earth metal salts of organic acids or inorganic acids alkali metal salts of organic acids having 2 to 16 carbon atoms and alkaline earth metal salts of organic acids having 2 to 16 carbon atoms are preferable. More preferred is a magnesium salt of a carboxylic acid having 2 to 16 carbon atoms.
  • the magnesium salt of a carboxylic acid having 2 to 16 carbon atoms is not particularly limited, and examples thereof include magnesium acetate, magnesium propionate, magnesium 2-ethylbutanoate, magnesium 2-ethylhexanoate and the like. These may be used alone or in combination of two or more.
  • the content of the adhesive strength adjusting agent is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin contained in the first resin layer and the second resin layer.
  • the adhesive strength of the peripheral part is hardly lowered even in a high humidity atmosphere.
  • the amount is 0.5 parts by mass or less, the adhesive force of the interlayer film for laminated glass obtained does not become too low, and the transparency of the film is not lost.
  • the content of the adhesive strength adjusting agent is 0.01 to 0.2 parts by mass with respect to 100 parts by mass of the thermoplastic resin contained in the first resin layer and the second resin layer.
  • thermochromic layer, the first resin layer, and the second resin layer are respectively formed of an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, a moisture resistant agent, a fluorescent whitening agent, and an infrared ray, as necessary.
  • You may contain additives, such as an absorber. As for these additives, only 1 type may be used and 2 or more types may be used together.
  • the interlayer film for laminated glass of the present invention may further include another layer different from the thermochromic layer and the first and second resin layers. Furthermore, another layer different from the thermochromic layer and the first and second resin layers may be sandwiched between the thermochromic layer and the first and second resin layers.
  • the thickness of the interlayer film for laminated glass of the present invention is not particularly limited.
  • the thickness of the interlayer film for laminated glass indicates the total thickness of each layer constituting the interlayer film. Therefore, the thickness of the interlayer film for laminated glass indicates the total thickness of the thermochromic layer and the first and second resin layers.
  • the preferred lower limit of the thickness of the interlayer film for laminated glass of the present invention is 0.1 mm, the more preferred lower limit is 0.25 mm, and the preferred upper limit is 3 mm, more preferred.
  • the upper limit is 1.5 mm.
  • the preferred lower limit of the thickness of the thermochromic layer is 0.001 mm, the more preferred lower limit is 0.05 mm, the preferred upper limit is 0.8 mm, and the more preferred upper limit is 0. .6 mm.
  • the preferred lower limit of the thickness of the first and second resin layers is 0.001 mm, and the more preferred lower limit is 0.2 mm.
  • the upper limit is 0.8 mm, and the more preferable upper limit is 0.6 mm.
  • the method for producing the interlayer film for laminated glass of the present invention is not particularly limited.
  • the interlayer film for laminated glass of the present invention can be produced by individually producing a thermochromic layer and first and second resin layers, and then laminating and pressing.
  • the intermediate film for laminated glasses of this invention is manufactured by co-extrusion. be able to.
  • thermochromic layer As a method for producing the thermochromic layer, a method of producing a thermochromic layer by extruding or pressing a mixture of a thermoplastic resin and vanadium dioxide particles and an additive to be blended as necessary, or vanadium dioxide particles
  • blended as needed is mentioned.
  • the method for producing the mixture include a method using a bead mill, a mixing roll, an extruder, a plastograph, a kneader, a Banbury mixer, a calendar roll, and the like.
  • the dispersion preferably contains the vanadium dioxide particles, the dispersant, and an organic solvent.
  • the upper limit with a preferable volume average particle diameter of the said vanadium dioxide particle in the said dispersion liquid is 100 micrometers. When the volume average particle size is 100 ⁇ m or less, an interlayer film for laminated glass having excellent transparency can be produced. A more preferable upper limit of the volume average particle diameter is 10 ⁇ m.
  • the lower limit of the volume average particle diameter is not particularly limited, but it is considered that the limit is substantially 10 nm.
  • the volume average particle size means a particle size in which the larger side and the smaller side are equal when the particles are divided into two from a certain particle size.
  • thermochromic layer a step of adjusting the moisture content of the thermochromic layer is performed.
  • the moisture content can be adjusted by, for example, allowing the obtained thermochromic layer to stand at a constant temperature and humidity for a fixed time.
  • the moisture content can be adjusted by allowing to stand for several hours to several days under conditions of constant temperature and humidity of 23 ° C. and humidity of 3%. This operation is called humidity adjustment.
  • the water content of the thermochromic layer can be adjusted by appropriately setting the temperature at the time of humidity control or the humidity. For example, when the moisture content of the thermochromic layer is lowered, the humidity is adjusted under conditions of low temperature and low humidity.
  • thermo-hygrostat As a specific temperature at the time of humidity adjustment when the moisture content is lowered, a temperature of less than 23 ° C. is preferable. As specific humidity at the time of humidity control when the moisture content is lowered, a humidity of 3% or less is preferable. Moreover, when making the moisture content of a thermochromic layer high, it adjusts humidity on the conditions of high temperature and high humidity. As a specific temperature at the time of humidity adjustment when increasing the moisture content, a temperature of 23 ° C. or higher is preferable. As specific humidity at the time of humidity adjustment when increasing the water content, a humidity of 50% or more is preferable. In addition, for the adjustment of the moisture content, for example, a thermo-hygrostat can be used.
  • a method of manufacturing a resin layer by extruding or pressing a mixture of a thermoplastic resin and an additive to be blended as necessary, a plasticizer is contained.
  • blended as needed is mentioned.
  • a step of adjusting the moisture content is performed as necessary, similarly to the thermochromic layer.
  • the interlayer film for laminated glass of the present invention is used for obtaining laminated glass.
  • a laminated glass can be obtained by sandwiching the interlayer film for laminated glass of the present invention between laminated glass members.
  • FIG. 2 is a partially cutaway sectional view showing an example of a laminated glass using the interlayer film for laminated glass of the present invention.
  • a laminated glass 11 shown in FIG. 2 includes an intermediate film 1 and laminated glass members 12 and 13.
  • the intermediate film 1 is an intermediate film for laminated glass.
  • the intermediate film 1 is sandwiched between the laminated glass members 12 and 13. Therefore, the laminated glass 11 is configured by laminating the laminated glass member 12, the intermediate film 1, and the laminated glass member 13 in this order.
  • the laminated glass member 12 is laminated on the outer surface 3 a of the first resin layer 3.
  • the laminated glass member 13 is laminated on the outer surface 4 a of the second resin layer 4.
  • laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
  • Laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass is a glass plate-containing laminate, and preferably at least one glass plate is used.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, mesh plate glass, wire plate glass, and green glass. Since the thermochromic property is high, the inorganic glass is preferably a heat ray absorbing plate glass.
  • the heat-absorbing plate glass is defined in JIS R3208.
  • the organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • the thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. Further, when the laminated glass member is a glass plate, the thickness of the glass plate is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably in the range of 0.03 to 0.5 mm.
  • the visible light transmittance of the laminated glass obtained by sandwiching the interlayer film for laminated glass of the present invention between two float glasses having a thickness of 2 mm according to JIS R3202 is 20% or more. .
  • the infrared transmittance at 100 ° C. of the laminated glass of the present invention is preferably 70% or less, more preferably 50% or less.
  • the infrared transmittance of the laminated glass can be measured according to JIS R3106 (1998).
  • the infrared transmittance of the laminated glass obtained by sandwiching the interlayer film for laminated glass of the present invention between two float glasses having a thickness of 2 mm according to JIS R3202, is preferably 70% or less, More preferably, it is 50% or less.
  • the haze value of the laminated glass of the present invention is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less, and particularly preferably 4% or less. Since the interlayer film for laminated glass of the present invention has the thermochromic layer and the first and second resin layers, the haze value of the laminated glass can be lowered. The haze value of the laminated glass can be measured according to JIS K6714.
  • the manufacturing method of the laminated glass of this invention is not specifically limited.
  • the interlayer film for laminated glass of the present invention is sandwiched between a pair of laminated glass members, passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure, so that the pair of laminated glass members and the interlayer film Air remaining between and is degassed. Thereafter, it is pre-bonded at about 70 to 110 ° C. to obtain a laminate.
  • the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained.
  • the laminated glass of the present invention can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. In particular, it can be suitably used for an automobile windshield, side glass, rear glass, roof glass or the like.
  • the laminated glass of this invention can be used besides these uses. Since the thermochromic property is high and the infrared transmittance is low, the laminated glass of the present invention is suitably used for automobiles and buildings.
  • an interlayer film for laminated glass capable of maintaining excellent thermochromic properties over a long period of time and having an appropriate adhesive property with a laminated glass member, and A laminated glass using the interlayer film for laminated glass can be provided.
  • FIG. 1 is a partially cutaway sectional view schematically showing an example of the interlayer film for laminated glass of the present invention.
  • FIG. 2 is a partially cutaway sectional view showing an example of a laminated glass using the interlayer film for laminated glass of the present invention.
  • Example 1 (1) Production of thermochromic layer Vanadium dioxide particles (manufactured by Shinsei Chemical Industry Co., Ltd., average particle diameter 77 ⁇ m) 0.05 parts by mass, polycarboxylic acid (AFB-0561, manufactured by NOF Corporation) 0.5 parts by mass as a dispersant was added to 28 parts by mass of triethylene glycol di-2-ethylhexanoate (3GO) as a plasticizer and mixed with a horizontal microbead mill to obtain a vanadium dioxide particle dispersion.
  • the volume average particle diameter of the vanadium dioxide particles in the dispersion was 132 nm.
  • Polyvinyl butyral resin (PVB1) (average degree of polymerization 1700, hydroxyl group content 30.5 mol%, acetylation degree 1 mol%, butyralization degree 68.5 mol%) was added to the total amount of the obtained vanadium dioxide particle dispersion.
  • PVB1 Polyvinyl butyral resin
  • PTFE polytetrafluoroethylene
  • the obtained resin composition was sandwiched between polytetrafluoroethylene (PTFE) sheets, pressed through a spacer having a thickness of 330 ⁇ m with a hot press at 150 ° C. and 100 kg / cm 2 for 15 minutes, and having a thickness of 330 ⁇ m.
  • a first resin layer was obtained.
  • the obtained first resin layer was allowed to stand at a constant temperature and humidity of 23 ° C. and 3% humidity.
  • Second resin layer 40 parts by mass of triethylene glycol di-2-ethylhexanoate (3GO) was mixed with 2- (2′-hydroxy-3′-t-butyl-5--5) as an ultraviolet absorber.
  • a solution is prepared by dissolving 0.5 parts by mass of methylphenyl) -5-chlorobenzotriazole (manufactured by BASF, Tinuvin 326) and 50 ppm in the first resin layer from which magnesium acetate can be obtained as an adhesive strength modifier. did.
  • a resin composition was prepared by sufficiently kneading the total amount of the obtained solution and polyvinyl butyral resin (PVB1) with a mixing roll.
  • the obtained resin composition was sandwiched between polytetrafluoroethylene (PTFE) sheets, pressed through a spacer having a thickness of 330 ⁇ m with a hot press at 150 ° C. and 100 kg / cm 2 for 15 minutes, and having a thickness of 330 ⁇ m.
  • a second resin layer was obtained.
  • the obtained second resin layer was allowed to stand at a constant temperature and humidity of 23 ° C. and 3% humidity.
  • Example 2 In Example 1 “(1) Production of thermochromic layer”, the obtained thermochromic layer was subjected to a temperature and humidity of 23 ° C. and a humidity of 3%, except that it was allowed to stand for a longer time than in Example 1. In the same manner as in Example 1, an interlayer film for laminated glass and a laminated glass were obtained.
  • Example 3 In Example 1 “(1) Production of thermochromic layer”, the obtained thermochromic layer was subjected to a temperature and humidity of 23 ° C. and a humidity of 3%, except that it was allowed to stand for a longer time than in Example 2. In the same manner as in Example 1, an interlayer film for laminated glass and a laminated glass were obtained.
  • thermochromic layer 0.05 parts by mass of vanadium dioxide particles was added to 100 parts by mass of polyethylene terephthalate resin, and the resin was melt-kneaded to uniformly disperse the vanadium dioxide particles in the resin.
  • the obtained kneaded product was extruded using a melt extruder equipped with a T-shaped die to obtain a thermochromic layer having a thickness of 100 ⁇ m.
  • the obtained thermochromic layer was allowed to stand under constant temperature and humidity at a temperature of 23 ° C. and a humidity of 3%.
  • Example 5 (Example 5) In Example 4, “(1) Production of thermochromic layer”, except that the obtained thermochromic layer was allowed to stand at a constant temperature and humidity of 23 ° C. and a humidity of 3% for a shorter time than in Example 4. In the same manner as in Example 4, an interlayer film for laminated glass and laminated glass were obtained.
  • Example 6 In Example 1, “(1) Preparation of thermochromic layer”, polyvinyl butyral resin (PVB1) was replaced with polyvinyl butyral resin (PVB2) (average polymerization degree 2300, hydroxyl group content 22 mol%, acetylation degree 13 mol%). The intermediate film for laminated glass and the laminated glass were obtained in the same manner as in Example 1 except that the butyralization degree was changed to 65 mol%.
  • Example 7 In Example 1, “(1) Preparation of thermochromic layer”, polyvinyl butyral resin (PVB1) was replaced with polyvinyl butyral resin (PVB2) (average polymerization degree 2300, hydroxyl group content 22 mol%, acetylation degree 13 mol%). The degree of butyralization was changed to 65 mol%), and the obtained thermochromic layer was the same as in Example 1 except that the thermochromic layer was allowed to stand at a constant temperature and humidity of 23 ° C. and humidity of 3% for a longer time than Example 1. Thus, an interlayer film for laminated glass and a laminated glass were obtained.
  • the volume average particle diameter of the vanadium dioxide particles in the dispersion was 132 nm.
  • the total amount of the obtained vanadium dioxide particle dispersion is added to 72 parts by mass of polyvinyl butyral resin (PVB1), sufficiently melt-kneaded with a mixing roll, and then sandwiched between polytetrafluoroethylene (PTFE) sheets, and a spacer having a thickness of 760 ⁇ m.
  • PVB1 polyvinyl butyral resin
  • PTFE polytetrafluoroethylene
  • thermochromic layer was combined in the same manner as in Example 1 except that the obtained thermochromic layer was allowed to stand at a constant temperature and humidity of 23 ° C. and 90% of humidity. An interlayer film for glass and a laminated glass were obtained.
  • thermochromic layer was combined in the same manner as in Example 4 except that the obtained thermochromic layer was allowed to stand at a constant temperature and humidity of 23 ° C. and 90% of humidity. An interlayer film for glass and a laminated glass were obtained.
  • Example 4 (Comparative Example 4) In “(2) Production of first resin layer” of Example 2, the obtained first resin layer was allowed to stand for a longer time than Example 2 under a constant temperature and humidity of 23 ° C. and 3% humidity. . Further, in “(3) Production of second resin layer” in Example 2, the obtained second resin layer was kept at a constant temperature and humidity of 23 ° C. and humidity of 3% for a longer time than in Example 2. An interlayer film for laminated glass and a laminated glass were obtained in the same manner as in Example 2 except that it was placed.
  • test pieces were sampled from the thermochromic layer, the first resin layer, and the second resin layer, respectively, during the manufacture of the examples and comparative examples.
  • the obtained test piece was left still in a desiccator with a silica gel inside, and the lid of the desiccator was firmly closed. Then, this desiccator was left still in the thermostatic chamber adjusted to 23 degreeC. The humidity in the desiccator was 1%.
  • the test piece was dried. The drying treatment was continued until no change in the weight of the test piece occurred, and then the weight of the test piece was measured. The measurement was performed under conditions of a temperature of 23 ° C.
  • thermochromic layer ⁇ (weight of test piece before drying treatment ⁇ weight of test piece after drying treatment) ⁇ 100 ⁇ / (weight of test piece before drying treatment)
  • an interlayer film for laminated glass capable of maintaining excellent thermochromic properties over a long period of time and having an appropriate adhesive property with a laminated glass member, and A laminated glass using the interlayer film for laminated glass can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本発明は、優れたサーモクロミック性を長期間に渡って持続することができ、かつ、合わせガラス部材との接着性を適度なものとすることが可能な合わせガラス用中間膜、並びに、該合わせガラス用中間膜を用いた合わせガラスを提供する。 本発明は、熱可塑性樹脂を含む第1の樹脂層と、サーモクロミック層と、熱可塑性樹脂を含む第2の樹脂層とが、厚み方向にこの順に積層された合わせガラス用中間膜であって、前記サーモクロミック層は、熱可塑性樹脂と、二酸化バナジウム粒子を含有し、かつ、含水率が0.4質量%未満であり、前記第1の樹脂層及び第2の樹脂層の含水率が、前記サーモクロミック層の含水率よりも高い合わせガラス用中間膜である。

Description

合わせガラス用中間膜及び合わせガラス
本発明は、自動車、建築物等の合わせガラスに用いられる合わせガラス用中間膜に関し、より詳細には、優れたサーモクロミック性を長期間に渡って持続することができ、かつ、合わせガラス部材との接着性を適度なものとすることが可能な合わせガラス用中間膜、並びに、該合わせガラス用中間膜を用いた合わせガラスに関する。
二酸化バナジウム又は二酸化バナジウムのバナジウム原子の一部を他の原子で置換した置換二酸化バナジウムは、特定の温度以上になると半導体から金属に相転移し、赤外線透過率を大きく減少させるサーモクロミック特性を有することが広く知られている(例えば、特許文献1)。即ち、例えばガラス上に二酸化バナジウム膜を形成すると、相転移温度未満では可視光線及び赤外線の透過率が高いが、相転移温度以上になると可視光線の透過率が高い状態で、赤外線の透過率が低下する性質を示す。
従来、二酸化バナジウムが有するサーモクロミック特性を利用した合わせガラス用中間膜の製造が試みられてきた(例えば、特許文献2)。
合わせガラス用中間膜中に二酸化バナジウムを微分散させることにより、二酸化バナジウムの相転移温度未満では可視光線及び赤外線の透過率が高いが、相転移温度以上になると可視光線の透過率が高い状態で、赤外線の透過率が低下する性質を示す合わせガラス用中間膜が得られることが期待される。
特開2000-233929号公報 特開2004-346260号公報
しかしながら、特許文献2に記載のようなサーモクロミック性を有する合わせガラス用中間膜では、長期間使用した場合に二酸化バナジウム粒子が水分によって劣化することで、サーモクロミック性が低下するという課題がある。そのため、特許文献2のような従来の合わせガラス用中間膜は、長期間に渡って使用できないという問題がある。
これに対して、合わせガラス用中間膜全体の含水率を低くすることで、二酸化バナジウム粒子の劣化を抑制することが考えられるが、合わせガラス用中間膜の含水率が低いと中間膜と合わせガラス部材との接着性が強くなりすぎ、合わせガラスの飛散防止性が低下するという問題が新たに生じていた。
本発明は、優れたサーモクロミック性を長期間に渡って持続することができ、かつ、合わせガラス部材との接着性を適度なものとすることが可能な合わせガラス用中間膜、並びに、該合わせガラス用中間膜を用いた合わせガラスを提供することを目的とする。
本発明は、熱可塑性樹脂を含む第1の樹脂層と、サーモクロミック層と、熱可塑性樹脂を含む第2の樹脂層とが、厚み方向にこの順に積層された合わせガラス用中間膜であって、前記サーモクロミック層は、熱可塑性樹脂と、二酸化バナジウム粒子を含有し、かつ、含水率が0.4質量%未満であり、前記第1の樹脂層及び第2の樹脂層の含水率が、前記サーモクロミック層の含水率よりも高い合わせガラス用中間膜である。
以下、本発明を詳述する。
本発明者らは、鋭意検討の結果、二酸化バナジウム粒子を含有するサーモクロミック層を、第1の樹脂層と第2の樹脂層とで挟持する構成とし、かつ、これらの層の含水率を規定することで、水分による二酸化バナジウム粒子の劣化を抑制してサーモクロミック性を長期間に渡って持続できるだけでなく、合わせガラス部材との接着性を適度なものとすることが可能となることを見出し、本発明を完成した。
図1は、本発明の合わせガラス用中間膜の一例を模式的に部分切欠断面図である。
図1に示す中間膜1は、サーモクロミック層2と、サーモクロミック層2の一方の表面2a(第1の表面)側に配置された第1の樹脂層3と、サーモクロミック層2の他方の表面2b(第2の表面)側に配置された第2の樹脂層4とを有する。中間膜1は、合わせガラスを得るために用いられる。中間膜1は、合わせガラス用中間膜である。なお、中間膜は、4層以上の積層構造を有していてもよい。
サーモクロミック層2は、熱可塑性樹脂と、二酸化バナジウム粒子5とを含有する。
第1の樹脂層3は、熱可塑性樹脂を含有する。第2の樹脂層4は、熱可塑性樹脂を含有する。本発明では、第1,第2の樹脂層3,4で、サーモクロミック層2を挟持する構成となるため、サーモクロミック層2が直接合わせガラス部材に接触することがなく長期安定性に優れたものとなる。
従来のように、二酸化バナジウム粒子を含む中間膜を用いて合わせガラスを作製しただけでは、得られる合わせガラスが長期間使用されたときに、水分によってサーモクロミック性が低下するが、第1,第2の樹脂層3,4で、サーモクロミック層2を挟持する構成とすることで、優れたサーモクロミック性を長期間維持することが可能となる。
また、本発明では合わせガラス用中間膜に敢えて2層の樹脂層を設置し、サーモクロミック層を挟み込む構成とすることで、合わせガラスとした場合にサーモクロミック層が合わせガラス部材に直接接しないような形状とすることができる。合わせガラス部材に用いられるガラスの表面は親水性であることから、水分を含みやすいが、樹脂層を介することで、ガラスからの水分の移動を防止することが可能となる。
本発明の合わせガラス用中間膜は、熱可塑性樹脂を含む第1の樹脂層を有する。
上記熱可塑性樹脂としては、例えば、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体、エチレン-アクリル共重合体、ポリウレタン樹脂及びポリビニルアルコール樹脂、ポリエステル樹脂等が挙げられる。また、これら以外の熱可塑性樹脂を用いてもよい。
なかでも、上記熱可塑性樹脂は、ポリビニルアセタール樹脂又はエチレン-酢酸ビニル共重合体であることが好ましい。上記サーモクロミック層と第1の樹脂層との密着性を高める観点からは、熱可塑性樹脂は、ポリビニルアセタール樹脂であることが好ましい。
上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に80~99.8モル%の範囲内である。
上記ポリビニルアルコールの重合度の好ましい下限は200、より好ましい下限は500、好ましい上限は3,000、より好ましい上限は2,500である。上記重合度が200以上であることで、合わせガラスの耐貫通性を向上させることができる。上記重合度が3,000以下であることで、合わせガラス用中間膜の成形性が良好となる。
上記アルデヒドは特に限定されない。上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド及びベンズアルデヒド等が挙げられる。なかでも、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
サーモクロミック層、第1の樹脂層及び第2の樹脂層の接着力をより一層高める観点から、上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、15~40モル%の範囲内であることが好ましい。上記水酸基の含有率のより好ましい下限は18モル%、より好ましい上限は35モル%である。上記水酸基が15モル%以上であると、各層の接着力を高めることができる。また、上記水酸基が40モル%以下であると、合わせガラス用中間膜の柔軟性が高まり、取扱いが良好となる。
上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6726「ポリビニルアルコール試験方法」に準拠して、原料となるポリビニルアルコールの水酸基が結合しているエチレン基量を測定することにより求めることができる。
上記ポリビニルアセタール樹脂のアセチル化度(アセチル基量)の好ましい下限は0.1モル%、より好ましい下限は0.3モル%、さらに好ましい下限は0.5モル%、好ましい上限は30モル%、より好ましい上限は25モル%、さらに好ましい上限は20モル%である。
上記アセチル化度が0.1モル%以上であると、上記ポリビニルアセタール樹脂と可塑剤との相溶性を高めることができる。上記アセチル化度が30モル%以下であると、中間膜の耐湿性が高くなる。
上記アセチル化度は、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と、水酸基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセタール基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)の好ましい下限は60モル%、より好ましい下限は63モル%、好ましい上限は85モル%、より好ましい上限は75モル%、さらに好ましい上限は70モル%である。
上記アセタール化度が60モル%以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が85モル%以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間を短縮することができる。
上記アセタール化度は、アセタール基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。
上記アセタール化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により、アセチル化度(アセチル基量)と水酸基の含有率(ビニルアルコール量)とを測定し、得られた測定結果からモル分率を算出し、ついで、100モル%からアセチル化度と水酸基の含有率とを差し引くことにより算出され得る。
なお、ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記アセタール化度(ブチラール化度)及びアセチル化度(アセチル基量)は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。
上記ポリエステル樹脂としては、例えば、ポリアルキレンテレフタレート樹脂、ポリアルキレンナフタレート樹脂等が挙げられる。上記ポリアルキレンテレフタレート樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリ-1,4-シクロヘキサンジメチレンテレフタレート等が挙げられる。なかでも、化学的に安定であり、且つ、二酸化バナジウム粒子を分散させた場合の二酸化バナジウム粒子の長期安定性がより一層高まることから、上記ポリアルキレンテレフタレート樹脂は、ポリエチレンテレフタレート樹脂であることが好ましい。
上記ポリアルキレンナフタレート樹脂としては、ポリエチレンナフタレート及びポリブチレンナフタレート等が挙げられる。
本発明の合わせガラス用中間膜は、熱可塑性樹脂を含む第2の樹脂層を有する。
上記第2の樹脂層を有することで、上記サーモクロミック層が第1及び第2の樹脂層の間に挟み込まれた構成となり、その結果、中間膜の両面において、サーモクロミック層への水分の移動を効果的に防止できる。
上記第2の樹脂層が含有する熱可塑性樹脂としては、上記第1の樹脂層が含有する熱可塑性樹脂と同様のものを用いることができる。特に、上記第2の樹脂層が含有する熱可塑性樹脂は、ポリビニルアセタール樹脂又はエチレン-酢酸ビニル共重合体であることが好ましい。
上記サーモクロミック層と第2の樹脂層との密着性を高める観点からは、上記第2の樹脂層が含有する熱可塑性樹脂は、ポリビニルアセタール樹脂であることが好ましい。この場合には、サーモクロミック層と第2の樹脂層との親和性が高められ、サーモクロミック層と第2の樹脂層との密着性をより一層高めることができる。また、上記第1の樹脂層と第2の樹脂層とは同じ熱可塑性樹脂を用いることが好ましい。
本発明の合わせガラス用中間膜は、熱可塑性樹脂と、二酸化バナジウム粒子を含有するサーモクロミック層を有する。
上記サーモクロミック層が含有する熱可塑性樹脂としては、上記第1の樹脂層が含有する熱可塑性樹脂と同様のものを用いることができる。特に、上記サーモクロミック層が含有する熱可塑性樹脂としては、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体樹脂又はポリエステル樹脂であることが好ましい。
また、サーモクロミック層の長期安定性を高める観点からは、上記サーモクロミック層が含有する熱可塑性樹脂は、ポリエステル樹脂であることが好ましい。ポリエステル樹脂は、ポリビニルアセタール樹脂及びエチレン-酢酸ビニル共重合体等の他の熱可塑性樹脂に比較して、サーモクロミック層が含有する二酸化バナジウム粒子の劣化を抑制することができ、サーモクロミック層の長期安定性をより一層高めることができる。特に、上記サーモクロミック層が含有する熱可塑性樹脂は、ポリアルキレンテレフタレート樹脂であることが好ましい。
なお、上記第1及び2の熱可塑性樹脂と第3の熱可塑性樹脂は同じものであってもよく、異なるものであってもよい。
サーモクロミック層に含まれる熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、15~40モル%の範囲内であることが好ましい。上記水酸基の含有率のより好ましい下限は18モル%、より好ましい上限は35モル%であり、更に好ましい上限は30モル%以下であり、特に好ましい上限は24モル%以下である。上記水酸基の含有率が上記好ましい下限以上であれば、他の層に対するサーモクロミック層の接着力を高めることができる。また、上記水酸基の含有率が上記好ましい上限以下であれば、合わせガラス用中間膜の柔軟性が高まり、取扱いが良好となることに加え、二酸化バナジウム粒子を分散させた場合の二酸化バナジウム粒子の長期安定性がより一層高まる。
また、サーモクロミック層に含まれる熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、上記ポリビニルアセタール樹脂のアセチル化度(アセチル基量)の好ましい下限は0.1モル%、より好ましい下限は0.3モル%、さらに好ましい下限は0.5モル%、特に好ましい下限は1モル%、最も好ましい下限は5モル%、好ましい上限は30モル%、より好ましい上限は25モル%、さらに好ましい上限は20モル%である。
上記アセチル化度の下限が上記好ましい範囲であれば、上記ポリビニルアセタール樹脂と可塑剤との相溶性を高めることができ、また、二酸化バナジウム粒子を分散させた場合の二酸化バナジウム粒子の長期安定性がより一層高まる。また、上記アセチル化度の上限が上記好ましい範囲であれば、中間膜の耐湿性が高くなる。
また、サーモクロミック層に含まれる熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)の好ましい下限は60モル%、より好ましい下限は63モル%、好ましい上限は85モル%、より好ましい上限は75モル%、さらに好ましい上限は70モル%である。
上記アセタール化度の下限が上記好ましい範囲であれば、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなり、また、二酸化バナジウム粒子を分散させた場合の二酸化バナジウム粒子の長期安定性がより一層高まる。上記アセタール化度の上限が上記好ましい範囲であると、ポリビニルアセタール樹脂を製造するために必要な反応時間を短縮することができる。
上記サーモクロミック層は、二酸化バナジウム粒子を含有する。
上記二酸化バナジウム粒子は、サーモクロミック特性を有することから、本発明の合わせガラス用中間膜や合わせガラスに優れたサーモクロミック性を付与することができる。
可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質にいったん吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記二酸化バナジウム粒子の使用により、上記二酸化バナジウムの相転移温度以上の条件で、赤外線(熱線)を効果的に遮断でき、上記二酸化バナジウムの相転移温度未満の条件で、赤外線(熱線)を効果的に透過できる。
上記二酸化バナジウム粒子は、純度100%の二酸化バナジウム粒子であってもよく、又は、二酸化バナジウム中のバナジウム原子の一部をバナジウム以外の金属原子で置換した置換二酸化バナジウム粒子であってもよい。
上記置換二酸化バナジウム粒子において、上記バナジウム以外の金属原子としては、特に限定されないが、例えば、タングステン、モリブデン、ニオブ及びタンタル等が挙げられる。上記バナジウム以外の金属原子は、タングステン、モリブデン、ニオブ及びタンタルから選択される少なくとも1種であることが好ましい。
二酸化バナジウムは様々な結晶相が存在するが、単斜晶結晶と正方晶結晶(ルチル型)が可逆的に相転移する。その相転移温度は約68℃である。上記相転移温度は、二酸化バナジウム中のバナジウム原子の一部をバナジウム以外の金属原子で置換することにより調整することができる。従って、二酸化バナジウム粒子又は置換二酸化バナジウム粒子を適宜選択したり、置換二酸化バナジウム粒子において置換する原子種や置換率を適宜選択したりすることにより、得られる合わせガラス用中間膜のサーモクロミック性を制御することができる。
上記置換二酸化バナジウム粒子を用いる場合、金属原子の置換率の好ましい下限は0.1原子%、好ましい上限は10原子%である。置換率が0.1原子%以上であると、上記置換二酸化バナジウム粒子の相転移温度を容易に調整することができ、10原子%以下であると、優れたサーモクロミック性を得ることができる。
なお、置換率とは、バナジウム原子数と置換された原子数との合計に占める、置換された原子数の割合を百分率で示した値である。
上記二酸化バナジウム粒子又は置換二酸化バナジウム粒子は、実質的に二酸化バナジウム又は置換二酸化バナジウムのみで構成された粒子であってもよく、コア粒子の表面に二酸化バナジウム又は置換二酸化バナジウムが付着した粒子であってもよい。
上記コア粒子として、例えば、酸化ケイ素、シリカゲル、酸化チタン、ガラス、酸化亜鉛、水酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、水酸化チタン、酸化ジルコニウム、水酸化ジルコニウム、リン酸ジルコニウム、ハイドロタルサイト化合物、ハイドロタルサイト化合物の焼成物、及び、炭酸カルシウム等の無機粒子が挙げられる。
上記二酸化バナジウム粒子の平均粒子径の好ましい下限は0.01μm、より好ましい下限は0.02μm、好ましい上限は100μm、更に好ましい下限は0.1μmである。上記平均粒子径が上記好ましい下限以上であれば、サーモクロミック性を充分に高めることができる。平均粒子径が上記好ましい上限以下であれば、二酸化バナジウム粒子の分散性を高めることができる。
上記「平均粒子径」は、体積平均粒子径を示す。平均粒子径は、粒度分布測定装置(日機装社製「UPA-EX150」)等を用いて測定できる。
上記サーモクロミック層における上記二酸化バナジウム粒子の含有量は特に限定されないが、上記熱可塑性樹脂100質量部に対して、上記二酸化バナジウム粒子の含有量の好ましい下限は0.01質量部、より好ましい下限は0.1質量部、好ましい上限は3質量部、より好ましい上限は2質量部である。上記サーモクロミック層における二酸化バナジウム粒子の含有量が上記好ましい範囲内であると、サーモクロミック性を充分に高めることができる。
また、上記サーモクロミック層100質量%中、二酸化バナジウム粒子の含有量は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1質量%以上、特に好ましくは1.5質量%以上、好ましくは6質量%以下、より好ましくは5.5質量%以下、さらに好ましくは4質量%以下、特に好ましくは3.5質量%以下、最も好ましくは3.0質量%以下である。上記サーモクロミック層における二酸化バナジウム粒子の含有量が上記好ましい範囲内であると、サーモクロミック性を充分に高めることができる。
上記サーモクロミック層は、上記二酸化バナジウム粒子の分散性を向上させる目的で、グリセリンエステル、ポリカルボン酸等の分散剤を含有してもよい。
上記グリセリンエステルは特に限定されず、例えば、デカグリセリンモノステアリン酸エステル、デカグリセリントリステアリン酸エステル、デカグリセリンデカステアリン酸エステル、ヘキサグリセリンモノステアリン酸エステル、ヘキサグリセリンジステアリン酸エステル、ヘキサグリセリントリステアリン酸エステル、ヘキサグリセリンペンタステアリン酸エステル、テトラグリセリンモノステアリン酸エステル、テトラグリセリントリステアリン酸エステル、テトラグリセリンペンタステアリン酸エステル、ポリグリセリンステアリン酸エステル、グリセロールモノステアレート、デカグリセリンモノオレイン酸エステル、デカグリセリンデカオレイン酸エステル、ヘキサグリセリンモノオレイン酸エステル、ヘキサグリセリンペンタオレイン酸エステル、テトラグリセリンモノオレイン酸エステル、テトラグリセリンペンタオレイン酸エステル、ポリグリセリンオレイン酸エステル、グリセロールモノオレエート、2-エチルヘキサン酸トリグリセライド、カプリン酸モノグリセライド、カプリン酸トリグリセライド、ミリスチン酸モノグリセライド、ミリスチン酸トリグリセライド、デカグリセリンモノカプリル酸エステル、ポリグリセリンカプリル酸エステル、カプリル酸トリグリセライド、デカグリセリンモノラウリン酸エステル、ヘキサグリセリンモノラウリン酸エステル、テトラグリセリンモノラウリン酸エステル、ポリグリセリンラウリン酸エステル、デカグリセリンヘプタベヘニン酸エステル、デカグリセリンドデカベヘニン酸エステル、ポリグリセリンベヘニン酸エステル、デカグリセリンエルカ酸エステル、ポリグリセリンエルカ酸エステル、テトラグリセリン縮合リシノール酸エステル、ヘキサグリセリン縮合リシノール酸エステル、ポリグリセリン縮合リシノール酸エステル等が挙げられる。
上記グリセリンエステルのうち市販品としては、例えば、SYグリスターCR-ED(阪本薬品工業社製、縮合リシノール酸ポリグリセリン酸エステル)、SYグリスターPO-5S(阪本薬品工業社製、オレイン酸ヘキサグリセリンペンタエステル)等が挙げられる。
上記ポリカルボン酸は特に限定されず、例えば、主鎖骨格にカルボキシル基を有するポリマーにポリオキシアルキレンをグラフトしたポリカルボン酸重合体等が挙げられる。
上記ポリカルボン酸のうち市販品としては、例えば、日油社製マリアリムシリーズ(AFB-0561、AKM-0531、AFB-1521、AEM-3511、AAB-0851、AWS-0851、AKM-1511-60等)等が挙げられる。
サーモクロミック層における上記分散剤の含有量は、上記二酸化バナジウム粒子100質量部に対して、好ましい下限は1質量部、好ましい上限は10000質量部、より好ましい下限は10質量部、より好ましい上限は1000質量部、更に好ましい下限は30質量部、更に好ましい上限は300質量部である。上記分散剤の含有量が上記下限以上であると、上記二酸化バナジウム粒子の分散性が向上するため、サーモクロミック層の透明性が向上し、合わせガラス用中間膜の透明性が高くなる。上記分散剤の含有量が上記上限以下であると、上記分散剤の析出を抑制できるため、サーモクロミック層の透明性が向上し、合わせガラス用中間膜の透明性が高くなる。
上記サーモクロミック層は、含水率が0.4質量%未満である。上記含水率が0.4質量%未満であることで、サーモクロミック性の低下を効果的に防止することができる。上記含水率の好ましい上限は0.39質量%である。上記含水率の下限は、特に限定されないが、0.001質量%であることが好ましい。
なお、本明細書において含水率は、下記の方法により測定することができる。
サーモクロミック層から約10gの試験片を採取する。シリカゲルを内部に有する蓋付きのデシケータ内に、得られた試験片を静置し、デシケータの蓋をしっかりと閉める。その後、該デシケータを23℃に調整された恒温室に静置する。この方法により、試験片の乾燥処理を行う。試験片の重量変化が起こらなくなるまで乾燥処理を続け、その後、試験片の重量を測定する。そして、下記式によりサーモクロミック層の含水率を決定する。

サーモクロミック層の含水率(質量%)={(乾燥処理前の試験片の重量-乾燥処理後の試験片の重量)×100}/(乾燥処理前の試験片の重量)
本発明の合わせガラス用中間膜は、上記第1の樹脂層及び第2の樹脂層の含水率が、上記サーモクロミック層の含水率よりも高い。これにより、上記第1の樹脂層及び第2の樹脂層の含水率が、上記サーモクロミック層の含水率よりも低い場合、及び同じ値である場合に比較して、二酸化バナジウム粒子の水分による劣化を抑制し、且つ、合わせガラス部材との接着性を適度なものとすることができる。従って、長期安定性に優れ、且つ、飛散防止性に優れた合わせガラスが得られるという利点がある。
また、上記第1の樹脂層及び第2の樹脂層とサーモクロミック層の含水率の差は、0.01~10質量%であることが好ましく、0.1~3質量%であることがより好ましく、0.5~1質量%であることが更に好ましい。
上記第1及び第2の樹脂層は、含水率の好ましい下限が0.01質量%、好ましい上限が10質量%である。上記含水率が上記範囲内であることで、合わせガラス部材との接着性を適度なものとすることができる。なお、上記第1及び第2の樹脂層の含水率についても、上記サーモクロミック層の場合と同様の方法で測定することができる。上記第1及び第2の樹脂層は、含水率の下限が0.1質量%であることがより好ましく、0.2質量%であることが更に好ましく、0.3質量%であることが特に好ましく、含水率の上限が5質量%であることがより好ましく、3質量%であることが更に好ましく、1質量%であることが特に好ましい。
本発明では、各層の接着力をより一層高める観点から、サーモクロミック層、第1及び第2の樹脂層は、可塑剤を含有することが好ましい。サーモクロミック層に含まれている熱可塑性樹脂がポリビニルアセタール樹脂である場合は、特に可塑剤を含むことが好ましい。
上記可塑剤としては特に限定されず、従来公知の可塑剤を用いることができる。上記可塑剤は、1種のみを用いてもよく、2種以上を併用してもよい。
上記可塑剤としては、例えば、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などのリン酸可塑剤等が挙げられる。なかでも、有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。
上記一塩基性有機酸エステルとしては、特に限定されず、例えば、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル、並びにトリエチレングリコール又はトリプロピレングリコールと一塩基性有機酸とのエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。
上記多塩基性有機酸エステルとしては、特に限定されず、例えば、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
上記有機エステル可塑剤としては、特に限定されず、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。
上記有機リン酸可塑剤としては、特に限定されず、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)及びトリエチレングリコールジ-2-エチルブチレート(3GH)の内の少なくとも一種であることが好ましく、トリエチレングリコールジ-2-エチルヘキサノエートであることがより好ましい。
上記サーモクロミック層、第1及び第2の樹脂層における上記可塑剤の含有量は特に限定されない。上記熱可塑性樹脂100質量部に対して、上記可塑剤の含有量の好ましい下限は25質量部、より好ましい下限は30質量部、好ましい上限は80質量部、より好ましい上限は60質量部である。上記可塑剤の含有量が上記好ましい下限を満たすと、合わせガラスの耐貫通性をより一層高めることができる。上記可塑剤の含有量が上記好ましい上限を満たすと、合わせガラス用中間膜の透明性をより一層高めることができる。
上記サーモクロミック層、第1及び第2の樹脂層における上記可塑剤の含有量はそれぞれ異なっていてもよい。例えば、サーモクロミック層、第1及び第2の樹脂層の内の少なくとも一層の上記可塑剤の含有量が、上記熱可塑性樹脂100質量部に対して55質量部以上である場合、合わせガラスの遮音性を高めることができる。
上記第1及び2の樹脂層は、紫外線遮蔽剤を含有していてもよい。上記紫外線遮蔽剤には、紫外線吸収剤が含まれる。従来広く知られている一般的な紫外線遮蔽剤としては、例えば、金属系紫外線遮蔽剤、金属酸化物系紫外線遮蔽剤、ベンゾトリアゾール系紫外線遮蔽剤、ベンゾフェノン系紫外線遮蔽剤、トリアジン系紫外線遮蔽剤、ベンゾエート系紫外線遮蔽剤、マロン酸エステル系紫外線遮蔽剤及びシュウ酸アニリド系紫外線遮蔽剤等が挙げられる。
上記金属系紫外線遮蔽剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。紫外線遮蔽剤は、ベンゾトリアゾール系紫外線遮蔽剤、ベンゾフェノン系紫外線遮蔽剤、トリアジン系紫外線遮蔽剤又はベンゾエート系紫外線遮蔽剤であることが好ましく、ベンゾトリアゾール系紫外線遮蔽剤であることがより好ましい。
上記金属酸化物系紫外線遮蔽剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物系紫外線遮蔽剤として、表面が被覆されていてもよい。上記金属酸化物系紫外線遮蔽剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。
上記絶縁性金属酸化物としては、シリカ、アルミナ及びジルコニア等が挙げられる。上記絶縁性金属酸化物は、例えば5.0eV以上のバンドギャップエネルギーを有する。
上記ベンゾトリアゾール系紫外線遮蔽剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’、5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’、5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等のベンゾトリアゾール系紫外線遮蔽剤が挙げられる。紫外線を吸収する性能に優れることから、上記紫外線遮蔽剤はハロゲン原子を含むベンゾトリアゾール系紫外線遮蔽剤であることが好ましく、塩素原子を含むベンゾトリアゾール系紫外線遮蔽剤であることがより好ましい。
上記ベンゾフェノン系紫外線遮蔽剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。
上記トリアジン系紫外線遮蔽剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製、「Tinuvin1577FF」)等が挙げられる。
上記ベンゾエート系紫外線遮蔽剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製、「tinuvin120」)等が挙げられる。
上記マロン酸エステル系紫外線遮蔽剤としては、例えば、マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル(クラリアントジャパン社製、Hostavin PR-25)等が挙げられる。
上記シュウ酸アニリド系紫外線遮蔽剤としては、例えば、2-エチル2’-エトキシ-オキサルアニリド(クラリアントジャパン社製、Sanduvor V SU)等が挙げられる。
本発明では、後述するサーモクロミック層が紫外線遮蔽剤を含有していてもよく、含有していなくてもよい。サーモクロミック性の長期安定性をより一層高める観点からは、上記サーモクロミック層は、紫外線遮蔽剤を含有することが好ましい。
上記サーモクロミック層及び第1及び2の樹脂層における紫外線遮蔽剤の含有量は特に限定されない。初期及び経時後のサーモクロミック性をより一層高める観点からは、上記熱可塑性樹脂100質量部に対して、紫外線遮蔽剤の含有量の好ましい下限は0.3質量部、より好ましい下限は0.4質量部、さらに好ましい下限は0.5質量部、好ましい上限は3質量部、より好ましい上限は2.5質量部、さらに好ましい上限は2質量部である。初期及び経時後のサーモクロミック性をより一層高める観点からは、第1及び2の樹脂層100質量%中、紫外線遮蔽剤の含有量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上、好ましくは2.5質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.8質量%以下である。特に、第1及び2の樹脂層100質量%中、紫外線遮蔽剤の含有量が0.2質量%以上であることにより、合わせガラスの経時後のサーモクロミック性の低下を顕著に抑制できる。
初期及び経時後のサーモクロミック性をより一層高める観点からは、サーモクロミック層100質量%中、紫外線遮蔽剤の含有量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上、好ましくは2.5質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.8質量%以下である。特に、サーモクロミック層100質量%中、紫外線遮蔽剤の含有量が0.3質量%以上であることにより、合わせガラスの経時後のサーモクロミック性の低下を顕著に抑制できる。
第1及び第2の樹脂層は、合わせガラス部材との接着力を調整する目的で、接着力調整剤が含有されていても良い。上記接着力調整剤としては、例えば、有機酸又は無機酸のアルカリ金属塩、アルカリ土類金属塩等が好適に用いられる。上記のアルカリ金属塩及びアルカリ土類金属塩としては特に限定されず、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。上記有機酸としては特に限定されず、例えば、オクチル酸、ヘキシル酸、酪酸、酢酸、蟻酸等のカルボン酸等が挙げられる。上記無機酸としては特に限定されず、例えば、塩酸、硝酸等が挙げられる。これらの接着力調整剤は単独で用いられてもよく、2種以上併用されてもよい。
上記有機酸又は無機酸のアルカリ金属塩、アルカリ土類金属塩のなかでも、炭素数2~16の有機酸のアルカリ金属塩及び炭素数2~16の有機酸のアルカリ土類金属塩が好ましい。より好ましくは、炭素数2~16のカルボン酸のマグネシウム塩である。上記炭素数2~16のカルボン酸のマグネシウム塩としては特に限定されず、例えば、酢酸マグネシウム、プロピオン酸マグネシウム、2-エチルブタン酸マグネシウム、2-エチルヘキサン酸マグネシウム等が挙げられる。これらは単独で用いられてもよく、2種以上併用されてもよい。
上記接着力調整剤の含有量は、上記第1の樹脂層及び上記第2の樹脂層が含有する熱可塑性樹脂100質量部に対して0.001~0.5質量部が好ましい。0.001質量部以上であると、高湿度雰囲気下でも周辺部の接着力低下が起こりにくい。0.5質量部以下であると、得られる合わせガラス用中間膜の接着力が低くなりすぎることがなく、膜の透明性が失われることもない。上記接着力調整剤の含有量は、より好ましくは上記第1の樹脂層及び上記第2の樹脂層が含有する熱可塑性樹脂100質量部に対して0.01~0.2質量部である。
上記サーモクロミック層、第1及び第2の樹脂層は、それぞれ、必要に応じて、酸化防止剤、光安定剤、難燃剤、帯電防止剤、顔料、染料、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含有していてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
本発明の合わせガラス用中間膜は、上記サーモクロミック層、第1及び第2の樹脂層とは異なる他の層をさらに備えていてもよい。さらに、上記サーモクロミック層、第1及び第2の樹脂層の各層間に、サーモクロミック層、第1及び第2の樹脂層とは異なる他の層が挟み込まれていてもよい。
本発明の合わせガラス用中間膜の厚みは特に限定されない。上記合わせガラス用中間膜の厚みは、中間膜を構成する各層の合計の厚みを示す。よって、該合わせガラス用中間膜の厚みは、サーモクロミック層、第1及び第2の樹脂層の合計の厚みを示す。実用面の観点、並びにサーモクロミック性を充分に高める観点からは、本発明の合わせガラス用中間膜の厚みの好ましい下限は0.1mm、より好ましい下限は0.25mm、好ましい上限は3mm、より好ましい上限は1.5mmである。上記中間膜の厚みが薄すぎると、合わせガラスの耐貫通性が低下する傾向がある。
実用面の観点、並びにサーモクロミック性を充分に高める観点からは、サーモクロミック層の厚みの好ましい下限は0.001mm、より好ましい下限は0.05mm、好ましい上限は0.8mm、より好ましい上限は0.6mmである。
また、実用面の観点、並びに長期間にわたりサーモクロミック性を充分に維持する観点からは、第1及び第2の樹脂層の厚みの好ましい下限は0.001mm、より好ましい下限は0.2mm、好ましい上限は0.8mm、より好ましい上限は0.6mmである。
本発明の合わせガラス用中間膜を製造する方法は特に限定されない。例えば、サーモクロミック層、第1及び第2の樹脂層を個別に製造した後、積層及びプレスする事によって本発明の合わせガラス用中間膜を製造することができる。他にも、サーモクロミック層を形成するための組成物、第1及び第2の樹脂層を形成するための組成物を作製後、共押出することによって本発明の合わせガラス用中間膜を製造することができる。
上記サーモクロミック層の製造方法としては、熱可塑性樹脂及び二酸化バナジウム粒子と必要に応じて配合する添加剤との混合物を、押出又はプレスする事によってサーモクロミック層を製造する方法や、二酸化バナジウム粒子を分散させた分散液と、熱可塑性樹脂と必要に応じて配合する添加剤との混合物を、押出又はプレスする事によってサーモクロミック層を製造する方法が挙げられる。上記混合物を作製する方法として、ビーズミル、ミキシングロール、押出機、プラストグラフ、ニーダー、バンバリーミキサー、カレンダーロール等を用いる方法が挙げられる。
上記分散液は、上記二酸化バナジウム粒子、上記分散剤及び有機溶媒を含有することが好ましい。上記分散液中における上記二酸化バナジウム粒子の体積平均粒子径の好ましい上限は100μmである。上記体積平均粒子径が100μm以下であると、透明性に優れる合わせガラス用中間膜を製造することができる。上記体積平均粒子径のより好ましい上限は10μmである。上記体積平均粒子径の下限については特に限定されないが、実質的には10nmが限界であると考えられる。なお、本明細書において上記体積平均粒子径とは、粒子をある粒子径から2つに分けたときに、大きい側と小さい側が等量となる粒子径のことを意味する。
上記サーモクロミック層の製造方法では、次いで、サーモクロミック層の含水率を調整する工程を行う。上記含水率の調整は、例えば、得られたサーモクロミック層を一定の温度、湿度下に一定時間静置することにより調整することができる。例えば、23℃、湿度3%の恒温恒湿の条件下において、数時間~数日間静置することにより含水率を調整することができる。この操作を調湿と呼ぶ。調湿時の上記温度、又は、上記湿度を適宜設定することにより、サーモクロミック層の含水率を調整することができる。例えば、サーモクロミック層の含水率を低くする場合は、低温及び低湿度の条件で、調湿する。含水率を低くする場合の調湿時の具体的な温度としては、23℃未満の温度が好ましい。含水率を低くする場合の調湿時の具体的な湿度としては、3%以下の湿度が好ましい。また、サーモクロミック層の含水率を高くする場合は、高温及び高湿度の条件で、調湿する。含水率を高くする場合の調湿時の具体的な温度としては、23℃以上の温度が好ましい。含水率を高くする場合の調湿時の具体的な湿度としては、50%以上の湿度が好ましい。
なお、上記含水率の調整には、例えば、恒温恒湿器を用いることができる。
上記第1及び第2の樹脂層の製造方法としては、熱可塑性樹脂と必要に応じて配合する添加剤との混合物を、押出又はプレスする事によって樹脂層を製造する方法や、可塑剤を含有する溶液と、熱可塑性樹脂と必要に応じて配合する添加剤との混合物を、押出又はプレスする事によって第1及び第2の樹脂層を製造する方法が挙げられる。
また、上記第1及び第2の樹脂層についても、必要に応じて、サーモクロミック層と同様に含水率を調整する工程を行う。
本発明の合わせガラス用中間膜は、合わせガラスを得るために用いられる。例えば、合わせガラス部材の間に、本発明の合わせガラス用中間膜を挟持することで合わせガラスが得られる。
図2は、本発明の合わせガラス用中間膜を用いた合わせガラスの一例を示す部分切欠断面図である。
図2に示す合わせガラス11は、中間膜1と、合わせガラス部材12、13とを備える。中間膜1は、合わせガラス用中間膜である。中間膜1は、合わせガラス部材12、13の間に挟み込まれている。従って、合わせガラス11は、合わせガラス部材12と、中間膜1と、合わせガラス部材13とがこの順で積層されて構成されている。合わせガラス部材12は、第1の樹脂層3の外側の表面3aに積層されている。合わせガラス部材13は、第2の樹脂層4の外側の表面4aに積層されている。
上記合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。合わせガラスには、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。合わせガラスは、ガラス板含有積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。
上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス及びグリーンガラス等が挙げられる。サーモクロミック性が高いことから、上記無機ガラスは熱線吸収板ガラスであることが好ましい。なお、熱線吸収板ガラスに関しては、JIS R3208に規定されている。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
上記合わせガラス部材の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、0.03~0.5mmの範囲内であることが好ましい。
本発明の合わせガラス用中間膜を、JIS R3202に準拠した、厚さ2mmの2枚のフロートガラスの間に挟み込むことにより得られた合わせガラスの可視光線透過率は20%以上であることが好ましい。
本発明の合わせガラスの100℃における赤外線透過率は、好ましくは70%以下、より好ましくは50%以下である。合わせガラスの赤外線透過率は、JIS R3106(1998)に準拠して測定できる。本発明の合わせガラス用中間膜を、JIS R3202に準拠した、厚さ2mmの2枚のフロートガラスの間に挟み込むことにより得られた合わせガラスの赤外線透過率は70%以下であることが好ましく、50%以下であることがより好ましい。
本発明の合わせガラスのヘイズ値は、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下、特に好ましくは4%以下である。本発明の合わせガラス用中間膜は、サーモクロミック層と第1及び第2の樹脂層とを有するため、合わせガラスのヘイズ値を低くすることができる。合わせガラスのヘイズ値は、JIS K6714に準拠して測定できる。
本発明の合わせガラスの製造方法は特に限定されない。例えば、一対の合わせガラス部材の間に、本発明の合わせガラス用中間膜を挟んで、押圧ロールに通したり、又はゴムバックに入れて減圧吸引したりして、一対の合わせガラス部材と中間膜との間に残留する空気を脱気する。その後、約70~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。
本発明の合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。特に、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に好適に使用できる。本発明の合わせガラスは、これらの用途以外にも使用できる。サーモクロミック性が高く、赤外線透過率が低いので、本発明の合わせガラスは、自動車や建築物に好適に用いられる。
本発明によれば、優れたサーモクロミック性を長期間に渡って持続することができ、かつ、合わせガラス部材との接着性を適度なものとすることが可能な合わせガラス用中間膜、並びに、該合わせガラス用中間膜を用いた合わせガラスを提供することができる。
図1は、本発明の合わせガラス用中間膜の一例を模式的に示す部分切欠断面図である。 図2は、本発明の合わせガラス用中間膜を用いた合わせガラスの一例を示す部分切欠断面図である。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(1)サーモクロミック層の作製
二酸化バナジウム粒子(新興化学工業社製、平均粒子径77μm)0.05質量部、分散剤としてポリカルボン酸(AFB-0561、日油社製)0.5質量部を、可塑剤である28質量部のトリエチレングリコールジ-2-エチルヘキサノエート(3GO)中に添加し、水平型のマイクロビーズミルで混合して二酸化バナジウム粒子分散液を得た。分散液中の二酸化バナジウム粒子の体積平均粒子径は132nmであった。
得られた二酸化バナジウム粒子分散液の全量を、ポリビニルブチラール樹脂(PVB1)(平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、ブチラール化度68.5モル%)72質量部に加え、ミキシングロールで充分に溶融混練した後、ポリテトラフルオロエチレン(PTFE)シートに挟み、厚さ100μmのスペーサを介して、熱プレスにて150℃、100kg/cmの条件で15分間加圧し、厚さ100μmのサーモクロミック層を得た。
次いで、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で静置した。
(2)第1の樹脂層の作製
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40質量部に、紫外線吸収剤として2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製、Tinuvin326)0.5質量部及び接着力調整剤として酢酸マグネシウムを得られる第1の樹脂層中で、マグネシウムの含有量が50ppmとなる量を溶解して溶液を調製した。得られた溶液の全量と、ポリビニルブチラール樹脂(PVB1)とをミキシングロールで充分に混練することにより、樹脂組成物を調製した。得られた樹脂組成物をポリテトラフルオロエチレン(PTFE)シートに挟み、厚さ330μmのスペーサを介して、熱プレスにて150℃、100kg/cmの条件で15分間加圧し、厚さ330μmの第1の樹脂層を得た。
次いで、得られた第1の樹脂層を温度23℃、湿度3%の恒温恒湿下で静置した。
(3)第2の樹脂層の作製
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40質量部に、紫外線吸収剤として2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製、Tinuvin326)0.5質量部及び接着力調整剤として酢酸マグネシウムを得られる第1の樹脂層中で50ppmとなる量を溶解して溶液を調製した。得られた溶液の全量と、ポリビニルブチラール樹脂(PVB1)とをミキシングロールで充分に混練することにより、樹脂組成物を調製した。得られた樹脂組成物をポリテトラフルオロエチレン(PTFE)シートに挟み、厚さ330μmのスペーサを介して、熱プレスにて150℃、100kg/cmの条件で15分間加圧し、厚さ330μmの第2の樹脂層を得た。
次いで、得られた第2の樹脂層を温度23℃、湿度3%の恒温恒湿下で静置した。
(4)合わせガラス用中間膜の作製
第1の樹脂層/サーモクロミック層/第2の樹脂層の順に厚み方向に重ね、150℃で5分間プレスすることにより3層構造を有する厚み760μmの合わせガラス用中間膜を得た。
(5)合わせガラスの作製
得られた中間膜を、縦5cm×横5cmの大きさに切断した。次に、JIS R3202に準拠した2枚のフロートガラス(縦5cm×横5cm×厚み2mm)を用意した。この2枚のフロートガラスの間に、得られた中間膜を挟み込み、真空ラミネーターにて90℃で30分間保持し、真空プレスし、合わせガラスを得た。
(実施例2)
実施例1の「(1)サーモクロミック層の作製」において、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で、実施例1より長時間静置した以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(実施例3)
実施例1の「(1)サーモクロミック層の作製」において、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で、実施例2より長時間静置した以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(実施例4)
(1)サーモクロミック層の作製
ポリエチレンテレフタレート樹脂100質量部に対し、0.05質量部の二酸化バナジウム粒子を添加し、樹脂を溶融混練して二酸化バナジウム粒子を樹脂中に均一に分散させた。得られた混練物をT型ダイを備えた溶融押出機を用いて押出し、厚さ100μmのサーモクロミック層を得た。
次いで、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で静置した。
(2)合わせガラス用中間膜及び合わせガラスの作製 
得られたサーモクロミック層を用いた以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(実施例5)
実施例4の「(1)サーモクロミック層の作製」において、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で、実施例4より短時間静置した以外は、実施例4と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(実施例6)
実施例1の「(1)サーモクロミック層の作製」において、ポリビニルブチラール樹脂(PVB1)を、ポリビニルブチラール樹脂(PVB2)(平均重合度2300、水酸基の含有率22モル%、アセチル化度13モル%、ブチラール化度65モル%)に変更した以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(実施例7)
実施例1の「(1)サーモクロミック層の作製」において、ポリビニルブチラール樹脂(PVB1)を、ポリビニルブチラール樹脂(PVB2)(平均重合度2300、水酸基の含有率22モル%、アセチル化度13モル%、ブチラール化度65モル%)に変更し、得られたサーモクロミック層を温度23℃、湿度3%の恒温恒湿下で、実施例1より長時間静置した以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(比較例1)
(1)合わせガラス用中間膜の作製
二酸化バナジウム粒子(新興化学工業社製、平均粒子径77μm)0.05質量部、分散剤としてポリカルボン酸(AFB-0561、日油社製)0.5質量部及び接着力調整剤として酢酸マグネシウムを得られる合わせガラス用中間膜中で50ppmとなる量を、可塑剤である28質量部のトリエチレングリコールジ-2-エチルヘキサノエート(3GO)中に添加し、水平型のマイクロビーズミルで混合して二酸化バナジウム粒子分散液を得た。分散液中の二酸化バナジウム粒子の体積平均粒子径は132nmであった。
得られた二酸化バナジウム粒子分散液の全量を、ポリビニルブチラール樹脂(PVB1)72質量部に加え、ミキシングロールで充分に溶融混練した後、ポリテトラフルオロエチレン(PTFE)シートに挟み、厚さ760μmのスペーサを介して、熱プレスにて150℃、100kg/cmの条件で15分間加圧し、厚さ760μmの単層からなる合わせガラス用中間膜を得た。
次いで、得られた合わせガラス用中間膜を温度23℃、湿度90%の恒温恒湿下で、48時間静置した。
(2)合わせガラスの作製 
得られた合わせガラス用中間膜を用いた以外は、実施例1と同様にして合わせガラスを得た。
(比較例2)
実施例1の「(1)サーモクロミック層の作製」において、得られたサーモクロミック層を温度23℃、湿度90%の恒温恒湿下で静置した以外は、実施例1と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(比較例3)
実施例4の「(1)サーモクロミック層の作製」において、得られたサーモクロミック層を温度23℃、湿度90%の恒温恒湿下で静置した以外は、実施例4と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(比較例4)
実施例2の「(2)第1の樹脂層の作製」において、得られた第1の樹脂層を温度23℃、湿度3%の恒温恒湿下で、実施例2より長時間静置した。
また、実施例2の「(3)第2の樹脂層の作製」において、得られた第2の樹脂層を温度23℃、湿度3%の恒温恒湿下で、実施例2より長時間静置した以外は、 実施例2と同様にして合わせガラス用中間膜及び合わせガラスを得た。
(評価方法)
得られた合わせガラスの性能を以下の方法で評価した。結果を表1に示した。
(1)各層の含水率の測定
実施例及び比較例の製造時に、サーモクロミック層、第1の樹脂層、第2の樹脂層から、それぞれ10gの試験片を採取した。シリカゲルを内部に有する蓋付きのデシケータ内に、得られた試験片を静置し、デシケータの蓋をしっかりと閉めた。その後、該デシケータを23℃に調整された恒温室に静置した。また、デシケータ内の湿度は1%であった。この方法により、該試験片の乾燥処理を行った。該試験片の重量変化が起こらなくなるまで乾燥処理を続け、その後、該試験片の重量を測定した。なお、測定は温度23℃及び湿度30%の条件で行い、デシケータから該試験片を取り出してから重量を測定するまでの時間は5minとした。下記式によりサーモクロミック層、第1の樹脂層、第2の樹脂層の含水率を決定した。なお、このようにして測定した含水率は、各層を積層後の含水率とほぼ同一であるといえる。
層の含水率(質量%)={(乾燥処理前の試験片の重量-乾燥処理後の試験片の重量)×100}/(乾燥処理前の試験片の重量)
(2)接着性
(合わせガラス用中間膜のパンメル値の測定)
得られた合わせガラスを-18℃±0.6℃の温度に16時間調整し、この合わせガラスの中央部(縦150mm×横150mmの部分)を頭部が0.45kgのハンマーで打って、ガラスの粒径が6mm以下になるまで粉砕し、ガラスが部分剥離した後の膜の露出度を測定し、表2によりパンメル値を求めた。なお、上記パンメル値が大きいほど中間膜とガラスとの接着力も大きく、パンメル値が小さいほど中間膜とガラスとの接着力も小さい。
(3)赤外線透過率(Tir(780~2500nm))の測定
紫外可視近赤外分光光度計(日本分光株式会社製「V-670」)及び温調ユニットを用いて、JIS R3106(1998)に準拠して、実施例1~5及び比較例1~3で得られた合わせガラスをの長期安定性試験前の100℃における波長780~2500nmでの赤外線透過率Tirを求めた。
(4)長期安定性試験(高湿試験)
実施例1~5及び比較例1~3で得られた合わせガラスを、50℃、相対湿度95%の恒温恒湿槽に2週間保管した(高湿試験)後の赤外線透過率Tirについて上記の方法により測定した。得られた測定値から、ΔTir((高湿試験後のTir)-(高湿試験前のTir))を求めた。ΔTirの値が小さいほど、高湿試験における長期安定性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
本発明によれば、優れたサーモクロミック性を長期間に渡って持続することができ、かつ、合わせガラス部材との接着性を適度なものとすることが可能な合わせガラス用中間膜、並びに、該合わせガラス用中間膜を用いた合わせガラスを提供することができる。
 1…合わせガラス用中間膜
 2…サーモクロミック層
 2a…第1の表面
 2b…第2の表面
 3…第1の樹脂層
 3a…外側の表面
 4…第2の樹脂層
 4a…外側の表面
 5…二酸化バナジウム粒子
 11…合わせガラス
 12…合わせガラス部材
 13…合わせガラス部材

Claims (6)

  1. 熱可塑性樹脂を含む第1の樹脂層と、サーモクロミック層と、熱可塑性樹脂を含む第2の樹脂層とが、厚み方向にこの順に積層された合わせガラス用中間膜であって、前記サーモクロミック層は、熱可塑性樹脂と、二酸化バナジウム粒子を含有し、かつ、含水率が0.4質量%未満であり、
    前記第1の樹脂層及び第2の樹脂層の含水率が、前記サーモクロミック層の含水率よりも高い
    ことを特徴とする合わせガラス用中間膜。
  2. サーモクロミック層が含有する熱可塑性樹脂は、ポリアルキレンテレフタレート樹脂であることを特徴とする請求項1記載の合わせガラス用中間膜。
  3. サーモクロミック層が含有する熱可塑性樹脂は、ポリビニルアセタール樹脂であることを特徴とする請求項1記載の合わせガラス用中間膜。
  4. サーモクロミック層が含有するポリビニルアセタール樹脂は、水酸基の含有率が30モル%以下であり、アセチル基量が5モル%以上であることを特徴とする請求項3記載の合わせガラス用中間膜。
  5. 第1の樹脂層及び第2の樹脂層が含有する熱可塑性樹脂は、ポリビニルアセタール樹脂であることを特徴とする請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  6. 合わせガラス部材の間に、請求項1~5のいずれか1項に記載の合わせガラス用中間膜を有することを特徴とする合わせガラス。
PCT/JP2014/072821 2013-08-30 2014-08-29 合わせガラス用中間膜及び合わせガラス WO2015030206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/893,575 US20160129673A1 (en) 2013-08-30 2014-08-29 Intermediate film for laminated glass, and laminated glass
CN201480037697.8A CN105358502B (zh) 2013-08-30 2014-08-29 夹层玻璃用中间膜和夹层玻璃
JP2014547609A JP6475495B2 (ja) 2013-08-30 2014-08-29 合わせガラス用中間膜及び合わせガラス
DE112014003948.9T DE112014003948T5 (de) 2013-08-30 2014-08-29 Zwischenfolie für Verbundglas und Verbundglas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180750 2013-08-30
JP2013-180750 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030206A1 true WO2015030206A1 (ja) 2015-03-05

Family

ID=52586752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072821 WO2015030206A1 (ja) 2013-08-30 2014-08-29 合わせガラス用中間膜及び合わせガラス

Country Status (5)

Country Link
US (1) US20160129673A1 (ja)
JP (1) JP6475495B2 (ja)
CN (1) CN105358502B (ja)
DE (1) DE112014003948T5 (ja)
WO (1) WO2015030206A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158620A1 (ja) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 光学フィルム
JP2017043670A (ja) * 2015-08-25 2017-03-02 三菱マテリアル株式会社 二酸化バナジウム分散液及び二酸化バナジウム塗料
CN107406755A (zh) * 2015-03-24 2017-11-28 柯尼卡美能达株式会社 热致变色膜
JPWO2018143276A1 (ja) * 2017-01-31 2019-11-21 積水化学工業株式会社 サーモクロミック性を有する合わせガラス用中間膜、合わせガラス及び合わせガラスシステム
JP2020050362A (ja) * 2018-09-25 2020-04-02 日本クロージャー株式会社 示温性プラスチック容器蓋

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107400322A (zh) * 2016-05-20 2017-11-28 上海大学 一种具有热致变色性能的分散液、pvb胶片及其制备方法
US20200362114A1 (en) 2018-01-23 2020-11-19 Eastman Chemical Company Novel polyesteramides, processes for the preparation thereof, and polyesteramide compositions
CN109880553A (zh) * 2019-03-22 2019-06-14 苏州量子新材料科技有限公司 一种热致变色的pvb或eva胶片
WO2022031218A1 (en) * 2020-08-04 2022-02-10 Neolt Asia Pte. Ltd. Laminated glass and method of fabrication thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072039A (ja) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2012206878A (ja) * 2011-03-29 2012-10-25 Sekisui Chem Co Ltd 合わせガラス用中間膜、合わせガラス及び合わせガラスの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469743A (en) * 1983-03-14 1984-09-04 E. I. Du Pont De Nemours And Company Polyvinyl butyral laminates
US4952457A (en) * 1988-12-05 1990-08-28 Monsanto Company Laminated safety glass and polymeric laminate for use therein
US5763073A (en) * 1992-04-23 1998-06-09 Bertrand; Rene Lucien Ultra-thin low moisture content polyester film and its applications
US5886075A (en) * 1995-03-14 1999-03-23 E. I. Du Pont De Nemours And Company Process for preparing polyvinylbutyral sheet
DE19529943C1 (de) * 1995-08-16 1997-03-20 Sekurit Saint Gobain Deutsch Verbundglasscheibe mit IR-reflektierenden Eigenschaften
WO1999032284A1 (en) * 1997-12-19 1999-07-01 E.I. Du Pont De Nemours And Company Interlayer structure for laminated glass
JP2000302490A (ja) * 1999-04-20 2000-10-31 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
US6649269B1 (en) * 1999-06-25 2003-11-18 E. I. Du Pont De Nemours And Company Interlayer composite structure for laminated glass with controlled bonding between the layers and the process for the production of the interlayer structure
US20010046595A1 (en) * 1999-12-14 2001-11-29 Moran James R. Intrusion resistant glass laminates
IL155054A0 (en) * 2000-09-28 2003-10-31 Solutia Inc Intrusion resistant glass laminate
MXPA04011161A (es) * 2002-05-16 2005-01-25 Du Pont Estructuras laminadas con resistencia al impacto superior y proceso para fabricar las mismas.
DE10343385A1 (de) * 2003-09-19 2005-04-14 Kuraray Specialities Europe Gmbh Polyvinylacetal-haltige Zusammensetzungen, Folien und Verbundgläser sowie Verfahren zu deren Herstellung
US20070006746A1 (en) * 2005-07-11 2007-01-11 Taiwan Stamp Enterprise Co., Ltd. Seal with a detachable die
JP5667178B2 (ja) * 2009-06-16 2015-02-12 プレオティント エル エル シー 感湿層中の水分量を低減する感湿層及び構造用方法及び構成
JP2011178866A (ja) * 2010-02-26 2011-09-15 Fujifilm Corp ポリエステルフィルム及びその製造方法、並びに太陽電池裏面封止用ポリエステルフィルム、太陽電池裏面保護膜及び太陽電池モジュール
JP5427721B2 (ja) * 2010-07-23 2014-02-26 積水化学工業株式会社 二酸化バナジウム粒子分散液、合わせガラス用中間膜及び合わせガラス
KR20120118303A (ko) * 2011-04-18 2012-10-26 삼성코닝정밀소재 주식회사 에너지절약형 창 및 복층유리
US20120301642A1 (en) * 2011-05-26 2012-11-29 Sharp Kabushiki Kaisha Smart window
JP5781837B2 (ja) * 2011-06-03 2015-09-24 積水化学工業株式会社 サーモクロミック性フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072039A (ja) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2012206878A (ja) * 2011-03-29 2012-10-25 Sekisui Chem Co Ltd 合わせガラス用中間膜、合わせガラス及び合わせガラスの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406755A (zh) * 2015-03-24 2017-11-28 柯尼卡美能达株式会社 热致变色膜
WO2016158620A1 (ja) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 光学フィルム
JPWO2016158620A1 (ja) * 2015-03-31 2018-01-25 コニカミノルタ株式会社 光学フィルム
JP2017043670A (ja) * 2015-08-25 2017-03-02 三菱マテリアル株式会社 二酸化バナジウム分散液及び二酸化バナジウム塗料
JPWO2018143276A1 (ja) * 2017-01-31 2019-11-21 積水化学工業株式会社 サーモクロミック性を有する合わせガラス用中間膜、合わせガラス及び合わせガラスシステム
JP2020050362A (ja) * 2018-09-25 2020-04-02 日本クロージャー株式会社 示温性プラスチック容器蓋
JP7302957B2 (ja) 2018-09-25 2023-07-04 日本クロージャー株式会社 示温性プラスチック容器蓋

Also Published As

Publication number Publication date
CN105358502A (zh) 2016-02-24
US20160129673A1 (en) 2016-05-12
DE112014003948T5 (de) 2016-05-25
JP6475495B2 (ja) 2019-02-27
JPWO2015030206A1 (ja) 2017-03-02
CN105358502B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
JP6475495B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6255520B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6374914B2 (ja) 合わせガラス用中間膜及び合わせガラス
US9796825B2 (en) Interlayer for laminated glass, and laminated glass
KR102591279B1 (ko) 접합 유리용 중간막 및 접합 유리
JP6522910B2 (ja) 合わせガラス用中間膜及び合わせガラス
WO2015046584A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2021143122A (ja) 合わせガラス用中間膜及び合わせガラス
CN108883981B (zh) 夹层玻璃用中间膜以及夹层玻璃
JP6386305B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP5855796B1 (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
JP2012072039A (ja) 合わせガラス用中間膜及び合わせガラス
JP2015189652A (ja) 合わせガラス用中間膜及び合わせガラス
JP2013163616A (ja) 合わせガラス用中間膜及び合わせガラス
JP2017066007A (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
JP6613094B2 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021117596A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2017071530A (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037697.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014547609

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003948

Country of ref document: DE

Ref document number: 1120140039489

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840292

Country of ref document: EP

Kind code of ref document: A1