WO2015027026A1 - Ultra high void volume polishing pad with closed pore structure - Google Patents

Ultra high void volume polishing pad with closed pore structure Download PDF

Info

Publication number
WO2015027026A1
WO2015027026A1 PCT/US2014/052021 US2014052021W WO2015027026A1 WO 2015027026 A1 WO2015027026 A1 WO 2015027026A1 US 2014052021 W US2014052021 W US 2014052021W WO 2015027026 A1 WO2015027026 A1 WO 2015027026A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing pad
polishing
void volume
polymer resin
less
Prior art date
Application number
PCT/US2014/052021
Other languages
English (en)
French (fr)
Inventor
George Fotou
Achla Khanna
Robert Vacassy
Original Assignee
Cabot Microelectronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Microelectronics Corporation filed Critical Cabot Microelectronics Corporation
Priority to CN201480046528.0A priority Critical patent/CN105474366A/zh
Priority to EP14837394.7A priority patent/EP3036760A4/en
Priority to SG11201601177SA priority patent/SG11201601177SA/en
Priority to JP2016536441A priority patent/JP6693875B2/ja
Priority to KR1020167007013A priority patent/KR20160045092A/ko
Publication of WO2015027026A1 publication Critical patent/WO2015027026A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials

Definitions

  • CMP Chemical-mechanical polishing
  • the manufacture of semiconductor devices generally involves the formation of various process layers, selective removal or patterning of portions of those layers, and deposition of yet additional process layers above the surface of a semiconducting substrate to form a semiconductor wafer.
  • the process layers can include, by way of example, insulation layers, gate oxide layers, conductive layers, and layers of metal or glass, etc. It is generally desirable in certain steps of the wafer process that the uppermost surface of the process layers be planar, i.e., flat, for the deposition of subsequent layers.
  • CMP is used to planarize process layers wherein a deposited material, such as a conductive or insulating material, is polished to planarize the wafer for subsequent process steps.
  • a wafer is mounted upside down on a carrier in a CMP tool.
  • a force pushes the carrier and the wafer downward toward a polishing pad.
  • the carrier and the wafer are rotated above the rotating polishing pad on the CMP tool's polishing table.
  • a polishing composition (also referred to as a polishing slurry) is introduced between the rotating wafer and the rotating polishing pad during the polishing process.
  • the polishing composition typically contains a chemical that interacts with or dissolves portions of the uppermost wafer layer(s) and an abrasive material that physically removes portions of the layer(s).
  • the wafer and the polishing pad can be rotated in the same direction or in opposite directions, whichever is desirable for the particular polishing process being carried out.
  • the carrier also can oscillate across the polishing pad on the polishing table.
  • Polishing pads made of harder materials exhibit high removal rates and have long useful pad life, but tend to produce numerous scratches on substrates being polished.
  • Polishing pads made of softer materials exhibit low scratching of substrates, but tend to exhibit lower removal rates and have shorter useful pad life. Accordingly, there remains a need in the art for polishing pads that provide effective removal rates and have extended pad life, and also produce limited scratching.
  • the invention provides a polishing pad for chemical-mechanical polishing comprising a porous polymeric material, wherein the polishing pad comprises closed pores and wherein the polishing pad has a void volume fraction of 70% or more.
  • the invention also provides a method of preparing a polishing pad, which method comprises (a) providing a polishing pad material comprising a polymer resin, (b) subjecting the polishing pad material to an inert gas at a first elevated pressure, (c) foaming the polishing pad material by increasing the temperature of the polishing pad material to a first temperature above the glass transition temperature of the polishing pad material and less than the melting point of the polishing pad material, (d) subjecting the polishing pad material to an inert gas at a second elevated pressure, and (e) foaming the polishing pad material by increasing the temperature of the polishing pad material to a second temperature above the glass transition temperature of the polishing pad material.
  • the invention additionally provides a method of polishing a substrate, which method comprises (a) providing a substrate to be polished, (b) contacting the substrate with a polishing system comprising the aforesaid polishing pad and a polishing composition, and (c) abrading at least a portion of the substrate with the polishing system to polish the substrate.
  • FIG. 1 A is an SEM image of a cross-section of a polishing pad material comprising a thermoplastic polyurethane having a Shore D hardness of 42D that was subjected to one cycle of pressurizing/foaming.
  • FIG. I B is an SEM image at a lower magnification than FIG. 1 A of the aforesaid workpiece after a second cycle of
  • FIG. 1C is an SEM image at the same magnification as FIG. IB of the aforesaid workpiece after a third cycle of pressurizing/foaming.
  • FIG. 2A is an SEM image of a cross-section of a polishing pad material comprising a thermoplastic polyurethane having a Shore D hardness of 25D that was subjected to one cycle of pressurizing/foaming.
  • FIG. 2B is an SEM image at the same magnification as FIG. 2A of the aforesaid workpiece after a second cycle of
  • FIG. 2C is the image shown in FIG. 2B at a higher magnification.
  • FIG. 3A is an SEM image of a cross-section of a polishing pad material comprising a thermoplastic polyurethane having a Shore D hardness of 72D that was subjected to one cycle of pressurizing foaming.
  • FIG. 3B is an SEM image at a lower magnification as FIG. 3A of the aforesaid workpiece after a second cycle of pressurizing/foaming.
  • FIG. 3C is an SEM image at a lower magnification than FIGS. 3A and 3B of the aforesaid workpiece after a third cycle of pressurizing foaming.
  • FIG. 4 is an SEM image of a cross-section of a polishing pad material comprising a thermoplastic polyurethane having a Shore D hardness of 42D that was subjected to one cycle of pressurizing/foaming.
  • the invention provides a polishing pad for chemical-mechanical polishing comprising a porous polymeric material, wherein the polishing pad comprises closed pores and wherein the polishing pad has a void volume fraction of 70% or more.
  • the polishing pad can comprise, consist essentially of, or consist of any suitable material.
  • the polishing pad comprises, consists essentially of, or consists of a polymer resin.
  • the polymer resin can be any suitable polymer resin.
  • the polymer resin is selected from the group consisting of thermoplastic elastomers, thermoplastic polyurethanes, polyolefins, polycarbonates, polyvinylalcohols, nylons, elastomeric rubbers, styrenic polymers, polyaromatics, fluoropolymers, polyimides, cross-linked polyurethanes, cross-linked polyolefins, polyethers, polyesters, polyacrylates, elastomeric polyethylenes, polytetrafluoroethylenes, polyethyleneteraphthalates, polyimides, polyaramides,
  • the polymer resin is a polyurethane, more preferably, a thermoplastic polyurethane.
  • the polymer resin typically is a pre-formed polymer resin; however, the polymer resin also can be formed in situ according to any suitable method, many of which are known in the art (see, for example, Szycher's Handbook of Polyurethanes CRC Press: New York, 1999, Chapter 3).
  • thermoplastic polyurethane can be formed in situ by reaction of urethane prepolymers, such as isocyanate, di-isocyanate, and tri-isocyanate prepolymers, with a prepolymer containing an isocyanate reactive moiety.
  • Suitable isocyanate reactive moieties include amines and polyols.
  • the void volume of the polishing pad predominantly is formed by closed cells (i.e., pores); however, the polishing pad also can comprise open cells.
  • the polymer resin can have a Shore D hardness of 15D or more, e.g., 20D or more, 25D or more, 30D or more, 35D or more, 40D or more, 42D or more, 45D or more, 50D or more, 55D or more, 60D or more, 65D or more, or 70D or more.
  • the polymer resin can have a Shore D hardness of 75D or less, e.g., 72D or less, 70D or less, 65D or less, 60D or less, 55D or less, 50D or less, or 45D or less.
  • the polymer resin can have a Shore D hardness bounded by any two of the endpoints recited for the Shore D hardness.
  • the polymer resin can have a Shore D hardness of 15D to 75D, 20D to 75D, 25D to 75D, 25D to 72D, 30D to 72D, 35D to 72D, 40D to 72D, 42D to 72D, 15D to 72D, 15D to 70D, 15D to 65D, 15D to 60D, 15D to 55D, 15D to 50D, 15D to 45D, 20D to 45D, 25D to 45D, 50D to 75D, 55D to 75D, 60D to 75D, 65D to 75D, or 70D to 75D. All Shore D hardness values are as measured using ASTM 2240-05 (2010).
  • the polishing pad typically can have a compressibility of 5% or more, e.g., 10% or more, 15% or more, or 20% or more.
  • the polishing pad can have a compressibility of 25% or less, e.g., 20% or less, 15% or less, or 10% or less.
  • the polishing pad can have a compressibility bounded by any two of the endpoints recited for the compressibility.
  • the polishing pad can have a compressibility of 5% to 25%, 5% to 20%, 5% to 15%, 5% to 10%, 10% to 25%, 10% to 20%, or 10% to 15%.
  • the polishing pad can have a void volume fraction of 70% or more, e.g., 72% or more, 74% or more, 76% or more, 78% or more, 80% or more, 82% or more, 84% or more, 86% or more, 88% or more, or 90% or more.
  • the polishing pad can have a void volume fraction of 90% or less, e.g., 88% or less, 86% or less, 84% or less, 82% or less, or 80% or less.
  • the polishing pad can have a void volume fraction bounded by any two of the endpoints recited for the void volume.
  • the polishing pad can have a void volume fraction of 70% to 90%, 70% to 88%, 70% to 86%, 70% to 84%, 70% to 82%, 70% to 80%, 72% to 90%, 72% to 88%, 72% to 86%, 72% to 84%, 72% to 82%, 74% to 90%, 74% to 88%, 74% to 86%, 74% to 84%, 74% to 82%, 76% to 90%, 76% to 88%, 76% to 86%, 76% to 84%, 76% to 82%, 78% to 90%, 78% to 88%, 78% to 86%, 78% to 84%, or 78% to 82%.
  • the void volume fraction of the polishing pad can be measured using any suitable measurement method.
  • void volume void volume fraction
  • void volume percentage as used herein can be synonymous with porosity.
  • the polishing pad more specifically the closed pores of the polishing pad, can have an average pore size of 5 ⁇ or more, e.g., 10 ⁇ or more, 15 ⁇ or more, 20 ⁇ or more, 25 ⁇ or more, 30 ⁇ or more, 35 ⁇ or more, 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, 65 ⁇ or more, 70 ⁇ or more, 75 ⁇ or more, 100 ⁇ or more, 125 ⁇ or more, or 150 ⁇ or more.
  • an average pore size of 5 ⁇ or more, e.g., 10 ⁇ or more, 15 ⁇ or more, 20 ⁇ or more, 25 ⁇ or more, 30 ⁇ or more, 35 ⁇ or more, 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, 65 ⁇ or more, 70 ⁇ or more, 75 ⁇ or more, 100 ⁇ or more, 125 ⁇ or
  • the polishing pad can have an average pore size of 200 ⁇ or less, e.g., 190 ⁇ or less, 180 ⁇ or less, 175 ⁇ or less, 170 ⁇ or less, 160 ⁇ or less, 150 ⁇ or less, 140 ⁇ or less, 130 ⁇ or less, 125 ⁇ or less, 120 ⁇ or less, 1 10 ⁇ or less, 100 ⁇ or less, 90 ⁇ or less, 80 ⁇ or less, 70 ⁇ or less, 60 ⁇ or less, 50 ⁇ or less, 40 ⁇ or less, 30 ⁇ or less, or 20 ⁇ or less.
  • the polishing pad can have an average pore size bounded by any two of the endpoints recited for the average pore size.
  • the polishing pad can have an average pore size of 5 ⁇ to 200 ⁇ , 5 ⁇ to 20 ⁇ , 25 ⁇ to 75 ⁇ , 50 ⁇ to 100 ⁇ , 75 ⁇ to 125 ⁇ , 100 ⁇ to 150 ⁇ , 125 ⁇ to 175 ⁇ , or 150 ⁇ to 200 ⁇ .
  • the average pore size refers to the average of the largest diameter of a representative sample of individual pores in the polishing pad.
  • the largest diameter is the same as the Feret diameter.
  • the largest diameter can be obtained from an image of a sample, such as a transmission electron microscope image, either manually or by using image analysis software. Typically, the sample is obtained by sectioning a portion of a polishing pad.
  • the average pore size as used herein refers to the average pore size within the bulk portion of the polishing pad, i.e., the portion of the polishing pad between, but not including, the surface(s) of the polishing pad.
  • the surface can be the region of the pad within 5 mm, e.g., within 4 mm, within 3 mm, within 2 mm, or within 1 mm, of the pad surface as produced and before any finishing operations, such as skiving, dressing, or the like.
  • the polishing pad can have a storage modulus of elasticity of 0.01 MPa or more, e.g., 0.05 MPa or more, 0.1 MPa or more, 0.2 MPa or more, 0.3 MPa or more, 0.4 MPa or more, 0. 5 MPa or more, 0.6 MPa or more, 0.8 MPa or more, or 0.9 MPa or more.
  • the polishing pad can have a storage modulus of elasticity of 1 MPa or less, e.g., 0.9 MPa or less, 0.8 MPa or less, 0.7 MPa, or less, 0.6 MPa or less, or 0.5 MPa or less.
  • the polishing pad can have a storage modulus of elasticity bounded by any two of the endpoints recited for the storage modulus of elasticity.
  • the polishing pad can have a storage modulus of elasticity of 0.01 MPa to 1 MPa, 0.05 MPa to 1 MPa, 0.1 MPa to 1 MPa, 0.2 MPa, to 1 MPa, 0.3 MPa to 1 MPa, 0.4 MPa to 1 MPa, or 0.5 MPa to 1 MPa.
  • the storage modulus of elasticity typically refers to the storage modulus of elasticity at a temperature that exists in the polishing zone that exists between the surface of the polishing pad and a substrate being polished during the polishing operation. Typically, the temperature is 40°C to 80°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, or 80°C.
  • the invention also provides a method of preparing a polishing pad.
  • the method comprises (a) providing a polishing pad material comprising a polymer resin, (b) subjecting the polishing pad material to an inert gas at a first elevated pressure, (c) foaming the polishing pad material by increasing the temperature of the polishing pad material to a first temperature above the glass transition temperature of the polishing pad material and less than the melting point of the polishing pad material, and then optionally (d) subjecting the polishing pad material to an inert gas at a second elevated pressure, and (e) foaming the polishing pad material by increasing the temperature of the polishing pad material to a second temperature above the glass transition temperature of the polishing pad material and less than the melting point of the polishing pad material.
  • the polishing pad material is subjected to at least one cycle, preferably at least two cycles, of (a) subjecting the polishing pad material to an inert gas at an elevated pressure and then (b) subjecting the polishing pad material to a temperature that is above the glass transition temperature (T g ) of the polishing pad material and less than the melting point (T m ) of the polishing pad material.
  • the first and second elevated pressures and the first and second elevated temperatures may be the same or may be different.
  • the inert gas can be a hydrocarbon, chlorofluorocarbon, hydrochlorofluorocarbon (e.g., FREONTM
  • the inert gas comprises, or is, nitrogen or carbon dioxide, and more preferably, the gas comprises, or is, carbon dioxide.
  • the polishing pad material is maintained at the elevated pressure(s) for a time sufficient to cause an appropriate amount of the inert gas to dissolve into the polishing pad material.
  • the amount of gas dissolved in the polishing pad material is directly proportional to the applied pressure according to Henry's law. Increasing the temperature of the polishing pad material while at the elevated pressure(s) increases the rate of diffusion of the gas into the polishing pad material, but also decreases the amount of gas that can dissolve in the polishing pad material, Higher pressure of inert gas results in the production of smaller pore sizes. while lower pressure of inert gas results in the production of larger pore sizes. Desirably, the inert gas thoroughly saturates the polishing pad material. Thereafter, the polishing pad material is depressurized. The resulting polishing pad material typically is supersaturated with the inert gas.
  • the polishing pad material is then subjected to a temperature(s) that is above the glass transition temperature (T g ) of the polishing pad material and less than the melting point (T m ) of the polishing pad material.
  • T g glass transition temperature
  • T m melting point
  • the polishing pad can be annealed by heating to a temperature above T g for a period of time.
  • the polishing pad can be further processed using any suitable technique.
  • the polishing pad can be skived or milled to provide a polishing surface.
  • the thus-produced polishing surface can be further processed using techniques such as conditioning the polishing surface, for example, by diamond conditioning.
  • the polishing pad of the invention which is produced by at least two stages of foaming, desirably has a high void volume, with the result that the pores are closely packed together.
  • a variety of pore morphologies can be obtained. In many cases, the morphology resembles a close packing of roughly hexagonal pores similar to a honeycomb structure.
  • FIGS. 1A-1C depict scanning electron microscope ("SEM") images of a cross- section of a polishing pad material comprising a thermoplastic polyurethane having a Shore D hardness of 42D that was subjected to one, two, and three cycles of pressurizing/foaming.
  • FIG. 1 A is an SEM image of the thermoplastic polyurethane after the first
  • FIG. 1 B is an SEM image at a lower magnification than FIG. 1 A of the thermoplastic polyurethane after the second pressurizing/foaming step.
  • the void volume fraction is 85%, and the average pore diameter is 10 ⁇ .
  • FIG. 1C is an SEM image at the same magnification as FIG. IB of the thermoplastic polyurethane after the third
  • FIGS. 2A-2C depict SEM images of a cross-section of a workpiece comprising a thermoplastic polyurethane having a Shore D hardness of 25D that was subjected to one and two cycles of pressurizing/foaming.
  • FIG. 2A is an SEM image of the thermoplastic polyurethane after the first pressurizing/foaming step.
  • the void volume fraction is 72%, and the average pore diameter is 40 ⁇ .
  • FIG. 2B is an SEM image as the same magnification as FIG. 2A of the thermoplastic polyurethane after the second pressurizing/foaming step.
  • the void volume fraction is 75%, and the average pore diameter is 40 ⁇ .
  • FIG. 2C is the image of FIG. 2B at a higher magnification.
  • FIGS. 3A-3C depict SEM images of a cross-section of a workpiece comprising a thermoplastic polyurethane having a Shore D hardness of 72D that was subjected to one, two, and three cycles of pressurizing/foaming.
  • FIG. 3A is an SEM image of the thermoplastic polyurethane after the first pressurizing/foaming step. The void volume fraction is 50%, and the average pore diameter is 57 ⁇ .
  • FIG. 3B is an SEM image at a lower magnification as FIG. 3 A of the thermoplastic polyurethane after the second pressurizing/foaming step. The void volume fraction is 80%, and the average pore diameter is 92 ⁇ .
  • FIG. 3A is an SEM image of the thermoplastic polyurethane after the first pressurizing/foaming step. The void volume fraction is 50%, and the average pore diameter is 57 ⁇ .
  • FIG. 3B is an SEM image at a lower magnification as FIG
  • 3C is an SEM image at a lower magnification than FIGS. 3A and 3B of the thermoplastic polyurethane after the third pressurizing/foaming step.
  • the void volume fraction is 89%, and the average pore diameter is 109 ⁇ .
  • the combination of high void volume and the dense packing of pores is thought to create a high number of asperities at the surface of the inventive polishing pad.
  • the high number of asperities allows for high removal rates when the inventive polishing pad is used to polish substrates.
  • the high void volume and high compressibility thereby confer to the inventive polishing pad high removal rates and long pad life associated with hard polishing pad materials along with low scratching associated with soft polishing pad materials.
  • the pores have a polygonal shape or morphology, in a plane coplanar with the polishing surface.
  • the pores are separated from each other via thin cell walls.
  • the polygonal shape permits closer packing of the pores within the polishing pad and may be correlated with the high void volume fraction of the inventive polishing pad.
  • the invention further provides a method of polishing a substrate, comprising (a) providing a substrate to be polished, (b) contacting the substrate with a polishing system comprising the polishing pad of claim 1 and a polishing composition, and (c) abrading at least a portion of the substrate with the polishing system to polish the substrate.
  • the polishing pad of the invention is particularly suited for use in conjunction with a chemical-mechanical polishing (CMP) apparatus.
  • CMP chemical-mechanical polishing
  • the apparatus comprises a platen, which, when in use, is in motion and has a velocity that results from orbital, linear, or circular motion, a polishing pad of the invention in contact with the platen and moving with the platen when in motion, and a carrier that holds a substrate to be polished by contacting and moving relative to the surface of the polishing pad intended to contact a substrate to be polished.
  • the polishing of the substrate takes place by the substrate being placed in contact with the polishing pad and then the polishing pad moving relative to the substrate, typically with a polishing composition therebetween, so as to abrade at least a portion of the substrate to polish the substrate.
  • the CMP apparatus can be any suitable CMP apparatus, many of which are known in the art.
  • the polishing pad of the invention also can be used with linear polishing tools.
  • the polishing pad described herein can be used alone or optionally can be used as one layer of a multi-layer stacked polishing pad.
  • the polishing pad can be used in combination with a subpad.
  • the subpad can be any suitable subpad. Suitable subpads include polyurethane foam subpads (e.g., PORONTM foam subpads from Rogers
  • the subpad optionally comprises grooves, channels, hollow sections, windows, aperatures, and the like.
  • an intermediate backing layer such as a polyethyleneterephthalate film, coextensive with and in between the polishing pad and the subpad.
  • the porous foam of the invention also can be used as a subpad in conjunction with a conventional polishing pad.
  • the polishing pad described herein is suitable for use in polishing many types of substrates and substrate materials.
  • the polishing pad can be used to polish a variety of substrates including memory storage devices, semiconductor substrates, and glass substrates.
  • Suitable substrates for polishing with the polishing pad include memory disks, rigid disks, magnetic heads, MEMS devices, semiconductor wafers, field emission displays, and other microelectronic substrates, especially substrates comprising insulating layers (e.g., silicon dioxide, silicon nitride, or low dielectric materials) and/or metal-containing layers (e.g., copper, tantalum, tungsten, aluminum, nickel, titanium, platinum, ruthenium, rhodium, iridium, or other noble metals).
  • insulating layers e.g., silicon dioxide, silicon nitride, or low dielectric materials
  • metal-containing layers e.g., copper, tantalum, tungsten, aluminum, nickel, titanium, platinum, ruthenium, rhodium
  • the average pore size was determined according to the following procedure: The samples were prepared by cutting a small rectangle out of each sample square using a razor blade. The samples were supported on carbon tape and are sputtered for 30 seconds with a 3.5 - 5.0 nm coating layer. An image of each sample was captured using scanning electron microscopy ("SEM"). Appropriate resolution was used to ensure that there were enough pores for measurement in the field. The image was obtained and stored.
  • SEM scanning electron microscopy
  • the void volume of the polishing pad was measured by performing a density measurement on samples cut from polishing pads and employing a pycnometer with absolute ethanol as the liquid medium.
  • This example illustrates a method for preparing polishing pads of the invention.
  • thermoplastic polyurethane (TPU) sheets were subjected to two successive cycles (cycles 1 and 2) of gassing and foaming using carbon dioxide as the inert gas.
  • cycles 1 and 2 the gassing pressures were in the range of 2.42-3.45 MPa
  • the foaming temperatures were in the range of 1 15- 155°C
  • the gassing temperature was 10° C.
  • the ratio of gassing pressures in cycle two versus cycle one P 2 /Pi
  • the ratio of gassing time in cycle two versus cycle one t ga s2 tgasi
  • the ratio of foaming temperature in cycle two versus cycle one T 2 /Ti
  • the TPU sheets exhibited an increase in the void volume after the second cycle of pressurizing/foaming as evidenced by a void volume ratio ⁇ 2/ ⁇ 1 of approximately 1.21 to 1.52. All of the TPU sheets exhibited void volumes of greater than 87.0% after the second cycle of pressurizing/foaming.
  • the average pore size in the bulk portion of the TPU sheets after the second cycle of pressurizing/foaming varied from 34.4 ⁇ to 279.9 ⁇ .
  • This example demonstrates TEOS removal rates achievable with polishing pads in accordance with embodiments of the invention.
  • polishing Pads 2A-2D Similar substrates comprising blanket layers of TEOS were polished using the same polishing composition and four different polishing pads (Polishing Pads 2A-2D).
  • the polishing composition comprised 12.5 wt.% fumed silica in water at a pH of 1 1.
  • Polishing Pad 2A (invention) comprised a thermoplastic polyurethane having a Shore D hardness of 42D and had a void volume of 85%.
  • Polishing Pad 2B comparativative
  • polishing Pad 2C (invention) comprised a thermoplastic polyurethane having a Shore D hardness of 72D and had a void volume of 15%.
  • Polishing Pad 2C (invention) comprised a thermoplastic polyurethane having a Shore D hardness of 72D and had a void volume of 85%.
  • Polishing Pad 2D was a ICIOI OTM polishing pad comprising a microporous polyurethane having a Shore D hardness of 65D and is commercially available from Dow Chemical (Midland, MI).
  • the polishing tool was a REFLEXIONTM system (Applied Materials, Santa Clara, CA).
  • Polishing Pad 2C which had a Shore D hardness of 72D and a void volume of 85%, exhibited a TEOS removal rate that was approximately 1.9 times greater than the TEOS removal rate exhibited by Polishing Pad 2B, which had a Shore D hardness of 72D and a void volume of 15%.
  • Polishing Pad 2C exhibited a TEOS removal rate that was approximately 1.54 times greater than the TEOS removal rate exhibited by Polishing Pad 2A, which had a Shore D hardness of 42D and a void volume of 85%.
  • Polishing Pad 2C also exhibited a TEOS removal rate that was
  • Polishing Pad 2D which has a similar Shore D hardness but a significantly lower void volume.
  • This example demonstrates tungsten removal rates achievable with a polishing pad in accordance with an embodiment of the invention.
  • polishing Pads 3A-3C Similar substrates comprising blanket layers of tungsten were polished using the same polishing composition and three different polishing pads (Polishing Pads 3A-3C).
  • the polishing composition comprised 2.5 wt.% colloidal wet-process silica, 0.0123 wt.% ferric nitrate, 0.0267 wt.% malonic acid, 0.16 wt.% glycine, and 2 wt.% hydrogen peroxide in water at a pH of 2.3.
  • Polishing Pad 3A comparativative
  • polishing Pad 3B comprised a thermoplastic polyurethane having a Shore D hardness of 42D and had a void volume of 50%.
  • Polishing Pad 3B Comparative
  • Polishing Pad 3C (comparative) was a ICI OI OTM polishing pad comprising a microporous polyurethane having a Shore D hardness of 65D and is commercially available from Dow Chemical (Midland, MI).
  • the polishing tool was a REFLEXIONTM system (Applied Materials, Santa Clara, CA).
  • Polishing Pad 3B which had a Shore D hardness of 42 D and a void volume of 85%, exhibited a tungsten removal rate that was approximately 2.1 times greater than the tungsten removal rate exhibited by Polishing Pad 2A, which had a Shore D hardness of 42D and a void volume of 50%.
  • Polishing Pad 3B exhibited a tungsten removal rate that was approximately equal to the tungsten removal rate exhibited by Polishing Pad 3C, which has a significantly higher Shore D hardness.
  • polishing pads 4A-4D The polishing composition comprised 2.5 wt.% colloidal wet-process silica, 0.0123 wt.% ferric nitrate, 0.0267 wt.% malonic acid, and 0.16 wt.% glycine in water at a pH of 2.3.
  • Polishing Pad 4A (invention) comprised a thermoplastic polyurethane having a Shore D hardness of 42D and had a void volume of 85%.
  • Polishing Pad 4B comparativative
  • Polishing Pad 4C (comparative) comprised a thermoplastic polyurethane having a Shore D hardness of 25D and had a void volume of 50%.
  • Polishing Pad 4D (comparative) was an open-cell polyurethane pad obtained from Fujibo Ehime Co., Ltd. (Tokyo, Japan). The polishing tool was a MIRRATM system (Applied Materials. Santa Clara, CA). [0055] Following polishing, substrates 20, 40, and 60 from each polishing run with each different polishing pad were examined at four different regions on the substrates using a SURFSCANTM SP2 tool (KLA-Tencor, Milpitas, CA). The scratch counts were normalized, and the results are set forth in Table 4.
  • Polishing Pad 4A which comprised a thermoplastic polyurethane having a Shore D hardness of 42D and a void volume of 85%, exhibited significantly less scratching than Polishing Pad 4B, which comprised a thermoplastic polyurethane having a Shore D hardness of 42D and a void volume of 50%.
  • Polishing Pad 4A exhibited comparable scratching to the scratching exhibited by Polishing Pad 4C, which comprised a thermoplastic polyurethane having a Shore D hardness of 25D and a void volume of 50%, and exhibited comparable scratching to the scratching exhibited by Polishing Pad 4D, which is an industry standard soft polishing pad.
  • This example illustrates a method for preparing polishing pads of the invention using a single step of gassing and foaming, in accordance with an embodiment.
  • Specimens of 42D hardness TPU material were saturated with C0 2 at 2.41 MPa at -1°C for 24 hours. The specimens were foamed in an oil bath at 143°C for 70 seconds. The average bulk pore size of the foamed specimens was 19 microns and the void volume fraction was 85.5%.
  • a SEM micrograph of a cross-section of a representative specimen is depicted in FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
PCT/US2014/052021 2013-08-22 2014-08-21 Ultra high void volume polishing pad with closed pore structure WO2015027026A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480046528.0A CN105474366A (zh) 2013-08-22 2014-08-21 具有闭孔结构的超高空隙体积抛光垫
EP14837394.7A EP3036760A4 (en) 2013-08-22 2014-08-21 Ultra high void volume polishing pad with closed pore structure
SG11201601177SA SG11201601177SA (en) 2013-08-22 2014-08-21 Ultra high void volume polishing pad with closed pore structure
JP2016536441A JP6693875B2 (ja) 2013-08-22 2014-08-21 独立気泡構造を有する超高空隙体積研磨パッド
KR1020167007013A KR20160045092A (ko) 2013-08-22 2014-08-21 폐쇄 세공 구조를 갖는 초고 공극 부피 연마 패드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/973,639 2013-08-22
US13/973,639 US20150056895A1 (en) 2013-08-22 2013-08-22 Ultra high void volume polishing pad with closed pore structure

Publications (1)

Publication Number Publication Date
WO2015027026A1 true WO2015027026A1 (en) 2015-02-26

Family

ID=52480787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/052021 WO2015027026A1 (en) 2013-08-22 2014-08-21 Ultra high void volume polishing pad with closed pore structure

Country Status (8)

Country Link
US (1) US20150056895A1 (zh)
EP (1) EP3036760A4 (zh)
JP (2) JP6693875B2 (zh)
KR (1) KR20160045092A (zh)
CN (2) CN107520743A (zh)
SG (2) SG10201801419XA (zh)
TW (1) TWI600501B (zh)
WO (1) WO2015027026A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201409248D0 (en) * 2014-05-23 2014-07-09 Zotefoams Plc Method for producing three dimensional foam articles
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
JP6545261B2 (ja) 2014-10-17 2019-07-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 付加製造プロセスを使用する、複合材料特性を有するcmpパッド構造
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
TWI769988B (zh) * 2015-10-07 2022-07-11 美商3M新設資產公司 拋光墊與系統及其製造與使用方法
TWI690388B (zh) * 2015-10-30 2020-04-11 日商古河電氣工業股份有限公司 硏磨墊、使用硏磨墊的硏磨方法及該硏磨墊的使用方法
CN108290267B (zh) 2015-10-30 2021-04-20 应用材料公司 形成具有期望ζ电位的抛光制品的设备与方法
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
CN108698206B (zh) 2016-01-19 2021-04-02 应用材料公司 多孔化学机械抛光垫
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
JP2019160996A (ja) 2018-03-13 2019-09-19 東芝メモリ株式会社 研磨パッド、半導体製造装置、および半導体装置の製造方法
EP3790706A4 (en) 2018-05-07 2022-02-16 Applied Materials, Inc. CHEMICAL MECHANICAL POLISHING PADS WITH ADJUSTABLE HYDROPHIL AND ZETA POTENTIAL
CN112654655A (zh) 2018-09-04 2021-04-13 应用材料公司 先进抛光垫配方
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US20210323116A1 (en) * 2020-04-18 2021-10-21 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Offset pore poromeric polishing pad
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166790A1 (en) * 2003-02-21 2004-08-26 Sudhakar Balijepalli Method of manufacturing a fixed abrasive material
US20050277371A1 (en) * 2002-10-28 2005-12-15 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions
KR20090110818A (ko) * 2007-01-15 2009-10-22 도요 고무 고교 가부시키가이샤 연마 패드 및 그 제조 방법
JP2011005563A (ja) * 2009-06-23 2011-01-13 Fujibo Holdings Inc 研磨パッド、その製造方法および研磨加工方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564965A (en) * 1993-12-14 1996-10-15 Shin-Etsu Handotai Co., Ltd. Polishing member and wafer polishing apparatus
US6126532A (en) * 1997-04-18 2000-10-03 Cabot Corporation Polishing pads for a semiconductor substrate
JP3956364B2 (ja) * 2001-04-09 2007-08-08 東洋ゴム工業株式会社 ポリウレタン組成物および研磨パッド
US6913517B2 (en) * 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
US7311862B2 (en) * 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US6998166B2 (en) * 2003-06-17 2006-02-14 Cabot Microelectronics Corporation Polishing pad with oriented pore structure
US20040259479A1 (en) * 2003-06-23 2004-12-23 Cabot Microelectronics Corporation Polishing pad for electrochemical-mechanical polishing
US7220167B2 (en) * 2005-01-11 2007-05-22 Hitachi Global Storage Technologies Netherlands B.V. Gentle chemical mechanical polishing (CMP) liftoff process
US20060277371A1 (en) * 2005-06-01 2006-12-07 Intel Corporation System and method to instrument references to shared memory
CN101501112B (zh) * 2006-07-28 2011-12-14 东丽株式会社 互穿聚合物网络结构体及研磨垫以及它们的制造方法
JP5078527B2 (ja) * 2007-09-28 2012-11-21 富士紡ホールディングス株式会社 研磨布
MY177445A (en) * 2008-05-26 2020-09-15 Basf Se Method of making porous materials and porous materials prepared thereof
US8383003B2 (en) * 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
US20100015895A1 (en) * 2008-07-15 2010-01-21 Hendron Jeffrey J Chemical mechanical polishing pad having electrospun polishing layer
KR20110033277A (ko) * 2008-07-18 2011-03-30 쓰리엠 이노베이티브 프로퍼티즈 캄파니 플로팅 요소를 구비한 연마 패드 및 이 연마 패드의 제작 방법과 이용 방법
US8303375B2 (en) * 2009-01-12 2012-11-06 Novaplanar Technology, Inc. Polishing pads for chemical mechanical planarization and/or other polishing methods
US8162728B2 (en) * 2009-09-28 2012-04-24 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Dual-pore structure polishing pad
WO2012077592A1 (ja) * 2010-12-07 2012-06-14 Jsr株式会社 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
US9211628B2 (en) * 2011-01-26 2015-12-15 Nexplanar Corporation Polishing pad with concentric or approximately concentric polygon groove pattern
JP5687118B2 (ja) * 2011-04-15 2015-03-18 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
CA2867350C (en) * 2012-03-16 2017-05-23 Saint-Gobain Abrasives, Inc. Abrasive products and methods for finishing surfaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277371A1 (en) * 2002-10-28 2005-12-15 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US20040166790A1 (en) * 2003-02-21 2004-08-26 Sudhakar Balijepalli Method of manufacturing a fixed abrasive material
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions
KR20090110818A (ko) * 2007-01-15 2009-10-22 도요 고무 고교 가부시키가이샤 연마 패드 및 그 제조 방법
JP2011005563A (ja) * 2009-06-23 2011-01-13 Fujibo Holdings Inc 研磨パッド、その製造方法および研磨加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3036760A4 *

Also Published As

Publication number Publication date
SG10201801419XA (en) 2018-03-28
JP6693875B2 (ja) 2020-05-13
JP2016528054A (ja) 2016-09-15
TW201519999A (zh) 2015-06-01
SG11201601177SA (en) 2016-03-30
EP3036760A1 (en) 2016-06-29
CN107520743A (zh) 2017-12-29
EP3036760A4 (en) 2017-05-03
US20150056895A1 (en) 2015-02-26
CN105474366A (zh) 2016-04-06
KR20160045092A (ko) 2016-04-26
JP2019171567A (ja) 2019-10-10
TWI600501B (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
US20150056895A1 (en) Ultra high void volume polishing pad with closed pore structure
US9463551B2 (en) Polishing pad with porous interface and solid core, and related apparatus and methods
US6998166B2 (en) Polishing pad with oriented pore structure
US6913517B2 (en) Microporous polishing pads
US7195544B2 (en) CMP porous pad with component-filled pores
TWI589613B (zh) 聚胺酯硏磨墊
US20040259479A1 (en) Polishing pad for electrochemical-mechanical polishing
Prasad et al. The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads
US20140370788A1 (en) Low surface roughness polishing pad
US20040171339A1 (en) Microporous polishing pads
JP2022051740A (ja) 高い弾性率比率を有するポリウレタンcmpパッド
JP2018171702A (ja) ケミカルメカニカル研磨パッド
JP2018531157A6 (ja) 高い弾性率比率を有するポリウレタンcmpパッド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046528.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014837394

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167007013

Country of ref document: KR

Kind code of ref document: A