WO2015025943A1 - 光学ガラスおよびその利用 - Google Patents

光学ガラスおよびその利用 Download PDF

Info

Publication number
WO2015025943A1
WO2015025943A1 PCT/JP2014/071966 JP2014071966W WO2015025943A1 WO 2015025943 A1 WO2015025943 A1 WO 2015025943A1 JP 2014071966 W JP2014071966 W JP 2014071966W WO 2015025943 A1 WO2015025943 A1 WO 2015025943A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
preferable
content
optical
upper limit
Prior art date
Application number
PCT/JP2014/071966
Other languages
English (en)
French (fr)
Inventor
智明 根岸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52483714&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015025943(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/911,340 priority Critical patent/US9643880B2/en
Priority to CN201480043433.3A priority patent/CN105452181B/zh
Priority to KR1020167003954A priority patent/KR101827183B1/ko
Publication of WO2015025943A1 publication Critical patent/WO2015025943A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present invention relates to an optical glass having high refractive index and low dispersion characteristics, a glass gob for press molding and an optical element blank made of this optical glass, and an optical element.
  • Lenses made of high-refractive-index, low-dispersion glass can be combined with lenses made of ultra-low dispersion glass to make the optical system more compact while correcting chromatic aberration. It occupies a very important position as an optical element.
  • Document 1 Japanese Patent Laid-Open No. 60-33229
  • Document 2 Japanese Patent Laid-Open No. 60-131845) or English Family Member US Pat. No. 4,584,279, all of which are specifically incorporated herein by reference, have a refractive index of 1
  • An optical glass having 90 or more and an Abbe number of 25 or more is disclosed.
  • the Abbe number ⁇ d (the Abbe number ⁇ d decreases from the left to the right) on the horizontal axis
  • the refractive index nd (the refractive index nd increases from the bottom upward) on the vertical axis.
  • the plot is within the band-shaped range from the lower left to the upper right of the optical characteristic diagram. Is distributed. If the composition is changed so as to obtain the upper left optical characteristic from the band-shaped range from the lower left to the upper right of the optical characteristic diagram, the glass stability tends to decrease, and the glass tends to be devitrified or not vitrified.
  • the high refractive index and low dispersion optical glass showing the refractive index nd and Abbe number ⁇ d in the upper left range in the optical characteristic diagram is a glass material of an optical element that is effective for increasing the functionality and compactness of the optical system.
  • a glass having a higher refractive index can be obtained as the Abbe number ⁇ d decreases.
  • the glass stability tends to decrease and the glass does not vitrify. Therefore, it is very significant to provide an optical glass exhibiting the refractive index nd and Abbe number ⁇ d in the upper left range of the optical characteristic diagram while maintaining the glass stability.
  • One embodiment of the present invention provides an optical glass having excellent glass stability while being a high refractive index and low dispersion glass.
  • an optical glass having high stability while being a high refractive index and low dispersion glass can be obtained by adjusting the glass composition.
  • Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ are essential components
  • La 3+ is 10 to 50% (however, La 3+ , Gd 3+ , Y 3+ and Yb 3+ are 70% or less in total)
  • Ti 4+ , Nb 5+ , Ta 5+ and W 6+ in total 22-55 % Including, however, Ti 4+ content is 22% or less
  • the cation ratio [Si 4+ / (Si 4+ + B 3+ )] of the content of Si 4+ to the total content of Si 4+ and B 3+ is 0.40 or less
  • the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is 65% or more
  • Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ are essential components
  • La 3+ is 10 to 50% (however, La 3+ , Gd 3+ , Y 3+ and Yb 3+ are 70% or less in total)
  • Including The cation ratio of the content of Y 3+ to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.14 or less
  • a further aspect of the present invention relates to a glass gob for press molding made of the optical glass of the above aspect.
  • a further aspect of the present invention relates to an optical element blank made of the optical glass of the above aspect.
  • a further aspect of the present invention relates to an optical element comprising the optical glass of the above aspect.
  • an optical glass having excellent glass stability can be provided while being a high refractive index and low dispersion glass.
  • the glass gob for press molding which consists of the said optical glass, an optical element blank, and an optical element can be provided.
  • the optical element and the optical element produced from the press molding glass gob or the optical element blank for example, a lens
  • a compact optical system for correcting chromatic aberration is provided by combining with a lens made of a high refractive index and high dispersion glass. You can also.
  • optical glass I One embodiment of the optical glass of the present invention (hereinafter referred to as “optical glass I”) has Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ as essential components, and is expressed in cation%.
  • Si 4+ and B 3+ are network-forming oxides and components that have a function of maintaining glass stability. If the total content of Si 4+ and B 3+ is less than 5%, the glass stability deteriorates, the liquidus temperature rises, and if the total content exceeds 55%, it becomes difficult to achieve a desired refractive index. Therefore, the total content of Si 4+ and B 3+ is set to 5 to 55%.
  • Si 4+ and total preferable upper limit of the content is 50% B 3+, and more preferable upper limit is 45%, still more preferred upper limit is 40%, a more preferred upper limit of 35%, even more preferred upper limit is 30% Si 4+ and
  • the preferable lower limit of the total content of B 3+ is 10%, the more preferable lower limit is 13%, the still more preferable lower limit is 15%, the still more preferable lower limit is 18%, and the still more preferable lower limit is 20%.
  • Si 4+ is an essential component effective for maintaining viscosity suitable for forming molten glass and improving chemical durability.
  • the content is preferably 1% or more.
  • the Si 4+ content is preferably 30% or less in order to suppress an increase in liquidus temperature or glass transition temperature while obtaining a desired refractive index.
  • the Si 4+ content is preferably 30% or less. Accordingly, the Si 4+ content is preferably in the range of 1 to 30%.
  • a more preferable upper limit of the content of Si 4+ is 25%, a further preferable upper limit is 20%, a still more preferable upper limit is 18%, a still more preferable upper limit is 15%, and an even more preferable upper limit is 12%.
  • the more preferable lower limit of the Si 4+ content is 2%, the more preferable lower limit is 3%, the more preferable lower limit is 4%, and the still more preferable lower limit is 5%.
  • An even more preferred lower limit is 6%.
  • the B 3+ is an essential component effective for maintaining the meltability of the glass, lowering the liquidus temperature, and reducing the dispersion, in addition to the above-described functions.
  • the content is preferably 1% or more.
  • the B 3+ content is preferably 1% or more from the viewpoint of glass stability.
  • the B 3+ content is preferably 50% or less. Therefore, the B 3+ content is preferably in the range of 1 to 50%.
  • a more preferable upper limit of the content of B 3+ is 40%, a further preferable upper limit is 35%, a still more preferable upper limit is 30%, a still more preferable upper limit is 25%, a still more preferable upper limit is 22%, and an even more preferable upper limit is 20%.
  • the more preferable lower limit of the content of B 3+ is 3%, the more preferable lower limit is 5%, the still more preferable lower limit is 7%, the still more preferable lower limit is 9%, and the still more preferable lower limit is 11%.
  • the cation ratio [Si 4+ / (Si 4+ + B 3+ )] of the content of Si 4+ to the total content of Si 4+ and B 3+ exceeds 0.40, desired optical properties are obtained while maintaining glass stability. And the meltability is lowered, and the glass raw material becomes difficult to melt. Therefore, in the optical glass I, the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is set to 0.40 or less.
  • the preferable upper limit of the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is 0.38, the more preferable upper limit is 0.36, the still more preferable upper limit is 0.35, and the more preferable upper limit is 0.34.
  • a more preferred upper limit is 0.32. Since the optical glass I contains Si 4+ and B 3+ as essential components, the lower limit of the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is more than zero. From the viewpoint of improving glass stability and making the viscosity of the molten glass suitable for molding, the preferred lower limit of the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is 0.10, and the more preferred lower limit is 0.14. A more preferred lower limit is 0.17, a more preferred lower limit is 0.20, and a still more preferred lower limit is 0.23.
  • La 3+ is an essential component excellent in the function of reducing the high refractive index and the low dispersion while maintaining the glass stability, and is also a component that improves the chemical durability.
  • the La 3+ content is less than 10%, it is difficult to obtain the above effects.
  • the La 3+ content exceeds 50%, the devitrification resistance is deteriorated and the liquidus temperature is increased. Therefore, the La 3+ content is 10 to 50%.
  • the preferable upper limit of the La 3+ content is 45%, the more preferable upper limit is 40%, the more preferable upper limit is 35%, and the more preferable upper limit is 33%.
  • the preferable lower limit of the La 3+ content is 15%, and the more preferable lower limit. Is 18%, a more preferred lower limit is 20%, a more preferred lower limit is 22%, and a still more preferred lower limit is 24%.
  • Gd 3+ , Y 3+ , and Yb 3+ are high-refractive index and low-dispersion components as well as La 3+, and also work to improve chemical durability. If the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ exceeds 70%, the glass stability deteriorates and the liquidus temperature rises. Therefore, the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ is 70% or less.
  • a preferable upper limit of the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ is 60%, a more preferable upper limit is 50%, a further preferable upper limit is 45%, a more preferable upper limit is 40%, and a still more preferable upper limit is 38%. It is.
  • the preferable lower limit of the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ is 11%, the more preferable lower limit is 15%, and the more preferable lower limit is 20%.
  • the preferred lower limit is 23%, the still more preferred lower limit is 25%, the still more preferred lower limit is 28%, and the particularly preferred lower limit is 30%.
  • the cation ratio [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] of the content is set to 0.12 or less.
  • the upper limit of the cation ratio [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is preferably 0.11, more preferably 0.10, still more preferably 0.08, and still more preferably 0.04. A more preferred upper limit is 0.02.
  • the cation ratio [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] may be zero.
  • the preferable upper limit of the content of Gd 3+ is 20%, the more preferable upper limit is 15%, the more preferable upper limit is 10%, and the more preferable upper limit is 8%.
  • a more preferred upper limit is 6%.
  • a preferred lower limit for the content of Gd 3+ is 0.5%, a more preferred lower limit is 1%, a still more preferred lower limit is 2%, and a more preferred lower limit is 3%. Note that the content of Gd 3+ may be 0%.
  • the preferable upper limit of the content of Y 3+ is 15%, the more preferable upper limit is 10%, the further preferable upper limit is 7%, the more preferable upper limit is 5%, the still more preferable upper limit is 3%, and the further preferable upper limit is 2%.
  • the minimum with preferable content of Y ⁇ 3+ > is 0.1%. Note that the content of Y 3+ may be 0%.
  • the preferable upper limit of the content of Yb 3+ is 10%, the more preferable upper limit is 8%, the further preferable upper limit is 6%, the still more preferable upper limit is 4%, the still more preferable upper limit is 2%, the still more preferable upper limit is 1%, and still more preferable.
  • the upper limit is 0.5%, and an even more preferable upper limit is 0.1%.
  • the content of Yb 3+ may be 0%. Since Yb 3+ has absorption in the infrared region, it is not suitable for use in high-sensitivity optical systems that require photosensitive properties in the near-infrared region, such as high-precision video cameras and surveillance cameras. Glass with a reduced content of Yb 3+ is suitable for the above applications.
  • the ratio [(Gd 3+ + Y 3+ + Yb 3+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is preferably more than 0, more preferably 0.02 or more, and further preferably 0.06 or more. Preferably, it is 0.10 or more, more preferably 0.14 or more.
  • the preferable upper limit of the cation ratio [(Gd 3+ + Y 3+ + Yb 3+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.80, and the more preferable upper limit is 0.50, a more preferred upper limit is 0.40, a more preferred upper limit is 0.30, and a still more preferred upper limit is 0.20.
  • Ti 4+ , Nb 5+ , Ta 5+ and W 6+ work to increase the refractive index and improve devitrification resistance, suppress the increase in liquidus temperature, and improve chemical durability.
  • the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is less than 22%, it is difficult to obtain the above effect, and the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ exceeds 55%. And devitrification resistance deteriorates, and the liquidus temperature rises. In addition, the dispersion increases and the coloration of the glass increases. Therefore, the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 22 to 55%.
  • the preferable upper limit of the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 45%, the more preferable upper limit is 40%, the further preferable upper limit is 35%, the more preferable upper limit is 33%, and the still more preferable upper limit is 31%.
  • the preferable lower limit of the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 23%, the more preferable lower limit is 24%, the further preferable lower limit is 25%, the more preferable lower limit is 26%, and the more preferable lower limit is Is 27%.
  • the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is within the above range, the content of Ti 4+ is 22% or less, and Zr 4+ is an essential component. Further, Zr 4+ to the content of Zr 4+, Ti 4+, Nb 5+ , adjusting the total content of the cation ratio of Ta 5+ and W 6+ [(Zr 4+ + Ti 4+ + Nb 5+ + Ta 5+ + W 6+) / Zr 4+] Thus, the devitrification resistance can be improved and an increase in the liquidus temperature can be suppressed.
  • the cation ratio [(Zr 4+ + Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / Zr 4+ ] is set to 2 or more.
  • the preferable lower limit of the cation ratio [(Zr 4+ + Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / Zr 4+ ] is 3.0, the more preferable lower limit is 3.5, the still more preferable lower limit is 4.0, and the more preferable lower limit is 4.5. A more preferred lower limit is 5.0.
  • the upper limit of the cation ratio [(Zr 4+ + Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / Zr 4+ ] is preferably 56, more preferably 50, and even more preferably 40, A more preferred upper limit is 30, a more preferred upper limit is 20, and a more preferred upper limit is 10.
  • the preferred lower limit of the Ti 4+ content is 10%, the more preferred lower limit is 12%, the still more preferred lower limit is 14%, and the more preferred lower limit is 16%.
  • the more preferable lower limit is 18%, the preferable upper limit of the content of Ti 4+ is 21.9%, the more preferable upper limit is 21.8%, the still more preferable upper limit is 21.7%, and the more preferable upper limit is 21.6%. %, And a more preferred upper limit is 21.5%.
  • the preferred lower limit of the Nb 5+ content is 1%, the more preferred lower limit is 2%, the still more preferred lower limit is 3%, and the more preferred lower limit is 4%.
  • the more preferable lower limit is 5%, the preferable upper limit of the Nb 5+ content is 30%, the more preferable upper limit is 25%, the still more preferable upper limit is 20%, the still more preferable upper limit is 15%, and the still more preferable upper limit is 10%.
  • An even more preferred upper limit is 8%.
  • Ta 5+ functions to increase the refractive index and increase the glass stability without increasing the dispersion as compared with Ti 4+ , Nb 5+ and W 6+ . If the Ta 5+ content exceeds 10%, the liquidus temperature rises and the devitrification resistance decreases, so the Ta 5+ content is preferably 0 to 10%. Considering that Ta 5+ is an expensive component, a preferable range of the content of Ta 5+ is 0 to 8%, a more preferable range is 0 to 6%, a further preferable range is 0 to 4%, and a more preferable range is 0. ⁇ 2%, and a more preferred range is 0 ⁇ 1%. Even more preferably, it does not contain Ta 5+ .
  • the total content of the cation ratio of Nb 5+ and Ta 5+ to the content of Nb 5+ [(Nb 5+ + Ta 5+) / Nb 5+] is 1 or more Preferably there is.
  • the cation ratio [(Nb 5+ + Ta 5+ ) / Nb 5+ ] exceeds 11, the specific gravity of the glass increases.
  • the cation ratio [(Nb 5+ + Ta 5+ ) / Nb 5+ ] is preferably 11 or less.
  • the preferred upper limit of the cation ratio [(Nb 5+ + Ta 5+ ) / Nb 5+ ] is 9, more preferred upper limit is 7, more preferred upper limit is 5, and still more preferred upper limit is 3, and the cation ratio [(Nb 5+ + Ta 5+ ) / Nb 5+ ] can be set to 1.
  • W 6+ is an optional component that increases the refractive index, lowers the liquidus temperature, and contributes to the improvement of devitrification resistance.
  • the content of W 6+ is preferably 0 to 10%.
  • a preferable range of the content of W 6+ is 0 to 8%, a more preferable range is 0 to 6%, a further preferable range is 0 to 4%, a more preferable range is 0 to 2%, and an even more preferable range is 0 to 1%. And it is even more preferred not to contain W 6+ .
  • the cation ratio of the W 6+ content to the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is preferably less than 0.10.
  • the upper limit of the cation ratio [W 6+ / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is more preferably 0.095, and still more preferably 0.8. 090, more preferably 0.070, even more preferably 0.050, and even more preferably 0.030.
  • the lower limit of the cation ratio [W 6+ / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is zero.
  • the cation ratio of the total content of Nb 5+ and Ta 5+ to the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ [(Nb 5+ + Ta 5+ ) / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is preferably 0.41 or less.
  • the cation ratio [(Nb 5+ + Ta 5+ ) / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is reduced to 0 to reduce the high refractive index and lower the partial dispersion ratio. It is preferable to make it 05 or more.
  • the preferable upper limit of the cation ratio [(Nb 5+ + Ta 5+ ) / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is 0.41 as described above, the more preferable upper limit is 0.39, and the more preferable upper limit is 0.36. A more preferred upper limit is 0.33, and a still more preferred upper limit is 0.30.
  • the more preferred lower limit of the cation ratio [(Nb 5+ + Ta 5+ ) / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is 0.10, the more preferred lower limit is 0.15, the more preferred lower limit is 0.20, and the even more preferred lower limit. Is 0.25.
  • La 3+ , Gd 3+ , Y 3+ and Yb 3+ have a function of increasing the refractive index while maintaining low dispersion, and Ti 4+ , Nb 5+ , Ta 5+ and W 6+ are highly refracted. It is a highly dispersible component.
  • the cation ratio [(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is preferably 0.10 or more.
  • the more preferred lower limit of the cation ratio [(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.30, the more preferred lower limit is 0.50, and the more preferred lower limit is 0.60. A more preferred lower limit is 0.70.
  • the cation ratio [(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 1.50 or less from the viewpoint of obtaining desired optical characteristics while maintaining good glass stability. Preferably there is.
  • the more preferable upper limit of the cation ratio [(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 1.40, the more preferable upper limit is 1.30, and the more preferable upper limit is 1.20.
  • a more preferred upper limit is 1.00.
  • the cation ratio (Ti 4+ / B 3+ ) of the Ti 4+ content to the B 3+ content is set to 0.85 or more in order to increase the refractive index while maintaining the glass stability.
  • the cation ratio (Ti 4+ / B 3+ ) is less than 0.85, if the refractive index is increased while maintaining low dispersibility, crystals tend to precipitate during glass production.
  • the lower limit of the cation ratio (Ti 4+ / B 3+ ) is more preferably 0.90, still more preferably 0.95, and still more preferably 1.00.
  • the upper limit of the cation ratio (Ti 4+ / B 3+ ) is naturally determined from the composition range of the optical glass of the above-described aspect.
  • Zr 4+ is an essential component in the optical glass I, works to increase the refractive index, improve chemical durability, improve devitrification resistance by coexisting with Ti 4+, and suppress the increase in liquidus temperature. do. In order to acquire the said effect, it is preferable to make content of Zr4 + into 1% or more. From the viewpoint of suppressing increase in glass transition temperature, liquidus temperature, and decrease in devitrification resistance, the preferable upper limit of the content of Zr 4+ is 15%.
  • the preferable upper limit of the content of Zr 4+ is 10%, the more preferable upper limit is 8%, the more preferable upper limit is 7%, the preferable lower limit of the content of Zr 4+ is 1%, the more preferable lower limit is 2%, and the more preferable lower limit Is 3%, and a more preferred lower limit is 4%.
  • Zn 2+ lowers the refractive index and glass stability, but functions to improve the meltability and clarity of the glass.
  • La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ , Zr 4+ oxides all have extremely high melting points, and optical glass I containing these components as essential or optional components I
  • the content of Zn 2+ can be 0%.
  • Ti 4+ , Nb 5+ , Ta 5+ , and W 6+ are components that increase the refractive index but increase the melting temperature, and lower the total content of these components and the refractive index, but improve the meltability and clarity.
  • the cation ratio of the content of Zn 2+ Zn 2+ / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+) meltability of an index, clarity, optical characteristics such as refractive index can be adjusted.
  • the cation ratio [Zn 2+ / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is preferably 0.01 or more, and more preferably 0.02 or more.
  • the cation ratio [Zn 2+ / (Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )] is preferably 0.65 or less, more preferably 0.60 or less, and 50 or less is further preferable, 0.40 or less is more preferable, 0.30 or less is further preferable, 0.20 or less is even more preferable, and 0.10 or less is used. It is particularly preferred.
  • Li + , Na + and K + are optional components that serve to improve the meltability and lower the glass transition temperature.
  • the total content of Li + , Na + and K + is in the range of 0 to 10% from the viewpoint of suppressing increase in liquidus temperature, glass stability and chemical durability while realizing high refractive index. It is preferable to make it.
  • a more preferable range of the total content of Li + , Na + and K + is 0 to 8%, a further preferable range is 0 to 6%, a more preferable range is 0 to 4%, an even more preferable range is 0 to 2%, An even more preferable range is 0 to 1%, and it is even more preferable that the alkali metal component is not included.
  • each component of Li + , Na + and K + is preferably 0 to 10%, more preferably 0 to 8%, more preferably 0 to 6%, and still more preferably 0 to 10%.
  • a more preferred range is 0 to 2%
  • a still more preferred range is 0 to 1%
  • a still more preferred range is 0 to 0.1%, and it is even more preferable not to include each of the above alkali metal components. preferable.
  • Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ work to improve the meltability of the glass and lower the glass transition temperature Tg.
  • the defoaming effect can also be obtained by introducing it into glass in the form of nitrate or sulfate.
  • a glass having a high refractive index and low dispersion among the above alkaline earth metal components, when Ba 2+ is contained in a large amount with respect to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ , glass stability is maintained. However, it becomes difficult to further reduce the refractive index and dispersion.
  • molten glass is usually cast into a mold having a bottom surface and a side wall, and one of the side surfaces is open, and the formed glass is continuously drawn from the open side surface of the mold (referred to as E-bar forming method).
  • E-bar forming method a method for forming molten glass.
  • Ba 2+ is contained in a large amount with respect to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ to achieve low refractive index and low dispersion, the glass tends to be devitrified by this molding method.
  • molten glass is cast into the through hole, the contact area with the mold per unit volume of the molten glass is increased, and the glass cooling rate is extremely increased to prevent devitrification.
  • a special molding method must be used. In the molding method using a mold having a through-hole, it is difficult to anneal the glass as it is through a tunnel-type continuous annealing furnace called a rare furnace in the horizontal direction because the molded glass is drawn downward.
  • the ratio [Ba 2+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is set to 0.40 or less. If the cation ratio [Ba 2+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] exceeds 0.40, the tendency of the glass to devitrify increases, making it difficult to produce high-quality optical glass by the E-bar molding method. become.
  • the upper limit of the cation ratio [Ba 2+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.40, the preferred upper limit is 0.30, the more preferred upper limit is 0.25, and the more preferred upper limit is 0.20, as described above. A more preferred upper limit is 0.10, and a still more preferred upper limit is 0.05.
  • the cation ratio [Ba 2+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] may be zero.
  • the cation ratio [Ba 2+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is within the above range from the viewpoint of preventing increase in liquidus temperature and suppressing the devitrification resistance, refractive index and chemical durability from decreasing.
  • the total content of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ is preferably 0 to 10%.
  • a more preferable range of the total content of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ is 0 to 8%, a further preferable range is 0 to 6%, a more preferable range is 0 to 4%, and a still more preferable range is 0 to 2%, more preferably 0 to 1%, even more preferably not containing the alkaline earth metal component.
  • the preferred range is 0 to 10%, the more preferred range is 0 to 8%, the more preferred range is 0 to 6%, and the more preferred range. Is 0 to 4%, a more preferable range is 0 to 2%, and a still more preferable range is 0 to 1%, and it is even more preferable that each of the above alkaline earth metal components is not included.
  • Ge 4+ is a network-forming oxide, and also functions to increase the refractive index. Therefore, Ge 4+ is a component that can increase the refractive index while maintaining glass stability, but is significantly more expensive than other components. It is a component that is desired to refrain from its content. In the optical glass I, since the composition is determined as described above, even if the content of Ge 4+ is suppressed to, for example, 10% or less, the realization of desired optical characteristics and the realization of excellent glass stability are compatible. Can do. Therefore, the content of Ge 4+ is preferably 0 to 10%.
  • a more preferable range of the content of Ge 4+ is 0 to 8%, a more preferable range is 0 to 6%, a more preferable range is 0 to 4%, a still more preferable range is 0 to 2%, and an even more preferable range is 0 to 1%. It is particularly preferable that Ge 4+ is not included, that is, a Ge-free glass.
  • the Bi 3+ content is preferably 0 to 10%.
  • a more preferable range of the Bi 3+ content is 0 to 8%, a further preferable range is 0 to 6%, a more preferable range is 0 to 4%, an even more preferable range is 0 to 2%, and an even more preferable range is 0 to It is particularly preferred that it is 1% and does not contain Bi 3+ .
  • La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ are high refractive index components, and have a desired refractive index and dispersion.
  • the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is set to 65% or more.
  • the optical glass I in order to maintain glass stability, a total of 5% or more of Si 4+ and B 3+ that are network forming components are contained, so that La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ are naturally 95% or less.
  • the preferred lower limit of the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is more than 66%.
  • a preferred lower limit is 67%, a more preferred lower limit is 68%, a more preferred lower limit is 69%, and a still more preferred lower limit is 70%.
  • the preferable upper limit of the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is 90%
  • the more preferred upper limit is 85%
  • the still more preferred upper limit is 80%
  • the still more preferred upper limit is 75%
  • the still more preferred upper limit is 73%.
  • Al 3+ works to improve glass stability and chemical durability when it is in a small amount, but when the amount exceeds 10%, the liquidus temperature rises and the devitrification resistance tends to deteriorate. Therefore, the content of Al 3+ is preferably 0 to 10%.
  • a more preferable range of the content of Al 3+ is 0 to 8%, a further preferable range is 0 to 6%, a more preferable range is 0 to 4%, a still more preferable range is 0 to 2%, and an even more preferable range is 0 to It is particularly preferred that it is 1% and does not contain Al 3+ .
  • the content of any cation component other than the cation component is set to 0 to 5%. It is preferably 0 to 4%, more preferably 0 to 3%, still more preferably 0 to 2.5%, still more preferably 0 to 2%. Preferably, it is 0 to 1.5%, more preferably 0 to 1.0%, still more preferably 0 to 0.5%.
  • the content of any cation component other than the cation component may be 0%.
  • Sb can be added as a refining agent and works to suppress a decrease in light transmittance due to contamination with impurities such as Fe by adding a small amount.
  • Sb 2 O 3 is divided by 1% by mass. If it is added beyond the range, the glass will be colored, or its strong oxidizing action will promote the deterioration of the molding surface of the mold. Therefore, the amount of Sb added in terms of Sb 2 O 3 is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass, and still more preferably 0 to 0.1% by mass. .
  • the added amount of Sb converted to Sb 2 O 3 by external division means the content of Sb 2 O 3 by mass% when the total content of glass components other than Sb 2 O 3 is 100 mass%. means.
  • Sn can also be added as a refining agent. However, if it is added in excess of 1% by mass in terms of SnO 2 , the glass is colored or the molding surface of the mold is deteriorated by oxidation. Accordingly, the addition amount of Sn in terms of SnO 2 is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass on an external basis.
  • the added amount of Sn converted to SnO 2 by external division means the content of SnO 2 in terms of mass% when the total content of glass components other than SnO 2 is 100 mass%.
  • Ce oxides, sulfates, nitrates, chlorides, and fluorides can be added in small amounts as clarifiers.
  • the optical glass I can maintain the glass stability while realizing the optical characteristics of high refractive index and low dispersion, it does not need to contain components such as Lu, Hf, Ga, In, and Sc. Since Lu, Hf, Ga, In, and Sc are also expensive components, the contents of Lu 3+ , Hf 4+ , Ga 3+ , In 3+ , and Sc 3+ are preferably suppressed to 0 to 1%, respectively, and 0 to 0.5 respectively. %, More preferably 0 to 0.1%, respectively, Lu 3+ is not introduced, Hf 4+ is not introduced, Ga 3+ is not introduced, In 3+ is not introduced, It is particularly preferred that no Sc 3+ is introduced.
  • the optical glass I does not substantially contain the above-described Pb or the like.
  • substantially free means that it is not actively introduced as a glass component, and it is allowed to be mixed as an impurity unintentionally.
  • Optical glass I is an oxide glass, and the main anion component is O 2 ⁇ .
  • the Abbe number ⁇ d of the optical glass I is in the range of 23 to 35.
  • the lower limit of the Abbe number ⁇ d is preferably 24.0, more preferably 24.5, even more preferably 25.0, still more preferably 25.5, and even more preferably 26.0.
  • the upper limit of the Abbe number ⁇ d works advantageously in maintaining and improving the glass stability. From this viewpoint, the upper limit of the Abbe number ⁇ d is preferably 32.00, more preferably 31.00 or less, still more preferably 30.00 or less, still more preferably 29.00 or less, and even more preferably 28.00 or less. .
  • the refractive index nd is determined in relation to the Abbe number ⁇ d.
  • an optical system such as an imaging optical system and a projection optical system can be made compact and highly functional.
  • the refractive index nd and the Abbe number ⁇ d satisfy the following expression (1).
  • the glass satisfying the formula (1) is a glass having a high refractive index at the same Abbe number ⁇ d as compared with a conventional high refractive index and low dispersion glass, that is, a glass in the upper left range of the optical characteristic diagram described above, which is useful. It is a highly glass.
  • the refractive index nd is preferably 2.20 or less, more preferably 2.15 or less, further preferably 2.10 or less, and 2.09 or less. More preferably.
  • the refractive index nd and the Abbe number ⁇ d are within the above ranges and further satisfy the following formula (1-1): More preferably, the following formula (1-2) is satisfied, the following formula (1-3) is more preferably satisfied, the following formula (1-4) is more preferable, and the following formula (1-5) is satisfied. It is even more preferable to satisfy the above.
  • the optical glass having a further increased refractive index is suitable as a material for optical elements suitable for downsizing and high-performance optical systems such as an imaging optical system and a projection optical system.
  • the absolute value of the curvature of the optical function surface of the lens can be reduced (the curve is relaxed), which is advantageous in terms of lens molding and processing.
  • the thermal stability of the glass decreases or the coloring increases, that is, the light transmittance in the visible short wavelength region tends to decrease.
  • the refractive index nd and the Abbe number ⁇ d satisfy the following formula (1-6). It is more preferable to satisfy the formula (7), more preferably the following formula (1-8), still more preferably the following formula (1-9), and more preferably the following formula (1-10) Even more preferred.
  • the desired optical characteristic means an optical characteristic in which the Abbe number ⁇ d is in the range of 23 to 35 and the refractive index nd and the Abbe number ⁇ d satisfy the above formula (1).
  • preferable optical characteristics refer to an arbitrary range among the preferable ranges of the refractive index nd and the Abbe number ⁇ d.
  • High refractive index glass has a large amount of high refractive index component (for example, La 3+ (La 2 O 3 ), Gd 3+ (Gd 2 O 3 ), Y 3+ (Y 2 O 3 ), Yb 3+ (Yb 2 O 3 ). , Ti 4+ (TiO 2 ), Nb 5+ (Nb 2 O 5 ), Ta 5+ (Ta 2 O 5 ), W 6+ (WO 3 ), Zr 4+ (ZrO 2 )). Has a very high melting point.
  • the melting temperature must be increased. As the melting temperature rises, the erodibility of the glass melt increases, and the melting vessel is eroded, and the materials that make up the vessel, such as platinum and platinum alloys, melt into the glass melt and color the glass, or become platinum foreign matter. To do.
  • the melting temperature is high, easily volatile components such as B 3+ volatilize, the glass composition changes with time, and the optical characteristics fluctuate.
  • the melting temperature range may be considered as a temperature range in which a homogeneous glass melt can be obtained, and the lower limit of the temperature range may be considered to change generally in conjunction with the rise and fall of the liquidus temperature. Therefore, if the rise of the liquidus temperature can be suppressed, the rise of the melting temperature can also be suppressed. Moreover, if the rise in liquidus temperature can be suppressed, it is effective for preventing devitrification during glass molding, and the viscosity of the glass can be adjusted to a range suitable for molding, making it easy to produce a high-quality glass molded body. Become.
  • both the increase and decrease in the refractive index and the rise and fall in the liquid phase temperature are linked to the increase and decrease in the amount of the high refractive index component, so the evaluation of meltability and devitrification resistance takes into account the refractive index and the liquid phase temperature. It is reasonable to use this index.
  • the above index is defined as LT / (nd ⁇ 1) for a glass having a refractive index nd.
  • the denominator is a value obtained by subtracting the refractive index 1 of the vacuum from the refractive index of the glass, and reflects the net refractive index increase / decrease amount.
  • a lower LT / (nd-1) means that the high refractive index glass is a glass having excellent meltability and devitrification resistance.
  • the amount of each component is determined in a well-balanced manner so as to suppress the increase in the liquidus temperature while maintaining the required optical characteristics, and therefore the following formula (3) can be satisfied.
  • LT / (nd-1) ⁇ 1250 ° C. (3)
  • an optical glass satisfying the following formula (3-1) is preferable, an optical glass satisfying the following formula (3-2) is more preferable, and the following (3 -3) is more preferable, optical glass satisfying the following formula (3-4) is more preferable, optical glass satisfying the following formula (3-5) is more preferable, and the following formula (3-6)
  • An optical glass that satisfies the requirements is even more preferable.
  • an optical glass satisfying the following formula (3-7) is preferable, an optical glass satisfying the following formula (3-8) is more preferable, an optical glass satisfying the following formula (3-9) is further preferable, An optical glass satisfying the following formula (3-10) is more preferable, an optical glass satisfying the following formula (3-11) is more preferable, and an optical glass satisfying the following formula (3-12) is still more preferable.
  • LT / (nd-1) ⁇ 1050 ° C.
  • LT / (nd-1) ⁇ 1070 ° C.
  • the optical glass I is preferably a glass having a small partial dispersion ratio when the Abbe number ⁇ d is fixed.
  • An optical element such as a lens made of such optical glass is suitable for high-order chromatic aberration correction.
  • the partial dispersion ratios Pg and F are expressed as (ng ⁇ nF) / (nF ⁇ nc) using the refractive indexes ng, nF and nc in the g-line, F-line and c-line.
  • the optical glass I is preferably such that the partial dispersion ratios Pg, F and the Abbe number ⁇ d satisfy the relationship of the following equation (4-1).
  • a preferred embodiment of the optical glass of the above embodiment has a deviation ⁇ Pg, F of 0.030 or less, and is suitable as an optical element material for correcting higher-order chromatic aberration.
  • a more preferable range of ⁇ Pg, F is 0.025 or less, a further preferable range is 0.020 or less, a more preferable range is 0.015 or less, and a still more preferable range is 0.001 or less.
  • the lower limit of the deviation ⁇ Pg, F is more preferably 0.0000 or more, further preferably 0.001 or more, more preferably 0.003 or more, and still more preferably 0.005 or more.
  • the optical glass of the above-described embodiment is a high refractive index glass, but generally the specific gravity tends to increase as the refractive index of the glass increases. However, an increase in specific gravity is not preferable because it causes an increase in the weight of the optical element.
  • the optical glass of the above-described aspect can have a specific gravity of 5.60 or less even though it is a high refractive index glass by having the above glass composition.
  • the upper limit of specific gravity is preferably 5.50, more preferably 5.40, and even more preferably 5.30. However, if the specific gravity is excessively reduced, the stability of the glass is lowered and the liquidus temperature tends to increase. Therefore, the specific gravity is preferably 4.50 or more.
  • the more preferred lower limit of the specific gravity is 4.70, the still more preferred lower limit is 4.90, the still more preferred lower limit is 5.00, and the still more preferred lower limit is 5.10.
  • the optical glass I can exhibit high light transmittance over a wide wavelength range in the visible range.
  • ⁇ 70 exhibits a coloring degree of 680 nm or less.
  • a more preferable range of ⁇ 70 is 660 nm or less, a further preferable range is 650 nm or less, a more preferable range is 600 nm or less, an even more preferable range is 560 nm or less, and an even more preferable range is 530 nm or less.
  • the lower limit of ⁇ 70 is not particularly limited, but 380 nm may be considered as a guideline for the lower limit of ⁇ 70.
  • ⁇ 70 is a wavelength at which the light transmittance is 70% in the wavelength range of 280 to 700 nm.
  • the light transmittance means that a glass sample having parallel surfaces polished to a thickness of 10.0 ⁇ 0.1 mm is used, and light is incident on the polished surface from a vertical direction.
  • the obtained spectral transmittance that is, Iout / Iin where Iin is the intensity of light incident on the sample and Iout is the intensity of light transmitted through the sample.
  • the spectral transmittance includes light reflection loss on the sample surface.
  • polishing means that the surface roughness is smooth
  • ⁇ 5 is a wavelength at which the light transmittance measured by the above-described method for ⁇ 70 is 5%.
  • a preferable range of ⁇ 5 is 450 nm or less, a more preferable range is 430 nm or less, a further preferable range is 410 nm or less, and a more preferable range is 400 nm or less, an even more preferable range is 390 nm or less, and an even more preferable range is 380 nm or less.
  • the lower limit of ⁇ 5 is not particularly limited, but 300 nm may be considered as a guideline for the lower limit of ⁇ 5.
  • the spectral transmittance is measured in the wavelength range of 280 to 700 nm.
  • the light transmittance increases as the wavelength is increased from ⁇ 5, and when it reaches ⁇ 70, it reaches 70% or more up to the wavelength of 700 nm. Keep the high transmittance.
  • the optical glass I is a glass suitable for forming a smooth optical functional surface by polishing.
  • the suitability of cold working such as polishing, that is, cold workability is indirectly related to the glass transition temperature.
  • a glass with a low glass transition temperature is more suitable for precision press molding than cold workability, whereas a glass with a high glass transition temperature is more suitable for cold work than precision press molding. Excellent. Accordingly, it is preferable not to excessively lower the glass transition temperature in the optical glass I, preferably 650 ° C. or higher, more preferably 680 ° C. or higher, further preferably 700 ° C. or higher, and 710 ° C. More preferably, it is more preferably 730 ° C.
  • the glass transition temperature is preferably 850 ° C. or less, more preferably 800 ° C. or less, further preferably 780 ° C. or less, and further preferably 760 ° C. or less.
  • optical glass II which is an optical glass of another embodiment of the present invention
  • the optical glass II contains Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ as essential components
  • La 3+ is 10 to 50% (however, La 3+ , Gd 3+ , Y 3+ and Yb 3+ are 70% or less in total)
  • Including The cation ratio of the content of Y 3+ to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.14 or less
  • the optical glass II is a glass having high refractive index and low dispersion characteristics while maintaining glass stability, but has a higher Ti 4+ content than the optical glass I.
  • the content of Ti 4+ is set to 22% or less, the spectral transmittance in the visible region is increased, and the partial dispersion ratio is kept low so that it is advantageous for higher-order chromatic aberration correction.
  • the lower limit of the refractive index is higher than the lower limit of the refractive index of the optical glass I in the range where the Abbe number ⁇ d is approximately 24.28 or more.
  • the optical glass II has a high refractive index and low dispersion characteristic when the Ti 4+ content exceeds 22% and the Abbe number ⁇ is wider than that of the optical glass I.
  • the composition and characteristics of the optical glass II will be described as different from the optical glass I. Therefore, the description of the composition and characteristics not described below is the same as the composition and characteristics of the optical glass I.
  • Ti 4+ , Nb 5+ , Ta 5+ and W 6+ function to increase the refractive index, improve devitrification resistance, suppress the increase in liquidus temperature, and improve chemical durability. If the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is less than 23%, it is difficult to obtain the above effect, and Ti 4+ , Nb 5+ , Ta 5+ and W 6+ When the total content exceeds 70%, the devitrification resistance deteriorates and the liquidus temperature rises. In addition, the dispersion increases and the coloration of the glass increases. Accordingly, the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 23 to 70%.
  • a preferable upper limit of the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 60%, a more preferable upper limit is 55%, a further preferable upper limit is 50%, a more preferable upper limit is 45%, and even more preferable.
  • the upper limit is 40%, the preferable lower limit of the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is 24%, the more preferable lower limit is 25%, the more preferable lower limit is 26%, and the more preferable lower limit is Is 27%, and a more preferred lower limit is 28%.
  • devitrification resistance is improved by making the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ within the above range and increasing the content of Ti 4+ to more than 22%. Can do. It is also effective in suppressing the liquidus temperature rise.
  • the preferred lower limit for the Ti 4+ content is 22.5%, the more preferred lower limit is 23%, and the more preferred lower limit is 24%.
  • the preferred upper limit for the Ti 4+ content is 60%, the more preferred upper limit is 50%, and further A preferred upper limit is 45%, a more preferred upper limit is 40%, a still more preferred upper limit is 35%, and a still more preferred upper limit is 30%.
  • the cation ratio of Y 3+ content to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is high while maintaining glass stability. In order to reduce the refractive index, the value is 0.14 or less.
  • the preferable upper limit of the cation ratio [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.13, the more preferable upper limit is 0.12, and the more preferable upper limit is 0.11.
  • the element having the smallest atomic weight is Y.
  • the preferred lower limit of the cation ratio [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.01, the more preferred lower limit is 0.02, and the more preferred lower limit is 0.00.
  • a more preferred lower limit is 0.04, and a still more preferred lower limit is 0.05.
  • the optical glass II is suitable as a material for a camera lens equipped with an autofocus function, but the power consumption during autofocus can be reduced by reducing the specific gravity of the glass.
  • the cation ratio of [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+)] and 0.14 or less Y 3+ to the total content of Gd 3+, Y 3+ and Yb 3+
  • the cation ratio [Y 3+ / (Gd 3+ + Y 3+ + Yb 3+ )] of the content of is preferably more than 0.60.
  • the more preferred lower limit of the cation ratio [Y 3+ / (Gd 3+ + Y 3+ + Yb 3+ )] is 0.61
  • the more preferred lower limit is 0.62
  • the more preferred lower limit is 0.63
  • the still more preferred lower limit is 0.
  • the total content of Gd 3+ , Y 3+ and Yb 3+ is preferably 1.0% or more.
  • Gd 3+ , Y 3+ , and Yb 3+ all function together with La 3+ to lower the liquidus temperature and greatly improve devitrification resistance.
  • the total content of Gd 3+ , Y 3+ and Yb 3+ is more preferably 1.5% or more, further preferably 2.0% or more, and 2.5 % Or more, more preferably 3.0% or more, and even more preferably 3.5% or more.
  • a preferred upper limit of the total content of Gd 3+ , Y 3+ and Yb 3+ is 35%, a more preferred upper limit is 30%, a further preferred upper limit is 25%, a more preferred upper limit is 20%, a still more preferred upper limit is 15%, and even more A preferred upper limit is 10%, and a still more preferred upper limit is 7%.
  • the cation ratio [(Gd 3+ + Y 3+ + Yb 3+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )].
  • the preferable lower limit of the cation ratio [(Gd 3+ + Y 3+ + Yb 3+ ) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is more than 0, the more preferable lower limit is 0.02, the more preferable lower limit is 0.03, and the more preferable lower limit is 0.04, and a more preferred lower limit is 0.05.
  • the optical glass I there is a preferable range for the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ .
  • the preferred lower limit of the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is more preferably 60%, and even more preferably the lower limit is 64%. Is 65%, a more preferred lower limit is 66%, and a still more preferred lower limit is 67%.
  • the upper limit of the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ is preferably 90%, more preferably 85% and even more preferably the upper limit Is 80%, and a more preferable upper limit is 75%.
  • the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is 0.10, the more preferred lower limit is 0.13, the still more preferred lower limit is 0.16, the more preferred lower limit is 0.19, and the even more preferred lower limit is 0.22. There is also a preferred range for the cation ratio [Si 4+ / (Si 4+ + B 3+ )].
  • the preferred upper limit of the cation ratio [Si 4+ / (Si 4+ + B 3+ )] is 0.80, the more preferred upper limit is 0.60, the still more preferred upper limit is 0.50, the more preferred upper limit is 0.40, and the even more preferred upper limit is 0.35.
  • the cation ratio of the total content of Si 4+ and B 3+ with respect to the total content of La 3+ , Gd 3+ , Y 3+, and Yb 3+ from the viewpoint of achieving high refractive index and low dispersion while maintaining good glass stability [( The preferable lower limit of (Si 4+ + B 3+ )) / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] is 0.10, the more preferable lower limit is 0.20, the more preferable lower limit is 0.30, and the more preferable lower limit is 0.40.
  • the more preferred lower limit is 0.50, the still more preferred lower limit is 0.60, the preferred upper limit is 1.05, the more preferred upper limit is 1.0, the still more preferred upper limit is 0.95, and the more preferred upper limit is 0.00. 90, an even more preferable upper limit is 0.85, and an even more preferable lower limit is 0.83.
  • Zr 4+ to the content of Zr 4+, Ti 4+, Nb 5+ the total content of the cation ratio of Ta 5+ and W 6+ [(Zr 4 ++ Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / Zr 4+ ] is 2 or more.
  • the preferred lower limit of the cation ratio [(Zr 4+ + Ti 4+ + Nb 5+ + Ta 5+ + W 6+ ) / Zr 4+ ] is 3, more preferred lower limit is 3.5, more preferred lower limit is 4, and still more preferred lower limit is 4.5.
  • the more preferred lower limit is 5, the preferred upper limit is 72, the more preferred upper limit is 50, the still more preferred upper limit is 40, the still more preferred upper limit is 30, the still more preferred upper limit is 20, and the still more preferred upper limit is 10.
  • the optical glass II contains more than 22% of Ti 4+ and the lower limit of the Abbe number ⁇ d is 18. Even in a range where the number ⁇ d is small, excellent glass stability and high refractive index characteristics are exhibited. In the optical glass II, when the Abbe number ⁇ d exceeds 35, it becomes difficult to maintain good glass stability. On the other hand, since the optical glass II contains a relatively large amount of Ti 4+ , the lower limit of the Abbe number ⁇ d is 18.
  • the preferable lower limit of the Abbe number ⁇ d is 19, a more preferable lower limit is 20, a further preferable lower limit is 21, a still more preferable lower limit is 22, and a still more preferable lower limit is 23.
  • the preferable upper limit of the Abbe number ⁇ d is 32, the more preferable upper limit is 30, the still more preferable upper limit is 29, the still more preferable upper limit is 28, and the still more preferable upper limit is 27.
  • a refractive index nd and an Abbe number ⁇ d have the following (2) in order to provide a glass material suitable for making the optical system compact and highly functional. ) Is satisfied.
  • the glass satisfying the formula (2) is also a glass having a high refractive index at the same Abbe number ⁇ d as compared with the conventional high refractive index and low dispersion glass, that is, the glass in the upper left range of the optical characteristic diagram described above, and is useful. It is a highly glass.
  • the refractive index nd and Abbe number ⁇ d preferably satisfy the following formula (2-1), more preferably satisfy the following formula (2-2), and the following formula (2-3) It is more preferable to satisfy this, and it is even more preferable to satisfy the following formula (2-4).
  • the upper limit of the refractive index nd is not particularly limited because it is naturally determined from the composition range of the optical glass II. From the standpoint of maintaining glass stability, the refractive index nd is preferably 2.40 or less, more preferably 2.30 or less, preferably 2.20 or less, and 2.15 or less. More preferably, it is more preferably 2.10 or less, and even more preferably 2.09 or less.
  • the preferable upper and lower limits of the partial dispersion ratios Pg and F in the optical glass II and the preferable upper limit of ⁇ Pg and F are the same as those of the optical glass I.
  • a preferable lower limit of ⁇ Pg, F in the optical glass II is ⁇ 0.001
  • a more preferable lower limit is 0.000
  • a further preferable lower limit is 0.003.
  • the preferred range of the specific gravity of the optical glass II is 5.50 or less, the more preferred range is 5.40 or less, the still more preferred range is 5.30 or less, and the still more preferred range is 5.20.
  • the specific gravity is preferably 4.50 or more.
  • the more preferred lower limit of the specific gravity is 4.60, the still more preferred lower limit is 4.70, the still more preferred lower limit is 4.80, and the still more preferred lower limit is 4.90.
  • the light transmittance of the optical glass II is the same as the characteristics of the optical glass I, but a preferable range of ⁇ 5 is 450 nm or less, a more preferable range is 430 nm or less, a further preferable range is 410 nm or less, and a more preferable range is 400 nm or less. A more preferable range is 390 nm or less, and an even more preferable range is 380 nm or less.
  • the lower limit of ⁇ 5 is not particularly limited, but 300 nm may be considered as a guideline for the lower limit of ⁇ 5.
  • the glass transition temperature of the optical glass II also has a preferable lower limit and a preferable upper limit for the same reason as the glass transition temperature of the optical glass I.
  • the preferable lower limit of the glass transition temperature of the optical glass II is 650 ° C., the more preferable lower limit is 670 ° C., the further preferable lower limit is 680 ° C., the more preferable lower limit is 690 ° C., the still more preferable lower limit is 700 ° C., and the still more preferable lower limit is 710 ° C.
  • An even more preferred lower limit is 720 ° C.
  • a preferable upper limit of the glass transition temperature is 850 ° C.
  • a more preferable upper limit is 800 ° C.
  • a further preferable upper limit is 780 ° C.
  • a more preferable upper limit is 760 ° C.
  • a still more preferable upper limit is 750 ° C.
  • a still more preferable upper limit is 740 ° C.
  • Other compositions and characteristics of the optical glass II are the same as those of the optical glass I.
  • the method for producing an optical glass according to one aspect of the present invention is a method for producing an optical glass comprising melting a glass raw material by heating, and molding the obtained molten glass. Preparation is performed so as to obtain glass, and the melting is performed using a glass melting vessel made of platinum or a platinum alloy.
  • a powdery compound raw material or cullet raw material is weighed and prepared according to the target glass composition, supplied into a platinum or platinum alloy melting vessel, and then melted by heating. After the raw material is sufficiently melted and vitrified, the temperature of the molten glass is raised to clarify. The clarified molten glass is homogenized by stirring with a stirrer, and continuously supplied to and discharged from a glass outlet pipe, rapidly cooled and solidified to obtain a glass molded body.
  • the melting temperature of the optical glass is preferably in the range of 1200 to 1500 ° C. from the viewpoint of obtaining a glass that is homogeneous, low-colored, and stable in various properties including optical properties.
  • the glass gob for press molding according to one aspect of the present invention is composed of the optical glass according to the above-described aspect.
  • the shape of the gob is set to be easy to press according to the shape of the target press-formed product.
  • the mass of the gob is also set according to the press-formed product. According to one embodiment of the present invention, since glass having excellent stability can be used, even when re-heated, softened and press-molded, the glass is hardly devitrified, and a high-quality molded product can be stably produced. Can be produced.
  • the production example of the glass gob for press molding is as follows.
  • the molten glass flowing out from the pipe is continuously cast into a mold horizontally disposed below the outflow pipe, and formed into a plate shape having a certain thickness.
  • the molded glass is continuously pulled out in the horizontal direction from an opening provided on the side surface of the mold.
  • the sheet glass molded body is pulled out by a belt conveyor.
  • a glass molded body having a predetermined thickness and plate width can be obtained by pulling out the glass molded body so that the plate thickness of the glass molded body is constant at a constant belt conveyor drawing speed.
  • the glass molded body is conveyed into an annealing furnace by a belt conveyor and gradually cooled.
  • the slowly cooled glass molded body is cut or cleaved in the plate thickness direction and polished or barrel-polished to form a glass gob for press molding.
  • molten glass is cast into a cylindrical mold instead of the above mold to form a columnar glass molded body.
  • the glass molded body molded in the mold is drawn vertically downward from the opening at the bottom of the mold at a constant speed.
  • the drawing speed may be set so that the molten glass liquid level in the mold becomes constant. After slowly cooling the glass molded body, it is cut or cleaved, and subjected to polishing or barrel polishing to obtain a glass gob for press molding.
  • a molding machine in which a plurality of molding dies are arranged at equal intervals on the circumference of a circular turntable is installed below the outflow pipe, the turntable is index-rotated, and the molding die is stopped.
  • One of the positions is the position where the molten glass is supplied to the mold (referred to as the cast position), the molten glass is supplied, the supplied molten glass is formed into a glass molded body, and then the predetermined mold different from the cast position is retained.
  • the glass molded body is taken out from the position (takeout position).
  • the stop position as the takeout position may be determined in consideration of the rotation speed of the turntable, the cooling speed of the glass, and the like.
  • the molten glass is supplied to the mold at the casting position by dropping molten glass from the glass outlet of the outflow pipe and receiving the glass droplets at the above-mentioned mold, and by bringing the molding mold retained at the casting position closer to the glass outlet. Supports the lower end of the flowing molten glass flow, creates a constriction in the middle of the glass flow, and rapidly drops the mold in the vertical direction at a predetermined timing to separate the molten glass below the constriction and receive it on the mold It can be performed by a method, a method in which the flowing molten glass flow is cut with a cutting blade, and the separated molten glass lump is received by a mold that is retained at the casting position. A known method may be used to form the glass on the mold.
  • the shape of the glass molded body is spherical, spheroid, and has one rotation target axis depending on the selection of the mold shape and the gas ejection method, and two surfaces facing the axis direction of the rotation target axis. Can be formed into a shape that is convex outward. These shapes are suitable for a glass gob for press molding an optical element such as a lens or an optical element blank.
  • the glass molded body thus obtained can be used as it is, or the surface can be polished or barrel-polished to form a glass gob for press molding.
  • optical element blank and its manufacturing method Next, an optical element blank according to one embodiment of the present invention and a manufacturing method thereof will be described.
  • the optical element blank according to one aspect of the present invention is made of the optical glass according to the above aspect.
  • the optical element blank according to one aspect of the present invention is suitable as a glass base material for producing an optical element having various properties provided by the optical glass of the above aspect.
  • the optical element blank is a glass molded body having a shape approximate to the shape of the optical element obtained by adding a processing margin to be removed by grinding and polishing to the shape of the target optical element.
  • a first aspect of a method for manufacturing an optical element blank according to one aspect of the present invention is a method for manufacturing an optical element blank that is finished into an optical element by grinding and polishing, and softens the glass gob for press molding according to the above aspect by heating. Press-mold. This method is also called a reheat press molding method.
  • a second aspect of the method for manufacturing an optical element blank according to one aspect of the present invention is a method for manufacturing an optical element blank that is finished into an optical element by grinding and polishing, and melts a glass raw material by heating to obtain a molten glass.
  • the optical element blank of the above-mentioned aspect is produced by press-molding. This method is also called a direct press molding method.
  • a press mold having a molding surface having a shape approximating a shape obtained by inverting the surface shape of the target optical element is prepared.
  • the press mold is composed of mold parts including an upper mold, a lower mold, and, if necessary, a barrel mold.
  • the glass gob for press molding is softened by heating and then introduced into a preheated lower mold, pressed with the upper mold facing the lower mold, and molded into an optical element blank.
  • a powder release agent such as boron nitride may be uniformly applied to the surface of the glass gob for press molding in advance.
  • the optical element blank is released, removed from the press mold, and annealed.
  • the distortion inside the glass is reduced so that the optical characteristics such as the refractive index become a desired value.
  • the glass gob heating conditions, press molding conditions, materials used for the press mold, and the like may be applied. The above steps can be performed in the atmosphere.
  • the press mold is composed of mold parts including an upper mold, a lower mold, and, if necessary, a barrel mold.
  • the molding surface of the press mold is processed into a shape obtained by inverting the surface shape of the optical element blank.
  • a powder mold release agent such as boron nitride is uniformly applied onto the lower mold surface as appropriate, and the molten glass melted according to the optical glass manufacturing method described above flows out onto the lower mold surface, When the amount of molten glass reaches a desired amount, the molten glass flow is cut with a cutting blade called shear.
  • the lower mold After obtaining a molten glass lump on the lower mold in this manner, the lower mold is moved together with the molten glass lump to a position where the upper mold waits upward, and the glass is pressed with the upper mold and the lower mold to form an optical element blank. .
  • the optical element blank is released, removed from the press mold, and annealed. By this annealing treatment, the distortion inside the glass is reduced so that the optical characteristics such as the refractive index become a desired value.
  • the glass gob heating conditions, press molding conditions, materials used for the press mold, and the like may be applied. The above steps can be performed in the atmosphere.
  • An optical element according to one aspect of the present invention is made of the optical glass according to the above aspect.
  • the optical element according to one embodiment of the present invention has various properties that can be provided by the optical glass of the above-described embodiment, and thus is effective for enhancing the function and compactness of the optical system.
  • Examples of the optical element of the present invention include various lenses and prisms.
  • examples of the lens include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens, whose lens surface is spherical or aspherical.
  • Such a lens can correct chromatic aberration by combining with a lens made of high dispersion glass or a lens made of low dispersion glass, and is suitable as a lens for correcting chromatic aberration. It is also an effective lens for making the optical system compact.
  • the prism has a high refractive index, it is possible to realize a compact and wide-angle optical system by bending the optical path in a desired direction by incorporating the prism in the imaging optical system.
  • a film for controlling light transmittance such as an antireflection film, may be provided on the optical functional surface of the optical element according to one embodiment of the present invention.
  • An optical element manufacturing method is characterized by processing an optical element blank manufactured by the method according to the above aspect.
  • an optical glass excellent in processability can be used as the optical glass constituting the optical element blank, so that a known method can be applied as a processing method.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the modes shown in the examples.
  • the optical glass according to various aspects of the present invention can be obtained by applying the above-described method for adjusting the content of each glass component.
  • oxide glass No. 1 having the composition shown in Table 1 (expressed as cation%). 1 to 15 and oxide glass Nos.
  • nitrate, sulfate, hydroxide, oxide, boric acid, etc. are used as raw materials, each raw material powder is weighed and mixed well to prepare a mixed raw material, and this mixed raw material is made of platinum. It was put in a crucible or a platinum alloy crucible, heated and melted at 1300 to 1500 ° C., clarified and stirred to obtain a homogeneous molten glass.
  • oxide glass no The molten glass was poured into a preheated mold and rapidly cooled, held at a temperature in the vicinity of the glass transition temperature for 2 hours, and then slowly cooled to obtain oxide glass no.
  • Each optical glass of 1 to 70 was obtained. No. No contamination of foreign substances such as platinum inclusions was observed in the glasses 1 to 70.
  • Oxide glass no. The total amount of anion components 1 to 70 is O 2 ⁇ .
  • oxide glass No. 1 to 15 correspond to optical glass I
  • oxide glass No. 1 16 to 70 correspond to the optical glass II.
  • the difference ⁇ Pg, F of the partial dispersion ratio from the normal line was calculated from the partial dispersion ratio Pg, F (0) on the normal line calculated from the partial dispersion ratio Pg, F and the Abbe number ⁇ d.
  • Glass transition temperature Tg Using a differential scanning calorimeter (DSC), the measurement was performed under conditions of a heating rate of 10 ° C./min.
  • Liquidus temperature The glass was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope, and the liquidus temperature was determined from the presence or absence of crystals.
  • Specific gravity It measured by Archimedes method.
  • a glass sample having parallel surfaces polished to a thickness of 10.0 ⁇ 0.1 mm is used, and a spectrophotometer is used to inject light having an intensity Iin from a direction perpendicular to the polished surface.
  • the light transmittance Iout / Iin was calculated by measuring the intensity Iout of the light transmitted through the light.
  • the wavelength at which the light transmittance was 70% was ⁇ 70, and the wavelength at which the light transmittance was 5% was ⁇ 5.
  • the glass for measuring the number density of crystals precipitated during glass production is obtained by molding molten glass.
  • the glass stability is lowered, the molten glass is poured into a mold and molded, and the number of crystal grains contained in the obtained glass increases. Therefore, the glass stability, particularly the devitrification resistance when molding a glass melt, can be evaluated by the number of crystals contained in the glass melted and molded under certain conditions.
  • An example of the evaluation method is shown below. Nitrate, sulfate, hydroxide, oxide, boric acid or the like is used as a raw material, and each raw material powder is weighed and mixed well to prepare a mixed raw material. Heat and melt at 200C for 2 hours to produce 200 g of homogeneous molten glass.
  • the molten glass is stirred and shaken several times. After 2 hours, take out the crucible containing the molten glass from the furnace at 1300-1500 ° C, stir and shake for 15-20 seconds. Pour and place in a slow cooling furnace to remove strain. The inside of the obtained glass was observed using an optical microscope (magnification 100 times), the number of precipitated crystals was counted, the number of crystals contained per 1 kg of glass was calculated, and the number density of crystals (pieces / kg) ). No. evaluated by the above method. The number density of crystals in each glass of 1 to 59 was 0 / kg.
  • Example No. 3 and no. No. 5 composition Example No. Reproduction experiments were conducted on 16 compositions.
  • Table 2 shows the composition of No. 5 in Example No.
  • the composition of 13 is shown in Table 1.
  • the cation ratio Ti 4+ / B 3+ meet the requirements of the optical glass I, the smaller the composition than the cation ratio Ti 4+ / B 3+ cations ratio Ti 4+ / B 3+ is 0.804 and the optical glass I, the raw material An attempt was made to melt the glass.
  • This composition is referred to as composition A.
  • Composition A is shown in Table 1.
  • composition B is shown in Table 2.
  • Example No. 1 of Document 1. 3 and no. No. 5 composition Example No. for composition 16 and composition A, the melt became cloudy and did not vitrify.
  • the composition B was vitrified, the number density of crystals precipitated in the glass was measured by the method for measuring the number density of crystals precipitated during the glass production, and found to be 998 / kg.
  • the number density of crystals determined by the above evaluation method is less than 1000 / kg, more preferably less than 500 / kg, still more preferably less than 300 / kg, and even more preferably 200. Less than 100 / kg, even more preferably less than 100 / kg, even more preferably less than 50 / kg, even more preferably less than 20 / kg, even more preferably. 0 / kg can be used as an indicator of a homogeneous optical glass having much more excellent glass stability.
  • a glass gob for press molding made of each optical glass of 1 to 70 was produced as follows. First, glass raw materials were prepared so as to obtain the above-described glasses, put into a platinum crucible or a platinum alloy crucible, heated, melted, clarified and stirred to obtain a homogeneous molten glass. Next, the molten glass was flown out from the outflow pipe at a constant flow rate and cast into a mold placed horizontally below the outflow pipe to form a glass plate having a constant thickness. The formed glass plate was continuously pulled out from the opening provided on the side surface of the mold in the horizontal direction, conveyed to the annealing furnace by a belt conveyor, and gradually cooled.
  • the slowly cooled glass plate was cut or cleaved to produce glass pieces, and these glass pieces were barrel-polished into glass gob for press molding.
  • a cylindrical mold is placed below the outflow pipe, molten glass is cast into the mold to form a columnar glass, and is drawn vertically downward from the opening at the bottom of the mold at a constant speed. Glass pieces can be obtained by cooling, cutting or cleaving to make glass pieces, and barrel-polishing these glass pieces.
  • Example 2 of production of glass gob for press molding In the same manner as in Production Example 1 of the glass gob for press molding, after the molten glass flows out from the outflow pipe and receives the lower end of the molten glass flowing out from the mold, the mold is rapidly lowered, and the molten glass flow is cut by the surface tension and molded. A desired amount of molten glass block was obtained on the mold. Then, gas was blown out from the mold, an upward wind pressure was applied to the glass, and the glass was molded into a glass lump while being lifted, taken out from the mold and annealed. The glass lump was then barrel-polished to form a glass gob for press molding.
  • Example 1 of optical element blank production After uniformly applying a release agent made of boron nitride powder to the entire surface of each press-molding glass gob obtained in Production Example 2 of press-molding glass gob, the gob is softened by heating and press-molded to form a concave meniscus lens Various lenses such as a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens, and a prism blank were prepared.
  • Example 2 of optical element blank production A glass melt is produced in the same manner as in Example 1 of the glass gob for press molding, and the molten glass is supplied to a lower mold forming surface uniformly coated with a release agent of boron nitride powder, and the amount of molten glass on the lower mold is desired. When the amount was reached, the molten glass flow was cut with a cutting blade. The molten glass block thus obtained on the lower mold was pressed with the upper mold and the lower mold to produce various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, a planoconcave lens, and a prism blank. .
  • optical element production example 1 Each blank produced in optical element blank production examples 1 and 2 was annealed. The annealing reduced the internal distortion of the glass, and the optical characteristics such as the refractive index were set to desired values. Each blank was then ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens. The surface of the obtained optical element may be coated with an antireflection film.
  • Example 2 of optical element production A glass plate and columnar glass are produced in the same manner as in Example 1 of press-molding glass gob, and the obtained glass molded body is annealed to reduce internal distortion, and optical properties such as refractive index are desired values. I tried to become. Next, these glass moldings were cut, ground and polished to prepare concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, planoconvex lenses, planoconcave lenses, and other lenses, and prism blanks. An antireflection film may be coated on the surface of the obtained optical element.
  • Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ are essential components, and in terms of cation%, Si 4+ and B 3+ are added in a total of 5 to 55%, and La 3+ 10 to 50% (provided that La 3+ , Gd 3+ , Y 3+ and Yb 3+ are 70% or less in total), Ti 4+ , Nb 5+ , Ta 5+ and W 6+ are included in total 22 to 55%, except for Ti 4+ content is 22% or less, and the cation ratio [Si 4+ / (Si 4+ + B 3+ )] of the content of Si 4+ to the total content of Si 4+ and B 3+ is 0.40 or less, La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zr 4+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ are 65% or more,
  • the above-mentioned optical glass is a high refractive index and low dispersion glass, compared with the conventional high refractive index and low dispersion glass. With the same Abbe number ⁇ d, a higher refractive index can be realized while maintaining glass stability.
  • the total content of Nb 5+ and Ta 5+ with respect to the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ is preferably 0.41 or less.
  • the above optical glass preferably contains 1 cation% or more of Zr 4+ .
  • a refractive index can be raised, chemical durability can be improved, devitrification resistance can be improved by coexistence with Ti 4+, and an increase in liquidus temperature can be suppressed.
  • Si 4+ , B 3+ , La 3+ , Ti 4+ , Nb 5+ , and Zr 4+ are essential components, and in terms of cation%, Si 4+ and B 3+ are 5 to 55% in total, La 3+ 10 to 50% (La 3+ , Gd 3+ , Y 3+ and Yb 3+ are 70% or less in total), Ti 4+ , Nb 5+ , Ta 5+ and W 6+ are 23 to 70% in total (however, Ti 4+ The cation ratio of the content of Y 3+ to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [Y 3+ / (La 3+ + Gd 3+ + Y 3+ + Yb 3+ )] 14 below, La 3+, Gd 3+, Y 3+ and content of the cation ratio of Ba 2+ to the total content of Yb 3+ [Ba 2+ / (La 3+ + Gd 3+ + Y
  • the above optical glass is also a high refractive index and low dispersion glass, and can achieve a higher refractive index while maintaining glass stability at the same Abbe number ⁇ d as compared with a conventional high refractive index and low dispersion glass. .
  • the glass gob for press molding which consists of the optical glass concerning each above-mentioned aspect, an optical element blank, and an optical element are provided.
  • an optical glass that can be stably supplied and has high refractive index and low dispersion having excellent glass stability, and further press using the optical glass.
  • a glass gob for molding, an optical element blank, and an optical element can be provided.
  • optical glass according to one embodiment of the present invention can be manufactured by performing the composition adjustment described in the specification on the glass composition exemplified above.
  • composition adjustment described in the specification on the glass composition exemplified above.
  • the present invention is useful in the field of manufacturing various optical elements such as optical elements for imaging optical systems and projection optical systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の一態様は、Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、カチオン%表示で、Si4+およびB3+を合計で5~55%、La3+を10~50%(La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、Ti4+、Nb5+、Ta5+およびW6+を合計で22~55%含み、Ti4+含有量は22%以下であり、 [Si4+/(Si4++B3+)]が0.40以下、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量が65%以上、[Y3+/(La3++Gd3++Y3++Yb3+)]が0.12以下、[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、 [(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、(Ti4+/B3+)が0.85以上、アッベ数νdが23~35の範囲、かつ屈折率ndがnd≧2.205-(0.0062×νd)を満たす酸化物ガラスである光学ガラスに関する。

Description

光学ガラスおよびその利用 関連出願の相互参照
 本出願は、2013年8月23日出願の日本特願2013-173998号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 本発明は、高屈折率低分散特性を有する光学ガラス、この光学ガラスからなるプレス成形用ガラスゴブおよび光学素子ブランク、ならびに光学素子に関する。
 高屈折率低分散ガラスからなるレンズは、超低分散ガラスからなるレンズと組み合わせることにより色収差を補正しつつ光学系のコンパクト化を可能にするため、撮像光学系やプロジェクタなどの投射光学系を構成する光学素子として非常に重要な位置を占めている。
 文献1(特開昭60-33229号公報)、その全記載は、ここに特に開示として援用される、には、撮像光学系や投射光学系用の光学素子材料ではないが、屈折率が1.90~2.10、アッベ数νdが22~35の高屈折率低分散ガラスが開示されている。
 一方、文献2(特開昭60-131845号公報)または英語ファミリーメンバー米国特許第4,584,279号、それらの全記載は、ここに特に開示として援用される、には、屈折率が1.90以上、アッベ数が25以上の光学ガラスが開示されている。
 光学ガラスの光学特性に関し、横軸にアッベ数νd(左方から右方へ行くにつれてアッベ数νdが減少)、縦軸に屈折率nd(下方から上方にいくにつれて屈折率ndが増加)をとった光学特性図と呼ばれているグラフに、従来の光学ガラスについて、ガラスの組成を変えたときの光学特性の変化をプロットすると、光学特性図の左下から右上へと向かう帯状の範囲内にプロットが分布する。光学特性図の左下から右上へと向かう帯状の範囲から左上の光学特性を得ようと、組成を変化させると、ガラス安定性が低下し、ガラスが失透したり、ガラス化しなくなる傾向がある。
 一方、用途の面から、光学特性図における左上の範囲の屈折率ndおよびアッベ数νdを示す高屈折率低分散光学ガラスは、光学系の高機能化、コンパクト化に有効な光学素子のガラス材料となり得る。
 しかし一般に、文献1、2に記載されている組成のような従来の高屈折率低分散ガラスでは、アッベ数νdの減少に伴い、より高い屈折率のガラスを得ることができる。一方、これら従来の高屈折率低分散ガラスでは、アッベ数νdを維持しつつ屈折率を高めると、ガラス安定性が低下し、ガラス化しなくなる傾向がある。
 したがって、ガラス安定性を維持しつつ、光学特性図の左上の範囲の屈折率ndおよびアッベ数νdを示す光学ガラスを提供することは非常に意義深い。
 本発明の一態様は、高屈折率低分散ガラスでありながら、優れたガラス安定性を有する光学ガラスを提供する。
 本発明者らは鋭意検討を重ねた結果、ガラス組成の調整により、高屈折率低分散ガラスでありながら安定性が高い光学ガラスが得られることを見出した。
 本発明の一態様は、
Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、
カチオン%表示で、
Si4+およびB3+を合計で5~55%、
La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、
Ti4+、Nb5+、Ta5+およびW6+を合計で22~55%、
含み、但し、Ti4+含有量は22%以下であり、
Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]が0.40以下、
La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量が65%以上、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.12以下、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、
Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
であり、
アッベ数νdが23~35の範囲であり、かつ屈折率ndが下記(1)式を満たす酸化物ガラスである光学ガラス
に関する。
 nd≧2.205-(0.0062×νd)         ・・・ (1)
 本発明の他の態様は、
Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、
カチオン%表示で、
Si4+およびB3+を合計で5~55%、
La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、
Ti4+、Nb5+、Ta5+およびW6+を合計で23~70%(但し、Ti4+を22%超)、
含み、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.14以下、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、
Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
であり、
アッベ数νdが18以上35未満の範囲であり、かつ屈折率ndが下記(2)式を満たす酸化物ガラスである光学ガラス
に関する。
 nd≧2.540-(0.02×νd)         ・・・ (2)
 本発明の更なる態様は、上述の態様の光学ガラスからなるプレス成形用ガラスゴブに関する。
 本発明の更なる態様は、上述の態様の光学ガラスからなる光学素子ブランクに関する。
 本発明の更なる態様は、上述の態様の光学ガラスからなる光学素子に関する。
 本発明の一態様によれば、高屈折率低分散ガラスでありながら、優れたガラス安定性を有する光学ガラスを提供することができる。更には上記光学ガラスからなるプレス成形用ガラスゴブ、光学素子ブランクおよび光学素子を提供することができる。
 上記光学素子ならびに上記プレス成形用ガラスゴブや光学素子ブランクから作製される光学素子、例えばレンズによれば、高屈折率高分散ガラス製レンズと組合せることによりコンパクトな色収差補正用の光学系を提供することもできる。
[光学ガラスI]
 本発明の光学ガラスの一態様(以下、「光学ガラスI」という。)は、Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、カチオン%表示で、Si4+およびB3+を合計で5~55%、La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、Ti4+、Nb5+、Ta5+およびW6+を合計で22~55%含み、但し、Ti4+含有量は22%以下であり、
Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]が0.40以下、
La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量が65%以上、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.12以下、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
であり、アッベ数νdが23~35の範囲であり、かつ屈折率ndが下記(1)式を満たす酸化物ガラスである光学ガラスである。
 nd≧2.205-(0.0062×νd)         ・・・ (1)
 本発明の光学ガラスの他の態様(光学ガラスII)については、後述する。
 以下、光学ガラスIについて、更に詳細に説明する。
 以下に、上記組成範囲の限定理由について説明するが、特記しない限り、各成分の含有量、合計含有量はカチオン%にて表示する。
 Si4+およびB3+は、網目形成酸化物であり、ガラス安定性を維持する働きのある成分である。Si4+およびB3+の合計含有量が5%未満ではガラス安定性が悪化し、液相温度が上昇し、前記合計含有量が55%を超えると所望の屈折率を実現ことが困難になる。したがって、Si4+およびB3+の合計含有量は5~55%とする。Si4+およびB3+の合計含有量の好ましい上限は50%、より好ましい上限は45%、さらに好ましい上限は40%、一層好ましい上限は35%、より一層好ましい上限は30%であり、Si4+およびB3+の合計含有量の好ましい下限は10%、より好ましい下限は13%、さらに好ましい下限は15%、一層好ましい下限は18%、より一層好ましい下限は20%である。
 Si4+は、上記の働きに加え、熔融ガラスの成形に適した粘性の維持および化学的耐久性の改善に効果的な必須成分である。以上の働きを効果的に得るためには、その含有量は1%以上であることが好ましい。一方、所望の屈折率を得つつ、液相温度やガラス転移温度の上昇を抑制するためには、Si4+含有量は30%以下であることが好ましい。また、所望のアッベ数の実現、ガラスの熔融性維持、耐失透性向上の観点からも、Si4+含有量は30%以下であることが好ましい。したがって、Si4+の含有量は1~30%の範囲とすることが好ましい。Si4+の含有量のより好ましい上限は25%、さらに好ましい上限は20%、一層好ましい上限は18%、より一層好ましい上限は15%、さらにより一層好ましい上限は12%である。上記Si4+含有の効果を良好に得る上から、Si4+の含有量のより好ましい下限は2%であり、さらに好ましい下限は3%、一層好ましい下限は4%、より一層好ましい下限は5%、さらにより一層好ましい下限は6%である。
 B3+は、上記の働きに加え、ガラスの熔融性維持、液相温度の低下および低分散化に有効な必須成分である。以上の働きを効果的に得るためには、その含有量は1%以上であることが好ましい。B3+含有量が1%以上であることは、ガラス安定性の観点からも、好ましい。一方、所望の屈折率を得つつ、化学的耐久性等を良好に維持する観点から、B3+含有量は50%以下であることが好ましい。したがって、B3+の含有量は1~50%の範囲とすることが好ましい。B3+の含有量のより好ましい上限は40%、さらに好ましい上限は35%、一層好ましい上限は30%、より一層好ましい上限は25%、さらにより一層好ましい上限は22%、特に一層好ましい上限は20%であり、B3+の含有量のより好ましい下限は3%、さらに好ましい下限は5%、一層好ましい下限は7%、より一層好ましい下限は9%、さらにより一層好ましい下限は11%である。
 Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]が0.40を超えるとガラス安定性を維持しつつ、所望の光学特性を得ることが困難になるとともに、熔融性が低下し、ガラス原料が熔解しにくくなる。したがって、光学ガラスIにおいて、カチオン比[Si4+/(Si4++B3+)]は、0.40以下とする。上記の理由から、カチオン比[Si4+/(Si4++B3+)]の好ましい上限は0.38、より好ましい上限は0.36、さらに好ましい上限は0.35、一層好ましい上限は0.34、より一層好ましい上限は0.32である。光学ガラスIは、Si4+およびB3+を必須成分として含むため、カチオン比[Si4+/(Si4++B3+)]の下限は0超である。ガラス安定性の改善と、熔融ガラスの粘度を成形に適した粘度にする上から、カチオン比[Si4+/(Si4++B3+)]の好ましい下限は0.10、より好ましい下限は0.14、さらに好ましい下限は0.17、一層好ましい下限は0.20、より一層好ましい下限は0.23である。
 La3+は、ガラス安定性を維持しつつ、高屈折率低分散化する働きに優れた必須成分であり、化学的耐久性を改善する働きもする成分である。La3+の含有量が10%未満では上記効果を得ることが困難になり、La3+の含有量が50%を超えると耐失透性が悪化し、液相温度が上昇する。したがって、La3+の含有量は10~50%とする。La3+の含有量の好ましい上限は45%、より好ましい上限は40%、さらに好ましい上限は35%、一層好ましい上限は33%であり、La3+の含有量の好ましい下限は15%、より好ましい下限は18%、さらに好ましい下限は20%、一層好ましい下限は22%、より一層好ましい下限は24%である。
 Gd3+、Y3+、Yb3+は、La3+と同様、高屈折率低分散化成分であり、化学的耐久性を改善する働きもする。La3+、Gd3+、Y3+およびYb3+の合計含有量が70%を超えるとガラス安定性が悪化し、液相温度が上昇する。したがって、La3+、Gd3+、Y3+およびYb3+の合計含有量は70%以下とする。La3+、Gd3+、Y3+およびYb3+の合計含有量の好ましい上限は60%、より好ましい上限は50%、さらに好ましい上限は45%、一層好ましい上限は40%、より一層好ましい上限は38%である。所望の屈折率、アッベ数を実現する上から、La3+、Gd3+、Y3+およびYb3+の合計含有量の好ましい下限は11%、より好ましい下限は15%、さらに好ましい下限は20%、一層好ましい下限は23%、より一層好ましい下限は25%、なお一層好ましい下限は28%、特に好ましい下限は30%である。
 光学ガラスIでは、ガラス安定性を維持し、液相温度の上昇を抑制しつつ高屈折率低分散化を図るため、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]を0.12以下とする。カチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]の好ましい上限は0.11、より好ましい上限は0.10、さらに好ましい上限は0.08、一層好ましい上限は0.04、より一層好ましい上限は0.02である。カチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]を0にすることもできる。
 液相温度を低下させ、耐失透性を改善する上から、Gd3+の含有量の好ましい上限は20%、より好ましい上限は15%、さらに好ましい上限は10%、一層好ましい上限は8%、より一層好ましい上限は6%である。Gd3+の含有量の好ましい下限は0.5%、より好ましい下限は1%、さらに好ましい下限は2%、一層好ましい下限は3%である。なおGd3+の含有量を0%にすることもできる。
 Y3+の含有量の好ましい上限は15%、より好ましい上限は10%、さらに好ましい上限は7%、一層好ましい上限は5%、より一層好ましい上限は3%、さらに一層好ましい上限は2%である。Y3+の含有量の好ましい下限は0.1%である。なおY3+の含有量を0%にすることもできる。
 Yb3+の含有量の好ましい上限は10%、より好ましい上限は8%、さらに好ましい上限は6%、一層好ましい上限は4%、より一層好ましい上限は2%、さらに好ましい上限は1%、一層好ましい上限は0.5%、さらに一層好ましい上限は0.1%である。なおYb3+の含有量を0%にすることもできる。Yb3+は、赤外領域に吸収を持つために、高精度のビデオカメラや監視カメラなど、近赤外領域の感光特性が求められる高感度の光学系への使用に適さない。Yb3+の含有量を低減したガラスは、上記用途には好適である。
 ガラス安定性を良好に維持しつつ、高屈折率低分散化する上から、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するGd3+、Y3+およびYb3+の合計含有量のカチオン比[(Gd3++Y3++Yb3+)/(La3++Gd3++Y3++Yb3+)]が0を超えることが好ましく、0.02以上であることがより好ましく、0.06以上であることがさらに好ましく、0.10以上であることが一層好ましく、0.14以上であることがより一層好ましい。
 一方、より一層のガラス安定性の向上の観点からは、カチオン比[(Gd3++Y3++Yb3+)/(La3++Gd3++Y3++Yb3+)]の好ましい上限は0.80、より好ましい上限は0.50、さらに好ましい上限は0.40、一層好ましい上限は0.30、より一層好ましい上限は0.20である。
 Ti4+、Nb5+、Ta5+、W6+は、屈折率を高めるとともに耐失透性を改善し、液相温度の上昇を抑制し、化学的耐久性を改善する働きをする。Ti4+、Nb5+、Ta5+およびW6+の合計含有量が22%未満では前記効果を得ることが困難になり、Ti4+、Nb5+、Ta5+およびW6+の合計含有量が55%を超えると耐失透性が悪化し、液相温度が上昇する。また、分散が高くなり、ガラスの着色が強まる。したがって、Ti4+、Nb5+、Ta5+およびW6+の合計含有量は22~55%とする。Ti4+、Nb5+、Ta5+およびW6+の合計含有量の好ましい上限は45%、より好ましい上限は40%、さらに好ましい上限は35%、一層好ましい上限は33%、より一層好ましい上限は31%であり、Ti4+、Nb5+、Ta5+およびW6+の合計含有量の好ましい下限は23%、より好ましい下限は24%、さらに好ましい下限は25%、一層好ましい下限は26%、より一層好ましい下限は27%である。
 光学ガラスIは、Ti4+、Nb5+、Ta5+およびW6+の合計含有量を上記範囲にした上で、Ti4+の含有量を22%以下とし、かつZr4+を必須成分とする。さらに、Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]を調整することにより、耐失透性を改善し、液相温度の上昇を抑えることができる。カチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2未満では、耐失透性が悪化し、液相温度が上昇する。そのため、光学ガラスIにおいて、カチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]の範囲は2以上とする。カチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]の好ましい下限は3.0、より好ましい下限は3.5、さらに好ましい下限は4.0、一層好ましい下限は4.5、より一層好ましい下限は5.0である。また、耐失透性を一層改善する上から、カチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]の好ましい上限は56、より好ましい上限は50、さらに好ましい上限は40、一層好ましい上限は30、より一好ましい上限は20、さらに好ましい上限は10である。
 ガラス安定性を維持しつつ、所望の光学特性を実現する上から、Ti4+の含有量の好ましい下限は10%、より好ましい下限は12%、さらに好ましい下限は14%、一層好ましい下限は16%、より一層好ましい下限は18%であり、Ti4+の含有量の好ましい上限は21.9%、より好ましい上限は21.8%、さらに好ましい上限は21.7%、一層好ましい上限は21.6%、より一層好ましい上限は21.5%である。
 ガラス安定性を維持しつつ、所望の光学特性を実現する上から、Nb5+の含有量の好ましい下限は1%、より好ましい下限は2%、さらに好ましい下限は3%、一層好ましい下限は4%、より一層好ましい下限は5%であり、Nb5+の含有量の好ましい上限は30%、より好ましい上限は25%、さらに好ましい上限は20%、一層好ましい上限は15%、より一層好ましい上限は10%、なお一層好ましい上限は8%である。
 Ta5+は、Ti4+、Nb5+、W6+と比較して分散を高めずに屈折率を高め、ガラス安定性を高める働きをする。Ta5+の含有量が10%を超えると液相温度が上昇し、耐失透性が低下するため、Ta5+の含有量を0~10%とすることが好ましい。Ta5+は高価な成分であることを考慮すると、Ta5+の含有量の好ましい範囲は0~8%、より好ましい範囲は0~6%、さらに好ましい範囲は0~4%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%である。Ta5+を含まないことがなお一層好ましい。
 所望の光学特性を得つつ、ガラス安定性を改善する上から、Nb5+の含有量に対するNb5+およびTa5+の合計含有量のカチオン比[(Nb5++Ta5+)/Nb5+]が1以上であることが好ましい。カチオン比[(Nb5++Ta5+)/Nb5+]が11を超えるとガラスの比重が増加し、ガラスをレンズに用いる場合、オートフォーカス時の駆動消費電力が増大し、また、必須成分であるNb5+と比べて高価なTa5+を多量に必要とするため、カチオン比[(Nb5++Ta5+)/Nb5+]が11以下であることが好ましい。カチオン比[(Nb5++Ta5+)/Nb5+]の好ましい上限は9、より好ましい上限は7、さらに好ましい上限は5、一層好ましい上限は3であり、カチオン比[(Nb5++Ta5+)/Nb5+]を1にすることもできる。
 W6+は、屈折率を高め、液相温度を低下させ、耐失透性の改善に寄与する任意成分であるが、液相温度の上昇を抑え耐失透性を高めるとともに、ガラスの着色を抑制するうえでは、W6+の含有量を0~10%とすることが好ましい。W6+の含有量の好ましい範囲は0~8%、より好ましい範囲は0~6%、さらに好ましい範囲は0~4%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%であり、W6+を含有しないことがなお一層好ましい。
 ガラス安定性を維持しつつ、屈折率を高めるためには、Ti4+、Nb5+、Ta5+およびW6+の合計含有量に対するW6+の含有量のカチオン比[W6+/(Ti4++Nb5++Ta5++W6+)]を0.10未満とすることが好ましい。ガラス安定性を維持しつつ、屈折率を高める上から、カチオン比[W6+/(Ti4++Nb5++Ta5++W6+)]の上限は、より好ましくは0.095であり、更に好ましくは0.090であり、一層好ましくは0.070であり、より一層好ましくは0.050であり、更により一層好ましくは0.030である。カチオン比[W6+/(Ti4++Nb5++Ta5++W6+)]の下限は0である。
 ガラス安定性を維持しつつ、高屈折率低分散化する上から、Ti4+、Nb5+、Ta5+およびW6+の合計含有量に対するNb5+およびTa5+の合計含有量のカチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]を0.41以下にすることが好ましい。一方、ガラス安定性を維持しつつ、高屈折率低分散化、部分分散比を低下させる上から、カチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]を0.05以上にすることが好ましい。カチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]の好ましい上限は上記の通り0.41であり、より好ましい上限は0.39、さらに好ましい上限は0.36、一層好ましい上限は0.33、より一層好ましい上限は0.30である。カチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]のより好ましい下限は0.10、さらに好ましい下限は0.15、一層好ましい下限は0.20、より一層好ましい下限は0.25である。
 高屈折率化成分の中でも、La3+、Gd3+、Y3+、Yb3+は低分散性を維持しつつ高屈折率化する働きがあり、Ti4+、Nb5+、Ta5+、W6+は高屈折率高分散化成分である。ガラス安定性を良好に維持しつつ、所望の光学特性を得る上から、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するTi4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Ti4++Nb5++Ta5++W6+)/(La3++Gd3++Y3++Yb3+)]は0.10以上であることが好ましい。カチオン比[(Ti4++Nb5++Ta5++W6+)/(La3++Gd3++Y3++Yb3+)]のより好ましい下限は0.30、さらに好ましい下限は0.50、一層好ましい下限は0.60、より一層好ましい下限は0.70である。
 ガラス安定性を良好に維持しつつ、所望の光学特性を得る上から、カチオン比[(Ti4++Nb5++Ta5++W6+)/(La3++Gd3++Y3++Yb3+)]は1.50以下であることが好ましい。カチオン比[(Ti4++Nb5++Ta5++W6+)/(La3++Gd3++Y3++Yb3+)]のより好ましい上限は1.40、さらに好ましい上限は1.30、一層好ましい上限は1.20、より一層好ましい上限は1.00である。
 光学ガラスIでは、ガラス安定性を維持しつつ、屈折率を高めるために、B3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)を0.85以上とする。カチオン比(Ti4+/B3+)が0.85未満であると、低分散性を維持しつつ屈折率を高めると、ガラス製造時に結晶が析出しやすくなる。
 ガラス安定性を維持しつつ、屈折率を高める上から、カチオン比(Ti4+/B3+)の下限は、より好ましくは0.90、更に好ましくは0.95、一層好ましくは1.00である。カチオン比(Ti4+/B3+)の上限は、上述の態様の光学ガラスの組成範囲から自ずと定まるが、例えば10と考えればよい。
 Zr4+は光学ガラスIにおける必須成分であり、屈折率を高め、化学的耐久性を改善する働きをし、Ti4+との共存により耐失透性を改善し、液相温度上昇を抑制する働きをする。前記効果を得るために、Zr4+の含有量を1%以上にすることが好ましい。ガラス転移温度や液相温度の上昇、耐失透性の低下を抑制する観点からは、Zr4+の含有量の好ましい上限は15%である。Zr4+の含有量の好ましい上限は10%、より好ましい上限は8%、さらに好ましい上限は7%であり、Zr4+の含有量の好ましい下限は1%、より好ましい下限は2%、さらに好ましい下限は3%、一層好ましい下限は4%である。
 Zn2+は、屈折率やガラス安定性を低下させるが、ガラスの熔融性、清澄性を改善する働きをする。La3+、Gd3+、Y3+、Yb3+、Ti4+、Nb5+、Ta5+、W6+、Zr4+の酸化物はいずれも融点が極めて高く、これら成分を必須成分または任意成分として含む光学ガラスIにおいて、熔融性、清澄性の改善に有効なZn2+を含有させることが好ましい。したがって、高屈折率を維持し、ガラス安定性を良好に維持する上から、Zn2+の含有量を15%以下にすることが好ましく、12%以下にすることがより好ましく、10%以下にすることがさらに好ましく、8%以下にすることが一層好ましく、6%以下にすることがより一層好ましく、3%以下にすることがなお一層好ましい。また、ガラスの熔融性、清澄性を改善し、熔融温度の上昇抑制、それに伴うガラス着色の増大抑制の面から、Zn2+の含有量を0.1%以上にすることが好ましく、0.5%以上にすることがより好ましく、0.8%以上にすることがさらに好ましく、1.0%以上にすることが一層好ましい。なお、Zn2+の含有量を0%にすることもできる。
 Ti4+、Nb5+、Ta5+、W6+は屈折率を高めるが、熔融温度を高くする成分であり、これら成分の合計含有量と、屈折率を低下させるが、熔融性、清澄性を改善するZn2+の含有量のカチオン比Zn2+/(Ti4++Nb5++Ta5++W6+)を指標に熔融性、清澄性、屈折率等の光学特性を調整することができる。ガラスの熔融性、清澄性を改善する上から、カチオン比[Zn2+/(Ti4++Nb5++Ta5++W6+)]を0.01以上にすることが好ましく、0.02以上にすることがより好ましく、0.03以上にすることがさらに好ましく、0.04以上にすることが一層好ましい。また、屈折率を高める上から、カチオン比[Zn2+/(Ti4++Nb5++Ta5++W6+)]を0.65以下にすることが好ましく、0.60以下にすることがより好ましく、0.50以下にすることがさらに好ましく、0.40以下にすることが一層好ましく、0.30以下にすることがより一層好ましく、0.20以下にすることがなお一層好ましく、0.10以下にすることが特に好ましい。
 Li、NaおよびKは、熔融性を改善し、ガラス転移温度を低下させる働きをする任意成分である。高屈折率化を実現しつつ、液相温度の上昇、ガラス安定性および化学的耐久性の低下を抑制する観点から、Li、NaおよびKの合計含有量は0~10%の範囲にすることが好ましい。Li、NaおよびKの合計含有量のより好ましい範囲は0~8%、さらに好ましい範囲は0~6%、一層好ましい範囲は0~4%、より一層好ましい範囲は0~2%、なお一層好ましい範囲は0~1%であり、上記アルカリ金属成分を含まないことが特に一層好ましい。
 Li、NaおよびKの各成分の含有量については、それぞれ好ましい範囲は0~10%、より好ましい範囲は0~8%、より好ましい範囲は0~6%、さらに好ましい範囲は0~4%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%であり、さらに一層好ましい範囲は0~0.1%であり、上記各アルカリ金属成分を含まないことがなお一層好ましい。
 Mg2+、Ca2+、Sr2+、Ba2+は、ガラスの熔融性を改善し、ガラス転移温度Tgを低下させる働きをする。また、硝酸塩、硫酸塩の形でガラスに導入することにより、脱泡効果を得ることもできる。
 高屈折率低分散のガラスにおいて、上記アルカリ土類金属成分のうち、Ba2+をLa3+、Gd3+、Y3+およびYb3+の合計含有量に対して多量に含有させると、ガラス安定性を維持しつつ、さらに高屈折率低分散化することが困難になる。例えば、熔融ガラスの成形は通常、底面および側壁を有し、側面の一方が開口する鋳型に熔融ガラスを鋳込み、鋳型の開口する側面から成形したガラスを連続的に引き出す(Eバー成形法と呼ぶ)ことにより行われる。しかし、Ba2+をLa3+、Gd3+、Y3+およびYb3+の合計含有量に対して多量に含有させて高屈折率低分散化を図ると、この成形法ではガラスが失透しやすくなる。そのため、貫通孔を有する鋳型を用いて、貫通孔に熔融ガラスを鋳込み、熔融ガラスの単位体積あたりの鋳型との接触面積を増やし、ガラスの冷却速度を極めて速くすることで、失透を防止するという特殊な成形法を用いざるを得ない。貫通孔を有する鋳型を用いた成形法では、成形したガラスを下方に引き出すため、ガラスをそのままレア炉と呼ばれるトンネル型の連続アニール炉内を水平方向に通してアニールすることは困難である。
 Baの含有量とLa3+、Gd3+、Y3+およびYb3+の合計含有量の比を調整し、適正化することにより、一般的なEバー成形法でも、失透を防止しつつ、均質な光学ガラスを成形することできる。そして、成形したガラスをそのままレア炉に通してアニールすることができるので、高い生産性の下にガラスを製造することができる。
 このように、高屈折率低分散化によるガラス安定性の低下を防止するために、光学ガラスIでは、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBaの含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]を0.40以下とする。カチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40を超えると、ガラスの失透傾向が増大し、E バー成形法によって高品質な光学ガラスを生産することが困難になる。カチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]の上限は上記の通り0.40、好ましい上限は0.30、より好ましい上限は0.25、さらに好ましい上限は0.20、一層好ましい上限は0.10、より一層好ましい上限は0.05である。カチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]は0でもよい。
 液相温度の上昇を防ぐとともに、耐失透性、屈折率および化学的耐久性の低下を抑制する観点からは、カチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]を上記範囲としつつ、Mg2+、Ca2+、Sr2+およびBa2+の合計含有量は0~10%とすることが好ましい。Mg2+、Ca2+、Sr2+およびBa2+の合計含有量のより好ましい範囲は0~8%、さらに好ましい範囲は0~6%、一層好ましい範囲は0~4%、より一層好ましい範囲は0~2%、さらに一層好ましい範囲は0~1%であり、上記アルカリ土類金属成分を含まないことがなお一層好ましい。
 Mg2+、Ca2+、Sr2+、Ba2+の各成分の含有量については、それぞれ好ましい範囲は0~10%、より好ましい範囲は0~8%、より好ましい範囲は0~6%、さらに好ましい範囲は0~4%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%であり、上記各アルカリ土類金属成分を含まないことがなお一層好ましい。
 Ge4+は、網目形成酸化物であり、屈折率を高める働きもするため、ガラス安定性を維持しつつ屈折率を高めることができる成分であるが、他の成分と比較して格段に高価な成分であり、その含有量を控えることが望まれる成分である。光学ガラスIでは、上記のように組成を定めているので、Ge4+の含有量を、例えば10%以下に抑えても、所望の光学特性の実現と優れたガラス安定性の実現を両立することができる。したがって、Ge4+の含有量を0~10%とすることが好ましい。Ge4+の含有量のより好ましい範囲は0~8%、さらに好ましい範囲は0~6%、一層好ましい範囲は0~4%、より一層好ましい範囲は0~2%、なお一層好ましい範囲は0~1%である。Ge4+を含まないこと、すなわちGeフリーガラスであることが特に好ましい。
 Bi3+は、屈折率を高めるとともにガラス安定性も高める働きをするが、その量が10%を超えると可視域における光線透過率が低下する。したがって、Bi3+の含有量を0~10%とすることが好ましい。Bi3+の含有量のより好ましい範囲は0~8%、さらに好ましい範囲は0~6%、一層好ましい範囲は0~4%、より一層好ましい範囲は0~2%、なお一層好ましい範囲は0~1%であり、Bi3+を含まないことが特に好ましい。
 上記成分のうち、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+は高屈折率化成分であり、所望の屈折率、分散を得るために、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量を65%以上とする。光学ガラスIでは、ガラス安定性を維持するため、網目形成成分であるSi4+およびB3+を合計で5%以上含有させるため、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量は自ずと95%以下となる。所望の光学特性を得る上から、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量の好ましい下限は66%、より好ましい下限は67%、さらに好ましい下限は68%、一層好ましい下限は69%、より一層好ましい下限は70%である。
 ガラス安定性を良好に維持する上から、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量の好ましい上限は90%、より好ましい上限は85%、さらに好ましい上限は80%、一層好ましい上限は75%、より一層好ましい上限は73%である。
 Al3+は、少量であればガラス安定性および化学的耐久性を改善する働きをするが、その量が10%を超えると液相温度が上昇し、耐失透性が悪化する傾向を示す。したがって、Al3+の含有量を0~10%とすることが好ましい。Al3+の含有量のより好ましい範囲は0~8%、さらに好ましい範囲は0~6%、一層好ましい範囲は0~4%、より一層好ましい範囲は0~2%、なお一層好ましい範囲は0~1%であり、Al3+を含まないことが特に好ましい。
 なお、光学ガラスIとして、高屈折率低分散性を有し、優れたガラス安定性を備える光学ガラスを提供する上から、上記カチオン成分以外の任意のカチオン成分の含有量を0~5%とすることが好ましく、0~4%とすることがより好ましく、0~3%とすることがさらに好ましく、0~2.5%とすることが一層好ましく、0~2%とすることがより一層好ましく、0~1.5%とすることがさらに一層好ましく、0~1.0%とすることがなお一層好ましく、0~0.5%とすることが特に好ましい。上記カチオン成分以外の任意のカチオン成分の含有量を0%としてもよい。
 Sbは、清澄剤として添加可能であり、少量の添加でFeなどの不純物混入による光線透過率の低下を抑える働きもするが、酸化物に換算し、Sbとして外割りで1質量%を超えて添加するとガラスが着色したり、その強力な酸化作用によって成形型の成形面劣化を助長してしまう。したがって、Sbに換算してSbの添加量は、外割りで0~1質量%が好ましく、より好ましくは0~0.5質量%、さらに好ましくは0~0.1質量%である。外割りによるSbに換算したSbの添加量とは、Sb以外のガラス成分の含有量の合計を100質量%としたときの質量%表示によるSbの含有量を意味する。
 Snも清澄剤として添加可能であるが、SnOに換算して外割りで1質量%を超えて添加するとガラスが着色したり、酸化作用によって成形型の成形面劣化を助長してしまう。したがって、SnOに換算してSnの添加量は、外割りで0~1質量%が好ましく、より好ましくは0~0.5質量%である。外割りによるSnOに換算したSnの添加量とは、SnO以外のガラス成分の含有量の合計を100質量%としたときの質量%表示によるSnOの含有量を意味する。
 上記の他に、Ce酸化物、硫酸塩、硝酸塩、塩化物、フッ化物を清澄剤として少量、添加することもできる。
 光学ガラスIは、高屈折率低分散の光学特性を実現しつつガラス安定性を維持することができるため、Lu、Hf、Ga、In、Scといった成分を含有させなくてよい。Lu、Hf、Ga、In、Scも高価な成分なので、Lu3+、Hf4+、Ga3+、In3+、Sc3+の含有量をそれぞれ0~1%に抑えることが好ましく、それぞれ0~0.5%に抑えることがより好ましく、それぞれ0~0.1%に抑えることがさらに好ましく、Lu3+を導入しないこと、Hf4+を導入しないこと、Ga3+を導入しないこと、In3+を導入しないこと、Sc3+を導入しないことがそれぞれ特に好ましい。
 また、環境影響に配慮し、As、Pb、U、Th、Te、Cdも導入しないことが好ましい。
 さらに、ガラスの優れた光線透過性を活かす上から、Cu、Cr、V、Fe、Ni、Co、Nd、Tbなどの着色の要因となる物質を導入しないことが好ましい。
 したがって、光学ガラスIは、上述のPb等を実質的に含まないことが好ましい。なおここで、「実質的に含まない」とは、ガラス成分として積極的に導入しないことを意味するものであり、不純物として意図せず混入することは許容されるものとする。
 光学ガラスIは酸化物ガラスであり、主要アニオン成分はO2-である。前述のように清澄剤としてCl、Fを少量添加することも可能であるが、高屈折率低分散性を有し、優れたガラス安定性を備える光学ガラスを提供する上から、O2-の含有量を98アニオン%以上とすることが好ましく、99アニオン%以上にすることがより好ましく、99.5アニオン%以上にすることがより好ましく、99.9アニオン%以上にすることがさらに好ましく、100アニオン%にすることが一層好ましい。
(屈折率ndおよびアッベ数νd)
 光学ガラスIのアッベ数νdは23~35の範囲である。低分散性を活かして色収差補正に好適な光学素子材料を提供する場合、アッベ数νdが大きいほうが有利である。こうした観点から、アッベ数νdの下限は、好ましくは24.0、より好ましくは24.5、さらに好ましくは25.0、一層好ましくは25.5、より一層好ましくは26.0である。
 一方、アッベ数νdの上限を緩和することはガラス安定性を維持、向上させる上で有利に働く。こうした観点からアッベ数νdの上限は、好ましくは32.00、より好ましくは31.00以下、さらに好ましくは30.00以下、一層好ましくは29.00以下、より一層好ましくは28.00以下である。
 光学ガラスIについて、屈折率ndはアッベ数νdとの関係で定める。低分散性を維持しつつ屈折率を高めることにより、撮像光学系、投射光学系などの光学系をコンパクト化、高機能化することができる。光学ガラスIは、屈折率nd、アッベ数νdは下記(1)式を満たす。(1)式を満たすガラスは、従来の高屈折率低分散ガラスと比べ、同じアッベ数νdにおいて屈折率が高いガラス、即ち、先に説明した光学特性図の左上の範囲のガラスであり、有用性の高いガラスである。
 nd≧2.205-(0.0062×νd)    ・・・(1)
 屈折率ndの上限は、光学ガラスIの組成範囲から自ずと定まるため、特に限定されるものではない。ガラス安定性を維持する上からは、屈折率ndを2.20以下とすることが好ましく、2.15以下とすることがより好ましく、2.10以下とすることがさらに好ましく、2.09以下とすることが一層好ましい。
 光学素子および上記光学素子を組み込んだ光学系の高機能化、コンパクト化の面から、屈折率ndおよびアッベ数νdが上記範囲内であって、さらに下記(1-1)式を満たすことが好ましく、下記(1-2)式を満たすことがより好ましく、下記(1-3)式を満たすことがさらに好ましく、下記(1-4)式を満たすことが一層好ましく、下記(1-5)式を満たすことがより一層好ましい。
nd≧2.207-(0.0062×νd)    ・・・ (1-1)
nd≧2.209-(0.0062×νd)    ・・・ (1-2)
nd≧2.211-(0.0062×νd)    ・・・ (1-3)
nd≧2.213-(0.0062×νd)    ・・・ (1-4)
nd≧2.215-(0.0062×νd)    ・・・ (1-5)
 より一層の高屈折率化がなされた光学ガラスは、撮像光学系、投射光学系などの光学系のコンパクト化、高機能化に適した光学素子の材料に好適である。また、同じ焦点距離をもつレンズを作製する場合においても、レンズの光学機能面の曲率の絶対値を小さくする(カーブを緩くする)ことができるため、レンズの成形、加工の面でも有利である。一方、光学ガラスをより一層の高屈折率化により、ガラスの熱的安定性が低下したり、着色が増加する、すなわち可視短波長域における光線透過率が減少する傾向を示す。したがって、ガラスの熱的安定性を良好に維持したり、着色の増加を抑制する上からは、屈折率ndおよびアッベ数νdが下記(1-6)式を満たすことが好ましく、下記(1-7)式を満たすことがより好ましく、下記(1-8)式を満たすことがさらに好ましく、下記(1-9)式を満たすことが一層好ましく、下記(1-10)式を満たすことがより一層好ましい。
nd≦2.320-(0.0062×νd)    ・・・ (1-6)
nd≦2.300-(0.0062×νd)    ・・・ (1-7)
nd≦2.280-(0.0062×νd)    ・・・ (1-8)
nd≦2.260-(0.0062×νd)    ・・・ (1-9)
nd≦2.240-(0.0062×νd)    ・・・ (1-10)
 光学ガラスIにおいて、所望の光学特性とは、アッベ数νdが23~35の範囲であって、かつ屈折率ndとアッベ数νdとが上記(1)式を満たす範囲の光学特性を指し、所望の光学特性の中で好ましい光学特性というときは、上記屈折率nd、アッベ数νdの好ましい範囲のうち、任意の範囲を指す。
(液相温度)
 高屈折率ガラスは、多量の高屈折率化成分(例えばLa3+(La)、Gd3+(Gd)、Y3+(Y)、Yb3+(Yb)、Ti4+(TiO)、Nb5+(Nb)、Ta5+(Ta)、W6+(WO)、Zr4+(ZrO))を含有するが、これらの成分はいずれも単独での融点が極めて高い。そして、高屈折率化成分の総量が多いと、アルカリ金属成分、アルカリ土類金属成分などの熔融温度を低下させる働きのある成分の総量が相対的に減少し、熔融性、耐失透性が低下するため、均質なガラスを得るためには熔融温度を高めなければならない。
 熔融温度が高くなるとガラス融液の侵蝕性が強まり、熔融容器が侵蝕され、容器を構成する材料、例えば白金、白金合金などがガラス融液に溶け込んでガラスを着色させたり、白金異物になったりする。また、熔融温度が高いとB3+などの揮発しやすい成分が揮発して、ガラス組成が経時的に変化し、光学特性が変動するという問題も起こる。
 このような問題を解決するには、熔融温度の上昇を抑えればよい。熔融温度範囲は均質なガラス融液が得られる温度域と考えればよく、その温度域の下限は概ね液相温度の上昇・下降に連動して変化すると考えてよい。したがって、液相温度の上昇を抑えることができれば熔融温度の上昇も抑制することができる。
 また液相温度の上昇を抑えることができれば、ガラス成形時の失透防止に有効であり、ガラスの粘性も成形に適した範囲に調整することができ、高品質のガラス成形体を作製しやすくなる。
 前述のように、屈折率の増減も液相温度の上昇・下降も、高屈折率化成分量の増減に連動するため、熔融性、耐失透性の評価は、屈折率と液相温度を考慮した指標を用いて行うことが妥当である。光学ガラスIでは、液相温度をLT[℃]としたとき、屈折率ndのガラスについて上記指標をLT/(nd-1)と定義する。分母はガラスの屈折率から真空の屈折率1を引いた値であり、正味の屈折率増減量を反映する。LT/(nd-1)が低いほど、高屈折率ガラスとしては熔融性、耐失透性の優れたガラスであることを意味する。
 光学ガラスIの好ましい態様は、所要の光学特性を維持しつつ液相温度の上昇を抑えるように各成分量がバランスよく定められているので、下記(3)式を満たすことができる。
LT/(nd-1)≦1250℃         ・・・ (3)
 熔融性、耐失透性がより改善されたガラスを得る上から、下記(3-1)式を満たす光学ガラスが好ましく、下記(3-2)式を満たす光学ガラスがより好ましく、下記(3-3)式を満たす光学ガラスがさらに好ましく、下記(3-4)式を満たす光学ガラスが一層好ましく、下記(3-5)式を満たす光学ガラスがより一層好ましく、下記(3-6)式を満たす光学ガラスがさらに一層好ましい。
LT/(nd-1)≦1230℃         ・・・ (3―1)
LT/(nd-1)≦1220℃         ・・・ (3―2)
LT/(nd-1)≦1210℃         ・・・ (3―3)
LT/(nd-1)≦1205℃         ・・・ (3-4)
LT/(nd-1)≦1200℃         ・・・ (3―5)
LT/(nd-1)≦1190℃         ・・・ (3-6)
 一方、LT/(nd-1)を低くしていくと、所要の光学特性を維持することが困難になる傾向を示すため、LT/(nd-1)を過剰に下げないことが好ましい。このような観点から、下記(3-7)式を満たす光学ガラスが好ましく、下記(3-8)式を満たす光学ガラスがより好ましく、下記(3-9)式を満たす光学ガラスがさらに好ましく、下記(3-10)式を満たす光学ガラスが一層好ましく、下記(3-11)式を満たす光学ガラスがより一層好ましく、下記(3-12)式を満たす光学ガラスがなお一層好ましい。
LT/(nd-1)≧1050℃         ・・・ (3-7)
LT/(nd-1)≧1070℃         ・・・ (3-8)
LT/(nd-1)≧1080℃         ・・・ (3-9)
LT/(nd-1)≧1090℃         ・・・ (3-10)
LT/(nd-1)≧1110℃         ・・・ (3-11)
LT/(nd-1)≧1120℃         ・・・ (3-12)
(部分分散特性)
 光学ガラスIは、アッベ数νdを固定したとき、部分分散比が小さいガラスであることが好ましい。そのような光学ガラスからなるレンズなどの光学素子は、高次の色収差補正に好適である。
ここで、部分分散比Pg,Fは、g線、F線、c線における各屈折率ng、nF、ncを用いて、(ng-nF)/(nF-nc)と表される。
高次の色収差補正に好適な光学ガラスを提供する上から、光学ガラスIとしては、部分分散比Pg,Fとアッベ数νdとが下記(4-1)式の関係を満たすものが好ましく、下記(4-2)式の関係を満たすものがより好ましく、下記(4-3)式の関係を満たすものがさらに好ましい。
Pg,F≦-0.005×νd+0.750     ・・・ (4-1)
Pg,F≦-0.005×νd+0.745     ・・・ (4-2)
Pg,F≦-0.005×νd+0.743     ・・・ (4-3)
 なお、部分分散比Pg,F-アッベ数νd図において、正常部分分散ガラスの基準となるノーマルライン上の部分分散比をPg,F(0)と表すと、Pg,F(0)はアッベ数νdを用いて次式で表される。
  Pg,F(0)=0.6483-(0.0018×νd)
 ΔPg,Fは、上記ノーマルラインからの部分分散比Pg,Fの偏差であり、次式で表される。
 ΔPg,F=Pg,F-Pg,F(0)
      =Pg,F+(0.0018×νd)-0.6483
 上述の態様の光学ガラスにおける好ましい態様は、偏差ΔPg,Fが0.030以下であり、高次の色収差補正用の光学素子材料として好適である。ΔPg,Fのより好ましい範囲は0.025以下、さらに好ましい範囲は0.020以下、一層好ましい範囲は0.015以下、より一層好ましい範囲は0.001以下である。偏差ΔPg,Fの下限は、より好ましくは0.0000以上、さらに好ましくは0.001以上、一層好ましくは0.003以上、より一層好ましくは0.005以上である。
(比重)
 上述の態様の光学ガラスは高屈折率ガラスであるが、一般にガラスは高屈折率化すると比重が増加傾向を示す。しかし比重の増加は光学素子の重量増加を招くため好ましくない。これに対し上述の態様の光学ガラスは、上記ガラス組成を有することにより、高屈折率ガラスでありながら比重を5.60以下にすることができる。比重の好ましい上限は5.50、さらに好ましい上限は5.40、一層好ましい上限は5.30である。ただし、比重を過剰に減少させるとガラスの安定性が低下し、液相温度が上昇する傾向を示すため、比重は4.50以上とすることが好ましい。比重のより好ましい下限は4.70、さらに好ましい下限は4.90、一層好ましい下限は5.00、より一層好ましい下限は5.10である。
(透過率特性)
 次に、光学ガラスIの光線透過性について説明する。
 光学ガラスIは、可視域の広い波長域にわたり高い光線透過率を示すことができる。光学ガラスIの好ましい態様では、λ70が680nm以下の着色度を示す。λ70のより好ましい範囲は660nm以下、さらに好ましい範囲は650nm以下、一層好ましい範囲は600nm以下、より一層好ましい範囲は560nm以下、さらに一層好ましい範囲は530nm以下である。λ70の下限は特に限定されるものではないが、380nmをλ70の下限の目安として考えればよい。
 ここでλ70とは、波長280~700nmの範囲において光線透過率が70%になる波長のことである。ここで、光線透過率とは、10.0±0.1mmの厚さに研磨された互いに平行な面を有するガラス試料を用い、前記研磨された面に対して垂直方向から光を入射して得られる分光透過率、すなわち、前記試料に入射する光の強度をIin、前記試料を透過した光の強度をIoutとしたときのIout/Iinのことである。分光透過率には、試料表面における光の反射損失も含まれる。また、上記研磨は測定波長域の波長に対し、表面粗さが十分小さい状態に平滑化されていることを意味する。光学ガラスIは、λ70よりも長波長側の可視域では、光線透過率が70%を超えることが好ましい。
 λ5は、λ70について前記した方法で測定される光線透過率が5%となる波長であり、λ5の好ましい範囲は450nm以下、より好ましい範囲は430nm以下、さらに好ましい範囲は410nm以下、一層好ましい範囲は400nm以下、より一層好ましい範囲は390nm以下、さらに一層好ましい範囲は380nm以下である。λ5の下限は特に限定されるものではないが、300nmをλ5の下限の目安として考えればよい。
 上記分光透過率は、前述のように波長280~700nmの範囲で測定されるが、通常、λ5から波長を長くしていくと光線透過率が増加し、λ70に達すると波長700nmまで70%以上の高透過率を保つ。
(ガラス転移温度)
 光学ガラスIは、研磨により平滑な光学機能面を形成するために好適なガラスである。研磨などの冷間加工の適性、すなわち冷間加工性は間接的ながらガラス転移温度と関連がある。ガラス転移温度が低いガラスは冷間加工性よりも精密プレス成形に好適であるのに対し、ガラス転移温度が高いガラスは精密プレス成形よりも冷間加工に好適であって、冷間加工性に優れる。したがって、光学ガラスIにおいてもガラス転移温度を過剰に低くしないことが好ましく、650℃以上にすることが好ましく、680℃以上にすることがより好ましく、700℃以上にすることがさらに好ましく、710℃以上にすることが一層好ましく、730℃以上にすることがより一層好ましく、740℃以上にすることがさらに一層好ましい。
 ただし、ガラス転移温度が高すぎるとガラスを再加熱、軟化して成形する際の加熱温度が高くなり、成形に使用する金型の劣化が著しくなったり、アニール温度も高温になり、アニール炉の劣化、消耗も著しくなる。したがって、ガラス転移温度は850℃以下とすることが好ましく、800℃以下にすることがより好ましく、780℃以下にすることがさらに好ましく、760℃以下であることが一層好ましい。
[光学ガラスII]
 次に本発明の他の態様の光学ガラスである光学ガラスIIについて説明する。
 光学ガラスIIは、Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、
カチオン%表示で、
Si4+およびB3+を合計で5~55%、
La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、
Ti4+、Nb5+、Ta5+およびW6+を合計で23~70%(但し、Ti4+を22%超)、
含み、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.14以下、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、
Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
であり、
アッベ数νdが18以上35未満の範囲であり、かつ屈折率ndが下記(2)式を満たす酸化物ガラスである。
 nd≧2.540-(0.02×νd)         ・・・ (2)
 光学ガラスIIは、光学ガラスIと同様、ガラス安定性を維持しつつ、高屈折率低分散特性を有するガラスであるが、光学ガラスIよりもTi4+の含有量が多い。光学ガラスIは、Ti4+の含有量を22%以下とし、可視域における分光透過率を高くし、高次の色収差補正に有利となるよう、部分分散比を低く抑えている。また、アッベ数νdがおおよそ24.28以上の範囲において、屈折率の下限は、光学ガラスIの屈折率の下限よりも高くなっている。
 一方、光学ガラスIIは、Ti4+の含有量を22%超とし、アッベ数νが光学ガラスIよりも広い範囲において、高屈折率低分散特性を示す。
 以下、光学ガラスIIの組成、特性について、光学ガラスIと異なるところについて説明する。したがって、以下に記載のない組成、特性についての説明は、光学ガラスIの組成、特性と同様である。
 Ti4+、Nb5+、Ta5+、W6+は、屈折率を高めるとともに耐失透性を改善し、液相温度の上昇を抑制し、化学的耐久性を改善する働きをする。Ti4+、Nb5+、Ta5+およびW6+の合計含有量が23%未満では前記効果を得ることが困難になり、Ti4+、Nb5+、Ta5+およびW6+の合計含有量が70%を超えると耐失透性が悪化し、液相温度が上昇する。また、分散が高くなり、ガラスの着色が強まる。したがって、Ti4+、Nb5+、Ta5+およびW6+の合計含有量は23~70%とする。Ti4+、Nb5+、Ta5+およびW6+の合計含有量の好ましい上限は60%、より好ましい上限は55%、さらに好ましい上限は50%、一層好ましい上限は45%、より一層好ましい上限は40%であり、Ti4+、Nb5+、Ta5+およびW6+の合計含有量の好ましい下限は24%、より好ましい下限は25%、さらに好ましい下限は26%、一層好ましい下限は27%、より一層好ましい下限は28%である。
 光学ガラスIIでは、Ti4+、Nb5+、Ta5+およびW6+の合計含有量を上記範囲にした上で、Ti4+の含有量を22%より多くすることにより、耐失透性を改善することができる。また液相温度上昇を抑制する上からも効果的である。
 Ti4+の含有量の好ましい下限は22.5%、より好ましい下限は23%、さらに好ましい下限は24%であり、Ti4+の含有量の好ましい上限は60%、より好ましい上限は50%、さらに好ましい上限は45%、一層好ましい上限は40%、より一層好ましい上限は35%、なお一層好ましい上限は30%である。
 La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]は、ガラス安定性を維持しつつ、高屈折率低分散化するために、0.14以下とする。上記理由により、カチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]の好ましい上限は0.13、より好ましい上限は0.12、さらに好ましい上限は0.11である。La、Gd、YおよびYbのうち、原子量が最も小さい元素はYである。したがって、ガラスの比重を小さくする上から、カチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]の好ましい下限は0.01、より好ましい下限は0.02、さらに好ましい下限は0.03、一層好ましい下限は0.04、より一層好ましい下限は0.05である。光学ガラスIIはオートフォーカス機能搭載のカメラ用レンズの材料としても好適であるが、ガラスの比重を小さくすることによりオートフォーカス時の消費電力を低減することができる。
 ガラスの比重を小さくするという観点から、カチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]を0.14以下としつつ、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(Gd3++Y3++Yb3+)]を0.60超とすることが好ましい。上記理由により、 カチオン比[Y3+/(Gd3++Y3++Yb3+)]のより好ましい下限は0.61、さらに好ましい下限は0.62、一層好ましい下限は0.63、より一層好ましい下限は0.64である。
 ガラス安定性を良好に維持しつつ高屈折率低分散化する上から、Gd3+、Y3+およびYb3+の合計含有量は1.0%以上とすることが好ましい。Gd3+、Y3+、Yb3+はいずれもLa3+と共存させることにより液相温度を低下させ、耐失透性を大幅に改善する働きをする。この働きを良好に得るためには、Gd3+、Y3+およびYb3+の合計含有量は1.5%以上にすることがより好ましく、2.0%以上にすることがさらに好ましく、2.5%以上にすることが一層好ましく、3.0%以上にすることがより一層好ましく、3.5%以上にすることがさらに一層好ましい。Gd3+、Y3+およびYb3+の合計含有量の好ましい上限は35%、より好ましい上限は30%、さらに好ましい上限は25%、一層好ましい上限は20%、より一層好ましい上限は15%、さらに一層好ましい上限は10%、なお一層好ましい上限は7%である。
 光学ガラスIと同様の理由により、カチオン比[(Gd3++Y3++Yb3+)/(La3++Gd3++Y3++Yb3+)]にも好ましい下限が存在する。カチオン比[(Gd3++Y3++Yb3+)/(La3++Gd3++Y3++Yb3+)]の好ましい下限は0超、より好ましい下限は0.02、さらに好ましい下限は0.03、一層好ましい下限は0.04、より一層好ましい下限は0.05である。
 光学ガラスIと同様の理由により、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量にも好ましい範囲が存在する。La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量の好ましい下限は60%、より好ましい下限は64%、さらに好ましい下限は65%、一層好ましい下限は66%、より一層好ましい下限は67%である。La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量の好ましい上限は90%、より好ましい上限は85%、さらに好ましい上限は80%、一層好ましい上限は75%である。
 光学ガラスIと同様の理由により、カチオン比[Si4+/(Si4++B3+)]にも好ましい範囲が存在する。カチオン比[Si4+/(Si4++B3+)]の好ましい下限は0.10、より好ましい下限は0.13、さらに好ましい下限は0.16、一層好ましい下限は0.19、より一層好ましい下限は0.22である。カチオン比[Si4+/(Si4++B3+)]にも好ましい範囲が存在する。カチオン比[Si4+/(Si4++B3+)]の好ましい上限は0.80、より好ましい上限は0.60、さらに好ましい上限は0.50、一層好ましい上限は0.40、より一層好ましい上限は0.35である。
 ガラス安定性を良好に維持しつつ、高屈折率低分散化する上から、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[((Si4++B3+))/(La3++Gd3++Y3++Yb3+)]の好ましい下限は0.10、より好ましい下限は0.20、さらに好ましい下限は0.30、一層好ましい下限は0.40、より一層好ましい下限は0.50、さらに一層好ましい下限は0.60であり、好ましい上限は1.05、より好ましい上限は1.0、さらに好ましい上限は0.95、一層好ましい上限は0.90、より一層好ましい上限は0.85、さらに一層好ましい下限は0.83である。
 ガラス安定性を維持しつつ、高屈折率低分散特性を付与する上から、Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]は2以上である。上記理由により、カチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]の好ましい下限は3、より好ましい下限は3.5、さらに好ましい下限は4、一層好ましい下限は4.5、より一層好ましい下限は5であり、好ましい上限は72、より好ましい上限は50、さらに好ましい上限は40、一層好ましい上限は30、より一層好ましい上限は20、さらに一層好ましい上限は10である。
 Ti4+の含有量が22%以下、アッベ数νdが23~35の範囲である光学ガラスIに比べ、光学ガラスIIはTi4+を22%超含み、アッベ数νdの下限が18であり、アッベ数νdが小さい範囲においても優れたガラス安定性および高屈折率特性を示す。
 光学ガラスIIにおいて、アッベ数νdが35を超えるとガラス安定性を良好に維持することが困難になる。一方、光学ガラスIIはTi4+を比較的多く含むため、アッベ数νdの下限は、18である。
(屈折率ndおよびアッベ数νd)
 色収差補正に好適な光学素子材料を提供する上から、アッベ数νdの好ましい下限は19、より好ましい下限は20、さらに好ましい下限は21、一層好ましい下限は22、より一層好ましい下限は23である。一方、ガラス安定性を良好に維持する上から、アッベ数νdの好ましい上限は32、より好ましい上限は30、さらに好ましい上限は29、一層好ましい上限は28、より一層好ましい上限は27である。
 比較的広い範囲でアッベ数νdを調整することができる光学ガラスIIでは、光学系のコンパクト化、高機能化に好適なガラス材料を提供する上から、屈折率nd、アッベ数νdは下記(2)式を満たす。(2)式を満たすガラスも、従来の高屈折率低分散ガラスと比べ、同じアッベ数νdにおいて屈折率が高いガラス、即ち、先に説明した光学特性図の左上の範囲のガラスであり、有用性の高いガラスである。
 nd≧2.540-(0.02×νd)         ・・・ (2)
 さらに、上記の理由により、屈折率nd、アッベ数νdが下記(2-1)式を満たすことが好ましく、下記(2-2)式を満たすことがより好ましく、下記(2-3)式を満たすことがさらに好ましく、下記(2-4)式を満たすことが一層好ましい。
 nd≧2.543-(0.02×νd)         ・・・ (2-1)
 nd≧2.546-(0.02×νd)         ・・・ (2-2)
 nd≧2.549-(0.02×νd)         ・・・ (2-3)
 nd≧2.550-(0.02×νd)         ・・・ (2-4)
 屈折率ndの上限は、光学ガラスIIの組成範囲から自ずと定まるため、特に限定されるものではない。ガラス安定性を維持する上からは、屈折率ndを2.40以下とすることが好ましく、2.30以下とすることがより好ましく、2.20以下とすることが好ましく、2.15以下とすることがより好ましく、2.10以下とすることがさらに好ましく、2.09以下とすることが一層好ましい。
(部分分散特性)
 光学ガラスIIにおける部分分散比Pg,Fの好ましい上限、下限、ΔPg,Fの好ましい上限は、光学ガラスIと同じである。一方、光学ガラスIIにおけるΔPg,Fの好ましい下限は-0.001、より好ましい下限は0.000、さらに好ましい下限は0.003である。
(比重)
 光学素子の軽量化のため、光学ガラスIIの比重の好ましい範囲は5.50以下、より好ましい範囲は5.40以下、さらに好ましい範囲は5.30以下、一層好ましい範囲は5.20である。ただし、比重を過剰に減少させるとガラスの安定性が低下し、液相温度が上昇する傾向を示すため、比重は4.50以上とすることが好ましい。比重のより好ましい下限は4.60、さらに好ましい下限は4.70、一層好ましい下限は4.80、より一層好ましい下限は4.90である。
(透過率特性)
 光学ガラスIIの光線透過性は、光学ガラスIの特性と同様であるが、λ5の好ましい範囲は450nm以下、より好ましい範囲は430nm以下、さらに好ましい範囲は410nm以下、一層好ましい範囲は400nm以下、より一層好ましい範囲は390nm以下、さらに一層好ましい範囲は380nm以下である。λ5の下限は特に限定されるものではないが、300nmをλ5の下限の目安として考えればよい。
(ガラス転移温度)
 光学ガラスIIのガラス転移温度も光学ガラスIのガラス転移温度と同様の理由により、好ましい下限、好ましい上限が存在する。光学ガラスIIのガラス転移温度の好ましい下限は650℃、より好ましい下限は670℃、さらに好ましい下限は680℃、一層好ましい下限は690℃、より一層好ましい下限は700℃、さらに一層好ましい下限は710℃、なお一層好ましい下限は720℃である。一方、ガラス転移温度の好ましい上限は850℃、より好ましい上限は800℃、さらに好ましい上限は780℃、一層好ましい上限は760℃、より一層好ましい上限は750℃、さらに一層好ましい上限は740℃である。
 光学ガラスIIのその他の組成、特性については、光学ガラスIと同様である。
[光学ガラスの製造方法]
 次に本発明の一態様にかかる光学ガラスの製造方法について説明する。
本発明の一態様にかかる光学ガラスの製造方法は、ガラス原料を加熱により熔融し、得られた熔融ガラスを成形することを含む光学ガラスの製造方法において、前記ガラス原料を前述の本発明の光学ガラスが得られるように調合すること、および、前記熔融を白金製または白金合金製のガラス熔融容器を用いて行うものである。
 例えば、粉体状の化合物原料またはカレット原料を目的のガラス組成に対応して秤量、調合し、白金製または白金合金製の熔融容器内に供給した後、これを加熱することで熔融する。上記原料を十分に熔融してガラス化した後、この熔融ガラスの温度を上昇させて清澄を行う。清澄した熔融ガラスを攪拌器による攪拌によって均質化し、ガラス流出パイプに連続供給、流出し、急冷、固化してガラス成形体を得る。
 なお、光学ガラスの熔融温度は1200~1500℃の範囲にすることが、均質、低着色かつ光学特性を含む諸特性の安定したガラスを得る上から望ましい。
[プレス成形用ガラスゴブ]
 本発明の一態様にかかるプレス成形用ガラスゴブは上述の態様の光学ガラスからなる。ゴブの形状は、目的とするプレス成形品の形状に応じてプレス成形しやすい形状にする。また、ゴブの質量もプレス成形品に合わせて設定する。本発明の一態様によれば、安定性に優れたガラスを使用することができるので、再加熱、軟化してプレス成形してもガラスが失透しにくく、高品質の成形品を安定して生産することができる。
 プレス成形用ガラスゴブの製造例は以下のとおりである。
 第1の製造例においては、流出パイプの下方に水平に配置した鋳型にパイプから流出する熔融ガラスを連続的に鋳込み、一定の厚みを有する板状に成形する。成形されたガラスは鋳型側面に設けた開口部から水平方向へと連続して引き出される。板状ガラス成形体の引き出しはベルトコンベアによって行う。ベルトコンベアの引き出し速度を一定にしてガラス成形体の板厚が一定になるように引き出すことにより、所定の厚み、板幅のガラス成形体を得ることができる。ガラス成形体はベルトコンベアによりアニール炉内へと搬送され、徐冷される。徐冷したガラス成形体を板厚方向に切断あるいは割断し、研磨加工を施したり、バレル研磨を施してプレス成形用ガラスゴブにする。
 第2の製造例においては、上記鋳型の代わりに円筒状の鋳型内に熔融ガラスを鋳込んで円柱状のガラス成形体を成形する。鋳型内で成形されたガラス成形体は鋳型底部の開口部から一定の速度で鉛直下方に引き出される。引き出し速度は鋳型内での熔融ガラス液位が一定になるように行えばよい。ガラス成形体を徐冷した後、切断もしくは割断して、研磨加工またはバレル研磨を施してプレス成形用ガラスゴブとする。
 第3の製造例においては、流出パイプの下方に円形のターンテーブルの円周上に複数個の成形型を等間隔に配置した成形機を設置し、ターンテーブルをインデックス回転し、成形型の停留位置の一つを成形型に熔融ガラスを供給する位置(キャスト位置という)として熔融ガラスを供給し、供給した熔融ガラスをガラス成形体に成形した後、キャスト位置とは異なる所定の成形型の停留位置(テイクアウト位置)からガラス成形体を取り出す。テイクアウト位置をどの停留位置にするかは、ターンテーブルの回転速度、ガラスの冷却速度などを考慮して定めればよい。キャスト位置における成形型への熔融ガラスの供給は、流出パイプのガラス流出口から熔融ガラスを滴下し、ガラス滴を上記成形型で受ける方法、キャスト位置に停留する成形型をガラス流出口に近づけて流出する熔融ガラス流の下端部を支持し、ガラス流の途中にくびれを作り、所定のタイミングで成形型を鉛直方向に急降下することによりくびれより下の熔融ガラスを分離して成形型上に受ける方法、流出する熔融ガラス流を切断刃で切断し、分離した熔融ガラス塊をキャスト位置に停留する成形型で受ける方法などにより行うことができる。
 成形型上でのガラスの成形は公知の方法を用いればよい。中でも成形型から上向きにガスを噴出してガラス塊に上向きの風圧を加え、ガラスを浮上させながら成形すると、ガラス成形体の表面にシワができたり、成形型との接触によってガラス成形体にカン割れが発生することを防止することができる。
 ガラス成形体の形状は、成形型形状の選択や上記ガスの噴出の仕方により、球状、回転楕円体状、回転対象軸を1つ有し、該回転対象軸の軸方向を向いた2つの面が共に外側に凸状である形状等にすることができる。これらの形状はレンズなどの光学素子または光学素子ブランクをプレス成形するためのガラスゴブに好適である。このようにして得られたガラス成形体はそのまま、または表面を研磨もしくはバレル研磨してプレス成形用ガラスゴブにすることができる。
[光学素子ブランクとその製造方法]
 次に本発明の一態様にかかる光学素子ブランクとその製造方法について説明する。
本発明の一態様にかかる光学素子ブランクは、上述の態様の光学ガラスからなる。本発明の一態様にかかる光学素子ブランクは、上述の態様の光学ガラスが供える諸性質を有する光学素子を作製するためのガラス母材として好適である。
 なお、光学素子ブランクは、目的とする光学素子の形状に、研削および研磨により除去する加工しろを加えた光学素子の形状に近似する形状を有するガラス成形体である。
 本発明の一態様にかかる光学素子ブランクの製造方法の第一の態様は、研削および研磨により光学素子に仕上げられる光学素子ブランクの製造方法において、上述の態様のプレス成形用ガラスゴブを加熱により軟化してプレス成形する。この方法は、再加熱プレス成形法とも呼ばれる。
 本発明の一態様にかかる光学素子ブランクの製造方法の第二の態様は、研削および研磨により光学素子に仕上げられる光学素子ブランクの製造方法において、ガラス原料を加熱により熔融し、得られた熔融ガラスをプレス成形することにより、上述の態様の光学素子ブランクを作製する。この方法はダイレクトプレス成形法とも呼ばれる。
 上記第一の態様では、目的とする光学素子の表面形状を反転した形状に近似する形状の成形面を有するプレス成形型を用意する。プレス成形型は上型、下型そして必要に応じて胴型を含む型部品によって構成される。
 次にプレス成形用ガラスゴブを加熱により軟化してから予熱された下型に導入し、下型と対向する上型とでプレスし、光学素子ブランクに成形する。このとき、プレス成形時のガラスと成形型の融着を防ぐため、プレス成形用ガラスゴブの表面に予め窒化ホウ素などの粉末状離型剤を均一に塗布してもよい。
 次に光学素子ブランクを離型してプレス成形型から取り出し、アニール処理する。このアニール処理によってガラス内部の歪を低減し、屈折率などの光学特性が所望の値になるようにする。
 ガラスゴブの加熱条件、プレス成形条件、プレス成形型に使用する材料などは公知のものを適用すればよい。以上の工程は大気中で行うことができる。
 第二の態様では、上型、下型、必要に応じて胴型を含む型部品によりプレス成形型を構成する。前述のように光学素子ブランクの表面形状を反転した形状にプレス成形型の成形面を加工する。
 下型成形面上に適宜、窒化ホウ素などの粉末状離型剤を均一に塗布し、前述の光学ガラスの製造方法にしたがい熔融した熔融ガラスを下型成形面上に流出し、下型上の熔融ガラス量が所望の量になったところで熔融ガラス流をシアと呼ばれる切断刃で切断する。こうして下型上に熔融ガラス塊を得た後、上方に上型が待機する位置に熔融ガラス塊ごと下型を移動し、上型と下型とでガラスをプレスし、光学素子ブランクに成形する。
 次に光学素子ブランクを離型してプレス成形型から取り出し、アニール処理する。このアニール処理によってガラス内部の歪を低減し、屈折率などの光学特性が所望の値になるようにする。
 ガラスゴブの加熱条件、プレス成形条件、プレス成形型に使用する材料などは公知のものを適用すればよい。以上の工程は大気中で行うことができる。
[光学素子とその製造方法]
 次に本発明の一態様にかかる光学素子について説明する。
 本発明の一態様にかかる光学素子は、上述の態様の光学ガラスからなる。本発明の一態様にかかる光学素子は、上述の態様の光学ガラスが供える諸性質を有するため、光学系の高機能化、コンパクト化に有効である。本発明の光学素子としては、各種レンズ、プリズムなどを例示することができる。さらにレンズの例としては、レンズ面が球面または非球面である、凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズを示すことができる。
 こうしたレンズは、高分散ガラス製のレンズや低分散ガラス製のレンズと組み合わせることにより色収差を補正することができ、色収差補正用のレンズとして好適である。また、光学系のコンパクト化にも有効なレンズである。
 また、プリズムについては、屈折率が高いので撮像光学系に組み込むことにより、光路を曲げて所望の方向に向けることによりコンパクトで広い画角の光学系を実現することもできる。
 なお本発明の一態様にかかる光学素子の光学機能面には、反射防止膜などの光線透過率を制御する膜を設けることもできる。
 次に本発明の一態様にかかる光学素子の製造方法について説明する。
 本発明の一態様にかかる光学素子の製造方法は、上述の態様の方法で作製した光学素子ブランクを加工することを特徴とする。本発明の一態様では、光学素子ブランクを構成する光学ガラスとして加工性に優れたものを使用することができるので、加工方法としては、公知の方法を適用することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、実施例に示す態様に何等限定されるものではない。以下に記載する実施例を参考に、前述の各ガラス成分の含有量の調整法を適用することにより、本発明の各種態様にかかる光学ガラスを得ることができる。
 (光学ガラスの作製例)
 まず、表1に示す組成(カチオン%表示)を有する酸化物ガラスNo.1~15および表2に示す酸化物ガラスNo.16~70が得られるように、原料として硝酸塩、硫酸塩、水酸化物、酸化物、ホウ酸などを用い、各原料粉末を秤量して十分混合し、調合原料とし、この調合原料を白金製坩堝または白金合金製坩堝に入れて1300~1500℃で加熱、熔融し、清澄、撹拌して均質な熔融ガラスした。
 この熔融ガラスを予熱した鋳型に流し込んで急冷し、ガラス転移温度近傍の温度で2時間保持した後、徐冷して酸化物ガラスNo.1~70の各光学ガラスを得た。No.1~70のガラスには、白金インクルージョンなどの異物の混入は認められなかった。
 酸化物ガラスNo.1~70のアニオン成分は全量、O2-である。
 なお、酸化物ガラスNo.1~15は光学ガラスIに相当し、酸化物ガラスNo.16~70は光学ガラスIIに相当する。
ガラス特性の測定
 各ガラスの特性は、以下に示す方法で測定した。測定結果を表1、2に示す。
(1)屈折率ndおよびアッベ数νd
 1時間あたり30℃の降温速度で冷却した光学ガラスについて測定した。
(2)部分分散比Pg,F、部分分散比のノーマルラインからの差ΔPg,F
 部分分散比Pg,Fは、1時間あたり30℃の降温速度で冷却した光学ガラスについて屈折率ng、nF、ncを測定し、これらの値から算出した。
 部分分散比のノーマルラインからの差ΔPg,Fは、部分分散比Pg,Fおよびアッベ数νdから算出されるノーマルライン上の部分分散比Pg,F(0)から算出した。
(3)ガラス転移温度Tg
 示差走査熱量分析装置(DSC)を用いて、昇温速度10℃/分の条件下で測定した。
(4)液相温度
 ガラスを所定温度に加熱された炉内に入れて2時間保持し、冷却後、ガラス内部を100倍の光学顕微鏡で観察し、結晶の有無から液相温度を決定した。
(5)比重
 アルキメデス法により測定した。
(6)λ70、λ5
 10.0±0.1mmの厚さに研磨された互いに平行な面を有するガラス試料を用い、分光光度計により、前記研磨された面に対して垂直方向から強度Iinの光を入射し、試料を透過した光の強度Ioutを測定し、光線透過率Iout/Iinを算出し、光線透過率が70%になる波長をλ70、光線透過率が5%になる波長をλ5とした。
ガラス製造時に析出する結晶の数密度の測定
 ガラスは、熔融ガラスを成形して得られる。ガラス安定性が低下すると、熔融ガラスを鋳型に流し込んで成形し、得られるガラス中に含まれる結晶粒の数が増加する。
 したがって、ガラス安定性、特にガラス融液を成形するときの耐失透性は、一定の条件で熔融、成形したガラスに含まれる結晶の多少によって評価することができる。評価方法の一例を、以下に示す。
 原料として硝酸塩、硫酸塩、水酸化物、酸化物、ホウ酸などを用い、各原料粉末を秤量して十分混合し、調合原料とし、この調合原料を容量が300mlの白金製坩堝に入れて1400℃で2時間、加熱、熔融し、均質な熔融ガラスを200g作製する。この間、熔融ガラスを数回攪拌、振とうする。
 2時間経過後、1300~1500℃の炉から熔融ガラスが入った坩堝を取り出し、15~20秒間、攪拌、振とうした後、カーボン製の鋳型(60mm×40mm×10mm~15mm)に熔融ガラスを流し込み、徐冷炉内に入れて歪を除く。
 得られたガラス内部を、光学顕微鏡(倍率100倍)を用いて観察し、析出した結晶の数をカウントし、ガラス1kg当たりに含まれる結晶数を算出して、結晶の数密度(個/kg)とする。
 上記方法により評価したNo.1~59の各ガラスの結晶の数密度は、すべて、0個/kgであった。
(比較例)
 比較のため、文献1の実施例No.3およびNo.5の組成、文献2の実施例No.16の組成について、再現実験を行った。カチオン%表示に換算した文献1の実施例No.3およびNo.5の組成を表2に、文献2の実施例No.13の組成を表1に示す。
 さらに、カチオン比Ti4+/B3+を除き、光学ガラスIの要件を満たし、カチオン比Ti4+/B3+が0.804と光学ガラスIのカチオン比Ti4+/B3+よりも小さい組成について、原料を熔融してガラス化を試みた。この組成を組成Aと呼ぶ。組成Aを表1に示す。
 さらに、カチオン比Ti4+/B3+を除き、光学ガラスIIの要件を満たし、カチオン比Ti4+/B3+が0.803と光学ガラスIIのカチオン比Ti4+/B3+よりも小さい組成について、原料を熔融してガラス化を試みた。この組成を組成Bと呼ぶ。組成Bを表2に示す。
 文献1の実施例No.3およびNo.5の組成、文献2の実施例No.16の組成、組成Aについては、熔融物が白濁し、ガラス化しなかった。
 組成Bは、ガラス化したものの、上記ガラス製造時に析出する結晶の数密度の測定法により、ガラス中に析出した結晶の数密度を測定したところ、998個/kgであった。
 上述の評価方法により求められる結晶の数密度が1000個/kg未満であること、より好ましくは500個/kg未満であること、さらに好ましくは300個/kg未満であること、一層好ましくは200個/kg未満であること、より一層好ましくは100個/kg未満であること、さらに一層好ましくは50個/kg未満であること、なお一層好ましくは20個/kg未満であること、さらになお一層好ましくは0個/kgであること、を、より一層優れたガラス安定性を有する均質な光学ガラスであることの指標とすることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(プレス成形用ガラスゴブの作製例1)
 次にNo.1~70の各光学ガラスからなるプレス成形用ガラスゴブを次のようにして作製した。
 まず、上記各ガラスが得られるようにガラス原料を調合し、白金製坩堝または白金合金製坩堝に投入し、加熱、熔融し、清澄、撹拌して均質な熔融ガラスを得た。次に、熔融ガラスを流出パイプから一定流量で流出し、流出パイプの下方に水平に配置した鋳型に鋳込み、一定の厚みを有するガラス板を成形した。成形されたガラス板を鋳型側面に設けた開口部から水平方向へと連続して引き出し、ベルトコンベアにてアニール炉内へと搬送し、徐冷した。
 徐冷したガラス板を切断または割断してガラス片を作製し、これらガラス片をバレル研磨してプレス成形用ガラスゴブにした。
 なお、流出パイプの下方に円筒状の鋳型を配置し、この鋳型内に熔融ガラスを鋳込んで円柱状ガラスに成形し、鋳型底部の開口部から一定の速度で鉛直下方に引き出した後、徐冷し、切断もしくは割断してガラス片を作り、これらガラス片をバレル研磨してプレス成形用ガラスゴブを得ることもできる。
(プレス成形用ガラスゴブの作製例2)
 プレス成形用ガラスゴブの作製例1と同様に熔融ガラスを流出パイプから流出し、成形型で流出する熔融ガラス下端を受けた後、成形型を急降下し、表面張力によって熔融ガラス流を切断し、成形型上に所望の量の熔融ガラス塊を得た。そして、成形型からガスを噴出してガラスに上向きの風圧を加え、浮上させながらガラス塊に成形し、成形型から取り出してアニールした。それからガラス塊をバレル研磨してプレス成形用ガラスゴブとした。
(光学素子ブランクの作製例1)
 プレス成形用ガラスゴブの作製例2で得た各プレス成形用ガラスゴブの全表面に窒化ホウ素粉末からなる離型剤を均一に塗布した後、上記ゴブを加熱により軟化してプレス成形し、凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズ、プリズムのブランクを作製した。
(光学素子ブランクの作製例2)
 プレス成形用ガラスゴブの作製例1と同様にして熔融ガラスを作製し、熔融ガラスを窒化ホウ素粉末の離型剤を均一に塗布した下型成形面に供給し、下型上の熔融ガラス量が所望量になったところで熔融ガラス流を切断刃で切断した。
 こうして下型上に得た熔融ガラス塊を上型と下型でプレスし、凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズ、プリズムのブランクを作製した。
(光学素子の作製例1)
 光学素子ブランクの作製例1、2で作製した各ブランクをアニールした。アニールによってガラス内部の歪を低減するとともに、屈折率などの光学特性が所望の値になるようにした。
 次に各ブランクを研削および研磨して凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズ、プリズムを作製した。得られた光学素子の表面には反射防止膜をコートしてもよい。
(光学素子の作製例2)
 プレス成形用ガラスゴブの作製例1と同様にしてガラス板および円柱状ガラスを作製し、得られたガラス成形体をアニールして内部の歪を低減するとともに、屈折率などの光学特性が所望の値になるようした。
 次にこれらガラス成形体を切断、研削および研磨して凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズ、プリズムのブランクを作製した。得られた光学素子の表面に反射防止膜をコートしてもよい。
 最後に、前述の各態様を総括する。
 一態様によれば、Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、カチオン%表示で、Si4+およびB3+を合計で5~55%、La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、Ti4+、Nb5+、Ta5+およびW6+を合計で22~55%、含み、但し、Ti4+含有量は22%以下であり、Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]が0.40以下、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量が65%以上、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.12以下、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、B3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、であり、アッベ数νdが23~35の範囲であり、かつ屈折率ndが下記(1)式: 
 nd≧2.205-(0.0062×νd)         ・・・ (1)
を満たす酸化物ガラスである光学ガラス、が提供される。
 上述の光学ガラスは、高屈折率低分散ガラスであり、従来の高屈折率低分散ガラスと比べ。同じアッベ数νdにおいて、ガラス安定性を維持しつつ、より高い屈折率を実現することができる。
 ガラス安定性を維持しつつ、高屈折率低分散化する上から、上述の光学ガラスにおいて、Ti4+、Nb5+、Ta5+およびW6+の合計含有量に対するNb5+およびTa5+の合計含有量のカチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]は0.41以下であることが好ましい。
 上述の光学ガラスは、Zr4+を1カチオン%以上含むことが好ましい。これにより、屈折率を高め、化学的耐久性を改善し、Ti4+との共存により耐失透性を改善し、液相温度上昇を抑制することができる。
 他の態様によれば、Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、カチオン%表示で、Si4+およびB3+を合計で5~55%、La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、Ti4+、Nb5+、Ta5+およびW6+を合計で23~70%(但し、Ti4+を22%超)、含み、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.14以下、La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、B3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、であり、アッベ数νdが18以上35未満の範囲であり、かつ屈折率ndが下記(2)式:
 nd≧2.540-(0.02×νd)         ・・・ (2)
を満たす酸化物ガラスである光学ガラスが提供される。
 上述の光学ガラスも、高屈折率低分散ガラスであり、従来の高屈折率低分散ガラスと比べ、同じアッベ数νdにおいて、ガラス安定性を維持しつつ、より高い屈折率を実現することができる。
 更なる態様によれば、上述の各態様にかかる光学ガラスからなるプレス成形用ガラスゴブ、光学素子ブランク、および光学素子が提供される。
 本発明の一態様によれば、安定供給が可能であり、かつ優れたガラス安定性を有する高屈折率低分散性を備える光学ガラスを提供することができる、更には当該光学ガラスを用いてプレス成形用ガラスゴブ、光学素子ブランクおよび光学素子を提供することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、上述の例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる光学ガラスを作製することができる。
 また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。
 本発明は、撮像光学系や投射光学系用の光学素子等の各種光学素子の製造分野において有用である。

Claims (7)

  1. Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、
    カチオン%表示で、
    Si4+およびB3+を合計で5~55%、
    La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、
    Ti4+、Nb5+、Ta5+およびW6+を合計で22~55%、
    含み、但し、Ti4+含有量は22%以下であり、
    Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]が0.40以下、
    La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量が65%以上、
    La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.12以下、
    La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、
    Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
    3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
    であり、
    アッベ数νdが23~35の範囲であり、かつ屈折率ndが下記(1)式を満たす酸化物ガラスである光学ガラス。
     nd≧2.205-(0.0062×νd)      ・・・ (1)
  2. Ti4+、Nb5+、Ta5+およびW6+の合計含有量に対するNb5+およびTa5+の合計含有量のカチオン比[(Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)]が0.41以下である請求項1に記載の光学ガラス。
  3. Zr4+を1カチオン%以上含む請求項1または2に記載の光学ガラス。
  4. Si4+、B3+、La3+、Ti4+、Nb5+、およびZr4+を必須成分とし、
    カチオン%表示で、
    Si4+およびB3+を合計で5~55%、
    La3+を10~50%(但し、La3+、Gd3+、Y3+およびYb3+を合計で70%以下)、
    Ti4+、Nb5+、Ta5+およびW6+を合計で23~70%(但し、Ti4+を22%超)、
    含み、
    La3+、Gd3+、Y3+およびYb3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3++Yb3+)]が0.14以下、
    La3+、Gd3+、Y3+およびYb3+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(La3++Gd3++Y3++Yb3+)]が0.40以下、
    Zr4+の含有量に対するZr4+、Ti4+、Nb5+、Ta5+およびW6+の合計含有量のカチオン比[(Zr4++Ti4++Nb5++Ta5++W6+)/Zr4+]が2以上、
    3+の含有量に対するTi4+の含有量のカチオン比(Ti4+/B3+)が0.85以上、
    であり、
    アッベ数νdが18以上35未満の範囲であり、かつ屈折率ndが下記(2)式を満たす酸化物ガラスである光学ガラス。
     nd≧2.540-(0.02×νd)         ・・・ (2)
  5. 請求項1~4のいずれか1項に記載の光学ガラスからなるプレス成形用ガラスゴブ。
  6. 請求項1~4のいずれか1項に記載の光学ガラスからなる光学素子ブランク。
  7. 請求項1~4のいずれか1項に記載の光学ガラスからなる光学素子。
PCT/JP2014/071966 2013-08-23 2014-08-22 光学ガラスおよびその利用 WO2015025943A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/911,340 US9643880B2 (en) 2013-08-23 2014-08-22 Optical glass and use thereof
CN201480043433.3A CN105452181B (zh) 2013-08-23 2014-08-22 光学玻璃及其应用
KR1020167003954A KR101827183B1 (ko) 2013-08-23 2014-08-22 광학 유리 및 그 이용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-173998 2013-08-23
JP2013173998A JP6088938B2 (ja) 2013-08-23 2013-08-23 光学ガラスおよびその利用

Publications (1)

Publication Number Publication Date
WO2015025943A1 true WO2015025943A1 (ja) 2015-02-26

Family

ID=52483714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071966 WO2015025943A1 (ja) 2013-08-23 2014-08-22 光学ガラスおよびその利用

Country Status (5)

Country Link
US (1) US9643880B2 (ja)
JP (1) JP6088938B2 (ja)
KR (1) KR101827183B1 (ja)
CN (3) CN110255890A (ja)
WO (1) WO2015025943A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761492A (zh) * 2019-03-27 2019-05-17 湖北戈碧迦光电科技股份有限公司 环保镧冕光学玻璃及其制备方法和应用
WO2019131123A1 (ja) * 2017-12-27 2019-07-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN113666634A (zh) * 2020-05-14 2021-11-19 Hoya株式会社 光学玻璃及光学元件

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283611B2 (ja) * 2012-07-18 2018-02-21 Hoya株式会社 ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
JP6681013B2 (ja) * 2015-04-07 2020-04-15 日本電気硝子株式会社 光学ガラス及びその製造方法
CN108751696B (zh) * 2015-04-10 2021-09-07 成都光明光电股份有限公司 光学玻璃
JP6792566B2 (ja) * 2015-12-24 2020-11-25 光ガラス株式会社 光学ガラス、光学素子、及び光学装置
JP6701557B2 (ja) * 2016-01-28 2020-05-27 日本電気硝子株式会社 光学ガラス及びその製造方法
CN107445475B (zh) * 2016-06-24 2020-02-07 成都光明光电股份有限公司 光学玻璃、光学预制件和光学元件
CN110612468B (zh) * 2017-05-11 2021-10-26 株式会社尼康 物镜、光学系统及显微镜
CN111108074B (zh) * 2017-09-21 2022-07-01 株式会社尼康 光学玻璃、由光学玻璃构成的光学元件、光学系统、更换镜头以及光学装置
JP7512893B2 (ja) * 2018-08-31 2024-07-09 Agc株式会社 光学ガラスおよび光学部品
JP7194551B6 (ja) * 2018-10-11 2024-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7394523B2 (ja) * 2018-10-11 2023-12-08 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7194861B6 (ja) * 2018-10-11 2024-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7433764B2 (ja) * 2019-01-18 2024-02-20 Hoya株式会社 ガラスの透過率の改善を促進させる方法、及びガラスの製造方法及びガラス
WO2021006072A1 (ja) * 2019-07-05 2021-01-14 日本電気硝子株式会社 光学ガラス
JP7545103B2 (ja) * 2019-10-31 2024-09-04 日本電気硝子株式会社 光学ガラス板
EP4053087A4 (en) * 2019-10-31 2023-12-06 Nippon Electric Glass Co., Ltd. OPTICAL GLASS PLATE
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US20220306517A1 (en) 2021-03-19 2022-09-29 Corning Incorporated High-Index Borate Glasses
NL2028260B1 (en) 2021-03-19 2022-09-29 Corning Inc High-Index Borate Glasses
WO2023277005A1 (ja) * 2021-06-29 2023-01-05 株式会社ニコン 光学ガラス、光学素子、光学系、接合レンズ、カメラ用交換レンズ、顕微鏡用対物レンズ、及び光学装置
TW202330417A (zh) 2021-12-21 2023-08-01 德商首德公司 高折射率基板
NL2031590B1 (en) 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
WO2023183140A1 (en) 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
WO2024070613A1 (ja) * 2022-09-30 2024-04-04 株式会社ニコン 光学ガラス、光学素子、光学系、接合レンズ、顕微鏡用対物レンズ、カメラ用交換レンズ、及び光学装置
JP7234454B2 (ja) * 2022-10-04 2023-03-07 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030879A (ja) * 2008-06-27 2010-02-12 Hoya Corp 光学ガラス
WO2010053214A1 (ja) * 2008-11-10 2010-05-14 Hoya株式会社 ガラスの製造方法、光学ガラス、プレス成形用ガラス素材、光学素子とそれら製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130039C2 (de) * 1981-07-30 1984-07-12 Schott Glaswerke, 6500 Mainz CdO-ThO↓2↓-freies, hochbrechendes optisches Glas mit der optischen Lage nd = 1,85 - 2,05 und vd 25-43
JPS6033229A (ja) 1983-07-28 1985-02-20 Minolta Camera Co Ltd 高屈折率光学ガラス
DE3343418A1 (de) 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit
EP1433757B1 (en) * 2002-12-27 2017-02-01 Hoya Corporation Optical glass, press-molding glass gob and optical element
JP2009203155A (ja) * 2008-01-31 2009-09-10 Ohara Inc 光学ガラス
WO2010090014A1 (ja) * 2009-02-03 2010-08-12 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子
JP5734587B2 (ja) * 2009-07-29 2015-06-17 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置
JP5723542B2 (ja) * 2010-04-15 2015-05-27 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
JP5695336B2 (ja) * 2010-04-15 2015-04-01 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
US9302930B2 (en) * 2012-02-28 2016-04-05 Hoya Corporation Optical glass and use thereof
CN104788018B (zh) 2014-01-22 2019-03-05 成都光明光电股份有限公司 高折射高色散光学玻璃、光学元件及光学仪器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030879A (ja) * 2008-06-27 2010-02-12 Hoya Corp 光学ガラス
WO2010053214A1 (ja) * 2008-11-10 2010-05-14 Hoya株式会社 ガラスの製造方法、光学ガラス、プレス成形用ガラス素材、光学素子とそれら製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131123A1 (ja) * 2017-12-27 2019-07-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019116408A (ja) * 2017-12-27 2019-07-18 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7325927B2 (ja) 2017-12-27 2023-08-15 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN109761492A (zh) * 2019-03-27 2019-05-17 湖北戈碧迦光电科技股份有限公司 环保镧冕光学玻璃及其制备方法和应用
CN113666634A (zh) * 2020-05-14 2021-11-19 Hoya株式会社 光学玻璃及光学元件
CN113666634B (zh) * 2020-05-14 2024-01-09 Hoya株式会社 光学玻璃及光学元件

Also Published As

Publication number Publication date
CN105452181B (zh) 2019-06-07
JP2015040171A (ja) 2015-03-02
CN110128004B (zh) 2021-10-08
KR20160031017A (ko) 2016-03-21
US9643880B2 (en) 2017-05-09
KR101827183B1 (ko) 2018-02-07
CN110255890A (zh) 2019-09-20
CN105452181A (zh) 2016-03-30
JP6088938B2 (ja) 2017-03-01
CN110128004A (zh) 2019-08-16
US20160194237A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6088938B2 (ja) 光学ガラスおよびその利用
JP6382256B2 (ja) 光学ガラスおよびその利用
JP4948569B2 (ja) 光学ガラス
JP5836471B2 (ja) 光学ガラス
JP5931173B2 (ja) 光学ガラスおよびその利用
JP5180758B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP4322217B2 (ja) 光学ガラス、プレス成形用ガラスゴブ、光学部品、ガラス成形体の製造方法および光学部品の製造方法
JP5624832B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子とその製造方法
JP6069217B2 (ja) 光学ガラス、プレス成形用ガラス素材、ならびに光学素子およびその製造方法
JP2009179510A (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6943995B2 (ja) 光学ガラスおよびその利用
WO2011013598A1 (ja) 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置
JP5802707B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5174373B2 (ja) 光学ガラス
WO2014129510A1 (ja) 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP6362717B2 (ja) 光学ガラスおよびその利用
JP5301740B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6656310B2 (ja) 光学ガラスおよびその利用
JP5185463B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2016013969A (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043433.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911340

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167003954

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838405

Country of ref document: EP

Kind code of ref document: A1