WO2022209028A1 - 立体造形方法 - Google Patents

立体造形方法 Download PDF

Info

Publication number
WO2022209028A1
WO2022209028A1 PCT/JP2021/045413 JP2021045413W WO2022209028A1 WO 2022209028 A1 WO2022209028 A1 WO 2022209028A1 JP 2021045413 W JP2021045413 W JP 2021045413W WO 2022209028 A1 WO2022209028 A1 WO 2022209028A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
nozzle member
core material
shell layer
core
Prior art date
Application number
PCT/JP2021/045413
Other languages
English (en)
French (fr)
Inventor
和輝 石
博史 酒井
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2022209028A1 publication Critical patent/WO2022209028A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a three-dimensional modeling method, such as a so-called 3D printer whose performance has been significantly improved in recent years, or a stereolithography apparatus using stereolithography technology that has been put into practical use before that, especially containing a reinforcing material. It is related to three-dimensional modeling technology for composite materials.
  • a so-called 3D printer uses a computer to calculate the cross-sectional shape of a modeled object based on three-dimensional CAD data, divides the modeled object into thin cross-sectional constituent elements, and forms the cross-sectional constituent elements in various ways. It is a three-dimensional modeling means that obtains the desired shape by layering it.
  • the name 3D printer is widely used, but internationally it is often called Additive Manufacturing Technology, directly translated as additive manufacturing technology.
  • the term 3D printer is mainly used, but appropriate expressions are used depending on the intention of use.
  • the outer shell layer is called the shell layer
  • the material forming the shell layer is called the shell material
  • the part surrounded by the shell layer is called the core part
  • the material filling the part surrounded by the shell layer is called the core material.
  • the shell layer is formed by curing a fluid shell material (for example, photocurable resin).
  • the core material used has fluidity before hardening and does not mix with the shell material.
  • the core material has a higher specific gravity than the shell material.
  • This composite material 3D printer 900 includes a modeling tank 910 that stores a shell material 940 , a modeling table 911 that is provided in the modeling tank 910 and serves as a base for modeling a three-dimensional object, and an ultraviolet ray for curing the shell material 940 . It is composed of a laser optical system 920 that irradiates a laser 921 and a nozzle 930 that ejects a core material 931 .
  • a shell layer 941 having a predetermined shape is modeled on a modeling table 911 provided in a modeling tank 910 storing a shell material 940.
  • the shell layer 941 is formed by irradiating a portion of the shell material 940 with an ultraviolet laser 921 from a laser optical system 920 to harden a portion of the shell material 940 .
  • a nozzle 930 is inserted into an uncured shell material 940 (hereinafter referred to as shell material 940) remaining in a core portion 942 surrounded by the shaped shell layer 941 to eject the core material 931.
  • shell material 940 uncured shell material 940
  • the discharged core material 931 is replaced with the shell material 940 to fill the core portion 941 with the core material 931 .
  • a three-dimensional object is modeled by repeating the modeling of the shell layer 941 and the filling of the core material 931 . As a result, it is possible to prevent an interface from being formed between the core materials 941 ejected from the nozzle 930, so that it is possible to form a three-dimensional object with no directivity in rigidity and strength.
  • the present invention has been made in view of the above problems, and provides a three-dimensional modeling method that can prevent the shell material from being caught in the filled core material.
  • the shell layer which is the outer shell layer of the three-dimensional model
  • the tip of the nozzle member is inserted into the uncured shell material remaining in the core portion, and the core material is discharged from the tip of the nozzle member, thereby separating the uncured shell material and the core.
  • the core material is filled in the core portion by replacing the material, and the core portion is filled with the core material while maintaining a state in which the core material has an interface only with the uncured shell material.
  • the core material is filled in the core portion while maintaining the state in which the core material has an interface only with the uncured shell material. It can be prevented from reaching the liquid surface of the material. Therefore, it is possible to prevent the core material from diffusing and settling on the liquid surface of the uncured shell material, and to prevent the shell material from being caught in the filled core material.
  • the core material is discharged from the nozzle member at a predetermined position of the core portion, and a predetermined distance from the predetermined position is maintained while at least the tip of the nozzle member is inserted into the discharged core material.
  • the nozzle member may be moved to an open position, and the core material may be ejected again by the nozzle member.
  • the core material can be discharged from the nozzle member so that the core material does not accumulate at one point in the core portion, so that the core material is prevented from reaching the liquid surface of the uncured shell material. It is possible to prevent the shell material from being caught in the filled core material.
  • the core material discharged earlier and the core material discharged later are mixed. It is possible to fill the core portion with the core material without generating an interface between. Therefore, it is possible to prevent impurities such as air bubbles from entering the core material filled in the core portion.
  • the core material is discharged from the nozzle member at a predetermined position of the core portion, and the nozzle member is discharged from the predetermined position while maintaining a state in which at least the tip of the nozzle member is inserted into the discharged core material.
  • the core material may be discharged from the nozzle member while being moved.
  • the core material can be discharged from the nozzle member so that the core material does not accumulate at one point in the core portion, so that the core material is prevented from reaching the liquid surface of the uncured shell material. It is possible to prevent the shell material from being caught in the filled core material. Further, since the core material is ejected while moving the nozzle member while maintaining a state in which at least the tip of the nozzle member is inserted into the core material ejected earlier by the nozzle member, the core material ejected earlier and the core material ejected later are ejected.
  • the core portion can be filled with the core material without forming an interface with the discharged core material. Therefore, it is possible to prevent impurities such as air bubbles from entering the core material filled in the core portion.
  • the shell layer which is the outer shell layer of the three-dimensional model
  • the shell layer is first modeled using a shell material, and then the part surrounded by the modeled shell layer
  • a three-dimensional molding method for molding a three-dimensional object by discharging and filling a core material into the core portion, wherein the shell layer is molded by hardening a part of the shell material in a fluid state. Then, at least the tip of the nozzle member is inserted into the uncured shell material remaining in the core portion, and the core material is discharged from the tip of the nozzle member, thereby separating the uncured shell material and the core.
  • the tip of the nozzle member is filled with the uncured shell material. It is characterized in that the shell layer is reshaped while maintaining the state of being inserted into the body.
  • the core material adhering to the nozzle member is prevented from coming into contact with the liquid surface of the uncured shell material. can be prevented. Therefore, it is possible to prevent the core material from diffusing and settling on the liquid surface of the uncured shell material, and to prevent the shell material from being caught in the filled core material.
  • a state in which at least the tip of the nozzle member is inserted into the uncured shell material is maintained before reshaping the shell layer.
  • the nozzle member is retracted from the core portion to the outside of the shell layer while maintaining a state in which at least the tip of the nozzle member is inserted into the uncured shell material after the shell layer is reshaped.
  • a configuration may be adopted in which the nozzle member is returned into the core portion.
  • the nozzle member since the nozzle member is retracted from the core portion to the outside of the shell layer before the shell layer is reshaped so as to be laminated on the shaped shell layer, the nozzle member does not have to be pulled out from the uncured shell material.
  • the shell layer can be reshaped without being obstructed by the nozzle member.
  • the shell layer is formed by a liquid bath polymerization method, and when re-forming the shell layer so as to be laminated on the formed shell layer, the shell layer is not formed before the re-forming of the shell layer. Then, the nozzle member is retracted from the shell layer while maintaining a state in which at least the tip of the nozzle member is inserted into the uncured shell material. Next, the shell layer is raised against the liquid surface of the uncured shell material, then the shell layer is reshaped so as to be laminated on the shaped shell layer, and then the shell layer is uncured.
  • the nozzle member is lowered with respect to the liquid surface of the hardened shell material, and then the nozzle member is moved above the core portion while maintaining a state in which at least the tip of the nozzle member is inserted into the unhardened shell material. Then, the shell layer may be raised with respect to the liquid surface of the uncured shell material to return the nozzle member to the inside of the core portion.
  • the shell layer is re-formed so as to be laminated on the formed shell layer without pulling out the nozzle member from the uncured shell material. It is possible to shape.
  • the three-dimensional modeling method of the present invention it is possible to prevent the shell material from being caught in the filled core material.
  • the three axes of the orthogonal coordinate system are X, Y, and Z
  • the horizontal direction is expressed as the X-axis direction and the Y-axis direction
  • the direction perpendicular to the XY plane that is, the vertical direction
  • direction is the Z-axis. expressed as direction.
  • FIG. 1 is a diagram schematically showing a composite material 3D printer used to realize the three-dimensional modeling method in this embodiment.
  • 2, 3, 4, and 5 are diagrams for explaining the stereolithography method according to the present embodiment.
  • FIG. 6 is a diagram for explaining the three-dimensional modeling method according to the present embodiment, and is a diagram showing a method for discharging the core material C by the nozzle member 11.
  • FIG. 7 is a diagram for explaining the three-dimensional modeling method in this embodiment, and is a diagram showing one variation of the discharge method of the core material C by the nozzle member 11 shown in FIG.
  • the composite material 3D printer 100 in this embodiment applies the liquid bath polymerization method, which is one of the additive manufacturing methods, to the modeling of the shell layer S described later, and the core material C is discharged as shown in FIG. It comprises a core material discharge mechanism 1, a modeling tank 2 for storing the shell material E, a modeling table 21 that serves as a base for modeling a three-dimensional object, and a light irradiation mechanism 3 for curing the shell material E.
  • the composite material 3D printer 100 operates each part constituting the core material discharge mechanism 1, the modeling table 21, and the light irradiation mechanism 3, so that the shell layer S, which is the outer shell layer of the three-dimensional modeled object to be modeled, is placed first.
  • the core material C is filled in the core portion K, which is the portion surrounded by the shell layer S that has already been shaped, and hardened to form a three-dimensionally shaped object.
  • the operations of these units may be controlled by a control unit (not shown).
  • This control unit is configured by, for example, a general-purpose computer device.
  • the shell material E in this embodiment is, for example, a photocurable resin with fluidity, and is stored in the modeling tank 2 described later.
  • the shell material E is cured by being irradiated with light rays L (see FIG. 2A) by a light irradiation mechanism 3, which will be described later.
  • the light beam L referred to here is, for example, ultraviolet laser light.
  • the shell material E is cured and the shell layer S is formed.
  • the uncured shell material E is called shell material E
  • the cured shell material E is called shell layer S.
  • the shell layer S in this embodiment is the outer shell layer of the three-dimensional object to be modeled, and is modeled by curing the shell material E as described above.
  • the shell layer S is formed in the shell material E on a forming table 21, which will be described later.
  • a portion surrounded by the shell layer S is called a core portion K. As shown in FIG.
  • a shell material E remains in this core portion K. Specifically, as long as the shell layer S is formed in the shell material E and the shell layer S is not pulled up from the shell material E after forming, the core portion K, which is the portion surrounded by the shell layer S, Shell material E remains.
  • the core material C in the present embodiment is, for example, a so-called composite material containing a fluid thermosetting resin and a reinforcing material such as carbon fiber or glass fiber. Harden.
  • This core material C is discharged to the core portion K by a core material discharge mechanism 1, which will be described later.
  • the core material C is designed not to mix with the shell material E, and has a higher specific gravity than the shell material E.
  • the three-dimensional object in this embodiment is the final object that is formed by filling the core portion K with the core material C and curing the filled core material C.
  • the core material discharge mechanism 1 in this embodiment is for discharging the core material C.
  • the core material discharge mechanism 1 includes a nozzle member 11 for discharging the core material C, a core material tank 12 for storing the core material C, and a piping system 13 for connecting the nozzle member 11 and the core material tank 12. and a pump 14 for feeding the core material C from the core material tank 12 to the nozzle member 11 via the piping system 13 .
  • the nozzle member 11 is for discharging the core material C.
  • the nozzle member 11 in this embodiment is elongated in the vertical direction (the Z-axis direction in FIG. 1), and the core material C is discharged from the tip of the nozzle member 11 below in the vertical direction. Note that the shape of the nozzle member 11 may be appropriately changed depending on the application.
  • the nozzle member 11 is connected to the core material tank 12 by a piping system 13 .
  • a core material C is stored in the core material tank 12 , and the stored core material C is sent to the nozzle member 11 through the piping system 13 by the pump 14 . Thereby, the nozzle member 11 can discharge the core material C. As shown in FIG.
  • the core material discharge mechanism 1 is provided with a nozzle drive mechanism (not shown) for moving the nozzle member 11 .
  • the nozzle driving mechanism can move the nozzle member 11 in the X-, Y-, and Z-axis directions in FIG. Thereby, the nozzle member 11 can discharge the core material C at a predetermined position.
  • the modeling tank 2 in this embodiment is for storing the shell material E.
  • the modeling tank 2 in this embodiment has a rectangular box-like shape with an opening on the top surface.
  • a modeling table 21 serving as a base for modeling a three-dimensional object is provided in the modeling tank 2 .
  • a modeling table elevating mechanism (not shown) that raises and lowers the modeling table 21 with respect to the liquid surface M of the shell material E in the modeling tank 2 (hereinafter referred to as the liquid surface M of the shell material E). .
  • the light beam irradiation mechanism 3 in this embodiment is for irradiating the light beam L for curing the shell material E.
  • the light irradiation mechanism 3 includes a light irradiation unit 31 for irradiating a light beam L, and a light beam irradiation unit 31 for emitting the light beam L so that the light beam L irradiated by the light beam irradiation unit 31 is applied to a predetermined position. It consists of a scanning optical system 32 that adjusts the direction.
  • the light beam L emitted by the light beam irradiation unit 31 is, for example, ultraviolet laser light.
  • the scanning optical system 32 may be any system as long as it can reflect the light beam L emitted by the light beam irradiation unit 31 (for example, a galvanometer mirror, a polygon mirror, or the like).
  • the light beam L can be scanned in a predetermined range.
  • the shell material E at a predetermined position can be cured, so that the shell layer S having a predetermined shape can be formed. At least the bottom of the shell layer S is modeled on the modeling table 2 .
  • the three-dimensional modeling method in this embodiment will be described in order below.
  • an example in which the shell layer S (see FIG. 4B) is shaped to the height H and the formed core portion K is filled with the core material C to form a three-dimensional object will be described. do.
  • the shell material E in the modeling tank 2 is irradiated with the light beam L by the light irradiation mechanism 3, and the shell layer S is modeled on the modeling table 21 by the height h1.
  • the height of the modeling table 21 is adjusted with respect to the liquid surface M of the shell material E by the modeling table elevating mechanism, and the light beam L irradiated by the light irradiation unit 31 is scanned by the scanning optical system.
  • the shell material E at a predetermined position is irradiated with L to harden the shell material E at a predetermined depth.
  • the shell layer S having a predetermined height dimension (height h1 in this embodiment) from the liquid surface M of the shell material E is formed.
  • the shell layer S shaped to the height h1 will be referred to as the shell layer S1.
  • the height of the modeling table 21 is raised by the modeling table lifting mechanism until the upper end of the shell layer S1 does not come into contact with the liquid surface M of the shell material E. Adjust for M. Thereby, even if the core portion K is filled with the core material C and the core portion K is filled with the core material C, the core material C can be prevented from coming into contact with the liquid surface M of the shell material E.
  • the nozzle member 11 is moved by the nozzle drive mechanism to insert the nozzle member 11 into the shell material E remaining in the core portion K, as shown in FIG. 2(b). At this time, it is sufficient that at least the tip of the nozzle member 11 is inserted into the shell material E, but it is preferable that the nozzle member 11 is inserted to the vicinity of the bottom of the shell layer S1.
  • the core material C is discharged from the tip of the nozzle member 11 at a predetermined position.
  • the core material C sinks toward the bottom of the shell layer S1. Therefore, the shell material E remaining in the core part K overflows the shell layer S1, and the shell material E in the core part K is replaced with the core material C.
  • the ejection of the core material C by the nozzle member 11 is repeated so that the inside of the core portion K is filled with the core material C.
  • the core material C is ejected by moving the nozzle member 11 while maintaining a state in which at least the tip of the nozzle member 11 is inserted from the core material C ejected by the nozzle member 11 at a predetermined position.
  • the nozzle member 11 is moved from a predetermined position to a position spaced apart by a predetermined distance by the nozzle drive mechanism.
  • the predetermined interval referred to here is preferably less than half the discharge width of the core material C discharged first.
  • the nozzle member 11 discharges the core material C again.
  • the nozzle member 11 is moved again as shown in FIG.
  • the core portion K is filled with the core material C as shown in FIG. 3(a).
  • the core material C discharged by the nozzle member 11 can be prevented from accumulating in one place. Specifically, since the core material C discharged from the nozzle member 11 has a high viscosity, even if it is discharged within the shell material E, it is difficult to spread in the horizontal direction. If the core material C is continuously discharged at one point, it tends to rise vertically rather than spread horizontally, and as shown in FIG. put away.
  • the core material C is discharged from the nozzle member 11 at the first predetermined position, and while maintaining the state in which the nozzle member 11 is inserted into the core material C, a predetermined distance is provided from the predetermined position.
  • the core material C is ejected again by moving the nozzle member 11 to the position where the nozzle member 11 is drawn.
  • the core material C ejected from the nozzle member 11 can be easily spread in the horizontal direction, and can be prevented from accumulating in one place. Therefore, the core material C does not swell in the vertical direction, and the core material C can be prevented from reaching the liquid surface M of the shell material E, so that the core material C diffuses and settles on the liquid surface M of the shell material E. can prevent you from doing it. Therefore, it is possible to prevent the shell material E from being caught in the filled core material C.
  • the core material C is repeatedly discharged without withdrawing the nozzle member 11 from the core material C discharged first, the interface between the core material C discharged first by the nozzle member 11 and the core material C discharged later by the nozzle member 11 is The core portion K can be filled with the core material C without causing a Therefore, it is possible to prevent impurities such as air bubbles from entering the filled core material C.
  • the core material C with which the core part K is filled is taken out from the modeling tank 2 together with the shell layer S1 and heated in the heating furnace to form a three-dimensional object, which has no directivity in rigidity and strength. Become.
  • the core material C is discharged from the nozzle member 11 at the first predetermined position described above, and while maintaining the state in which the nozzle member 11 is inserted into the core material C, the nozzle member moves from the predetermined position to a position at a predetermined interval.
  • the method of moving 11 and discharging the core material C again may be used until at least the bottom portion of the shell layer S is filled with one layer of the core material C.
  • FIG. the core material C is discharged again without moving the nozzle member 11 until the core portion K is filled with the nozzle member 11 inserted into a predetermined position of the core material C that has already been filled.
  • the core material C discharged again to the core material C that has already been filled in one layer spreads so as to fit into the core material C in the first layer, it is possible to prevent the core material C from accumulating in one place. can.
  • a shell layer S having a height h2 is formed on the formed shell layer S1 having a height h1 so that the height of the shell layer S becomes H, and a core material is added to the newly formed core portion K.
  • a case of filling with C will be described.
  • the modeling table 21 is moved with respect to the liquid surface M of the shell material E by the modeling table lifting mechanism until the molded shell layer S1 is positioned below the tip of the nozzle member 11 . to retract the nozzle member 11 from the core portion K to the outside of the shell layer S.
  • the nozzle is driven so as not to interfere with further forming a shell layer S having a height h2 on the formed shell layer S1 ( hereinafter referred to as shell layer S2).
  • the mechanism moves the nozzle member 11 .
  • the nozzle member 11 is not pulled out from the shell material E in the modeling tank 2 .
  • the modeling table 21 is moved by the modeling table lifting mechanism to the position where the shell layer S2 can be formed on the shell layer S1 that has already been formed. Increase relative to M.
  • the shell layer S2 is shaped so as to be laminated on the shaped shell layer S1.
  • a shell layer S2 with a height h2 is further shaped so as to be stacked on the shell layer S1 with a height h1 that has already been shaped. That is, the shell layer S is reshaped so that the height becomes H.
  • the modeling table 21 is moved with respect to the liquid surface M of the shell material E by the modeling table lifting mechanism until the molded shell layer S is positioned below the tip of the nozzle member 11 . to lower it.
  • the nozzle member 11 is moved by the nozzle driving mechanism so as to be positioned above the core portion K newly formed by reshaping the shell layer S. At this time, the nozzle member 11 is not pulled out from the shell material E in the modeling tank 2 .
  • the upper end of the shell layer S that has been shaped is in the vicinity of the liquid surface M of the shell material E and is not in contact with the liquid surface M of the shell material E.
  • the table 21 is raised with respect to the liquid surface M of the shell material E.
  • the core material C is discharged from the nozzle member 11 to fill the core portion K surrounded by the reshaped shell layer S.
  • the nozzle member 11 is discharging the core material C while being inserted into the filled core material C.
  • the nozzle member 11 is not pulled out from the shell material E when the shell layer S is reshaped by molding the shell layer S2 so as to be laminated on the molded shell layer S1, so that the nozzle member 11 adheres to the nozzle member 11. It is possible to prevent the core material C from contacting the liquid surface M of the shell material E. Therefore, it is possible to prevent the core material C from diffusing and settling on the liquid surface M of the shell material E, and to prevent the shell material E from being caught in the filled core material C. In addition, since the nozzle member 11 is retracted from the core portion K to the outside of the shell layer S1 before the shell layer S2 is formed so as to be laminated on the formed shell layer S1 and the shell layer S is reshaped . Even if the nozzle member 11 is not pulled out from the shell material E, the shell layer S can be reshaped without the nozzle member 11 interfering.
  • the core material C filled in the core portion K reaches the liquid surface M of the shell material E, and the core material C attached to the nozzle member 11 reaches the shell material E.
  • Contact with the liquid surface M can be prevented.
  • the core material C can be prevented from diffusing and settling on the liquid surface M of the shell material E. Therefore, it is possible to prevent the shell material E from being caught in the filled core material C.
  • the embodiments of the present invention have been described in detail with reference to the drawings, but the configurations and combinations thereof in each embodiment are examples, and additions, omissions, Substitutions and other modifications are possible.
  • the core portion K is filled with the core material C while maintaining the state of having only the interface. That is, the core portion K may be filled with the core material C so that an interface is not formed between the core material C and air.
  • the nozzle member 11 may be moved while maintaining the state in which the nozzle member 11 is inserted from the core material C which has been previously scanned and ejected, and the scanning ejection may be performed again. This method may be repeated until the core portion K is filled with the core material C, or the bottom portion of the shell layer S may be filled with the core material C in only one layer. As a result, even in the case of scan ejection, the core material C ejected by the nozzle member 11 can be prevented from accumulating in one place.
  • the core material C can be prevented from reaching the liquid surface M of the shell material E, the core material C can be applied to the core part K while maintaining the state in which the core material C has an interface only with the shell material E. can be filled.
  • the nozzle member 11 is not pulled out from the core material C and the scan ejection is repeated, the core material C ejected first and the core material C ejected after the scan ejection do not form an interface. Material C can be filled.
  • the tip position of the nozzle member 11 is positioned at a relatively low position of the core portion K when the core material C is discharged. That is, the tip of the nozzle member 11 is positioned relatively close to the bottom of the shell layer S. In addition to this, by lowering the speed at which the core material C is discharged from the nozzle member 11, the swelling of the discharged core material C can be reduced. That is, it becomes difficult for the core material C to reach the liquid surface M of the shell material E.
  • the core portion K when the core portion K is filled with the core material C, the core portion K is filled with the core material C in order to prevent the core material C from coming into contact with the liquid surface M of the shell material E.
  • the shell layer S may be intentionally shaped to a height higher than the height H, and the core material C may be filled up to the height H.
  • the shell layer S having the height H is divided into the shell layer S1 having the height h1 and the shell layer S2 having the height h2. You can shape. Also, the number of divisions for forming the shell layer S may be increased.
  • liquid bath polymerization method is applied to shape the shell layer S
  • present invention is not limited to this.
  • a hot melting lamination method may be used.

Abstract

充填したコア材中にシェル材が巻き込まれることを防ぐことができる立体造形方法を提供する。立体造形物の外殻層であるシェル層をシェル材を用いて先に造形し、次に造形済の当該シェル層に囲われた部分であるコア部にコア材をノズル部材により吐出して充填することによって立体造形物を造形する立体造形方法であって、流動状態の前記シェル材の一部を硬化させることで前記シェル層を造形し、前記コア部に残存する未硬化の前記シェル材中に前記ノズル部材の少なくとも先端を挿入し、前記ノズル部材の先端から前記コア材を吐出することにより、未硬化の前記シェル材と前記コア材を置き換えて前記コア部に前記コア材を充填するものであり、前記コア材が未硬化の前記シェル材とのみ界面を有する状態を維持しつつ、前記コア部に前記コア材を充填させる構成とする。

Description

立体造形方法
 本発明は、近年その性能を著しく向上させている所謂3Dプリンタ、或いは、それ以前より実用化されている光造形技術を用いた光造形装置など、立体造形方法に関するもので、特に強化材を含有した複合材の立体造形技術に関わるものである。
 所謂3Dプリンタは、3次元のCADデータをもとにコンピュータで造形物の断面形状を計算し、造形物を薄い輪切り上の断面構成要素に分割して、その断面構成要素を種々の方法で形成し、それを積層させて目的とする形状を得る立体造形手段である。一般的には3Dプリンタの名称が広く用いられているが、国際的にはAdditive Manufacturing Technology、直訳すれば付加製造技術と呼ぶことが多い。本明細書においては主として3Dプリンタの用語を用いるが、使用意図に応じて適宜表現を使い分けることとする。
 近年、3Dプリンタにより造形する立体造形物は、実際の製品や量産前の試作品に用いることが要求されるようになり、外観だけでなく強度が求められるようになっている。これに対し、樹脂材料と炭素繊維などの強化材を含有した複合材を材料として適用した3Dプリンタ(所謂、複合材3Dプリンタ)により立体造形物を造形する立体造形方法が提案されている。たとえば、造形する立体造形物の外殻層を先に造形した後、この造形済の外殻層に囲われた部分に複合材を充填して硬化させることで立体造形物を造形するものがある(たとえば、下記特許文献1)。
 以下の説明では、外殻層をシェル層、シェル層を造形する材料をシェル材、シェル層に囲われた部分をコア部、シェル層に囲われた部分に充填する材料をコア材と呼ぶ。なお、シェル層は流動性をもつシェル材(たとえば、光硬化性樹脂)を硬化させることで造形される。また、コア材は、硬化前に流動性をもっており、シェル材と混ざらないものが採用される。また、シェル材とコア材の比重はコア材の方が高くなっている。
 下記特許文献1に記載の立体造形方法では、図8(a)に示すような複合材3Dプリンタ900を用いている。この複合材3Dプリンタ900は、シェル材940を貯留する造形槽910と、造形槽910内に設けられ、立体造形物を造形する土台となる造形台911と、シェル材940を硬化させるための紫外線レーザー921を照射するレーザー光学系920と、コア材931を吐出するノズル930により構成されている。
 下記特許文献1に記載の立体造形方法は、図8(a)に示すようにシェル材940を貯留した造形槽910内に設けられた造形台911上に、所定形状のシェル層941を造形するようレーザー光学系920からシェル材940の一部に紫外線レーザー921を照射してシェル材940の一部を硬化させることで、シェル層941を造形する。この造形済のシェル層941に囲われた部分であるコア部942に残存する未硬化のシェル材940(以下、シェル材940と呼ぶ)中にノズル930を挿入してコア材931を吐出する。このとき、コア材931の方がシェル材941よりも比重が高いため、シェル材940と吐出されたコア材931が置換されてコア部941にコア材931が充填される。シェル層941の造形とコア材931の充填を繰り返し行うことにより立体造形物を造形する。これにより、ノズル930により吐出したコア材941間で界面が形成されることを防ぐことができるため、剛性と強度に方向性がない立体造形物を造形することができる。
特開2019-136923
 しかし、上記立体造形方法では、造形する立体造形物に欠陥が生じ強度が低下する可能性があった。
 具体的に説明する。上記立体造形方法では、図8(b)に示すようにノズル930から吐出したコア材931がシェル材940の液面943に到達した際に、コア材931がシェル材940の液面で拡散してシェル材940内で沈降する可能性がある。この場合、沈降するコア材931が先に充填されたコア材931と一体化する際にシェル材940を巻き込んでしまう可能性がある。すなわち、コア部942に充填したコア材931中にシェル材940が残留してしまう。この状態で、コア材931を硬化させた場合、造形した立体造形物に欠陥が生じて強度が低下する。
 本発明は、上記問題点を鑑みてされたものであり、充填したコア材中にシェル材が巻き込まれることを防ぐことができる立体造形方法を提供する。
 上記課題を解決するための本発明の立体造形方法は、立体造形物の外殻層であるシェル層をシェル材を用いて先に造形し、次に造形済の当該シェル層に囲われた部分であるコア部にコア材をノズル部材により吐出して充填することによって立体造形物を造形する立体造形方法であって、流動状態の前記シェル材の一部を硬化させることで前記シェル層を造形し、前記コア部に残存する未硬化の前記シェル材中に前記ノズル部材の少なくとも先端を挿入し、前記ノズル部材の先端から前記コア材を吐出することにより、未硬化の前記シェル材と前記コア材を置き換えて前記コア部に前記コア材を充填するものであり、前記コア材が未硬化の前記シェル材とのみ界面を有する状態を維持しつつ、前記コア部に前記コア材を充填させることを特徴としている。
 上記立体造形方法によれば、コア材が未硬化のシェル材とのみ界面を有する状態を維持して、コア部にコア材を充填させるため、コア部に充填されるコア材が未硬化のシェル材の液面に到達することを防ぐことができる。したがって、コア材が未硬化のシェル材の液面で拡散して沈降することを防ぎ、充填したコア材中にシェル材が巻き込まれることを防ぐことが可能となる。
 また、前記コア材を前記ノズル部材より前記コア部の所定位置で吐出し、吐出したコア材に前記ノズル部材の少なくとも先端が挿入されている状態を維持しつつ、前記所定位置から所定の間隔をあけた位置に前記ノズル部材を移動させ、前記コア材を前記ノズル部材により再度吐出する構成としてもよい。
 この構成によれば、前記コア材が前記コア部の一カ所で溜まらないようにコア材をノズル部材により吐出することができるため、コア材が未硬化のシェル材の液面に到達することを防ぎ、充填したコア材中にシェル材が巻き込まれることを防ぐことが可能となる。また、ノズル部材により先に吐出したコア材中にノズル部材の少なくとも先端が挿入されている状態を維持しつつ、コア材を再度吐出するため、先に吐出したコア材と後に吐出したコア材との間に界面を生じさせることなくコア部にコア材を充填させることができる。したがって、コア部に充填したコア材に気泡などの不純物が混入することを防ぐことが可能となる。
 また、前記コア材を前記ノズル部材より前記コア部の所定位置で吐出し、吐出したコア材に前記ノズル部材の少なくとも先端が挿入されている状態を維持しつつ、前記所定位置から前記ノズル部材を移動させながら前記コア材を前記ノズル部材により吐出する構成としてもよい。
 この構成によれば、前記コア材が前記コア部の一カ所で溜まらないようにコア材をノズル部材により吐出することができるため、コア材が未硬化のシェル材の液面に到達することを防ぎ、充填したコア材中にシェル材が巻き込まれることを防ぐことが可能となる。また、ノズル部材により先に吐出したコア材中にノズル部材の少なくとも先端が挿入されている状態を維持しつつ、ノズル部材を移動させながらコア材を吐出するため、先に吐出したコア材と後に吐出したコア材との間に界面を生じさせることなくコア部にコア材を充填させることができる。したがって、コア部に充填したコア材に気泡などの不純物が混入することを防ぐことが可能となる。
 上記課題を解決するための本発明の立体造形方法は、立体造形物の外殻層であるシェル層をシェル材を用いて先に造形し、次に造形済の当該シェル層に囲われた部分であるコア部にコア材をノズル部材により吐出して充填することによって立体造形物を造形する立体造形方法であって、流動状態の前記シェル材の一部を硬化させることで前記シェル層を造形し、前記コア部に残存する未硬化の前記シェル材中に前記ノズル部材の少なくとも先端を挿入し、前記ノズル部材の先端から前記コア材を吐出することにより、未硬化の前記シェル材と前記コア材を置き換えて前記コア部に前記コア材を充填するものであり、前記コア部に前記コア材を充填後、前記シェル層を再造形するにあたり前記ノズル部材の少なくとも先端を未硬化の前記シェル材に挿入した状態を維持しつつ、前記シェル層を再造形することを特徴としている。
 上記立体造形方法によれば、シェル層を再造形する際にノズル部材を未硬化のシェル材から引き抜かないため、ノズル部材に付着するコア材が未硬化のシェル材の液面に接触することを防ぐことが可能となる。したがって、コア材が未硬化のシェル材の液面で拡散して沈降することを防ぎ、充填したコア材中にシェル材が巻き込まれることを防ぐことが可能となる。
 また、造形済の前記シェル層上に積層するよう前記シェル層を再造形するにあたり、前記シェル層の再造形前に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部から前記シェル層外に退避させ、前記シェル層の再造形後に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部内に戻す構成としてもよい。
 この構成によれば、造形済のシェル層上に積層するようシェル層を再造形する前にノズル部材をコア部からシェル層外に退避させるため、ノズル部材を未硬化のシェル材から引き抜かなくてもノズル部材が邪魔することなく、シェル層を再造形することが可能となる。
 また、前記シェル層は、液槽重合法により造形されており、造形済の前記シェル層上に積層するよう前記シェル層を再造形するにあたり、前記シェル層の再造形前に前記シェル層を未硬化の前記シェル材の液面に対して下降させ、次に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記シェル層外に退避させ、次に前記シェル層を未硬化の前記シェル材の液面に対して上昇させ、次に造形済の前記シェル層上に積層するよう前記シェル層を再造形し、次に前記シェル層を未硬化の前記シェル材の液面に対して下降させ、次に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部上方に移動させ、次に前記シェル層を未硬化の前記シェル材の液面に対して上昇させて前記ノズル部材を前記コア部内に戻させる構成としてもよい。
 この構成によれば、シェル層を液槽重合法により造形する場合であっても、ノズル部材を未硬化のシェル材から引き抜くことなく、造形済のシェル層上に積層するよう前記シェル層を再造形することが可能となる。
 本発明の立体造形方法によれば、充填したコア材中にシェル材が巻き込まれることを防ぐことができる。
本発明の一実施形態における立体造形方法を実現するために用いる複合材3Dプリンタを概略的に示す図である。 本発明の一実施形態における立体造形方法を説明するための図である。 本発明の一実施形態における立体造形方法を説明するための図である。 本発明の一実施形態における立体造形方法を説明するための図である。 本発明の一実施形態における立体造形方法を説明するための図である。 本発明の一実施形態における立体造形方法を説明するための図である。 本発明の一実施形態における立体造形方法を説明するための図である。 従来の立体造形方法を説明するための図である。
 本発明の一実施形態における立体造形方法について図面を参照しながら説明する。なお、以下の説明では、直交座標系の3軸をX、Y、Zとし、水平方向をX軸方向、Y軸方向と表現し、XY平面と垂直な方向(つまり、鉛直方向)をZ軸方向と表現する。
 図1は、本実施形態における立体造形方法を実現するために用いる複合材3Dプリンタを概略的に示す図である。図2、図3、図4、および図5は、本実施形態における立体造形方法を説明するための図である。図6は、本実施形態における立体造形方法を説明するための図であり、ノズル部材11によるコア材Cの吐出方法を示す図である。図7は、本実施形態における立体造形方法を説明するための図であり、図6に示すノズル部材11によるコア材Cの吐出方法の一つのバリエーションを示す図である。
 以下、本実施形態における立体造形方法を実現するために用いる複合材3Dプリンタ100の構成について説明する。
 本実施形態における複合材3Dプリンタ100は、後述するシェル層Sの造形に付加製造方法の一つである液槽重合法を適用したものであり、図1に示すようにコア材Cを吐出するコア材吐出機構1と、シェル材Eを貯留する造形槽2と、立体造形物を造形する土台となる造形台21と、シェル材Eを硬化させるための光線照射機構3とを備えている。
 複合材3Dプリンタ100は、コア材吐出機構1、造形台21、および光線照射機構3のそれぞれを構成する各部を動作させることにより、造形する立体造形物の外殻層であるシェル層Sを先に造形した後、この造形済のシェル層Sに囲われた部分であるコア部Kにコア材Cを充填して硬化させることで、立体造形物を造形することができる。なお、これら各部の動作は図示しない制御部により制御されてもよい。この制御部は、たとえば、汎用のコンピュータ装置によって構成される。
 本実施形態におけるシェル材Eは、たとえば、流動性をもった光硬化性樹脂であり、後述する造形槽2内で貯留される。このシェル材Eは、後述する光線照射機構3により光線L(図2(a)を参照)を照射されることで硬化する。ここでいう、光線Lはたとえば、紫外線レーザー光である。この光線Lがシェル材Eに照射されることで、シェル材Eが硬化してシェル層Sが造形される。以下の説明では、未硬化のシェル材Eをシェル材Eと呼び、硬化したシェル材Eをシェル層Sと呼ぶ。
 本実施形態におけるシェル層Sは、造形する立体造形物の外殻層のことであり、前述したようにシェル材Eが硬化されることで造形される。シェル層Sは、シェル材E中で後述する造形台21上に造形される。また、このシェル層Sに囲われた部分をコア部Kと呼ぶ。
 このコア部Kには、シェル材Eが残存している。具体的には、シェル層Sがシェル材E中で造形され、造形後はシェル層Sがシェル材Eから引き揚げられることがない限り、シェル層Sに囲われた部分であるコア部Kにはシェル材Eが残存する。
 本実施形態におけるコア材Cは、たとえば、流動性を持った熱硬化性樹脂と炭素繊維やガラス繊維などの強化材を含有した所謂複合材料であり、図示しない加熱炉等により加熱されることで硬化する。このコア材Cは、後述するコア材吐出機構1によりコア部Kに吐出される。なお、コア材Cは、シェル材Eと混ざらないようになっており、シェル材Eよりも比重が高くなっている。
 本実施形態における立体造形物は、コア材Cをコア部Kに充填し、充填したコア材Cを硬化したことで造形される最終的な造形物のことである。
 本実施形態におけるコア材吐出機構1は、コア材Cを吐出するためのものである。コア材吐出機構1は、図1に示すようにコア材Cを吐出するノズル部材11と、コア材Cを貯留するコア材タンク12と、ノズル部材11とコア材タンク12を接続する配管系13と、配管系13を介してコア材Cをコア材タンク12からノズル部材11に送液するポンプ14により構成される。
 ノズル部材11は、コア材Cを吐出するためのものである。本実施形態におけるノズル部材11は、鉛直方向(図1におけるZ軸方向)に長く形成されており、この鉛直方向下方におけるノズル部材11の先端からコア材Cが吐出される。なお、ノズル部材11の形状は用途により適宜変更してもよい。
 そして、ノズル部材11は配管系13によりコア材タンク12と接続されている。コア材タンク12には、コア材Cが貯留されており、この貯留されたコア材Cをポンプ14により配管系13を介してノズル部材11に送液する。これにより、ノズル部材11はコア材Cを吐出することができる。
 また、コア材吐出機構1は、ノズル部材11を移動させる図示しないノズル駆動機構が設けられている。ノズル駆動機構は、ノズル部材11を図1におけるX、Y、Z軸方向に移動させることができる。これにより、ノズル部材11は所定位置でコア材Cを吐出することができる。
 本実施形態における造形槽2は、シェル材Eを貯留するためのものである。本実施形態における造形槽2は、図1に示すように天面に開口を有する矩形の箱型形状を有しており、この内部でシェル層Sの造形やコア材Cの吐出が行われる。そして、造形槽2内には、立体造形物を造形する土台となる造形台21が設けられている。さらに、この造形台21を造形槽2内のシェル材Eの液面M(以下、シェル材Eの液面Mと呼ぶ)に対して昇降させる造形台昇降機構(不図示)が設けられている。
 本実施形態における光線照射機構3は、シェル材Eを硬化させるための光線Lを照射するためのものである。光線照射機構3は、図1および図2(a)に示すように光線Lを照射する光線照射部31と、光線照射部31により照射された光線Lが所定位置に照射されるよう光線Lの方向を調節する走査光学系32により構成される。
 光線照射部31により照射される光線Lは、たとえば、紫外線レーザー光である。この光線Lを造形槽2内のシェル材Eに照射することで、シェル材Eの液面Mから所定の深さだけシェル材Eが硬化する。また、走査光学系32は、光線照射部31により照射された光線Lを反射できるものであればよい(たとえば、ガルバノミラーやポリゴンミラーなど)。この走査光学系32の傾きを調節することで、光線Lを所定範囲に走査させることができる。これにより、所定位置のシェル材Eを硬化させることができるため、所定の形状のシェル層Sを造形することができる。なお、少なくともシェル層Sの底部は、造形台2上に造形される。
 以下、本実施形態における立体造形方法について順を追って説明する。なお、本実施形態では、高さHまでシェル層S(図4(b)を参照)を造形し、形成されたコア部Kにコア材Cを充填して立体造形物を造形する例について説明する。
 まず、図2(a)に示すように光線照射機構3により造形槽2内のシェル材Eに光線Lを照射し、造形台21上にシェル層Sを高さh1だけ造形する。具体的には、造形台昇降機構により造形台21の高さをシェル材Eの液面Mに対して調節しながら光線照射部31により照射した光線Lを走査光学系により走査することで、光線Lを所定位置のシェル材Eに照射し、所定の深さのシェル材Eを硬化させる。このシェル材Eの硬化を繰り返し行うことで、シェル材Eの液面Mから所定の高さ寸法(本実施形態では、高さh1)のシェル層Sを造形する。以下の説明では、高さh1だけ造形したシェル層Sをシェル層Sと呼ぶ。
 次に、図2(b)に示すようにシェル層Sの上端がシェル材Eの液面Mと少なくとも接触しない位置まで造形台昇降機構により造形台21の高さをシェル材Eの液面Mに対して調節する。これにより、コア部Kにコア材Cを充填してコア部Kがコア材Cにより満たされたとしても、コア材Cがシェル材Eの液面Mに接触することを防ぐことができる。
 次に、図2(b)に示すようにノズル駆動機構によりノズル部材11を移動させ、ノズル部材11をコア部Kに残存するシェル材E中に挿入する。このとき、ノズル部材11の少なくとも先端がシェル材E中に挿入されていればよいが、シェル層Sの底部近傍まで挿入されていることが好ましい。
 次に、図2(c)に示すように所定位置でノズル部材11の先端からコア材Cを吐出する。ここで、コア材Cの比重がシェル材Eよりも高いため、コア材Cがシェル層Sの底部に向かって沈降していく。そのため、コア部K内に残存するシェル材Eがシェル層Sから溢れていき、コア部K内のシェル材Eがコア材Cに置き換えられる。
 そして、コア部K内をコア材Cで満たすようノズル部材11によるコア材Cの吐出を繰り返す。このとき、最初に所定位置でノズル部材11により吐出したコア材Cからノズル部材11の少なくとも先端が挿入されている状態を維持しつつ、ノズル部材11を移動させてコア材Cを吐出する。
 具体的には、図6(a)に示す最初の所定位置でノズル部材11によりコア材Cを吐出後、コア材Cにノズル部材11が挿入された状態を維持しつつ、図6(b)に示すようにノズル駆動機構により所定位置から所定の間隔を空けた位置までノズル部材11を移動させる。ここでいう所定の間隔は、最初に吐出したコア材Cの吐出幅の半分未満であるとよい。この状態で、ノズル部材11によりコア材Cを再度吐出する。そして、コア材Cにノズル部材11が挿入された状態を維持しつつ、図6(c)に示すようにノズル部材11を再度移動させて、ノズル部材11によりコア材Cを再度吐出する。これを繰り返して行うことで、図3(a)に示すようにコア部Kにコア材Cを充填する。
 これにより、ノズル部材11により吐出したコア材Cが一カ所で溜まらないようにすることができる。具体的には、ノズル部材11により吐出するコア材Cは粘度が高いため、シェル材E内で吐出しても水平方向には拡がりにくくなっている。このコア材Cを一カ所で吐出し続けると水平方向に拡がるよりも鉛直方向に盛り上がる傾向を示し、図8(b)に示すようにコア材Cがシェル材Eの液面Mに到達してしまう。
 これに対して、前述したように最初の所定位置でノズル部材11によりコア材Cを吐出し、コア材Cにノズル部材11が挿入された状態を維持しつつ、所定位置から所定の間隔を空けた位置までノズル部材11を移動させてコア材Cの再吐出を行う。これにより、ノズル部材11により吐出したコア材Cが水平方向に拡がりやすくなり、一カ所で溜まらないようにすることができる。そのため、コア材Cが鉛直方向に盛り上がらず、コア材Cがシェル材Eの液面Mに到達することを防ぐことができるため、コア材Cがシェル材Eの液面Mで拡散して沈降することを防ぐことができる。したがって、充填したコア材Cにシェル材Eが巻き込まれることを防ぐことが可能となる。
 また、ノズル部材11を先に吐出したコア材Cから引き抜かずにコア材Cの吐出を繰り返し行うため、ノズル部材11により先に吐出したコア材Cと後に吐出したコア材Cとの間に界面を生じさせることなくコア部Kにコア材Cを充填させることができる。したがって、充填したコア材Cに気泡などの不純物が混入することを防ぐことが可能となる。この方法で、コア部Kに充填したコア材Cをシェル層Sごと造形槽2から取り出し、加熱炉にて加熱して造形された立体造形物は、剛性と強度に方向性がないものになる。
 なお、前述した最初の所定位置でノズル部材11によりコア材Cを吐出し、コア材Cにノズル部材11が挿入された状態を維持しつつ、所定位置から所定の間隔を空けた位置までノズル部材11を移動させてコア材Cを再度吐出する方法は、少なくともシェル層Sの底部上に一層分のコア材Cが充填されるまで用いればよい。この場合、充填済の一層のコア材Cの所定位置にノズル部材11が挿入された状態で、ノズル部材11を移動させずにコア部Kが満たされるまでコア材Cを再度吐出する。ここで、充填済みの一層のコア材Cに再度吐出されたコア材Cは、一層目のコア材Cになじむように拡がっていくため、コア材Cが一カ所で溜まらないようにすることができる。
 引き続いて、シェル層Sの高さがHになるよう造形済の高さh1のシェル層S上に高さh2のシェル層Sをさらに造形し、新たに形成されたコア部Kにコア材Cを充填する場合について説明する。
 まず、図3(b)に示すように造形済のシェル層Sがノズル部材11の先端よりも下方に位置するまで、造形台昇降機構により造形台21をシェル材Eの液面Mに対して下降させて、ノズル部材11をコア部Kからシェル層S外へ退避させる。
 次に、図3(c)に示すように造形済のシェル層S上に高さh2のシェル層S(以下、シェル層Sと呼ぶ。)をさらに造形する時に邪魔にならないようノズル駆動機構によりノズル部材11を移動させる。このとき、ノズル部材11は造形槽2内のシェル材Eからは引き抜かない。
 次に、図4(a)に示すように造形済のシェル層S上にシェル層Sを造形することが可能な位置まで、造形台昇降機構により造形台21をシェル材Eの液面Mに対して上昇させる。
 そして、図4(b)に示すように造形台昇降機構により造形台21の高さをシェル材Eの液面Mに対して調節しながら光線照射機構3によりシェル材Eに光線Lを照射し、造形済のシェル層S上に積層するようシェル層Sを造形していく。これにより、造形済の高さh1のシェル層S上に積層するよう高さh2のシェル層Sがさらに造形される。すなわち、高さがHになるようにシェル層Sが再造形されている。
 次に、図4(c)に示すように造形済のシェル層Sがノズル部材11の先端よりも下方に位置するまで、造形台昇降機構により造形台21をシェル材Eの液面Mに対して下降させる。
 次に、図5(a)に示すようにシェル層Sが再造形されたことにより新たに形成されたコア部Kの上方に位置するようノズル駆動機構によりノズル部材11を移動させる。このとき、ノズル部材11は造形槽2内のシェル材Eからは引き抜かない。
 次に、図5(b)に示すように造形済のシェル層Sの上端がシェル材Eの液面Mの近傍かつシェル材Eの液面Mに接触しない程度に、造形台昇降機構により造形台21をシェル材Eの液面Mに対して上昇させる。これにより、コア部Kにコア材Cを充填してコア部Kがコア材Cにより満たされたとしても、コア材Cがシェル材Eの液面Mに接触することを防ぐことができる。ここで、ノズル部材11の少なくとも先端が充填済のコア材Cに挿入されていない場合、ノズル駆動機構によりノズル部材11を移動させてノズル部材11の少なくとも先端を充填済みのコア材Cに挿入する。
 そして、図5(c)に示すように再造形されたシェル層Sに囲まれたコア部Kにノズル部材11によりコア材Cを吐出して充填する。このとき、ノズル部材11は、充填済のコア材Cに挿入された状態でコア材Cの吐出をしている。
 これにより、造形済のシェル層S上に積層するようシェル層Sを造形してシェル層Sを再造形する際にノズル部材11をシェル材Eから引き抜かないため、ノズル部材11に付着するコア材Cがシェル材Eの液面Mに接触することを防ぐことが可能となる。したがって、コア材Cがシェル材Eの液面Mで拡散して沈降することを防ぎ、充填したコア材Cにシェル材Eが巻き込まれることを防ぐことが可能となる。また、造形済のシェル層S上に積層するようシェル層Sを造形してシェル層Sを再造形する前にノズル部材11をコア部Kからシェル層S外に退避させているため、ノズル部材11をシェル材Eから引き抜かなくてもノズル部材11が邪魔することなく、シェル層Sを再造形することが可能となる。
 このように、上記実施形態における立体造形方法によれば、コア部Kに充填したコア材Cがシェル材Eの液面Mに到達、およびノズル部材11に付着したコア材Cがシェル材Eの液面Mに接触することを防ぐことができる。これにより、コア材Cがシェル材Eの液面Mで拡散して沈降することを防ぐことができる。したがって、充填したコア材C内にシェル材Eが巻き込まれることを防ぐことが可能となる。
 以上、本発明の実施形態について図面を参照しながら詳述したが、各実施形態における構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の追加、省略、置換、およびその他の変更が可能である。たとえば、上記実施形態では、コア材Cがシェル材Eの液面Mに到達しないための方法について数例説明したが、上記実施形態に記載した方法に限られず、コア材Cがシェル材Eとのみ界面を有する状態を維持しつつ、コア部Kにコア材Cを充填するものであれば構わない。すなわち、コア材Cと空気との間に界面ができないようにコア部Kにコア材Cを充填すればよい。
 たとえば、図7(a)に示すようにノズル部材11をXY平面上で移動させながらコア材Cをコア部Kに吐出する(以下、スキャン吐出と呼ぶ)場合、図7(b)に示すように先にスキャン吐出したコア材Cからノズル部材11が挿入された状態を維持しつつ、ノズル部材11を移動させてスキャン吐出を再度行ってもよい。そして、この方法でコア部Kがコア材Cで満たされるまで繰り返して行ってもよいし、シェル層Sの底部上に一層だけコア材Cを充填してもよい。これにより、スキャン吐出の場合であっても、ノズル部材11により吐出したコア材Cが一カ所で溜まらないようにすることができる。したがって、コア材Cがシェル材Eの液面Mに到達することを防ぐことができるため、コア材Cがシェル材Eとのみ界面を有する状態を維持しつつ、コア部Kにコア材Cを充填することができる。また、ノズル部材11をコア材Cから引き抜かずにスキャン吐出を繰り返すため、先にスキャン吐出したコア材Cと後にスキャン吐出したコア材Cとの間に界面を生じさせることなくコア部Cにコア材Cを充填させることができる。
 また、コア材Cを吐出する際にノズル部材11の先端位置をコア部Kの比較的低い位置に位置させる。すなわち、ノズル部材11の先端をシェル層Sの底部に比較的近い位置に位置させる。これに加えて、ノズル部材11によりコア材Cを吐出する速度を低くすることで、吐出されたコア材Cの盛り上がりを軽減することができる。すなわち、コア材Cがシェル材Eの液面Mに到達しにくくなる。
 また、上記実施形態では、コア部Kがコア材Cにより満たされた際に、コア材Cがシェル材Eの液面Mに接触することを防ぐために、コア部Kにコア材Cを充填するまでにシェル層Sの上端がシェル材Eの液面Mに少なくとも接触しない位置まで造形台昇降機構により造形台21の高さを調節する例について説明したが、これに限られない。たとえば、敢えてシェル層Sを高さHよりも高い高さまで造形し、高さHまでコア材Cを充填するとよい。これにより、シェル層Sの上端までコア材Cが充填されることがないため、コア材Cを高さHまで充填したとしてもコア材Cがシェル材Eの液面Mに接触することを防ぐことができる。
また、上記実施形態では、高さHのシェル層Sを高さh1のシェル層Sと高さh2のシェル層Sに分割して造形する例について説明したが、シェル層Sを一括で造形してもよい。また、シェル層Sを造形するための分割回数を増やしてもよい。
 また、上記実施形態では、シェル層Sの造形に液槽重合法を適用したものを例に説明したが、これに限られない。たとえば、熱溶解積層方式であってもよい。
 100 複合材3Dプリンタ
 1 コア材吐出機構
 11 ノズル部材
 12 コア材タンク
 13 配管系
 14 ポンプ
 2 造形槽
 21 造形台
 3 光線照射機構
 31 光線照射部
 32 走査光学系
 E シェル材
 S シェル層
 S (高さh1の)シェル層
 S (高さh2の)シェル層
 M シェル材の液面
 K コア部
 C コア材
 L 光線

Claims (6)

  1.  立体造形物の外殻層であるシェル層をシェル材を用いて先に造形し、次に造形済の当該シェル層に囲われた部分であるコア部にコア材をノズル部材により吐出して充填することによって立体造形物を造形する立体造形方法であって、
     流動状態の前記シェル材の一部を硬化させることで前記シェル層を造形し、
     前記コア部に残存する未硬化の前記シェル材中に前記ノズル部材の少なくとも先端を挿入し、前記ノズル部材の先端から前記コア材を吐出することにより、未硬化の前記シェル材と前記コア材を置き換えて前記コア部に前記コア材を充填するものであり、
     前記コア材が未硬化の前記シェル材とのみ界面を有する状態を維持しつつ、前記コア部に前記コア材を充填させることを特徴とする立体造形方法。
  2.  前記コア材を前記ノズル部材より前記コア部の所定位置で吐出し、
     吐出したコア材に前記ノズル部材の少なくとも先端が挿入されている状態を維持しつつ、前記所定位置から所定の間隔をあけた位置に前記ノズル部材を移動させ、前記コア材を前記ノズル部材により再度吐出することを特徴とする請求項1に記載の立体造形方法。
  3.  前記コア材を前記ノズル部材より前記コア部の所定位置で吐出し、
     吐出したコア材に前記ノズル部材の少なくとも先端が挿入されている状態を維持しつつ、前記所定位置から前記ノズル部材を移動させながら前記コア材を前記ノズル部材により吐出することを特徴とする請求項1に記載の立体造形方法。
  4.  立体造形物の外殻層であるシェル層をシェル材を用いて先に造形し、次に造形済の当該シェル層に囲われた部分であるコア部にコア材をノズル部材により吐出して充填することによって立体造形物を造形する立体造形方法であって、
     流動状態の前記シェル材の一部を硬化させることで前記シェル層を造形し、
     前記コア部に残存する未硬化の前記シェル材中に前記ノズル部材の少なくとも先端を挿入し、前記ノズル部材の先端から前記コア材を吐出することにより、未硬化の前記シェル材と前記コア材を置き換えて前記コア部に前記コア材を充填するものであり、
     前記コア部に前記コア材を充填後、前記シェル層を再造形するにあたり前記ノズル部材の少なくとも先端を未硬化の前記シェル材に挿入した状態を維持しつつ、前記シェル層を再造形することを特徴とする立体造形方法。
  5.  造形済の前記シェル層上に積層するよう前記シェル層を再造形するにあたり、
     前記シェル層の再造形前に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部から前記シェル層外に退避させ、
     前記シェル層の再造形後に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部内に戻すことを特徴とする請求項4に記載の立体造形方法。
  6.  前記シェル層は、液槽重合法により造形されており、
     造形済の前記シェル層上に積層するよう前記シェル層を再造形するにあたり、
     前記シェル層の再造形前に前記シェル層を未硬化の前記シェル材の液面に対して下降させ、
     次に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記シェル層外に退避させ、
     次に前記シェル層を未硬化の前記シェル材の液面に対して上昇させ、
     次に造形済の前記シェル層上に積層するよう前記シェル層を再造形し、
     次に前記シェル層を未硬化の前記シェル材の液面に対して下降させ、
     次に前記ノズル部材の少なくとも先端が未硬化の前記シェル材に挿入された状態を維持しつつ、前記ノズル部材を前記コア部上方に移動させ、
     次に前記シェル層を未硬化の前記シェル材の液面に対して上昇させて前記ノズル部材を前記コア部内に戻させることを特徴とする請求項5に記載の立体造形方法。
PCT/JP2021/045413 2021-03-31 2021-12-09 立体造形方法 WO2022209028A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021059029A JP2022155679A (ja) 2021-03-31 2021-03-31 立体造形方法
JP2021-059029 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209028A1 true WO2022209028A1 (ja) 2022-10-06

Family

ID=83455822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045413 WO2022209028A1 (ja) 2021-03-31 2021-12-09 立体造形方法

Country Status (2)

Country Link
JP (1) JP2022155679A (ja)
WO (1) WO2022209028A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078604A (ja) * 2004-09-07 2006-03-23 Toin Gakuen 人体患部実体モデル及びその製造方法
WO2017038985A1 (ja) * 2015-09-04 2017-03-09 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
WO2019155897A1 (ja) * 2018-02-09 2019-08-15 東レエンジニアリング株式会社 立体造形方法
JP2019529182A (ja) * 2016-09-22 2019-10-17 ストラタシス リミテッド 固体自由形状製作のための方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078604A (ja) * 2004-09-07 2006-03-23 Toin Gakuen 人体患部実体モデル及びその製造方法
WO2017038985A1 (ja) * 2015-09-04 2017-03-09 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
JP2019529182A (ja) * 2016-09-22 2019-10-17 ストラタシス リミテッド 固体自由形状製作のための方法及びシステム
WO2019155897A1 (ja) * 2018-02-09 2019-08-15 東レエンジニアリング株式会社 立体造形方法

Also Published As

Publication number Publication date
JP2022155679A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6384826B2 (ja) 三次元積層造形装置、三次元積層造形方法および三次元積層造形プログラム
JP4015339B2 (ja) 歪みの少ない三次元物体をステレオリソグラフィーで形成する方法および装置
EP1657048A1 (en) Three-dimensional printing prototyping system
KR20180122643A (ko) 인 시추 인퓨전을 활용하여 물체들의 솔리드 프리폼 제조를 위한 방법 및 장치
JP6938398B2 (ja) 立体造形方法
WO2016017155A1 (ja) 三次元形状造形物の製造方法および三次元形状造形物
JP3803223B2 (ja) 層群に対するリコーティングパラメータを用いた3次元物体造形のためのステレオリソグラフィ方法および装置
JP6798269B2 (ja) 樹脂成形装置および樹脂成形方法
KR20180052225A (ko) 3d 프린터의 가공챔버 분할 장치
JP2015212042A (ja) 三次元造形装置および三次元造形方法
JPWO2015190168A1 (ja) 三次元造形装置および三次元造形方法
JP2016055603A (ja) 三次元造形方法および三次元造形装置
WO2022209028A1 (ja) 立体造形方法
JP6812811B2 (ja) 樹脂成形装置および樹脂成形方法
JP3782049B2 (ja) 光造形方法及びその装置
JP4073014B2 (ja) 造形装置
JPH07329190A (ja) 三次元物体の製造方法及び製造装置
WO2019112453A1 (en) Method for producing three-dimensional objects
JP2011056697A (ja) 積層造形装置
KR100226015B1 (ko) 광경화수지 액적을 사용한 시제품 신속 제작 기구 및방법
CN108481738A (zh) 液气交互连续式3d打印系统、打印方法及光学透镜元件
JP2023149574A (ja) 立体造形方法
JP2023018936A (ja) 立体造形方法、立体造形物の製造方法、プログラム、及び立体造形装置
KR20210104287A (ko) 3d 프린터의 성형높이 조절방법
JP6497131B2 (ja) 三次元造形物用の硬化剤、三次元造形物の製造装置、及び三次元造形物の製造プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935179

Country of ref document: EP

Kind code of ref document: A1