WO2015027792A1 - 电控发动机节油系统及其方法 - Google Patents

电控发动机节油系统及其方法 Download PDF

Info

Publication number
WO2015027792A1
WO2015027792A1 PCT/CN2014/083535 CN2014083535W WO2015027792A1 WO 2015027792 A1 WO2015027792 A1 WO 2015027792A1 CN 2014083535 W CN2014083535 W CN 2014083535W WO 2015027792 A1 WO2015027792 A1 WO 2015027792A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
temperature
load
temperature sensor
resistor
Prior art date
Application number
PCT/CN2014/083535
Other languages
English (en)
French (fr)
Inventor
张文
安利强
苏立永
沈建举
熊毅
陈俊红
Original Assignee
广西玉柴机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西玉柴机器股份有限公司 filed Critical 广西玉柴机器股份有限公司
Priority to ATA9334/2014A priority Critical patent/AT517003B1/de
Priority to DE112014003373.1T priority patent/DE112014003373B4/de
Publication of WO2015027792A1 publication Critical patent/WO2015027792A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Definitions

  • the present invention relates to the field of engines, and more particularly to an electronically controlled engine fuel economy system and method therefor. Background technique
  • the present invention is to overcome the above-mentioned deficiencies in the prior art, and provides an electronically controlled engine which is simple and reasonable in structure, can limit two functions of engine speed and engine power, and enables an electronically controlled engine to operate in a low fuel consumption region and has a low cost. Fuel saving system and method therefor.
  • an electronically controlled engine fuel economy system comprising:
  • Engine controller a temperature sensor, the input end of which is connected to the input end of the engine controller through the first temperature signal input harness and the second temperature signal input harness to form an engine thermal protection system;
  • the engine fuel-saving system includes: a three-position selector switch, a half-load temperature-controlled resistor and a no-load temperature-controlled resistor; a static contact of the three-position selector switch is connected to the first temperature signal input harness, and the movable contact is respectively connected to the half-load temperature control One end of the resistor and the no-load temperature-controlled resistor, the second temperature signal input harness is respectively connected to the other end of the half-load temperature-controlled resistor and the no-load temperature-controlled resistor; the power mode according to the actual operating condition of the vehicle passes through the three-position selector switch
  • the half-load temperature-controlled resistor or the no-load temperature-controlled resistor is selectively connected in parallel to the temperature sensor.
  • the temperature sensor is a water temperature sensor, a fuel temperature sensor, an intake air temperature sensor or an oil temperature sensor.
  • the power mode of the actual operating condition of the whole vehicle is the third gear.
  • the power modes of the actual operating conditions of the third gear are: full load mode, half load mode and no load mode.
  • a method of applying the above electronically controlled engine fuel economy system comprising:
  • the driver determines the power mode of the actual operating condition of the vehicle
  • the engine controller initiates the corresponding thermal protection limit.
  • the electronically controlled engine fuel-saving system limits the engine by using the electronic solution system coolant warming protection limit, and sets different limiting modes according to the engine performance when the vehicle is running, limiting the engine Speed and fuel injection to ensure the engine runs at the best oil The area is consumed, thereby achieving the purpose of fuel saving for the whole vehicle, and the cost is low.
  • FIG. 1 is a schematic structural view of an electric control engine fuel economy system of the present invention
  • Figure 3 is a flow chart of the electronically controlled engine fuel economy system of the present invention.
  • the electronically controlled engine fuel-saving system of the invention adopts the principle of temperature-protection and oil-limiting of the coolant of the electronic control system, and sets different limiting modes according to the engine performance during the running of the vehicle, limits the engine speed and the fuel injection quantity, and ensures the optimal engine running.
  • the fuel consumption area so as to achieve the purpose of fuel saving for the whole vehicle, and This is low.
  • the electronically controlled engine fuel-saving system limits the engine oil quantity by means of the electronic control system thermal protection strategy to ensure that the engine operates in the optimal fuel consumption area, thereby achieving the purpose of fuel saving of the whole vehicle; : a thermal protection system formed by the temperature sensor 1 and the engine controller (ECU) 2, and an engine fuel-saving system 3 attached to the thermal protection system, and the engine fuel-saving system 3 is mainly driven by the driver according to the actual operating conditions of the vehicle.
  • the gear power mode controls the three-position selector switch 4 of the engine fuel-saving system 3.
  • the third-speed power mode is specifically: normal power (full load mode), first gear power (half load mode), and second gear power (no load mode).
  • the temperature control resistor of the engine fuel-saving system 3 is selectively connected in parallel to the temperature sensor 1 to change the temperature value of the engine controller 2, and the engine oil quantity is limited by the electronic control system thermal protection strategy, according to the engine performance. Set different limit modes, limit engine speed and fuel injection, and ensure the engine runs at the best oil Region, thereby achieving the purpose of vehicle fuel economy.
  • the temperature sensor 1 is a water temperature sensor, a fuel temperature sensor, an intake air temperature sensor or an oil temperature sensor, and an input end thereof is connected to an input end of the engine controller 2 through a temperature first temperature signal input harness 11 and a second temperature signal input harness 12 The resulting engine thermal protection system.
  • the engine fuel-saving system 3 includes: a three-position selector switch 4, a half-load temperature-controlled resistor 5 and an unloaded temperature-controlled resistor 6.
  • the static contact of the three-position selector switch 4 of the vehicle is connected to the first temperature signal input harness 11 , and the movable contacts of the three-position selector switch 4 are respectively connected to the right end of the half-load temperature control resistor 5 and the no-load temperature control resistor 6, second
  • the temperature signal input harness 12 is connected to the left end of the half-load temperature control resistor 5 and the no-load temperature control resistor 6, respectively.
  • the temperature (either the coolant temperature, the fuel temperature or the intake air temperature, temporarily taking the coolant temperature as an example)
  • the signal pins are connected in parallel with the corresponding resistance of the half-load temperature-controlled resistor 5 and
  • the no-load temperature control resistor 6 achieves the purpose of artificially changing the current temperature signal.
  • the system implements a thermal protection strategy by using the coolant temperature signal of the electronic control system to achieve a fuel injection limit.
  • the system also achieves engine speed limitation by means of an engine speed limit protection strategy based on the coolant temperature signal provided by the electronic control system.
  • the The system uses the engine electronic control system to adjust the oil limit and the speed limit strategy according to the coolant temperature signal.
  • the driver selects the resistors with different resistance values (half load temperature control resistor 5 and no load temperature control resistor 6) according to different operating conditions.
  • the electronic control system parameter calibration optimization setting realizes the double-position fuel-saving function, so that the engine always runs in the economic fuel consumption area, thereby achieving the purpose of the fuel-saving device. Finally, the system can automatically adjust back to the original operating state. When the vehicle does not need to save fuel or require high power performance, just set the three-position selector switch to the empty position, and the electronic control system automatically restores the original state. Run, no effect.
  • Full load mode When the engine fuel-saving system 3 needs normal power output, the driver suspends the moving contact of the three-position selector switch 4 according to the actual running condition of the vehicle to form an open circuit, that is, the temperature sensor 1 is not affected, and is directly input to the original signal.
  • Engine controller 2 Engine output power is not limited.
  • Half load mode When the engine fuel-saving system 3 needs 1 power output, the driver will move the moving contact of the three-position selector switch 4 upward according to the actual running condition of the vehicle, and connect the half-load temperature control resistor 5 to make the half-load temperature control resistor 5 In parallel with the temperature sensor 1, a new temperature characteristic (which is ensured to be placed in the engine thermal protection temperature region in the engine controller 2 by the accounting) is input to the engine controller 2, by means of the software thermal protection function strategy in the engine controller 2 To achieve the maximum output oil of the engine (compared by the vehicle matching calculation and the engine oil characteristic curve, the oil quantity curve is located in the engine minimum fuel consumption area, so that the engine is always in the fuel-saving area) limit, for example:
  • the output oil limit curve is as follows: At the same time, by means of the engine temperature limit maximum speed strategy in the engine controller 2, the maximum engine speed is limited (by the vehicle matching calculation and the engine oil quantity characteristic curve, the engine running speed is located in the low fuel consumption area of the engine, so that the engine is always in the fuel-
  • the purpose of the column is as follows:
  • the maximum speed limit curve is as follows: Humidity 'c -40 0 9 ⁇ 99 100 101 102 103 104 1 10 1 ⁇ 1SS 134 i 150
  • the engine controller 2 will simultaneously The maximum output oil of the engine and the maximum speed work together to limit the engine to always run in the lowest fuel consumption area, thus achieving the fuel-saving purpose of the whole vehicle.
  • No-load mode When the engine fuel-saving system 3 requires 2 power output, the driver connects the moving contact of the three-position selector switch 4 downward according to the actual running condition of the vehicle, and connects the no-load temperature-controlled resistor 6 to make the no-load temperature-controlled resistor 6 is connected in parallel with the temperature sensor 1 to form a new temperature characteristic (the temperature characteristic is placed in the engine thermal protection temperature region, and does not coincide with the temperature region when the half-load temperature control resistor 5 is connected in parallel).
  • the signal is input to the engine controller 2, and is controlled by the engine.
  • the maximum output oil of the engine (the oil curve is located in the engine economy fuel consumption area) limit; at the same time, by means of the engine temperature limit maximum speed strategy in the engine controller 2, the maximum engine speed is limited (the engine The operating speed is in the engine economy fuel consumption area).
  • the engine controller 2 the engine maximum speed and the maximum output oil amount are combined to limit the engine to the economic fuel consumption area, thereby achieving the fuel-saving purpose of the whole vehicle.
  • the resistance values of the half-load temperature control resistor 5 and the no-load temperature control resistor 6 need to be flexibly calibrated according to the temperature characteristic resistance curve of the temperature sensor 1, to ensure that the resistance after the parallel connection reaches the engine thermal protection temperature region, and the resistance thermal protection temperature of each resistor The areas do not coincide, and the output oil quantity and maximum speed limit value can be flexibly and accurately set according to the specific vehicle requirements.
  • the electronically controlled engine fuel-saving system uses the electronic control system coolant to protect the oil-limiting principle.
  • different limiting modes are set according to the engine performance, and the engine speed and fuel injection amount are limited to ensure the optimal fuel consumption of the engine.
  • the area in order to achieve the purpose of vehicle fuel economy, and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

一种电控发动机节油系统,该系统包括:发动机控制器(2);温度传感器(1),其输入端通过第一温度信号输入线束(11)和第二温度信号输入线束(12)与发动机控制器(2)的输入端连接形成发动机热保护系统;以及,发动机节油系统(3)。该发动机节油系统(3)包括:三位选择开关(4)、半载温控电阻(5)和空载温控电阻(6)。根据整车实际运行工况的功率模式通过三位选择开关(4)将该半载温控电阻(5)或空载温控电阻(6)选择性的并联接入温度传感器(1)。该电控发动机节油系统利用电控系统冷却液温度热保护限油原理,根据整车实际运行工况的功率模式选择性地限制发动机转速和喷油量,保证发动机运行在最佳的油耗区域,从而实现节油的目的,且成本低。还公开了一种电控发动机节油方法。

Description

电控发动机节油系统及其方法 技术领域
本发明涉及发动机领域, 特别涉及一种电控发动机节油系统及其方 法。 背景技术
随着低碳和环保意识的加强, 现有整车对油耗越来越重视, 为使电控发 动机一直运行在低油耗区域工况, 在系统策略中需要对发动机转速和功率输 出进行限定, 以保证发动机长期运行在最优状态。
但是发动机电控系统有很多类型, 有些电控系统(如 BOSCH系统)直 接配置节油档位, 具备节油功能, 但有些系统(如 DELPHI系统)没有配置 该项功能, 如要实现该功能, 则需额外增加装置模拟实现。
现有不具备节油功能的电控系统具有以下缺点:
1、 无法灵活选择限制发动机转速功能;
2、 无法灵活选择限制发动机功率输出功能;
3、 无法灵活选择同时限制发动机转速和发动机功率两种功能;
4、 无法选择发动机不需要进行限制时, 恢复原状态设置。 发明内容
本发明是为了克服上述现有技术中缺陷, 提供了一种结构简单合理, 能 够限制发动机转速和发动机功率两种功能, 使得电控发动机运行在低油耗区 域工况, 且成本低的电控发动机节油系统及其方法。
为达到上述目的, 根据本发明的一个方面, 提供了一种电控发动机节油 系统, 包括:
发动机控制器; 温度传感器, 其输入端通过第一温度信号输入线束和第二温度信号输入 线束与发动机控制器的输入端连接形成发动机热保护系统;
发动机节油系统包括: 三位选择开关、 半载温控电阻和空载温控电阻; 三位选择开关的静触点连接到第一温度信号输入线束, 其动触点分别连接半 载温控电阻和空载温控电阻的一端, 第二温度信号输入线束分别连接到半载 温控电阻和空载温控电阻的另一端; 根据整车实际运行工况的功率模式通过 三位选择开关将所述半载温控电阻或空载温控电阻选择性的并联接入温度传 感器。
上述技术方案中, 温度传感器为水温传感器、 燃油温度传感器、 进气温 度传感器或机油温度传感器。
上述技术方案中, 整车实际运行工况的功率模式为三档。
上述技术方案中, 三档整车实际运行工况的功率模式为: 满载模式、 半 载模式和空载模式。
根据本发明的另一个方面, 提供了一种应用上述电控发动机节油系统的 方法, 包括:
司机判定整车实际运行工况功率模式的步骤;
当整车实际运行工况为满载模式时, 将三位选择开关的动触点悬空形成 断路;
当整车实际运行工况为半载模式时, 将三位选择开关的动触点向上, 使 得半载温控电阻与温度传感器并联;
当整车实际运行工况为空载模式时, 将三位选择开关的动触点向下, 使 得空载温控电阻与温度传感器并联;
发动机控制器启动相应热保护限油的步骤。
与现有技术相比, 本发明具有如下有益效果: 该电控发动机节油系统通 过借助电控系统冷却液温热保护限油原理, 在车辆运行时, 根据发动机性能 设置不同限制模式, 限制发动机转速和喷油量, 保证发动机运行在最佳的油 耗区域, 从而实现整车节油的目的, 且成本低。
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与 本发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图 中:
图 1是本发明的电控发动机节油系统的结构示意图;
图 2是本发明的电控发动机节油系统的多功率曲线图;
图 3是本发明的电控发动机节油系统的流程图;
结合附图在其上标记以下附图标记:
I-温度传感器;
I I-第一温度信号输入线束;
12-第二温度信号输入线束;
2-发动机控制器;
3-发动机节油系统;
4-三位选择开关;
5-半载温控电阻;
6-空载温控电阻。 具体实施方式
以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描 述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
本发明的电控发动机节油系统通过借助电控系统冷却液温热保护限油原 理, 在车辆运行时, 根据发动机性能设置不同限制模式, 限制发动机转速和 喷油量, 保证发动机运行在最佳的油耗区域,从而实现整车节油的目的, 且成 本低。
如图 1所示, 该电控发动机节油系统借助电控系统热保护策略对发动机 油量进行限制, 保证发动机运行在最佳的油耗区域,从而实现整车节油的目 的; 其具体结构包括: 温度传感器 1和发动机控制器(ECU ) 2形成的热保 护系统, 以及依附与该热保护系统的发动机节油系统 3 , 发动机节油系统 3 主要是通过司机根据整车实际运行工况的三档功率模式对发动机节油系统 3 的三位选择开关 4进行控制, 三档功率模式具体为: 正常功率(满载模式) 、 1档功率(半载模式) 、 2档功率(空载模式) , 即将发动机节油系统 3的温 控电阻选择性的并联接入温度传感器 1 , 以改变发动机控制器 2温度釆集信 号值, 借助电控系统热保护策略对发动机油量进行限制, 达到根据发动机性 能设置不同限制模式, 限制发动机转速和喷油量, 保证发动机运行在最佳的 油耗区域,从而实现整车节油的目的。
温度传感器 1为水温传感器、 燃油温度传感器、 进气温度传感器或机油 温度传感器,其输入端通过温度第一温度信号输入线束 11和第二温度信号输 入线束 12与发动机控制器 2的输入端连接以形成的发动机热保护系统。
发动机节油系统 3 包括: 三位选择开关 4、 半载温控电阻 5和空载温控 电阻 6。 整车三位选择开关 4的静触点连接到第一温度信号输入线束 11 , 三 位选择开关 4的动触点分别连接半载温控电阻 5和空载温控电阻 6的右端, 第二温度信号输入线束 12分别连接到半载温控电阻 5和空载温控电阻 6的左 端。
该方案根据电控系统温度传感器组织特性, 通过在温度(冷却液温度、 燃油温度或进气温度均可,暂以冷却液温为例 )信号针脚并联相应阻值的半载 温控电阻 5和空载温控电阻 6, 达到人为改变当前温度信号值得目的。 这样, 该系统通过借助电控系统具有的冷却液温度信号超高进行热保护策略, 从而 实现发动机喷油量限制。 该系统还通过借助电控系统具有的根据冷却液温度 信号进行发动机转速限制保护策略, 从而实现发动机转速的限制。 另外, 该 系统借助发动机电控系统根据冷却液温信号同时限油量和限转速策略, 由司 机根据不同运行状况, 选择不同阻值的电阻(半载温控电阻 5和空载温控电 阻 6 ) , 通过电控系统参数标定优化设置, 实现双档位节油功能, 使发动机 始终运行在经济油耗区域, 从而达到节油装置的目的。 最后, 该系统能够自 动调整回到原始运行状态, 当整车无需进行节油需求或需要高动力性能要求 时, 只需将三位选择开关置位在空位即可, 电控系统自动恢复原始状态运行, 无任何影响。
如图 2和图 3所示, 该系统整个控制过程的如下:
满载模式: 即发动机节油系统 3需要正常功率输出时, 司机根据整车实 际运行情况将三位选择开关 4的动触点悬空形成断路, 即温度传感器 1不受 影响, 直接以原始信号输入到发动机控制器 2 , 发动机输出功率不受限制。
半载模式: 发动机节油系统 3需要 1档功率输出时, 司机根据整车实际 运行情况将三位选择开关 4的动触点向上, 连接半载温控电阻 5 , 使半载温 控电阻 5与温度传感器 1并联, 形成新温度特性(该温度特性通过核算保证 在发动机控制器 2中置于发动机热保护温度区域)信号输入到发动机控制器 2 ,借助发动机控制器 2中软件热保护功能策略,实现发动机最大输出油量(通 过整车匹配计算和发动机油量特性曲线对比, 该油量曲线位于发动机最低油 耗区域, 使发动机一直处于省油区域运行) 限制, 例如: 输出油量限制曲线 如下:
Figure imgf000007_0001
同时借助发动机控制器 2中发动机温度限制最高转速策略, 实现限制发 动机最高转速 (通过整车匹配计算和发动机油量特性曲线对比, 该发动机运 行转速位于发动机低油耗区域, 使发动机一直处于省油区域运行) 的目的, 列如: 最高转速限制曲线如下: 濕度 'c -40 0 9Ξ 99 100 101 102 103 104 1 10 1 θ 1SS 134 i 150 发动机哏制转速 2400 2400 2400 2400 2400 2400 2400 2400 2400 L800 1800 1800 1800 1500 1500 1500 最后, 通过发动机控制器 2同时将发动机最大输出油量和最高转速共同 作用, 限定发动机始终处于最低油耗区域行驶, 从而实现整车的节油目的。
空载模式: 发动机节油系统 3需要 2档功率输出时, 司机根据整车实际 运行情况将三位选择开关 4的动触点向下, 连接空载温控电阻 6, 使空载温 控电阻 6与温度传感器 1并联, 形成新温度特性(该温度特性置于发动机热 保护温度区域, 同时不与并联半载温控电阻 5时的温度区域重合)信号输入 到发动机控制器 2 , 借助发动机控制器 2 中软件热保护功能策略, 实现发动 机最大输出油量(该油量曲线位于发动机经济油耗区域) 限制; 同时借助发 动机控制器 2中发动机温度限制最高转速策略,实现限制发动机最高转速(该 发动机运行转速位于发动机经济油耗区域) 的目的。 通过发动机控制器 2同 时将发动机最高转速和最大输出油量共同作用, 限定发动机处于经济油耗区 域行驶, 从而实现整车的节油目的。
半载温控电阻 5和空载温控电阻 6的阻值, 需要根据温度传感器 1的温 度特性电阻曲线, 灵活标定设置, 确保并联后的电阻达到发动机热保护温度 区域, 且各电阻热保护温度区域不重合, 其输出油量和最高转速限制值可以 根据具体车辆要求灵活准确的设置。
该电控发动机节油系统通过借助电控系统冷却液温热保护限油原理, 在 车辆运行时, 根据发动机性能设置不同限制模式, 限制发动机转速和喷油量, 保证发动机运行在最佳的油耗区域,从而实现整车节油的目的, 且成本低。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要 求 书
1. 一种电控发动机节油系统, 其特征在于, 包括:
发动机控制器;
温度传感器, 其输入端通过第一温度信号输入线束和第二温度信号输 入线束与发动机控制器的输入端连接形成发动机热保护系统;
发动机节油系统包括: 三位选择开关、半载温控电阻和空载温控电阻; 所述三位选择开关的静触点连接到第一温度信号输入线束, 其动触点分别 连接半载温控电阻和空载温控电阻的一端, 所述第二温度信号输入线束分 别连接到半载温控电阻和空载温控电阻的另一端; 根据整车实际运行工况 的功率模式通过所述三位选择开关将所述半载温控电阻或空载温控电阻 选择性地并联接入所述温度传感器。
2. 根据权利要求 1所述的电控发动机节油系统, 其特征在于: 所述温 度传感器为水温传感器、 燃油温度传感器、 进气温度传感器或机油温度传 感器。
3. 根据权利要求 1所述的电控发动机节油系统, 其特征在于: 所述整 车实际运行工况的功率模式为三档。
4. 根据权利要求 3所述的电控发动机节油系统, 其特征在于: 所述三 档整车实际运行工况的功率模式为: 满载模式、 半载模式和空载模式。
5. 一种应用上述电控发动机节油系统的方法, 其特征在于, 包括如下 步骤:
判断整车实际运行工况功率模式;
当整车实际运行工况为满载模式时, 将三位选择开关的动触点悬空形 成断路;
当整车实际运行工况为半载模式时, 将三位选择开关的动触点向上, 使得半载温控电阻与温度传感器并联; 当整车实际运行工况为空载模式时, 将三位选择开关的动触点向下, 使得空载温控电阻与温度传感器并联;
发动机控制器启动相应热保护限油。
PCT/CN2014/083535 2013-08-30 2014-08-01 电控发动机节油系统及其方法 WO2015027792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA9334/2014A AT517003B1 (de) 2013-08-30 2014-08-01 Elektrisch gesteuertes Motor-Treibstoffsparsystem und zugehöriges Verfahren
DE112014003373.1T DE112014003373B4 (de) 2013-08-30 2014-08-01 Elektrisch gesteuertes Motor-Ölsparsystem und zugehöriges Verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310394670.1 2013-08-30
CN201310394670.1A CN103485907B (zh) 2013-08-30 2013-08-30 电控发动机节油系统及其方法

Publications (1)

Publication Number Publication Date
WO2015027792A1 true WO2015027792A1 (zh) 2015-03-05

Family

ID=49826424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083535 WO2015027792A1 (zh) 2013-08-30 2014-08-01 电控发动机节油系统及其方法

Country Status (5)

Country Link
CN (1) CN103485907B (zh)
AT (1) AT517003B1 (zh)
AU (1) AU2014101539A4 (zh)
DE (1) DE112014003373B4 (zh)
WO (1) WO2015027792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543273A (zh) * 2018-11-14 2019-03-29 江西江铃集团新能源汽车有限公司 电动汽车的车身优化方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485903B (zh) * 2013-08-30 2015-10-28 广西玉柴机器股份有限公司 电控发动机怠速运行挂挡熄火系统及其控制方法
CN103485907B (zh) * 2013-08-30 2015-10-28 广西玉柴机器股份有限公司 电控发动机节油系统及其方法
CN103982290B (zh) * 2014-06-04 2016-02-24 安徽安凯汽车股份有限公司 一种汽车发动机智能温控节油控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211764A (ja) * 1983-05-16 1984-11-30 Nippon Soken Inc エンジンの予熱装置
DE2613227C2 (de) * 1976-03-27 1984-12-06 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur Auslösung eines drehzahlabhängigen Schaltvorganges
JPH01134050A (ja) * 1987-11-20 1989-05-26 Japan Electron Control Syst Co Ltd 内燃機関のアイドルスピード制御装置
CN201408091Y (zh) * 2008-09-07 2010-02-17 赵爱国 一种设有省油功能的电喷汽油汽车发动机温度传感器
CN103485907A (zh) * 2013-08-30 2014-01-01 广西玉柴机器股份有限公司 电控发动机节油系统及其方法
CN203403962U (zh) * 2013-08-30 2014-01-22 广西玉柴机器股份有限公司 电控发动机节油系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332412C1 (de) * 1993-09-23 1994-12-01 Siemens Ag Verfahren und Schaltungsanordnung zum Schutz eines beheizten temperaturabhängigen Sensorwiderstands vor Überhitzung
CN2554382Y (zh) * 2002-07-01 2003-06-04 李庆文 发动机过热保护器
US9008944B2 (en) * 2010-05-24 2015-04-14 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine operating in HCCI combustion mode
US9453439B2 (en) * 2010-08-31 2016-09-27 Ford Global Technologies, Llc Approach for variable pressure oil injection
CN203146112U (zh) * 2013-03-15 2013-08-21 广西玉柴机器股份有限公司 电控发动机obd扭矩限制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613227C2 (de) * 1976-03-27 1984-12-06 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur Auslösung eines drehzahlabhängigen Schaltvorganges
JPS59211764A (ja) * 1983-05-16 1984-11-30 Nippon Soken Inc エンジンの予熱装置
JPH01134050A (ja) * 1987-11-20 1989-05-26 Japan Electron Control Syst Co Ltd 内燃機関のアイドルスピード制御装置
CN201408091Y (zh) * 2008-09-07 2010-02-17 赵爱国 一种设有省油功能的电喷汽油汽车发动机温度传感器
CN103485907A (zh) * 2013-08-30 2014-01-01 广西玉柴机器股份有限公司 电控发动机节油系统及其方法
CN203403962U (zh) * 2013-08-30 2014-01-22 广西玉柴机器股份有限公司 电控发动机节油系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543273A (zh) * 2018-11-14 2019-03-29 江西江铃集团新能源汽车有限公司 电动汽车的车身优化方法及系统

Also Published As

Publication number Publication date
DE112014003373T5 (de) 2016-04-07
DE112014003373B4 (de) 2021-05-20
CN103485907B (zh) 2015-10-28
AT517003A3 (de) 2017-12-15
CN103485907A (zh) 2014-01-01
AT517003B1 (de) 2018-06-15
AU2014101539A4 (en) 2015-02-12
AT517003A2 (de) 2016-10-15

Similar Documents

Publication Publication Date Title
CN104632432B (zh) 商用车燃气发动机电子控制装置及其控制方法
WO2015027792A1 (zh) 电控发动机节油系统及其方法
CN103867283B (zh) 柴油机智能热管理系统
CN104005832A (zh) 柴油机电控热管理系统
CN203717104U (zh) 一种电磁风扇离合器控制装置
WO2019105079A1 (zh) 柴油机变海拔变流量冷却系统及其控制过程
CN201265468Y (zh) 柴油发动机油箱
CN102400807A (zh) 发动机扭矩估计系统和方法
CN203614200U (zh) 用于汽车的发动机冷却系统及具有其的汽车
CN205503289U (zh) 一种电控发动机怠速自动调整装置
CN203717065U (zh) 一种发动机机油冷却装置
CN201619438U (zh) 一种混合动力车载镍氢动力电源的散热进风系统
CN203879607U (zh) 柴油机电控热管理系统
CN107288735A (zh) 一种建立汽车电子风扇转速控制函数的方法
CN205277581U (zh) 车辆发动机散热器多风扇冷却系统
CN110259567B (zh) 一种两速电磁离合器水泵的控制方法及系统
CN200999660Y (zh) 发动机节能控制器
CN104481668B (zh) 一种发动机智能热管理电动水泵的温度控制方法
CN203403962U (zh) 电控发动机节油系统
CN202215341U (zh) 一种电控硅油风扇控制器
CN204663685U (zh) 一种发动机电子控制单元及发动机控制系统
CN203651481U (zh) 一种汽车转速调整系统
CN107829813B (zh) 一种发动机冷却系统及方法
CN102493881A (zh) 基于能量流分析的车辆能量管理系统及方法
CN206870850U (zh) 一种插电式混合动力客车的冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003373

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: ATA 9334/2014

Country of ref document: AT

122 Ep: pct application non-entry in european phase

Ref document number: 14840615

Country of ref document: EP

Kind code of ref document: A1