WO2015027793A1 - 反式踏板机构 - Google Patents

反式踏板机构 Download PDF

Info

Publication number
WO2015027793A1
WO2015027793A1 PCT/CN2014/083547 CN2014083547W WO2015027793A1 WO 2015027793 A1 WO2015027793 A1 WO 2015027793A1 CN 2014083547 W CN2014083547 W CN 2014083547W WO 2015027793 A1 WO2015027793 A1 WO 2015027793A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
brake
acceleration
throttle
vehicle
Prior art date
Application number
PCT/CN2014/083547
Other languages
English (en)
French (fr)
Inventor
邓志
王克智
赵澄繁
李国岐
Original Assignee
Deng Zhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deng Zhi filed Critical Deng Zhi
Publication of WO2015027793A1 publication Critical patent/WO2015027793A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/06Disposition of pedal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/44Controlling members actuated by foot pivoting

Definitions

  • the present invention relates to an active safety device in a motor vehicle handling system.
  • the first category is the separation of hands and feet. Change the throttle control from foot to manual. Since the foot control brakes the throttle, it is impossible to accidentally step on the accelerator when braking. However, when the vehicle turns, it is also necessary to change the speed at any time. When turning, the steering wheel is often operated by both hands, and then one hand is taken to adjust the throttle. There will be security risks. Even if you are driving in a straight line, you can control the throttle in one hand for a long time. Although such a solution can fundamentally solve the problem of wrongly stepping on the throttle, it can also create new security problems, which limits its application prospects.
  • the second type of solution is to install a mechanical sensing device on the accelerator pedal, similar to the locking mechanism of the seat belt.
  • the sensing mechanism does not work when the driver steps on the throttle normally.
  • the mechanism immediately locks the throttle pedal or disengages the throttle.
  • the brake device is activated urgently to make the car stop.
  • the biggest difficulty in implementing this solution is that it is difficult to determine the critical value of normal stepping on the throttle and abnormally stepping on the throttle. For most people, there is often a wide overlap between the pedaling force of the accelerator pedal during emergency acceleration and the pedaling force of the brake pedal during emergency braking.
  • This intensity overlap zone also vary from person to person and from time to time, and can change at any time.
  • the individualized difference of each vehicle driver makes it impossible to uniformly set the triggering parameters of the sensing device before leaving the factory. For each specific driver, if the pre-set trigger parameter is too small, it may happen that the driver wants to accelerate the overtaking but gets a sudden brake. If it is too big, it will lose the protection function of 'wrong stepping throttle'.
  • More third-class schemes propose ECUs with electronic throttle
  • the electronic sensor on the pedal is used to identify the pedaling force.
  • the computer intelligently judges the data stored in the past and the real-time information of the vehicle's running condition, and then sends out the last command of refueling or braking.
  • the computer may personally adapt and judge the usage habits of thousands of motorists, the accuracy rate is unlikely to reach 100%.
  • the scheme has a false positive rate of less than one percent.
  • the invention provides a reverse pedal mechanism
  • the invention aims to solve the technical problem that the driver mistakes the accelerator pedal when the brake is caused by the defect of the vehicle accelerator pedal design in the prior art.
  • the trans pedal mechanism proposed by the present invention subverts the traditional throttle control mode, and changes the control mode to: the pedal is stepped down to decelerate, and the upward lift is accelerated. Since its accelerated operating direction is completely opposite to that of the existing vehicle, it is called a 'reverse pedal mechanism'. (hereinafter referred to as: the reverse pedal) Since the reverse pedal (retracting) operation direction of the counter pedal and the deceleration (brake) operation direction of the brake pedal are the same, they are all stepped down. The acceleration (refueling) operation direction is the same as the operation direction of the brake pedal release deceleration (braking), and both are lifted up. Therefore, from the principle of structural design, the possibility of misoperation of "throttle brake" is completely eradicated.
  • the accelerator pedal and the brake pedal are combined into one mechanism, and the seamless operation of the acceleration operation and the brake (brake) operation is realized.
  • the safety performance is further advanced.
  • the accelerator pedal and the brake pedal of the automobile are in the same movement direction, one is generated.
  • the effect of acceleration, the effect of generating a deceleration, the opposite effect of the direction is the opposite of the mechanical structure of the throttle. Make car driving easier and easier.
  • the throttle and brake control pedals of a motor vehicle are an interface for switching and inputting control signals. It is an interface for the driver to transfer the speed control information to the vehicle with his foot. There are only two possible directions for the driver's foot to express the intention, stepping and lifting.
  • the pedal mechanism converts the stepping and lifting motion into a control command and then transmits it to the relevant actuator. How to conduct is mechanical wire, tie rod or electronic throttle wire, which is not important. What is important is the conversion mode before conduction. What is the instruction to convert the driver's lift and lower stepping action into instructions?
  • the practical effect is as follows: First, the possibility of accidentally stepping on the brakes is completely eliminated. Second, the brakes and the throttle are seamlessly connected. Third, the acceleration, deceleration and braking of the vehicle can be controlled by one pedal. This design change can improve vehicle handling and reduce traffic accidents to avoid casualties, with obvious social benefits.
  • the reverse pedal is used in various types of throttle and electronic throttle vehicles; there are no technical obstacles to installing and using on various manual transmissions and automatic transmission vehicles.
  • the accelerator pedal and brake pedal on the electric vehicle can also be replaced by the same. The breadth of applications and potential needs are considerable.
  • Figure 1 is a front elevational view of one embodiment of a trans-pedal on a large vehicle.
  • Figure 2 is a side view. image 3 It is an exploded view of the main parts and can also describe the assembly relationship between them.
  • Figure 4 is mainly used to enlarge and represent the bump 31 and the bump 32.
  • Figure 5 shows the actual assembly position of the internal parts of the trans-pedal.
  • Figure 6 And Fig. 7 is an embodiment in which the active power source of the reverse pedal uses a stepping motor or a rotating electromagnet.
  • Figure 8 is a structural view of a torsion spring replaced by a planar scroll spring.
  • Figure 9 is a control circuit diagram of the reverse pedal.
  • Figure 10 It is a schematic diagram of the plane mechanism used to simulate and express the activation principle of the trans-pedal.
  • Figure 10a is an expression of the initial state.
  • Figure 10b is an expression of the activation state.
  • Figure 11 It is a coordinate graph used to compare the characteristics of the trans pedal and the conventional pedal.
  • the component tag names in Figures 1 through 10 are as follows:
  • the frame portion of the reverse pedal is composed of a left bracket 10, a right bracket 21 and a cross bracket 13.
  • Left bracket 10 Welded into the horizontal bracket 13 to facilitate assembly, the right bracket 21 and the cross bracket 13 are bolted and fixed.
  • Brake shaft 7 Mounted on left bracket 10 and right bracket 21 The two coaxial holes are free to rotate.
  • the auxiliary pedal 6 is engaged with the splined area at the left end of the brake shaft 7 through the spline hole at the front end, and the bolt 25 is clamped and fixed.
  • the lower end of the swing arm 28 passes through the pin 29 Hinged with the pedal 1.
  • the upper end of the swing arm 28 is welded to the swing arm bushing 26 and the throttle wobble plate 17 fitted on the brake shaft 7 as a unitary member, and can be rotated together around the brake shaft 7.
  • Brake shaft The 7 is also equipped with an accelerating wobble plate 20 that can be freely rotated.
  • the spacer 30, which is mounted between the throttle disc 17 and the accelerating disc 20, is axially positioned.
  • Throttle cable 14 is welded to the cross bracket 13
  • the upper throttle cable bracket 15 is connected to the throttle disk 17 and the other end is connected to the engine throttle 43 control throttle (see also Figure 10). Acceleration cable from vacuum server 22 18
  • the acceleration cable holder 16 soldered to the cross bracket 13 is connected to the acceleration wobble plate 20.
  • the throttle cable 14 and the acceleration cable 18 The winding direction in the mounting groove is reversed.
  • the accelerating wobble plate 20 and the throttle wobble plate 17 can transmit torque to each other by an accelerating spring 19 mounted between them.
  • Vacuum tube on vacuum control solenoid valve 24 23 The other end is connected to K in the intake manifold of the car engine (see also Figure 10).
  • a vacuum pump is required.
  • pedal The microswitches 2 and 3 on 1 are normally open switches, which activate the vacuum servo 22 via the vacuum control solenoid valve 24 and activate the refueling function of the pedal 1.
  • the circuit of the vacuum control solenoid valve 24 is turned on, and the vacuum servo 22 is put into operation.
  • the circuit of the vacuum control solenoid valve 24 is cut off, and the vacuum servo 22 is stopped.
  • the pedal 1 pushes the swing arm 28 While rotating downward, the pedal 1 will also move forward.
  • the functions of the pulleys 4 and 5 are to keep the tail of the pedal 1 in contact with the floor and reduce the resistance when the pedal 1 moves back and forth (pulleys 4 and 5)
  • the design makes the throttle control of large vehicles lighter and less laborious, and can be omitted for small vehicles.
  • the initial state of the counter pedal is adjusted as follows: When the driver's foot does not simultaneously trigger the microswitches 2 and 3 on the pedal 1 When the trans pedal is not activated, it is in the initial state. At this time, the front end of the sub-pedal 6 is pressed against the limit cam 33 on the left bracket 10 by the pre-assembled torque of the sub-pedal spring 11, so that the sub-pedal 6 and the brake shaft 7 is positioned at the same time.
  • the rotation limit cam 33 can fine tune the positioning point of the sub-pedal 6 .
  • the auxiliary brake ejector 9 hinged to the auxiliary pedal 6 to adjust its length at this positioning point So that it just relaxes the brakes and leaves a little safety clearance.
  • the pre-assembled torsion of the swing arm spring 12 causes the swing arm 28 to have a downward rotation, but the bumps 31 on the brake shaft 7 and the projections on the swing arm bushing 26 When 32 is in contact, the tendency of the swing arm bushing 26 to rotate downward is blocked by the brake shaft 7. Due to the secondary pedal spring 11 and the swing arm spring 12 The preloaded torque is reversed and the stiffness is greater than the latter. Therefore, the swing arm bushing 26 is positioned by the brake shaft 7 together with the swing arm 28 and the throttle wobble plate 17. Adjust the throttle cable at this position 14 The length of the throttle swing plate 17 just relaxes the throttle cable 14 to ensure that the engine can run at idle speed.
  • Activation status of the trans pedal When the driver's foot presses the pedal 1, if his foot is on the pedal 1, it also covers the micro switch 2 and 3, the pedal 1 will automatically lift up and enter the active state. This is because the microswitches 2 and 3 are turned on at the same time to close the circuit of the vacuum control solenoid valve 24, so that the vacuum control solenoid valve 24 Enter the conduction state.
  • the vacuum in the engine intake manifold is introduced into the vacuum servo 22 by the vacuum tube 23, and the vacuum diaphragm 42 of the vacuum servo 22 tensions the acceleration cable 18 (see also Figure 10).
  • the acceleration cable 18 pulls the acceleration wobble plate 20 to rotate, and the acceleration wobble plate 20 drives the throttle wobble plate 17 through the acceleration spring 19 to rotate in the direction of tightening the throttle wire 14.
  • the design tension of the 22 and the torsional stiffness of the acceleration spring 19 are much larger than the combined torque of the swing arm spring 12 and the throttle return spring 44 (see also Fig. 10). While tightening the throttle cable 14 to increase the engine speed, the swing arm 28 and the pedal 1 are also lifted up to enter the so-called active state.
  • the plane mechanism diagram in Figure 10 is used to analyze the activation principle of the trans-pedal.
  • the two torsion springs (the acceleration spring 19 and the swing arm spring 12) are all represented by the equivalent tension springs in Fig. 10.
  • Acceleration spring 19, acceleration cable 18, throttle cable 14 Together, we compare them to a rope here.
  • One end of the rope is the g-point at the left end of the acceleration spring 19, and the g-point is subjected to the pulling force generated by the vacuum servo 22.
  • the acceleration cable 18 The right end of the swing arm 28 is connected to the h point.
  • This h point is also the force of the driver's foot on the pedal 1 and the swing arm spring 12 and the throttle return spring on the end of the throttle cable 14 44
  • the other end of the rope is pulled to the right by the throttle return spring 44.
  • Shown in Figure 10a is the initial state of the counter pedal, which is also the idle state of the engine.
  • k At the point of the intake of the engine throttle valve 43, the vacuum servo 22 has zero tension at the g point.
  • the acceleration spring 19 is in an unstressed state. Limited by the tension of the swing arm spring 12, the pedal 1 At the lowest position, the engine's throttle valve 43 is also closed under the pull of the throttle return spring 44, so the engine maintains idle operation.
  • Figure 10 b It indicates the activation state of the reverse pedal and the position of the maximum engine speed.
  • the so-called activation is that the pedal 1 automatically lifts up to do the transmission of the fueling signal.
  • Drive pedal 1 The power unit that is lifted up is the vacuum servo 22, we also call it the activation power source.
  • the vacuum control solenoid valve 24 is turned on at the k point and the vacuum servo 22
  • the vacuum path between the inner chambers, the vacuum diaphragm 42 is pulled to the left, and the acceleration cable 18 and the throttle cable 14 are pulled by the acceleration spring 19.
  • the pedal 1 The rebound force formed on the driver's foot is roughly a fixed value. This value is related to the suction force of the vacuum servo 22, and the size is determined by the diameter of the inner cavity of the vacuum servo 22.
  • the swing arm spring is also deducted 12
  • the return spring force also reduces the spring force of the throttle return spring 44 and the gravity of the swing arm 28 and the pedal 1.
  • the suction force of the vacuum servo 22 remains substantially constant throughout the acceleration process, which also makes the pedal 1
  • the rebound force to the foot is approximately the same at any position in the acceleration and deceleration stroke.
  • the acceleration cable 18 and the throttle cable 14 When the force balance at both ends changes, their length does not change. Only the two ends of the rope are displaced.
  • the pedaling force of the pedal 1 of the driver's foot changes, the vacuum diaphragm 42 of the vacuum servo 22 Displacement occurs in the inner chamber, and the acceleration cable 18 and the throttle cable 14 also move. A transmission action that generates a fueling signal or a fueling signal.
  • the acceleration spring 19 is more rigid than the vacuum servo.
  • the maximum tensile force of 22 is basically no elastic deformation during the process of refueling and oil collection.
  • the role here is just a flexible drive chain.
  • the acceleration spring 19 is stretched by the pedal 1 during acceleration and deceleration after activation.
  • the pedal 1 It will be deactivated, automatically moved down to the initial idle position, and the engine will resume idle operation. Therefore, before the driver's foot leaves the pedal 1, the activation of the pedal 1 must be terminated.
  • the brake position switch 8 It is necessary to break the power to lift the pedal 1 up when braking. And this function is controlled by the brake position switch 8 To achieve. It is a normally open switch that is connected in series with the circuit of vacuum control valve 24. In the initial state, its contact is closed by the auxiliary pedal 6 at the idle position, and at this time, the brake position switch 8 It is in the on state. Therefore, the activation action of the vacuum servo 22 is not affected.
  • the brake position switch 8 The contact is released, restoring its normally open state and shutting off the circuit of the vacuum control solenoid valve 24, causing the vacuum servo 22 to be deactivated to cancel the activation of the pedal 1.
  • the brake position switch 8 After the brake is released, the secondary pedal 6 After being pulled back to the initial idle state by the secondary pedal spring 11, the contacts of the brake position switch 8 are again recompressed to the closed state, so that the circuit of the vacuum control solenoid valve 24 is restored.
  • Figure 1 The acceleration wobble plate 20 to Fig. 5 is replaced by the accelerating gear 36; the vacuum servo 22 is replaced by a servo motor 34 fixed to the right bracket 21; the acceleration cable 18 together with the acceleration cable holder 16 was cancelled and the other parts did not change.
  • the servo motor in Figure 6 34 A motor with a locking function should be designed or used.
  • the motor shaft is equipped with a brake-like locking device that locks when the power is off and is released when energized (belonging to the mature prior art).
  • Servo motor 34 Gears on the output shaft 35
  • the acceleration gear 36 can be driven to rotate forward or reverse. And the position of the acceleration gear 36 can be locked immediately after activation.
  • the servo motor 34 in Figure 7 is driven by a worm gear. of. Since the worm gear drive 41 itself has an anti-reverse function, the self-locking design of the servo motor 34 in Fig. 7 can be omitted.
  • the servo motor drive circuit emits a pulse current to cause the gear 35 on the servo motor 34 to drive the acceleration gear 36 Turn the angle to reverse the acceleration spring 19 .
  • Acceleration spring 19 Driving the throttle disc 17 Pull the pedal 1 to activate it. Since the servo motor 34 is locked after rotation, no reversal occurs. Step on the pedal At 1 o'clock, the acceleration spring 19 will be compressed. At this time, the rebound force of the pedal 1 on the driver's foot is completely from the acceleration spring 19, when the micro switches 2 and 3 on the pedal 1 When one of the driver's feet is released, the input signal voltage of the servo motor drive circuit disappears, and the servo motor drive circuit issues a command to unlock the servo motor 34 and drive the acceleration gear.
  • the acceleration spring 19 loses the repulsive force to the pedal 1 because the fulcrum is undone, and the support arm force of the pedal 1 lifted up disappears after the swing arm spring 12 Return to the initial position. The engine also resumed idling.
  • the acceleration spring 19 It is more suitable to change the torsion spring to a flat scroll spring, as shown in Fig. 8: the outer end of the flat scroll spring 45 is fixed in the straight groove of the inner wall of the outer sleeve 46, and the inner end is fixed to the mandrel tube 47. The outer wall is in the straight slot.
  • the outer sleeve 46 is fixedly coupled (welded) to the throttle disc 17 and the mandrel tube 47 is fixedly coupled to the accelerating gear 36.
  • the planar scroll spring 45 The rigidity is such that it can drive the throttle disc 17 to the activated position with little deformation.
  • a servo motor that activates the power source 34 It can also be replaced by a hydraulic motor.
  • Other servers may also be selected depending on the specific configuration of the vehicle in which the reverse pedal mechanism is installed.
  • the active power source has a wide range of options in the prior art, electromagnets with return springs, pneumatic servos with linear motion, and hydraulic cylinder servos.
  • the principle that vacuum server 22 is replaced by other servers is simple. As long as the replacement servo has a simple linear or angular displacement drive function, it can accelerate the end of the spring 19 when activated. The point is pulled up from the dotted line p to the dotted line j, and the g point can be released back to its original position when deactivated.
  • the power source used to activate pedal 1 in the reverse pedal mechanism can have a variety of servos as options.
  • Fig. 1 For the convenience of description, we will take Fig. 1 to Fig. 5
  • the option for the vacuum server in is called 'Example A'.
  • the option of the stepper motor or rotating electromagnet in Figures 6, 7 and 8 is referred to as 'Example B'.
  • the circuit control systems of the two configurations are basically the same, 9 is a schematic diagram of a shared hybrid circuit of Embodiment A and Embodiment B. If the organization adopts the embodiment A, then Figure 9 is applicable. The lower half of the circuit (below the dotted line in the figure).
  • the servo motor drive circuit and servo relay 40 matched with the servo motor 34 are provided. It is also vacant. If Embodiment B is used, it is sufficient to simply vacate or cancel the vacuum control solenoid valve 24 in the circuit.
  • the vacuum control solenoid valve 24 Is a core component. It is actually a two-way air pressure control switch driven by an electromagnet. The vacuum tube is blocked when the power is turned off, and the inner cavity of the vacuum servo 22 is connected to the atmosphere, and the vacuum servo is closed when energized. The inner chamber and the vacuum tube are simultaneously turned on. Therefore, it is possible to directly control the activation action of the vacuum servo 22 on the pedal 1.
  • the control coil of relay 39 is microswitch 2, micro switch 3 and brake position switch 8 After the series is turned on. The contacts of relay 39 are closed.
  • the vacuum control solenoid valve 24 is turned on in series by relay 39 and push button switch 37 and pressure switch 38.
  • Pressure switch 38 It is a normally open switch that is mounted under the driver's seat. It can only be closed when the driver's weight is sensed. So for safety reasons, the driver does not sit in the driving position. , the activation function of the anti-pedal mechanism will be pressure switch 38 Automatic locking.
  • the push button switch 37 is a normally closed switch that is mounted on the dashboard or steering wheel. Used for emergency or temporary manual release of pedal 1 activation.
  • Brake position switch 8 It is a normally open switch, its function is to make the mechanism automatically cut off the control circuit of the relay 39 during the braking process, and temporarily cancel the activation state of the pedal 1.
  • Microswitch 2 and microswitch 3 mounted on pedal 1 Controlling the activation circuit in series, this design is more conducive to safety.
  • the driver's foot can only be placed on the pedal 1 with great care, so that the two microswitches 2 and 3 can be switched on at the same time. .
  • two micro switches 2 and 3 Parallel control of the activation circuit is also an option, as long as a switch is triggered, the activation action can be completed.
  • a vertical plate is added to the right side of the pedal 1.
  • a vertical switch such as switch 37 is mounted on the vertical plate.
  • w, x, y, z, four points are the output terminals of the servo motor drive circuit, v
  • the point is the spindle angle position signal feedback circuit of the servo motor 34
  • the u point is the case ground circuit of the servo motor 34.
  • the operating current flows in from point b and flows out from point d.
  • the control signal input is point a.
  • the condition of a positive voltage signal at point a is: ignition switch is closed; push button switch 37 is closed; pressure switch 38 is closed; micro switch 2 and 3 are closed; brake position switch 8 Closed.
  • the control program of the servo motor drive circuit should be set such that when the signal input terminal a produces a positive voltage signal, the servo motor drive circuit drives the servo motor 34 to activate the pedal 1
  • the direction (also the direction of refueling) is locked after turning the desired angle.
  • the servo motor drive circuit drives the servo motor 34 back to the original position.
  • the push button switch 37 also has a function of manual reset.
  • the reverse pedal mechanism is installed on a car equipped with an electronic throttle, simply cancel the throttle cable 14 and the throttle cable bracket 15 .
  • the position sensor of the prior art electronic throttle is matched with the side plane of the throttle disc 17 as a dynamic reference object of the position sensor. Because of the direction and speed of the rotation of the throttle disc 17 with the pedal 1 The action is synchronized, so the position sensor refers to the throttle signal 17 and the voltage signal generated by the pedal 1 It is also relevant. Its sensor construction and setup are basically the same as traditional electronic accelerator pedals. The only difference, the biggest difference, is that the output voltage signal is preset to the exact opposite.
  • the traditional electronic accelerator pedal outputs an idle signal at the highest position, and outputs a maximum speed signal at the lowest position, while the reverse pedal outputs a maximum speed signal at the highest position and an idle signal at the lowest position.
  • the fueling signal is output, and when it is lifted, the oil receiving signal is output.
  • the trans pedal outputs a dip signal when the pedal is depressed, and outputs a refueling signal when the pedal is raised.
  • the trans-pedal is installed on the pure electric vehicle.
  • the matching principle is the same as that of the car's electronic throttle. It is also the movable arm of the potentiometer that controls the acceleration directly on the throttle disc. 17 on. The important change is the conversion of the pedal action direction and the output signal, all opposite.
  • the vertical coordinate indicates the height of the pedal position
  • the horizontal axis to the right indicates the engine speed and the direction to the left.
  • the coordinates indicate the amount of force applied to the master cylinder of the brake master cylinder.
  • dotted line Ab is the position travel path of the conventional accelerator pedal
  • solid line cd is the refueling position travel path of the reverse pedal.
  • Solid line ef It is the brake travel path of the reverse pedal.
  • the two pedals are opposite regardless of the position and speed correspondence or the action direction and action effect.
  • the initial position and idle position of the conventional accelerator pedal are its highest position.
  • a Point and the initial position and idle position of the reverse pedal are the lowest point d of the fueling stroke.
  • the maximum speed of the engine is generated at point b at the lowest position of the conventional accelerator pedal, and the corresponding position of the counter pedal is at the highest position.
  • Point c is generated.
  • the a point of the traditional accelerator pedal and the c point of the counter pedal are the highest points, but their corresponding speeds are just the opposite, one is idle speed and the other is the highest speed.
  • the lowest point d of the oil control stroke of the two pedals b It is also the opposite.
  • the oil control effect of the downward movement of the conventional accelerator pedal is acceleration, and the upward movement is deceleration.
  • the reverse pedal mechanism is the opposite, the downward is the deceleration, and the upward is the acceleration.
  • the reverse pedal mechanism completely eliminates the possibility of stepping on the throttle from the structural and design principles.
  • the reverse pedal can be from the highest position. Point c moves down to f Point, one-stop continuous two-stage action from high speed to idle speed to excessive braking, the most direct effect is that the foot does not need to change the pedal when braking. For traditional accelerator pedals, this is almost impossible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Braking Elements And Transmission Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Mechanical Control Devices (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

一种用于操控汽车和其它车辆的,从结构原理上能够根本杜绝错踩油门现象发生的反式踏板机构。和传统油门踏板完全相反,向上抬脚是加油,向下踩是收油,收油收到怠速位置后再向下踩又可启动刹车。实现加油动作和刹车动作的无缝对接,在性能上彻底颠覆在用车辆上的传统油门踏板和刹车踏板。本发明的主要构成是:副踏板(6),踏板(1),刹车轴(7),加速弹簧(19)和激活动力源。踏板(1)上安装有常开开关(2,3)用于控制激活动力源的启动和停止。激活动力源启动工作时能通过加速弹簧(19)拉起踏板(1)执行加油动作,停止时踏板(1)自动恢复到怠速位置。踏板(1)在怠速位置上被继续踩下,就会执行刹车功能:踏板(1)带动刹车轴(7)旋转,刹车轴(7)又带动副踏板(6)推动刹车总泵顶杆(9)执行刹车动作。

Description

反式踏板机构 技术领域
本发明涉及机动车辆操控系统中的一种主动安全装置 。
背景技术
汽车自发明以来,几乎所有的系统都得到了提升和改进,但一百多年来唯一没有发生改变的地方就是刹车踏板和加速踏板(对于汽车而言加速踏板就是油门踏板,为了叙述方便起见,本文下面会经常以'油门踏板'来表述'加速踏板'的概念)。而由于这两个踏板的百年不变,地球上每年都有成百上千的人因为错踩油门而伤亡。直到现在,能够避免此类误操作的汽车还是不能出现。重新设计踏板机构,使'油门当刹车'这类误操作不再发生。有关这一目标课题,虽然有上百项技术方案获得专利授权。可迄今为止,尚没有一家具有实用效果而被汽车生产厂商采用。
已公知的这些方案大致可分成三类:第一类是手脚分开。将油门控制由脚踩改为手控。由于是脚控刹车手控油门,所以刹车时误踩油门的错误不可能出现。然而,车辆转弯时也需要随时改变车速,转弯时往往要双手同时操作方向盘,这时再抽出一只手去调控油门。会产生安全隐患。即便是直线行驶,长时间一手控方向,一手控油门也有悖于安全原则。虽然此类方案确实能够从根本上解决错踩油门的问题,可也由于会产生新的安全问题,使其应用前景大受制约。
第二类方案是在油门踏板上加装机械式感应装置,类似安全带的锁紧机构。当驾驶员正常踩踏油门时该感应机构不起作用。而当驾驶员用踩刹车的力度去猛踩油门时,该机构会立刻将油门踏板锁紧或脱离油门操控。同时紧急启动刹车装置,使汽车急停。此方案的最大实施难点在于,从力度上很难确定正常踩油门和非正常踩油门的临界值。对多数人而言,紧急加速时对油门踏板的踩踏力度和紧急刹车时对刹车踏板的踩踏力度往往有一个较宽的重叠区域。这个力度重叠区的宽度和位置也因人因时因地而异,而且还会随时发生变化。每个车辆驾驶者的个性化差异使汽车在出厂前无法统一设定感应装置的触发参数。对每一个具体的驾车者来说,这个预设定的触发参数如果太小,可能发生本来想急加速超车却得到急刹车的后果。如果太大,又会失去对'错踩油门'的保护功能。
更多的第三类方案则提出用电子油门的 ECU 通过踏板上的电子传感器来识别踩踏力度,电脑根据以往储存的数据和汽车运行状况的即时信息进行智能化判断,然后再发出加油或是刹车的最后指令。电脑虽有可能对成千上万的驾车者的使用习惯做出个性化的适应和判断,但是准确率却不可能达到百分之百。在涉及安全的问题上,即便是万分之一的误判,也难以被人接受。更况此方案按现有电脑技术,其误判率很难小于百分之一。
还有方案建议在此基础之上再增加一个手动开关,驾驶员每次要急加油时先关闭手动开关,切断保护功能。待加油结束后再打开开关,恢复保护功能。在驾驶过程中频繁使用手动开关,显然不利于行车安全。而且还增加了一个忘记打开开关恢复保护功能的风险。因而,以电脑智能化为核心的第三类方案解决'错踩油门'的实施难度相比第二类方案而言,并无明显差别。其效果还是很难实用化。
技术问题
本发明提供一种反式踏板机构 ,旨在解决现有技术中车辆油门踏板设计缺陷所带来的驾驶员错踩油门当刹车的技术问题。
技术解决方案
本发明所提出的反式踏板机构颠覆了传统的油门操控模式,将操控模式改为:踏板向下踩为减速,向上抬起为加速。由于其加速的操作方向和现有车辆的油门踏板完全相反,故称为'反式踏板机构'。(下文中简称为:反式踏板)由于反式踏板的减速(收油)操作方向和刹车踏板的减速(刹车)操作方向一致,都是向下踩。加速(加油)操作方向和刹车踏板解除减速(制动)的操作方向一致,都是向上抬起。因而从结构设计的原理上,彻底根除了“油门当刹车”误操作发生的可能性。同时,以上述的加油操控动作与刹车操控动作的方向与效果一致性为前提,将油门踏板和刹车踏板组合成为一个机构,实现了加速操作和制动(刹车)操作的无缝转换。用一只脚踩一个踏板上就能即控制刹车又控制油门。和现有汽车中的油门踏板和刹车踏板方向相同效果相反的设计相比,在安全性能上又前进了一步(注:目前在用汽车的油门踏板和刹车踏板在相同的动作方向下,一个产生加速的效果,一个产生减速的效果,称之为方向相同效果相反,是导致错踩油门的机械结构上的原因)。使汽车驾驶变得更加轻松和容易。
从本质上讲,机动车辆的油门和刹车控制踏板就是一个转换和输入控制信号的接口。是驾车者用脚向车辆传递速度控制信息的转换和输入的接口。驾车者的脚用来表达意图的动作方向只可能有两个,踩和抬。踏板机构将踩和抬的动作转换成控制指令再传导给相关执行机构。怎样传导,是用机械式的拉线,拉杆还是电子油门的导线,这不重要。重要的是在传导之前的转换模式。是把驾车者的抬脚和下踩动作转换成什么指令?是加速指令信号还是减速指令信号 ; 将下踩的动作转换为减速指令信号 ; 上抬动作转换为加速指令信号; 这才是本发明的关键特征所在之处。而传统油门踏板之所以有错踩之虞,要害也尽在于此。
有益效果
其现实效果是:一是错踩刹车的可能性被根本杜绝,二是刹车与油门无缝对接,三是用一个踏板就可以操控汽车的加减速和制动。这种设计上的改变,能够改善车辆的操控性和减少交通事故避免人员伤亡,具有明显的社会效益。反式踏板在各种拉线油门和电子油门的汽车上;在各类手动变速器和自动变速器车辆上安装使用皆不存在技术障碍,电动车上的加速踏板和刹车踏板也同样可以由其取代,其应用广度和潜在需求相当可观。如在一些只要出错就会造成重大损失的特种车辆(客运大巴,校车,危险物品运输车,泥头车及重型货车,消防车,具有军事用途的特种车辆等等)上率先使用,安全效果会更加显著。在可预见的十几年以后,即便当全电脑操控的自动驾驶汽车普及之时,反式踏板的实用优势也不会消失。
附图说明
附图说明:图 1 是反式踏板在大型车辆上的一个实施例的正面图。图 2 是侧面图。图 3 是主要零件的分解视图,也能表述它们之间的装配关系。图 4 主要用来放大和表现凸块 31 和凸块 32 。图 5 用来表达反式踏板内部零件的实际装配位置。图 6 和图 7 是反式踏板的激活动力源采用步进电机或旋转电磁铁时的实施例。图 8 是用平面涡卷弹簧 替代扭力弹簧的结构图。图 9 是反式踏板的控制电路图。图 10 是平面机构简图,用来模拟和表述反式踏板的激活原理。图 10a 是初始状态的表达。图 10b 是激活状态的表达。图 11 是用来对比反式踏板和传统踏板的特征区别的坐标曲线图。图 1 到图 10 中的零部件标记名称如下表:
图 1 到图 10 中的零部件标记与名称对照表
标记 名称 功能 标记 名称 功能
1 踏板 控制加速和刹车 25 螺栓 紧固副踏板 6 与刹车轴 7
2 微动开关 控制激活动力源 26 摆臂轴套 传递力矩
3 微动开关 控制激活动力源 27 限位螺钉 限定发动机最大转速
4 滑轮 支撑踏板 1 28 摆臂 装配定位及传递力矩
5 滑轮 支撑踏板 1 29 销轴 铰接踏板 1 和摆臂 28
6 副踏板 用于辅助刹车 30 隔套 轴向定位
7 刹车轴 传递刹车力矩 31 凸块 传导踏板 1 的刹车力矩
8 刹车位置开关 断开激活状态 32 凸块 传导踏板 1 的刹车力矩
9 刹车总泵顶杆 传递刹车信号 33 限位凸块 微调副踏板 6 的初始位置
10 左支架 支撑刹车轴 7 34 伺服电机 产生激活动力
11 副踏板弹簧 使副踏板 6 回位 35 齿轮 传导激活动力
12 摆臂弹簧 使摆臂 28 回位 36 加速齿轮 传导激活动力
13 横支架 固连机构与车身 37 按钮开关 手动解除激活状态
14 油门拉线 传导速度信号 38 压力开关 无人时锁止激活功能
15 油门拉线支架 固定油门拉线 14 39 真空阀继电器 控制电路元件
16 加速拉线支架 固定加速拉线 18 40 伺服继电器 控制电路元件
17 油门摆盘 输出速度控制信号 41 蜗轮蜗杆传动付 传动及防逆转
18 加速拉线 传递激活扭矩 42 真空膜片 牵拉加速拉线 8
19 加速弹簧 传递激活扭矩 43 节气阀 控制发动机转速
20 加速摆盘 传递激活扭矩 44 油门回位弹簧 使节气阀回位
21 右支架 支撑刹车轴 7 45 平面涡卷弹簧 传递激活扭矩
22 真空伺服器 产生激活动力 46 外套管 连接平面涡卷弹簧 45
23 真空管 传导真空度 47 芯轴管 连接平面涡卷弹簧 45
24 真空控制电磁阀 控制真空伺服器 22
本发明的实施方式
如图 1 到图 5 所示:反式踏板的机架部分由左支架 10 右支架 21 和横支架 13 组成。左支架 10 与横支架 13 焊接成一体,为利于装配,右支架 21 与横支架 13 用螺栓连接固定。刹车轴 7 安装在左支架 10 和右支架 21 的两个同轴孔内,可以自由旋转。副踏板 6 通过前端的花键孔与刹车轴 7 左端的花键区域作配合,螺栓 25 起夹紧固定作用。摆臂 28 的下端通过销轴 29 与踏板 1 铰接。摆臂 28 的上端则与套装在刹车轴 7 上的摆臂轴套 26 及油门摆盘 17 焊接成为一个整体构件,并可一起绕刹车轴 7 转动 . 。刹车轴 7 上还装有可以自由转动的加速摆盘 20 。安装在油门摆盘 17 和加速摆盘 20 之间的隔套 30 起轴向定位作用。油门拉线 14 经过焊接在横支架 13 上的油门拉线支架 15 与油门摆盘 17 相连,其另一端则通往发动机节气阀 43 处控制油门(同时参考图 10 )。从真空伺服器 22 上引出的加速拉线 18 经过焊接在横支架 13 上的加速拉线支架 16 与加速摆盘 20 相连。这里需要强调的是,油门拉线 14 和加速拉线 18 在安装槽内的旋绕方向是相反的。加速摆盘 20 和油门摆盘 17 通过安装在它们之间的加速弹簧 19 可以互相传递扭矩。真空控制电磁阀 24 上的真空管 23 的另一头连接汽车发动机的进气歧管中的 K 处(同时参考图 10 ),对于有些车型则需要连接真空泵。当踩下副踏板 6 时,副踏板 6 带动刹车轴 7 在左支架 10 和右支架 21 的轴孔内向下旋转。同时也推动刹车总泵顶杆 9 向前移动而产生刹车动作。向下踩副踏板 6 的力如果消失,副踏板弹簧 11 储存的扭力使副踏板 6 向回旋转,直至其前端靠紧限位凸轮 33 为止。同时,副踏板 6 前端的延伸部位也会压缩刹车位置开关 8 的触头,使其保持导通状态。踏板 1 上的微动开关 2 和 3 都是常开开关,作用是通过真空控制电磁阀 24 启动真空伺服器 22 而激活踏板 1 的加油功能。当驾驶员的脚踩在踏板 1 上同时又踩到了微动开关 2 和 3 ,那么真空控制电磁阀 24 的电路就会被接通,真空伺服器 22 就会进入工作状态。如果驾驶员的脚放开微动开关 2 或 3 中的一个,那么真空控制电磁阀 24 的电路就会被切断,真空伺服器 22 就会停止工作。当驾驶员的脚踩下踏板 1 时,踏板 1 推动摆臂 28 向下旋转的同时,踏板 1 也会向前移动,滑轮 4 和 5 的作用是在踏板 1 前后移动时,使踏板 1 的尾部既能保持和地板接触又减小阻力 ( 滑轮 4 和 5 的设计使大型车辆的油门操控更加轻便省力 , 对小型车辆也可省略 ) 。
反式踏板的初始状态的调整原理如下:当驾车者的脚未同时触发踏板 1 上的微动开关 2 和 3 时,反式踏板未被激活而处于初始状态。此时副踏板 6 的前端被副踏板弹簧 11 的预装扭力压紧在左支架 10 上的限位凸轮 33 上,于是,副踏板 6 和刹车轴 7 就同时被定位。旋转限位凸轮 33 可以微调副踏板 6 的定位点。和副踏板 6 铰接的刹车总泵顶杆 9 即可在此定位点处调整其长度 ,使其刚好放松刹车并留有一点安全间隙。摆臂弹簧 12 的预装扭力使摆臂 28 具有向下旋转的趋势,但刹车轴 7 上的凸块 31 与摆臂轴套 26 上的凸块 32 相接触时,摆臂轴套 26 向下旋转的趋势被刹车轴 7 所阻挡。由于副踏板弹簧 11 和摆臂弹簧 12 的预装扭力方向相反,刚度又是前者大于后者。所以摆臂轴套 26 连同摆臂 28 和油门摆盘 17 一起被刹车轴 7 所定位。在这个位置上调整油门拉线 14 的长度,使油门摆盘 17 刚好放松油门拉线 14 ,以保证发动机能够怠速运转。
反式踏板的激活状态:当驾驶员的脚踩下踏板 1 时,如果他的脚在踏板 1 上也同时覆盖了微动开关 2 和 3 ,则踏板 1 就会自动向上抬起而进入激活状态。这是因为微动开关 2 和 3 在同时闭合时接通了真空控制电磁阀 24 的电路,使真空控制电磁阀 24 进入导通状态。发动机进气歧管中的真空度被真空管 23 导入到真空伺服器 22 中,真空伺服器 22 的真空膜片 42 拉紧加速拉线 18 (同时参照图 10 ),加速拉线 18 则拉动加速摆盘 20 旋转,加速摆盘 20 又通过加速弹簧 19 带动油门摆盘 17 向拉紧油门拉线 14 的方向旋转。因为真空伺服器 22 的设计拉力和加速弹簧 19 的扭转刚度都远大于摆臂弹簧 12 的回位扭力与油门回位弹簧 44 的合力,(同时参照图 10 )所以油门摆盘 17 在拉紧油门拉线 14 使发动机转速提升的同时,也会带动摆臂 28 和踏板 1 向上抬起,进入所谓的激活状态。被激活的踏板 1 会对驾驶员的脚形成一个反弹力,这个反弹力将驱使踏板 1 始终紧靠驾驶员的脚底,确保微动开关 2 和 3 随时处于被夹紧和压合的开启状态。这个反弹力也使驾驶员的脚可以随意控制踏板 1 ,使其停留在任意一个所需位置上,而油门摆盘 17 在每一个位置上都会通过油门拉线 14 向发动机输出一个相应的速度信号。驾驶员的脚如果向上抬起,在此反弹力的作用下,踏板 1 就会紧随着脚抬起,发动机就会加速。在加速过程中,当加速摆盘 20 上面的限位螺钉 27 随同加速摆盘 20 转动而与右支架 21 相接触时,加速摆盘 20 就会停止转动。这一位置就是加速行程的终点,也是发动机的最大限速位置。
再用图 10 中的平面机构示意图来分析反式踏板的激活原理。为了更加直接地表达激活原理,反式踏板机构中的 2 个扭力弹簧(加速弹簧 19 ,摆臂弹簧 12 )在图 10 中都用等效的拉力弹簧来表示。加速弹簧 19 ,加速拉线 18 ,油门拉线 14 连在一起,我们这里把它们比喻成一根绳子。绳子的一头是加速弹簧 19 的左端 g 点, g 点承受真空伺服器 22 产生的拉力。绳子的中间,即加速拉线 18 的右端和摆臂 28 的连接处 h 点。这个 h 点也是驾车者的脚在踏板 1 上的作用力和摆臂弹簧 12 以及油门拉线 14 端头上的油门回位弹簧 44 叠加在一起的合力的着力点。绳子的另一头则被油门回位弹簧 44 向右拉紧。图 10a 中表示的是反式踏板的初始状态,也是发动机的怠速状态。 k 点处是发动机节气阀 43 的进气道,此时真空伺服器 22 对 g 点处的拉力为零。加速弹簧 19 处于不受力的松弛状态。受摆臂弹簧 12 的拉力的限制,踏板 1 停在最低位置上,发动机的节气阀 43 也在油门回位弹簧 44 的牵拉下处于关闭状态,因而发动机维持怠速运转。图 10 b 表示的是反式踏板的激活状态,也是发动机最大转速的位置。所谓激活,就是踏板 1 自动向上抬起做传输加油信号的动作。驱动踏板 1 向上抬起的动力装置就是真空伺服器 22 ,我们也称之为激活动力源。当踏板 1 上的微动开关 2 和 3 被同时接通后,真空控制电磁阀 24 导通 k 点处与真空伺服器 22 内腔之间的真空通路,真空膜片 42 被吸拉左移,通过加速弹簧 19 拉动加速拉线 18 和油门拉线 14 。如果驾车者的脚不通过踏板 1 去阻挡的话,整根绳子就会被向左一直拉到底,瞬间将发动机加速到最大值。此时加速弹簧 19 的端点 g 被从虚线 p 上拉到虚线 j 上,摆臂 28 上的 h 点也从虚线 s 上被拉移动到虚线 t 上,踏板 1 也从原来的位置上右移并被抬起。如此反踏板机构即进入激活状态。如果驾车者的脚的作用力正好能够平衡真空伺服器 22 的拉力,整根绳子(包括油门拉线 14 )就会静止不动,使发动机转速保持稳定。如果驾车者脚踩踏踏板 1 的力量大于真空伺服器 22 的拉力时,绳子开始右移,发动机则降低转速。在整个加油收油过程中,驾车者的脚感觉到的弹力和传统油门踏板是一样的。这里需要说明的是,踏板 1 对驾驶员的脚形成的反弹力大致是一个定值。该值与真空伺服器 22 的吸拉力有关,大小是由真空伺服器 22 内腔直径所决定的。当然还要扣除摆臂弹簧 12 的回位弹力,也要减掉油门回位弹簧 44 的弹力以及摆臂 28 和踏板 1 的重力。真空伺服器 22 的吸拉力在整个加速过程中都基本保持不变,也使得踏板 1 在加减速行程中的任何位置上对脚的反弹力都大致相同。当加速拉线 18 和油门拉线 14 两端的受力平衡发生改变时,它们的长短不会变化。只是绳子的两个端点产生了位移。当驾车者脚对踏板 1 的踩踏力发生变化时,真空伺服器 22 的真空膜片 42 就要在内腔中发生位移,加速拉线 18 和油门拉线 14 也随之移动。产生加油信号或收油信号的传输动作。这里还要强调的是,加速弹簧 19 由于刚性大于真空伺服器 22 的最大拉力,在加油和收油的过程中基本不发生弹性变形。在这里的作用仅仅是一个柔性传动链而已。在后文叙述中,当用步进电机或其它伺服器代替真空伺服器 22 时,加速弹簧 19 才会在激活后的加减速过程中受到踏板 1 的拉伸。
如果驾驶员的脚没有离开踏板 1 ,但松开了微动开关 2 或 3 中的任意一个,则踏板 1 会解除激活状态,自动下移到初始的怠速位置,发动机亦恢复怠速运转。所以,驾驶员的脚要离开踏板 1 之前,必须要先终止踏板 1 的激活状态。
驾驶员在行驶中如需要突然刹车,不需要把脚从踏板 1 上移开而再去踩另外的踏板(副踏板 6 ),只要直接踩下踏板 1 ,就会进入刹车状态。因为踏板 1 在怠速位置上时,摆臂轴套 26 上的凸块 32 已经和刹车轴 7 上的凸块 31 开始接触,(见图 4 )当踏板 1 上的脚踩力大于副踏板弹簧 11 的回位扭力时,摆臂轴套 26 就会通过凸块 32 和凸块 31 带动刹车轴 7 一起向下旋转。刹车轴 7 又带动副踏板 6 向下摆动,从而推动刹车总泵顶杆 9 前移产生输出刹车信号的动作。当然如果用脚直接踩副踏板 6 ,也会输出刹车信号。也就是说,如果脚没有放在踏板上,关键时刻一脚踩下去,无论是踩到副踏板 6 上,还是踩到踏板 1 上,其效果都是输出刹车信号。使'刹车变成加油'的错误不可能发生。这一点,对于防止错踩油门具有决定性意义。而踏板 1 的面积比传统踏板面积大的设计意图也在于更安全。当汽车正在加速行驶时,突遇情况需要紧急刹车时,不管踏板 1 在何位置上,驾车者只需将它一踩到底即可。使收油减速阶段和刹车阶段完全无缝对接。这种一气呵成式的操控,不再需要脚下重新更换踏板的动作。既缩短了应急反应时间,又杜绝了出错的可能性。
在刹车的时候需要要断掉使踏板 1 向上抬起的动力。而此项功能是由刹车位置开关 8 来实现的。它是一个常开开关,串联在真空控制阀 24 的电路里。初始状态时,它的触头被副踏板 6 在怠速位置上压缩而闭合,此时,刹车位置开关 8 处于导通状态。因而并不影响真空伺服器 22 的激活动作。当刹车行程开始时,只要副踏板 6 刚一转动,刹车位置开关 8 的触头就会被释放,恢复它的常开状态并切断真空控制电磁阀 24 的电路,使真空伺服器 22 退出工作从而取消踏板 1 的激活状态。松开刹车时,副踏板 6 被副踏板弹簧 11 拉回到初始的怠速状态后,刹车位置开关 8 的触头又被重新压缩至闭合状态,使真空控制电磁阀 24 的电路恢复导通。
在一些没有真空源又无法加装真空泵的车辆中 ( 如某些电动车 ) ,图 1 到图 5 中的 真空伺服器 22 也可以用步进电机或旋转电磁铁来代替,随之也要增加一个与之相配套的的驱动电路(如图 9 所示)。在图 6 和图 7 中的另一个实施例中可以看到,图 1 到图 5 中的加速摆盘 20 被加速齿轮 36 所代替;真空伺服器 22 被固定在右支架 21 上的伺服电机 34 所代替;加速拉线 18 连同加速拉线支架 16 被取消,其它部件则没有变化。图 6 中的伺服电机 34 应设计或采用带有锁止功能的电机,电机轴装有类似刹车的锁止装置,断电时锁紧,通电时解除(属于成熟的现有技术)。伺服电机 34 输出轴上的齿轮 35 可以驱动加速齿轮 36 正转或反转。并能在激活后即时锁定加速齿轮 36 的位置。而图 7 中的伺服电机 34 是通过蜗轮蜗杆传动付 41 驱动齿轮 35 的。由于蜗轮蜗杆传动付 41 本身具有防逆转功能,所以图 7 中的伺服电机 34 的自锁设计可以省略。当踏板 1 上的微动开关 2 和 3 被驾车者的脚踩踏而同时闭合时,就会给伺服电机驱动电路发出电压信号。伺服电机驱动电路则发出脉冲电流使伺服电机 34 上的齿轮 35 带动加速齿轮 36 转动一个角度,扭转加速弹簧 19 。加速弹簧 19 带动油门摆盘 17 拉起踏板 1 使其进入激活状态。由于伺服电机 34 转动后锁止,不会发生逆转。踩下踏板 1 时加速弹簧 19 就会被压缩。此时踏板 1 对驾车者脚的反弹力就完全来自加速弹簧 19 ,当踏板 1 上的微动开关 2 和 3 中的一个被驾车者的脚放开后,伺服电机驱动电路的输入信号电压消失,伺服电机驱动电路又发出指令使伺服电机 34 解除锁止并驱动加速齿轮 36 转回到原来的角度位置上。加速弹簧 19 由于支点被撤消而失去对踏板 1 的反弹力,踏板 1 向上抬起的支撑弹力消失后,在摆臂弹簧 12 的作用下又回到初始位置上。引擎亦恢复怠速运转。为了使踏板 1 在激活状态中的最高位置和最低位置上的反弹力的差别不至于过大,加速弹簧 19 由扭力弹簧改为平面涡卷弹簧更为适宜,如图 8 所示:平面涡卷弹簧 45 的外端头固定在外套管 46 内壁的直槽中,内端头固定在芯轴管 47 的外壁直槽中。外套管 46 与油门摆盘 17 作固定连接(焊接),芯轴管 47 与加速齿轮 36 作固定连接。当然,平面涡卷弹簧 45 的刚性要保证它能在很小变形的情况下带动油门摆盘 17 旋转到激活的位置上。
另外,作为激活动力源的伺服电机 34 也可以用液压马达来代替。也可根据反式踏板机构所装车辆的具体配置而选用其它伺服器。总之,激活动力源在现有技术中有很宽的选择范围,带回位弹簧的电磁铁,直线动作的气动式伺服器,液压缸式伺服器都可适用。在图 10 中可以看到,真空伺服器 22 被其它伺服器所替代的原理很简单。只要替代伺服器有简单的直线或角位移驱动功能,能在激活时将加速弹簧 19 的端头 g 点从虚线 p 上拉到虚线 j 上,并能在解除激活时再将 g 点释放回原位即可。
反式踏板机构中用来激活踏板 1 的动力源可以有多种伺服器作为选项,为了叙述方便,我们把图 1 到图 5 中的真空伺服器的选项称为'实施例 A '。把图 6 ,图 7 和图 8 中的步进电机或旋转电磁铁的选项称为'实施例 B '。两种配置的电路控制系统基本相同,图 9 就是实施例 A 和实施例 B 的共用混合电路的原理图。如果机构采用实施例 A ,则适用图 9 电路中的下半部分电路(图中虚线以下)。由于电路上半部分中的伺服电机 34 并不存在,所以与伺服电机 34 相配套的伺服电机驱动电路和伺服继电器 40 也随之处于空置状态。如果采用实施例 B ,那么在电路中仅仅空置或取消真空控制电磁阀 24 就可以了。
在实施例 A 的控制电路中,真空控制电磁阀 24 是一个核心元件。它实际是一个用电磁铁驱动的双路气压控制开关。在断电时阻断真空管并使真空伺服器 22 的内腔与大气相通,通电时封闭真空伺服器 22 的内腔并同时导通真空管。因而能够直接控制真空伺服器 22 对踏板 1 的激活动作。当继电器 39 的控制线圈被微动开关 2 ,微动开关 3 及刹车位置开关 8 串联导通后。继电器 39 的触点闭合。真空控制电磁阀 24 就会被继电器 39 和按钮开关 37 及压力开关 38 串联导通。此时,踏板 1 进入激活状态。压力开关 38 是常开开关,安装在驾驶员的座椅下面。只有在感应到了驾驶员的重量时才能闭合。所以出于安全考量,驾驶员如果不坐在驾驶位置上。,反踏板机构的激活功能会被压力开关 38 自动锁止。按钮开关 37 是常闭开关,安装在仪表盘或方向盘上。用于应急或临时手动解除踏板 1 的激活状态。刹车位置开关 8 是常开开关,它的功能是使机构在刹车过程中自动切断继电器 39 的控制电路,暂时撤销踏板 1 的激活状态。安装在踏板 1 上的微动开关 2 和微动开关 3 串联在一起控制激活电路,这样设计更加有利于安全。驾驶员的脚只有很在意很端正地放在踏板 1 上,才能同时接通两个微动开关 2 和 3 。以避免在脚还没有做好控制准备的时候意外触发。还能防止其它原因引起的误触发。另外,两个微动开关 2 和 3 并联在一起控制激活电路也是一种选择,只要随便触发一个开关,就可以完成激活动作。但是为了能够在并联状态下退出激活 , 还要在踏板 1 的右侧增加一个立板 , 该立板上安装一个功能类似开关 37 那样的微动开关 . 以便驾车者用的脚的右侧触压它退出激活。相比串连控制的安全性,并联控制则偏重于更快的反应速度。当然,在具体实施的时候可以更加人性化一点,再增加一个手动开关,能随时在串联和并联之间进行转换,让驾车者根据自己的意愿在稳妥和敏捷之间适当选择。
在图 9 实施例 B 的控制电路中, w,x,y,z, 四个点是伺服电机驱动电路的输出端, v 点是伺服电机 34 的主轴转角位置信号反馈电路, u 点是伺服电机 34 的外壳接地电路。工作电流从 b 点流入,从 d 点流出。控制信号输入端是 a 点。 a 点产生正电压信号的条件是:点火开关闭合;按钮开关 37 闭合;压力开关 38 闭合;微动开关 2 和 3 闭合;刹车位置开关 8 闭合。从电路图中可以看到,上述 6 个开关中只要有一个没有闭合,都不可能驱动伺服电机 34 向激活踏板 1 的方向转动。因为伺服电机 34 的工作电流较大,为了保护点火开关以及按钮开关 37 和压力开关 38 的触点寿命,在实施例 B 的电路中增加了伺服继电器 40 。通过 b 点和 d 点组成的回路来承担伺服电机 34 的工作电流。而 c 点处电路的作用是,当 b 点处电路被伺服继电器 40 切断时,能够从 c 点向伺服电机 34 提供复位动作所需的电流。伺服电机驱动电路的控制程序应该这样设定:当信号输入端 a 点产生正电压信号时,伺服电机驱动电路驱使伺服电机 34 向激活踏板 1 的方向(也是加油的方向)转动所需角度后锁止。而当 a 点电位恢复为零时,伺服电机驱动电路又驱使伺服电机 34 向回旋转并退到初始位置。一旦 b 点处电压为零,伺服电机 34 不管在何位置,都立即退转回到初始位置。所以按钮开关 37 也具有手动复位的功能。
从图 9 的电路中还可以看出,解除踏板 1 的激活状态的方式有四种:( 1 )驾车者的脚放开踏板 1 上的微动开关 2 或 3 中的一个(放开就是恢复开关的常开状态)。( 2 )驾车者用手按下安装在仪表盘上的按钮开关 37 。( 3 )驾车者用脚踏下副踏板 6 开始刹车。( 4 )驾车者的脚将踏板 1 踩到刹车位置(与微动开关 2 或 3 是否通断无关)。
如果在配置电子油门的汽车上安装反式踏板机构,只需取消油门拉线 14 和油门拉线支架 15 。用电子油门现有技术中的位置传感器与其相配,把油门摆盘 17 的侧平面作为位置传感器的动态参照对象。因为油门摆盘 17 的转动的方向和速度与踏板 1 的动作是同步的,所以位置传感器参照油门摆盘 17 而产生的电压信号与踏板 1 也是相关的。其传感器的构造及设置和传统电子油门踏板基本相同。唯一的不同,也是最大的不同,就是输出的电压信号的预设是完全相反的。传统电子油门踏板在最高位置输出怠速信号,在最低位置上输出最大转速信号,而反式踏板则在最高位置上输出最大转速信号,在最低位置输出怠速信号。传统电子油门踏板踩下时输出加油信号,抬起时输出收油信号。而反式踏板在踩下踏板时输出收油信号,抬起踏板时输出加油信号。在纯电动车上安装反式踏板,匹配原理与汽车的电子油门相同,也是将控制加速的电位器的活动臂直接装在油门摆盘 17 上。重要的改变还是踏板动作方向与输出信号的转换,全部与原来相反。
再对照图 11 来比较反式踏板机构和目前在用车辆使用的传统油门踏板在关键特征上的重大区别:图中纵坐标表示踏板位置的高度,方向向右的横坐标表示发动机的转速,方向向左的横坐标表示刹车总泵顶杆受力的大小。虚线 ab 是传统油门踏板的位置行程轨迹,实线 cd 是反式踏板的加油位置行程轨迹。实线 ef 是反式踏板的刹车行程轨迹。在图中可以看出,两种踏板无论位置和速度的对应还是动作方向及动作效果,都是相反的。传统油门踏板的初始位置和怠速位置是它的最高位置 a 点,而反式踏板的初始位置和怠速位置则是加油行程的最低位置 d 点。发动机的最高速度在传统油门踏板的最低位置上的 b 点产生,而对应于反式踏板则是在最高位置上的 c 点产生。传统油门踏板的 a 点和反式踏板的 c 点都是最高点,但是他们的对应的速度却正好相反,一个是怠速,一个是最高速。两个踏板的控油行程的最低点 d 和 b 也是正好相反。传统油门踏板向下动作的控油效果是加速,向上动作是减速。而反式踏板机构则正相反,向下是减速,向上是加速。正是由于这些特征的相反,反式踏板机构才能从结构和设计原理上彻底消除了错踩油门的可能性。在图中还可以看出,反式踏板可以从最高位置的 c 点一直向下动作到 f 点,一次性连贯地完成从高速降到怠速再过度到刹车的两段动作,其最直接的效果就是在刹车时脚不需要换踏板。而对于传统油门踏板来说,这几乎是不可能的。
反式踏板机构同传统油门踏板的上述重大区别,其现实效果是:一是错踩刹车的可能性被根本杜绝,二是刹车与油门无缝对接,三是用一个踏板就可以操控汽车的加减速和制动。这种设计上的改变,能够改善车辆的操控性和减少交通事故避免人员伤亡,具有明显的社会效益。反式踏板在各种拉线油门和电子油门的汽车上;在各类手动变速器和自动变速器车辆上安装使用皆不存在技术障碍,电动车上的加速踏板和刹车踏板也同样可以由其取代,其应用广度和潜在需求相当可观。如在一些只要出错就会造成重大损失的特种车辆(客运大巴,校车,危险物品运输车,泥头车及重型货车,消防车,具有军事用途的特种车辆等等)上率先使用,安全效果会更加显著。在可预见的十几年以后,即便当全电脑操控的自动驾驶汽车普及之时,反式踏板的实用优势也不会消失。

Claims (7)

  1. 一种操控机动车辆的踏板机构,具有同现有车辆的加速踏板完全相反的特征:踏板被向上抬起时向车辆发出加速信号,踏板被向下踏下时向车辆发出减速信号和刹车信号,实现一个踏板即控制车辆的加速和减速又控制车辆的刹车。
  2. 根据权利要求 1 所述的踏板机构,设置有一个专门驱动踏板向上抬起而执行加油信号输出的激活动力源,激活动力源的具体选项包括真空伺服器,步进电机,旋转电磁铁,电磁铁,液压马达,气压伺服器,液压伺服器。
  3. 根据权利要求 1 或 2 所述的踏板机构,在踏板上装有开关用于控制激活动力源的启动和退出。
  4. 根据权利要求 1 或 2 所述的踏板机构,激活动力源通过一个扭力弹簧或平面涡卷弹簧传递拉动踏板抬起的扭矩。
  5. 根据权利要求 1 所述的踏板机构,踏板在怠速位置上被向下踩踏时,通过和副踏板( 6 )固定在一起的刹车轴( 7 )驱动副踏板( 6 )而实现刹车信号的输出,被踏板驱动的摆臂( 28 )是通过摆臂轴套( 26 )侧面的凸块( 32 )和刹车轴( 7 )上的凸( 31 )来驱动刹车轴的。
  6. 根据权利要求 1 所述的踏板机构,向车辆发出加速和减速信号的功能,是通过和摆臂( 28 )固联在一起并套装在刹车轴( 7 )上的油门摆盘( 17 )的转动速度和方向来实现的。
  7. 根据权利要求 1 或 2 所述的踏板机构,踏板的前端与摆臂( 28 )通过销轴铰接,踏板的后下端装有两个滑轮,用于被地面支撑和前后滑移。
PCT/CN2014/083547 2013-08-30 2014-08-01 反式踏板机构 WO2015027793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013103885303A CN103419633A (zh) 2013-08-30 2013-08-30 反式踏板机构
CN201310388530.3 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015027793A1 true WO2015027793A1 (zh) 2015-03-05

Family

ID=49645199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083547 WO2015027793A1 (zh) 2013-08-30 2014-08-01 反式踏板机构

Country Status (2)

Country Link
CN (1) CN103419633A (zh)
WO (1) WO2015027793A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054187A1 (fr) * 2016-07-19 2018-01-26 Peugeot Citroen Automobiles Sa Pedale de frein articulee pour un vehicule comportant un freinage automatique
CN109303520A (zh) * 2017-07-26 2019-02-05 昆山市苞蕾众创投资管理有限公司 跳跃式吸毛发刷
WO2020078896A1 (en) * 2018-10-19 2020-04-23 Talarico Renato A pedal assembly for a motorized vehicle
CN111329520A (zh) * 2020-04-04 2020-06-26 李明红 一种临时固定可调支架
CN112848885A (zh) * 2020-12-31 2021-05-28 清华大学 一种带限位机构的车辆双拉线踏板行程控制系统
CN113968203A (zh) * 2021-10-21 2022-01-25 陆晓峰 一种组合踏板连续控制机动车加速和制动的方法
CN114532730A (zh) * 2022-03-05 2022-05-27 林晓霞 一种可方便客户用餐的服务餐桌
CN115179911A (zh) * 2021-04-02 2022-10-14 上海汽车集团股份有限公司 用于自动挡汽车的踩踏板装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419633A (zh) * 2013-08-30 2013-12-04 邓志 反式踏板机构
CN103802803A (zh) * 2014-02-18 2014-05-21 安徽江淮汽车股份有限公司 一种驻车拉丝连接转换装置
CN104192106A (zh) * 2014-09-23 2014-12-10 上海凯腾汽车技术有限公司 一种电助力制动踏板结构
CN105584362B (zh) * 2014-10-21 2019-06-11 广州市白云清洁用品有限公司 停车保护及加速装置
CN105083008B (zh) * 2015-08-20 2017-07-11 王思远 一种汽车油门刹车同步控制安全系统
CN105150839B (zh) * 2015-09-16 2017-09-29 王思远 一种汽车油门、刹车同步控制智能安全系统
CN111016857A (zh) * 2018-10-10 2020-04-17 廖承平 油门刹车联合控制系统
CN113459804B (zh) * 2021-07-28 2022-09-06 湖南道依茨动力有限公司 加速制动控制方法及装置、车辆和电子设备
CN113815584A (zh) * 2021-09-18 2021-12-21 武汉未来幻影科技有限公司 一种基于执行器的控制汽车刹车和离合的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048196A (zh) * 1989-06-21 1991-01-02 耿宝玉 机动车加速、制动统一操纵系统
CN1680132A (zh) * 2004-04-05 2005-10-12 高崇汶 汽车刹车、油门共用踏板可迅速制动技术
EP2319722A2 (en) * 2009-11-06 2011-05-11 Masuyuki Naruse Pedal apparatus for electric motorcar or for motor vehicle having throttle mechanism
CN102248935A (zh) * 2010-05-19 2011-11-23 袁海江 机动车(如汽车)油门和刹车共用一个脚踏板
CN102602379A (zh) * 2012-02-12 2012-07-25 傅银华 电子油门刹车组合一体起步防倒溜防油门当刹车踩结构
CN103419633A (zh) * 2013-08-30 2013-12-04 邓志 反式踏板机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2781116A (en) * 1954-11-05 1957-02-12 Richard A Watson Combined acceleration and deceleration control
CN2681939Y (zh) * 2004-03-05 2005-03-02 王德海 油门与刹车一体化装置
JP2004352228A (ja) * 2004-05-07 2004-12-16 Daisuke Tokunaga 一体化アクセルブレーキペダル
KR100800032B1 (ko) * 2006-10-24 2008-01-31 마지현 브레이크와 엑셀레이터 통합장치
CN201998802U (zh) * 2011-04-26 2011-10-05 赵喜荣 机动车加速制动单踏板控制装置
CN102602290A (zh) * 2012-02-12 2012-07-25 傅银华 机械式油门刹车组合一体起步防倒溜防油门当刹车踩结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048196A (zh) * 1989-06-21 1991-01-02 耿宝玉 机动车加速、制动统一操纵系统
CN1680132A (zh) * 2004-04-05 2005-10-12 高崇汶 汽车刹车、油门共用踏板可迅速制动技术
EP2319722A2 (en) * 2009-11-06 2011-05-11 Masuyuki Naruse Pedal apparatus for electric motorcar or for motor vehicle having throttle mechanism
CN102248935A (zh) * 2010-05-19 2011-11-23 袁海江 机动车(如汽车)油门和刹车共用一个脚踏板
CN102602379A (zh) * 2012-02-12 2012-07-25 傅银华 电子油门刹车组合一体起步防倒溜防油门当刹车踩结构
CN103419633A (zh) * 2013-08-30 2013-12-04 邓志 反式踏板机构

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054187A1 (fr) * 2016-07-19 2018-01-26 Peugeot Citroen Automobiles Sa Pedale de frein articulee pour un vehicule comportant un freinage automatique
CN109303520A (zh) * 2017-07-26 2019-02-05 昆山市苞蕾众创投资管理有限公司 跳跃式吸毛发刷
CN109303520B (zh) * 2017-07-26 2022-03-22 昆山市苞蕾众创投资管理有限公司 跳跃式吸毛发刷
WO2020078896A1 (en) * 2018-10-19 2020-04-23 Talarico Renato A pedal assembly for a motorized vehicle
CN111329520A (zh) * 2020-04-04 2020-06-26 李明红 一种临时固定可调支架
CN112848885A (zh) * 2020-12-31 2021-05-28 清华大学 一种带限位机构的车辆双拉线踏板行程控制系统
CN115179911A (zh) * 2021-04-02 2022-10-14 上海汽车集团股份有限公司 用于自动挡汽车的踩踏板装置
CN115179911B (zh) * 2021-04-02 2024-04-16 上海汽车集团股份有限公司 用于自动挡汽车的踩踏板装置
CN113968203A (zh) * 2021-10-21 2022-01-25 陆晓峰 一种组合踏板连续控制机动车加速和制动的方法
CN113968203B (zh) * 2021-10-21 2023-09-08 陆晓峰 一种组合踏板连续控制机动车加速和制动的方法
CN114532730A (zh) * 2022-03-05 2022-05-27 林晓霞 一种可方便客户用餐的服务餐桌

Also Published As

Publication number Publication date
CN103419633A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2015027793A1 (zh) 反式踏板机构
US6286635B1 (en) Vehicle braking system with actively controlled caliper retractor
JPH0446777B2 (zh)
US20040099085A1 (en) Accelerator pedal with braking action
SE530345C2 (sv) Körhjälpanordning för en bil
JP2503101B2 (ja) 負荷調節装置
WO2014173294A1 (zh) 用继电器控制电机正反转的汽车防碰撞和防误踩油门系统
CN101318502B (zh) 误踩油门紧急制动机构
CN200981503Y (zh) 一种防止误急踩油门的汽车操纵机构
US4776420A (en) Device for automotive vehicles with traction control and cruise control
CN2863539Y (zh) 防止误踩油门的刹车/加油踏板
CN2756511Y (zh) 一种机动车的刹车及离合器联动操纵装置
US4114738A (en) Brake and creeper control system
US3866723A (en) Safety device for actuating a brake
CN201240369Y (zh) 一种误踩油门紧急制动机构
US3114427A (en) Control apparatus for motor vehicle regulator
CN109611221B (zh) 一种油门操纵系统
CN204998520U (zh) 汽车电子油门制动一体装置
US3944012A (en) Brake and accelerator controls for operating a motor driven vehicle
WO2004020240A1 (fr) Procede et moyens associes pour pedale de commande unique d'accelerateur et de frein de vehicule
CN209079656U (zh) 前后式踏板
CN210283899U (zh) 一种可调节无损安装的油门左延伸操作装置
CN220682143U (zh) 一种新型油门踏板与制动系统组合的技术装置
CN211166450U (zh) 一种汽车防误踩及可调控油门安全控制装置
CN201027570Y (zh) 汽车油门安全控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840659

Country of ref document: EP

Kind code of ref document: A1