WO2015027654A1 - Procédé de préparation de diode électroluminescente à haute tension à base de nitrure de gallium - Google Patents
Procédé de préparation de diode électroluminescente à haute tension à base de nitrure de gallium Download PDFInfo
- Publication number
- WO2015027654A1 WO2015027654A1 PCT/CN2013/091112 CN2013091112W WO2015027654A1 WO 2015027654 A1 WO2015027654 A1 WO 2015027654A1 CN 2013091112 W CN2013091112 W CN 2013091112W WO 2015027654 A1 WO2015027654 A1 WO 2015027654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gallium nitride
- layer
- type gallium
- emitting diode
- based high
- Prior art date
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005530 etching Methods 0.000 claims abstract description 38
- 238000002955 isolation Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000000059 patterning Methods 0.000 claims abstract description 14
- 238000002161 passivation Methods 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000000206 photolithography Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 238000001020 plasma etching Methods 0.000 claims description 5
- 238000009616 inductively coupled plasma Methods 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000001259 photo etching Methods 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92244—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- the present invention relates to the field of light emitting diode technologies, and in particular, to a method for fabricating a gallium nitride based high voltage light emitting diode.
- HVLED High Voltage Light Emitting Diode
- FIG. 1 is a flow chart of a method for fabricating a gallium nitride-based high voltage light emitting diode in the prior art
- FIGS. 2a-2d are wafer cross sections at different stages in a method for fabricating a gallium nitride based high voltage light emitting diode in the prior art.
- N-type gallium nitride (GaN) buffer layer 22 sequentially forming an N-type gallium nitride (GaN) buffer layer 22, an N-type gallium nitride layer 23, a multiple quantum well layer (MQW) 24, and a P-type gallium nitride layer (P-GaN) on the substrate 21. 25, as shown in Figure 2a.
- GaN N-type gallium nitride
- MQW multiple quantum well layer
- P-GaN P-type gallium nitride layer
- a conductive layer 26 is formed, and patterned to form a pattern. That is, a transparent conductive layer (ITO) is evaporated on the surface of the P-type gallium nitride, and then the conductive layer 26 is patterned to form a pattern, as shown in Fig. 2b.
- ITO transparent conductive layer
- S130 patterning again to form an N-type gallium nitride platform, as shown in Figure 2b.
- S140 performing photolithography and deep trench etching until the surface of the substrate 21 to form a trench.
- the fabrication method first forms a transparent conductive layer 26 on the P-type gallium nitride layer, and then performs N-type gallium nitride etching, deep trench etching, and deep trench isolation, and then the electrode layer 28 and the surface passivation layer 29 are grown.
- the transparent conductive layer 26 under such a manufacturing method is affected by factors such as temperature, growth time, chemical reaction and the like in the subsequent deep trench etching and material growth during deep trench isolation, resulting in the resistivity of the transparent conductive layer 26.
- the abnormality causes the contact resistance between the transparent conductive layer 26 and the P-type gallium nitride layer 25 to become large, thereby causing an abnormality in the electrical parameters of the high-voltage light-emitting diode.
- the embodiment of the invention provides a method for fabricating a gallium nitride-based high-voltage light-emitting diode, which can ensure the quality of the conductive layer film, thereby avoiding the abnormality of the resistivity of the conductive layer.
- the embodiment of the invention discloses a method for fabricating a gallium nitride-based high-voltage light-emitting diode, comprising: sequentially forming an N-type gallium nitride buffer layer, an N-type gallium nitride layer, a multiple quantum well layer and a P-type on a substrate.
- An electrode layer and a passivation layer are sequentially formed.
- the patterning to form the N-type gallium nitride platform comprises:
- Photolithography and etching are performed using a mask to form an N-type gallium nitride landing mask.
- performing the photolithography and deep trench etching to the surface of the substrate to form the trench comprises: photolithography and etching using a mask up to the surface of the substrate.
- the etching is an inductively coupled plasma etching or a reactive ion etching.
- the mask is a hard mask.
- the hard mask mask is formed of an aluminum or nickel material.
- the height of the conductive layer is not greater than the height of the isolation layer.
- the spacer layer is formed of a silicon dioxide material.
- the conductive layer is composed of one of indium tin oxide and zinc oxide or a combination thereof or a laminate thereof.
- the substrate is formed of sapphire, silicon or silicon nitride material.
- the number of quantum wells of the multiple quantum well layer is 3-10.
- the invention adopts a method of first performing deep trench etching and forming an isolation layer, and then forming a conductive layer, thereby ensuring that the conductive layer obtained by the growth is not subjected to deep trench etching and temperature and growth time in the process of forming the isolation layer,
- the influence of factors such as chemical reaction ensures the quality of the conductive layer film and avoids the abnormality of the resistivity of the conductive layer, thereby avoiding high-voltage light emission due to excessive contact resistance between the conductive layer and the P-type gallium nitride layer.
- the problem of abnormal electrical parameters of the diode is a method of first performing deep trench etching and forming an isolation layer, and then forming a conductive layer, thereby ensuring that the conductive layer obtained by the growth is not subjected to deep trench etching and temperature and growth time in the process of forming the isolation layer.
- FIGS. 2a-2d are schematic cross-sectional views of wafers at different stages in a method for fabricating a gallium nitride-based high-voltage light-emitting diode of the prior art;
- FIG. 3 is a flow chart of a method for fabricating a gallium nitride based high voltage light emitting diode according to a first embodiment of the present invention
- FIGS. 4a to 4e are different stages of a method for fabricating a gallium nitride based high voltage light emitting diode according to a first embodiment of the present invention
- FIG. 3 is a flow chart of a method for fabricating a gallium nitride-based high-voltage light-emitting diode of the present invention
- FIGS. 4a to 4e are wafer cross-sections at different stages in a method for fabricating a gallium nitride-based high-voltage light-emitting diode according to a first embodiment of the present invention
- schematic diagram As shown in FIG. 3 and FIG. 4a to FIG. 4e, a first embodiment of the present invention provides a method for fabricating a gallium nitride (GaN)-based high voltage light emitting diode (HVLED), comprising:
- an N-type gallium nitride buffer layer 42, an N-type gallium nitride layer 43, a multi-quantum well layer 44, and a P-type gallium nitride layer 45 are sequentially formed on the substrate 41.
- a wafer cross section of the N-type gallium nitride buffer layer 42, the N-type gallium nitride layer 43, the multiple quantum well layer 44, and the P-type gallium nitride layer 45 is sequentially formed as shown in Fig. 4a.
- the substrate 41 may be formed of sapphire, silicon or silicon nitride material, and the quantum well number of the multiple quantum well layer 44 may be 3-10.
- the formation of the N-type gallium nitride buffer layer 42, the N-type gallium nitride layer (N-GaN) 43, the multiple quantum well layer (MQW) 44, and the P-type gallium nitride layer 45 can be utilized in the field.
- Known deposition or epitaxial growth techniques, and techniques used include, but are not limited to, physical vapor deposition (PVD) or chemical vapor deposition (CVD).
- patterning to form an N-type gallium nitride platform comprises: photolithography and etching using a mask to form an N-type gallium nitride platform mask. That is, the growth of the N-type gallium nitride landing mask and the fabrication of the lithographic pattern are performed, and then the N-type gallium nitride layer 43, the multiple quantum well layer 44, and the P-type gallium nitride layer 45 are inductively coupled.
- ICP Plasma
- RIE reactive ion etching
- FIG. 4b The wafer cross section of the gallium nitride platform is shown in Figure 4b.
- the patterning process can utilize a pattern fabrication method well known in the art including, but not limited to, photolithography and etching, and "patterning" of embodiments of the present invention can be understood.
- the growth of the deep trench etching mask and the fabrication of the photolithographic pattern are performed, and then deep trench etching is performed to the surface of the substrate 41 using inductively coupled plasma etching or reactive ion etching, where only a deep trench can be performed.
- Other etching methods for etching can be employed, and are not limited to the two examples exemplified.
- the deep trench etch mask usually uses a hard mask. Because the deep trench etch time is long, ordinary photoresist may be eroded, so usually a layer is obtained.
- the hard mask is then subjected to deep trench etching, wherein the hard mask may be composed of a material such as aluminum or nickel.
- the isolation layer 47 is formed first, and the wafer cross section of the isolation layer 47 is formed as shown in Fig. 4c, and then etched, thereby forming a predetermined region where the subsequent conductive layer is deposited.
- the isolation layer may be formed of a silicon dioxide material, and the isolation layer 47 may be formed by using deposition or epitaxial growth techniques well known in the art, including but not limited to physical vapor deposition (PVD) or chemical vapor deposition (CVD). .
- the conductive layer 46 is formed in a predetermined region etched by the isolation layer 47.
- the height of the conductive layer 46 is not greater than (less than or equal to) the height of the isolation layer, and the height of the conductive layer is usually 500-6000A.
- the isolation layer is generally between 3000-20000A.
- the conductive layer is composed of one of indium tin oxide (ITO) and zinc oxide or a combination thereof or a laminate thereof.
- the electrode layer 48 and the passivation layer 49 are formed, respectively, using a patterning process to form a corresponding pattern.
- the formation of electrode layer 48 and passivation layer 49 may utilize formation or epitaxial growth techniques well known in the art, including but not limited to physical vapor phase formation (PVD) or chemical vapor phase formation (CVD).
- the growth of the N-type gallium nitride mask, the deep trench etch mask, and the spacer material is typically performed using a plasma enhanced chemical weather deposition (PECVD) apparatus, a low pressure chemical weather deposition (LPCVD) apparatus, Equipment such as atmospheric pressure chemical vapor deposition (APCVD) equipment and oxidation furnace tubes.
- PECVD plasma enhanced chemical weather deposition
- LPCVD low pressure chemical weather deposition
- APCVD atmospheric pressure chemical vapor deposition
- the conductive layer is formed before the deep trench etching and the deep trench isolation processing, and the resistivity of the conductive layer film is easily caused.
- the isolation layer is formed by deep trench etching, and then the conductive layer is formed.
- the quality of the conductive layer film is ensured, and the resistance of the conductive layer is avoided.
- the abnormality of the rate avoids the problem that the electrical parameters of the high-voltage light-emitting diode are abnormal due to excessive contact resistance between the conductive layer and the P-type gallium nitride layer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Led Devices (AREA)
Abstract
La présente invention concerne un procédé de préparation de diode électroluminescente à haute tension à base de nitrure de gallium. Ledit procédé comprend : la formation séquentielle d'une couche tampon de nitrure de gallium de type N (42), d'une couche de nitrure de gallium de type N (43), d'une couche à puits quantiques multiples (44), et d'une couche de nitrure de gallium de type P (45) sur un substrat (41) ; la réalisation d'une mise en configuration pour former une plateforme de nitrure de gallium de type N ; la réalisation d'une photo-gravure et d'une gravure à tranchée profonde jusqu'à ce qu'une tranchée soit formée sur une surface du substrat ; la formation d'une couche d'isolation (47), et la mise en configuration de la couche d'isolation pour exposer une partie de la couche de nitrure de gallium de type P et de la couche de nitrure de gallium de type N ; la formation d'une couche conductrice (46) sur une partie de la couche de nitrure de gallium de type P exposée ; et la formation séquentielle d'une couche électrode (48) et d'une couche de passivation (49). Dans le procédé de préparation, la gravure à tranchée profonde est réalisée et une couche d'isolation est formée en premier, et puis une couche conductrice est formée, ainsi garantissant que, après que la couche conductrice est développée et formée, la couche conductrice soit empêchée d'être affectée par la gravure à tranchée profonde et des facteurs tels qu'une température, un temps de développement et une réaction chimique durant la formation de la couche d'isolation, et en outre garantissant la qualité d'un film de couche conductrice, et évitant l'exception de la résistivité électrique de la couche conductrice.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310390690.1 | 2013-08-29 | ||
CN201310390690.1A CN104425663A (zh) | 2013-08-29 | 2013-08-29 | 一种氮化镓基高压发光二极管的制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015027654A1 true WO2015027654A1 (fr) | 2015-03-05 |
Family
ID=52585477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/091112 WO2015027654A1 (fr) | 2013-08-29 | 2013-12-31 | Procédé de préparation de diode électroluminescente à haute tension à base de nitrure de gallium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104425663A (fr) |
WO (1) | WO2015027654A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106098892A (zh) * | 2016-06-30 | 2016-11-09 | 华灿光电(苏州)有限公司 | 一种高压发光二极管芯片的制造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374909B (zh) * | 2015-11-02 | 2018-05-29 | 华灿光电(苏州)有限公司 | 一种高压发光二极管的制造方法 |
CN105655463B (zh) * | 2016-04-11 | 2018-09-18 | 杭州士兰明芯科技有限公司 | 一种led结构及其制作方法 |
CN106449906A (zh) * | 2016-10-28 | 2017-02-22 | 合肥彩虹蓝光科技有限公司 | 一种高压led芯片深刻蚀工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102790045A (zh) * | 2011-05-18 | 2012-11-21 | 展晶科技(深圳)有限公司 | 发光二极管阵列及其制造方法 |
CN102867837A (zh) * | 2012-09-13 | 2013-01-09 | 中国科学院半导体研究所 | 阵列式高压led器件的制作方法 |
CN103227250A (zh) * | 2013-05-07 | 2013-07-31 | 中国科学院半导体研究所 | 柔性透明导电层互联的阵列式led器件制作方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031280A1 (fr) * | 2006-09-13 | 2008-03-20 | Helio Optoelectronics Corporation | Structure de diode électroluminescente |
CN103022276B (zh) * | 2011-09-26 | 2015-08-26 | 比亚迪股份有限公司 | 一种ac led芯片的制备方法 |
CN103367610A (zh) * | 2012-03-29 | 2013-10-23 | 比亚迪股份有限公司 | 一种高压led芯片及其制备方法 |
-
2013
- 2013-08-29 CN CN201310390690.1A patent/CN104425663A/zh active Pending
- 2013-12-31 WO PCT/CN2013/091112 patent/WO2015027654A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102790045A (zh) * | 2011-05-18 | 2012-11-21 | 展晶科技(深圳)有限公司 | 发光二极管阵列及其制造方法 |
CN102867837A (zh) * | 2012-09-13 | 2013-01-09 | 中国科学院半导体研究所 | 阵列式高压led器件的制作方法 |
CN103227250A (zh) * | 2013-05-07 | 2013-07-31 | 中国科学院半导体研究所 | 柔性透明导电层互联的阵列式led器件制作方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106098892A (zh) * | 2016-06-30 | 2016-11-09 | 华灿光电(苏州)有限公司 | 一种高压发光二极管芯片的制造方法 |
CN106098892B (zh) * | 2016-06-30 | 2018-08-21 | 华灿光电(苏州)有限公司 | 一种高压发光二极管芯片的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104425663A (zh) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7675077B2 (en) | Light-emitting diode and method for manufacturing the same | |
US7439091B2 (en) | Light-emitting diode and method for manufacturing the same | |
US8217417B2 (en) | Antistatic gallium nitride based light emitting device and method for fabricating the same | |
TWI434433B (zh) | 形成發光二極體裝置的方法 | |
JP2008047860A (ja) | 表面凹凸の形成方法及びそれを利用した窒化ガリウム系発光ダイオード素子の製造方法 | |
JP2012500479A (ja) | 両面不動態化を伴う半導体発光デバイスを製造するための方法 | |
US20110253972A1 (en) | LIGHT-EMITTING DEVICE BASED ON STRAIN-ADJUSTABLE InGaAIN FILM | |
WO2015027654A1 (fr) | Procédé de préparation de diode électroluminescente à haute tension à base de nitrure de gallium | |
KR101018280B1 (ko) | 수직구조 발광다이오드 및 그 제조방법 | |
GB2547123A (en) | LED vertical chip structure with special coarsening morphology and preparation method therefor | |
TWI474507B (zh) | 固態發光元件之製作方法 | |
TWI459592B (zh) | 奈米級側向成長磊晶之薄膜發光二極體及其製作方法 | |
Huang et al. | GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer | |
JP5281536B2 (ja) | 半導体発光装置の製造方法 | |
US20120187414A1 (en) | Semiconductor light-emitting device and process for production thereof | |
CN102655195B (zh) | 发光二极管及其制造方法 | |
TWI786503B (zh) | 發光元件及其製造方法 | |
JP2014060255A (ja) | 窒化物半導体の深紫外発光素子の製造方法 | |
CN108718030A (zh) | 一种低电阻、低热阻的氮化物半导体微腔激光器结构及其制备方法 | |
KR20150089551A (ko) | Dbr층 패턴을 포함하는 발광다이오드 및 이의 제조방법 | |
JP2013074245A (ja) | 発光ダイオードの製造方法及び発光ダイオード | |
CN102683533B (zh) | 发光二极管及其制造方法 | |
TW201244162A (en) | Light emitting diode and method for making it | |
JP2005303252A (ja) | 窒化物発光ダイオードおよびその製造方法 | |
CN102456784B (zh) | 发光二极管及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13892267 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13892267 Country of ref document: EP Kind code of ref document: A1 |