WO2015029236A1 - 鉱山機械の管理システム及び鉱山機械の管理方法 - Google Patents

鉱山機械の管理システム及び鉱山機械の管理方法 Download PDF

Info

Publication number
WO2015029236A1
WO2015029236A1 PCT/JP2013/073419 JP2013073419W WO2015029236A1 WO 2015029236 A1 WO2015029236 A1 WO 2015029236A1 JP 2013073419 W JP2013073419 W JP 2013073419W WO 2015029236 A1 WO2015029236 A1 WO 2015029236A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
information
loading
registered
mining machine
Prior art date
Application number
PCT/JP2013/073419
Other languages
English (en)
French (fr)
Inventor
幹英 杉原
弘太郎 堀
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2013/073419 priority Critical patent/WO2015029236A1/ja
Priority to US14/350,606 priority patent/US9568322B2/en
Priority to JP2013558246A priority patent/JP5647362B1/ja
Priority to CN201380003444.4A priority patent/CN104641393B/zh
Priority to CA2848840A priority patent/CA2848840C/en
Priority to AU2013394858A priority patent/AU2013394858B2/en
Publication of WO2015029236A1 publication Critical patent/WO2015029236A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path

Definitions

  • the present invention relates to a system and method for managing a mining machine.
  • Patent Document 1 describes an operation simulation system for a transporter.
  • Patent Document 1 is a simulation of operation, it is difficult to accurately identify and specify a route traveled by a mining machine.
  • the present invention aims to improve the accuracy in distinguishing and specifying the route traveled by a mining machine in a mine.
  • the present invention is mounted on a mining machine that loads and conveys a load in a mine, and a position information detection unit that obtains position information that is information related to the position of the mining machine, and the mining machine starts from a predetermined first position.
  • a storage unit for storing, as a registered route, route information of a first route that is a route when moving to a third position as a discharge position for unloading a load via a second position as a loading position for loading a load;
  • the position information group obtained from the plurality of position information obtained by the position information detection unit during operation of the mining machine, and the loading position or the earthing position included in the route information of the first route Is determined to match, and when it is determined to match, the loading position or the earthing position stored in the storage unit is added to the position information of the position information group determined to match.
  • the load is unloaded from the mining machine within a first predetermined range around the earthing position of the registered route in the position information group. It is preferable to correct the earthing position of the registered route based on the position information of the registered position.
  • the correction is to set a midpoint between the position at which the load is lowered and the soil removal position of the registered route as the soil removal position after the correction of the registered route.
  • the correction of the loading position performed by the area specifying unit is a position where the load is loaded on the mining machine within a second predetermined range around the loading position of the registered route in the position information group. Is preferably the loading position after the correction of the registered route.
  • the route information creation unit includes a route information creation unit that creates route information including a plurality of nodes existing for each predetermined distance of a route when the mining machine moves and a link connecting the adjacent nodes.
  • the route information creation unit includes a route information creation unit that creates route information including a plurality of nodes existing for each predetermined distance of a route when the mining machine moves and a link connecting the adjacent nodes. , Excluding the inside of the passing position exclusion area having a predetermined size larger than the second predetermined range on the loading side around the loading position of the registered route and around the loading position of the registered route It is preferable to generate the node in a region.
  • the route information creation unit determines that the loading place is the same during the predetermined period when the position of the loading place is within a predetermined range determined in advance for a predetermined period.
  • the present invention obtains position information, which is information relating to the position of a mining machine that loads and conveys a load at a mine, and sets the second position as a loading position at which the mining machine starts from a predetermined first position and loads the load.
  • the route information of the first route which is the route when moving to the third position as the soil removal position for unloading the cargo, is used as the registered route, and is obtained from the plurality of position information obtained during operation of the mining machine.
  • the position information group and the loading position or the earthing position included in the route information of the first path are determined to match, and when it is determined that they match, the loading position or the discharging position is determined.
  • a mining machine management method that corrects a soil position based on position information of the position information group determined to match.
  • position information of the position where the load is unloaded from the mining machine within a first predetermined range around the earthing position of the registered route is included in the position information group. Based on this, it is preferable to correct the earth removal position of the registered route.
  • a midpoint between the position at which the load is lowered and the soil removal position of the registered route is the soil removal position after the correction of the registered route.
  • the position information of the position where the load is loaded on the mining machine within a second predetermined range around the loading position of the registered route in the position information group It is preferable to set the loading position after correcting the registered route.
  • a passing position exclusion region having a predetermined size around the soiling position of the registered route that is larger than the first predetermined range on the soiling side around the soiling position of the registered route. It is preferable to create a node that exists for every predetermined distance of the route when the mining machine moves in a region other than the inside of the machine.
  • a passing position exclusion area having a predetermined size around the loading position of the registered route, which is larger than a second predetermined range on the loading side around the loading position of the registered route. It is preferable to generate a node that exists at every predetermined distance on the route when the mining machine moves in a region other than the inside of the machine.
  • the loading place In determining the loading position of the registered route, if the loading place is within a predetermined range predetermined for a predetermined period, the loading place is the same during the predetermined period. It is preferable.
  • the present invention can improve the accuracy in distinguishing and specifying a route traveled by a mining machine in a mine.
  • FIG. 1 is a diagram illustrating a site to which a mining machine management system according to the present embodiment is applied.
  • FIG. 2 is a functional block diagram of a management apparatus included in the mining machine management system according to the present embodiment.
  • FIG. 3 is a diagram showing a configuration of the dump truck.
  • FIG. 4 is a functional block diagram showing the in-vehicle information collection device and its peripheral devices.
  • FIG. 5 is a diagram illustrating an example of a route traveled by the dump truck.
  • FIG. 6 is a flowchart illustrating an example of the procedure of the route specifying process according to the present embodiment.
  • FIG. 7 is a diagram showing information on registered routes.
  • FIG. 1 is a diagram illustrating a site to which a mining machine management system according to the present embodiment is applied.
  • FIG. 2 is a functional block diagram of a management apparatus included in the mining machine management system according to the present embodiment.
  • FIG. 3 is a diagram showing a configuration of the dump truck.
  • FIG. 4 is
  • FIG. 8 is a diagram for explaining a method of determining a match between the position information of the actual travel route and the passing position of the registered route.
  • FIG. 9 is a diagram for explaining additional items for determining a match between the position information of the actual travel route and the passing position of the registered route.
  • FIG. 10 is a diagram for explaining additional items for determining a match between the position information of the actual travel route and the passing position of the registered route.
  • FIG. 11 is a diagram for explaining determination of coincidence between the position information PI of the actual travel route in the specific section and the passing position of the registered route.
  • FIG. 12 is a diagram for explaining a case where a new soil removal position is not registered.
  • FIG. 13 is a diagram for explaining a case where a new soil removal position is not registered.
  • FIG. 14 is a diagram for explaining a case where the loading position is not newly registered.
  • FIG. 15 is a diagram for explaining a case where a loading position is not newly registered.
  • FIG. 16 is a diagram for explaining a case of newly registering a soil removal position.
  • FIG. 17 is a diagram for explaining a case of newly registering a soil removal position.
  • FIG. 18 is a diagram for explaining a case where a loading position is newly registered.
  • FIG. 19 is a diagram for explaining a case where a loading position is newly registered.
  • FIG. 20A is a diagram for explaining the process of extracting the passing position WP of the registered route that matches the position information PI of the actual travel route.
  • FIG. 20B is a diagram for explaining a method of newly creating a passing position.
  • FIG. 20A is a diagram for explaining the process of extracting the passing position WP of the registered route that matches the position information PI of the actual travel route.
  • FIG. 20B is a diagram for explaining a
  • FIG. 21 is a diagram illustrating an example of a combination of a passing position WP including a section and a link in a part of the new route information RIN.
  • FIG. 22 is a diagram for explaining an example of a method for creating a section.
  • FIG. 23 is a diagram illustrating classification based on an inclination angle used when creating a section.
  • FIG. 24 is a diagram for explaining an example of a method for creating a section.
  • FIG. 25 is a diagram illustrating a state where the same passage position WP is not integrated in a plurality of pieces of route information.
  • FIG. 26 is a diagram illustrating a state in which the same passage position WP is integrated in a plurality of pieces of route information.
  • FIG. 27 is a diagram for explaining aggregation of specific sections.
  • FIG. 28 is a diagram for explaining aggregation of specific sections.
  • FIG. 1 is a diagram showing a site to which a mining machine management system according to this embodiment is applied.
  • the mining machine management system 1 manages the operation of the mining machine, evaluates the productivity or the operation technique of the operator of the mining machine, performs the preventive maintenance and abnormality diagnosis of the dump truck, and the like. For this reason, the management system 1 specifies the route traveled by the dump truck 20 and accumulates it as route information.
  • the travel route includes a route on which the dump truck 20 travels and a place where the dump truck 20 stops.
  • the travel route is also referred to as a route as appropriate.
  • Mining machinery is a general term for machinery used for various operations in mines.
  • the dump truck 20 that transports the crushed stone or the earth and sand generated during the mining of the crushed stone as a load is taken as an example, but the mining machine of the present embodiment is the dump truck 20.
  • the mining machine according to the present embodiment may be a hydraulic excavator, an electric excavator, or a wheel loader that functions as an excavating machine for mining crushed stone or the like.
  • the dump truck 20 is a manned mining machine that travels or unloads a load by an operator's operation, but the dump truck 20 is not limited to this.
  • the dump truck 20 may be an unmanned dump truck whose operation is managed by the management system 1.
  • the dump truck 20 is loaded with rocks or earth and sand by a loader 4 such as a hydraulic excavator at a place where the loading operation is performed (hereinafter referred to as a loading place) LPA.
  • the dump truck 20 discharges the loaded rock or earth and sand at a place (hereinafter referred to as a soil discharge site) DPA where the work for discharging the load is performed.
  • the dump truck 20 moves between the loading site LPA and the earth discharging site DPA by traveling on routes Rg and Rr.
  • a mining machine management system (hereinafter referred to as a management system as appropriate) 1 is a system in which a management apparatus 10 collects operation information including information on the position of a dump truck 20 as a mining machine from the dump truck 20 by wireless communication. .
  • the management apparatus 10 is installed in a mine management facility, for example. Thus, the management apparatus 10 does not consider movement in principle.
  • the information collected by the management device 10 is information related to the operation state of the dump truck 20 (hereinafter referred to as operation information as appropriate). For example, position information (latitude, longitude, and altitude coordinates) that is information related to the position of the dump truck 20.
  • the operation information is mainly used for travel path map creation, travel path mapping, operation evaluation, preventive maintenance, abnormality diagnosis, and the like of the dump truck 20. Therefore, the operation information is useful for meeting needs such as improvement of mining productivity or improvement of mining operation.
  • the management device 10 is connected to a management-side wireless communication device 18 having an antenna 18A in order to collect operation information of the dump truck 20 working in the mine.
  • the dump truck 20 has an antenna 28 ⁇ / b> A together with the in-vehicle wireless communication device in order to transmit operation information and to perform mutual communication with the management device 10.
  • the in-vehicle wireless communication device will be described later.
  • the dump truck 20 can receive radio waves from GPS (Global Positioning System) satellites 5A, 5B, and 5C with the GPS antenna 28B, and can determine its own position.
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • the output of the radio wave transmitted from the antenna 28A by the dump truck 20 does not have a communicable range that can cover the entire mine. Further, the radio wave transmitted from the antenna 28A cannot be transmitted far beyond an obstacle such as a high mountain due to the wavelength relationship.
  • a wireless communication device capable of outputting a high-output radio wave is used, such a communication failure can be eliminated, the communicable range is expanded, and a place where communication is impossible can be eliminated.
  • the mine is vast, it is necessary to cope with the situation where it is necessary to reduce the cost of repeaters and communication devices and it is not possible to secure a communication infrastructure that is maintained depending on the area where the mine is located.
  • the management system 1 uses a wireless system that can form an information communication network within a limited range, such as a wireless LAN (Local Area Network).
  • a wireless LAN Local Area Network
  • wireless LAN Wireless Area Network
  • the reach of the radio wave transmitted from the antenna 28A by the dump truck 20 is limited. Therefore, when the distance between the dump truck 20 and the management apparatus 10 is long or an obstacle such as a mountain M exists between them, the management-side wireless communication apparatus 18 transmits the radio wave transmitted from the dump truck 20. It becomes difficult to receive. For this reason, the management system 1 has a repeater 3 that relays radio waves transmitted from the antenna 28 ⁇ / b> A of the dump truck 20 and transmits them to the management-side wireless communication device 18. By installing the repeater 3 at a plurality of predetermined locations in the mine, the management apparatus 10 can collect operating information from the dump truck 20 operating at a position away from itself by wireless communication.
  • an intermediate repeater 6 is provided between the repeater 3 and the management-side wireless communication device 18 for relaying both.
  • the intermediate repeater 6 only relays between the repeater 3 and the management-side wireless communication device 18, and does not relay the radio wave transmitted from the antenna 28A by the dump truck 20.
  • the intermediate repeater 6 does not relay radio waves from other than the corresponding repeater 3.
  • only one intermediate repeater 6 relays radio waves from the repeater 3 of the gas station 2.
  • the intermediate repeater 6 is expressed as having a one-to-one relationship with one repeater 3 in FIG. 1, the intermediate repeater 6 is not limited to a one-to-one relationship. The radio waves transmitted from the corresponding plurality of repeaters 3 can be relayed.
  • a predetermined area (area shown by a circle in FIG. 1) around the place where the repeater 3 is arranged is a first wireless communication device mounted on the dump truck 20 (see in-vehicle wireless communication device 27 described later, FIG. 3). Is a range in which wireless communication with the repeater 3 is possible, that is, a communicable range 7.
  • the dump truck 20 existing in the communicable range 7 can wirelessly communicate with the management-side wireless communication device 18 via the repeater 3 or the like.
  • the dump truck 20 When the management apparatus 10 collects operation information from the dump truck 20 by wireless communication, the dump truck 20 communicates by traveling and moving while the dump truck 20 is transmitting operation information or the like to the management apparatus 10. It may go out of the possible range 7. As a result, communication of the dump truck 20 may be interrupted before the first wireless communication apparatus transmits all the operation information to be transmitted to the management apparatus 10.
  • the dump truck 20 exists in the communicable range 7 while the management apparatus 10 is receiving the operation information, in other words, while the dump truck 20 is transmitting the operation information. It is preferable to do. For this reason, it is preferable to receive the radio wave from the antenna 28A of the dump truck 20 at a place where the dump truck 20 is stopped so that the dump truck 20 is surely within the communicable range 7. Therefore, the dump truck 20 is a place where the dump truck 20 is stopped within the communicable range 7 for a certain period of time (a time longer than the time at which all the operation information to be transmitted can be transmitted). It is preferable to control so that operation information and the like are transmitted to the repeater 3.
  • the repeater 3 is installed in the gas station 2.
  • the dump truck 20 In the gas station 2, the dump truck 20 is expected to stop for a certain period of time in order to supply fuel for driving the engine of the dump truck 20. For this reason, the dump truck 20 can maintain the state which existed in the communicable range 7 reliably for the time for the management apparatus 10 to receive operation information etc. reliably from the dump truck 20 which is refueling. As a result, the management apparatus 10 can reliably collect operation information and the like from the dump truck 20 by wireless communication.
  • the repeater 3 is arranged in the vicinity of the moving path of the dump truck 20 in addition to the gas station 2 to collect operation information from the dump truck 20 in operation. To. Next, the management apparatus 10 will be described in more detail.
  • FIG. 2 is a functional block diagram of a management apparatus included in the mining machine management system according to the present embodiment.
  • the management device 10 includes a management processing device 12, a management storage device 13, and an input / output unit (I / O) 15. Further, the management device 10 connects a display device 16, an input device 17, a management-side wireless communication device 18, and an output device 19 to the input / output unit 15.
  • the management device 10 is a computer, for example.
  • the management processing device 12 is, for example, a CPU (Central Processing Unit).
  • the management-side storage device 13 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a hard disk drive, or the like, or a combination thereof.
  • the input / output unit 15 inputs / outputs information (interface) between the management processing device 12 and the display device 16, the input device 17, the management wireless communication device 18, and the output device 19 connected to the outside of the management processing device 12. Used for.
  • the management-side processing device 12 executes the mining machine management method according to the present embodiment.
  • the management processing device 12 includes a route determination unit 12a, a gradient analysis unit 12b, a region specifying unit 12c, a route information creation unit 12d, and a route analysis unit 12e.
  • the route determination unit 12a as the determination unit specifies the route on which the dump truck 20 actually travels through the mine by determining whether or not it matches the travel route that already exists.
  • the already existing traveling route is a route on which the dump truck 20 has traveled in the past or a route that is set in advance.
  • the gradient analysis unit 12b analyzes the route traveled by the dump truck 20 and divides the route for each predetermined range of the gradient.
  • the area specifying unit 12c specifies the area of the loading site LPA where the dump truck 20 is loaded, and the area of the earth discharging site DPA where the load is lowered.
  • the route information creation unit 12d creates route information as information regarding the position of the route on which the dump truck 20 travels.
  • the route information is a route when the dump truck 20 moves from the predetermined first position to the third position where the dump truck 20 moves down through the second position where the load (such as crushed stone or sediment or rock generated when mining the crushed stone) is loaded. Is information including a link connecting a plurality of nodes existing at predetermined distances and adjacent nodes in the first route.
  • the route analysis unit 12e analyzes the route traveled by the dump truck 20, and extracts, for example, portions having the same characteristics or integrates the extracted portions.
  • the above-described characteristics include gradient and azimuth angle.
  • the management-side storage device 13 stores various computer programs for causing the management-side processing device 12 to execute various processes.
  • the computer program stored in the management-side storage device 13 realizes the mining machine management method according to the present embodiment, for example, and specifies the route on which the dump truck 20 has traveled.
  • the management-side storage device 13 stores an LP / DP database 14RD, a route-specific WP database 14WP, a route-specific specific section database 14SC, a registered route database 14CS, an operation information database 14I, and the like.
  • LP / DP database 14RD position information of the loading site LPA and the dumping site DPA of the dump truck 20 is described.
  • route-specific WP database 14WP position information of a route on which the dump truck 20 has traveled or travels is described.
  • the specific section database 14SC for each route information on a specific section as a part having the same characteristics in the route on which the dump truck 20 has traveled or travels is described.
  • the registered route database 14CS describes information including position information of a route previously set as a route traveled by the dump truck 20 operating in the mine or a route traveled by the dump truck 20 in the mine.
  • the operation information collected from the dump truck 20 is described in the operation information database 14I.
  • the route-specific WP database 14WP and the route-specific specific section database 14SC include set data of coordinates of latitude, longitude, and altitude of position information.
  • the management device 10 is obtained from the position information included in the first path stored in the management-side storage device 13 and the plurality of position information of the dump truck 20 during operation of the dump truck 20. Whether or not the second route and the first route are the same is determined based on at least the position information group of the second route. By doing in this way, the management apparatus 10 specifies the 2nd path
  • the first path is the third position where the dump truck 20 starts traveling from the predetermined first position, moves to the loading site LPA as the second position where the load is loaded, and lowers the load. This is the route when moving to the earth removal site DPA.
  • the position information of the first route is described in the LP / DP database 14RD and the route-specific WP database 14WP.
  • the predetermined first position at which the dump truck 20 starts traveling is, for example, a dumping site DPA.
  • a traveling start position is, for example, a dumping site DPA.
  • the travel start position of the dump truck 20 is the dumping site DPA
  • the dumping site DPA from which the dump truck 20 dumps the load loaded at the loading site LPA and the travel start position may be the same. , May be different.
  • the display device 16 is, for example, a liquid crystal display or the like, and displays information necessary for collecting position information or operation information of the dump truck 20.
  • the input device 17 is, for example, a keyboard, a touch panel, a mouse, or the like, and inputs information necessary for collecting position information or operation information of the dump truck 20.
  • the management-side wireless communication device 18 includes an antenna 18A, and performs wireless communication with the in-vehicle wireless communication device 27 (see FIG. 3) of the dump truck 20 via the repeater 3.
  • the output device 19 is, for example, a printing device (printer). The output device 19 prints and outputs a report or the like created by the management device 10. The output device 19 may further output a sound corresponding to a report content described later. Next, the dump truck 20 will be described in more detail.
  • FIG. 3 is a diagram illustrating the configuration of the dump truck 20.
  • the dump truck 20 travels with a load loaded thereon, and discharges the load at a desired location.
  • the dump truck 20 includes a vehicle body 21, a vessel 22, wheels 23, a suspension cylinder 24, a rotation sensor 25, a suspension pressure sensor (hereinafter referred to as a pressure sensor as appropriate) 26, and an in-vehicle wireless to which an antenna 28 ⁇ / b> A is connected.
  • the communication device 27 includes a position information detection device (a GPS receiver in this embodiment) 29 to which a GPS antenna 28 ⁇ / b> B is connected, and an in-vehicle information collection device 30.
  • the dump truck 20 has various mechanisms and functions that are included in a general transporter in addition to the above configuration.
  • the rigid dump truck 20 will be described as an example.
  • the dump truck 20 may be an articulated dump truck in which a vehicle body is divided into a front part and a rear part and these parts are joined by a free joint. Good.
  • the dump truck 20 drives the wheels 23 by an internal combustion engine such as a diesel engine (hereinafter, appropriately referred to as the engine 34G) driving the drive shaft 34DS via the torque converter 34TC and the transmission 34TM.
  • the engine 34G an internal combustion engine
  • the drive system of the dump truck 20 is not limited to this, and may be a so-called electric drive system.
  • the vessel 22 functions as a loading platform for loading a load, and is arranged on the upper portion of the vehicle main body 21 so as to be movable up and down.
  • the vessel 22 is loaded with quarryed stone or rock or earth as a load by a loader 4 such as a hydraulic excavator.
  • the wheel 23 is composed of a tire and a wheel and is rotatably mounted on the vehicle main body 21 and is driven by power transmitted from the vehicle main body 21 as described above.
  • the suspension cylinder 24 is disposed between the wheel 23 and the vehicle main body 21. A load corresponding to the mass of the load when the load is loaded on the vehicle body 21 and the vessel 22 acts on the wheel 23 via the suspension cylinder 24.
  • the rotation sensor 25 measures the vehicle speed by detecting the rotation speed of the drive shaft 34DS that drives the wheels 23.
  • the suspension cylinder 24 is filled with hydraulic oil and expands and contracts according to the weight of the load.
  • the pressure sensor 26 detects a load acting on the suspension cylinder 24.
  • the pressure sensor 26 is installed in each suspension cylinder 24 of the dump truck 20 and can measure the mass (loading amount) of the load by detecting the pressure of the hydraulic oil.
  • the GPS antenna 28B receives radio waves output from a plurality of GPS satellites 5A, 5B, and 5C (see FIG. 1) constituting a GPS (Global Positioning System).
  • the GPS antenna 28B outputs the received radio wave to the position information detection device 29.
  • the position information detection device 29 as a position information detection unit converts the radio wave received by the GPS antenna 28B into an electrical signal, and calculates (positions) its own position information, that is, the position of the dump truck 20. Find location information.
  • the position information is information regarding the position of the dump truck 20, and is coordinates of latitude, longitude, and altitude.
  • a plurality of pieces of position information in which a plurality of pieces of position information acquired by the position information detection device 29 based on the passage of time are arranged in time series is a route on which the dump truck 20 has traveled.
  • the in-vehicle wireless communication device 27 performs wireless communication with the repeater 3 illustrated in FIG. 1 or the antenna 18A of the management facility via the antenna 28A.
  • the in-vehicle wireless communication device 27 is connected to the in-vehicle information collection device 30. With such a structure, the in-vehicle information collection device 30 transmits and receives each piece of information via the antenna 28A. Next, the in-vehicle information collection device 30 and its peripheral devices will be described.
  • FIG. 4 is a functional block diagram showing the in-vehicle information collection device and its peripheral devices.
  • the in-vehicle information collection device 30 included in the dump truck 20 is connected to an in-vehicle storage device 31, an in-vehicle wireless communication device 27, and a position information detection device 29.
  • a state acquisition device is further connected to the in-vehicle information collection device 30.
  • the in-vehicle information collection device 30 is, for example, a computer that combines a CPU (Central Processing Unit) and a memory.
  • CPU Central Processing Unit
  • the in-vehicle information collection device 30 is a device for acquiring and collecting information on various operating states of the dump truck 20 as a mining machine.
  • the state acquisition device includes a pressure sensor 26 installed in the suspension cylinder 24, other various sensors, an engine control device 32A, a travel control device 32B, a hydraulic control device 32C, a driver ID acquisition device 38, and an inclination sensor (inclination). 39) etc.
  • the in-vehicle information collection device 30 acquires information on various operation states of the dump truck 20 from such a state acquisition device, and collects the acquired information as operation information.
  • the in-vehicle information collection device 30 can acquire information indicating the fuel injection amount by acquiring the control amount of the fuel injection device (FI) 34F from the engine control device 32A. Information on fuel consumption can be obtained from information indicating the fuel injection amount. Further, the in-vehicle information collection device 30 can acquire information indicating the operation amount of the accelerator 33A via the engine control device 32A. Based on the information indicating the amount of operation of the accelerator 33A by the driver of the dump truck 20, the operating state of the driver of the dump truck 20 can be grasped. The in-vehicle information collection device 30 can acquire various information such as the rotational speed of the engine (EG) 34G, the coolant temperature, the lubricating oil pressure, and the like from the engine control device 32A.
  • EG rotational speed of the engine
  • the coolant temperature the coolant temperature
  • the lubricating oil pressure and the like from the engine control device 32A.
  • the information on the rotational speed of the engine (EG) 34G is acquired from the rotational speed detected by a rotational sensor or the like attached to the output shaft of the engine (EG) 34G (not shown), and various information such as the cooling water temperature and the lubricating oil pressure. Is also acquired by a temperature sensor or a pressure sensor (not shown).
  • the in-vehicle information collecting device 30 can obtain various information of the traveling device 37 from the traveling control device 32B.
  • the traveling device 37 shows the torque converter TC and transmission TM driven by the engine 34G shown in FIG. 2 and the driving force from the transmission 34TM in FIG. A drive shaft 34DS that transmits to the wheel 23 is included.
  • the various information of the traveling device 37 is, for example, the speed stage switching state of the transmission 34TM, the output shaft rotational speed, the rotational speed of the drive shaft 34DS, and the like.
  • the in-vehicle information collection device 30 can grasp the operation state of the driver of the dump truck 20 by acquiring the operation position or operation amount of the shift lever 33B via the travel control device 32B.
  • the shift lever 33B is used when the driver instructs the traveling control device 32B to advance, reverse or change the traveling speed stage of the dump truck 20.
  • the in-vehicle information collecting device 30 can acquire the open / closed state of the hydraulic oil control valve (CV) 35 from the hydraulic control device 32C.
  • the hydraulic oil control valve 35 supplies hydraulic oil discharged from an oil pump (OP) 34P driven by the operation of the engine 34G to a hoist cylinder 36 (hydraulic cylinder) that moves the vessel 22 up and down.
  • the hydraulic oil is discharged from the hoist cylinder 36.
  • the in-vehicle information collecting device 30 can grasp the lifted state of the vessel 22 based on the open / closed state of the hydraulic oil control valve 35.
  • the vessel 22 moves up and down when the driver operates the dump lever 33C.
  • the in-vehicle information collecting device 30 can also grasp the up-and-down state of the vessel 22 by acquiring the operation amount or the operation position of the dump lever 33C via the hydraulic control device 32C.
  • the in-vehicle information collecting device 30 can grasp the weight of the load loaded on the vessel 22 by acquiring the pressure acting on the hydraulic oil of the suspension cylinder 24 detected by the pressure sensor 26. Based on the measurement value indicated by the pressure sensor 26 (four pressure sensors 26 when the wheel 23 is four wheels) provided in each suspension cylinder 24 attached to each wheel 23 of the dump truck 20, the mass of the load ( Loading capacity). Further, by observing the change over time of the pressure acting on the hydraulic oil of the suspension cylinder 24 detected by the pressure sensor 26, the load is loaded on the vessel 22 of the dump truck 20, or the soil is discharged from the vessel 22 or You can know if it has been excavated.
  • the load is loaded at the loading site LPA. Judgment can be made. Further, when the pressure detected by the pressure sensor 26 decreases and falls below a predetermined value (for example, a value corresponding to 1 ⁇ 4 of the specified load capacity of the dump truck 20), the soil is dumped at the dump site DPA. (Or has been excavated).
  • the soil discharge or loading determination is performed. The accuracy of determining the loading state of the load on the vessel 22 can be improved. Note that the earth removal operation may be determined based only on the operation state of the dump lever 33C.
  • the driver ID acquisition device 38 is a device that acquires a driver ID for identifying the driver of the dump truck 20.
  • the dump truck 20 may be driven alternately by a plurality of drivers.
  • the driver ID can be obtained from, for example, an individual driver's ID key (an electronic key storing personal identification information) or an individual driver's ID card (a card storing personal identification information).
  • the driver ID acquisition device 38 is a magnetic reading device or a wireless communication device.
  • a fingerprint authentication device is provided as the driver ID acquisition device 38, and the driver ID can be acquired by performing fingerprint authentication of the driver's fingerprint stored in advance and the fingerprint of each driver.
  • each driver can obtain his / her driver ID by inputting his / her ID information (personal identification information such as a personal identification number) using an input device and collating it with previously stored ID information.
  • the driver ID acquisition device 38 is an ID key or ID card reading device, a fingerprint authentication device, an ID information input device, or the like, and may be provided in the vicinity of the driver's seat in the cab of the dump truck 20. The driver may be provided at any location on the vehicle main body 21 that is approached when accessing the driver's cab.
  • the driver ID of the driver boarding each dump truck 20 may be transmitted from the management device 10 to the dump truck 20 by wireless communication.
  • the in-vehicle wireless communication device 27 also serves as the driver ID acquisition device 38. It is possible to specify which driver is driving the dump truck 20 by the driver ID acquired by the driver ID acquisition device 38.
  • the tilt sensor 39 detects the tilt of the dump truck 20.
  • the inclination sensor 39 can detect the inclination of the dump truck 20 in the front-rear direction and the inclination in the width direction.
  • the inclination sensor 39 can detect the gradient or unevenness of the road surface on which the dump truck 20 is traveling.
  • the in-vehicle storage device 31 is configured by, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a hard disk drive, or the like, or a combination thereof.
  • the in-vehicle storage device 31 stores a computer program in which instructions for the in-vehicle information collection device 30 to collect operation information are described, various setting values for operating the mining machine management system 1, and the like.
  • the in-vehicle information collection device 30 reads the computer program, acquires operation information from each state acquisition device at a predetermined timing, and temporarily stores it in the in-vehicle storage device 31. At this time, the in-vehicle information collection device 30 may perform statistical processing for obtaining an average value, a mode value, a standard deviation, or the like for information of the same item.
  • the in-vehicle storage device 31 stores position information, inclinometer information, time information, earth removal information, loading information, fuel consumption information, operation history information, event information, and the like as operation information.
  • the event information includes abnormal driving information, vehicle error information, specific driving operation information, and the like.
  • the operation information stored in the in-vehicle storage device 31 is an example, and the operation information is not limited to these.
  • Position information, inclinometer information, earth removal information, loading information, fuel consumption information, operation history information, event information, and the like are associated with the time at which they occurred (obtained by the in-vehicle information collection device 30), and the in-vehicle storage device 31. Is remembered.
  • the in-vehicle information collection device 30 receives a command signal indicating a request from the management device 10 illustrated in FIG. 2 via the in-vehicle wireless device 27 and is also stored in the in-vehicle storage device 31 through the in-vehicle wireless communication device 27. The operating information is transmitted to the management apparatus 10.
  • FIG. 5 is a diagram illustrating an example of a route traveled by the dump truck 20.
  • the dump truck 20 travels toward the loading site LPA after unloading at the earth discharging site DPA shown in FIG.
  • the dump truck 20 arriving at the loading site LPA is loaded into the vessel 22 by a loading mining machine such as a hydraulic excavator.
  • the dump truck 20 loaded with the load travels toward the earth discharging site DPA.
  • the dump truck 20 that has arrived at the dump site DPA unloads at the dump site DPA. In this way, a series of operations from when the dump truck 20 departs from a predetermined location toward the loading site LPA, loads the cargo at the loading site LPA, arrives at the dumping site DPA, and lowers the load.
  • a predetermined place where the dump truck 20 departs toward the loading site LPA is referred to as a first position
  • the loading site LPA is referred to as a second position
  • a position where the load at the dumping site DPA is lowered is referred to as a third position.
  • the first position may be a predetermined position in the earth discharging field DPA, or may be a predetermined position different from the earth discharging field DPA.
  • the dump truck 20 loads a load at the loading site LPA from the travel start position SPr as the first position.
  • a path that moves to the loading position LPr as the second position to be received is referred to as an outbound path CSr1.
  • a route in which the dump truck 20 moves from the loading position LPr as the second position to the discharging position DPr as the third position at which the load is unloaded at the discharging site DPA is referred to as a return path CSr2.
  • the outbound path CSr1 starts from the travel start position SPr and ends at the loading position LPr.
  • the return path CSr2 has a loading position LPr as a starting point and a soil discharging position DPr as an end point.
  • the position information detection device 29 mounted on the dump truck 20 is configured so that the dump truck 20 starts from the travel start position SPr and reaches the loading position LPr and then reaches the earth discharging position DPr. Is obtained.
  • the position information detection device 29 acquires the current position information of the dump truck 20 every predetermined time (for example, 1 second), for example, and stores it in the in-vehicle storage device 31.
  • a group of a plurality of position information PI obtained by the position information detection device 29 (hereinafter referred to as a position information group as appropriate) is included in the actual travel route CSr of the dump truck 20. For this reason, the actual travel route CSr can be expressed by a plurality of pieces of position information PI.
  • the actual travel route CSr is the first route (stored) already stored (registered) in the management-side storage device 13 depending on whether another or own dump truck 20 has traveled or has been set in advance.
  • a registered route as appropriate
  • the management processing device 12 shown in FIG. 2 executes the route specifying process according to the present embodiment, and the actual travel route CSr is a registered route, a part is a registered route, or a completely new route. It is determined whether or not.
  • route specifying processing is executed by the management processing device 12 included in the management device 10 shown in FIG. 2, but may be executed by the in-vehicle information collection device 30 shown in FIG.
  • FIG. 6 is a flowchart illustrating an example of the procedure of the route specifying process according to the present embodiment.
  • the management-side processing device 12 more specifically, the route determination unit 12a, the management-side wireless communication device 18, the in-vehicle wireless communication device 27 shown in FIG.
  • the position information PI of the actual travel route CSr traveled by the dump truck 20 that is the target of route specification is acquired via the position information detection device 29.
  • the management processing device 12 acquires the actual travel route CSr traveled by each dump truck 20 via the in-vehicle information collection device 30 and stores it in the management storage device 13.
  • the route determination unit 12a corresponds to the first position information corresponding to the travel start position SPr as the first position and the loading position LPr as the second position from the acquired position information PI.
  • Third position information corresponding to the second position information and the earth removal position DPr as the third position is extracted.
  • the first position information can be, for example, the first position among the position information PI included in the actual travel route CSr.
  • the second position information includes, for example, the load amount of the load obtained based on the hydraulic oil pressure of the suspension cylinder 24 detected by the pressure sensor 26 in the position information PI included in the actual travel route CSr is a predetermined value or more.
  • the position can be changed.
  • the third position information can be, for example, a position in the position information PI included in the actual travel route CSr, where the dump lever 33C illustrated in FIG.
  • the information about the load amount of the load and the information that the dump lever 33C has been operated to the earth discharging side are included in the operation information of the dump truck 20 collected by the in-vehicle information collection device 30 of the dump truck 20, for example.
  • the management-side processing device 12 associates the information about the load amount of the load and the information that the dump lever 33C has been operated to the soil discharge side with each position information PI, for example, the management-side storage It is stored in the device 13.
  • route judgment part 12a can extract run start position SPr, loading position LPr, and earth removal position DPr.
  • the route determination unit 12a as the first condition, the first position information corresponding to the travel start position SPr extracted in step S102, the second position information corresponding to the loading position LPr, and the earth removal
  • the third position information corresponding to the position DPr matches the loading position (registered loading position) LP and the soil removal position DP of the registered route described in the LP / DP database 14RD of the management-side storage device 13. It is determined whether or not.
  • Information described in the LP / DP database 14RD of the management-side storage device 13 is based on the actual travel route CSr on which the dump truck 20 has already traveled, that is, based on the position information included in the registered route, from the management-side processing device 12. Specifically, the information is generated by the route information creation unit 12d. Next, information on registered routes stored in the management storage device 13 will be described.
  • FIG. 7 is a diagram showing information on registered routes.
  • the registered route CS includes an outward route CS1 and a return route CS2.
  • the starting point of the outbound path CS1 is the travel start position SP1, and the end point is the loading position LP1.
  • the starting point of the return path CS2 is the loading position LP1, and the ending point is the earth discharging position DP1.
  • the registered route CS includes a travel start position SP1, a loading position LP1, a dumping position DP1, and a plurality of passing positions WP1 (WPsg), WP2,... WP9 (WPeg), WP10 (WPsb) as a plurality of nodes.
  • WP18 (WPeb) and links LK1, LK2,.
  • the travel start position SP1 corresponds to the first position
  • the loading position LP1 corresponds to the second position
  • the dumping position DP1 corresponds to the third position.
  • Each node that is, each traveling start position SP1, loading position LP1, earthing position DP1, and a plurality of passing positions WP1 (WPsg), WP2,... WP9 (WPeg), etc. are included in the actual traveling route CSr. It corresponds to each position information PI.
  • the node is a place indicated by predetermined latitude, longitude, and altitude coordinates on the registered route CS.
  • Each link LK1, LK2,... LK20 connects adjacent nodes.
  • the forward path CS1 of the registered path CS shown in FIG. 7 includes a travel start position SP1, a loading position LP1, a plurality of passing positions WP1, WP2,... WP9, and links LK1, LK2, ... including LK10.
  • the return path CS2 includes a loading position LP1, a soil discharging position DP1, a plurality of passing positions WP10, WP11,... WP18 and links LK11, LK12,.
  • the registered route CS is a route actually traveled when the dump truck 20 performs one cycle of the transportation work.
  • the travel start position SP1 is the discharge actually discharged in the dumping site (hereinafter referred to as the first dumping site) DPA0 where the dump truck 20 unloaded before heading to the loading position LP1.
  • the soil position DP0 is the discharge actually discharged in the dumping site (hereinafter referred to as the first dumping site) DPA0 where the dump truck 20 unloaded before heading to the loading position LP1.
  • the soil removal field DPA0 is a range (a first predetermined range or a first range on the soil removal side) SPC1 having a predetermined radius RD centered on the travel start position SP1.
  • a dumping site (hereinafter referred to as a second dumping site as appropriate) DPA1 has a predetermined radius RD centered on the dumping position DP1 where the dump truck 20 loaded at the loading position LP1 unloads the load.
  • the loading site LPA1 is a range (a first range or a first range on the loading side) of a predetermined radius RL with the loading position (registered loading position) LP1 as the center.
  • the shapes of the earth removal site DPA0, the earth removal site DPA1, and the loading site LPA1 are circular, but are not limited thereto.
  • the predetermined range (first predetermined range) SPC1 around the travel start position SP1 becomes the earth removal site DPA0.
  • a predetermined range (second predetermined range) around the dumping position DP1 where the dump truck 20 loaded with the load at the loading position LP1 unloads the dumping site (hereinafter referred to as a second discharging site as appropriate). It becomes DPA1.
  • a predetermined range around the loading position LP1 is a loading site LPA1.
  • the traveling start position SP1 (the earth discharging position DP0) is a representative position that represents the earth discharging site DPA0
  • the earth discharging position DP1 is a representative position that represents the earth discharging site DPA1.
  • the travel start position SP1 (the earthing position DP0) and the earthing position DP1 are changed according to the accumulation of information on the position at which the load is unloaded from the dump truck 20.
  • the loading position LP1 is changed according to information on the position where the load is loaded on the dump truck 20.
  • the registered route CS there are nodes at predetermined distances, that is, passing positions WP1, WP2,.
  • the predetermined distance described above is, for example, every 100 m, but is not limited to this in the present embodiment.
  • the passing position WP1 (WPsg) of the forward path CS1 closest to the earth discharging field DPA0 is set outside the earth discharging field DPA0
  • the passing position WP18 (WPeb) of the return path CS2 closest to the earth discharging field DPA1 is outside the earth discharging field DPA1.
  • the passing position WP9 (WPeg) of the outbound path CS1 closest to the loading field LPA1 is set outside the loading field LPA1
  • the passing position WP10 (WPsb) of the return path CS2 closest to the loading field LPA1 is outside the loading field LPA1.
  • the passing positions WP1, WP2,... WP18 included in the registered route CS are set outside the earth discharging sites DPA0, DPA1 and the loading site LPA1.
  • the registered route CS has a plurality of specific sections SC1, SC2,.
  • Each of the specific sections SC1, SC2,..., SC17 is a portion that is recognized as having substantially the same characteristics, for example, azimuth and gradient, in the registered route CS.
  • the gradient difference between adjacent links is within a predetermined value
  • the azimuth difference between adjacent links is within a predetermined value
  • the part be a specific section having a plurality of links.
  • the three adjacent links LK5, LK6, and LK7 included in the specific section SC5 are within a range in which the gradients can be regarded as substantially the same, that is, the gradient difference between adjacent links is within a predetermined value, and the azimuth difference Is within a predetermined value and has no intersection between them.
  • intermediate nodes in the specific section SC5, that is, the passing positions WP5 and WP6 are indicated by white circles, and these nodes are not intersections.
  • the specific section SC12 is the same as the specific section SC5. Further, when the gradient difference and the azimuth difference between adjacent links do not satisfy the above condition, only the one link is set as the specific section.
  • the specific section SC2 corresponds to the link LK2, but is a specific section having one link.
  • the number of travels, travel time, operation information, and the like are tabulated for each specific section.
  • the specific sections SC1, SC2,..., SC17 can be used to compare the road surface state on which the dump truck 20 travels as the same condition.
  • the loading position LP1 and the soil discharging positions DP0 and DP1 are described in the LP / DP database 14RD stored in the management-side storage device 13.
  • the range of the predetermined radius RD (the discharging sites DPA0 and DPA1) centered on the discharging positions DP0 and DP1, and the loading position LP1.
  • Information on the range of the predetermined radius RL (loading place LPA1) centered on is also described.
  • the passing positions WP1, WP2,... WP18 are described in the path-specific WP database 14WP stored in the management-side storage device 13.
  • the route determination unit 12a acquires information from the LP / DP database 14RD, the WP database 14WP for each route, and the like in specifying the actual traveling route CSr of the dump truck 20, and the position information PI included in the actual traveling route CSr. Compare with
  • the route determination unit 12a acquires the loading position LP and the soil removal position DP of the registered route CS from the LP / DP database 14RD of the management-side storage device 13.
  • the route determination unit 12a includes first position information corresponding to the travel start position SPr extracted in step S102, second position information corresponding to the loading position LPr, and third position information corresponding to the soil discharge position DPr,
  • the loading position LP and the soil discharging position DP of the acquired registered route CS are compared.
  • the range of the predetermined radius RD centered on the soil discharge position DP (DP0, DP1) is the soil discharge fields DPA0, DPA1.
  • a loading field LPA1 is within a predetermined radius RL with the loading position LP as the center. Therefore, the route determination unit 12a, for example, the first position information corresponding to the travel start position SPr extracted in step S102 is already registered in the earth removal site, that is, the earth removal position described in the LP / DP database 14RD. If the first position information exists within the range SPC1 having a predetermined radius RD centered on DP (the earth discharging position DP0 in the example shown in FIG. 7), the first position information is already registered in the LP / DP database 14RD. Is determined to match.
  • the route determination unit 12a determines that the second position information corresponding to the loading position LPr extracted in step S102 has a predetermined radius RL centered on the loading position LP (loading position LP1 in the example shown in FIG. 7). If it exists within the range, it is determined that the second position information matches the loading position LP1 already registered in the LP / DP database 14RD. Further, the route determination unit 12a determines that the third position information corresponding to the soil removal position DPr extracted in step S102 is a range of a predetermined radius RD centered on the soil removal position DP (the soil removal position DP1 in the example shown in FIG. 7). If it exists, it will be determined that the third position information matches the earth removal position DP1 already registered in the LP / DP database 14RD.
  • the route determination unit 12a is the same as the actual travel route CSr in step S105. Search for possible routes.
  • the earthing position DP0 travel start position SP1 of the first earthing site DPA0, the loading position LP1, and the earthing of the second earthing site DPA1 included in the registered route CS.
  • the position DP1, the passing positions WP1, WP2, etc. and the links LK1, LK2 etc. are described for each registered route CS.
  • the route determination unit 12a for example, from the registered route database 14CS of the management-side storage device 13, the soil discharge position DP and the product that coincide with the travel start position SPr, the loading position LPr, and the soil discharge position DPr extracted in step S102.
  • the registered route CS having the insertion position LP is extracted as the same route candidate as the actual travel route CSr.
  • a plurality of registered routes CS that are candidates may be extracted.
  • step S106 the route determination unit 12a determines whether there is a route candidate. When there is a route candidate, the route determination unit 12a proceeds to step S107. When there is no route candidate, the route determination unit 12a proceeds to step S115.
  • step S107 the route determination unit 12a calculates the travel distance traveled by the dump truck 20 in the actual travel route CSr and the registered route CS extracted in step S105. The travel distance is calculated for each of the outbound path CSr1 and the inbound path CSr2. The route determination unit 12a calculates the distance from the travel start position SPr to the loading position LPr as the travel distance of the outbound path CSr1 of the actual travel path CSr.
  • the route determination unit 12a calculates the distance from the loading position LPr to the soil removal position DPr as the travel distance of the return path CSr2 of the actual travel path CSr.
  • the sum of the travel distance of the outbound path CSr1 and the travel distance of the return path CSr2 is the travel distance of the actual travel path CSr.
  • the route determination unit 12a In calculating the travel distance of the outbound route CS1 of the registered route CS, the route determination unit 12a includes the loading position LP1 from the passing position WP1 (WPsg) closest to the first earth removal site DPA0 including the traveling start position SP1. The distance to the passing position WP9 (WPeg) closest to the loading field LPA1 is calculated. Further, when calculating the travel distance of the return route CS2 of the registered route CS, the route determination unit 12a includes the discharge position DP1 from the passing position WP10 (WPsb) closest to the loading place LPA1 including the loading position LP1. The distance to the passing position WP18 (WPeb) closest to the second dumping field DPA1 is calculated.
  • the sum of the distance of the outbound route CS1 and the distance of the return route CS2 is the travel distance of the registered route CS.
  • the route determination unit 12a calculates a travel distance for each registered route CS.
  • step S108 the route determination unit 12a compares the distance difference ⁇ L with a predetermined threshold value ⁇ Lc. To do. As a result, as a second condition, if the distance difference ⁇ L is equal to or smaller than the predetermined threshold ⁇ Lc, that is, the distance difference ⁇ L is within a predetermined range defined by the predetermined threshold ⁇ Lc (step S108, Yes), the route The determination unit 12a proceeds with the process to step S109.
  • the distance difference threshold ⁇ Lc is not limited, but is, for example, about 200 m.
  • the travel distance for each dump truck 20 may be different due to avoiding an obstacle or the like.
  • the distance difference ⁇ L can be determined in consideration of the actual operation status of the dump truck 20 in the mine.
  • the route determination unit 12a determines whether or not the position information PI of the actual travel route CSr matches the passing position WP of the registered route CS that is a candidate. More specifically, the route determination unit 12a determines that the plurality of pieces of position information PI included in the actual travel route CSr as the position information group are the travel start position SP1 (excavation position DP0) and the loading position of the registered route CS. Passing positions WP1, WP2,... WP9 as a plurality of nodes existing between LP1 and passing positions WP10, WP11 as a plurality of nodes existing between the loading position LP1 and the soil discharging position DP1. ..Determining whether it matches WP18. When there are a plurality of registered routes CS that are candidates, the route determination unit 12a determines whether the passage position WP matches the position information PI for each registered route CS.
  • FIG. 8 is a diagram for explaining a method of determining a match between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS.
  • j, j ⁇ 1, j + 1, etc. (j is an integer) attached to the code PI indicating the position information are codes for distinguishing a plurality of position information PI.
  • the route determination unit 12a includes a plurality of pieces of position information within a predetermined range WPC around the passage position WP.
  • the route determination unit 12a is already a candidate for the position information PI of the actual travel route CSr. It is determined that the passage position WP of the registered route CS matches.
  • the predetermined range WP is a range of a predetermined radius RWP with the passage position WP as the center. That is, the shape of the predetermined range WPC is circular, but is not limited thereto.
  • the dump truck 20 When the dump truck 20 travels in a mine, for example, it travels on a track with a certain width so that it can pass by face-to-face travel. Further, since the coordinates of the passing position WP and the position information PI have a GPS measurement position error, if the passing position WP itself is used to determine the coincidence with the position information PI, the GPS at the time of traveling of the dump truck 20 is determined. There is a possibility that the measurement position error or the like cannot be tolerated and the two are almost inconsistent. In the present embodiment, the third condition is established when the position information PI exists within a predetermined range WPC around the passage position WP.
  • the route determination unit 12a can determine the coincidence between the passing position WP and the position information PI in consideration of the width of the traveling path and the measurement error in the GPS when the dump truck 20 travels.
  • the predetermined radius RWP is determined in consideration of the width of the road and the measurement error in GPS when the dump truck 20 is traveling. In the present embodiment, the predetermined radius RWP is, for example, about 15 to 30 m.
  • FIGS. 9 and 10 are diagrams for explaining additional items for determining the coincidence between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS.
  • the position information in addition to whether or not the position information PI of the actual travel route CSr is within the predetermined range WPC around the passage position WP, the position information is used using at least one of the traveling direction and the loading state of the dump truck 20.
  • the coincidence between the PI and the passing position WP may be determined. By doing in this way, the route determination part 12a can determine both coincidence more accurately.
  • the example shown in FIG. 9 shows an example in which the coincidence between the position information PI and the passing position WP is determined using the traveling direction of the dump truck 20.
  • the forward path CS1 of the registered path CS is a path from the travel start position SP1 to the loading position LP1
  • the return path CS2 is a path from the loading position LP1 to the soil discharging position DP1.
  • the normal traveling direction Va of the dump truck 20 traveling on the forward path CS1 is directed from the travel start position SP1 to the loading position LP1, and the normal traveling direction Vb of the dump truck 20 traveling on the backward path CS2 is discharged from the loading position LP1. Head to the soil position DP1. From the at least two pieces of position information PI acquired at different timings, the traveling directions Va and Vb of the dump truck 20 can be obtained.
  • the normal traveling direction Va of the dump truck 20 is directed from the travel start position SP1 to the loading position LP1.
  • the position information of the actual travel route CSr exists in a predetermined range WPC around the passing position WPa of the outbound route CS1.
  • the route determination unit 12a It is determined that the position information PI of the actual travel route CSr and the passing position WPa of the registered route CS match.
  • the route determination unit 12a determines the traveling direction of the dump truck 20 at the passing position WPa, which is obtained from the position information PI included in the actual travel route CSr, from the loading position LP1 to the soil discharging position DP1. Then, it is determined that the position information PI of the actual travel route CSr and the passing position WPa of the registered route CS do not match. This is because the latter is not a normal traveling direction of the dump truck 20 traveling on the forward path CS1.
  • the return path CS2 In the passing position WPb of the registered path CS existing on the return path CS2, the normal traveling direction Vb of the dump truck 20 is directed from the loading position LP1 to the soil discharging position DP1.
  • the position information of the actual travel route CSr is within a predetermined range WPC around the passing position WPb of the return route CS2.
  • the traveling direction of the dump truck 20 at the passing position WPb determined from the position information PI included in the actual traveling path CSr is from the loading position LP1 to the soil discharging position DP1
  • It is determined that the position information PI of the actual travel route CSr and the passing position WPb of the registered route CS match.
  • the route determination unit 12a determines the traveling direction of the dump truck 20 at the passing position WPb, which is obtained from the position information PI included in the actual traveling route CSr, from the traveling start position SP1 toward the loading position LP1. Then, it is determined that the position information PI of the actual travel route CSr and the passing position WPb of the registered route CS do not match. This is because the latter is not the normal traveling direction of the dump truck 20 traveling on the return path CS2.
  • the route determination unit 12a determines that the position information PI is the passing position WP. Even if it exists within the predetermined range WPC around the area, it is determined that the two do not match. As a result, the route determination unit 12a can determine the coincidence between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS with higher accuracy.
  • the example shown in FIG. 10 shows an example in which the match between the position information PI and the passing position WP is determined using the loading state of the dump truck 20.
  • the forward route CS1 and the return route CS2 of the registered route CS are as described above. Since the outbound path CS1 is a path toward the loading position LP1, the dump truck 20 traveling on the outbound path CS1 normally does not load a load. Since the return path CS2 is a path from the loading position LP1 to the soil discharge position DP1, the dump truck 20 traveling on the return path CS2 normally loads a load. For this reason, the size of the load differs between the dump truck 20 traveling on the forward path CS1 and the dump truck 20 traveling on the return path CS2.
  • the dump truck 20 can determine whether it is traveling on the forward path CS1 or traveling on the return path CS2 according to the loading amount.
  • the load amount of the load is obtained from the detection value of the pressure sensor 26 of the suspension cylinder 24 shown in FIG.
  • the dump truck 20 heads to the loading position LP1 without loading a load.
  • the route determination unit 12a determines the position information PI of the actual travel route CSr and the registered route when the loading amount of the dump truck 20 is equal to or less than a predetermined value (E1 in FIG. 10), that is, when there is no load. It is determined that the CS passing position WPa matches.
  • the route determination unit 12a determines whether the load amount of the dump truck 20 is larger than a predetermined value (F1 in FIG. 10), that is, when there is a load, the position information PI of the actual travel route CSr and the existing information. It is determined that the passage position WPa of the registered route CS does not match. Since the latter is the dump truck 20 that is loaded with the load despite going to the loading position LP1, the latter is the dump truck 20 that travels backward on the forward path CS1 or travels on a path different from the registered path CS. This is because it can be determined.
  • a predetermined value F1 in FIG. 10
  • the dump truck 20 heads toward the soil removal location DP1 with the load loaded.
  • the position information of the actual travel route CSr is within a predetermined range WPC around the passing position WPb of the return route CS2.
  • the route determination unit 12a determines the position information PI of the actual travel route CSr and the passing position WPb of the registered route CS. Are determined to match.
  • the load amount of the dump truck 20 is equal to or less than a predetermined value (E2 in FIG.
  • the route determination unit 12a has the actual travel route CSr position information PI and the registered route CS passing position. It is determined that WPb does not match.
  • the latter is a dump truck 20 that travels backward on the return path CS2 or travels on a different path from the registered path CS because it is a dump truck 20 that is not loaded with a load despite going to the earth removal position DP1. This is because it can be determined.
  • the path determination unit 12a determines whether or not the two coincide with each other based on the loading state of the dump truck 20 when the position information PI exists within the predetermined range WPC around the passage position WP. judge. As a result, the route determination unit 12a can determine the coincidence between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS with higher accuracy.
  • the route determination unit 12a corrects the passage position WP using the position information PI existing within the predetermined range WPC around the passage position WP.
  • the route determination unit 12a uses the position information PI that makes the distance from the uncorrected passage position WP the shortest.
  • position information PIj that has the shortest distance from the passage position WP before correction passes. Used to correct the position WP.
  • the route determination unit 12a sets the midpoint of the distance Lmin between the passage position WP and the position information PIj as the corrected passage position WPn.
  • the path determination unit 12a rewrites the uncorrected passage position WP described in the path-specific WP database 14WP of the management-side storage device 13 to the corrected passage position WPn. By doing so, the route-specific WP database 14WP is updated.
  • step S110 the route determination unit 12a, as a third condition, the matching rate between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS is equal to or greater than a predetermined threshold MCc, and all In the specific section SC, it is determined whether or not the passing positions at both ends of the specific section SC match the position information PI of the actual travel route CSr.
  • the third condition only needs to include that at least the coincidence ratio between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS is equal to or greater than a predetermined threshold MCc.
  • the coincidence rate is a ratio of the passing position WP of the registered route CS that coincides with a plurality of pieces of position information PI included in the actual travel route CSr.
  • the dump truck 20 must travel around a part of the same track. Etc.
  • this embodiment determines whether the third condition is satisfied using a predetermined threshold value MCc in consideration of such detour and measurement position errors. By doing in this way, the route determination unit 12a can determine whether or not the actual travel route CSr and the registered route CS coincide with each other in consideration of actual travel variations and measurement position errors. .
  • the predetermined threshold MCc is, for example, about 0.8 to 0.9, but is not limited to this.
  • the predetermined threshold value MCc may be changed depending on the state (for example, whether it is raining or dry) or the shape (the magnitude of a curvature, a gradient, or the like) on which the dump truck 20 travels. Depending on the condition of the road surface, even when traveling on the same track, the dump truck 20 may partially bypass the track. By doing so, the route determination unit 12a considers the actual track. Thus, it can be determined that the third condition is satisfied.
  • FIG. 11 is a diagram for explaining determination of coincidence between the position information PI of the actual travel route CSr and the passing position WP of the registered route CS in the specific section.
  • the specific section SC shown in FIG. 11 has passing positions WPa, WPb, WPc, WPd as links and links LKa, LKb, LKc as nodes.
  • the passing positions WPa and WPd existing at both ends of the specific section SC are referred to as specific section positions SPt1 and SPt2.
  • the specific section SC is a portion in which the characteristics are recognized to be substantially the same in the registered route CS.
  • the route determination unit 12a determines that the third condition is that the specific section positions SPt1 and SPt2 of the specific section SC match the position information PI of the actual travel route CSr in all the specific sections SC. It is determined that it has been established. By doing so, it is possible to improve the determination accuracy of whether or not the actual travel route CSr and the registered route CS match.
  • the determination of whether or not the specific section positions SPt1 and SPt2 match the position information PI of the actual travel route CSr is the same as the determination of whether or not the passing position WP and the position information PI match.
  • the route determination unit 12a determines that the actual travel route CSr is the same as the registered route CS. In this case, the route determination unit 12a updates the route information, specifically, the route information of the registered route CS stored in the management-side storage device 13 in step S111. For example, the route determination unit 12a updates at least one of the number of times, the time, and the operation information that the dump truck 20 has traveled on the registered route CS determined to be the same. As the number of times, 1 is added to the current number of times. By doing in this way, the frequency
  • the route determination unit 12a manages the route information, specifically, management.
  • the route information of the registered route CS stored in the side storage device 13 is updated.
  • the route determination unit 12a updates at least one of the number of times, the time, and the operation information that the dump truck 20 has traveled through the specific section SC determined to be the same or the newly created specific section SC.
  • the route determination unit 12a determines that the actual travel route CSr is the same as the plurality of registered routes CS, the number of times the dump truck 20 has traveled about the latest registered route CS, the time And at least one of the operation information is updated.
  • the travel start position SPr, the loading position LPr And at least one of the soil discharge positions DPr may not match.
  • the management-side processing device 12 generates new route information using the position information PI of the actual travel route CSr, and registers it as a registered route CS in the registered route database 14CS of the management-side storage device 13 or the like. To do.
  • the registered route CS includes the past route that is not already used to the latest one that is currently used. Yes.
  • the route determination unit 12a updates at least one of the number of times, the time, and the operation information that the dump truck 20 has traveled for the newest registered route CS.
  • the route information of the latest registered route CS that is currently used can be updated.
  • the timing at which the management-side processing device 12 acquires the position information PI of the actual travel route CSr may be delayed due to communication delay.
  • the registered route CS cannot be updated with the latest information.
  • the time that the dump truck 20 travels on the actual travel route CSr is earlier than the last update time of the registered route CS that is determined to be the same as the actual travel route CSr.
  • the route determination unit 12a does not update the number of times and the time that the dump truck 20 has traveled on the registered route CS determined to be the same as the actual travel route CSr. In this way, the registered route CS is updated with the latest information.
  • step S112 When the route information of the registered route CS is updated, in step S112, at least of the number of travels, the travel time, and the operation information for each link of the registered route CS determined to be the same as the actual travel route CSr in step S110. Any one is totaled and updated.
  • step S113 shown in FIG. 6 the route analysis unit 12e of the management processing device 12 adds up the specific sections SC based on the route information of the registered route CS obtained by the processing so far. The process of step S113 will be described later. Next, returning to step S104 shown in FIG.
  • At least one of the first position information corresponding to the travel start position SPr extracted in step S102, the second position information corresponding to the loading position LPr, and the third position information corresponding to the dumping position DPr is: When it does not coincide with the loading position LP or the soil removal position DP of the registered route CS (No at Step S104), there is no registered route CS that matches the actual travel route CSr. In this case, the route determination unit 12a advances the process to step S114. In step S114, the route determination unit 12a registers the position information of the unmatched position as a new earth removal position DP or loading position LP. Next, new registration of at least one of the soil removal position DP and the loading position LP will be described together with a case where new registration is not performed.
  • FIG. 12 and FIG. 13 are diagrams for explaining a case where a new soil removal position DP is not registered. If the determination in step S104 is affirmative (Yes), the soil removal position DP and the loading position LP as the representative positions of the soil disposal site DPA0 are not newly registered.
  • the soil removal position DP0 (travel start position SP1) of the registered route CS has already been described and registered in the LP / DP database 14RD and the registered route database 14CS of the management-side storage device 13 shown in FIG.
  • the actual travel route CSr is within the range SPC1 having a predetermined radius RD centered on the already registered soil removal position DP0 (representative position of the soil disposal site DPA0), that is, within the soil disposal site DPA0.
  • DP0 representation position of the soil disposal site DPA0
  • the travel start position SPr of the actual travel route CSr matches the already registered soil discharge position DP0. Therefore, the travel start position SPr of the actual travel route CSr is not registered in the LP / DP database 14RD as the new soil removal position DPn.
  • the travel start position SPr of the actual travel route CSr is a position where the load is lowered within a range SPC1 having a predetermined radius RD centered on the soil removal position DP0 (representative position of the soil disposal site DPA0).
  • the area specifying unit 12c of the management-side processing device 12 illustrated in FIG. 2 corrects the already-registered soil removal position DP0 using the travel start position SPr of the actual travel route CSr. For example, the region specifying unit 12c sets the midpoint of both to the corrected soil removal position DP0n (travel start position SP1n). The area specifying unit 12c rewrites the uncorrected soil removal position DP0 described in the LP / DP database 14RD of the management-side storage device 13 to the corrected DP0n. By doing so, the path-specific LP / DP database 14RD is updated. In addition, in the earth removal field DPA1 shown in FIG. 7, it processes similarly to the earth removal field DPA0.
  • the already registered soil removal position DP0 is corrected by using the travel start position SPr of the actual travel route CSr, the number of the travel start positions SPr of the actual travel route CSr is accumulated.
  • the error of the soil position DP0 can be reduced.
  • the earth removal sites DPA0 and DPA1 tend to gradually expand by lowering the load. For this reason, by correcting the soil discharge position DP0 using the travel start position SPr of the actual travel route CSr (the soil discharge position DPr of the actual travel route CSr in the soil removal field DPA1 shown in FIG. 7),
  • the soil position DP0n can be reflected in the route specification. Next, a case where the loading position LP1 is not newly registered will be described.
  • FIGS. 14 and 15 are diagrams for explaining a case where the loading position LP is not newly registered.
  • the loading position LP1 of the registered route CS is already described and registered in the LP / DP database 14RD and the registered route database 14CS of the management storage device 13 shown in FIG.
  • the loading position LPr of the actual travel route CSr exists in the range of the predetermined radius RL around the loading position LP1 that has already been registered, that is, in the loading field LPA1. .
  • the loading position LPr of the actual travel route CSr matches the registered loading position LP1. Therefore, the loading position LPr of the actual travel route CSr is not registered in the LP / DP database 14RD as a new loading position LPn.
  • the region specifying unit 12c corrects the registered loading position LP1 using the loading position LPr of the actual travel route CSr.
  • the area specifying unit 12c corrects the registered loading position LP1 by changing the loading position LP1 to the loading position LPr of the actual travel route CSr.
  • the loading position after correction is LP1n.
  • a predetermined range around the corrected loading position LP1n becomes a new loading place LPA1n.
  • whether the actual driving route LPr is within the predetermined range around the corrected loading position LP1n is determined as to whether the actual driving path LPr exists.
  • a match between the loading position LPr of the route CSr and the registered loading position LP1n is determined.
  • the corrected loading that is, the current loading The position LP1n can be reflected in the route specification.
  • the loading position LP1 When the loading place LPA1 always moves along the vein, the loading position LP1 is regarded as the same loading place within a certain range and within a predetermined moving distance. Thus, it is preferable that a new loading position is not registered. In the example shown in FIG. 14, if the corrected loading position LP1n is within a predetermined movement distance within a certain period, it is regarded as the same loading field before and after correction. The loading position LP1n is not newly registered. For example, when the loading position LP1 moves more than the predetermined moving distance from the position registered first, the entire traveling distance of the traveling route at this time is excessively longer than the traveling distance when first registered. As a result, it is difficult to consider the same traveling route.
  • the loading position LP1n When the corrected loading position LP1n is within the range of the predetermined movement distance, the loading position LP1 is considered to be the same loading place before and after the correction, and therefore the loading position LP1 moves along the vein. However, it can be avoided that it is difficult to regard the same traveling route as the entire traveling distance becomes longer. Further, if the corrected loading position LP1n is within a predetermined period and within a predetermined movement distance, it is considered that the same loading place before and after the correction is the old position information after the fixed period. This is for avoiding the coincidence determination based on the loading position LP1n.
  • FIG. 16 and FIG. 17 are diagrams for explaining a case where the earth removal position DP is newly registered.
  • the travel start position of the actual travel route CSr outside the soil removal field DPA0 that is, the range SPC1 having a predetermined radius RD centered on the already registered soil discharge position DP0 (travel start position SP1).
  • the route determination unit 12a determines that the travel start position SPr of the actual travel route CSr does not coincide with the already registered soil removal position DP0.
  • the area specifying unit 12c registers the position information and the like of the travel start position SPr on the actual travel route CSr in the LP / DP database 14RD as a new soil removal position DPn.
  • the newly registered new soil removal position DPn is also used in the determination in step S103. That is, the route determination unit 12a starts traveling based on whether or not the traveling start position SPr of the actual traveling route CSr exists within a predetermined range SPC1n (excavation field DPA0n) having a predetermined radius RD centered on the soil discharging position DPn. A match between the position SPr and the soil removal position DPn is determined. Next, a case where the loading position LP is newly registered will be described.
  • FIGS. 18 and 19 are diagrams for explaining a case where the loading position LP is newly registered.
  • the loading position LPr of the actual travel route CSr exists outside the range of the predetermined radius RL centered on the loading position LP1 already registered, that is, the loading field LPA1.
  • the route determination unit 12a determines that the loading position LPr of the actual travel route CSr does not coincide with the registered loading position LP1.
  • the area specifying unit 12c registers the position information and the like of the loading position LPr on the actual travel route CSr in the LP / DP database 14RD as a new loading position LPn.
  • the newly registered loading position LPn is also used in the determination in step S103. That is, the route determination unit 12a determines whether the loading position LPr and the loading position depend on whether or not the loading position LPr of the actual travel route CSr exists within a predetermined range LPC1n having a predetermined radius RL centered on the loading position LPn. A match with LPn is determined.
  • the loading position LP corresponding to the second position of the registered route CS and the discharging position DP corresponding to the first position and the third position of the registered route CS are the new loading position LPn or the discharging position DPn is LP /
  • the number increases every time it is registered in the DP database 14RD.
  • the information on the loading position LP and the soil discharging position DP becomes older as time passes.
  • the route determination unit 12a uses the one in which the period after the loading position LP and the soil discharging position DP are registered in the LP / DP database 14RD is within a predetermined period, The determination in step S103 is performed.
  • the route determination unit 12a matches the soil removal position DP and the like of the registered route CS with the soil removal position DPr and the like of the actual travel route CSr corresponding to the state of the mine that changes from moment to moment. Therefore, the accuracy of the determination is improved.
  • the predetermined period is not particularly limited, and can be, for example, several days to several weeks. The predetermined period may be different between the loading position LP and the soil discharging position DP. In this case, it is preferable that the loading position LP is shorter than the soil discharging position DP for a predetermined period. This is because the loading position LP has a tendency to move along the deposit or according to the work form, so that the position change is faster than the soil discharging position DP.
  • step S115 the route determination unit 12a determines whether or not the position information PI of the actual travel route CSr matches the passing position WP of the registered route CS in the WP database 14WP for each route of the management-side storage device 13. It is executed for the passing position WP that has been described and has already been registered. This determination is performed for each of the outward path CSr1 and the return path CSr2 of the actual travel path CSr. In the present embodiment, this determination is performed for all the registered passing positions WP, but may not be performed for all the passing positions WP.
  • step S115 Before step S115 is executed, negative (No) is already determined in step S104. For this reason, there is no registered route CS that matches the actual travel route CSr. However, the route determination unit 12a extracts the passage position WP of the registered route CS that matches the position information PI of the actual travel route CSr, so that the route determination unit 12a partially matches the registered route CS of the actual travel route CSr. Can be extracted.
  • the route determination unit 12a determines whether or not the position information PI of the actual travel route CSr matches the passage position WP of the registered route CS with respect to all the registered passage positions WP. However, only the passing positions WP existing within a predetermined range around the actual travel route CSr may be set as the above-described determination targets. In this way, the number of passing positions WP to be determined can be reduced, so that the load required for the determination processing by the management processing device 12 is reduced.
  • FIG. 20-1 is a diagram for explaining a process of extracting the passing position WP of the registered route CS where the position information PI of the actual traveling route CSr matches.
  • k, k + 1, etc. (k is an integer) attached to the code PI indicating the position information is a code for distinguishing a plurality of position information PI.
  • position information PI When there is no need to distinguish a plurality of pieces of position information PI, they are simply described as position information PI.
  • n, n + 1, etc. (n is an integer) attached to a code WP indicating a passing position in FIG. 20-1 is a code for distinguishing a plurality of passing positions WP.
  • passing positions WP When it is not necessary to distinguish between the plurality of passing positions WP, they are simply referred to as passing positions WP.
  • a part of the actual travel route CSr coincides with a part of the plurality of passing positions WPn ⁇ 2,... WPn + 2 that the registered route CS has.
  • position information PIk + 2, PIk + 3, and PIk + 4 among a plurality of pieces of position information PIk,..., PIk + 6 (k is an integer) included in the actual travel route CSr are around the passing positions WPn-2, WPn-1, and WPn. Exists within a predetermined range WPC of a predetermined radius.
  • the route determination unit 12a uses the position information PIk + 2, PIk + 3, and PIk + 4 of the actual travel route CSr to correct the passing positions WPn-2, WPn-1, and WPn that match. This correction is as described above.
  • the path determination unit 12a rewrites the value before correction described in the path-specific WP database 14WP of the management-side storage device 13 with the value after correction.
  • the route determination unit 12a determines whether or not the position information PI of the actual travel route CSr matches all the target passing positions WP, and if the matching passing position WP is corrected by the position information PI, the process is performed. Proceed to S116.
  • the route information creation unit 12d of the management processing device 12 illustrated in FIG. 2 newly creates a passing position WP in a portion that does not match the passing position WP of the registered route CS.
  • FIG. 20-2 is a diagram for explaining a method of creating a new passing position WP.
  • the route information creation unit 12d cannot generate a new passing position WP within a range WPex surrounded by a passing position exclusion radius RWex having a predetermined size around the existing passing position WP. That is, the route information creation unit 12d generates a new passage position WP outside the range WPex surrounded by the passage position exclusion radius RWex having a predetermined size around the existing passage position WP.
  • the passing position exclusion radius RWex is larger than a predetermined radius RWP used when determining whether or not the position information PI of the actual travel route CSr matches the passing position WP.
  • the passing position exclusion radius RWex is about 50 m, but is not limited thereto.
  • the route information creation unit 12d does not create the passing position WP at the position of the position information PIk + 5.
  • the position information PIk + 6 of the actual travel route CSr is in a region excluding the range (passage position exclusion region) of the passing position exclusion radius RWex of the passing position WPn + 1 and the passing position WPn + 2 of the registered route CS, that is, outside the range. Exists. Therefore, the route information creation unit 12d creates a new passing position WPN1 at the position of the position information PIk + 6.
  • the route information creation unit 12d uses the position information PIk + 7 at a position that is a predetermined distance away from the passage position WPN1 in the area excluding the passage position exclusion radius REex of the passage position WPn + 2 of the registered route CS, and uses the new passage position WPn + 2. The next new passing position WPN2 adjacent to WPN1 is created.
  • the route information creation unit 12d thus creates new passing positions WPN1, WPN2, etc. from the position information PI included in the actual travel route CSr, and registers them in the WP database 14WP for each route in the management-side storage device 13. .
  • the position information PIsgr of the actual travel route CSr is within a predetermined range WPC with a predetermined radius RWP centered on the passing position WP1 of the registered route CS. For this reason, a new passing position WP is not created from the position information PIsgr of the actual travel route CSr. In this case, the passing position WP1 of the registered route CS is corrected using the position information PIsgr of the actual travel route CSr.
  • the position information PIegr of the actual travel route CSr is within a predetermined range WPC having a predetermined radius RWP with the passing position WP8 of the registered route CS as the center.
  • a new passing position WP is not created from the position information PIegr of the actual travel route CSr.
  • the passing position WP8 of the registered route CS is corrected using the position information PIegr of the actual travel route CSr.
  • the passing positions WP1, WP2, etc. created on the registered route CS are all created outside the passing position exclusion radius RWex.
  • the passing position WP is not created inside the SPex (the second range on the soil removal side, hereinafter referred to as a passing position exclusion region as appropriate) SPex. That is, the route information creation unit 12d creates a passing position WP in a region excluding the inside of the passing position exclusion region SPex. Further, as shown in FIGS.
  • the route information creation unit 12d has a range (first number) of the passing position exclusion radius RLex which is a radius having a predetermined size with the loading position LP1 as the center.
  • the passing position WP is not created inside LPex (the second range on the loading side or the second range on the loading side, hereinafter referred to as a passing position exclusion region as appropriate).
  • the passing position exclusion radius RDex is larger than the predetermined radius RD of the soil removal field DPA0, and the passing position exclusion radius RLex is larger than the predetermined radius RL of the loading field LPA1.
  • the vicinity of the loading site LPA and the earth discharging site DPA is not usually a fixed runway. For this reason, when determining that the actual travel route CSr and the passing position WP of the registered route CS are the same, the vicinity of the loading site LPA and the earth discharging site DPA is excluded. For this reason, in this embodiment, the passage position exclusion region LPex in the loading field LPA and the passage position exclusion region SPex in the soil removal field DPA are provided.
  • the position information PIsgr of the actual travel route CSr is not within the predetermined range WPC of the predetermined radius RWP centered on the passing position WP1 of the registered route CS. Therefore, a new passing position WPsgr is created from the position information PIsgr of the actual travel route CSr.
  • the new passage position WPsgr is created in an area excluding the inside of the passage position exclusion area SPex of the passage position exclusion radius RDex centered on the earth removal position DP0 (travel start position SP1). Also in the example shown in FIG.
  • the position information PIsgr of the actual travel route CSr does not exist within the predetermined range WPC of the predetermined radius RWP with the passing position WP1 of the registered route CS as the center.
  • the travel start position SPr of the actual travel route CSr is registered as a new soil removal position DPn.
  • a new passage position WPsgr is created in a region excluding the inside of the passage position exclusion region SPex with the passage position exclusion radius RDex centered on the new soil removal position DPn.
  • This new passage position WPsgr may exist in a range SPC1 having a predetermined radius RD centered on the soil removal position DP0 of the registered route CS, that is, in the soil disposal field DPA0.
  • the position information PIegr of the actual travel route CSr is not within the predetermined range WPC of the predetermined radius RWP with the passing position WP8 of the registered route CS as the center. For this reason, a new passing position WPegr is created from the position information PIegr of the actual travel route CSr. In this case, the new passage position WPegr is created in an area excluding the inside of the passage position exclusion area LPex having the passage position exclusion radius RLex centered on the loading position LP1. Also in the example shown in FIG.
  • the position information PIegr of the actual travel route CSr does not exist within the predetermined range WPC of the predetermined radius RWP with the passing position WP8 of the registered route CS as the center.
  • the loading position LPr of the actual travel route CSr is registered as a new loading position LPn.
  • a new passage position WPegr is created in a region excluding the inside of the passage position exclusion region LPex with the passage position exclusion radius RLex centered on the new loading position LPn.
  • This new passing position WPegr may exist in a range of a predetermined radius RL centered on the loading position LP1 of the registered route CS, that is, in the loading field LPA1.
  • the position information PI corresponding to the actual traveling route CSr is used in step S117.
  • the new route information created in this way is registered in the registered route database 14CS of the management storage device 13 as a new route.
  • the route information creation unit 12d creates route information corresponding to the actual travel route CSr by using the passing position WP newly created and registered in step S116 as a node and connecting them with a link. To do. Then, the route information creation unit 12d describes the route information corresponding to the created actual travel route CSr in the registered route database 14CS, and stores it in the management-side storage device 13. Since at least two passing positions WP are included in the route information corresponding to the actual traveling route CSr, at least one link is sufficient.
  • the route information creation unit 12d creates route information corresponding to the actual travel route CSr using the passing position WP that is already registered and exists and matches the position information PI of the actual travel route CSr. . In this way, when the route information corresponding to the actual travel route CSr matches with a part of the already existing route information, for example, records of the number of travels of the dump truck 20 and the like are added to the matched portion. Can be aggregated. As a result, when analyzing the operation status of the dump truck 20, a more detailed and highly accurate analysis can be realized.
  • step S118 When new route information corresponding to the actual travel route CSr (hereinafter referred to as new route information as appropriate) is registered, in step S118, the route analysis unit 12e of the management-side processing device 12 illustrated in FIG. 2 is created in step S117. For each link of the new route information, at least one of the number of travels, the travel time, and the operation information is counted. The registered new route information becomes an already registered route.
  • step S119 the route analysis unit 12e extracts the registered specific section SC that matches the partial section of the new route information created in step S117 from the specific section database 14SC for each route.
  • the specific section SC indicates the new route information. It coincides with a section having two passing positions WP at both ends.
  • the registered specific section SC that matches the partial section of the new route information is used as the specific section of the new route information.
  • records such as the number of runnings of the dump truck 20 can be added up and tabulated.
  • the management-side processing device 12 advances the process to step S120.
  • the route analysis unit 12e newly creates a specific section for the portion of the new route information that does not match the registered specific section SC.
  • FIG. 21 is a diagram illustrating an example of a combination of the passing position WP and the link LK including the specific section SC in a part of the new route information RIN.
  • FIG. 22 is a diagram for explaining an example of a method for creating the specific section SC.
  • FIG. 23 is a diagram showing the classification based on the inclination angle used when creating the specific section SC.
  • FIG. 24 is a diagram for explaining an example of a method for creating a specific section SC.
  • the Z axis in FIGS. 22 and 24 indicates the vertical direction.
  • the X axis and the Y axis are orthogonal to each other and are also orthogonal to the Z axis.
  • the route analysis unit 12e In creating the specific section SC from the new route information RIN, the route analysis unit 12e has a difference in gradient between adjacent links LK within the predetermined range in the new route information RIN, and a difference in direction between adjacent links LK. Is a predetermined section SC and a portion having no intersection between them is defined as a specific section SC.
  • the new route information RIN shown in FIG. 21 includes a plurality of passage positions WP1, WP2,... WP7 and a plurality of links LK1, LK2,.
  • the passing positions WP3, WP4, WP5 and the links LK3, LK4 are specific sections SC.
  • the passing positions WP3 and WP5 become the specific section positions SPt1 and SPt2.
  • the links LKa, LKb, and LKc have slopes SLPa, SLPb, and SLPc (%), respectively. When the slopes SLPa, SLPb, and SLPc are not distinguished, they are simply referred to as slopes SPL.
  • the slopes SLP of the links LKa, LKb, and LKc are classified into five levels, and those having the same level are assumed to have the same slope.
  • level 1 has a slope SLP of less than -a (%)
  • level 2 has a slope SLP of -a (%) or more and less than b (%)
  • level 3 has a slope SLP of b (%) or more.
  • level 4 has a slope SLP greater than c (%) and below d (%)
  • level 5 has a slope SLP greater than d (%).
  • the magnitudes of a, b, c, and d are not particularly limited.
  • the same gradient is determined by the gradient analysis unit 12b of the management processing device 12 shown in FIG.
  • the route analysis unit 12e creates a specific section SC based on the determination result of the gradient analysis unit 12b.
  • the azimuth difference ⁇ (degree) between the adjacent link LKa and the link LKb is within a predetermined angle ⁇ , it is determined that the adjacent link LKa and the link LKb are in the same direction.
  • the predetermined angle ⁇ is 30 degrees, but is not limited to this.
  • the directions of the link LKa and the link LKb are obtained from the coordinates of a pair of passing positions WPa, WPb and passing positions WPb, WPc existing at both ends of each link.
  • the route analysis unit 12e extracts intersections based on the number of links LK1, LK2,... LK6 connected to the passing positions WP1, WP2,. New route information RIN is generated as correct route information. Specifically, the route analysis unit 12e extracts one passing position where three or more links are connected as an intersection. For example, in the example shown in FIG. 21, three links LK2, LK3, and LK6 are connected to the passage position WP3. Therefore, the route analysis unit 12e extracts the passing position WP3 as an intersection. In the example shown in FIG.
  • the links LK2, LK3, and LK4 all have azimuth differences within a predetermined value and the same gradient, but the passing position WP3 is an intersection, so the passing positions WP3, WP4, WP5, and the link LK3 and LK4 become the specific section SC.
  • the specific section SC is newly created in the new route information RIN in step S120.
  • step S113 the route analysis unit 12e counts the created specific sections SC. For example, at least one of the number of travels, the travel time, and the operation information of the dump truck 20 is counted for each specific section SC.
  • FIG. 25 is a diagram illustrating a state where the same passage position WP is not integrated in a plurality of route information CSa, CSb, and CSc.
  • the path information CSa includes passage positions WPa1, WPa2, WPa3, WPa4, and WPa5
  • the path information CSb includes passage positions WPb1, WPb2, WPb3, WPb4, and WPb5
  • the path information CSc is Passing positions WPc1, WPc2, WPc3, and WPc4 are included.
  • the passing positions WPa2, WPb2 are the same position
  • the passing positions WPa3, WPb3, WPc2 are the same position
  • the passing positions WPa4, WPb4, WPc3 are the same position.
  • the same passing position WP is not integrated, it is determined that the route information CSa, CSb, CSc is different even in the same section, and for example, the operation information of the dump truck 20 is the route information CSa, CSb. , And summed for each CSc. For this reason, the operation information in the same section cannot be added up and totaled. Further, when it is desired to compare the state of the dump truck 20 that has traveled in the same section, it is necessary to extract and compare the operation information in the same section from the respective route information CSa, CSb, CSc. there is a possibility.
  • FIG. 26 is a diagram showing a state in which the same passage position WP is integrated in a plurality of route information CSa, CSb, CSc.
  • the passage positions WPa2, WPb2, the passage positions WPa3, WPb3, WPc2, the passage positions WPa4, WPb4, and WPc3 that pass between the plurality of pieces of route information CSa, CSb, and CSc are respectively passed.
  • the position WPi1, the passage position WPi2, and the passage position WPi3 are integrated. For this reason, in this embodiment, the operation information of the same area can be added up and totaled.
  • FIG. 27 and FIG. 28 are diagrams for explaining the aggregation of the specific section SC.
  • the link LK connected to the passing position WP may also increase.
  • the route analysis unit 12e re-calculates the specific section SC periodically, for example, once a week or once a month.
  • a specific section SC1 including passage positions WPa1, WPa2, WPa3, WPa4 and links LKa1, LKa2, LKa3 is created in the route information CSa as the registered route.
  • the route information CSb as a registered route includes the passing positions WPb1, WPb2, WPb3, WPb4 and links LKb1, LKb2, LKb3.
  • a specific section SC2 and a specific section SC3 are created with the passage position WPb2 as a boundary.
  • the route analysis unit 12e recalculates the specific section SC, so that the same passage positions WPa2, WPb2, passage positions WPa3, WPb3 and passage positions WPa4, WPb4 in the route information CSa, CSb as shown in FIG. Are integrated into the passing positions WPi2, WPi3, and WPi4. Then, the path analysis unit 12e divides the specific section SC at this portion, assuming that the passing position WPi2 to which the three links LKa1, LKa2, and LKb1 are connected is an intersection.
  • the specific section SC2 including the passage positions WPi2, WPi3, WPi4 and the links LKi1, LKi2, the specific section SC3 including the passage positions WPb1, WPi2, and the link LKb1, and the passage positions WPa1, WPi2 And the specific section SC4 including the link LKa1 is recreated.
  • the route analysis unit 12e since the route analysis unit 12e periodically recreates the specific section SC, it is possible to obtain the specific section SC that matches the actual travel route.
  • the processing procedure of the mining machine management method according to the first modification of the present embodiment will be described.
  • the management method of the mining machine according to the first modification is realized by the management system 1 shown in FIG. 1, for example, the management device 10 shown in FIG.
  • the pass distance WP is determined for each candidate route, and then the travel distance is determined.
  • the management-side processing device 12 executes step S109 and step S110 when affirmative (Yes) in step S106.
  • the management-side processing device 12 next executes step S107 and step S108, and when the result is affirmative (Yes) in step S108, step S111 is executed.
  • the route determination unit 12a calculates the travel distance of the outbound route CSr1 of the actual travel route CSr in step S107, the distance corresponding to the predetermined radius RD from the travel start position SPr, and the predetermined radius from the loading position LPr. The distance for RL is excluded. Further, the route determination unit 12a excludes the distance corresponding to the predetermined radius RD from the soil removal position DPr and the distance corresponding to the predetermined radius RL from the loading position LPr when calculating the travel distance of the return path CSr2 of the actual travel path CSr. To do.
  • the management method of the mining machine according to the second modification is realized by the management system 1 shown in FIG. 1, for example, the management device 10 shown in FIG.
  • a match determination is made with respect to the existing passing position WP, and then a match determination between the loading position LP and the dumping position DP and a route candidate are searched. After that, the matching determination of the passing position WP for each route is executed for the candidate course.
  • the management-side processing device 12 executes step S115 after step S102.
  • the route determination unit 12a temporarily stores the existing passing position WP, which is extracted by executing the process of step S115, that matches the actual travel route CSr in the workspace of the management storage device 13 illustrated in FIG. Memorize.
  • the management processing device 12 executes Step S103, Step S104, Step S105, and Step S106 in this order.
  • the management-side processing device 12 executes step S109 and step S110 when affirmative (Yes) in step S106, and next executes step S107 and step S108 when affirmative (Yes) in step S110.
  • the management-side processing device 12 executes step S106. If the result in step S106 is affirmative (Yes), then the management-side processing device 12 executes step S107 and step S108. If the result is affirmative (Yes) in step S108, then Step S109 and step S110 may be executed. In this modification, the passage position WP is not corrected in step S109.
  • the route determination unit 12a extracts the existing passing position WP that matches the actual traveling route CSr extracted in step S115 and stored in the work space, and the passing position WP of the registered route CS as a candidate. Is determined to match.
  • step S115 by executing step S115 before step S109, the position information PI of the actual traveling route CSr existing in large numbers is extracted that matches the existing passing position WP.
  • the route determination unit 12a only needs to determine a match with the passing position WP of the registered route CS only for the existing passing position WP that matches the actual travel route CSr. For this reason, in this modified example, since the match determination is made with respect to the candidate course after the match determination with respect to the existing passing position WP is performed first, the processing time and hardware Can be reduced.
  • the traveling start position, the loading position, and the soil removal position are coincident with each other, and the passing position WP that coincides with the positional information of the actual traveling route CSr is a predetermined ratio or more.
  • the actual travel route CSr is determined to be the same as the registered route CS. By doing in this way, the precision at the time of distinguishing and specifying the course which dump truck 20 ran can be raised.
  • the passing position WP that matches the position information of the actual travel route CSr is equal to or greater than a predetermined ratio, and the difference between the travel distance of the registered route CS and the travel distance of the actual travel route CSr is predetermined. Since it is the same condition that it is within the range, it is possible to distinguish the actual traveling route CSr when different from the registered route CS by performing refueling or a detour.
  • this embodiment when the position information PI exists in a predetermined range around the passage position WP, it is determined that the passage position WP matches the position information PI, and further, the predetermined range around the passage position WP.
  • the passing position WP is corrected using the position information PI existing inside.
  • the loading position of the registered route is corrected based on the position where the load is loaded on the dump truck 20 at the loading site, that is, the position information of the latest loading position. For this reason, even if the loading position moves within a predetermined range, the loaded position after the movement is registered. By doing in this way, the precision at the time of distinguishing and specifying the course which dump truck 20 ran can be raised.
  • the present embodiment is based on the position information such as the earthing position DP1 where the cargo is unloaded from the dump truck 20 within a predetermined range around the earthing position of the registered route, that is, the earthing position of the registered route DPA.
  • the representative position is corrected. By doing in this way, the error of the representative position of the earth removal site DPA can be reduced as the number of times the load is unloaded from the dump truck 20 increases. As a result, this embodiment can improve the accuracy in distinguishing and specifying the route traveled by the dump truck 20.
  • the gradient difference between adjacent links is within a predetermined value
  • the azimuth difference between adjacent links is within a predetermined value
  • a portion that does not have an intersection in between is defined as a specific section SC.
  • the specific section SC created in this way is extracted from a plurality of registered routes CS, thereby improving the accuracy when analyzing the operation status of the dump truck 20 that has passed the specific section SC. be able to.
  • this embodiment is not limited by the content mentioned above.
  • a range SPC1 for determining a match between the position information and the travel start position SP1 a range for determining a match with the loading position LP1 (loading place LPA1), and a range for determining a match with the soil discharging position DP1 (soil discharging)
  • the shape of the range WPC for determining the coincidence with the field DPA1) and the passing position WP has been described as a circle having a predetermined radius, this embodiment is not limited to this shape.
  • each shape may be other than a circle, for example, an ellipse, a rectangle, a polygon, or a free shape having an area of a predetermined size.
  • the shape of the passing position exclusion region provided so as not to create a new passing position WP in the vicinity of the soil discharging positions DP0 and DP1, in the vicinity of the loading position LP1 and in the vicinity of the passing position WP, respectively has a predetermined radius.
  • a circle the present embodiment is not limited to such a shape.
  • Each shape may be a shape other than a circle, for example, an ellipse, a rectangle, a polygon, or a free shape having a region of a predetermined size.
  • the procedure for realizing the mining machine management method according to the present embodiment is not limited to the procedure described in the flowchart of the present embodiment, and the procedure is performed when the same effect can be obtained. It may be changed.
  • the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the above-described components can be appropriately combined. Furthermore, various omissions, substitutions, or changes of components can be made without departing from the scope of the present embodiment.
  • the main body operating the mining machine is an operator or a management system. However, when manned mining machines are targeted, a comparison of operation techniques between a plurality of operators or operator attendance management It is effective for etc.
  • the management system executes the route specifying process in which the mining machine travels.
  • an in-vehicle processing device mounted on the mining machine may execute the route specifying process.
  • Mining equipment management system 4 loading machine 10 management device 12 management processing device 12a route determination unit 12b gradient analysis unit 12c region specification unit 12d route information creation unit 12e route analysis unit 13 management side storage device 14CS already registered route database 14I operation information database 14RD LP / DP database 14SC Route specific section database 14WP Route specific WP database 18 Management-side wireless communication device 20 Dump truck 21 Vehicle body 24 Suspension cylinder 26 Pressure sensor 29 Position information detection device CS Registered route CSr Actual travel route LK Link PI Position information SC Passage position of specific section WP

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Navigation (AREA)

Abstract

 鉱山機械の管理システムは、鉱山で積荷を積載して搬送する鉱山機械に搭載されて、前記鉱山機械の位置に関する情報である位置情報を求める位置情報検出部と、前記位置情報検出部が求めた前記位置情報のうち、前記積荷が下ろされる排土場の代表位置を中心とした所定範囲内に前記鉱山機械から積荷が下ろされた位置の位置情報に基づいて、前記代表位置を補正する領域特定部と、を含む。

Description

鉱山機械の管理システム及び鉱山機械の管理方法
 本発明は、鉱山機械を管理するシステム及び方法に関する。
 土木作業現場又は鉱山の採掘現場では、油圧ショベル、ダンプトラック等、様々な建設機械が稼働する。近年においては、無線通信によって建設機械の稼働情報を取得し、建設機械の状態を把握することが行われつつある。例えば、特許文献1には、運搬機の運行シミュレーションシステムが記載されている。
特開平5-290103号公報
 ところで、鉱山における生産性向上のための走路設計評価又は運転者の運転指導等を目的とする場合、鉱山機械が走行した経路毎の解析が必要になる。この目的のためには、鉱山機械の稼働現場における走行路マップを新たに作成するとともに、鉱山機械が、作成された走行路マップのどの位置を走行しているときにどのようなイベントが発生し、さらにどのような操作が行われたか等を検出し、解析する必要がある。したがって、鉱山機械が走行した経路を区別して特定することが必要になる。特許文献1は、運行のシミュレーションであるため、鉱山機械が走行した経路を精度よく区別して特定することは困難である。
 本発明は、鉱山において、鉱山機械が走行した経路を区別して特定する際の精度を向上させることを目的とする。
 本発明は、鉱山で積荷を積載して搬送する鉱山機械に搭載されて、前記鉱山機械の位置に関する情報である位置情報を求める位置情報検出部と、前記鉱山機械が所定の第1位置を出発し積荷を積み込む積込位置としての第2位置を経て積荷を下ろす排土位置としての第3位置まで移動するときの経路である第1の経路の経路情報を既登録経路として記憶する記憶部と、前記鉱山機械の稼働中に前記位置情報検出部が求めた複数の前記位置情報から得られた位置情報群と、前記第1の経路の経路情報に含まれる前記積込位置又は前記排土位置とが一致するか否かを判定し、一致すると判定したとき、前記記憶部に記憶されている前記積込位置又は前記排土位置を、前記一致したと判定した前記位置情報群の位置情報に基づいて補正する領域特定部と、を含む、鉱山機械の管理システムである。
 前記領域特定部は、前記排土位置を補正する場合には、前記位置情報群のうち、前記既登録経路の排土位置の周囲における第1の所定範囲内に前記鉱山機械から積荷が下ろされた位置の位置情報に基づいて、前記既登録経路の排土位置を補正することが好ましい。
 前記補正は、前記積荷が下ろされた位置と前記既登録経路の排土位置との中点を、前記既登録経路の補正後の排土位置とすることであることが好ましい。
 前記領域特定部がする前記積込位置の補正は、前記位置情報群のうち、前記既登録経路の積込位置の周囲における第2の所定範囲内で前記鉱山機械に前記積荷が積み込まれた位置の位置情報を、前記既登録経路の補正後の積込位置とすることであることが好ましい。
 前記鉱山機械が移動するときの経路の所定距離毎に存在する複数のノード及び隣接する前記ノード同士を接続するリンクを含む経路情報を生成する経路情報作成部を有し、前記経路情報作成部は、前記既登録経路の排土位置の周囲における排土側の前記第1の所定範囲よりも大きい、前記既登録経路の排土位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に前記ノードを作成することが好ましい。
 前記鉱山機械が移動するときの経路の所定距離毎に存在する複数のノード及び隣接する前記ノード同士を接続するリンクを含む経路情報を生成する経路情報作成部を有し、前記経路情報作成部は、前記既登録経路の積込位置の周囲における積込側における前記第2の所定範囲よりも大きく、かつ前記登録経路の積込位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に前記ノードを生成することが好ましい。
 前記経路情報作成部は、前記積込場の位置が、所定の期間予め定めた所定の範囲内にある場合、前記所定の期間中は前記積込場が同一であるとすることが好ましい。
 本発明は、鉱山で積荷を積載して搬送する鉱山機械の位置に関する情報である位置情報を求め、前記鉱山機械が所定の第1位置を出発し積荷を積み込む積込位置としての第2位置を経て積荷を下ろす排土位置としての第3位置まで移動するときの経路である第1の経路の経路情報を既登録経路とし、前記鉱山機械の稼働中に求めた複数の前記位置情報から得られた位置情報群と、前記第1の経路の経路情報に含まれる前記積込位置又は前記排土位置とが一致するか否かを判定し、一致すると判定したとき、前記積込位置又は前記排土位置を、前記一致したと判定した前記位置情報群の位置情報に基づいて補正する、鉱山機械の管理方法である。
 前記排土位置を補正する場合には、前記位置情報群のうち、前記既登録経路の排土位置の周囲における第1の所定範囲内に前記鉱山機械から積荷が下ろされた位置の位置情報に基づいて、前記既登録経路の排土位置を補正することが好ましい。
 前記補正において、前記積荷が下ろされた位置と前記既登録経路の排土位置との中点を、前記既登録経路の補正後の排土位置とすることが好ましい。
 前記積込位置の補正において、前記位置情報群のうち、前記既登録経路の積込位置の周囲における第2の所定範囲内で前記鉱山機械に前記積荷が積み込まれた位置の位置情報を、前記既登録経路の補正後の積込位置とすることが好ましい。
 前記補正をした後に、前記既登録経路の排土位置の周囲における排土側における第1の所定範囲よりも大きい、前記既登録経路の排土位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に、前記鉱山機械が移動したときの経路の所定距離毎に存在するノードを作成することが好ましい。
 前記補正をした後に、前記既登録経路の積込位置の周囲における積込側における第2の所定範囲よりも大きい、前記既登録経路の積込位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に、前記鉱山機械が移動したときの経路の所定距離毎に存在するノードを生成することが好ましい。
 前記既登録経路の積込位置を求めるにあたって、前記積込場の位置が、所定の期間予め定めた所定の範囲内にある場合、前記所定の期間中は前記積込場が同一であるとすることが好ましい。
 本発明は、鉱山において、鉱山機械が走行した経路を区別して特定する際の精度を向上させることができる。
図1は、本実施形態に係る鉱山機械の管理システムが適用される現場を示す図である。 図2は、本実施形態に係る鉱山機械の管理システムが有する管理装置の機能ブロック図である。 図3は、ダンプトラックの構成を示す図である。 図4は、車載情報収集装置及びその周辺機器を示す機能ブロック図である。 図5は、ダンプトラックが走行した経路の一例を示す図である。 図6は、本実施形態に係る経路特定処理の手順の一例を示すフローチャートである。 図7は、既登録経路の情報を示す図である。 図8は、実走行経路の位置情報と既登録経路の通過位置との一致を判定する方法を説明するための図である。 図9は、実走行経路の位置情報と既登録経路の通過位置との一致を判定するための追加事項を説明するための図である。 図10は、実走行経路の位置情報と既登録経路の通過位置との一致を判定するための追加事項を説明するための図である。 図11は、特定区間における実走行経路の位置情報PIと既登録経路の通過位置との一致の判定を説明するための図である。 図12は、排土位置を新規登録しない場合を説明するための図である。 図13は、排土位置を新規登録しない場合を説明するための図である。 図14は、積込位置を新規登録しない場合を説明するための図である。 図15は、積込位置を新規登録しない場合を説明するための図である。 図16は、排土位置を新規登録する場合を説明するための図である。 図17は、排土位置を新規登録する場合を説明するための図である。 図18は、積込位置を新規登録する場合を説明するための図である。 図19は、積込位置を新規登録する場合を説明するための図である。 図20-1は、実走行経路の位置情報PIが一致する既登録経路の通過位置WPを抽出する処理を説明するための図である。 図20-2は、新規に通過位置を作成する方法を説明するための図である。 図21は、新規経路情報RINの一部において、セクションを含む通過位置WP及びリンクの組合せの一例を示す図である。 図22は、セクションを作成する方法の一例を説明するための図である。 図23は、セクションを作成する際に用いる傾斜角度による分類を示す図である。 図24は、セクションを作成する方法の一例を説明するための図である。 図25は、複数の経路情報において、同一の通過位置WPを統合しない状態を示す図である。 図26は、複数の経路情報において、同一の通過位置WPを統合した状態を示す図である。 図27は、特定区間の集計を説明するための図である。 図28は、特定区間の集計を説明するための図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。
 図1は、本実施形態に係る鉱山機械の管理システムが適用される現場を示す図である。鉱山機械の管理システム1は、鉱山機械の運行を管理したり、生産性又は鉱山機械のオペレータの操作技術等を評価したり、ダンプトラックの予防保全及び異常診断等をしたりする。このため、管理システム1は、ダンプトラック20が走行した経路を特定し、経路情報として蓄積する。以下、走行経路とはダンプトラック20が走行する経路と停止する場所とを含めたものであるとする。以下においては、走行経路を適宜経路ともいう。
 鉱山機械とは、鉱山において各種作業に用いる機械類の総称である。本実施形態において、鉱山機械の一種の運搬車両として、砕石又は砕石の採掘時に発生した土砂若しくは岩石等を積荷として運搬するダンプトラック20を例とするが、本実施形態の鉱山機械はダンプトラック20に限定されるものではない。例えば、本実施形態に係る鉱山機械は、砕石等を採掘する掘削機械として機能する油圧ショベル若しくは電気ショベル又はホイールローダであってもよい。本実施形態において、ダンプトラック20は、オペレータの操作によって走行したり、積荷を下ろしたりする有人の鉱山機械であるが、ダンプトラック20はこのようなものに限定されない。例えば、ダンプトラック20は、管理システム1によって運行が管理される無人のダンプトラックであってもよい。
 鉱山において、ダンプトラック20は、積込作業が行われる場所(以下、積込場)LPAで油圧ショベル等の積込機4によって岩石又は土砂等が積載される。そして、ダンプトラック20は、積荷の排出作業が行われる場所(以下、排土場)DPAで前記積載した岩石又は土砂等を排土する。ダンプトラック20は、積込場LPAと排土場DPAとの間を、経路Rg、Rrを走行して移動する。
<鉱山機械の管理システムの概要>
 鉱山機械の管理システム(以下、適宜管理システムという)1は、管理装置10が、鉱山機械としてのダンプトラック20の位置に関する情報を含む稼働情報を、無線通信によってダンプトラック20から収集するものである。管理装置10は、移動体であるダンプトラック20とは異なり、例えば、鉱山の管理施設に設置されている。このように、管理装置10は、原則として移動を考慮していないものである。管理装置10が収集する情報は、ダンプトラック20の稼働状態に関する情報(以下、適宜稼働情報という)であり、例えば、ダンプトラック20の位置に関する情報である位置情報(緯度、経度及び高度の座標)、走行時間、走行距離、エンジン水温、異常の有無、異常の箇所、燃料消費率及び積載量等のうちの少なくとも1つである。稼働情報は、主としてダンプトラック20の走行路マップ作成、走行路マッピング、運転評価、予防保全及び異常診断等に用いられる。したがって、稼働情報は、鉱山の生産性向上又は鉱山のオペレーションの改善といったニーズに応えるために有用である。
 管理装置10は、鉱山で作業するダンプトラック20の稼働情報を収集するために、アンテナ18Aを有する管理側無線通信装置18に接続されている。ダンプトラック20は、稼働情報を送信したり、管理装置10と相互通信を行ったりするために、車載無線通信装置とともにアンテナ28Aを有している。車載無線通信装置については後述する。この他に、ダンプトラック20は、GPS(Global Positioning System:全方位測位システム)衛星5A、5B、5Cからの電波をGPS用アンテナ28Bで受信し、自己位置を測位することができる。なお、自身の位置を計測するためには、GPS衛星に限らず他の測位用衛星によるものでもよい。すなわち、GNSS(全地球航法衛星システム:Global Navigation Satellite System)による位置計測ができればよい。
 ダンプトラック20がアンテナ28Aから送信する電波の出力は、鉱山全域をカバーできるほどの通信可能範囲を有していない。また、アンテナ28Aから送信する電波は、波長の関係から高い山などの障害物を越えて遠方まで送信することができない。もちろん、高出力の電波を出力できる無線通信装置を用いれば、このような通信障害が解消し、通信可能範囲は広がり通信不可能な場所をなくすことはできる。しかし、鉱山は広大であるため、中継器や通信装置のコストを抑える必要があること及び鉱山がある地域によっては整備された通信インフラを確保することが期待できないといった状況に対応する必要がある。このために、管理システム1は、無線LAN(Local Area Network)等の、限られた範囲内で情報通信網を形成できる無線システムを用いる。無線LANなどによれば、低コストで鉱山機械と管理施設(管理装置10)との相互通信を整えることは可能ではあるものの通信障害の問題を解決する必要がある。
 ダンプトラック20がアンテナ28Aから送信する電波の到達範囲は限られている。したがって、ダンプトラック20と管理装置10との距離が離れていたり、両者間に山M等の障害物が存在していたりすると、管理側無線通信装置18は、ダンプトラック20から送信される電波を受信することが困難になる。このため、管理システム1は、ダンプトラック20のアンテナ28Aから送信される電波を中継して、管理側無線通信装置18に送信する中継器3を有している。鉱山内の複数の所定箇所に中継器3を設置することにより、管理装置10は、自身から離れた位置で稼働しているダンプトラック20から、無線通信により稼働情報を収集することができる。
 中継器3から管理側無線通信装置18までの距離が遠い場合、中継器3と管理側無線通信装置18との間に、両者を中継するための中間中継器6が配置される。本実施形態において、中間中継器6は、中継器3と管理側無線通信装置18とを中継するのみであり、ダンプトラック20がアンテナ28Aから送信する電波を中継するものではない。本実施形態において、中間中継器6は、対応する中継器3以外からは電波を中継しないようになっている。例えば、図1に示すように、給油所2の中継器3からの電波を中継するのは、1台の中間中継器6のみである。なお、中間中継器6は、図1では、1つの中継器3と一対一の関係であるように表現しているが、一対一の関係に限定されるものではなく、各中間中継器6は、対応する複数の中継器3から送られる電波を中継することができる。
 中継器3の配置場所を中心とする周囲の所定領域(図1では円形で示す領域)は、ダンプトラック20に搭載された第1無線通信装置(後述する車載無線通信装置27、図3参照)が中継器3との間で相互に無線通信が可能な範囲、すなわち、通信可能範囲7である。通信可能範囲7に存在しているダンプトラック20は、中継器3等を介して管理側無線通信装置18と相互に無線通信することができる。
 管理装置10が無線通信によってダンプトラック20から稼働情報を収集する場合、ダンプトラック20が管理装置10に稼働情報等を送信中にダンプトラック20が走行して移動することによって、ダンプトラック20が通信可能範囲7から出てしまうことがある。その結果、ダンプトラック20は、第1無線通信装置が管理装置10に送信すべき稼働情報のすべてを送信する前に通信が中断してしまうことがある。
 通信の中断を回避するため、管理装置10が稼働情報等を受信している間、言い換えればダンプトラック20が稼働情報等を送信している間は、ダンプトラック20が通信可能範囲7内に存在することが好ましい。このため、ダンプトラック20が確実に通信可能範囲7内に存在するように、ダンプトラック20が停止している状態にある場所でダンプトラック20のアンテナ28Aからの電波を受信することが好ましい。したがって、ダンプトラック20が、確実に通信可能範囲7内に、ある程度の時間(送信すべき稼働情報等のすべてを送信できる程度の時間以上の時間)停車することが行われる場所で、ダンプトラック20から稼働情報等を中継器3に向けて送信するように制御することが好ましい。
 本実施形態では、例えば、給油所2に中継器3を設置する。給油所2では、ダンプトラック20のエンジンを駆動するための燃料を給油するために、ダンプトラック20はある程度の時間の停車をすることが見込まれる。このため、管理装置10が給油中のダンプトラック20から稼働情報等を確実に受信するための時間の間、ダンプトラック20は確実に通信可能範囲7内に存在した状態を維持することができる。その結果、管理装置10は、無線通信によってダンプトラック20から稼働情報等を確実に収集することができる。なお、鉱山は広大であるため、本実施形態では、給油所2以外にもダンプトラック20の移動経路の近傍に中継器3を配置して、稼働中のダンプトラック20から稼働情報を収集するようにする。次に、管理装置10について、より詳細に説明する。
<管理装置>
 図2は、本実施形態に係る鉱山機械の管理システムが有する管理装置の機能ブロック図である。管理装置10は、管理側処理装置12と、管理側記憶装置13と、入出力部(I/O)15とを含む。さらに、管理装置10は、入出力部15に、表示装置16と、入力装置17と、管理側無線通信装置18と、出力装置19とを接続している。管理装置10は、例えば、コンピュータである。管理側処理装置12は、例えば、CPU(Central Processing Unit)である。管理側記憶装置13は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ若しくはハードディスクドライブ等又はこれらを組み合わせたものである。入出力部15は、管理側処理装置12と、管理側処理装置12の外部に接続する表示装置16、入力装置17、管理側無線通信装置18及び出力装置19との情報の入出力(インターフェース)に用いられる。
 管理側処理装置12は、本実施形態に係る鉱山機械の管理方法を実行する。管理側処理装置12は、経路判定部12aと、勾配解析部12bと、領域特定部12cと、経路情報作成部12dと、経路解析部12eとを含む。判定部としての経路判定部12aは、ダンプトラック20が鉱山を実際に走行した経路を、既に存在する走行経路と一致するか否かを判定することにより、特定する。既に存在する前記走行経路は、ダンプトラック20が過去に走行した経路又は予め設定されている経路である。
 勾配解析部12bは、ダンプトラック20が走行した経路を解析し、勾配の所定の範囲毎に経路を分割する。領域特定部12cは、ダンプトラック20が積荷を積み込まれる積込場LPAの領域と積荷を下ろす排土場DPAの領域とを特定する。経路情報作成部12dは、ダンプトラック20が走行する経路の位置に関する情報としての経路情報を作成する。経路情報は、ダンプトラック20が所定の第1位置を出発し積荷(砕石又は砕石の採掘時に発生した土砂若しくは岩石等)を積み込む第2位置を経て積荷を下ろす第3位置まで移動するときの経路である第1の経路の、所定距離毎に存在する複数のノード及び隣接するノード同士を接続するリンクを含む情報である。経路解析部12eは、ダンプトラック20が走行した経路を解析し、例えば、同一の特性を有している部分を抽出したり、抽出した部分を統合したりする。前述した特性とは、勾配及び方位角等である。これらの機能は、管理側処理装置12がそれぞれに対応するコンピュータプログラムを管理側記憶装置13から読み込んで実行することにより実現される。
 管理側記憶装置13は、管理側処理装置12に各種の処理を実行させるための各種のコンピュータプログラムを記憶している。本実施形態において、管理側記憶装置13が記憶しているコンピュータプログラムは、例えば、本実施形態に係る鉱山機械の管理方法を実現して、ダンプトラック20が走行した経路を特定する経路特定用コンピュータプログラム、ダンプトラック20の稼働情報等を収集するための稼働情報収集用コンピュータプログラム、稼働情報等に基づいて各種解析を実現するコンピュータプログラム等である。
 管理側記憶装置13は、LP/DPデータベース14RD、経路別WPデータベース14WP、経路別特定区間データベース14SC、既登録経路データベース14CS及び稼働情報データベース14I等を記憶している。LP/DPデータベース14RDには、ダンプトラック20の積込場LPA及び排土場DPAの位置情報が記述されている。経路別WPデータベース14WPには、ダンプトラック20が走行した又は走行する経路の位置情報が記述されている。経路別特定区間データベース14SCには、ダンプトラック20が走行した又は走行する経路において同一の特性を有する部分としての特定区間の情報が記述されている。既登録経路データベース14CSは、鉱山で稼働するダンプトラック20が走行した経路又は鉱山においてダンプトラック20が走行すべき経路として予め設定された経路の位置情報を含む情報が記述されている。稼働情報データベース14Iには、ダンプトラック20から収集した稼働情報が記述されている。経路別WPデータベース14WP及び経路別特定区間データベース14SCは、位置情報の緯度、経度及び高度の座標の集合データを含んでいる。
 本実施形態において、管理装置10は、管理側記憶装置13に記憶されている第1の経路に含まれる位置情報と、ダンプトラック20の稼働中におけるダンプトラック20の複数の位置情報から得られた第2の経路の位置情報群とに少なくとも基づいて、第2の経路と、第1の経路とが同一であるか否かを判定する。このようにすることで、管理装置10は、ダンプトラック20が走行した経路である第2の経路を特定する。前述したように、第1の経路は、ダンプトラック20が所定の第1位置から走行を開始し、積荷を積み込む第2位置としての積込場LPAに移動し、積荷を下ろす第3位置としての排土場DPAに移動するときの経路である。第1経路の位置情報は、LP/DPデータベース14RD及び経路別WPデータベース14WPに記述されている。
 ダンプトラック20が走行を開始する所定の第1位置(以下、適宜走行開始位置という)は、例えば、排土場DPAである。ダンプトラック20の走行開始位置が排土場DPAである場合、ダンプトラック20が積込場LPAで積み込まれた積荷を排土する排土場DPAと走行開始位置とは同一であってもよいし、異なっていてもよい。
 表示装置16は、例えば、液晶ディスプレイ等であり、ダンプトラック20の位置情報又は稼働情報を収集する際に必要な情報を表示する。入力装置17は、例えば、キーボード、タッチパネル又はマウス等であり、ダンプトラック20の位置情報又は稼働情報を収集する際に必要な情報を入力する。管理側無線通信装置18は、アンテナ18Aを有しており、中継器3を介してダンプトラック20の車載無線通信装置27(図3参照)との間で相互に無線通信を実行する。出力装置19は、例えば、印刷装置(プリンタ)である。出力装置19は、管理装置10が作成したレポート等を印刷して出力する。出力装置19は、さらに後述するレポート内容に応じた音声を出力するものであってもよい。次に、ダンプトラック20について、より詳細に説明する。
<ダンプトラック>
 図3は、ダンプトラック20の構成を示す図である。ダンプトラック20は、積荷を積載して走行し、所望の場所でその積荷を排出する。ダンプトラック20は、車両本体21と、ベッセル22と、車輪23と、サスペンションシリンダー24と、回転センサ25と、サスペンション圧力センサ(以下、適宜圧力センサという)26と、アンテナ28Aが接続された車載無線通信装置27と、GPS用アンテナ28Bが接続された位置情報検出装置(本実施形態ではGPS受信機)29と、車載情報収集装置30と、を有する。なお、ダンプトラック20は、上記構成以外にも一般的な運搬機が備えている各種の機構及び機能を備えている。なお、本実施形態では、リジッド式のダンプトラック20を例として説明するが、ダンプトラック20は、車体を前部と後部に分割しそれらを自由関節で結合したアーティキュレート式ダンプトラックであってもよい。
 ダンプトラック20は、ディーゼルエンジン等の内燃機関(以下、適宜エンジン34Gという)がトルクコンバータ34TC及びトランスミッション34TMを介してドライブシャフト34DSを駆動することにより、車輪23を駆動する。このように、ダンプトラック20は、いわゆる機械駆動方式であるが、ダンプトラック20の駆動方式はこれに限定されるものではなく、いわゆる電気駆動方式であってもよい。ベッセル22は、積荷を積載する荷台として機能するものであり、車両本体21の上部に、昇降自在に配置されている。ベッセル22には、積荷として、採石された砕石又は岩若しくは土等が油圧ショベル等の積込機4によって積載される。
 車輪23は、タイヤとホイールで構成され車両本体21に、回転自在に装着されており、前述したように車両本体21から動力が伝達されることで駆動される。サスペンションシリンダー24は、車輪23と車両本体21との間に配置されている。車両本体21及びベッセル22、さらに積荷が積載された際における積荷の質量に応じた負荷が、サスペンションシリンダー24を介して車輪23に作用する。
 回転センサ25は、車輪23を駆動するドライブシャフト34DSの回転速度を検出することで車速を計測する。サスペンションシリンダー24は内部に作動油が封入されており、積荷の重量に応じて伸縮動作する。なお、圧力センサ26は、サスペンションシリンダー24に作用する負荷を検出する。圧力センサ26は、ダンプトラック20の各サスペンションシリンダー24に設置されており、その作動油の圧力を検出することで積荷の質量(積載量)を計測することができる。
 GPS用アンテナ28Bは、GPS(Global Positioning System)を構成する複数のGPS衛星5A、5B、5C(図1参照)から出力される電波を受信する。GPS用アンテナ28Bは、受信した電波を位置情報検出装置29に出力する。位置情報検出部としての位置情報検出装置29は、GPS用アンテナ28Bが受信した電波を電気信号に変換し、自身の位置情報、すなわちダンプトラック20の位置を算出(測位)することによりダンプトラック20の位置情報を求める。位置情報は、ダンプトラック20の位置に関する情報であり、緯度、経度及び高度の座標である。時間の経過に基づいて位置情報検出装置29が取得した複数の位置情報が時系列で配列された複数の位置情報は、ダンプトラック20が走行した経路となる。
 車載無線通信装置27は、アンテナ28Aを介して図1に示す中継器3又は管理施設のアンテナ18Aとの間で相互に無線通信を行う。車載無線通信装置27は、車載情報収集装置30に接続されている。このような構造により、車載情報収集装置30は、アンテナ28Aを介して各情報を送受信する。次に、車載情報収集装置30及びその周辺機器について説明する。
<車載情報収集装置及びその周辺機器>
 図4は、車載情報収集装置及びその周辺機器を示す機能ブロック図である。ダンプトラック20が有する車載情報収集装置30は、車載記憶装置31と、車載無線通信装置27と、位置情報検出装置29とが接続されている。車載情報収集装置30には、さらに、状態取得装置が接続されている。車載情報収集装置30は、例えば、CPU(Central Processing Unit)とメモリとを組み合わせたコンピュータである。
 車載情報収集装置30は、鉱山機械としてのダンプトラック20の様々な稼働状態の情報を取得し、収集するための装置である。例えば、状態取得装置は、サスペンションシリンダー24に設置された圧力センサ26、その他の各種センサ類、エンジン制御装置32A、走行制御装置32B、油圧制御装置32C、運転者ID取得装置38及び傾斜センサ(傾斜計)39等である。車載情報収集装置30は、このような状態取得装置からダンプトラック20の様々な稼働状態の情報を取得し、取得したこれらの情報を稼働情報として収集する。
 例えば、車載情報収集装置30は、エンジン制御装置32Aから燃料噴射装置(FI)34Fの制御量を取得することにより、燃料噴射量を示す情報を取得することができる。燃料噴射量を示す情報によって、燃費に関する情報を得ることができる。また、車載情報収集装置30は、エンジン制御装置32Aを介してアクセル33Aの操作量を示す情報を取得することができる。ダンプトラック20の運転者によるアクセル33Aの操作量を示す情報により、ダンプトラック20の運転者の操作状態を把握することができる。また、車載情報収集装置30は、エンジン制御装置32Aから、エンジン(EG)34Gの回転速度、冷却水温度及び潤滑油圧力等といった各種情報を取得することができる。エンジン(EG)34Gの回転速度の情報は、図示しないエンジン(EG)34Gの出力軸に取り付けられた回転センサ等により検出された回転速度により取得され、冷却水温度及び潤滑油圧力等といった各種情報も、図示しない温度センサ又は圧力センサにより取得される。
 車載情報収集装置30は、走行制御装置32Bから走行装置37の各種情報を得ることができる。本実施形態において、ダンプトラック20は機械駆動方式であるため、走行装置37は、図2に示すエンジン34Gによって駆動されるトルクコンバータTC及びトランスミッションTM及びこのトランスミッション34TMからの駆動力を図3に示す車輪23に伝達するドライブシャフト34DSを含む。走行装置37の各種情報は、例えば、前述したトランスミッション34TMの速度段切替状態及び出力軸回転速度並びにドライブシャフト34DSの回転速度等である。また、車載情報収集装置30は、走行制御装置32Bを介してシフトレバー33Bの操作位置又は操作量を取得することにより、ダンプトラック20の運転者の操作状態を把握することができる。シフトレバー33Bは、運転者がダンプトラック20の前進、後進又は走行速度段の変更を走行制御装置32Bに対して指示する際に用いられるものである。
 さらに、車載情報収集装置30は、油圧制御装置32Cから作動油コントロールバルブ(CV)35の開閉状態を取得することができる。この例において、作動油コントロールバルブ35はベッセル22を昇降させるホイストシリンダー36(油圧シリンダ)に、エンジン34Gが稼働することにより駆動されるオイルポンプ(OP)34Pから吐出される作動油を供給したり、ホイストシリンダー36から作動油を排出したりする。このため、車載情報収集装置30は、作動油コントロールバルブ35の開閉状態に基づいて、ベッセル22の昇降状態を把握することができる。ベッセル22は、運転者がダンプレバー33Cを操作することにより昇降する。このため、車載情報収集装置30は、油圧制御装置32Cを介してダンプレバー33Cの操作量又は操作位置を取得することによっても、ベッセル22の昇降状態を把握することができる。
 車載情報収集装置30は、圧力センサ26が検出したサスペンションシリンダー24の作動油に作用する圧力を取得することにより、ベッセル22に積載された積荷の重量を把握することができる。ダンプトラック20の各車輪23に取り付けられた各サスペンションシリンダー24に備えられた圧力センサ26(車輪23が4輪の場合、4個の圧力センサ26)が示す計測値に基づいて、積荷の質量(積載量)を求めることができる。また、圧力センサ26が検出したサスペンションシリンダー24の作動油に作用する圧力の時間の経過による変化を見ることにより、ダンプトラック20のベッセル22に積荷が積載されているか、ベッセル22から排土中又は排土されたかを知ることができる。
 例えば、圧力センサ26が検出した圧力が上昇し、所定の値(例えば、ダンプトラック20の規定積載量の半分に相当する値)を超えた場合、積込場LPAで積荷を積み込まれていると判断することができる。また、圧力センサ26が検出した圧力が低下し、所定の値(例えば、ダンプトラック20の規定積載量の1/4に相当する値)を下回った場合、排土場DPAで排土している(あるいは排土された)と判断することができる。圧力センサ26が検出した圧力を用いることに加え、例えば、ダンプレバー33Cの操作状態(操作位置あるいは操作量)又はダンプトラック20の位置情報等を併用して、排土又は積載判定することにより、ベッセル22に対する積荷の積載の状態を判定する精度を向上させることができる。なお、ダンプレバー33Cの操作状態のみに基づいて排土作業の判断をしてもよい。
 運転者ID取得装置38は、ダンプトラック20の運転者を特定するための運転者IDを取得する装置である。ダンプトラック20は、複数の運転者により交代で運転されることがある。運転者IDは、例えば、個々の運転者のIDキー(個人識別情報が記憶された電子キー)又は個々の運転者のIDカード(個人識別情報が記憶されたカード)から取得することができる。この場合、運転者ID取得装置38は、磁気読み取り装置又は無線通信装置等が用いられる。また、運転者ID取得装置38として指紋認証装置を備え、予め記憶した運転者の指紋と、個々の運転者の指紋との指紋認証を行い、運転者IDを取得することもできる。また、個々の運転者が、入力装置で自身のID情報(暗証番号等の個人識別情報)を入力し、予め記憶されているID情報との照合によっても運転者IDを取得することができる。このように、運転者ID取得装置38は、IDキー又はIDカードの読み取り装置、指紋認証装置又はID情報入力装置等であり、ダンプトラック20の運転室内の運転席近傍に設けていてもよいし、運転者が運転室にアクセスする際に近づく車両本体21の任意の場所に設けてもよい。なお、鉱山の日々の生産計画にしたがって、各ダンプトラック20に搭乗する運転者の運転者IDが、管理装置10から無線通信でダンプトラック20に送信されることもある。この場合車載無線通信装置27が運転者ID取得装置38を兼ねることになる。運転者ID取得装置38が取得した運転者IDにより、どの運転者がダンプトラック20を運転しているかを特定することができる。
 傾斜センサ39は、ダンプトラック20の傾きを検出する。傾斜センサ39は、ダンプトラック20の前後方向の傾き及び幅方向の傾きを検出することができる。傾斜センサ39により、ダンプトラック20が走行している路面の勾配又は凹凸を検出することができる。
 車載記憶装置31は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ若しくはハードディスクドライブ等又はこれらを組み合わせて構成されている。車載記憶装置31は、車載情報収集装置30が稼働情報を収集するための命令が記述されたコンピュータプログラム及び鉱山機械の管理システム1を運用するための各種設定値等を記憶している。車載情報収集装置30は、前記コンピュータプログラムを読み出し、所定のタイミングで各状態取得装置から稼働情報を取得して、車載記憶装置31へ一時的に記憶させる。このとき、車載情報収集装置30は、同一項目の情報について平均値、最頻値又は標準偏差等を求める統計処理を施したりしてもよい。
 車載記憶装置31は、稼働情報として、位置情報、傾斜計情報、時間情報、排土情報、積込情報、燃費情報、操作履歴情報及びイベント情報等を記憶している。イベント情報は、異常運転情報、車両エラー情報及び特定運転操作情報等である。車載記憶装置31が記憶しているこれらの稼働情報は例示であり、稼働情報はこれらに限定されるものではない。位置情報、傾斜計情報、排土情報、積込情報、燃費情報、操作履歴情報及びイベント情報等は、これらが発生した(車載情報収集装置30が取得した)時間に対応付けて車載記憶装置31に記憶されている。車載情報収集装置30は、図2に示す管理装置10からの要求を示す指令信号を、車載無線装置27を介して受信し、同じく車載無線通信装置27を介して、車載記憶装置31に記憶された稼働情報を管理装置10へ送信する。
 図5は、ダンプトラック20が走行した経路の一例を示す図である。ダンプトラック20は、図5に示す排土場DPAで積荷を下ろした後、積込場LPAに向かって走行する。積込場LPAに到着したダンプトラック20は、油圧ショベル等の積み込み用の鉱山機械によって積荷がベッセル22に積み込まれる。積荷が積み込まれたダンプトラック20は、排土場DPAに向かって走行する。排土場DPAに到着したダンプトラック20は、排土場DPAで積荷を下ろす。このように、ダンプトラック20が所定の場所から積込場LPAに向かって出発し、積込場LPAで積荷を積み込まれた後、排土場DPAに到着して積荷を下ろすまでの一連の作業を、ダンプトラック20の運搬作業の1サイクルとする。ダンプトラック20が積込場LPAに向かって出発する所定の場所を第1位置といい、積込場LPAを第2位置、排土場DPAの積荷が下ろされる位置を第3位置という。本実施形態において、第1位置は、排土場DPA内の所定の位置であってもよいし、排土場DPAとは異なる所定の位置であってもよい。
 運搬作業の1サイクルにおいてダンプトラック20が走行する経路(以下、適宜実走行経路という)CSrのうち、ダンプトラック20が第1位置としての走行開始位置SPrから積込場LPAにおいて積荷の積込を受ける第2位置としての積込位置LPrに移動する経路を往路CSr1という。また、実走行経路CSrのうち、ダンプトラック20が第2位置としての積込位置LPrから、排土場DPAにおいて積荷を下ろす第3位置としての排土位置DPrに移動する経路を復路CSr2という。往路CSr1は、走行開始位置SPrを起点とし、積込位置LPrを終点とする。復路CSr2は、積込位置LPrを起点とし、排土位置DPrを終点とする。
 ダンプトラック20に搭載されている位置情報検出装置29は、ダンプトラック20が走行開始位置SPrを出発して積込位置LPrに到達し、その後、排土位置DPrに至るまでの間、ダンプトラック20の位置情報PIを求める。位置情報検出装置29は、例えば、所定時間(例えば、1秒)毎にダンプトラック20の現在の位置情報を取得し、車載記憶装置31に記憶させる。位置情報検出装置29によって得られた複数の位置情報PIの群(以下、適宜位置情報群という)は、ダンプトラック20の実走行経路CSrに含まれる。このため、実走行経路CSrは、複数の位置情報PIによって表現することができる。
 本実施形態において、実走行経路CSrは、既に他の又は自身のダンプトラック20が走行したか又は予め設定されていたかによって既に管理側記憶装置13に記憶(登録)されている第1の経路(以下、適宜既登録経路という)である場合もあるし、ダンプトラック20が初めて走行した経路である場合もある。図2に示す管理側処理装置12は、本実施形態に係る経路特定処理を実行して、実走行経路CSrが既登録経路であるか、一部が既登録経路であるか又はまったく新規の経路であるか等を判定する。次に、本実施形態に係る鉱山機械の管理方法において、ダンプトラック20が走行した経路を特定する処理(経路特定処理)の一例を説明する。本実施形態において、経路特定処理は、図2に示す管理装置10が備える管理側処理装置12が実行するが、図4に示す車載情報収集装置30が実行してもよい。
<経路特定処理の一例>
 図6は、本実施形態に係る経路特定処理の手順の一例を示すフローチャートである。本実施形態に係る経路特定処理を実行するにあたり、ステップS101において、管理側処理装置12、より具体的には経路判定部12aは、管理側無線通信装置18、図4に示す車載無線通信装置27及び位置情報検出装置29を介して、経路特定の対象であるダンプトラック20が走行した実走行経路CSrの位置情報PIを取得する。例えば、管理側処理装置12は、それぞれのダンプトラック20が走行した実走行経路CSrを、車載情報収集装置30を介して取得して管理側記憶装置13に記憶させておく。
 次に、ステップS102に進み、経路判定部12aは、取得した位置情報PIから、第1位置としての走行開始位置SPrに対応する第1位置情報、第2位置としての積込位置LPrに対応する第2位置情報及び第3位置としての排土位置DPrに対応する第3位置情報を抽出する。第1位置情報は、例えば、実走行経路CSrに含まれる位置情報PIのうち、最初の位置とすることができる。第2位置情報は、例えば、実走行経路CSrに含まれる位置情報PIのうち、圧力センサ26が検出したサスペンションシリンダー24の作動油の圧力に基づいて得られた積荷の積載量が所定値以上になった位置とすることができる。第3位置情報は、例えば、実走行経路CSrに含まれる位置情報PIのうち、図4に示すダンプレバー33Cが排土側に操作された位置とすることができる。
 前述した積荷の積載量についての情報及びダンプレバー33Cが排土側に操作されたことの情報は、例えば、ダンプトラック20の車載情報収集装置30が収集したダンプトラック20の稼働情報に含まれる。例えば、管理側処理装置12は、積荷の積載量についての情報及びダンプレバー33Cが排土側に操作されたことの情報を、それぞれの位置情報PIに対応付けた上で、例えば、管理側記憶装置13に記憶させる。このようにすることで、ステップS102において、経路判定部12aは、走行開始位置SPr、積込位置LPr及び排土位置DPrを抽出することができる。
 次に、ステップS103に進み、経路判定部12aは、第1条件として、ステップS102で抽出した走行開始位置SPrに対応する第1位置情報、積込位置LPrに対応する第2位置情報及び排土位置DPrに対応する第3位置情報と、管理側記憶装置13のLP/DPデータベース14RDに記述されている既登録経路の積込位置(登録積込位置)LP及び排土位置DPとが一致するか否かを判定する。管理側記憶装置13のLP/DPデータベース14RDに記述されている情報は、ダンプトラック20が既に走行した実走行経路CSr、すなわち既登録経路に含まれる位置情報に基づき、管理側処理装置12、より具体的には経路情報作成部12dが生成した情報である。次に、管理側記憶装置13に記憶されている既登録経路の情報について説明する。
 図7は、既登録経路の情報を示す図である。既登録経路CSは、往路CS1と復路CS2とを含む。往路CS1の始点は走行開始位置SP1であり、終点は積込位置LP1である。復路CS2の始点は積込位置LP1であり、終点は排土位置DP1である。既登録経路CSは、複数のノードとしての走行開始位置SP1、積込位置LP1、排土位置DP1及び複数の通過位置WP1(WPsg)、WP2、・・・WP9(WPeg)、WP10(WPsb)、WP11、・・・WP18(WPeb)と、これらを接続するリンクLK1、LK2、・・・LK20とを含む。既登録経路CSにおいて、走行開始位置SP1は第1位置に対応し、積込位置LP1は第2位置に対応し、排土位置DP1は第3位置に対応する。
 それぞれのノード、すなわちそれぞれの走行開始位置SP1、積込位置LP1、排土位置DP1及び複数の通過位置WP1(WPsg)、WP2、・・・WP9(WPeg)等は、実走行経路CSrに含まれるそれぞれの位置情報PIに対応する。ノードは、既登録経路CS上の所定の緯度、経度及び高度の座標で示される場所である。それぞれのリンクLK1、LK2、・・・LK20は、隣接するノード同士を接続する。図7に示す既登録経路CSの往路CS1は、走行開始位置SP1と、積込位置LP1と、両者の間に存在する複数の通過位置WP1、WP2、・・・WP9と、リンクLK1、LK2、・・・LK10とを含む。
 復路CS2は、積込位置LP1と、排土位置DP1と、両者の間に存在する複数の通過位置WP10、WP11、・・・WP18と、リンクLK11、LK12、・・・LK20とを含む。既登録経路CSは、ダンプトラック20が1サイクルの運搬作業を実行したときにおいて実際に走行した経路である。この場合、走行開始位置SP1は、ダンプトラック20が積込位置LP1へ向かう前に積荷を下ろした排土場(以下、適宜第1の排土場という)DPA0内で実際に積荷を下ろした排土位置DP0である。
 本実施形態において、排土場DPA0は、走行開始位置SP1を中心とした所定半径RDの範囲(第1の所定範囲又は排土側における第1の範囲)SPC1となる。同様に、排土場(以下、適宜第2の排土場という)DPA1は、積込位置LP1で積荷を積み込まれたダンプトラック20が積荷を下ろした排土位置DP1を中心とした所定半径RDの範囲(第2の所定範囲又は排土側における第1の範囲)である。また、積込場LPA1は、積込位置(登録積込位置)LP1を中心とした所定半径RLの範囲(第1の範囲又は積込側における第1の範囲)である。このように、本実施形態において、排土場DPA0、排土場DPA1及び積込場LPA1の形状は円形であるが、これには限定されない。
 すなわち、走行開始位置SP1の周囲の所定範囲(第1の所定範囲)SPC1が、排土場DPA0になる。同様に、積込位置LP1で積荷を積み込まれたダンプトラック20が積荷を下ろした排土位置DP1の周囲の所定範囲(第2の所定範囲)が、排土場(以下、適宜第2の排土場という)DPA1になる。また、積込位置LP1の周囲の所定範囲が、積込場LPA1となる。
 走行開始位置SP1(排土位置DP0)は、排土場DPA0を代表する代表位置であり、排土位置DP1は排土場DPA1を代表する代表位置である。後述するように、走行開始位置SP1(排土位置DP0)及び排土位置DP1は、ダンプトラック20から積荷が下ろされた位置の情報の蓄積に応じて変更される。積込位置LP1は、ダンプトラック20に積荷が積み込まれた位置の情報に応じて変更される。
 既登録経路CSは、所定距離毎にノード、すなわち通過位置WP1、WP2、・・・WP18が存在している。前述した所定距離は、例えば、100m毎であるが、本実施形態ではこれに限定されない。最も排土場DPA0に近い往路CS1の通過位置WP1(WPsg)は排土場DPA0の外側に設定され、最も排土場DPA1に近い復路CS2の通過位置WP18(WPeb)は排土場DPA1の外側に設定される。最も積込場LPA1に近い往路CS1の通過位置WP9(WPeg)は積込場LPA1の外側に設定され、最も積込場LPA1に近い復路CS2の通過位置WP10(WPsb)は積込場LPA1の外側に設定される。すなわち、既登録経路CSに含まれる通過位置WP1、WP2、・・・WP18は、排土場DPA0、DPA1及び積込場LPA1の外側に設定される。
 図7に示す例において、既登録経路CSは、複数の特定区間SC1、SC2、・・・SC17を有する。それぞれの特定区間SC1、SC2、・・・SC17は、既登録経路CS中、特性、例えば、方位及び勾配等がほぼ同一であると認められる部分である。既登録経路CS中の、互いに隣接するリンク同士の勾配差が所定値以内で、互いに隣接するリンク同士の方位差が所定値以内で、かつそのリンク同士の間に交差点となるノードを有さない部分を、複数のリンクを有する特定区間とする。例えば、特定区間SC5に含まれる隣接する3個のリンクLK5、LK6、LK7は、勾配がほぼ同一と見なせる範囲内、すなわち、互いに隣接するリンク同士の勾配差が所定値以内であり、かつ方位差が所定値以内で、かつその間に交差点を有していない。図7において、特定区間SC5の中間のノード、すなわち通過位置WP5、WP6は白丸で示してあり、これらのノードは交差点ではない。特定区間SC12も特定区間SC5と同様である。また、隣接するリンク同士の勾配差及び方位差が前記条件を満たさないときには、該1個のリンクのみを特定区間とする。例えば、特定区間SC2はリンクLK2に相当するが、1個のリンクを有する特定区間とする。後述するように、本実施形態においては、特定区間毎に走行回数、走行時間及び稼働情報等が集計される。複数のダンプトラック20の稼働状態を評価する場合、特定区間SC1、SC2、・・・SC17を用いることにより、ダンプトラック20が走行する路面の状態を同一の条件として比較することができる。
 積込位置LP1及び排土位置DP0、DP1は、管理側記憶装置13が記憶しているLP/DPデータベース14RDに記述されている。LP/DPデータベース14RDには、積込位置LP1及び排土位置DP0、DP1の他、排土位置DP0、DP1を中心とした所定半径RDの範囲(排土場DPA0、DPA1)及び積込位置LP1を中心とした所定半径RLの範囲(積込場LPA1)の情報も記述されている。通過位置WP1、WP2、・・・WP18は、管理側記憶装置13が記憶している経路別WPデータベース14WPに記述されている。特定区間SC1、SC2、・・・SC17は、管理側記憶装置13に記憶されている経路別特定区間データベース14SCに記述されている。経路判定部12aは、ダンプトラック20の実走行経路CSrを特定するにあたり、LP/DPデータベース14RD及び経路別WPデータベース14WP等から情報を取得して、実走行経路CSrに含まれている位置情報PIと比較する。
 ステップS103において、経路判定部12aは、管理側記憶装置13のLP/DPデータベース14RDから既登録経路CSの積込位置LP及び排土位置DPを取得する。そして、経路判定部12aは、ステップS102で抽出した走行開始位置SPrに対応する第1位置情報、積込位置LPrに対応する第2位置情報及び排土位置DPrに対応する第3位置情報と、取得した既登録経路CSの積込位置LP及び排土位置DPとを比較する。本実施形態においては、排土位置DP(DP0、DP1)を中心とした所定半径RDの範囲内が排土場DPA0、DPA1となっている。また、積込位置LPを中心とした所定半径RLの範囲内が積込場LPA1となっている。このため、経路判定部12aは、例えば、ステップS102で抽出した走行開始位置SPrに対応する第1位置情報が、既に登録された排土場内、すなわちLP/DPデータベース14RDに記述された排土位置DP(図7に示す例では排土位置DP0)を中心とした所定半径RDの範囲SPC1内に存在すれば、第1位置情報は、既にLP/DPデータベース14RDに登録されている排土位置DP0に一致すると判定する。同様に、経路判定部12aは、ステップS102で抽出した積込位置LPrに対応する第2位置情報が積込位置LP(図7に示す例では積込位置LP1)を中心とした所定半径RLの範囲内に存在すれば、第2位置情報は、既にLP/DPデータベース14RDに登録されている積込位置LP1に一致すると判定する。また、経路判定部12aは、ステップS102で抽出した排土位置DPrに対応する第3位置情報が排土位置DP(図7に示す例では排土位置DP1)を中心とした所定半径RDの範囲内に存在すれば、第3位置情報は、既にLP/DPデータベース14RDに登録されている排土位置DP1に一致すると判定する。
 ステップS102で抽出された走行開始位置SPrに対応する第1位置情報、積込位置LPrに対応する第2位置情報及び排土位置DPrに対応する第3位置情報と、管理側記憶装置13のLP/DPデータベース14RDに記述されている既登録経路CSの積込位置LP及び排土位置DPとが一致する場合(ステップS104、Yes)、経路判定部12aは、ステップS105において実走行経路CSrと同一の経路の候補を検索する。既登録経路データベース14CSには、既登録経路CSに含まれる、第1の排土場DPA0の排土位置DP0(走行開始位置SP1)、積込位置LP1、第2の排土場DPA1の排土位置DP1、通過位置WP1、WP2等及びリンクLK1、LK2等が、既登録経路CS毎に記述されている。経路判定部12aは、例えば、管理側記憶装置13の既登録経路データベース14CSから、ステップS102で抽出された走行開始位置SPr、積込位置LPr及び排土位置DPrと一致した排土位置DP及び積込位置LPを有している既登録経路CSを、実走行経路CSrと同一の経路の候補として抽出する。候補となる既登録経路CSは、複数抽出される場合もある。
 次に、経路判定部12aは、ステップS106において、経路の候補が存在するか否かを判定する。経路の候補が存在する場合、経路判定部12aは、ステップS107に進む。経路の候補が存在しない場合、経路判定部12aは、ステップS115に進む。ステップS107において、経路判定部12aは、実走行経路CSr及びステップS105で検索し、抽出した既登録経路CSにおいて、ダンプトラック20が走行した走行距離を計算する。走行距離は、往路CSr1と復路CSr2とでそれぞれ計算される。経路判定部12aは、実走行経路CSrの往路CSr1の走行距離として、走行開始位置SPrから積込位置LPrまでの距離を計算する。また、経路判定部12aは、実走行経路CSrの復路CSr2の走行距離として、積込位置LPrから排土位置DPrまでの距離を計算する。往路CSr1の走行距離と復路CSr2の走行距離との和が、実走行経路CSrの走行距離である。
 経路判定部12aは、既登録経路CSの往路CS1の走行距離を計算するにあたって、走行開始位置SP1を含む第1の排土場DPA0に最も近い通過位置WP1(WPsg)から積込位置LP1を含む積込場LPA1に最も近い通過位置WP9(WPeg)までの距離を計算する。また、経路判定部12aは、既登録経路CSの復路CS2の走行距離を計算するにあたって、積込位置LP1を含む積込場LPA1に最も近い通過位置WP10(WPsb)から排土位置DP1を含む第2の排土場DPA1に最も近い通過位置WP18(WPeb)までの距離を計算する。往路CS1の距離と復路CS2の距離との和が、既登録経路CSの走行距離である。候補となる既登録経路CSが複数抽出された場合、経路判定部12aは、それぞれの既登録経路CSに対して走行距離を計算する。
 実走行経路CSrの走行距離と既登録経路CSの走行距離との差の絶対値を距離差ΔLとしたとき、ステップS108において、経路判定部12aは、距離差ΔLと所定の閾値ΔLcとを比較する。その結果、第2条件として、距離差ΔLが所定の閾値ΔLc以下、すなわち距離差ΔLが所定の閾値ΔLcで規定される所定の範囲内であることが成立すれば(ステップS108、Yes)、経路判定部12aは、処理をステップS109に進める。
 本実施形態において、距離差の閾値ΔLcは限定されるものではないが、例えば、200m程度としている。鉱山において稼働するダンプトラック20は、例えば、同一の経路を走行する場合であっても、障害物を回避する等により、ダンプトラック20毎の走行距離が異なる場合がある。ΔLcを200m程度とすることにより、鉱山におけるダンプトラック20の実際の稼働状況を考慮して、距離差ΔLを判定することができる。
 ステップS109において、経路判定部12aは、実走行経路CSrの位置情報PIと候補となる既登録経路CSの通過位置WPとが一致するか否かを判定する。より具体的には、経路判定部12aは、位置情報群としての実走行経路CSrに含まれる複数の位置情報PIが、既登録経路CSの走行開始位置SP1(排土位置DP0)と積込位置LP1との間に存在する複数のノードとしての通過位置WP1、WP2、・・・WP9及び積込位置LP1と排土位置DP1との間に存在する複数のノードとしての通過位置WP10、WP11、・・・WP18に一致するか否かを判定する。候補となる既登録経路CSが複数存在する場合、経路判定部12aは、既登録経路CS毎に通過位置WPと位置情報PIとの一致を判定する。
 図8は、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致を判定する方法を説明するための図である。図8中の位置情報を示す符号PIに付されたj、j-1、j+1等(jは整数)は、複数の位置情報PIを区別するための符号である。複数の位置情報PIを区別する必要がない場合、単に位置情報PIと記載する。経路判定部12aは、実走行経路CSrの位置情報PIと候補となる既登録経路CSの通過位置WPとの一致を判定する場合、通過位置WPの周囲の所定範囲WPC内に、複数の位置情報PIのうち少なくとも1つが存在するときに、位置情報PIと通過位置WPとは一致したと判定する。図8に示す例では、実走行経路CSrの位置情報PIj-1、PIj、PIj+1が所定範囲WPC内に存在するので、経路判定部12aは、実走行経路CSrの位置情報PIと候補となる既登録経路CSの通過位置WPとが一致すると判定する。本実施形態において、所定範囲WPは、通過位置WPを中心とした所定半径RWPの範囲である。すなわち、所定範囲WPCの形状は円形であるが、これには限定されない。
 ダンプトラック20は、鉱山で走行する場合、例えば、対面走行ですれ違えるように、ある程度の幅を有した走路を走行する。また、通過位置WPの座標及び位置情報PIは、GPSの計測位置誤差を有しているので、通過位置WP自体を用いて位置情報PIとの一致を判定すると、ダンプトラック20の走行時におけるGPSの計測位置の誤差等を許容できず両者はほとんど一致しなくなる可能性がある。本実施形態では、通過位置WPの周囲の所定範囲WPC内に位置情報PIが存在したときに第3条件が成立するようにしている。このため、経路判定部12aは、走路の幅及びダンプトラック20の走行時におけるGPSでの計測誤差等を考慮して、通過位置WPと位置情報PIとの一致を判定できる。所定半径RWPは、走路の幅及びダンプトラック20の走行時におけるGPSでの計測誤差等を考慮して決定される。本実施形態では、所定半径RWPは、例えば、15mから30m程度である。
 図9及び図10は、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致を判定するための追加事項を説明するための図である。本実施形態において、通過位置WPの周囲の所定範囲WPC内に実走行経路CSrの位置情報PIがあるか否かに加えて、ダンプトラック20の進行方向及び積載状態の少なくとも一方を用いて位置情報PIと通過位置WPとの一致を判定してもよい。このようにすることで、経路判定部12aは、両者の一致をより精度よく判定することができる。
 図9に示す例は、ダンプトラック20の進行方向を用いて位置情報PIと通過位置WPとの一致を判定する例を示している。既登録経路CSの往路CS1は走行開始位置SP1から積込位置LP1に向かう経路であり、復路CS2は積込位置LP1から排土位置DP1に向かう経路である。往路CS1を走行するダンプトラック20の正常な進行方向Vaは、走行開始位置SP1から積込位置LP1に向かい、復路CS2を走行するダンプトラック20の正常な進行方向Vbは、積込位置LP1から排土位置DP1に向かう。異なるタイミングで取得された少なくとも2個の位置情報PIから、ダンプトラック20の進行方向Va、Vbを求めることができる。
 往路CS1に存在する既登録経路CSの通過位置WPaにおいて、ダンプトラック20の正常な進行方向Vaは、走行開始位置SP1から積込位置LP1に向かう。実走行経路CSrの位置情報が往路CS1の通過位置WPaの周囲における所定範囲WPCに存在する場合を考える。この場合、経路判定部12aは、実走行経路CSrに含まれる位置情報PIから求めた、通過位置WPaにおけるダンプトラック20の進行方向が、走行開始位置SP1から積込位置LP1に向かっていれば、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPaとが一致していると判定する。これに対して、経路判定部12aは、実走行経路CSrに含まれる位置情報PIから求めた、通過位置WPaにおけるダンプトラック20の進行方向が、積込位置LP1から排土位置DP1に向かっていると、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPaとは一致していないと判定する。後者は、往路CS1を走行するダンプトラック20の正常な進行方向ではないからである。
 次に、復路CS2について説明する。復路CS2に存在する既登録経路CSの通過位置WPbにおいて、ダンプトラック20の正常な進行方向Vbは、積込位置LP1から排土位置DP1に向かう。実走行経路CSrの位置情報が復路CS2の通過位置WPbの周囲における所定範囲WPCにある場合を考える。この場合、経路判定部12aは、実走行経路CSrに含まれる位置情報PIから求めた、通過位置WPbにおけるダンプトラック20の進行方向が、積込位置LP1から排土位置DP1に向かっていれば、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPbとが一致していると判定する。これに対して、経路判定部12aは、実走行経路CSrに含まれる位置情報PIから求めた、通過位置WPbにおけるダンプトラック20の進行方向が、走行開始位置SP1から積込位置LP1に向かっていると、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPbとは一致していないと判定する。後者は、復路CS2を走行するダンプトラック20の正常な進行方向ではないからである。
 このように、経路判定部12aは、実走行経路CSrの位置情報PIから求めたダンプトラック20の進行方向が、既登録経路CSにおける正常な進行方向とは異なる場合、位置情報PIが通過位置WPの周囲の所定範囲WPC内に存在していても、両者は一致しないと判定する。その結果、経路判定部12aは、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致を、さらに精度よく判定することができる。
 図10に示す例は、ダンプトラック20の積載状態を用いて位置情報PIと通過位置WPとの一致を判定する例を示している。既登録経路CSの往路CS1及び復路CS2については上述した通りである。往路CS1は、積込位置LP1に向かう経路なので、往路CS1を走行するダンプトラック20は、通常は積荷を積載していない。復路CS2は、積込位置LP1から排土位置DP1に向かう経路なので、復路CS2を走行するダンプトラック20は、通常は積荷を積載している。このため、往路CS1を走行するダンプトラック20と復路CS2を走行するダンプトラック20とでは、積荷の大きさが異なる。すなわち、ダンプトラック20は、積載量によって往路CS1を走行しているか、復路CS2を走行しているかを判別することができる。積荷の積載量は、前述した通り、図4に示すサスペンションシリンダー24の圧力センサ26の検出値から求められる。
 往路CS1に存在する既登録経路CSの通過位置WPaにおいて、ダンプトラック20は積荷を積載しない状態で積込位置LP1に向かう。実走行経路CSrの位置情報が往路CS1の通過位置WPaの周囲における所定範囲WPCにある場合を考える。この場合、経路判定部12aは、ダンプトラック20の積載量が予め定めた所定値以下である場合(図10のE1)、すなわち積荷がない場合に実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPaとが一致していると判定する。これに対して、経路判定部12aは、ダンプトラック20の積載量が予め定めた所定値よりも大きい場合(図10のF1)、すなわち積荷がある場合に実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPaとは一致していないと判定する。後者は、積込位置LP1に向かうにも関わらず、積荷を積載しているダンプトラック20であるため、往路CS1を逆走する又は既登録経路CSとは異なる経路を走行するダンプトラック20であると判断できるからである。
 次に、復路CS2について説明する。復路CS2に存在する既登録経路CSの通過位置WPbにおいて、ダンプトラック20は積荷を積載した状態で排土位置DP1に向かう。実走行経路CSrの位置情報が復路CS2の通過位置WPbの周囲における所定範囲WPCにある場合を考える。この場合、経路判定部12aは、ダンプトラック20の積載量が予め定めた所定値よりも大きい場合(図10のF2)、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPbとが一致していると判定する。これに対して、経路判定部12aは、ダンプトラック20の積載量が予め定めた所定値以下である場合(図10のE2)、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPbとは一致していないと判定する。後者は、排土位置DP1に向かうにも関わらず、積荷を積載していないダンプトラック20であるため、復路CS2を逆走する又は既登録経路CSとは異なる経路を走行するダンプトラック20であると判断できるからである。
 このように、経路判定部12aは、位置情報PIが通過位置WPの周囲における所定範囲WPC内に存在している場合において、ダンプトラック20の積載状態に基づいて、両者が一致するか否かを判定する。その結果、経路判定部12aは、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致を、さらに精度よく判定することができる。
 通過位置WPと位置情報PIとが一致した場合、経路判定部12aは、通過位置WPの周囲における所定範囲WPC内に存在する位置情報PIを用いて通過位置WPを補正する。この場合、経路判定部12aは、補正前の通過位置WPとの距離が最短となる位置情報PIを用いる。図8に示す例では、所定範囲WPC内に複数の位置情報PIj-1、PIj、PIj+1が存在するが、これらのうち、補正前の通過位置WPとの距離が最短となる位置情報PIjが通過位置WPの補正に用いられる。通過位置WPを補正するにあたり、経路判定部12aは、例えば、通過位置WPと位置情報PIjとの距離Lminの中点を、補正後の通過位置WPnとする。経路判定部12aは、管理側記憶装置13の経路別WPデータベース14WPに記述されている補正前の通過位置WPを、補正後の通過位置WPnに書き換える。このようにすることで、経路別WPデータベース14WPが更新される。実走行経路CSrの位置情報PIjを用いて通過位置WPを補正することによって、実走行経路CSrの数が増加するにしたがって、通過位置WPの誤差を小さくすることができる。
 次に、ステップS110において、経路判定部12aは、第3条件として、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致率が所定の閾値MCc以上で、かつすべての特定区間SCにおいて特定区間SCの両端の通過位置が、実走行経路CSrの位置情報PIに一致するか否かを判定する。なお、第3条件は、少なくとも、実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致率が所定の閾値MCc以上であることを含んでいればよい。一致率は、実走行経路CSrが含む複数の位置情報PIと一致する既登録経路CSの通過位置WPの割合である。ダンプトラック20が走行する走路の状態、例えば、雨天であるか乾燥しているか又は障害物があるか否か等によって、同じ走路であってもダンプトラック20は一部を迂回して走行すること等がある。また、前述したように、GPSの計測誤差の問題もある。このため、本実施形態は、このような迂回及び計測位置の誤差を考慮して、所定の閾値MCcを用いて第3条件の成立を判定する。このようにすることで、経路判定部12aは、実際の走行のばらつき及び計測位置の誤差を考慮して、実走行経路CSrと既登録経路CSとが一致するか否かを判定することができる。
 実走行経路CSrの位置情報PIと一致した既登録経路CSの通過位置WPの数をN1、判断の対象となった既登録経路CSが有する通過位置WPの数をN2としたとき、一致率は、N1/N2となる。本実施形態において、所定の閾値MCcは、例えば、0.8から0.9程度であるが、これに限定されるものではない。例えば、所定の閾値MCcは、ダンプトラック20が走行する走路の状態(例えば、雨天であるか乾燥しているか等)又は形状(曲率又は勾配等の大きさ)等によって変更されてもよい。路面の状態によっては、同じ走路を走行する場合でも、ダンプトラック20は一部迂回等をして走行することがあるが、このようにすることで、経路判定部12aは、実際の走路を考慮して、第3条件の成立を判定することができる。
 図11は、特定区間における実走行経路CSrの位置情報PIと既登録経路CSの通過位置WPとの一致の判定を説明するための図である。図11に示す特定区間SCは、ノードとしての通過位置WPa、WPb、WPc、WPd及びリンクLKa、LKb、LKcとを有している。特定区間SCの両端に存在する通過位置WPa、WPdを、特定区間位置SPt1、SPt2という。前述したように、特定区間SCは、既登録経路CS中、特性がほぼ同一と認められる部分なので、既登録経路CSの特定区間SCが実走行経路CSrの一部に一致すれば、一致した部分は同一の特性を有する可能性が極めて高いと判断できる。このため、本実施形態において、経路判定部12aは、すべての特定区間SCにおいて特定区間SCの特定区間位置SPt1、SPt2が、実走行経路CSrの位置情報PIに一致することで、第3条件が成立したと判定する。このようにすることで、実走行経路CSrと既登録経路CSとが一致するか否かの判定精度を向上させることができる。特定区間位置SPt1、SPt2と、実走行経路CSrの位置情報PIとが一致するか否かの判定は、通過位置WPと位置情報PIとが一致するか否かの判定と同様である。
 第3条件が成立した場合(ステップS110、Yes)、経路判定部12aは、実走行経路CSrが、既登録経路CSと同一であると判定する。この場合、経路判定部12aは、ステップS111において、経路情報、具体的には、管理側記憶装置13が記憶している既登録経路CSの経路情報を更新する。例えば、経路判定部12aは、同一と判定された既登録経路CSをダンプトラック20が走行した回数、時間及び稼働情報のうち、少なくともいずれか1つを更新する。回数は、現在の回数に対して1が追加される。このようにすることで、既登録経路CSを走行した回数を更新することができる。実走行経路CSrの特定区間SCと既登録経路CSの特定区間SCとが一致した場合又は新規の特定区間SCが作成された場合も、経路判定部12aは、経路情報、具体的には、管理側記憶装置13が記憶している既登録経路CSの経路情報を更新する。例えば、経路判定部12aは、同一と判定された特定区間SC又は新規に作成された特定区間SCをダンプトラック20が走行した回数、時間及び稼働情報のうち、少なくともいずれか1つを更新する。
 経路情報を更新するにあたり、経路判定部12aは、実走行経路CSrが複数の既登録経路CSと同一であると判定した場合、最も新しい既登録経路CSについて、ダンプトラック20が走行した回数、時間及び稼働情報のうち少なくともいずれか1つを更新する。排土場DPA及び積込場LPAの少なくとも一方が時間の経過とともに移動した結果、実走行経路CSrと既登録経路CSの通過位置WPとが一致しても、走行開始位置SPr、積込位置LPr及び排土位置DPrの少なくとも1つが一致しないことがある。このような場合、管理側処理装置12は、その実走行経路CSrの位置情報PIを用いて新たな経路情報を生成し、既登録経路CSとして管理側記憶装置13の既登録経路データベース14CS等に登録する。実走行経路CSrが複数の既登録経路CSと同一であると判定された場合、既登録経路CSには、既に使用されていない過去のものから現在使用されている最新のものまでが含まれている。このような場合、本実施形態のように、経路判定部12aが、最も新しい既登録経路CSについて、ダンプトラック20が走行した回数、時間及び稼働情報のうち、少なくともいずれか1つを更新することにより、現在使用されている最新の既登録経路CSの経路情報を更新することができる。
 例えば、通信の遅れによって、管理側処理装置12が実走行経路CSrの位置情報PIを取得するタイミングが遅くなることがある。このような場合、最新の情報で既登録経路CSを更新できない可能性がある。本実施形態において、経路情報を更新するにあたり、実走行経路CSrをダンプトラック20が走行した時間が、この実走行経路CSrと同一であると判断された既登録経路CSの最終更新時間よりも前である場合、経路判定部12aは、この実走行経路CSrと同一と判定された既登録経路CSをダンプトラック20が走行した回数及び時間を更新しない。このようにすることで、既登録経路CSは、最新の情報で更新されることになる。
 既登録経路CSの経路情報が更新されたら、ステップS112において、ステップS110で実走行経路CSrと同一であると判定された既登録経路CSのリンク毎に走行回数、走行時間及び稼働情報のうち少なくともいずれか1つを集計し、更新する。次に、図6に示すステップS113において、管理側処理装置12の経路解析部12eは、ここまでの処理で得られた既登録経路CSの経路情報等に基づいて、特定区間SCを集計する。ステップS113の処理については後述する。次に、図6に示すステップS104に戻って説明する。
 ステップS102で抽出された走行開始位置SPrに対応する第1位置情報、積込位置LPrに対応する第2位置情報及び排土位置DPrに対応する第3位置情報のうち、少なくともいずれか1つが、既登録経路CSの積込位置LP又は排土位置DPに一致しない場合(ステップS104、No)、実走行経路CSrと一致する既登録経路CSは存在しない。この場合、経路判定部12aは、ステップS114に処理を進める。ステップS114において、経路判定部12aは、一致しない位置の位置情報を新規の排土位置DP又は積込位置LPとして登録する。次に、排土位置DP及び積込位置LPの少なくとも一方の新規登録について、新規登録をしない場合とともに説明する。
 図12及び図13は、排土位置DPを新規登録しない場合を説明するための図である。ステップS104において肯定(Yes)である場合、排土場DPA0の代表位置としての排土位置DP及び積込位置LPは新規登録されない。既登録経路CSの排土位置DP0(走行開始位置SP1)は、図2に示す管理側記憶装置13のLP/DPデータベース14RD及び既登録経路データベース14CSに既に記述され、登録されている。
 図12及び図13に示す例では、既に登録されている排土位置DP0(排土場DPA0の代表位置)を中心とした所定半径RDの範囲SPC1、すなわち排土場DPA0内に実走行経路CSrの走行開始位置SPrが存在している。このため、実走行経路CSrの走行開始位置SPrは、既に登録されている排土位置DP0に一致すると判定される。したがって、実走行経路CSrの走行開始位置SPrは、新しい排土位置DPnとしてはLP/DPデータベース14RDに登録されない。なお、実走行経路CSrの走行開始位置SPrは、排土位置DP0(排土場DPA0の代表位置)を中心とした所定半径RDの範囲SPC1内に積荷が下ろされた位置である。
 この場合、図2に示す管理側処理装置12の領域特定部12cは、実走行経路CSrの走行開始位置SPrを用いて、既に登録されている排土位置DP0を補正する。領域特定部12cは、例えば、両者の中点を、補正後の排土位置DP0n(走行開始位置SP1n)とする。領域特定部12cは、管理側記憶装置13のLP/DPデータベース14RDに記述されている補正前の排土位置DP0を、補正後のDP0nに書き換える。このようにすることで、経路別LP/DPデータベース14RDが更新される。なお、図7に示す排土場DPA1においても、排土場DPA0と同様に処理される。
 実走行経路CSrの走行開始位置SPrを用いて、既に登録されている排土位置DP0を補正するようにしているので、実走行経路CSrの走行開始位置SPrの数が蓄積されるにしたがって、排土位置DP0の誤差を小さくすることができる。また、排土場DPA0、DPA1は、積荷を下ろすことによって徐々に広がる傾向にある。このため、実走行経路CSrの走行開始位置SPr(図7に示す排土場DPA1においては実走行経路CSrの排土位置DPr)を用いて排土位置DP0を補正することにより、補正後の排土位置DP0nを経路の特定に反映させることができる。次に、積込位置LP1を新規登録しない場合について説明する。
 図14及び図15は、積込位置LPを新規登録しない場合を説明するための図である。既登録経路CSの積込位置LP1は、図2に示す管理側記憶装置13のLP/DPデータベース14RD及び既登録経路データベース14CSに既に記述され、登録されている。図14及び図15に示す例では、既に登録されている積込位置LP1を中心とした所定半径RLの範囲、すなわち積込場LPA1内に実走行経路CSrの積込位置LPrが存在している。このため、実走行経路CSrの積込位置LPrは、既に登録されている積込位置LP1に一致すると判定される。したがって、実走行経路CSrの積込位置LPrは、新しい積込位置LPnとしてはLP/DPデータベース14RDに登録されない。
 この場合、領域特定部12cは、実走行経路CSrの積込位置LPrを用いて、既に登録されている積込位置LP1を補正する。領域特定部12cは、例えば、既に登録されている積込位置LP1を、実走行経路CSrの積込位置LPrに変更することで補正する。本実施形態では、便宜上、補正後の積込位置をLP1nとする。補正後の積込位置LP1nの周囲における所定範囲が、新たな積込場LPA1nとなる。既に登録されている積込位置LP1が補正された後においては、補正後の積込位置LP1nの周囲における所定範囲内に実走行経路CSrの積込位置LPrが存在するか否かで、実走行経路CSrの積込位置LPrと登録済みの積込位置LP1nとの一致が判定される。本実施形態において、積込場LPA1は、鉱脈に沿って常に移動するため、実走行経路CSrの積込位置LPrを用いて積込位置LP1を補正することにより、補正後、すなわち現在の積込位置LP1nを経路の特定に反映させることができる。
 積込場LPA1が鉱脈に沿って常に移動するような場合、積込位置LP1は、一定の期間かつ予め定められた移動距離の範囲内であれば、その範囲内で同一の積込場とされて、新規の積込位置は登録されないことが好ましい。図14に示す例では、補正後の積込位置LP1nが一定の期間かつ予め定められた移動距離の範囲内であれば、補正の前後において同一の積込場と見なしているので、補正後の積込位置LP1nは新たに登録されないことになる。例えば、積込位置LP1が最初に登録された位置から前記所定の移動距離以上移動した場合、このときの走行経路の全体の走行距離が最初登録されたときの走行距離に比して過度に長くなってしまうので、同一の走行経路と見なすことが困難となってしまう。補正後の積込位置LP1nが前記所定の移動距離の範囲内であるとき、補正の前後において同一の積込場と見なしているため、積込位置LP1が鉱脈に沿って移動した場合であっても、走行距離全体が長くなったことにより同一の走行経路と見なすことが困難となることを回避できる。また、補正後の積込位置LP1nが一定の期間かつ所定の移動距離の範囲内であれば、補正の前後において同一の積込場と見なしているのは、一定の期間を過ぎた古い位置情報としての積込位置LP1nに基づいて一致判定をすることを回避するためである。
 図16及び図17は、排土位置DPを新規登録する場合を説明するための図である。これらの図に示す例では、既に登録されている排土位置DP0(走行開始位置SP1)を中心とした所定半径RDの範囲SPC1、すなわち排土場DPA0の外に実走行経路CSrの走行開始位置SPrが存在している。この場合、経路判定部12aは、実走行経路CSrの走行開始位置SPrが、既に登録されている排土位置DP0に一致しないと判定する。すると、領域特定部12cは、実走行経路CSrの走行開始位置SPrの位置情報等を、新しい排土位置DPnとしてLP/DPデータベース14RDに登録する。
 新しい排土位置DPnが新規登録された後において、ステップS103における判定では、新規登録された新しい排土位置DPnも用いられる。すなわち、経路判定部12aは、排土位置DPnを中心とした所定半径RDの所定範囲SPC1n(排土場DPA0n)内に実走行経路CSrの走行開始位置SPrが存在するか否かによって、走行開始位置SPrと排土位置DPnとの一致を判定する。次に、積込位置LPを新規登録する場合について説明する。
 図18及び図19は、積込位置LPを新規登録する場合を説明するための図である。これらの図に示す例では、既に登録されている積込位置LP1を中心とした所定半径RLの範囲、すなわち積込場LPA1の外に実走行経路CSrの積込位置LPrが存在している。この場合、経路判定部12aは、実走行経路CSrの積込位置LPrが、既に登録されている積込位置LP1に一致しないと判定する。すると、領域特定部12cは、実走行経路CSrの積込位置LPrの位置情報等を、新しい積込位置LPnとしてLP/DPデータベース14RDに登録する。
 新しい積込位置LPnが新規登録された後において、ステップS103における判定では、新規登録された積込位置LPnも用いられる。すなわち、経路判定部12aは、積込位置LPnを中心とした所定半径RLの所定範囲LPC1n内に実走行経路CSrの積込位置LPrが存在するか否かによって、積込位置LPrと積込位置LPnとの一致を判定する。
 既登録経路CSの第2位置に対応する積込位置LP並びに既登録経路CSの第1位置及び第3位置に対応する排土位置DPは、新しい積込位置LPn又は排土位置DPnがLP/DPデータベース14RDに登録される毎に数が増える。積込位置LP及び排土位置DPは、時間の経過とともに情報が古くなる。このため、本実施形態において、経路判定部12aは、積込位置LP及び排土位置DPがLP/DPデータベース14RDに登録されてから経過した期間が、所定の期間以内であるものを用いて、ステップS103の判定を行う。このようにすることで、経路判定部12aは、時々刻々と変化する鉱山の状態に対応して既登録経路CSの排土位置DP等と実走行経路CSrの排土位置DPr等とが一致するか否かを判定できるので、判定の精度が向上する。本実施形態において、所定の期間は特に限定されないが、例えば、数日から数週間とすることができる。所定の期間は、積込位置LPと排土位置DPとで異ならせてもよい。この場合、所定の期間は、積込位置LPの方が排土位置DPよりも短いことが好ましい。積込位置LPは、鉱床に沿って又は作業形態に応じて移動する傾向があるため、排土位置DPよりも位置の変化が早いからである。
 ステップS114で排土位置DP及び積込位置LPの少なくとも一方が新規登録されたら、管理側処理装置12は、処理をステップS115に進める。ステップS115において、経路判定部12aは、実走行経路CSrの位置情報PIが既登録経路CSの通過位置WPに一致しているか否かの判定を、管理側記憶装置13の経路別WPデータベース14WPに記述され、既に登録されている通過位置WPに対して実行する。この判定は、実走行経路CSrの往路CSr1と復路CSr2とのそれぞれ別個に対して実行される。本実施形態において、この判定は、既に登録されているすべての通過位置WPに対して実行するが、必ずしもすべての通過位置WPに対して実行されなくてもよい。
 ステップS115が実行される前に、既にステップS104で否定(No)と判定されている。このため、実走行経路CSrと一致する既登録経路CSは存在しない。しかし、経路判定部12aは、実走行経路CSrの位置情報PIと一致する、既登録経路CSの通過位置WPを抽出することで、実走行経路CSrのうち、既登録経路CSと一部一致している部分を抽出することができる。
 本実施形態において、経路判定部12aは、既に登録されているすべての通過位置WPに対して実走行経路CSrの位置情報PIが既登録経路CSの通過位置WPに一致しているか否かを判定するが、実走行経路CSrの周囲の所定範囲内に存在する通過位置WPのみを前述した判定の対象としてもよい。このようにすることで、判定の対象とする通過位置WPの数を低減することができるので、管理側処理装置12が判定処理に要する負荷が軽減される。
 図20-1は、実走行経路CSrの位置情報PIが一致する既登録経路CSの通過位置WPを抽出する処理を説明するための図である。図20-1中の位置情報を示す符号PIに付されたk、k+1等(kは整数)は、複数の位置情報PIを区別するための符号である。複数の位置情報PIを区別する必要がない場合、単に位置情報PIと記載する。また、図20-1中の通過位置を示す符号WPに付されたn、n+1等(nは整数)は、複数の通過位置WPを区別するための符号である。複数の通過位置WPを区別する必要がない場合、単に通過位置WPと記載する。図20-1に示す例では、実走行経路CSrの一部が、既登録経路CSが有する複数の通過位置WPn-2、・・・WPn+2のうちの一部と一致している。具体的には、実走行経路CSrが有する複数の位置情報PIk、・・・PIk+6(kは整数)のうち位置情報PIk+2、PIk+3、PIk+4が、通過位置WPn-2、WPn-1、WPnの周囲における所定半径の所定範囲WPC内に存在する。
 図2に示す経路判定部12aは、実走行経路CSrの一部の位置情報PIk+2、PIk+3、PIk+4と一致する既登録経路CSの通過位置WPn-2、WPn-1、WPnを抽出する。次に、経路判定部12aは、実走行経路CSrの位置情報PIk+2、PIk+3、PIk+4を用いて、これらが一致した通過位置WPn-2、WPn-1、WPnを補正する。この補正については、前述した通りである。この補正が終了したら、経路判定部12aは、管理側記憶装置13の経路別WPデータベース14WPに記述されている補正前の値を補正後の値に書き換える。経路判定部12aは、対象となる通過位置WPすべてに対して実走行経路CSrの位置情報PIが一致するか否かを判定し、一致する通過位置WPを位置情報PIで補正したら、処理をステップS116に進める。ステップS116において、図2に示す管理側処理装置12の経路情報作成部12dは、既登録経路CSの通過位置WPと一致しない部分に、新規に通過位置WPを作成する。
 図20-2は、新規に通過位置WPを作成する方法を説明するための図である。本実施形態において、経路情報作成部12dは、既存の通過位置WPの周囲における所定の大きさの通過位置除外半径RWexで囲まれる範囲WPex内に、新たな通過位置WPを生成することができない。すなわち、経路情報作成部12dは、既存の通過位置WPの周囲における所定の大きさの通過位置除外半径RWexで囲まれる範囲WPexの外に、新たな通過位置WPを生成する。通過位置除外半径RWexは、実走行経路CSrの位置情報PIが通過位置WPと一致するか否かを判定する際に用いられる所定半径RWPよりも大きい。本実施形態において、通過位置除外半径RWexは、50m程度であるがこれに限定されない。
 図20-2に示す例では、実走行経路CSrの位置情報PIk+5が、既登録経路CSの通過位置WPn+1の通過位置除外半径RWex内に存在する。このため、経路情報作成部12dは、位置情報PIk+5の位置に通過位置WPを作成しない。これに対して、実走行経路CSrの位置情報PIk+6は、既登録経路CSの通過位置WPn+1及び通過位置WPn+2の通過位置除外半径RWexの範囲(通過位置除外領域)内を除く領域、すなわち範囲外に存在する。このため、経路情報作成部12dは、位置情報PIk+6の位置に、新たな通過位置WPN1を作成する。
 経路情報作成部12dは、既登録経路CSの通過位置WPn+2の通過位置除外半径REexの範囲内を除く領域で、通過位置WPN1から所定距離離れた位置の位置情報PIk+7を用いて、新たな通過位置WPN1に隣接する次の新たな通過位置WPN2を作成する。経路情報作成部12dは、このようにして実走行経路CSrに含まれる位置情報PIから、新たな通過位置WPN1、WPN2等を作成して、管理側記憶装置13の経路別WPデータベース14WPに登録する。
 次に、図12から図19を用いて、排土位置DP及び積込位置LP近傍に新たな通過位置WPを作成する例又は作成しない例を説明する。図12に示す例では、実走行経路CSrが既登録経路CSの通過位置WP1、WP2を中心とした所定半径RWPの所定範囲WPC内にあるため、通過位置WPは新規に作成されない。図14に示す例でも、実走行経路CSrが既登録経路CSの通過位置WP7、WP8を中心とした所定半径RWPの所定範囲WPC内にあるため、通過位置WPは新規に作成されない。
 図16に示す例では、実走行経路CSrの位置情報PIsgrが既登録経路CSの通過位置WP1を中心とした所定半径RWPの所定範囲WPC内にある。このため、実走行経路CSrの位置情報PIsgrから新規の通過位置WPは作成されない。この場合、既登録経路CSの通過位置WP1は、実走行経路CSrの位置情報PIsgrを用いて補正される。図18に示す例では、実走行経路CSrの位置情報PIegrが既登録経路CSの通過位置WP8を中心とした所定半径RWPの所定範囲WPC内にある。このため、実走行経路CSrの位置情報PIegrから新規の通過位置WPは作成されない。この場合、既登録経路CSの通過位置WP8は、実走行経路CSrの位置情報PIegrを用いて補正される。
 図12から図19に示すように、既登録経路CS上に作成されている通過位置WP1、WP2等は、いずれも通過位置除外半径RWexの外側に作成されている。図12、図13、図16及び図17に示すように、経路情報作成部12dは、排土位置DP0(走行開始位置SP1)を中心とした所定の大きさの半径である通過位置除外半径RDexの範囲(排土側における第2の範囲、以下、適宜通過位置除外領域という)SPexの内側には、通過位置WPを作成しない。すなわち、経路情報作成部12dは、通過位置除外領域SPexの内側を除く領域に、通過位置WPを作成する。また、図14、図15、図18及び図19に示すように、経路情報作成部12dは、積込位置LP1を中心とした所定の大きさの半径である通過位置除外半径RLexの範囲(第2の範囲又は積込側における第2の範囲、以下、適宜通過位置除外領域という)LPexの内側には、通過位置WPを作成しない。通過位置除外半径RDexは排土場DPA0の所定半径RDよりも大きく、通過位置除外半径RLexは積込場LPA1の所定半径RLよりも大きい。
 積込場LPA及び排土場DPAの近傍は、通常は決められた走路となっていない。このため、実走行経路CSrと既登録経路CSの通過位置WPとの同一を判定する際には、積込場LPA及び排土場DPAの近傍は除外する。このため、本実施形態では、積込場LPAにおける通過位置除外領域LPex及び排土場DPAにおける通過位置除外領域SPexを設けている。
 図13に示す例では、実走行経路CSrの位置情報PIsgrが既登録経路CSの通過位置WP1を中心とした所定半径RWPの所定範囲WPC内にない。このため、実走行経路CSrの位置情報PIsgrから新規の通過位置WPsgrが作成される。この場合、新規の通過位置WPsgrは、排土位置DP0(走行開始位置SP1)を中心とした通過位置除外半径RDexの通過位置除外領域SPexの内側を除く領域に作成される。図17に示す例でも、実走行経路CSrの位置情報PIsgrが既登録経路CSの通過位置WP1を中心とした所定半径RWPの所定範囲WPC内に存在しない。また、図17に示す例は、実走行経路CSrの走行開始位置SPrが、新しい排土位置DPnとして登録されている。この場合、新しい排土位置DPnを中心とした通過位置除外半径RDexの通過位置除外領域SPexの内側を除く領域に、新規の通過位置WPsgrが作成される。この新規の通過位置WPsgrは、既登録経路CSの排土位置DP0を中心とした所定半径RDの範囲SPC1、すなわち排土場DPA0内に存在していてもよい。
 図15に示す例では、実走行経路CSrの位置情報PIegrが既登録経路CSの通過位置WP8を中心とした所定半径RWPの所定範囲WPC内にない。このため、実走行経路CSrの位置情報PIegrから新規の通過位置WPegrが作成される。この場合、新規の通過位置WPegrは、積込位置LP1を中心とした通過位置除外半径RLexの通過位置除外領域LPexの内側を除く領域に作成される。図19に示す例でも、実走行経路CSrの位置情報PIegrが既登録経路CSの通過位置WP8を中心とした所定半径RWPの所定範囲WPC内に存在しない。また、図19に示す例は、実走行経路CSrの積込位置LPrが、新しい積込位置LPnとして登録されている。この場合、新しい積込位置LPnを中心とした通過位置除外半径RLexの通過位置除外領域LPexの内側を除く領域に、新規の通過位置WPegrが作成される。この新規の通過位置WPegrは、既登録経路CSの積込位置LP1を中心とした所定半径RLの範囲、すなわち積込場LPA1内に存在していてもよい。
 このようにして、既登録経路CSの通過位置WPに一致しない実走行経路CSrの部分に、新規に通過位置WPが作成されたら、ステップS117において、実走行経路CSrに対応した位置情報PIを用いて作成された新規経路情報が、新たな経路として管理側記憶装置13の既登録経路データベース14CSに登録される。この場合、経路情報作成部12dは、ステップS116で新たに作成されて登録された通過位置WPをノードとして用いて、これらをリンクで接続することによって、実走行経路CSrに対応した経路情報を作成する。そして、経路情報作成部12dは、作成した実走行経路CSrに対応した経路情報を既登録経路データベース14CSに記述することにより、管理側記憶装置13に記憶させる。実走行経路CSrに対応した経路情報に含まれる通過位置WPは、少なくとも2個以上であればよいので、リンクは少なくとも1個あればよい。
 経路情報作成部12dは、既に登録されて存在し、かつ実走行経路CSrの位置情報PIと一致する通過位置WPが存在すればそれも用いて、実走行経路CSrに対応した経路情報を作成する。このようにすると、実走行経路CSrに対応した経路情報が、既に存在する経路情報の一部と一致する場合、一致する部分については、例えば、ダンプトラック20の走行回数等の記録を合算して集計することができる。その結果、ダンプトラック20の稼働状況を解析するにあたっては、より詳細に、かつ精度の高い解析が実現できる。
 実走行経路CSrに対応した新規の経路情報(以下、適宜新規経路情報という)が登録されたら、ステップS118において、図2に示す管理側処理装置12の経路解析部12eは、ステップS117で作成した新規経路情報のリンク毎に走行回数、走行時間及び稼働情報のうち少なくともいずれか1つを計数する。登録された新規経路情報は、既登録経路になる。次に、ステップS119において、経路解析部12eは、ステップS117で作成した新規経路情報の一部の区間に一致する既登録の特定区間SCを、経路別特定区間データベース14SCから抽出する。例えば、既登録の特定区間SCの両端に存在する特定区間位置SPt1、SPt2が、新規経路情報に含まれる二箇所の通過位置WPとそれぞれ一致していれば、特定区間SCは、新規経路情報の二箇所の通過位置WPを両端部とする区間と一致する。
 新規経路情報の一部の区間に一致する既登録の特定区間SCは、新規経路情報の特定区間として用いられる。このようにすると、既に登録されて存在する特定区間SCと同一の特定区間については、例えば、ダンプトラック20の走行回数等の記録を合算して集計することができる。その結果、ダンプトラック20の稼働状況を解析するにあたっては、より詳細に、かつ精度の高い解析が実現できる。新規経路情報の一部の区間に一致する既登録の特定区間SCが抽出されたら、管理側処理装置12は、処理をステップS120に進める。ステップS120において、経路解析部12eは、新規経路情報のうち、既登録の特定区間SCと一致しない部分について、特定区間を新規に作成する。
 図21は、新規経路情報RINの一部において、特定区間SCを含む通過位置WP及びリンクLKの組合せの一例を示す図である。図22は、特定区間SCを作成する方法の一例を説明するための図である。図23は、特定区間SCを作成する際に用いる傾斜角度による分類を示す図である。図24は、特定区間SCを作成する方法の一例を説明するための図である。図22及び図24のZ軸は、鉛直方向を示す。X軸及びY軸は、互いに直交し、かつそれぞれZ軸にも直交する軸である。経路解析部12eは、新規経路情報RINから特定区間SCを作成するにあたり、新規経路情報RIN中、互いに隣接するリンクLK同士の勾配の差が所定範囲以内で、互いに隣接するリンクLK同士の方位差が所定値以内で、かつその間に交差点を有さない部分を特定区間SCとする。
 図21に示す新規経路情報RINは、複数の通過位置WP1、WP2、・・・WP7と、複数のリンクLK1、LK2、・・・LK6とを含む。通過位置WP3、WP4、WP5及びリンクLK3、LK4が特定区間SCである。通過位置WP3、WP5が、特定区間位置SPt1、SPt2となる。図22に示すように、リンクLKa、LKb、LKcが、それぞれ傾きSLPa、SLPb、SLPc(%)を有している。傾きSLPa、SLPb、SLPcを区別しない場合、単に傾きSPLという。隣接するリンク同士の傾きSPL(%)の差が所定の範囲内にある場合に、勾配が同一であると判定される。本実施形態においては、例えば、それぞれのリンクLKa、LKb、LKcの傾きSLPを5段階のレベルに分類し、レベルが同一であるものを勾配が同一であるとする。図23に示すように、レベル1は、傾きSLPが-a(%)未満、レベル2は傾きSLPが-a(%)以上b(%)未満、レベル3は傾きSLPがb(%)以上c(%)以下、レベル4は傾きSLPがc(%)よりも大きくd(%)以下、レベル5は傾きSLPがd(%)よりも大きい。a、b、c、dの大きさは、特に限定されない。勾配の同一は、図2に示す管理側処理装置12の勾配解析部12bによって判定される。経路解析部12eは、勾配解析部12bの判定結果に基づいて、特定区間SCを作成する。
 図24に示すように、隣接するリンクLKaとリンクLKbとの方位差β(度)が所定角γ以内である場合に、隣接するリンクLKaとリンクLKbとは同一の方向であると判断される。本実施形態において、所定角γは30度であるが、これに限定されるものではない。リンクLKa及びリンクLKbの方位は、それぞれのリンクの両端に存在する一対の通過位置WPa、WPb及び通過位置WPb、WPcの座標から求められる。
 本実施形態において、経路解析部12eは、ノードとしての通過位置WP1、WP2、・・・WP7に接続しているリンクLK1、LK2、・・・LK6の数に基づいて交差点を抽出して、新たな経路情報としての新規経路情報RINを生成する。具体的には、経路解析部12eは、3個以上のリンクが接続している1個の通過位置を交差点として抽出する。例えば、図21に示す例では、通過位置WP3に3個のリンクLK2、LK3、LK6が接続している。このため、経路解析部12eは、通過位置WP3を交差点として抽出する。図21に示す例では、リンクLK2、LK3、LK4はいずれも方位差が所定値以内であり、勾配も同一であるが、通過位置WP3が交差点であるため、通過位置WP3、WP4、WP5及びリンクLK3、LK4が特定区間SCとなる。このような方法により、ステップS120において、新規経路情報RINに特定区間SCが新規に作成される。
 その後、ステップS113において、経路解析部12eは、作成された特定区間SCを集計する。例えば、特定区間SC毎にダンプトラック20の走行回数、走行時間及び稼働情報のうち、少なくともいずれか1つが集計される。
 図25は、複数の経路情報CSa、CSb、CScにおいて、同一の通過位置WPを統合しない状態を示す図である。図25に示す例において、経路情報CSaは、通過位置WPa1、WPa2、WPa3、WPa4、WPa5を含み、経路情報CSbは、通過位置WPb1、WPb2、WPb3、WPb4、WPb5を含み、経路情報CScは、通過位置WPc1、WPc2、WPc3、WPc4を含む。通過位置WPa2、WPb2は同一の位置であり、通過位置WPa3、WPb3、WPc2は同一の位置であり、通過位置WPa4、WPb4、WPc3は同一の位置である。
 同一の通過位置WPを統合しない場合、それぞれの経路情報CSa、CSb、CScにおいて同一の区間であっても異なる経路と判断されて、例えば、ダンプトラック20の稼働情報はそれぞれの経路情報CSa、CSb、CSc毎に集計される。このため、同一の区間の稼働情報を合算して集計することができない。また、同一の区間を走行したダンプトラック20の状態を比較したい場合、それぞれの経路情報CSa、CSb、CScから同一の区間における稼働情報を抽出して比較する必要があるため、処理に手間を要する可能性がある。
 図26は、複数の経路情報CSa、CSb、CScにおいて、同一の通過位置WPを統合した状態を示す図である。本実施形態では、前述したように、複数の経路情報CSa、CSb、CScの間において同一となる通過位置WPa2、WPb2、通過位置WPa3、WPb3、WPc2、通過位置WPa4、WPb4、WPc3を、それぞれ通過位置WPi1、通過位置WPi2、通過位置WPi3に統合する。このため、本実施形態においては、同一の区間の稼働情報を合算して集計することができる。その結果、ダンプトラック20の稼働状況を解析するにあたっては、より詳細に、かつ精度の高い解析が実現できる。また、本実施形態においては、同一の区間を走行したダンプトラック20の状態を比較したい場合には、統合された同一の区間における稼働情報を抽出すればよいので、容易に比較することができる。
 図27及び図28は、特定区間SCの集計を説明するための図である。既登録経路が増加すると、通過位置WPに連結するリンクLKも増加する可能性がある。その結果、交差点が増えることになる。このため、本実施形態では、経路解析部12eが、定期的、例えば、一週間に一回又は一月に一回程度、特定区間SCの再計算を実行する。
 図27に示す例において、既登録経路としての経路情報CSaに、通過位置WPa1、WPa2、WPa3、WPa4及びリンクLKa1、LKa2、LKa3を含む特定区間SC1が作成されている。また、既登録経路としての経路情報CSbは、通過位置WPb1、WPb2、WPb3、WPb4及びリンクLKb1、LKb2、LKb3を含んでいる。経路情報CSbは、リンクLKb1とリンクLKb2とで方位差が所定値を超えているため、通過位置WPb2を境に、特定区間SC2と特定区間SC3とが作成されている。
 図27に示す例においては、経路情報CSaの通過位置WPa2と経路情報CSbの通過位置WPb2とが同一である。すると、両者には3個のリンクLKa1、LKa2、LKb1が接続していることになるので、この部分は交差点である。したがって、経路解析部12eは、特定区間SCを再計算することにより、図28に示すように、経路情報CSa、CSbで同一の通過位置WPa2、WPb2、通過位置WPa3、WPb3及び通過位置WPa4、WPb4をそれぞれ統合して通過位置WPi2、WPi3、WPi4とする。そして、経路解析部12eは、3個のリンクLKa1、LKa2、LKb1が接続する通過位置WPi2を交差点であるとして、この部分で特定区間SCを分割する。
 その結果、経路情報CSa、CSbからは、通過位置WPi2、WPi3、WPi4及びリンクLKi1、LKi2を含む特定区間SC2と、通過位置WPb1、WPi2及びリンクLKb1を含む特定区間SC3と、通過位置WPa1、WPi2及びリンクLKa1を含む特定区間SC4とが再作成される。このように、本実施形態では、経路解析部12eが定期的に特定区間SCを再作成するので、実際の走行経路に即した特定区間SCを得ることができる。
(第1変形例)
 本実施形態の第1変形例に係る鉱山機械の管理方法の処理手順を説明する。第1変形例に係る鉱山機械の管理方法は、図1に示す管理システム1、例えば、図2に示す管理装置10が実現する。第1変形例に係る鉱山機械の管理方法は、候補の経路を抽出してから、候補の経路毎に通過位置WPの一致判定を実行した後、走行距離の判定を実行する。具体的には、図6に示すフローチャートにおいて、管理側処理装置12は、ステップS105及びステップS106の後、ステップS106において肯定(Yes)のとき、ステップS109及びステップS110を実行する。ステップS110において肯定(Yes)のとき、次に、管理側処理装置12は、ステップS107及びステップS108を実行し、ステップS108において肯定(Yes)のとき、ステップS111を実行する。
 本変形例において、経路判定部12aは、ステップS107における実走行経路CSrの往路CSr1の走行距離を計算するにあたって、走行開始位置SPrからの所定半径RD分の距離及び積込位置LPrからの所定半径RL分の距離を除外する。また、経路判定部12aは、実走行経路CSrの復路CSr2の走行距離を計算するにあたって、排土位置DPrからの所定半径RD分の距離及び積込位置LPrからの所定半径RL分の距離を除外する。
(第2変形例)
 本実施形態の第2変形例に係る鉱山機械の管理方法の処理手順を説明する。第2変形例に係る鉱山機械の管理方法は、図1に示す管理システム1、例えば、図2に示す管理装置10が実現する。第2変形例に係る鉱山機械の管理方法は、まず、既存の通過位置WPに対して一致判定をしてから、積込位置LP及び排土位置DPの一致判定及び経路の候補を検索する。その後に、候補コースに対して経路毎の通過位置WPの一致判定を実行する。
 具体的には、図6に示すフローチャートにおいて、管理側処理装置12は、ステップS102の次に、ステップS115を実行する。このとき、経路判定部12aは、ステップS115の処理を実行することによって抽出された、実走行経路CSrと一致する既存の通過位置WPを、図2に示す管理側記憶装置13のワークスペースに一時的に記憶させる。
 次に、管理側処理装置12は、ステップS103、ステップS104、ステップS105及びステップS106をこの順に実行する。そして、管理側処理装置12は、ステップS106において肯定(Yes)のとき、ステップS109及びステップS110を実行し、ステップS110において肯定(Yes)のとき、次に、ステップS107及びステップS108を実行する。なお、管理側処理装置12は、ステップS106を実行し、ステップS106において肯定(Yes)のとき、次に、ステップS107及びステップS108を実行し、ステップS108において肯定(Yes)のとき、その次に、ステップS109及びステップS110を実行してもよい。本変形例において、ステップS109での通過位置WPの補正は行われない。ステップS109において、経路判定部12aは、ステップS115で抽出され、かつ前記ワークスペースに記憶された、実走行経路CSrと一致する既存の通過位置WPと、候補となる既登録経路CSの通過位置WPとの一致を判定することになる。
 本変形例は、実走行経路CSrの位置情報PIが既登録経路CSの通過位置WP、すなわち既存の通過位置WPに一致しているか否かが判定されてから(S115)、一致している実走行経路CSrの位置情報PIと候補となる既登録経路CSの通過位置WPとの一致が判定される(S109)。
 このように、ステップS115をステップS109の前に実行することにより、多数存在する実走行経路CSrの位置情報PIの中から、既存の通過位置WPと一致するものが抽出される。ステップS109において、経路判定部12aは、実走行経路CSrと一致する既存の通過位置WPに対してのみ、既登録経路CSの通過位置WPとの一致を判定すればよい。このため、本変形例は、先に既存の通過位置WPに対して一致判定をしてから、候補コースに対して一致判定をするので、候補コースの数が多い場合に、処理時間及びハードウェアの負荷を低減できる。
 以上、本実施形態においては、既登録経路CSの経路情報に含まれる複数の通過位置WPと、実走行経路CSrに含まれる複数の位置情報PIとが少なくとも用いられて、実走行経路CSrが既登録経路CSと同一であるか否かが判定される。このとき、本実施形態は、両者の間で走行開始位置と、積込位置と、排土位置とが一致すること、実走行経路CSrの位置情報と一致する通過位置WPが所定の割合以上であること及び既登録経路CSの走行距離と実走行経路CSrの走行距離との差が所定の範囲内である場合に、実走行経路CSrは既登録経路CSと同一であると判定する。このようにすることで、ダンプトラック20が走行した経路を区別して特定する際の精度を向上させることができる。また、本実施形態は、実走行経路CSrの位置情報と一致する通過位置WPが所定の割合以上であること及び既登録経路CSの走行距離と実走行経路CSrの走行距離との差が所定の範囲内であることを同一の条件としているので、給油又は寄り道等をしたことにより既登録経路CSと異なった場合の実走行経路CSrを区別することができる。本実施形態において、複数の位置情報PIを含む実走行経路CSrの周囲における所定範囲に存在する既登録経路CSの経路情報を比較すれば、広い鉱山の全域に存在するすべての既登録経路CSの経路情報と比較する必要がなくなる。その結果、ハードウェアの負荷を軽減することができるので好ましい。
 また、本実施形態は、通過位置WPの周囲における所定範囲に位置情報PIが存在するときに、通過位置WPと位置情報PIとが一致したと判定し、さらに、通過位置WPの周囲における所定範囲内に存在する位置情報PIを用いて通過位置WPを補正する。このようにすることで、本実施形態は、同一の通過位置WPを通過したダンプトラック20の走行回数が増加するにしたがって、通過位置WPの誤差を小さくすることができる。その結果、本実施形態は、ダンプトラック20が走行した経路を区別して特定する際の精度を向上させることができる。
 さらに、本実施形態は、積込場でダンプトラック20に積荷が積み込まれた位置、すなわち最新の積込位置の位置情報に基づいて既登録経路の積込位置を補正している。このため、積込位置が所定範囲内で移動しても、移動後の積込位置が登録される。このようにすることで、ダンプトラック20が走行した経路を区別して特定する際の精度を向上させることができる。
 また、本実施形態は、排土場DPAの代表位置、すなわち既登録経路の排土位置の周囲における所定範囲内にダンプトラック20から積荷が下ろされた排土位置DP1等の位置情報に基づいて、代表位置を補正する。このようにすることで、ダンプトラック20から積荷が下ろされる回数が増加するにしたがって、排土場DPAの代表位置の誤差を小さくすることができる。その結果、本実施形態は、ダンプトラック20が走行した経路を区別して特定する際の精度を向上させることができる。
 また、本実施形態は、既登録経路CSのノード及びリンクを含む経路情報中、互いに隣接するリンク同士の勾配差が所定値以内で、互いに隣接するリンク同士の方位差が所定値以内で、かつその間に交差点を有さない部分を特定区間SCとする。このように、本実施形態は、特定区間SCの作成において、互いに隣接するリンク同士の勾配差及び方位差のみならず、交差点の有無も用いるので、特定区間SCの作成精度が向上する。本実施形態は、このようにして作成された特定区間SCを複数の既登録経路CSから抽出することにより、特定区間SCを通過したダンプトラック20の稼働状況等を解析する際の精度を向上させることができる。
 以上、本実施形態を説明したが、前述した内容により本実施形態が限定されるものではない。例えば、位置情報と走行開始位置SP1との一致を判定する範囲SPC1、積込位置LP1との一致を判定する範囲(積込場LPA1)、排土位置DP1との一致を判定する範囲(排土場DPA1)及び通過位置WPとの一致を判定する範囲WPCの形状は、それぞれ所定半径の円として説明したが、本実施形態はこの形状に限定されない。例えば、それぞれの形状は円以外、例えば、楕円、矩形、多角形又は所定の大きさの領域を有する自由形状等であってもよい。また、排土位置DP0、DP1の近傍、積込位置LP1の近傍及び通過位置WPの近傍に、新たな通過位置WPを作成しないようにそれぞれ設けた通過位置除外領域の形状は、それぞれ所定半径の円として説明した。しかし、本実施形態はこのような形状に限定されない。それぞれの形状は、円以外の形状、例えば楕円、矩形、多角形又は所定大きさの領域を有する自由形状等であってもよい。さらに、本実施形態に係る鉱山機械の管理方法を実現するための手順は、本実施形態のフローチャートに記載した手順のみに限定されるものではなく、同一の作用効果が得られる場合には手順を変更してもよい。
 前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。本実施形態において、鉱山機械を操作する主体はオペレータであるか管理システムであるかは問わないが、有人の鉱山機械を対象とした場合、複数のオペレータ間における運転技術の比較又はオペレータの勤怠管理等に対して有効である。また、本実施形態は、管理システムが鉱山機械が走行した経路特定処理を実行したが、鉱山機械に搭載された車載の処理装置が経路特定処理を実行してもよい。
1 鉱山機械の管理システム(管理システム)
4 積込機
10 管理装置
12 管理側処理装置
12a 経路判定部
12b 勾配解析部
12c 領域特定部
12d 経路情報作成部
12e 経路解析部
13 管理側記憶装置
14CS 既登録経路データベース
14I 稼働情報データベース
14RD LP/DPデータベース
14SC 経路別特定区間データベース
14WP 経路別WPデータベース
18 管理側無線通信装置
20 ダンプトラック
21 車両本体
24 サスペンションシリンダー
26 圧力センサ
29 位置情報検出装置
CS 既登録経路
CSr 実走行経路
LK リンク
PI 位置情報
SC 特定区間
WP 通過位置

Claims (14)

  1.  鉱山で積荷を積載して搬送する鉱山機械に搭載されて、前記鉱山機械の位置に関する情報である位置情報を求める位置情報検出部と、
     前記鉱山機械が所定の第1位置を出発し積荷を積み込む積込位置としての第2位置を経て積荷を下ろす排土位置としての第3位置まで移動するときの経路である第1の経路の経路情報を既登録経路として記憶する記憶部と、
     前記鉱山機械の稼働中に前記位置情報検出部が求めた複数の前記位置情報から得られた位置情報群と、前記第1の経路の経路情報に含まれる前記積込位置又は前記排土位置とが一致するか否かを判定し、一致すると判定したとき、前記記憶部に記憶されている前記積込位置又は前記排土位置を、前記一致したと判定した前記位置情報群の位置情報に基づいて補正する領域特定部と、
     を含む、鉱山機械の管理システム。
  2.  前記領域特定部は、前記排土位置を補正する場合には、前記位置情報群のうち、前記既登録経路の排土位置の周囲における第1の所定範囲内に前記鉱山機械から積荷が下ろされた位置の位置情報に基づいて、前記既登録経路の排土位置を補正する、請求項1に記載の鉱山機械の管理システム。
  3.  前記補正は、前記積荷が下ろされた位置と前記既登録経路の排土位置との中点を、前記既登録経路の補正後の排土位置とすることである、請求項2に記載の鉱山機械の管理システム。
  4.  前記領域特定部がする前記積込位置の補正は、前記位置情報群のうち、前記既登録経路の積込位置の周囲における第2の所定範囲内で前記鉱山機械に前記積荷が積み込まれた位置の位置情報を、前記既登録経路の補正後の積込位置とすることである、請求項1に記載の鉱山機械の管理システム。
  5.  前記鉱山機械が移動するときの経路の所定距離毎に存在する複数のノード及び隣接する前記ノード同士を接続するリンクを含む経路情報を生成する経路情報作成部を有し、
     前記経路情報作成部は、
     前記既登録経路の排土位置の周囲における排土側の前記第1の所定範囲よりも大きい、前記既登録経路の排土位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に前記ノードを作成する、請求項2又は請求項3に記載の鉱山機械の管理システム。
  6.  前記鉱山機械が移動するときの経路の所定距離毎に存在する複数のノード及び隣接する前記ノード同士を接続するリンクを含む経路情報を生成する経路情報作成部を有し、
     前記経路情報作成部は、
     前記既登録経路の積込位置の周囲における積込側における前記第2の所定範囲よりも大きく、かつ前記登録経路の積込位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に前記ノードを生成する、請求項4に記載の鉱山機械の管理システム。
  7.  前記経路情報作成部は、
     前記積込場の位置が、所定の期間予め定めた所定の範囲内にある場合、前記所定の期間中は前記積込場が同一であるとする、請求項4に記載の鉱山機械の管理システム。
  8.  鉱山で積荷を積載して搬送する鉱山機械の位置に関する情報である位置情報を求め、
     前記鉱山機械が所定の第1位置を出発し積荷を積み込む積込位置としての第2位置を経て積荷を下ろす排土位置としての第3位置まで移動するときの経路である第1の経路の経路情報を既登録経路とし、
     前記鉱山機械の稼働中に求めた複数の前記位置情報から得られた位置情報群と、前記第1の経路の経路情報に含まれる前記積込位置又は前記排土位置とが一致するか否かを判定し、
     一致すると判定したとき、前記積込位置又は前記排土位置を、前記一致したと判定した前記位置情報群の位置情報に基づいて補正する、鉱山機械の管理方法。
  9.  前記排土位置を補正する場合には、
     前記位置情報群のうち、前記既登録経路の排土位置の周囲における第1の所定範囲内に前記鉱山機械から積荷が下ろされた位置の位置情報に基づいて、前記既登録経路の排土位置を補正する、請求項8に記載の鉱山機械の管理方法。
  10.  前記補正において、前記積荷が下ろされた位置と前記既登録経路の排土位置との中点を、前記既登録経路の補正後の排土位置とする、請求項9に記載の鉱山機械の管理方法。
  11.  前記積込位置の補正において、
     前記位置情報群のうち、前記既登録経路の積込位置の周囲における第2の所定範囲内で前記鉱山機械に前記積荷が積み込まれた位置の位置情報を、前記既登録経路の補正後の積込位置とする、請求項8に記載の鉱山機械の管理方法。
  12.  前記補正をした後に、
     前記既登録経路の排土位置の周囲における排土側における第1の所定範囲よりも大きい、前記既登録経路の排土位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に、前記鉱山機械が移動したときの経路の所定距離毎に存在するノードを作成する、請求項9又は請求項10に記載の鉱山機械の管理方法。
  13.  前記補正をした後に、
     前記既登録経路の積込位置の周囲における積込側における第2の所定範囲よりも大きい、前記既登録経路の積込位置の周囲における所定の大きさの通過位置除外領域の内側を除く領域に、前記鉱山機械が移動したときの経路の所定距離毎に存在するノードを生成する、請求項11に記載の鉱山機械の管理方法。
  14.  前記既登録経路の積込位置を求めるにあたって、
     前記積込場の位置が、所定の期間予め定めた所定の範囲内にある場合、前記所定の期間中は前記積込場が同一であるとする、請求項11に記載の鉱山機械の管理方法。
PCT/JP2013/073419 2013-08-30 2013-08-30 鉱山機械の管理システム及び鉱山機械の管理方法 WO2015029236A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/073419 WO2015029236A1 (ja) 2013-08-30 2013-08-30 鉱山機械の管理システム及び鉱山機械の管理方法
US14/350,606 US9568322B2 (en) 2013-08-30 2013-08-30 Mining machine management system and mining machine management method
JP2013558246A JP5647362B1 (ja) 2013-08-30 2013-08-30 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
CN201380003444.4A CN104641393B (zh) 2013-08-30 2013-08-30 矿山机械管理系统以及矿山机械管理方法
CA2848840A CA2848840C (en) 2013-08-30 2013-08-30 Mining machine management system and mining machine management method
AU2013394858A AU2013394858B2 (en) 2013-08-30 2013-08-30 Mining machine management system and mining machine management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073419 WO2015029236A1 (ja) 2013-08-30 2013-08-30 鉱山機械の管理システム及び鉱山機械の管理方法

Publications (1)

Publication Number Publication Date
WO2015029236A1 true WO2015029236A1 (ja) 2015-03-05

Family

ID=52139276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073419 WO2015029236A1 (ja) 2013-08-30 2013-08-30 鉱山機械の管理システム及び鉱山機械の管理方法

Country Status (6)

Country Link
US (1) US9568322B2 (ja)
JP (1) JP5647362B1 (ja)
CN (1) CN104641393B (ja)
AU (1) AU2013394858B2 (ja)
CA (1) CA2848840C (ja)
WO (1) WO2015029236A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243923B2 (en) * 2013-08-30 2016-01-26 Komatsu Ltd. Mining machine management system and mining machine management method
DE102015010726A1 (de) * 2015-08-17 2017-02-23 Liebherr-Werk Biberach Gmbh Verfahren zur Baustellenüberwachung, Arbeitsmaschine und System zur Baustellenüberwachung
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
US10288718B2 (en) 2017-08-22 2019-05-14 Caterpillar Inc. System and method for detection of loading location
JP6946227B2 (ja) * 2018-03-29 2021-10-06 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
US11226627B2 (en) 2019-06-20 2022-01-18 Caterpillar Global Mining Llc System for modifying a spot location
US12012094B2 (en) * 2020-12-07 2024-06-18 Ford Global Technologies, Llc Detecting vehicle presence at a site
CN113737886B (zh) * 2021-09-26 2023-02-17 广西柳工机械股份有限公司 遥控装载机卸料辅助系统和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205868A (ja) * 1999-01-13 2000-07-28 Nissan Motor Co Ltd 走行履歴記憶装置
JP2013105278A (ja) * 2011-11-11 2013-05-30 Komatsu Ltd 鉱山機械の管理システム及び鉱山機械の管理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214711A (ja) * 1988-02-23 1989-08-29 Toshiba Corp ナビゲーション装置
US5838562A (en) * 1990-02-05 1998-11-17 Caterpillar Inc. System and a method for enabling a vehicle to track a preset path
JP2888696B2 (ja) 1992-04-14 1999-05-10 新キャタピラー三菱株式会社 運行シミュレーションシステム
JPH08263138A (ja) * 1995-03-24 1996-10-11 Komatsu Ltd 無人ダンプ走行コースデータ作成方法及び作成装置
US5774824A (en) * 1995-08-24 1998-06-30 The Penn State Research Foundation Map-matching navigation system
JP4082831B2 (ja) * 1999-10-26 2008-04-30 株式会社小松製作所 車両の管制装置
US8099217B2 (en) * 2007-08-31 2012-01-17 Caterpillar Inc. Performance-based haulage management system
JP5422111B2 (ja) 2007-11-06 2014-02-19 三菱重工業株式会社 走行経路検出用の車載器
WO2009065448A1 (de) 2007-11-24 2009-05-28 Rag Aktiengesellschaft Verfahren zur abwicklung von transportvorgängen im untertägigen bergbau
US8868302B2 (en) * 2010-11-30 2014-10-21 Caterpillar Inc. System for autonomous path planning and machine control
JP5535176B2 (ja) 2011-11-04 2014-07-02 株式会社小松製作所 鉱山機械の動態管理システム
US8972103B2 (en) * 2013-03-19 2015-03-03 Ford Global Technologies, Llc Method of building and using local map of vehicle drive path

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205868A (ja) * 1999-01-13 2000-07-28 Nissan Motor Co Ltd 走行履歴記憶装置
JP2013105278A (ja) * 2011-11-11 2013-05-30 Komatsu Ltd 鉱山機械の管理システム及び鉱山機械の管理方法

Also Published As

Publication number Publication date
US9568322B2 (en) 2017-02-14
JPWO2015029236A1 (ja) 2017-03-02
CN104641393B (zh) 2016-08-17
CN104641393A (zh) 2015-05-20
AU2013394858A1 (en) 2015-03-19
US20150066352A1 (en) 2015-03-05
AU2013394858B2 (en) 2016-02-11
CA2848840C (en) 2017-07-11
JP5647362B1 (ja) 2014-12-24
CA2848840A1 (en) 2015-02-28

Similar Documents

Publication Publication Date Title
JP5662597B1 (ja) 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
JP5731021B1 (ja) 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
JP5662596B1 (ja) 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
JP5647362B1 (ja) 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
JP5638708B1 (ja) 鉱山機械の管理システム及び管理方法
JP5695217B1 (ja) 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
JP5944573B2 (ja) 鉱山機械の管理システム及び鉱山機械の管理方法
WO2013069370A1 (ja) 鉱山機械の管理システム及び鉱山機械の管理方法
JP5898273B2 (ja) 鉱山機械の管理システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013558246

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350606

Country of ref document: US

Ref document number: 2848840

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013394858

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892586

Country of ref document: EP

Kind code of ref document: A1