WO2015030102A1 - 光造形方法 - Google Patents

光造形方法 Download PDF

Info

Publication number
WO2015030102A1
WO2015030102A1 PCT/JP2014/072546 JP2014072546W WO2015030102A1 WO 2015030102 A1 WO2015030102 A1 WO 2015030102A1 JP 2014072546 W JP2014072546 W JP 2014072546W WO 2015030102 A1 WO2015030102 A1 WO 2015030102A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
arrangement
area
zone
modeling
Prior art date
Application number
PCT/JP2014/072546
Other languages
English (en)
French (fr)
Inventor
康弘 範田
Original Assignee
シーメット 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーメット 株式会社 filed Critical シーメット 株式会社
Priority to JP2015534281A priority Critical patent/JP6092399B2/ja
Priority to US14/914,044 priority patent/US10576687B2/en
Priority to EP14839196.4A priority patent/EP3040183B1/en
Publication of WO2015030102A1 publication Critical patent/WO2015030102A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/182Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a stereolithography method.
  • the stereolithography apparatus includes a liquid tank and a lifting table that can be moved up and down in the liquid tank.
  • the liquid tank is filled with a liquid photocurable resin as a curable material.
  • the liquid tank has an opening in the upper part, and light is irradiated into the liquid tank through the opening.
  • the optical modeling device When modeling a three-dimensional object, the optical modeling device first lifts and lowers from the liquid surface of the liquid photocurable resin to a height lowered by the thickness of the lowest layer of the three-dimensional object to be modeled. Position.
  • the stereolithography apparatus stabilizes the liquid level by moving the recoater along the liquid level.
  • the optical modeling apparatus scans light within a necessary range by a scanner, thereby photocuring the liquid photocurable resin to form the lowermost layer portion of the three-dimensional shape.
  • the stereolithography apparatus further lowers the lifting table by the thickness of the next layer below the lowermost layer, that is, the second layer, and forms the second layer in the same manner as the lowermost layer.
  • the optical modeling apparatus similarly models the three-dimensional shape by photocuring the liquid photocurable resin and forming the layers one by one from the lowest layer of the three-dimensional shape.
  • optical modeling apparatus when modeling a plurality of three-dimensional objects at once in a modeling range in which a light beam can be scanned, the user can obtain data on the three-dimensional objects arranged so as to fit in the modeling area. Creating. For this reason, there is a need for an optical modeling method capable of automatically arranging a plurality of three-dimensional shapes in a modeling range when modeling a plurality of three-dimensional shapes at once. When arranging a plurality of three-dimensional objects in the modeling range, it is required to arrange so that as many three-dimensional objects as possible can be modeled.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a light that can automatically and efficiently arrange a plurality of three-dimensional shapes in a modeling range when modeling a plurality of three-dimensional shapes at a time.
  • the object is to provide a modeling method.
  • An optical modeling method that solves the above-described problems is a modeling range on a lifting table by selectively irradiating a curable material with light and curing the curable material to form a model corresponding to a set of three-dimensional objects.
  • a plurality of arrangement areas defined by boundaries extending along the extending direction of the recoater for arranging the set of three-dimensional objects in the modeling range by the control device and adjusting the liquid level Is set in the modeling range, and the three-dimensional shaped object is arranged in the arrangement area in the descending order of the height, and in order from the first arrangement area among the plurality of arrangement areas. Is the gist of this.
  • a plurality of placement areas partitioned by boundaries extending along the extending direction of the recoater is set, and the three-dimensional shape is formed in the placement area in order from the first placement area among the plurality of placement areas.
  • the placement area can be narrowed down with respect to the modeling range on the lifting table, and a high-quality modeling object can be selected within the placement area. Can be biased. For this reason, a three-dimensional shaped object can be modeled efficiently by reducing the irradiation range of light rays as much as possible.
  • the plurality of arrangement areas are three or more arrangement areas, and for an integer n of 2 or more, the (n + 1) th arrangement area is designated as the first to (n ⁇ 1) th. It is preferable to set the arrangement area so that the nth arrangement area and the (n + 1) th arrangement area are sandwiched between them.
  • the nth arrangement area and the (n + 1) th arrangement area sandwich the first to (n ⁇ 1) th arrangement area. For this reason, when the three-dimensional object does not fill the entire surface of the modeling range on the lifting table, the light irradiation range is narrowed down to a range centering on the first arrangement area in the modeling range on the lifting table. Can do. Therefore, a three-dimensional shape can be efficiently modeled by reducing the light irradiation range as much as possible.
  • the plurality of arrangement areas are three or more arrangement areas, each arrangement area is set adjacent to another arrangement area, and the (n + 1) th arrangement for an integer n of 2 or more. It is preferable that the area is set to a wider area in the moving direction of the recoater among the areas in which no arrangement area is set in the modeling area.
  • the (n + 1) th arrangement area is set in the wider range in the moving direction of the recoater among the areas where the arrangement area is not set in the modeling area.
  • the portion where the arrangement area is not arranged can be reduced as much as possible.
  • positioning area contains the center of the movement range in the moving direction of the said recoater.
  • the first arrangement area is set at a position including the center of the moving range of the recoater.
  • positioning area is set so that it may adjoin to the 1st end in the moving direction of the said recoater in the said shaping
  • an arrangement area is set in order from the 1st end of a modeling range. For this reason, an arrangement area can be set easily rather than arrange
  • positioned at each said arrangement area is an integer greater than or equal to 2 in each arrangement area where three or more three-dimensional shape objects are arrange
  • the three-dimensional object having the heights from the first to the (n ⁇ 1) th has the three-dimensional object having the nth height and the (n + 1) th height.
  • a three-dimensional object is sandwiched.
  • a high three-dimensional shape object is arrange
  • the shape object is arranged in a wider area in the extending direction of the recoater among areas where the three-dimensional shape object is not arranged in the arrangement area.
  • the three-dimensional shape having the (n + 1) th height in the wider area in the extending direction of the recoater among the areas where the three-dimensional object is not arranged in the arrangement area Arrange things. For this reason, the part which has not arrange
  • the first highest three-dimensional shaped object is disposed at a central portion of the recoater in the extending direction of the recoater in the arrangement area.
  • the first highest three-dimensional shaped object is arranged at the center of the extending range of the recoater. For this reason, since a high three-dimensional shape object is arrange
  • the three-dimensional shaped object having the first height is A three-dimensional object that is arranged adjacent to the first end in the moving direction of the recoater and has an nth height for an integer n of 2 or more is a cubic having an (n ⁇ 1) th height. It is preferable to arrange so as to be adjacent to the original shape.
  • the three-dimensional object is arranged in order from the first end of the arrangement area. For this reason, it is possible to easily arrange the three-dimensional shape object than to arrange the first highest three-dimensional shape object in the center.
  • the said three-dimensional shape object is not arrange
  • the three-dimensional objects that can be arranged in the empty area among the non-arranged three-dimensional objects are arranged in the descending order of height with respect to the empty area in the arrangement area where the three-dimensional object is arranged. For this reason, many three-dimensionally shaped objects can be arranged in one arrangement area by effectively using the empty area in the arrangement area.
  • the already placed three-dimensional shape object Repositioning the recoater toward the first end in the moving direction, and then arranging the non-arranged three-dimensional shapes in descending order with respect to the empty area where the three-dimensional shapes are not arranged. preferable.
  • two directions that are parallel to and orthogonal to the bottom surface of the three-dimensional shape object are set, and the longer one of the lengths in the two directions of the three-dimensional shape object is the extension direction of the recoater. It is preferable to set the length.
  • the longer one of the lengths in two directions that are parallel to and orthogonal to the bottom surface of the three-dimensional object is set as the length in the extending direction of the recoater. For this reason, it can suppress that the length in the moving direction of the recoater of the arrangement area is unnecessarily widened by the length of the three-dimensional shaped object.
  • the width of the arrangement area in the moving direction of the recoater is preferably changed in accordance with the length of the arranged three-dimensional object in the moving direction of the recoater.
  • the width in the moving direction of the recoater in the arrangement area is set in accordance with the length of the arranged three-dimensional object in the moving direction of the recoater. For this reason, since the width
  • a plurality of three-dimensional objects when modeling a plurality of three-dimensional objects at once, a plurality of three-dimensional objects can be automatically and efficiently arranged in the modeling range.
  • positioning of the three-dimensional shaped object by the optical modeling method of 2nd Embodiment. (A)
  • (A) (b) The figure which shows arrangement
  • positioning of the three-dimensional shaped object by the optical modeling method of a modification The figure which shows the arrangement
  • positioning state of the three-dimensional shaped object by the optical modeling method of a modification The figure which shows the arrangement
  • the optical modeling apparatus includes a liquid tank 11 filled with a liquid photocurable resin as a curable material, a laser 12 that emits a light beam, and a light tank emitted from the laser 12. 11 is provided.
  • the light beam emitted from the laser 12 enters the scanner 13 via the optical system device.
  • the optical modeling apparatus includes an elevating table 15 that can be moved up and down in the liquid tank 11.
  • the lifting table 15 is moved up and down by the table driving device 16.
  • a recoater 17 for adjusting the liquid surface is installed above the liquid tank 11, a recoater 17 for adjusting the liquid surface is installed.
  • the recoater 17 is moved in the front-rear direction (left-right direction in the figure) by the recoater driving device 18.
  • the laser 12, the scanner 13, the table driving device 16, and the recoater driving device 18 are controlled by the control device 10.
  • the optical modeling apparatus cures the liquid photocurable resin by selectively irradiating light on the upper surface of the lifting table 15 in the liquid tank 11 filled with the liquid photocurable resin.
  • a three-dimensional object S is formed.
  • the three-dimensional shaped object S that has been shaped is described as a shaped object.
  • the lifting table 15 uses a punching plate so that the photocurable resin filled in the liquid tank 11 can easily pass between the lower surface and the upper surface of the lifting table 15.
  • a modeling range A is a range in which the three-dimensional shaped object S can be modeled on the lifting table 15.
  • the control apparatus 10 sets the arrangement
  • FIG. The arrangement zone Z is partitioned by a boundary line B along the extending direction Y (hereinafter, direction Y) of the recoater 17, and a plurality of arrangement zones Z are set side by side in the moving direction X (hereinafter, direction X) of the recoater 17 in the modeling range A. .
  • the control device 10 sets the first arrangement zone Z1 at a position including the center of the movement range in the direction X.
  • Each placement zone Z is three or more placement zones Z.
  • the (n + 1) th placement zone Z (n + 1) is placed from the first to the (n ⁇ 1) th placement.
  • the zones Z1 to Z (n ⁇ 1) are set so that the nth arrangement zone Zn and the (n + 1) th arrangement zone Z (n + 1) are sandwiched.
  • the control device 10 sets the second arrangement zone Z2 adjacent to the first arrangement zone Z1.
  • the second placement zone Z2 is set adjacent to the first placement zone Z1 in the ⁇ X direction (left direction in the figure).
  • the n-th arrangement zone Zn is the (n ⁇ 1) -th arrangement zone Z1 to Z (n-2) from the first to the (n ⁇ 2) -th arrangement zone. It is set so that the arrangement zone Z (n ⁇ 1) and the nth arrangement zone Zn are sandwiched.
  • the control device 10 sets a second placement zone Z2 adjacent to the first placement zone Z1. In FIG.
  • the second placement zone Z2 is set adjacent to the first placement zone Z1 in the ⁇ X direction (left direction in the figure).
  • the (n + 1) th arrangement zone Z (n + 1) is the first to (n ⁇ 1) th arrangement zones Z1 to Z.
  • (N ⁇ 1) is set so that the nth arrangement zone Zn and the (n + 1) th arrangement zone Z (n + 1) are sandwiched.
  • the arrangement zone Z is set so that the first arrangement zone Z1 is sandwiched between the second arrangement zone Z2 and the third arrangement zone Z3, and the first and second arrangement zones Z1, Z2 are set to the third arrangement zone Z3 and the third arrangement zone Z3.
  • the fourth arrangement zone Z4 is set so as to be sandwiched between the first arrangement zone Z1 to the (n ⁇ 1) th arrangement in the nth arrangement zone Zn and the (n + 1) th arrangement zone Z (n + 1) after the fourth arrangement zone Z4. It is set so as to sandwich the zone Z (n ⁇ 1).
  • the second placement zone Z2 is located on the left side of the first placement zone Z1 as viewed in FIG. 2, and the third placement zone Z3 is located on the right side of the first placement zone Z1 in FIG.
  • the fourth arrangement zone Z4 is located on the left side of the first arrangement zone Z1 as viewed in FIG. 2, and the fifth arrangement zone Z5 is located on the right side of the first arrangement zone Z1 in FIG.
  • the control device 10 changes the width W of the arrangement zone Z in the direction X according to the length of the three-dimensional shape object S to be modeled in the direction X.
  • the control device 10 acquires data of the three-dimensional shape object S to be modeled
  • the control device 10 inputs the data to the virtual modeling container C.
  • the modeling container C the input three-dimensional shaped object S is rotated and aligned.
  • the modeling container C is a program for aligning the three-dimensional shapes S to be modeled. That is, in the modeling container C, the outer dimension is obtained with the three-dimensional shaped object S to be modeled as a virtual rectangular parallelepiped, and the longest side among the outer dimensions of the virtual rectangular parallelepiped of the three-dimensional shaped object S is set as the height H.
  • a long side other than the height H of the external dimensions of the virtual rectangular parallelepiped S of the three-dimensional shape object S is set as a depth D, and the length other than the height of the external dimensions of the virtual rectangular parallelepiped S of the three-dimensional shape S This side is defined as a width L.
  • the three-dimensionally shaped objects processed in the modeling container C are arranged in the order in which the height H of the outer dimensions of the virtual rectangular parallelepiped is high and the directions of the depth D and the width L are aligned.
  • the control device 10 outputs the data of the three-dimensional shaped object S input to the modeling container C from the modeling container C.
  • the three-dimensional shaped object S to be shaped is arranged along the direction Y based on the height H in each arrangement zone Z.
  • the three-dimensional shaped object S is arranged such that the center of the width L of the three-dimensional shaped object S coincides with the center of the width W in the X direction of each arrangement zone Z. That is, the control device 10 arranges the first highest three-dimensional shape object S1 in the center of the direction Y.
  • the control device 10 has a three-dimensional shaped object S (n + 1) having an (n + 1) th height for an integer n of two or more.
  • the control device 10 arranges the first highest three-dimensional shape object S1 between the second highest three-dimensional shape object S2 and the third highest three-dimensional shape object S3,
  • the third highest three-dimensional object S1, S2 is disposed between the third highest three-dimensional object S3 and the fourth highest three-dimensional object S4, and the fourth and subsequent higher three-dimensional objects S4.
  • the three-dimensional shaped object S (n ⁇ 1) is arranged so as to be sandwiched therebetween.
  • the fourth highest three-dimensional shape object S4 is located on the front side in the direction Y with respect to the first highest three-dimensional shape object S1
  • the fifth highest three-dimensional shape object S5 is the first highest tertiary value. It is located on the far side in the direction Y with respect to the original shape object S1.
  • the control device 10 sets the depth D of the three-dimensional shaped object S to the length in the direction Y. For this reason, it can suppress that the width W of the arrangement zone Z expands uselessly.
  • the three-dimensional shaped object S is arranged in the arrangement zone Z, the three-dimensional shaped object S is arranged several mm away from the boundary line B of the arrangement zone Z in consideration of interference between the three-dimensional shaped objects S. Is done.
  • the control device 10 arranges a set of three-dimensional shaped objects S in the modeling range A, the three-dimensional shaped objects S are arranged in descending order from the first arrangement zone Z1.
  • the control device 10 performs the tertiary processing on the unplaced three-dimensional shaped object S in descending order of height in the second placement zone Z2.
  • the original shape object S is arranged.
  • the control apparatus 10 arrange
  • the placement of the three-dimensional shaped object S in the placement zone Z ends when the three-dimensional shaped object S no longer exists in the modeling container C.
  • the control device 10 reads information (step S1). That is, the control device 10 reads information such as the dimensions of the lifting table 15, the modeling allowable dimensions of the liquid tank 11, and the moving direction X of the recoater 17 from an input device or a storage device (not shown). Based on these pieces of information, the control device 10 grasps the modeling range A and a space where modeling is possible.
  • control device 10 acquires the outer dimensions of the three-dimensional shaped object S to be modeled (step S2). That is, the control device 10 acquires the outer dimensions from the CAD data of the three-dimensional shape object S to be modeled input to the control device 10.
  • the control device 10 calculates the outer dimensions of the virtual rectangular parallelepiped of the three-dimensional shaped object S (step S3).
  • the control device 10 virtually assumes a rectangular parallelepiped in which the three-dimensional shaped object S is accommodated, and calculates the external dimensions of the virtual rectangular parallelepiped. For this reason, even when the three-dimensional shaped object S has a complicated outer shape, by calculating the virtual rectangular parallelepiped corresponding to the three-dimensional shaped object S, the rectangular parallelepiped is rearranged based on the length of each side of the rectangular parallelepiped. Can be automatically arranged.
  • the control device 10 determines whether or not all the three-dimensional shaped objects S can be arranged in the modeling range A (step S4). Specifically, the control device 10 determines whether or not the sum of the areas of the bottom surfaces of the virtual rectangular parallelepiped of the three-dimensional shaped object S to be modeled is smaller than the area of the modeling range A. When the sum of the areas of the bottom surfaces of the virtual rectangular parallelepipeds of the three-dimensional shaped object S to be modeled is larger than the area of the modeling range A, the control device 10 determines that all the three-dimensional shaped objects S cannot be arranged in the modeling range A (step S4: NO), the automatic placement is terminated.
  • Step S4 YES
  • the process proceeds to Step S5.
  • step S5 the control device 10 inputs the entire three-dimensional object S into the modeling container C. That is, the control device 10 takes in the external dimensions of the three-dimensional shape object S to be modeled into the modeling container C.
  • the control apparatus 10 takes in the external dimensions of the virtual rectangular parallelepiped into the modeling container C.
  • Control device 10 rotates all three-dimensional shaped objects S in modeling container C (step S6). That is, the control device 10 rotates the all three-dimensional shape object so that the longer side other than the height H of the external dimensions of the virtual rectangular parallelepiped S of the all three-dimensional shape object S is along the direction of the depth D.
  • the control apparatus 10 arranges all the three-dimensional shaped objects S in the modeling container C in descending order of the height H (step S7). That is, the control apparatus 10 arranges all the three-dimensional shapes S in descending order of the height H of the virtual rectangular parallelepiped of the all three-dimensional shapes S.
  • control device 10 constructs an arrangement zone Z in the modeling range A (step S8). That is, the control device 10 sets a boundary line B parallel to the direction Y in the modeling range A, and sets an arrangement zone Z adjacent to each other in the direction X in the modeling range A.
  • the width W of the arrangement zone Z is changed according to the width L of the three-dimensional shaped object S arranged in the arrangement zone Z.
  • the first arrangement zone Z1 is set at a position including the center in the direction X.
  • the second placement zone Z2 and the third placement zone Z3 are set across the first placement zone Z1.
  • the fourth arrangement zone Z4 and the fifth arrangement zone Z5 are set across the first to third arrangement zones Z1 to Z3 (see FIG. 2).
  • the second arrangement zone Z2 and subsequent zones are set when there are three-dimensional objects to be arranged.
  • the control device 10 arranges the three-dimensional shaped object S to be modeled from the modeling container C in the descending order of the height H (step S9). That is, the control device 10 places the depth D of the three-dimensional shaped object S from the modeling container C in the first placement zone Z1 in the descending order of the height H of the three-dimensional shaped object S with the direction Y as the direction Y.
  • control device 10 determines whether or not the three-dimensional shaped object S exists in the modeling container C (step S10). That is, the control device 10 confirms whether or not the three-dimensional shape object S to be arranged remains in the modeling container C. And the control apparatus 10 completes arrangement
  • step S10 when the three-dimensional shaped object S to be arranged remains in the modeling container C (step S10: YES), this means that the three-dimensional shaped object S has not entered the first arrangement zone Z1. Yes. Therefore, the control apparatus 10 transfers to the process of step S8, when the three-dimensional shaped object S which should be arrange
  • control apparatus 10 cannot arrange
  • the three-dimensional shaped object S to be modeled is arranged in the arrangement zone Z extending in the direction Y in the descending order of the height H from the center in the direction Y and the direction X of the modeling range A and three-dimensionally modeled.
  • the arrangement zone Z extending in the direction Y in the descending order of the height H from the center in the direction Y and the direction X of the modeling range A and three-dimensionally modeled.
  • the height H of the three-dimensional shaped object S arranged in the modeling range A is the highest in the center in the direction X and decreases as the distance from the center increases. For this reason, it is only necessary to model only the vicinity of the center in the direction X as the modeling of the three-dimensional shaped object S progresses and the height H of the modeled object increases.
  • the light for solidifying the modeled object is guided by the scanner 13 from the laser 12 through the scanner 13. At this time, since the light does not hit vertically when it is away from the scanner 13, the accuracy is slightly lowered. Further, correction may be performed by using a focus adjusting device (not shown), but this causes a decrease in accuracy.
  • the scanner 13 is often located at the upper center of the modeling range A. However, when the scanner 13 is away from the center, it is preferable to set the first arrangement zone Z1 under the scanner 13.
  • the height H of the three-dimensional shaped object S arranged in the modeling range A is the highest in the center in the direction Y, and becomes lower as the distance from the center increases. For this reason, what is necessary is just to model only the center vicinity in the direction Y, so that the three-dimensional shaped object S is modeled and the height H becomes high.
  • the control device 10 models the modeled object based on the arrangement data in which the three-dimensionally shaped object S is arranged in the modeling range A. At this time, as the height H of the modeled object increases, it is only necessary to model the vicinity of the center in the direction X and the direction Y. Therefore, the irradiation range of the light beam during modeling can be narrowed, and the three-dimensional shaped object S can be efficiently used. Can be modeled.
  • S is arranged in order of height H. For this reason, since it is only necessary to arrange the first arrangement zone Z1 in order from the height H, when the plurality of three-dimensional objects S are modeled at once, the plurality of three-dimensional objects S are automatically and efficiently set in the modeling area A. Can be placed well.
  • the arrangement zone Z can be narrowed with respect to the modeling range A on the lifting table 15.
  • a modeled object having a high height H can be biased. For this reason, a three-dimensional shaped object can be modeled efficiently by reducing the irradiation range of light rays as much as possible.
  • the first arrangement zone Z1 is set at a position including the center in the direction X. For this reason, when the three-dimensional shaped object S does not fill the entire surface of the modeling range A on the lifting table 15, the light irradiation range may be narrowed to the vicinity of the center in the direction X of the modeling range A on the lifting table 15. it can. Therefore, the three-dimensional shaped object S can be efficiently modeled by reducing the light irradiation range as much as possible.
  • the first highest three-dimensional shaped object S1 is arranged in the center in the direction Y, and each three-dimensional shaped object is set on both sides of the first highest three-dimensional shaped object S1. For this reason, since the high three-dimensional shaped object S is arrange
  • the width in the direction X of the arrangement zone Z is set in accordance with the depth D in the direction X of the three-dimensional shaped object S. For this reason, since the width in the direction X of the arrangement zone Z is accurately set according to the three-dimensional shaped object S, the arrangement is efficiently performed.
  • the three-dimensional shaped object S to be shaped is arranged along the direction Y based on the height H in the first arrangement zone Z1. That is, the control apparatus 10 arrange
  • the first highest three-dimensional object S1 to the fifth highest three-dimensional object S5 are arranged.
  • the control device 10 sets the depth D of the three-dimensional shaped object S to the length in the direction Y.
  • the above arrangement is the first arrangement of the three-dimensional shaped object S.
  • the first placement zone Z1 includes an empty area where the three-dimensional shaped object S is not placed. Free areas are indicated by dots. For example, vacant areas exist on both sides in the X direction (left and right sides) of the third highest three-dimensional shaped object S3.
  • a shaped object S is arranged. That is, the eighth highest three-dimensional shape object S8 and the ninth highest three-dimensional shape object S9 are disposed in the left empty region in the X direction of the third highest three-dimensional shape object S3.
  • the tenth highest three-dimensional object S10 and the eleventh highest three-dimensional object S11 are arranged in the empty area on the right side in the X direction of the third highest three-dimensional object S3.
  • the control apparatus 10 will be similarly in order of the 2nd arrangement zone Z2, the 3rd arrangement zone Z3, and the 4th arrangement zone Z4.
  • a three-dimensional shaped object S that is not arranged is arranged. Note that the placement of the three-dimensional shaped object S in the placement zone Z ends when the three-dimensional shaped object S no longer exists in the modeling container C.
  • control device 10 performs the same processing as in the first embodiment up to step S ⁇ b> 9. That is, the control device 10 places the depth D of the three-dimensional shaped object S from the modeling container C in the first placement zone Z1 in the descending order of the height H of the three-dimensional shaped object S with the direction Y (see FIG. 8).
  • the control device 10 arranges the three-dimensional shaped object S in the empty area of the arrangement zone Z in which the three-dimensional shaped object S is arranged in descending order of the height H (step S11). That is, the control device 10 confirms whether or not the three-dimensional shaped object S can be arranged in the empty area of the arrangement zone Z in the descending order of the height H of the three-dimensional shaped object S remaining in the modeling container C. Arrange what can be arranged (see FIG. 9). Here, whether or not the three-dimensional shaped object S can be arranged in the vacant area of the arrangement zone Z is compared with the maximum value of the width in the X direction of the vacant area and the width L of the three-dimensional shaped object S that is not arranged. Confirm by doing. The maximum value of the width in the X direction of the empty area is updated every time the three-dimensional shaped object S is arranged.
  • the control device 10 determines whether or not the three-dimensional shaped object S exists in the modeling container C (step S12). That is, the control device 10 confirms whether or not the three-dimensional shape object S to be arranged remains in the modeling container C. And the control apparatus 10 completes arrangement
  • step S12 when the three-dimensional shaped object S to be arranged remains in the modeling container C (step S12: YES), the control device 10 indicates that the three-dimensional shaped object S has not entered the first arrangement zone Z1. Therefore, the process proceeds to step S8. That is, the control device 10 sets the second placement zone Z2 following the first placement zone Z1 in order to place the three-dimensional shaped object S that has not entered the first placement zone Z1 (step S8). And the control apparatus 10 repeats step S8, S9, S11, S12 until arrangement
  • the three-dimensional shaped object S to be modeled is arranged side by side in the arrangement zone Z extending in the direction Y in the descending order of the height H from the center in the direction Y and the direction X of the modeling range A. Further, when there is an empty area in the arrangement zone Z where the three-dimensional shape object S is arranged, the three-dimensional shape as close to the first arrangement zone Z1 as possible is arranged by arranging the three-dimensional shape object S that can be arranged. An object S can be arranged. As shown in FIG. 11A, when the three-dimensional shaped object S remaining in the modeling container C is arranged in the empty area of the arrangement zone Z, the already arranged three-dimensional shaped object S is arranged in the X direction.
  • the three-dimensional shaped object S may be arranged after moving to the left side. That is, there is a small empty area on the right side in the X direction of the second highest three-dimensional shape object S2. Further, a large empty area exists on the right side in the X direction of the third highest three-dimensional shaped object S3.
  • the three-dimensional shaped objects S that can be arranged in the empty area of the first arrangement zone Z1 are arranged. That is, the eighth highest three-dimensional shape S8 is arranged in the empty area on the right side in the X direction of the second highest three-dimensional shape S2. Further, in the empty area on the right side in the X direction of the third highest three-dimensional shape object S3, the seventh highest three-dimensional shape object S7, the ninth highest three-dimensional shape object S9, and the tenth time. A high three-dimensional shaped object S10 is arranged. It is confirmed whether or not the vacant area of the arrangement zone Z can be arranged in descending order. For this reason, the sixth highest three-dimensional object S6, the eleventh highest three-dimensional object S11, and the twelfth highest three-dimensional object S12 cannot be arranged in the empty area of the first arrangement zone Z1. Remains without placement.
  • the following effects can be obtained.
  • the three-dimensional objects S that can be arranged in the empty area in the arrangement zone Z in which the three-dimensional object S is arranged are arranged in the descending order of the height H. For this reason, it is possible to arrange many three-dimensional objects S in one arrangement zone Z by effectively using the empty area in the arrangement zone Z.
  • the three-dimensional shaped object S that can be arranged in the empty area in a state where the three-dimensional shaped object S already arranged in the arrangement zone Z is brought to the end is arranged in order of height H. For this reason, the empty area in the direction X can be maximized by bringing the already arranged three-dimensional object S toward the end, and a larger three-dimensional object S can be further arranged.
  • the said embodiment can be implemented with the following forms which changed this suitably.
  • these three-dimensional objects S when there are a plurality of small three-dimensional objects S, these three-dimensional objects S may be collectively arranged in the arrangement zone Z as one three-dimensional object S.
  • the eighth to thirteenth highest three-dimensional objects S8 to S13 are arranged in the arrangement zone Z as one three-dimensional object S8 ′. In this way, handling these three-dimensional objects as one three-dimensional object rather than disposing them separately in the arrangement zone Z facilitates handling.
  • 180 degrees may be rotated according to the shape of the three-dimensional shape object S.
  • the three-dimensional shaped objects Sa and Sb are arranged in the first arrangement zone Z1.
  • the upper portions of these three-dimensional shapes Sa and Sb are biased in different directions in the direction X. That is, the upper part of the three-dimensional shaped object Sa is located on the right side in the direction X, and the upper part of the three-dimensional shaped object Sb is located on the left side in the direction X. Therefore, as shown in FIG.
  • the upper portions of the three-dimensional shaped objects Sa and Sb can be positioned on the left side in the direction X, that is, the same Can be biased in the direction. Therefore, since the amount of movement of the recoater 17 in the X direction can be reduced by the progress of modeling, the modeling time can be shortened. Since the 180 degree rotation process on the XY plane can be performed while maintaining the shape of the virtual rectangular parallelepiped, it may be performed in step S6 or immediately before the arrangement is completed.
  • the (n + 1) -th placement zone Z and the first to (n-1) -th placement zones Z1 to Z (n-1) are n-th.
  • the nth arrangement zone Zn and the (n + 1) th arrangement zone Z (n + 1) are sandwiched.
  • the (n + 1) th arrangement zone Z is set to the wider range in the direction X among the ranges in which the arrangement zone Z is not set in the modeling range A Good.
  • the fourth arrangement zone Z4 is set, the fourth arrangement zone Z4 is originally set on the left side of the second arrangement zone Z2.
  • the fourth arrangement zone Z4 may be set on the right side of the third arrangement zone Z3.
  • the fourth arrangement zone Z4 is set on the left side of the second arrangement zone Z2, and the first arrangement zone Z1 is set in the direction of the modeling area A so that the first arrangement zone Z1 to the fourth arrangement zone Z4 fall within the modeling area A.
  • the first arrangement zone Z1 to the fourth arrangement zone Z4 may be shifted to the right in the X direction of the modeling range A.
  • the fourth arrangement zone Z4 to the sixth arrangement zone Z6 are set in a state where the first arrangement zone Z1 to the third arrangement zone Z3 are set in the modeling range A.
  • the width X1 from the left end of the second arrangement zone Z2 to the boundary line of the modeling area A, and the width X2 from the right end of the third arrangement zone Z3 to the boundary line of the modeling area A are set to the right side of the third arrangement zone Z3, which is the wider one.
  • the width X1 from the left end of the second arrangement zone Z2 to the boundary line of the modeling area A, and the width X3 from the right end of the fourth arrangement zone Z4 to the boundary line of the modeling area A Are set to the right side of the fourth arrangement zone Z4, which is wider.
  • the width X1 from the left end of the second arrangement zone Z2 to the boundary line of the modeling area A, and the width X4 from the right end of the fifth arrangement zone Z5 to the boundary line of the modeling area A Are set on the left side of the second arrangement zone Z2, which is wider.
  • a three-dimensional shape Sn having the (n + 1) th height is replaced with a three-dimensional shape having the first to (n ⁇ 1) th height.
  • the objects S1 to S (n ⁇ 1) are arranged so that the three-dimensional shape object Sn having the nth height and the three-dimensional shape object S (n + 1) having the (n + 1) th height are sandwiched.
  • the three-dimensional shape S (n + 1) having the (n + 1) -th height is set in the direction Y in the area where the three-dimensional shape S is not arranged in the arrangement zone Z. Place in the wider area. . For example, as shown in FIG.
  • the fourth highest three-dimensional shaped object S4 is arranged. In doing so, it is arranged on the upper side in the direction Y of the second highest three-dimensional shaped object S2. However, since the second highest three-dimensional shape object S2 does not enter the first arrangement zone Z1, the fourth highest three-dimensional shape object S4 is arranged below the third highest three-dimensional shape object S3. . By arranging in this way, a large number of three-dimensional shaped objects S can be arranged in the arrangement zone Z.
  • the first highest three-dimensional shaped object S1 is arranged at the center portion in the direction Y of the arrangement zone Z, and arranged so as to be sandwiched between the three-dimensional shaped objects S in order on both sides.
  • the area in the direction Y in the zone Z may not be sufficient.
  • the first highest three-dimensional shaped object S1 may be shifted in the direction Y.
  • the first highest three-dimensional shaped object S1 is arranged in the first arrangement zone Z1, and the second highest above the direction Y of the first highest three-dimensional shaped object S1.
  • the high three-dimensional shape object S2 is arranged, and the fourth highest three-dimensional shape object S4 is arranged above the direction Y of the second highest three-dimensional shape object S2.
  • the third highest three-dimensional shape object S3 is arranged below the direction Y of the first highest three-dimensional shape object S1, and the third highest height three-dimensional shape object S3 is arranged below the direction Y of the third highest shape object S3.
  • a fifth highest three-dimensional shape object S5 is arranged.
  • the width of the arrangement zone Z is changed in accordance with the width L of the three-dimensional shape S, but if the size of the three-dimensional shape S can be grasped to some extent, the width of the arrangement zone Z is set in advance. You may set it.
  • rotation and alignment are performed in the modeling container C.
  • rotation may be omitted and only alignment may be performed.
  • the three-dimensional shaped object S can be efficiently shaped with the height H at least.
  • the second placement zone Z2 and the fourth placement zone Z4 are located on the left side of the drawing in FIG. 2 with respect to the first placement zone Z1, and the third placement zone Z3 and the fifth placement zone Z5 Is positioned on the right side of the first arrangement zone Z1 as viewed in FIG.
  • the n-th arrangement zone Zn and the (n + 1) -th arrangement zone Z (n + 1) of each arrangement zone Z may be positioned on either the left or right side of the first arrangement zone Z1.
  • the second placement zone Z2 is located on the right side of FIG. 19 with respect to the first placement zone Z1
  • the third placement zone Z3 is the page of FIG. 19 with respect to the first placement zone Z1.
  • the fourth arrangement zone Z4 is located on the left side of the first arrangement zone Z1 as viewed in FIG. 19, and the fifth arrangement zone Z5 is located on the right side of the first arrangement zone Z1 in FIG.
  • the second highest three-dimensional shape object S2 and the fourth highest three-dimensional shape object S4 are positioned on the near side in the direction Y with respect to the first highest three-dimensional shape object S1.
  • the third highest three-dimensional object S3 and the fifth highest three-dimensional object S5 are located on the far side in the direction Y with respect to the first highest three-dimensional object S1.
  • the nth highest 3D shape object Sn and the (n + 1) th highest 3D shape object S (n + 1) are either in front of or behind the first highest 3D shape object S1. It only has to be located on either side. For example, as shown in FIG.
  • the second highest three-dimensional shape object S2 is located on the far side in the direction Y with respect to the first highest three-dimensional shape object S1.
  • the third highest three-dimensional shape object S3 is located on the near side in the direction Y with respect to the first highest three-dimensional shape object S1.
  • the fourth highest three-dimensional shape object S4 is located on the near side in the direction Y with respect to the first highest three-dimensional shape object S1.
  • the fifth highest three-dimensional shape object S5 is located on the far side in the direction Y with respect to the first highest three-dimensional shape object S1.
  • the first arrangement zone Z1 is set so as to be sandwiched between the second arrangement zone Z2 and the third arrangement zone Z3, and the nth arrangement zone Zn, which is a multiple of 2 after the fourth arrangement zone Z4,
  • the first arrangement zone Z1 to the (n-1) th arrangement zone Z (n-1) are sandwiched between the (n + 1) th arrangement zone Z (n + 1).
  • the scanner 13 is often located at the upper center of the modeling range A.
  • the first arrangement zone Z may be set under the scanner 13. That is, the first arrangement zone Z1 may be set at the end of the modeling range A, and may be set in order from the first arrangement zone Z1. For example, as shown in FIG.
  • the first placement zone Z1 is set at the left end of the modeling range A in FIG. For this reason, the first arrangement zone Z1 is set in the center and can be arranged more easily than setting the arrangement zone Z so as to sandwich both sides thereof.
  • the modeling range A is set to be small, it is effective because the amount of change in which the irradiation shape of the light beam applied to the photocurable material changes to an ellipse is small.
  • the highest three-dimensional shaped object S is arranged at the center in the direction X of the modeling range A. However, it may be shifted from the center in the direction X of the modeling range A.
  • the highest three-dimensional shape S is arranged in the center in the direction Y of the modeling range A.
  • the arrangement zones Z may be arranged in the descending order of the height H from either one end.
  • the three-dimensional shaped objects S are arranged side by side in the descending order of height H from the back end in the direction X of the arrangement zone Z1.
  • the three-dimensional shaped object S may be arranged in the descending order of the height H from the front end in the direction X of the arrangement zone Z1.
  • the first three-dimensional shape S1 is arranged in the center of the arrangement zone Z, and the three-dimensional shape S is arranged so as to sandwich both sides of the first highest three-dimensional shape S1. Easy to place.
  • the modeling range A is set to be small, it is effective because the amount of change in which the irradiation shape of the light beam applied to the photocurable material changes to an ellipse is small.
  • the first placement zone Z1 is set at the left end of the modeling range A in FIG. 22 as viewed in the drawing, and the second placement zone Z2 and subsequent zones are set in order, and the direction X of the placement zone Z1
  • the three-dimensional shaped objects S may be arranged side by side in the descending order of the height H from the back end. Thereby, the operation
  • step S3 the external dimensions are obtained using the three-dimensional shaped object S to be modeled as a virtual rectangular parallelepiped.
  • rotation and alignment may be performed according to the external dimensions of the three-dimensional shaped object S without using the virtual rectangular parallelepiped.
  • the processing order of the rotation of the three-dimensional shaped object S in step S6 and the alignment of the three-dimensional shaped object in step S7 may be reversed or may be performed simultaneously.
  • the modeling container C that performs the rotation and alignment of the three-dimensional shaped object S is set. However, the modeling container C is excluded, and the rotation and alignment of the three-dimensional shaped object S is performed in the arrangement process. You may go.
  • next arrangement zone Z is constructed when the three-dimensional shaped object S does not fully enter the arrangement zone Z (step S8), but the arrangement zone Z is constructed in advance and arranged.
  • the width W of the arrangement zone Z may be changed in accordance with the width L of the three-dimensional shape S.
  • the three-dimensional shaped object S is arranged several mm away from the boundary line B of the arrangement zone Z in consideration of interference between the three-dimensional shaped objects S. That is, the three-dimensional shaped object S was not arranged in a range within a few millimeters from the boundary line B of the arrangement zone Z. However, a space of several millimeters may be added around the three-dimensional shaped object S in advance.
  • the automatic arrangement of the three-dimensional shaped object S to be modeled is performed by the control device 10 of the optical modeling apparatus, but the three-dimensional shaped object S to be modeled is automatically arranged outside the optical modeling apparatus.
  • the result may be input to the control apparatus 10 of the optical modeling apparatus.
  • the outer dimensions are obtained using the three-dimensional shape as a virtual rectangular parallelepiped, the height, depth, and width can be easily obtained when the three-dimensional shape has a complicated shape.
  • SYMBOLS 10 Control apparatus, 11 ... Liquid tank, 12 ... Laser, 13 ... Scanner, 15 ... Lifting table, 16 ... Table drive device, 17 ... Recoater, 18 ... Recoater drive device, A ... Modeling range, B ... Boundary line, C ... modeling container, D ... depth, H ... height, L ... width, S, S1, S2, S3, S4, S5 ... three-dimensional shaped object, W ... width, X ... moving direction, Y ... extending direction, Z , Z1, Z2, Z3, Z4, Z5, Z6, Z7 ... arrangement zone.

Abstract

 複数の三次元形状物を一度に造形する際に、複数の三次元形状物を造形範囲に自動で効率良く配置できる光造形方法を提供する。光造形方法は、硬化性材料に選択的に光線を照射して光硬化性樹脂を硬化させることによって1組の三次元形状物Sに対応する造形物を昇降テーブル上の造形範囲Aに造形する。光造形方法は、造形範囲Aに1組の三次元形状物Sを制御装置によって配置し、液面を整えるためのリコータの延出方向Yに沿う境界線Bによって区画される複数の配置ゾーンZを設定し、三次元形状物Sを高さHの高い順に、かつ、複数の配置ゾーンZのうち第1配置ゾーンZ1から順に、配置ゾーンZ内に制御装置が配置する。

Description

光造形方法
 本発明は、光造形方法に関する。
 硬化性材料に光線を照射してその一部を硬化させ、三次元形状物を造形する光造形装置が実用化されている。この光造形装置は、CADシステムで設計した機械部品等を容易に実体化できるので、設計の確認と直接的な評価とが可能となる(例えば、特許文献1参照)。
 光造形装置は、液槽と、該液槽中に昇降可能な昇降テーブルとを備えている。液槽は、硬化性材料としての液状の光硬化性樹脂で満たされる。液槽は上部に開口を有し、該開口を通じて液槽内に光線が照射される。光造形装置は、三次元形状物を造形する際に、まず、液状の光硬化性樹脂の液面から、造形される三次元形状物の最下層の厚さ分だけ下降した高さに昇降テーブルを位置させる。そして、光造形装置は、リコータを液面に沿って移動させることによって液面を安定させる。光造形装置は、この状態でスキャナによって必要な範囲内に光線を走査することによって、液状の光硬化性樹脂を光硬化させて三次元形状物の最下層の部分を形成する。次に、光造形装置は、昇降テーブルを最下層の次の層、すなわち第2番目の層の厚さ分だけさらに下降させ、最下層と同様にして第2番目の層の部分を形成する。以降、光造形装置は、同様にして、液状の光硬化性樹脂を光硬化させて三次元形状物の最下層から順に一層ずつ形成することによって、三次元形状物を造形する。
特開2011-218821号公報
 ところで、上記の光造形装置では、光線を走査可能な造形範囲に複数の三次元形状物を一度に造形する場合、使用者は、造形範囲に納まるように三次元形状物が配置されたデータを作成している。このため、複数の三次元形状物を一度に造形する際に、複数の三次元形状物を造形範囲に自動で配置できる光造形方法が求められている。造形範囲に複数の三次元形状物を配置する際には、できる限り多くの三次元形状物を造形できるように配置することが求められる。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、複数の三次元形状物を一度に造形する際に、複数の三次元形状物を造形範囲に自動で効率良く配置できる光造形方法を提供することにある。
 以下、上記目的を達成するための手段及びその作用効果について説明する。
 上記課題を解決する光造形方法は、硬化性材料に選択的に光線を照射して前記硬化性材料を硬化させることによって1組の三次元形状物に対応する造形物を昇降テーブル上の造形範囲に造形する光造形方法において、前記造形範囲に前記1組の三次元形状物を制御装置によって配置し、液面を整えるためのリコータの延出方向に沿う境界線によって区画される複数の配置区域を前記造形範囲に前記制御装置が設定し、前記三次元形状物を高さの高い順に、かつ、前記複数の配置区域のうち第1番目の配置区域から順に、前記配置区域内に前記制御装置が配置することをその要旨としている。
 上記方法によれば、リコータの延出方向に沿う境界線によって区画される複数の配置区域を設定し、複数の配置区域のうち第1番目の配置区域から順に、配置区域内に造形する三次元形状物を高さの高い順に配置する。このため、第1番目の配置区域から順に高さによって配置すればよいので、複数の三次元形状物を一度に造形する際に、複数の三次元形状物を造形範囲に自動で効率良く配置できる。また、昇降テーブル上の造形範囲の全面を三次元形状物が埋めない場合には、昇降テーブル上の造形範囲に対して配置区域を絞ることができ、配置区域内において高さの高い造形物を偏らせることができる。このため、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 上記光造形方法について、前記複数の配置区域は3個以上の配置区域であり、2以上の整数nについて、第(n+1)番目の配置区域を、第1から第(n-1)番目までの配置区域を第n番目の配置区域と第(n+1)番目の配置区域とが挟むように設定することが好ましい。
 上記方法によれば、第1から第(n-1)番目までの配置区域を第n番目の配置区域と第(n+1)番目の配置区域とが挟む。このため、昇降テーブル上の造形範囲の全面を三次元形状物が埋めない場合には、昇降テーブル上の造形範囲のうち第1番目の配置区域を中心とする範囲に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 上記光造形方法について、前記複数の配置区域は3個以上の配置区域であり、各配置区域は別の配置区域に隣接して設定され、2以上の整数nについて、第(n+1)番目の配置区域を、前記造形範囲において配置区域が設定されていない範囲のうち、前記リコータの移動方向における幅の広い方の範囲に設定することが好ましい。
 上記方法によれば、造形範囲において配置区域が設定されていない範囲のうち、前記リコータの移動方向における幅の広い方の範囲に第(n+1)番目の配置区域を設定するので、造形範囲内における配置区域を配置していない部分を極力減らすことができる。
 上記光造形方法について、前記第1番目の配置区域は、前記リコータの移動方向における移動範囲の中央を含むことが好ましい。
 上記方法によれば、リコータの移動範囲の中央を含む位置に第1番目の配置区域を設定する。このため、昇降テーブル上の造形範囲の全面を三次元形状物が埋めない場合には、昇降テーブル上の造形範囲のうちリコータの移動範囲の中央近傍に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物を効率良く造形することができる。
 上記光造形方法について、前記第1番目の配置区域は、前記造形範囲において前記リコータの移動方向における第1端に隣接するように設定され、2以上の整数nについて、第n番目の配置区域は、第(n-1)番目の配置区域に隣接するように設定されることが好ましい。
 上記方法によれば、造形範囲の第1端から配置区域を順に設定する。このため、第1番目の配置区域を中央にして挟むように配置するよりも配置区域を容易に設定できる。
 上記光造形方法について、各前記配置区域に配置された前記三次元形状物は、前記複数の配置区域のうち、3個以上の三次元形状物が配置される各配置区域では、2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物を、第1から第(n-1)番目までの高さを有する三次元形状物を第n番目の高さを有する三次元形状物と第(n+1)番目の高さを有する三次元形状物とが挟むように配置することが好ましい。
 上記方法によれば、第1から第(n-1)番目までの高さを有する三次元形状物を第n番目の高さを有する三次元形状物と第(n+1)番目の高さを有する三次元形状物とが挟む。このため、各配置区域の中央寄りに高い三次元形状物が配置されるので、昇降テーブル上の造形範囲のうちリコータの延出範囲の中央寄りに光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 上記光造形方法について、前記複数の配置区域のうち、3個以上の三次元形状物が配置される各配置区域では、2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物を、該配置区域において三次元形状物が配置されていない区域のうち、前記リコータの延出方向における幅の広い方の区域に配置することが好ましい。
 上記方法によれば、該配置区域において三次元形状物が配置されていない区域のうち、前記リコータの延出方向における幅の広い方の区域に第(n+1)番目の高さを有する三次元形状物を配置する。このため、配置区域内において三次元形状物を配置していない部分を極力減らすことができる。
 上記光造形方法について、第1番目に高い前記三次元形状物は、前記配置区域における前記リコータの延出方向における前記リコータの幅の中央部分に配置することが好ましい。
 上記方法によれば、第1番目に高い三次元形状物をリコータの延出範囲の中央部分に配置する。このため、各配置区域の中央部分に高い三次元形状物が配置されるので、昇降テーブル上の造形範囲のうちリコータの延出範囲の中央部分に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 上記光造形方法について、前記複数の配置区域のうち、2個以上の三次元形状物が配置される各配置区域では、第1番目の高さを有する三次元形状物は、該配置区域において前記リコータの移動方向における第1端に隣接するように配置され、2以上の整数nについて、第n番目の高さを有する三次元形状物は、第(n-1)番目の高さを有する三次元形状物に隣接するように配置されることが好ましい。
 上記方法によれば、配置区域の第1端から三次元形状物を順に配置する。このため、1番目に高い三次元形状物を中央にして挟むように配置するよりも三次元形状物を容易に配置できる。
 上記光造形方法について、各配置区域について、1回目の前記三次元形状物の配置の完了後、次の配置区域における前記三次元形状物の配置前に、前記三次元形状物が配置されていない空き領域に対し、未配置の前記三次元形状物のうち前記空き領域に配置できる前記三次元形状物を高さの高い順に配置することが好ましい。
 上記方法によれば、三次元形状物が配置された配置区域内の空き領域に対して未配置の三次元形状物のうち空き領域に配置できる三次元形状物を高さの高い順に配置する。このため、配置区域内の空き領域を有効に利用して1つの配置区域に多くの三次元形状物を配置することができる。
 上記光造形方法について、各配置区域について、1回目の前記三次元形状物の配置の完了後、次の配置区域における前記三次元形状物の配置前に、既に配置された前記三次元形状物を前記リコータの移動方向における第1端に寄せて再配置し、次いで前記三次元形状物が配置されていない空き領域に対し、未配置の前記三次元形状物を高さの高い順に配置することが好ましい。
 上記方法によれば、配置区域に既に配置された三次元形状物を端に寄せた状態における空き領域に対して未配置の三次元形状物のうち空き領域に配置できる三次元形状物を高さの高い順に配置する。このため、既に配置した三次元形状物を端に寄せることでリコータの移動方向における空き領域を最大化することができ、より大きな三次元形状物を更に配置することができるようになる。
 上記光造形方法について、前記三次元形状物の底面と平行であって直交する2方向を設定し、前記三次元形状物の前記2方向における長さのうち長い方を前記リコータの延出方向の長さに設定することが好ましい。
 上記方法によれば、三次元形状物の底面と平行であって直交する2方向における長さのうち長い方をリコータの延出方向の長さに設定する。このため、配置区域のリコータの移動方向における長さが三次元形状物の長さによって無駄に拡がることを抑制できる。
 上記光造形方法について、前記配置区域の前記リコータの移動方向の幅は、配置される前記三次元形状物の前記リコータの移動方向における長さに合わせて変更されることが好ましい。
 上記方法によれば、配置される三次元形状物のリコータの移動方向における長さに合わせて配置区域のリコータの移動方向の幅が設定される。このため、配置区域のリコータの移動方向の幅が三次元形状物に合わせて的確に設定されるため、効率良く配置される。
 本発明によれば、複数の三次元形状物を一度に造形する際に、複数の三次元形状物を造形範囲に自動で効率良く配置できる。
第1の実施形態の光造形装置の概略構成を示す図。 第1の実施形態の光造形方法による配置ゾーンを示す図。 第1の実施形態の光造形方法による三次元形状物の回転及び整列を示す図。 第1の実施形態の光造形方法による三次元形状物の配置を示す図。 第1の実施形態の光造形方法による三次元形状物の配置処理を示すフローチャート。 第1の実施形態の光造形方法による三次元形状物の配置状態を示す図。 第1の実施形態の光造形方法による三次元形状物の配置状態を示す図。 第2の実施形態の光造形方法による三次元形状物の配置を示す図。 (a)(b)第2の実施形態の光造形方法による三次元形状物の配置を示す図。 第2の実施形態の光造形方法による三次元形状物の配置処理を示すフローチャート。
  
(a)(b)変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置を示す図。 変形例の光造形方法による三次元形状物の配置状態を示す図。 変形例の光造形方法による三次元形状物の配置状態を示す図。 変形例の光造形方法による三次元形状物の配置状態を示す図。 変形例の光造形方法による三次元形状物の配置状態を示す図。
 (第1の実施形態)
 以下、図1~図7を参照して、光造形方法の第1の実施形態について説明する。
 図1に示されるように、光造形装置は、硬化性材料として液状の光硬化性樹脂で満たされた液槽11と、光線を出射するレーザ12と、レーザ12から出射された光線を液槽11に照射するスキャナ13とを備えている。レーザ12から出射された光線は、光学系装置を介してスキャナ13に入射する。光造形装置は、液槽11内において上下方向に昇降可能な昇降テーブル15を備えている。昇降テーブル15は、テーブル駆動装置16によって上下に移動される。液槽11の上方には、液面を整えるためのリコータ17が設置されている。リコータ17は、リコータ駆動装置18によって前後方向(図中左右方向)に移動される。レーザ12、スキャナ13、テーブル駆動装置16、及びリコータ駆動装置18は、制御装置10によって制御される。
 光造形装置は、液状の光硬化性樹脂で満たされた液槽11内において昇降テーブル15の上面に光線を選択的に照射することによって、液状の光硬化性樹脂を硬化して、1組の三次元形状物Sを造形する。造形した三次元形状物Sを造形物と記載する。昇降テーブル15は、液槽11に満たされた光硬化性樹脂が昇降テーブル15の下面と上面との間を通過し易いようにパンチングプレートが用いられている。
 次に、図2~図7を参照して、光造形装置による三次元形状物Sの自動配置について説明する。
 まず、図2に示されるように、昇降テーブル15上において三次元形状物Sを造形可能な範囲を造形範囲Aとする。そして、制御装置10は、造形範囲Aに対して造形する三次元形状物Sを配置する配置区域である配置ゾーンZを設定する。配置ゾーンZは、リコータ17の延出方向Y(以下、方向Y)に沿う境界線Bによって区画され、造形範囲Aにおけるリコータ17の移動方向X(以下、方向X)に並んで複数設定される。制御装置10は、方向Xにおける移動範囲の中央を含む位置に第1配置ゾーンZ1を設定する。各配置ゾーンZは、3個以上の配置ゾーンZであり、2以上の整数nについて、第(n+1)番目の配置ゾーンZ(n+1)を、第1から第(n-1)番目までの配置ゾーンZ1~Z(n-1)を第n番目の配置ゾーンZnと第(n+1)番目の配置ゾーンZ(n+1)とが挟むように設定する。
 すなわち、制御装置10は、第1配置ゾーンZ1に隣接して第2配置ゾーンZ2を設定する。図2では、第1配置ゾーンZ1の-X方向(図中の左方向)に隣接して第2配置ゾーンZ2を設定する。3以上の整数n(n≧3)について、第n配置ゾーンZnは、第1から第(n-2)番目までの配置ゾーンZ1~Z(n-2)を第(n-1)番目の配置ゾーンZ(n-1)と第n番目の配置ゾーンZnとが挟むように設定される。次いで、制御装置10は、第1配置ゾーンZ1に隣接して第2配置ゾーンZ2を設定する。図2では、第1配置ゾーンZ1の-X方向(図中の左方向)に隣接して第2配置ゾーンZ2を設定する。第3配置ゾーンZ3以降については、2以上の整数n(n≧2)について、第(n+1)配置ゾーンZ(n+1)は、第1から第(n-1)番目までの配置ゾーンZ1~Z(n-1)を第n番目の配置ゾーンZnと第(n+1)番目の配置ゾーンZ(n+1)とが挟むように設定される。
 言い換えると、配置ゾーンZは、第1配置ゾーンZ1を第2配置ゾーンZ2と第3配置ゾーンZ3とで挟むように設定し、第1,2配置ゾーンZ1,Z2を第3配置ゾーンZ3と第4配置ゾーンZ4とで挟むように設定し、第4配置ゾーンZ4以降も第n配置ゾーンZnと第(n+1)配置ゾーンZ(n+1)とで第1配置ゾーンZ1~第(n-1)配置ゾーンZ(n-1)を挟むように設定する。第2配置ゾーンZ2は第1配置ゾーンZ1に対して図2の紙面視左側に位置し、第3配置ゾーンZ3は第1配置ゾーンZ1に対して図2の紙面視右側に位置する。第4配置ゾーンZ4は第1配置ゾーンZ1に対して図2の紙面視左側に位置し、第5配置ゾーンZ5は第1配置ゾーンZ1に対して図2の紙面視右側に位置する。制御装置10は、方向Xにおける配置ゾーンZの幅Wを、方向Xにおける造形する三次元形状物Sの長さに合わせて変更する。
 次に、図3に示されるように、制御装置10は、造形する三次元形状物Sのデータを取得すると、該データを仮想的な造形コンテナCに入力する。造形コンテナCでは、入力された三次元形状物Sを回転及び整列させる。造形コンテナCは、造形する三次元形状物Sを整列させるプログラムである。すなわち、造形コンテナCでは、造形する三次元形状物Sを仮想直方体として外形寸法を求め、三次元形状物Sの仮想直方体の外形寸法のうち最も長い辺を高さHとする。また、造形コンテナCでは、三次元形状物Sの仮想直方体の外形寸法の高さH以外の長い方の辺を奥行きDとして、三次元形状物Sの仮想直方体の外形寸法の高さ以外の短い方の辺を幅Lとする。造形コンテナC内で処理された三次元形状物は、仮想直方体の外形寸法の高さHが高い順であって、奥行きDと幅Lとの向きが揃った状態で整列されている。制御装置10は、造形コンテナCに入力した三次元形状物Sのデータを造形コンテナCから出力する。
 次に、図4に示されるように、各配置ゾーンZには、造形する三次元形状物Sが高さHに基づいて方向Yに沿って配置される。このとき、三次元形状物Sは、三次元形状物Sの幅Lの中央が各配置ゾーンZのX方向における幅Wの中央に一致するように配置される。すなわち、制御装置10は、第1番目に高い三次元形状物S1を方向Yの中央に配置する。また、制御装置10は、3個以上の三次元形状物Sが配置される各配置ゾーンZでは、2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物S(n+1)を、第1から第(n-1)番目までの高さを有する三次元形状物S1~S(n-1)を第n番目の高さを有する三次元形状物Snと第(n+1)番目の高さを有する三次元形状物S(n+1)とが挟むように配置する。
 すなわち、制御装置10は、第1番目に高い三次元形状物S1を第2番目に高い三次元形状物S2と第3番目に高い三次元形状物S3とで挟んで配置し、第1,2番目に高い三次元形状物S1,S2を第3番目に高い三次元形状物S3と第4番目に高い三次元形状物S4とで挟んで配置し、第4番目以降に高い三次元形状物S4~も第n番目に高い三次元形状物Snと第(n+1)番目に高い三次元形状物S(n+1)とで第1番目に高い三次元形状物S1~第(n-1)番目に高い三次元形状物S(n-1)を挟むように配置する。第4番目に高い三次元形状物S4は第1番目に高い三次元形状物S1に対して方向Yの手前側に位置し、第5番目に高い三次元形状物S5は第1番目に高い三次元形状物S1に対して方向Yにおける奥側に位置する。制御装置10は、三次元形状物Sの奥行きDを方向Yの長さに設定する。このため、配置ゾーンZの幅Wが無駄に拡がることを抑制できる。なお、三次元形状物Sを配置ゾーンZに配置する際には、三次元形状物S同士の干渉を考慮して、三次元形状物Sが配置ゾーンZの境界線Bから数mm離して配置される。
 また、制御装置10は、造形範囲Aに1組の三次元形状物Sを配置する際、第1配置ゾーンZ1から順に、高さの高い順に三次元形状物Sを配置する。制御装置10は、第1配置ゾーンZ1に三次元形状物Sを配置するだけの領域が残っていない場合、未配置の三次元形状物Sについて、第2配置ゾーンZ2に高さの高い順に三次元形状物Sを配置する。そして、制御装置10は、三次元形状物Sを複数の配置ゾーンZのうち第1配置ゾーンZ1から順に、第2配置ゾーンZ2、第3配置ゾーンZ3、第4配置ゾーンZ4以降の順に配置する。なお、配置ゾーンZへの三次元形状物Sの配置は、造形コンテナC内に三次元形状物Sが存在しなくなった時点で終了する。
 次に、図5を参照して、制御装置10の自動配置の処理について説明する。
 まず、制御装置10は、情報を読み込む(ステップS1)。すなわち、制御装置10は、昇降テーブル15の寸法、液槽11の造形許容寸法、リコータ17の移動方向X等の情報を図示しない入力装置や記憶装置から読み込む。制御装置10は、これらの情報に基づいて造形範囲Aと造形可能な空間とを把握する。
 次に、制御装置10は、造形する三次元形状物Sの外形寸法を取得する(ステップS2)。すなわち、制御装置10は、制御装置10に対し入力される造形する三次元形状物SのCADデータ等から、外形寸法を取得する。
 次に、制御装置10は、三次元形状物Sの仮想直方体の外形寸法を算出する(ステップS3)。制御装置10は、三次元形状物Sがぎりぎり収容される直方体を仮想して、この仮想直方体の外形寸法を算出する。このため、三次元形状物Sが複雑な外形を有する場合であっても、三次元形状物Sに対応する仮想直方体を算出することによって、直方体の各辺の長さに基づき直方体を並び替えて自動配置することができる。
 次に、制御装置10は、全三次元形状物Sを造形範囲Aに配置できるか否かを判断する(ステップS4)。詳細には、制御装置10は、造形する三次元形状物Sの仮想直方体の底面の面積の和が造形範囲Aの面積よりも小さいか否かを判断する。制御装置10は、造形する三次元形状物Sの仮想直方体の底面の面積の和が造形範囲Aの面積よりも大きい場合、全三次元形状物Sを造形範囲Aに配置できないと判断し(ステップS4:NO)、自動配置を終了する。
 一方、制御装置10は、造形する三次元形状物Sの仮想直方体の底面の面積の和が造形範囲Aの面積よりも小さい場合、全三次元形状物Sを造形範囲Aに配置できると判断し(ステップS4:YES)、ステップS5の処理に移行する。
 ステップS5において、制御装置10は、全三次元形状物Sを造形コンテナCに入力する。すなわち、制御装置10は、造形する三次元形状物Sの外形寸法を造形コンテナCに取り込む。ここでは、制御装置10は、仮想直方体の外形寸法を造形コンテナCに取り込む。
 制御装置10は、造形コンテナCにおいて、全三次元形状物Sを回転させる(ステップS6)。すなわち、制御装置10は、全三次元形状物Sの仮想直方体の外形寸法の高さH以外の長い方の辺が奥行きDの方向に沿うように全三次元形状物を回転させる。
 制御装置10は、造形コンテナCにおいて、全三次元形状物Sを高さHの高い順に整列させる(ステップS7)。すなわち、制御装置10は、全三次元形状物Sの仮想直方体の高さHの高い順に全三次元形状物Sを整列させる。
 次に、制御装置10は、造形範囲Aに配置ゾーンZを構築する(ステップS8)。すなわち、制御装置10は、造形範囲Aに方向Yと平行な境界線Bを設定して、造形範囲Aに方向Xに互いに隣接する配置ゾーンZを設定する。配置ゾーンZの幅Wは、配置ゾーンZ内に配置される三次元形状物Sの幅Lに合わせて変更される。
 第1配置ゾーンZ1は、方向Xにおける中央を含む位置に設定される。第2配置ゾーンZ2及び第3配置ゾーンZ3は、第1配置ゾーンZ1を挟んで設定される。第4配置ゾーンZ4及び第5配置ゾーンZ5は、同様に第1~3配置ゾーンZ1~Z3を挟んで設定される(図2を参照)。なお、第2配置ゾーンZ2以降は、配置する三次元形状物が存在する場合に設定される。
 次に、各配置ゾーンZにおいて、制御装置10は、造形コンテナCから造形する三次元形状物Sを高さHの高い順に配置する(ステップS9)。すなわち、制御装置10は、造形コンテナCから三次元形状物Sの奥行きDを方向Yとして、三次元形状物Sの高さHの高い順に第1配置ゾーンZ1に配置する。
 次に、制御装置10は、造形コンテナCに三次元形状物Sが存在するか否かを判断する(ステップS10)。すなわち、制御装置10は、配置すべき三次元形状物Sが造形コンテナCに残っていないかを確認する。そして、制御装置10は、配置すべき三次元形状物が造形コンテナCに残っていない場合(ステップS10:NO)には、配置を完了する。
 一方、配置すべき三次元形状物Sが造形コンテナCに残っている場合(ステップS10:YES)、これは、第1配置ゾーンZ1に三次元形状物Sが入りきらなかったことを意味している。したがって、制御装置10は、配置すべき三次元形状物Sが造形コンテナCに残っている場合(ステップS10:YES)には、ステップS8の処理に移行する。すなわち、制御装置10は、第1配置ゾーンZ1に入りきらなかった三次元形状物Sを配置するために、第1配置ゾーンZ1に続いて第2配置ゾーンZ2を設定する(ステップS8)。そして、制御装置10は、配置が完了するまで、ステップS8~S10を繰り返す。
 なお、制御装置10は、ステップS10において、三次元形状物Sが造形コンテナCに残っていた場合であっても、造形範囲Aに配置することができないとき、すなわち、造形範囲Aに適切な配置ゾーンを設定できなかったときには、その旨を表示して、配置を完了する。
 よって、造形される三次元形状物Sは、造形範囲Aの方向Y及び方向Xにおける中央を中心から高さHの高い順に方向Yに延びる配置ゾーンZ内に並んで配置され、造形する三次元形状物Sが多い場合には方向Xに沿って配置ゾーンZ毎に配置される。
 図6に示されるように、造形範囲Aに配置された三次元形状物Sの高さHは、方向Xにおいて中央が最も高く、中央から遠ざかるほど低くなっている。このため、三次元形状物Sの造形が進行して造形物の高さHが高くなるほど、方向Xにおける中央近辺のみを造形すればよい。ここで、造形物を固化させる光はレーザ12からスキャナ13を通り、スキャナ13によって導かれる。このとき、スキャナ13から離れると、光が垂直には当たらないため、精度が若干落ちる。また、図示しない焦点調整装置などを用いることによって補正を行うこともあるが、精度の落ちる要因となる。このため、造形範囲Aの中央に三次元形状物Sをできる限り配置することによって、三次元形状物Sを更に精度よく造形することができる。一般に造形範囲Aの中央上部にスキャナ13が位置しているものが多いが、スキャナ13が中央より離れている際にはスキャナ13の下に第1配置ゾーンZ1を設定するのが好ましい。
 図7に示されるように、造形範囲Aに配置された三次元形状物Sの高さHは、方向Yにおいて中央が最も高く、中央から遠ざかるほど低くなっている。このため、三次元形状物Sを造形して高さHが高くなるほど、方向Yにおける中央近辺のみを造形すればよい。
 よって、制御装置10は、造形範囲Aに三次元形状物Sが配置された配置データに基づいて造形物を造形する。このとき、造形物の高さHが高くなるほど、方向X及び方向Yにおける中央近辺のみを造形すればよいので、造形時の光線の照射範囲を絞ることができ、三次元形状物Sを効率良く造形できる。
 以上、説明した実施形態によれば、以下の効果を奏することができる。
 (1)方向Yに沿う境界線Bによって区画される複数の配置ゾーンZを設定し、複数の配置ゾーンZのうち第1配置ゾーンZ1から順に、配置ゾーンZ内に同時に造形する三次元形状物Sを高さHの高い順に配置する。このため、第1配置ゾーンZ1から順に高さHによって配置すればよいので、複数の三次元形状物Sを一度に造形する際に、複数の三次元形状物Sを造形範囲Aに自動で効率良く配置できる。また、昇降テーブル15上の造形範囲Aの全面を三次元形状物Sが埋めない場合には、昇降テーブル15上の造形範囲Aに対して配置ゾーンZを絞ることができ、配置ゾーンZ内において高さHの高い造形物を偏らせることができる。このため、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 (2)第1配置ゾーンZ1を挟んで両側に複数の配置ゾーンZを設定した。このため、昇降テーブル15上の造形範囲Aの全面を三次元形状物Sが埋めない場合には、昇降テーブル15上の造形範囲Aのうち第1配置ゾーンZ1を中心とする範囲に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物Sを効率良く造形できる。
 (3)方向Xにおける中央を含む位置に第1配置ゾーンZ1を設定する。このため、昇降テーブル15上の造形範囲Aの全面を三次元形状物Sが埋めない場合には、昇降テーブル15上の造形範囲Aのうち方向Xにおける中央近傍に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物Sを効率良く造形できる。
 (4)第1番目に高い三次元形状物S1を方向Yにおける中央に配置し、第1番目に高い三次元形状物S1を挟んで両側に各三次元形状物を設定した。このため、各配置ゾーンZの中央に高い三次元形状物Sが配置されるので、昇降テーブル15上の造形範囲Aのうち方向Yにおける中央に光線の照射範囲を絞ることができる。よって、光線の照射範囲を極力減らして、三次元形状物を効率良く造形できる。
 (5)三次元形状物Sの高さH以外のうち長い方を方向Yにおける長さに設定する。このため、配置ゾーンZの方向Xにおける長さが造形物の長さによって無駄に拡がることを抑制できる。
 (6)三次元形状物Sの方向Xにおける奥行きDに合わせて配置ゾーンZの方向Xの幅が設定される。このため、配置ゾーンZの方向Xの幅が三次元形状物Sに合わせて的確に設定されるため、効率良く配置される。
 (7)三次元形状物Sを仮想直方体として外形寸法を求めるので、三次元形状物Sが複雑な形状であった際に、高さH、奥行きD、幅Lを容易に得ることができる。
 (第2の実施形態)
 以下、図8~図11を参照して、光造形方法の第2の実施形態について説明する。この実施形態の光造形方法は、1個の配置ゾーンZに三次元形状物Sを配置した後に、配置ゾーンZ内の空き領域に対して未配置の三次元形状物Sのうち配置できるものを配置する点が上記第1の実施形態と異なっている。以下、第1の実施形態との相違点を中心に説明する。
 図8に示されるように、第1配置ゾーンZ1には、造形する三次元形状物Sが高さHに基づいて方向Yに沿って配置される。すなわち、制御装置10は、第1の実施形態と同様に、第1番目に高い三次元形状物S1を方向Yにおける中央に配置する。また、制御装置10は、第2番目以降に高い三次元形状物S2~を2の倍数である第n番目に高い三次元形状物Snと第(n+1)番目に高い三次元形状物S(n+1)とで第1番目に高い三次元形状物S1~第(n-1)番目に高い三次元形状物S(n-1)を挟むように配置する。第1配置ゾーンZ1には、第1番目に高い三次元形状物S1~第5番目に高い三次元形状物S5までが配置されている。制御装置10は、三次元形状物Sの奥行きDを方向Yにおける長さに設定する。上記の配置を1回目の三次元形状物Sの配置とする。
 続いて、図9(a)に示されるように、第1配置ゾーンZ1には、三次元形状物Sが配置されていない空き領域が存在している。空き領域をドットで示している。例えば、3番目に高い三次元形状物S3のX方向両側(左右両側)には空き領域が存在している。
 図9(b)に示されるように、上記の1回目の三次元形状物Sの配置の完了後、未配置の三次元形状物Sのうち第1配置ゾーンZ1の空き領域に配置できる三次元形状物Sを配置している。すなわち、第3番目に高い三次元形状物S3のX方向における左側の空き領域には、第8番目に高い三次元形状物S8及び第9番目に高い三次元形状物S9が配置されている。また、第3番目に高い三次元形状物S3のX方向における右側の空き領域には、第10番目に高い三次元形状物S10及び第11番目に高い三次元形状物S11が配置されている。なお、まだ配置していない三次元形状物Sのうち高い順に、配置ゾーンZの空き領域に対して配置が可能か否かを確認している。このため、第6番目に高い三次元形状物S6及び第7番目に高い三次元形状物S7は、第1配置ゾーンZ1の空き領域に配置できないので配置せずに残っている。
 そして、制御装置10は、第1配置ゾーンZ1の空き領域に配置できる三次元形状物Sがなくなると、同様に、第2配置ゾーンZ2、第3配置ゾーンZ3、第4配置ゾーンZ4以降の順に配置していない三次元形状物Sを配置する。なお、配置ゾーンZへの三次元形状物Sの配置は、造形コンテナC内に三次元形状物Sが存在しなくなった時点で終了する。
 次に、図10を参照して、制御装置10の自動配置の処理について説明する。
 図10に示されるように、制御装置10は、ステップS9まで第1の実施形態と同様に処理する。すなわち、制御装置10は、造形コンテナCから三次元形状物Sの奥行きDを方向Yとして、三次元形状物Sの高さHの高い順に第1配置ゾーンZ1に配置する(図8参照)。
 続いて、制御装置10は、高さHの高い順に三次元形状物Sが配置された配置ゾーンZの空き領域に三次元形状物Sを配置する(ステップS11)。すなわち、制御装置10は、造形コンテナCに残っている三次元形状物Sを高さHの高い順に、配置ゾーンZの空き領域に三次元形状物Sが配置できるか否かを確認して、配置できるものを配置する(図9参照)。ここで、配置ゾーンZの空き領域に三次元形状物Sが配置できるか否かは、空き領域のX方向の幅の最大値と、配置していない三次元形状物Sの幅Lとを比較することで確認する。なお、空き領域のX方向の幅の最大値は、三次元形状物Sを配置する毎に更新する。
 次に、制御装置10は、造形コンテナCに三次元形状物Sが存在するか否かを判断する(ステップS12)。すなわち、制御装置10は、配置すべき三次元形状物Sが造形コンテナCに残っていないかを確認する。そして、制御装置10は、配置すべき三次元形状物が造形コンテナCに残っていない場合(ステップS12:NO)には、配置を完了する。なお、制御装置10は、ステップS12において、三次元形状物Sが造形コンテナCに残っていた場合であっても、造形範囲Aに配置することができないとき(ステップS12:NO)には、その旨を表示して、配置を終了する。
 一方、制御装置10は、配置すべき三次元形状物Sが造形コンテナCに残っている場合(ステップS12:YES)には、第1配置ゾーンZ1に三次元形状物Sが入りきらなかったということなので、ステップS8の処理に移行する。すなわち、制御装置10は、第1配置ゾーンZ1に入りきらなかった三次元形状物Sを配置するために、第1配置ゾーンZ1に続いて第2配置ゾーンZ2を設定する(ステップS8)。そして、制御装置10は、配置が完了するまで、ステップS8,S9,S11,S12を繰り返す。
 よって、造形される三次元形状物Sは、造形範囲Aの方向Y及び方向Xにおける中央を中心から高さHの高い順に方向Yに延びる配置ゾーンZ内に並んで配置される。また、三次元形状物Sが配置された配置ゾーンZ内に空き領域が存在する場合には、配置できる三次元形状物Sを配置することで、できる限り第1配置ゾーンZ1寄りに三次元形状物Sを配置することができる。 なお、図11(a)に示されるように、造形コンテナCに残っている三次元形状物Sを配置ゾーンZの空き領域に配置する際に、既に配置した三次元形状物SをX方向において左側に寄せてから三次元形状物Sを配置してもよい。すなわち、第2番目に高い三次元形状物S2のX方向における右側には小さな空き領域が存在している。また、第3番目に高い三次元形状物S3のX方向における右側には大きな空き領域が存在している。
 図11(b)に示されるように、まだ配置していない三次元形状物Sのうち第1配置ゾーンZ1の空き領域に配置できる三次元形状物Sを配置している。すなわち、第2番目に高い三次元形状物S2のX方向における右側の空き領域には、第8番目に高い三次元形状物S8が配置されている。また、第3番目に高い三次元形状物S3のX方向における右側の空き領域には、第7番目に高い三次元形状物S7、第9番目に高い三次元形状物S9、及び第10番目に高い三次元形状物S10が配置されている。なお、配置ゾーンZの空き領域に対して高い順に配置が可能か否かを確認している。このため、第6番目に高い三次元形状物S6、第11番目に高い三次元形状物S11、及び第12番目に高い三次元形状物S12は、第1配置ゾーンZ1の空き領域に配置できないので配置せずに残っている。
 このようにすれば、配置ゾーンZ内のX方向において、空き領域がまとまることにより大きな三次元形状物Sを配置することが可能となる。このため、配置ゾーンZの中央に三次元形状物Sを配置した状態で空き領域に三次元形状物Sを配置するよりも大きな三次元形状物Sを配置することができる。
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(7)の効果に加え、以下の効果を奏することができる。
 (8)三次元形状物Sが配置された配置ゾーンZ内の空き領域に対して配置できる三次元形状物Sを高さHの高い順に配置する。このため、配置ゾーンZ内の空き領域を有効に利用して1つの配置ゾーンZに多くの三次元形状物Sを配置することができる。
 (9)配置ゾーンZに既に配置された三次元形状物Sを端に寄せた状態における空き領域に対して配置できる三次元形状物Sを高さHの高い順に配置する。このため、既に配置した三次元形状物Sを端に寄せることで方向Xにおける空き領域を最大化することができ、より大きな三次元形状物Sを更に配置することができるようになる。
 なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
 ・上記各実施形態において、小さい三次元形状物Sが複数存在する場合には、これらの三次元形状物Sをまとめて一つの三次元形状物Sとして配置ゾーンZに配置してもよい。例えば、図12に示されるように、第8~13番目に高い三次元形状物S8~S13を1つの三次元形状物S8’として配置ゾーンZに配置する。このように、それらの三次元形状物を配置ゾーンZ内にばらばらに配置するよりも1つの三次元形状物として処理することで、取り扱いが容易になる。
 ・上記各実施形態において、三次元形状物Sの形状に応じて180度回転させてもよい。例えば、図13に示されるように、三次元形状物Sa,Sbを第1配置ゾーンZ1に配置したとする。これら三次元形状物Sa,Sbの上部は、方向Xにおいて異なる方向に偏っている。すなわち、三次元形状物Saの上部は方向Xにおいて右側に位置し、三次元形状物Sbの上部は方向Xにおいて左側に位置する。そこで、図14に示されるように、三次元形状物SaをXY平面において180度回転させることで、三次元形状物Sa,Sbの上部を方向Xにおいて左側に位置させることができる、すなわち、同じ方向に偏らせることができる。よって、造形の進捗によってリコータ17のX方向における移動量を減少させることができるので、造形時間を短くできる。このXY平面における180度の回転処理は、仮想直方体の形状を保ったまま行えるので、ステップS6で行っても、配置完了直前に行っても良い。
 ・上記各実施形態では、2以上の整数nについて、第(n+1)番目の配置ゾーンZを、第1から第(n-1)番目までの配置ゾーンZ1~Z(n-1)を第n番目の配置ゾーンZnと第(n+1)番目の配置ゾーンZ(n+1)とが挟むように設定した。しかしながら、2以上の整数nについて、第(n+1)番目の配置ゾーンZを、造形範囲Aにおいて配置ゾーンZが設定されていない範囲のうち、方向Xにおける幅の広い方の範囲に設定してもよい。例えば、図15に示すように、第4配置ゾーンZ4を設定する際に、本来第2配置ゾーンZ2の左側に第4配置ゾーンZ4を設定する。しかしながら、第4配置ゾーンZ4が造形範囲Aに入らない場合、第3配置ゾーンZ3の右側に第4配置ゾーンZ4を設定してよい。なお、第4配置ゾーンZ4を第2配置ゾーンZ2の左側に設定するとともに、第1配置ゾーンZ1~第4配置ゾーンZ4が造形範囲Aに入るように第1配置ゾーンZ1を造形範囲Aの方向Xの中央から右側にずらしてもよい、すなわち、第1配置ゾーンZ1~第4配置ゾーンZ4を造形範囲AのX方向の右側にずらしてもよい。
 ・また、図16に示すように、第1配置ゾーンZ1~第3配置ゾーンZ3が造形範囲Aに設定された状態で、第4配置ゾーンZ4~第6配置ゾーンZ6を設定する際を説明する。第4配置ゾーンZ4を設定する際には、第2配置ゾーンZ2の左端から造形範囲Aの境界線までの幅X1と第3配置ゾーンZ3の右端から造形範囲Aの境界線までの幅X2とを比較して広い方である第3配置ゾーンZ3の右側に設定する。第5配置ゾーンZ5を設定する際には、第2配置ゾーンZ2の左端から造形範囲Aの境界線までの幅X1と第4配置ゾーンZ4の右端から造形範囲Aの境界線までの幅X3とを比較して広い方である第4配置ゾーンZ4の右側に設定する。第6配置ゾーンZ6を設定する際には、第2配置ゾーンZ2の左端から造形範囲Aの境界線までの幅X1と第5配置ゾーンZ5の右端から造形範囲Aの境界線までの幅X4とを比較して広い方である第2配置ゾーンZ2の左側に設定する。このように設定することで、造形範囲Aにより多くの配置ゾーンZを設定することができる。
 ・上記各実施形態では、2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物Snを、第1から第(n-1)番目までの高さを有する三次元形状物S1~S(n-1)を第n番目の高さを有する三次元形状物Snと第(n+1)番目の高さを有する三次元形状物S(n+1)とが挟むように配置した。しかしながら、2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物S(n+1)を、配置ゾーンZにおいて三次元形状物Sが配置されていない区域のうち、方向Yにおける幅の広い方の区域に配置する。。例えば、図17に示されるように、第1番目~第3番目に高い三次元形状物S1~S3を第1配置ゾーンZ1に配置した状態で、第4番目に高い三次元形状物S4を配置する際に、本来第2番目に高い三次元形状物S2の方向Yの上側に配置する。しかしながら、第2番目に高い三次元形状物S2が第1配置ゾーンZ1に入らないので、第3番目に高い三次元形状物S3の下側に第4番目に高い三次元形状物S4を配置する。このように配置することで、配置ゾーンZにより多くの三次元形状物Sを配置することができる。
 ・上記各実施形態では、配置ゾーンZの方向Yの中央部分に第1番目に高い三次元形状物S1を配置して、その両側に順番に三次元形状物Sで挟むように配置したが配置ゾーンZ内の方向Yにおける面積が足りず配置することができないことがある。このような場合には、三次元形状物Sが入るならば、第1番目に高い三次元形状物S1を方向Yにおいてずらしてもよい。例えば、図18に示されるように、第1配置ゾーンZ1に第1番目に高い三次元形状物S1を配置し、第1番目に高い三次元形状物S1の方向Yの上側に第2番目に高い三次元形状物S2を配置し、さらに第2番目に高い三次元形状物S2の方向Yの上側に第4番目に高い三次元形状物S4を配置する。第1番目に高い三次元形状物S1の方向Yの下側に第3番目に高い三次元形状物S3を配置し、さらに第3番目に高い三次元形状物S3の方向Yの下側に第5番目に高い三次元形状物S5を配置する。第1番目に高い三次元形状物S1を第1配置ゾーンZ1の方向Yの中央よりも下側にずらすことで、第1番目~第5番目に高い三次元形状物S1~S5が第1配置ゾーンZ1内に入っている。
 ・上記各実施形態では、配置ゾーンZの幅を三次元形状物Sの幅Lに合わせて変更したが、三次元形状物Sの大きさがある程度把握できるならば、配置ゾーンZの幅を予め設定しておいてもよい。
 ・上記各実施形態では、造形コンテナCにおいて、回転と整列とを行ったが、回転を省略して、整列のみ行ってもよい。このようにすれば、少なくても高さHによって三次元形状物Sを効率良く造形できる。
 ・上記各実施形態では、第2配置ゾーンZ2と第4配置ゾーンZ4とを第1配置ゾーンZ1に対して図2の紙面上左側に位置し、第3配置ゾーンZ3と第5配置ゾーンZ5とを第1配置ゾーンZ1に対して図2の紙面視右側に位置した。しかしながら、各配置ゾーンZの第n配置ゾーンZnと第(n+1)配置ゾーンZ(n+1)とは、第1配置ゾーンZ1に対しての左右いずれか一方に位置すればよい。例えば、図19に示されるように、第2配置ゾーンZ2は第1配置ゾーンZ1に対して図19の右側に位置し、第3配置ゾーンZ3は第1配置ゾーンZ1に対して図19の紙面視左側に位置する。第4配置ゾーンZ4は第1配置ゾーンZ1に対して図19の紙面視左側に位置し、第5配置ゾーンZ5は第1配置ゾーンZ1に対して図19の紙面視右側に位置する。
 ・上記各実施形態では、第2番目に高い三次元形状物S2と第4番目に高い三次元形状物S4とは第1番目に高い三次元形状物S1に対して方向Yにおける手前側に位置する。また、第3番目に高い三次元形状物S3と第5番目に高い三次元形状物S5は第1番目に高い三次元形状物S1に対して方向Yにおける奥側に位置する。しかしながら、第n番目に高い三次元形状物Snと第(n+1)番目に高い三次元形状物S(n+1)とは、第1番目に高い三次元形状物S1に対して手前か奥かのいずれか一方に位置すればよい。例えば、図19に示されるように、第2番目に高い三次元形状物S2は第1番目に高い三次元形状物S1に対して方向Yにおける奥側に位置する。また、第3番目に高い三次元形状物S3は第1番目に高い三次元形状物S1に対して方向Yにおける手前側に位置する。第4番目に高い三次元形状物S4とは第1番目に高い三次元形状物S1に対して方向Yにおける手前側に位置する。また、第5番目に高い三次元形状物S5は第1番目に高い三次元形状物S1に対して方向Yにおける奥側に位置する。
 ・上記各実施形態では、第1配置ゾーンZ1を第2配置ゾーンZ2と第3配置ゾーンZ3とで挟むように設定し、第4配置ゾーンZ4以降も2の倍数である第n配置ゾーンZnと第(n+1)配置ゾーンZ(n+1)とで第1配置ゾーンZ1~第(n-1)配置ゾーンZ(n-1)を挟むように設定した。しかしながら、一般に造形範囲Aの中央上部にスキャナ13が位置しているものが多いが、スキャナ13が端にある際にはスキャナ13の下に第1番目の配置ゾーンZを設定してもよい。すなわち、第1配置ゾーンZ1を造形範囲Aの端に設定し、第1配置ゾーンZ1から順に設定してもよい。例えば、図20に示されるように、造形範囲Aの図20の紙面視左側の端に第1配置ゾーンZ1を設定し、第2配置ゾーンZ2以降を順に設定する。このため、第1配置ゾーンZ1が中央に設定されて、その両側を挟むように配置ゾーンZを設定するよりも容易に配置できる。特に、造形範囲Aを小さく設定した場合には光硬化性材料に照射された光線の照射形状が楕円形に変化する変化量が小さいので有効である。
 ・上記各実施形態では、造形範囲Aの方向Xにおける中央に最も高い三次元形状物Sが配置されるように配置した。しかしながら、造形範囲Aの方向Xにおける中央からずらしてもよい。
 ・上記各実施形態では、造形範囲Aの方向Yにおける中央に最も高い三次元形状物Sが配置されるように配置した。しかしながら、配置ゾーンZのいずれか一端から高さHの高い順に並べてもよい。例えば、図21に示されるように、配置ゾーンZ1の方向Xにおける奥側の端から高さHの高い順に三次元形状物Sを並べて配置する。なお、配置ゾーンZ1の方向Xにおける手前側の端から高さHの高い順に三次元形状物Sを配置してもよい。このため、第1番目に高い三次元形状物S1が配置ゾーンZの中央に配置されて、第1番目に高い三次元形状物S1の両側を挟むように三次元形状物Sを配置するよりも容易に配置できる。特に、造形範囲Aを小さく設定した場合には光硬化性材料に照射された光線の照射形状が楕円形に変化する変化量が小さいので有効である。
 ・また、図22に示されるように、造形範囲Aの図22の紙面視左側の端に第1配置ゾーンZ1を設定し、第2配置ゾーンZ2以降を順に設定し、配置ゾーンZ1の方向Xにおける奥側の端から高さHの高い順に三次元形状物Sを並べて配置してもよい。これにより、リコータ17の動作範囲が小さくなり、造形にかかる時間を短くできる。
 ・上記各実施形態では、ステップS3において、造形する三次元形状物Sを仮想直方体として外形寸法を求めた。しかしながら、仮想直方体を用いずに、三次元形状物Sの外形寸法によって、回転と整列とを行ってもよい。
 ・上記各実施形態において、ステップS6の三次元形状物Sの回転と、ステップS7の三次元形状物の整列との処理順序を逆にしてもよく、同時にしてもよい。
 ・上記実施形態では、三次元形状物Sの回転と整列とを行う造形コンテナCを設定したが、造形コンテナCを排除して、配置処理の中で、三次元形状物Sの回転と整列を行ってもよい。
 ・上記各実施形態では、配置ゾーンZに三次元形状物Sが入りきらなかった場合に次の配置ゾーンZを構築した(ステップS8)が、予め配置ゾーンZを構築しておいて、配置された三次元形状物Sの幅Lに合わせて配置ゾーンZの幅Wを変更してもよい。
 ・上記各実施形態では、三次元形状物S同士の干渉を考慮して、三次元形状物Sを配置ゾーンZの境界線Bから数mm離して配置した。すなわち、配置ゾーンZの境界線Bから内側に数mm以内の範囲には、三次元形状物Sを配置しなかった。しかしながら、三次元形状物Sの周囲に予め数mmの空間を付け加えても良い。
 ・上記各実施形態では、造形する三次元形状物Sの自動配置を光造形装置の制御装置10にて行ったが、光造形装置の外部において造形する三次元形状物Sの自動配置を行って、その結果を光造形装置の制御装置10に入力してもよい。
 次に、上記実施形態から把握できる技術的思想をその効果と共に記載する。
 (イ)請求項1~6に記載の光造形方法において、前記三次元形状物を仮想直方体として外形寸法を求めることを特徴とする光造形方法。
 上記方法によれば、三次元形状物を仮想直方体として外形寸法を求めるので、三次元形状物が複雑な形状であった際に、高さ、奥行き、幅を容易に得ることができる。
 10…制御装置、11…液槽、12…レーザ、13…スキャナ、15…昇降テーブル、16…テーブル駆動装置、17…リコータ、18…リコータ駆動装置、A…造形範囲、B…境界線、C…造形コンテナ、D…奥行き、H…高さ、L…幅、S,S1,S2,S3、S4,S5…三次元形状物、W…幅、X…移動方向、Y…延出方向、Z,Z1,Z2,Z3,Z4,Z5,Z6,Z7…配置ゾーン。

Claims (13)

  1.  硬化性材料に選択的に光線を照射して前記硬化性材料を硬化させることによって1組の三次元形状物に対応する造形物を昇降テーブル上の造形範囲に造形する光造形方法において、
     前記造形範囲に前記1組の三次元形状物を制御装置によって配置し、
     液面を整えるためのリコータの延出方向に沿う境界線によって区画される複数の配置区域を前記造形範囲に前記制御装置が設定し、
     前記三次元形状物を高さの高い順に、かつ、前記複数の配置区域のうち第1番目の配置区域から順に、前記配置区域内に前記制御装置が配置する
     ことを特徴とする光造形方法。
  2.  請求項1に記載の光造形方法において、
     前記複数の配置区域は3個以上の配置区域であり、
     2以上の整数nについて、第(n+1)番目の配置区域を、第1から第(n-1)番目までの配置区域を第n番目の配置区域と第(n+1)番目の配置区域とが挟むように設定する、
     ことを特徴とする光造形方法。
  3.  請求項1に記載の光造形方法において、
     前記複数の配置区域は3個以上の配置区域であり、各配置区域は別の配置区域に隣接して設定され、
     2以上の整数nについて、第(n+1)番目の配置区域を、前記造形範囲において配置区域が設定されていない範囲のうち、前記リコータの移動方向における幅の広い方の範囲に設定する、
     ことを特徴とする光造形方法。
  4.  請求項1~3のいずれか一項に記載の光造形方法において、
     前記第1番目の配置区域は、前記リコータの移動方向における移動範囲の中央を含む、
     ことを特徴とする光造形方法。
  5.  請求項1に記載の光造形方法において、
     前記第1番目の配置区域は、前記造形範囲において前記リコータの移動方向における第1端に隣接するように設定され、2以上の整数nについて、第n番目の配置区域は、第(n-1)番目の配置区域に隣接するように設定される、
     ことを特徴とする光造形方法。
  6.  請求項1~5のいずれか一項に記載の光造形方法において、
     前記複数の配置区域のうち、3個以上の三次元形状物が配置される各配置区域では、
     2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物を、第1から第(n-1)番目までの高さを有する三次元形状物を第n番目の高さを有する三次元形状物と第(n+1)番目の高さを有する三次元形状物とが挟むように配置する、
     ことを特徴とする光造形方法。
  7.  請求項1~5のいずれか一項に記載の光造形方法において、
     前記複数の配置区域のうち、3個以上の三次元形状物が配置される各配置区域では、
     2以上の整数nについて、第(n+1)番目の高さを有する三次元形状物を、該配置区域において三次元形状物が配置されていない区域のうち、前記リコータの延出方向における幅の広い方の区域に配置する、
     ことを特徴とする光造形方法。
  8.  請求項6又は7に記載の光造形方法において、
     第1番目に高い前記三次元形状物は、前記配置区域における前記リコータの延出方向における前記リコータの幅の中央部分に配置される
     ことを特徴とする光造形方法。
  9.  請求項1~5のいずれか一項に記載の光造形方法において、
     前記複数の配置区域のうち、2個以上の三次元形状物が配置される各配置区域では、
     第1番目の高さを有する三次元形状物は、該配置区域において前記リコータの移動方向における第1端に隣接するように配置され、2以上の整数nについて、第n番目の高さを有する三次元形状物は、第(n-1)番目の高さを有する三次元形状物に隣接するように配置される、
     ことを特徴とする光造形方法。
  10.  請求項1~9のいずれか一項に記載の光造形方法において、
     各配置区域について、1回目の前記三次元形状物の配置の完了後、次の配置区域における前記三次元形状物の配置前に、前記三次元形状物が配置されていない空き領域に対し、未配置の前記三次元形状物のうち前記空き領域に配置できる前記三次元形状物を高さの高い順に配置する
     ことを特徴とする光造形方法。
  11.  請求項10に記載の光造形方法において、
     各配置区域について、1回目の前記三次元形状物の配置の完了後、次の配置区域における前記三次元形状物の配置前に、既に配置された前記三次元形状物を前記リコータの移動方向における第1端に寄せて再配置し、次いで前記三次元形状物が配置されていない空き領域に対し、未配置の前記三次元形状物を高さの高い順に配置する
     ことを特徴とする光造形方法。
  12.  請求項1~11のいずれか一項に記載の光造形方法において、
     前記三次元形状物の底面と平行であって直交する2方向を設定し、
     前記三次元形状物の前記2方向における長さのうち長い方を前記リコータの延出方向の長さに設定する
     ことを特徴とする光造形方法。
  13.  請求項1~11のいずれか一項に記載の光造形方法において、
     前記配置区域の前記リコータの移動方向の幅は、配置される前記三次元形状物の前記リコータの移動方向における長さに合わせて変更される
     ことを特徴とする光造形方法。
PCT/JP2014/072546 2013-08-30 2014-08-28 光造形方法 WO2015030102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015534281A JP6092399B2 (ja) 2013-08-30 2014-08-28 光造形方法
US14/914,044 US10576687B2 (en) 2013-08-30 2014-08-28 Photofabrication method
EP14839196.4A EP3040183B1 (en) 2013-08-30 2014-08-28 Photofabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-180023 2013-08-30
JP2013180023 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030102A1 true WO2015030102A1 (ja) 2015-03-05

Family

ID=52586650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072546 WO2015030102A1 (ja) 2013-08-30 2014-08-28 光造形方法

Country Status (4)

Country Link
US (1) US10576687B2 (ja)
EP (1) EP3040183B1 (ja)
JP (1) JP6092399B2 (ja)
WO (1) WO2015030102A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994780A (zh) * 2016-01-23 2017-08-01 周宏志 一种基于增材制造的刮板定位方法
CN106994785A (zh) * 2016-01-23 2017-08-01 周宏志 一种用于光固化快速成型的刮板智能定位方法
CN107020743A (zh) * 2016-01-30 2017-08-08 周宏志 基于增材制造的多零件快速打印方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108215173A (zh) * 2016-12-15 2018-06-29 上海普利生机电科技有限公司 能够自动连续打印的光固化型三维打印设备、方法及系统
JP2018114678A (ja) 2017-01-18 2018-07-26 富士ゼロックス株式会社 情報処理装置、三次元造形システム、及びプログラム
EP3566869B1 (en) 2018-05-08 2021-09-22 9328-8082 Québec Inc. Modular additive manufacturing system and related methods for continuous part production
EP3817916A1 (en) * 2018-07-02 2021-05-12 Essilor International Method for determining the priority and the position of three-dimensional products in an additively manufacturing process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022664A1 (en) * 1993-04-05 1994-10-13 Cmet, Inc. Photohardening molding apparatus with recoater travelling stroke regulating mechanism
JP2007021922A (ja) * 2005-07-19 2007-02-01 Matsushita Electric Ind Co Ltd 積層造形方法および装置
JP2011218821A (ja) 2011-08-10 2011-11-04 Cmet Inc 光造形装置
JP2012096427A (ja) * 2010-11-01 2012-05-24 Keyence Corp 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219234B2 (en) * 2007-03-07 2012-07-10 Objet Geometries Ltd. Rapid production apparatus with production orientation determination
US8019465B2 (en) * 2007-07-31 2011-09-13 Align Technology, Inc. System and methods for increasing efficiency in rapid prototyping processes
JP5615667B2 (ja) 2010-11-01 2014-10-29 株式会社キーエンス 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022664A1 (en) * 1993-04-05 1994-10-13 Cmet, Inc. Photohardening molding apparatus with recoater travelling stroke regulating mechanism
JP2007021922A (ja) * 2005-07-19 2007-02-01 Matsushita Electric Ind Co Ltd 積層造形方法および装置
JP2012096427A (ja) * 2010-11-01 2012-05-24 Keyence Corp 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体
JP2011218821A (ja) 2011-08-10 2011-11-04 Cmet Inc 光造形装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994780A (zh) * 2016-01-23 2017-08-01 周宏志 一种基于增材制造的刮板定位方法
CN106994785A (zh) * 2016-01-23 2017-08-01 周宏志 一种用于光固化快速成型的刮板智能定位方法
CN107020743A (zh) * 2016-01-30 2017-08-08 周宏志 基于增材制造的多零件快速打印方法

Also Published As

Publication number Publication date
EP3040183A1 (en) 2016-07-06
JPWO2015030102A1 (ja) 2017-03-02
US20160207258A1 (en) 2016-07-21
EP3040183B1 (en) 2021-08-04
JP6092399B2 (ja) 2017-03-08
EP3040183A4 (en) 2017-05-31
US10576687B2 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
JP6092399B2 (ja) 光造形方法
JP5971266B2 (ja) 光造形装置及び光造形方法
Onuh et al. Optimising build parameters for improved surface finish in stereolithography
CN105014963B (zh) 立体打印装置
US20160059485A1 (en) Three-dimensional printing apparatus and method for three-dimensional printing
US9796170B2 (en) Three dimensional printing method
US20160096332A1 (en) Three dimensional printing apparatus and printing method thereof
JP6505517B2 (ja) 三次元造形装置
JP2016087866A (ja) 3次元造形装置
JP2007030303A (ja) 粉末焼結積層造形装置
JP2017149004A (ja) 粉末焼結積層装置
KR101722979B1 (ko) 3차원 형상의 제작방법
KR101688083B1 (ko) 3d 프린터의 입체 모델링 방법
JP2015027738A (ja) 三次元造形装置
JP5058552B2 (ja) 積層造形装置と積層造形方法
JP2017114011A (ja) 立体形状物の造形装置及び製造方法
JP2023164670A (ja) 三次元造形物の製造方法、三次元造形装置及び造形物
JP2010052318A (ja) 光造形方法
JP6247837B2 (ja) 光造形方法
JP6022493B2 (ja) 光造形方法、光造形装置、及び生成プログラム
JP6840944B2 (ja) 3次元データ生成装置、造形装置、造形物の製造方法及びプログラム
JP6796572B2 (ja) 三次元オブジェクト形成装置およびその方法
JP2011056697A (ja) 積層造形装置
WO2022209028A1 (ja) 立体造形方法
JP4079544B2 (ja) 光造形法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839196

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014839196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015534281

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE