WO2014129510A1 - 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法 - Google Patents

光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法 Download PDF

Info

Publication number
WO2014129510A1
WO2014129510A1 PCT/JP2014/053945 JP2014053945W WO2014129510A1 WO 2014129510 A1 WO2014129510 A1 WO 2014129510A1 JP 2014053945 W JP2014053945 W JP 2014053945W WO 2014129510 A1 WO2014129510 A1 WO 2014129510A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass
less
content
optical
Prior art date
Application number
PCT/JP2014/053945
Other languages
English (en)
French (fr)
Inventor
俊伍 桑谷
藤原 康裕
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013030212A external-priority patent/JP5986938B2/ja
Priority claimed from JP2013205432A external-priority patent/JP6444021B2/ja
Priority claimed from JP2014004423A external-priority patent/JP6587276B2/ja
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020157020789A priority Critical patent/KR20150120346A/ko
Priority to CN201480007782.XA priority patent/CN104981439B/zh
Priority to US14/767,322 priority patent/US9561980B2/en
Publication of WO2014129510A1 publication Critical patent/WO2014129510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to an optical glass, an optical glass blank, a glass material for press molding, an optical element, and a manufacturing method thereof. Specifically, the present invention relates to a phosphoric acid-based optical glass having a high refractive index and a high dispersion characteristic excellent in devitrification resistance, an optical glass blank made of this optical glass, a glass material for press molding, an optical element, and a method for producing them.
  • optical glass containing a large amount of phosphoric acid as a glass network former those having various refractive indexes as described in Patent Documents 1 to 8 are known.
  • optical glass having high refractive index and high dispersion characteristics (low Abbe number) is in high demand as an optical element material for various lenses.
  • a compact and highly functional optical system for correcting chromatic aberration can be configured by combining with a lens having a high refractive index and low dispersion.
  • optical functional surface of a lens having a high refractive index and high dispersion characteristics aspherical, it is possible to further enhance the functions and compactness of various optical systems.
  • an optical element such as a lens
  • a method of manufacturing an optical element by making an intermediate product called an optical element blank that approximates the shape of the optical element, and grinding and polishing the intermediate product. It has been.
  • a method for producing such an intermediate product there is a method (referred to as a direct press method) in which an appropriate amount of molten glass is press-molded to obtain an intermediate product.
  • molten glass is cast into a mold and formed into a glass plate, the glass plate is cut into a plurality of glass pieces, and the glass pieces are reheated and softened to form an intermediate product by press molding.
  • a method of forming an intermediate product by forming an appropriate amount of molten glass into a glass lump called a glass gob, barrel-polishing the glass lump and then reheating and softening it.
  • a method of press-molding by reheating and softening glass is called a reheat press method as opposed to a direct press method.
  • a glass material for press molding is produced from molten glass, and the optical element is obtained by precision press molding the glass material for press molding with a molding die (referred to as a precision press molding method).
  • a precision press molding method Is also known.
  • the optical functional surface of the optical element can be formed without passing through machining such as polishing and grinding by transferring the shape of the molding surface.
  • any of the direct press method, the reheat press method, and the precision press molding method described above it is difficult to obtain an optical element having excellent transparency if crystals are precipitated in the glass during the manufacturing process. . Therefore, there is a demand for an optical glass that suppresses crystal precipitation, that is, has high devitrification resistance.
  • an optical glass having a composition containing a large amount of phosphoric acid as a glass network former and a high refractive index imparting component and a high dispersibility imparting component generally has a strong tendency to devitrify. Therefore, it has been difficult in the past to improve the devitrification resistance of the phosphoric acid optical glass having a high refractive index and a high dispersion characteristic.
  • One embodiment of the present invention provides a phosphoric acid optical glass having high refractive index and high dispersion characteristics and excellent devitrification resistance. Furthermore, according to one aspect of the present invention, an optical glass blank made of the above-described optical glass, a glass material for press molding, an optical element, and methods for producing them are also provided.
  • Embodiment 1 is a glass composition based on oxide.
  • P 2 O 5 content is 20 to 34% by mass
  • B 2 O 3 content is more than 0% by mass and 10% by mass or less
  • the mass ratio (B 2 O 3 / P 2 O 5 ) is greater than 0 and less than 0.39
  • the mass ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is in the range of 0.059 to 0.180
  • the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] is in the range of 1.39 to 1.80
  • An optical glass having a refractive index nd in the range of 1.78 to 1.83 and an Abbe number ⁇ d in the range of 20 to 25, About.
  • the optical glass according to aspect 1 is a phosphoric acid-based optical glass containing P 2 O 5 as an essential component, further containing B 2 O 3 and TiO 2 as essential components, and satisfying the above-described content and mass ratio. As a result, it has high refractive index and high dispersion characteristics such as a refractive index nd in the range of 1.78 to 1.83 and an Abbe number ⁇ d in the range of 20 to 25, and excellent devitrification resistance.
  • An optical glass according to one embodiment of the present invention (hereinafter referred to as “embodiment 2”) is
  • P 2 O 5 , B 2 O 3 and TiO 2 are essential components
  • SiO 2 , Li 2 O, Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 are optional components
  • P 2 O 5 content is 20 to 34% by mass
  • B 2 O 3 content is more than 0% by mass and 10% by mass or less
  • Li 2 O content is 0 mass% or more and less than 0.3 mass%
  • the mass ratio (B 2 O 3 / P 2 O 5 ) is greater than 0 and less than 0.39
  • the mass ratio [(P 2 O 5 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] exceeds 0.53,
  • Glasses 2-A and 2-B described above contain P 2 O 5 , B 2 O 3 and TiO 2 as essential components, and include SiO 2 , Li 2 O, Nb 2 O 5 , WO 3 , Bi 2 O 3 , And Ta 2 O 5 can optionally be included.
  • P 2 O 5 , B 2 O 3 and TiO 2 as essential components, and include SiO 2 , Li 2 O, Nb 2 O 5 , WO 3 , Bi 2 O 3 , And Ta 2 O 5 can optionally be included.
  • it has a high refractive index and high dispersion characteristic of a refractive index nd in the range of 1.78 to 1.83 and an Abbe number ⁇ d in the range of 20 to 25, and an excellent resistance to resistance. It becomes possible to obtain a phosphoric acid optical glass exhibiting devitrification.
  • Aspect 1 and Aspect 2 it is possible to provide a phosphate-based optical glass having a high refractive index and a high dispersion characteristic that is suitable for any of the direct press method, the reheat press method, and the precision press molding method.
  • an optical element blank made of the above optical glass, a glass material for press molding, and an optical element are also provided.
  • the above-described precision press molding method is a method by which an optical element such as an aspherical lens can be efficiently manufactured. Therefore, the above-mentioned phosphoric acid-based optical glass has high refractive index and high dispersion characteristics, as well as properties suitable for precision press molding (good precision press moldability). Desirable for manufacturing.
  • one embodiment of the present invention provides a phosphate-based optical glass that has high refractive index and high dispersion characteristics and is suitable for a precision press molding method. Furthermore, according to one aspect of the present invention, there are provided a precision press-molding preform and optical element made of the above-described optical glass, and a method of manufacturing an optical element for precision press-molding the precision press molding preform.
  • One embodiment of the present invention is an oxide-based glass composition, 24 to 34% by mass of P 2 O 5 , B 2 O 3 more than 0% by mass and 4% by mass or less, Na 2 O, K 2 O, and Li 2 O in total 12 to 20% by mass, Nb 2 O 5 15-30% by mass, TiO 2 8-15% by mass, Bi 2 O 3 4 to 25% by mass, Including
  • the mass ratio (TiO 2 / Nb 2 O 5 ) is in the range of 0.36 to 1.00
  • the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) is in the range of 0.16 to 1.67
  • the optical glass according to the embodiment 3 includes, as essential components, P 2 O 5 , B 2 O 3, Nb 2 O 5 , TiO 2 , Bi 2 O 3 , alkali metal oxides (Na 2 O, K 2 O, and Li).
  • a ratio of TiO 2 and Nb 2 O 5 which are useful components for imparting high refractive index and high dispersion characteristics to the optical glass, and good precision press molding.
  • the ratio of Bi 2 O 3 and Nb 2 O 5 which are components capable of imparting properties is defined.
  • a phosphoric acid-based optical glass having a high refractive index and a high dispersion characteristic suitable for obtaining a precision press-molding preform.
  • a precision press-molding preform and an optical element made of the above-described optical glass are also provided.
  • the glass composition of the optical glass is displayed on the basis of oxide.
  • the “oxide-based glass composition” refers to a glass composition obtained by converting all glass raw materials to be decomposed during melting and existing as oxides in the optical glass. Unless otherwise specified, the glass composition is displayed on a mass basis.
  • the glass composition in the present invention is determined by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • the analysis value obtained by this analysis method includes a measurement error of about ⁇ 5%.
  • the content of the constituent component of 0% means that the constituent component is substantially not included, and that the content of the constituent component is about the impurity level or less. Point to.
  • Embodiment 1 Embodiment 2, and Embodiment 3 will be described. Unless otherwise specified, the description relating to one aspect can be applied to another aspect.
  • An optical glass corresponding to any two or more of modes 1 to 3 is also included in the optical glass according to one mode of the present invention.
  • the optical glass according to aspect 1 has a P 2 O 5 content of 20 to 34% by mass, a B 2 O 3 content of more than 0% by mass and 10% by mass or less in a glass composition based on oxide.
  • 2 O 3 / P 2 O 5 is greater than 0 and less than 0.39
  • the weight ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5)] is from 0.059 to 0.
  • the range of 180, the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] is in the range of 1.39 to 1.80, and the refractive index nd Is an optical glass having a range of 1.78 to 1.83 and an Abbe number ⁇ d of 20 to 25. The details will be described below.
  • P 2 O 5 is an essential component as a glass forming component in phosphoric acid optical glass.
  • Phosphate glass has the characteristics that it can melt glass at a relatively low temperature and has high transmittance in the visible region.
  • the lower limit of the P 2 O 5 content is 20% or more, preferably 21% or more.
  • an upper limit is 34% or less, Preferably it is 30% or less, More preferably, it is 24% or less.
  • B 2 O 3 is a component having an effect of improving devitrification resistance by adding an appropriate amount to phosphoric acid optical glass. Therefore, more than 0% is introduced into the above optical glass as an essential component.
  • the B 2 O 3 content is preferably 2% or more, more preferably 6% or more. However, if an excessive amount is included, it is difficult to achieve a high refractive index and a high dispersion characteristic, so the content is made 10% or less. Preferably it is 9% or less, More preferably, it is 8% or less.
  • B The 2 O 3 content of 0% including the case where B 2 O 3 is contained in a trace amount to about impurity level in the glass.
  • the content of B 2 O 3 greater than 0% refers to the B 2 O 3 is contained in an amount exceeding about impurity levels. Specifically, it is 700 ppm (mass ratio) or more, or 1000 ppm (mass ratio) or more, for example.
  • the mass ratio of the P 2 O 5 content to the B 2 O 3 content is more than 0 and less than 0.39.
  • a more preferred lower limit is 0.15, and a more preferred lower limit is 0.25.
  • a more preferred upper limit is 0.38.
  • SiO 2 is an optional component that may be contained in the optical glass described above.
  • the content is preferably 2% or less, preferably 1.2% or less, preferably 1.0% or less, and 0.4% or less. More preferably, it is more preferably 0.3% or less, still more preferably less than 0.3%, and it may not be introduced (the SiO 2 content may be 0%).
  • the mass ratio of SiO 2 content to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably 0.12 or less, and more preferably in the range of 0 to 0.04.
  • the above optical glass contains one or more alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O as essential components.
  • alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O as essential components.
  • the mass ratio of the total content of P 2 O 5 , B 2 O 3 and SiO 2 to the total content of Li 2 O, Na 2 O and K 2 O [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] is in the range of 1.39 to 1.80. When this mass ratio is less than 1.39, it becomes difficult to maintain devitrification resistance.
  • the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] is preferably 1.40 or more, more preferably 1.42 or more, and still more preferably. It is 1.43 or more, more preferably 1.45 or more.
  • the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] is preferably 1.67 or less. More preferably, it is 1.60 or less.
  • Li 2 O content is preferably less than 0.3%. More preferably, it is 0.2% or less. From the viewpoint of further improving the devitrification resistance, it is preferable that Li 2 O is not contained (Li 2 O content is 0%). From the same viewpoint, it is preferable to suppress the Li 2 O content relative to the total content of alkali metal oxides. Specifically, the mass ratio [Li 2 O / (Na 2 O + K 2 O + Li 2 O)] is preferably less than 0.0115, and more preferably 0.003 or less.
  • the other alkali metal oxides Na 2 O and K 2 O can be added to the above glass at least one, preferably at least Na 2 O, more preferably both.
  • the mass ratio K 2 O / Na 2 O of the K 2 O content to the Na 2 O content is preferably 0.52 or less, and preferably 0.40 or less. More preferred.
  • mass ratio K 2 O / Na 2 O can be, for example, 0.20 or more.
  • Na 2 O content for example, can be 0% or more, preferably at least 8%, more preferably 11% or more.
  • the K 2 O content can be, for example, 0% or more, preferably 2% or more, and more preferably 3% or more.
  • the content of Na 2 O of the optical glass described above can be, for example, 16% or less, preferably 15% or less, and more preferably 14% or less.
  • the K 2 O content is preferably 6% or less, more preferably 5% or less.
  • the content of alkali metal oxides (when multiple types are included, the total content thereof) is preferably 10% or more, and preferably 30% or less from the viewpoint of maintaining devitrification resistance. 20% or less is more preferable. A preferred lower limit is 15%.
  • TiO 2 is a component that can impart high refractive index and high dispersion characteristics to the glass when added in an appropriate amount, and is introduced as an essential component in the optical glass described above.
  • the content thereof is Nb 2 O 5 , WO 3 , which is a component that can provide other high refractive index / high dispersion characteristics.
  • TiO 2 content mass ratio of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 total content is set to an amount in the range of 0.059 to 0.180.
  • this mass ratio is less than 0.059, it is difficult to obtain the above-described high refractive index / high dispersion characteristics. From the viewpoint of suppressing coloring, the upper limit is set to 0.180.
  • the lower limit is preferably 0.10 or more, and more preferably 0.12 or more.
  • the upper limit is preferably 0.178 or less, more preferably 0.170 or less, and further preferably 0.135 or less.
  • the TiO 2 content is more preferably 6% or more. Further, from the viewpoint of maintaining the solubility of the glass and suppressing coloring, it is preferably 11% or less, and more preferably 9% or less.
  • the total content of P 2 O 5 , B 2 O 3 and SiO 2 is changed to TiO 2 and Nb 2 which are high refractive index and high dispersion property imparting components.
  • Mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (TiO 2 + Nb 2 O 5 + Bi 2 O 3 ) with respect to the total content of O 5 , WO 3 , Bi 2 O 3 and Ta 2 O 5 + Ta 2 O 5 )] is preferably 0.49 or more, more preferably 0.51 or more, and further preferably 0.52 or more.
  • the mass ratio [(P 2 O 5 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Bi 2 O 3 + Ta 2 O 5 )] is set to 0. It is preferable to set it to 58 or less.
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 is preferably more than 47% and 50% or more from the viewpoint of increasing the refractive index. More preferably. From the viewpoint of glass stability, the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 is preferably 60% or less, and 55% or less. More preferably.
  • Nb 2 O 5 is a component useful for obtaining a high refractive index and a high dispersion characteristic, and is also a component having an effect of improving durability. From the viewpoint of maintaining devitrification resistance and suppressing coloration, the Nb 2 O 5 content is preferably 47% or less. On the other hand, from the viewpoint of maintaining high refractive index and high dispersion characteristics, the Nb 2 O 5 content is preferably 19% or more, more preferably 40% or more, and more preferably 43% or more. preferable.
  • WO 3 and Bi 2 O 3 are components that can be added to obtain high refractive index and high dispersion characteristics.
  • the content of WO 3 and the content of Bi 2 O 3 in the optical glass described above can each be 15% or less.
  • the WO 3 content and the Bi 2 O 3 content are each preferably 12% or less, preferably 6% or less, and may be 0%.
  • the upper limit of WO 3 is preferably less than 13%, more preferably less than 3%, and still more preferably 2% or less.
  • Ta 2 O 5 is an optional component that can be added to adjust the refractive index.
  • the content can be, for example, 0 to 2%.
  • the upper limit of Ta 2 O 5 content is less than 2%.
  • the optical glass described above may contain one or more of the alkaline earth metal oxides MgO, CaO, SrO and BaO.
  • the total content of MgO, CaO, SrO and BaO can be, for example, in the range of 0 to 10%.
  • Alkaline earth metal oxide is a component having an effect of increasing the glass stability, but since it may cause a decrease in refractive index and a decrease in dispersibility, the total content is preferably suppressed to 2% or less, It may be 0%.
  • the preferable lower limit of MgO content is 0% or more, and a preferable upper limit is 5% or less.
  • the preferable lower limit of the CaO content is 0% or more, and the preferable upper limit is less than 1%.
  • the preferable lower limit value of the SrO content is 0% or more, and the preferable upper limit value is 5% or less.
  • the preferable lower limit of the BaO content is 0% or more, and the preferable upper limit is less than 7%, more preferably 6% or less.
  • ZnO and Al 2 O 3 can also be added to the above optical glass as an optional component for adjusting the refractive index.
  • the ZnO content is preferably less than 5% and may be 0%.
  • the Al 2 O 3 content is preferably less than 3%, more preferably 2% or less, and may be 0%.
  • F can be added in an amount of 2% or less, preferably less than 2%, based on the oxide. From the viewpoint of obtaining homogeneous glass, it is preferable not to introduce F.
  • Sb 2 O 3 may be added to the above-described optical glass in an amount in the range of 0 to 0.1%, for example, as an external addition amount.
  • the external addition amount of Sb 2 O 3 is preferably in the range of 0 to 0.02% from the viewpoint of preventing coloring.
  • the glass composition of the above optical glass has been described above. Next, the glass characteristics of the above optical glass will be described.
  • the above optical glass is a high refractive index and high dispersion optical glass having a refractive index nd in the range of 1.78 to 1.83 and an Abbe number ⁇ d in the range of 20 to 25.
  • the lower limit of the refractive index nd is preferably 1.790 or more, more preferably 1.800 or more, and the upper limit is preferably less than 1.820, more preferably 1.815 or less.
  • the lower limit of the Abbe number ⁇ d is preferably 21 or more, more preferably 22 or more, and the upper limit is preferably 24 or less, more preferably 23 or less.
  • the optical glass having the above refractive index nd and Abbe number ⁇ d is useful in an optical system.
  • the above-mentioned optical glass is an optical glass having high refractive index and high dispersion characteristics that can exhibit excellent devitrification resistance.
  • One of the indicators of devitrification resistance is the liquidus temperature.
  • the optical glass described above can exhibit a liquidus temperature of 1050 ° C. or lower, for example, and can also exhibit a liquidus temperature of 1000 ° C. or lower.
  • the minimum of the liquidus temperature of the above-mentioned optical glass is 900 degreeC or more, for example, it is not specifically limited. Since glass with a low liquidus temperature has high devitrification stability near the softening point, it is possible to prevent crystals from being precipitated in the glass during heating for reheat pressing or heating in precision press molding.
  • the temperature at the time of flowing out molten glass can be made low.
  • the temperature at the time of flowing out molten glass can be made low.
  • by reducing the temperature at which the molten glass flows out it is possible to suppress the occurrence of striae due to volatilization and to reduce fluctuations in optical characteristics.
  • by lowering the liquidus temperature it is possible to suppress erosion of the melting crucible glass. As a result, it is possible to avoid a substance such as platinum constituting the crucible from being mixed into the glass due to erosion and becoming a foreign substance, or being dissolved as an ion and causing coloring of the glass.
  • the glass transition temperature is preferably 500 ° C. or higher from the viewpoint of glass stability. On the other hand, from the viewpoint of obtaining good press formability, the glass transition temperature is preferably low, for example, preferably 570 ° C. or lower.
  • the above-described optical glass is a glass having a high refractive index and a high dispersion characteristic, and suitable for any of the direct press method, the reheat press method, and the precision press method.
  • optical glass according to aspect 2 includes the above-described glasses 2-A and 2-B. The details will be described below. Unless specified otherwise, the following applies to both glasses 2-A and 2-B.
  • P 2 O 5 is an essential component as a glass forming component in phosphate glass.
  • Phosphate glass has the characteristics that it can melt glass at a relatively low temperature and has high transmittance in the visible region.
  • the lower limit of the P 2 O 5 content is 20% or more, preferably 21% or more.
  • an upper limit is 34% or less, Preferably it is 30% or less, More preferably, it is 24% or less.
  • B 2 O 3 is a component having an action of improving devitrification resistance by adding an appropriate amount to the phosphate glass. Therefore, more than 0% is introduced into the above optical glass as an essential component.
  • the B 2 O 3 content is preferably 2% or more, more preferably 6% or more. However, if an excessive amount is included, it is difficult to achieve a high refractive index and a high dispersion characteristic, so the content is made 10% or less. Preferably it is 9% or less, More preferably, it is 8% or less.
  • B The 2 O 3 content of 0% including the case where B 2 O 3 is contained in a trace amount to about impurity level in the glass.
  • the content of B 2 O 3 greater than 0% refers to the B 2 O 3 is contained in an amount exceeding about impurity levels. Specifically, it is 700 ppm (mass ratio) or more, or 1000 ppm (mass ratio) or more, for example.
  • the mass ratio of the P 2 O 5 content to the B 2 O 3 content is more than 0 and less than 0.39.
  • a more preferred lower limit is 0.15, and a more preferred lower limit is 0.25.
  • a more preferred upper limit is 0.38.
  • the total content of P 2 O 5 and B 2 O 3 and the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 and Ta 2 O 5 is defined. Details thereof will be described later.
  • SiO 2 is an optional component that may be contained in the optical glass described above. From the viewpoint of increasing the refractive index, the content is preferably 2% or less, preferably 1.2% or less, preferably 1.0% or less, even if not introduced ( (The SiO 2 content may be 0%). From the viewpoint of improving devitrification resistance, in the glass B, the mass ratio of the SiO 2 content to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably less than 0.02 and preferably in the range of 0 to 0.01.
  • the mass ratio of the SiO 2 content to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 ) ] is preferably less than 0.02, more preferably in the range of 0 to 0.01.
  • the optical glass described above can contain one or more alkali metal oxides.
  • the alkali metal oxide includes Li 2 O, Na 2 O and K 2 O.
  • the content is less than 0.3%. More preferably, it is 0.2% or less. From the viewpoint of further improving the devitrification resistance, it is preferable that Li 2 O is not contained (Li 2 O content is 0%).
  • the other alkali metal oxides Na 2 O and K 2 O can be added to the above glass at least one, preferably at least Na 2 O, more preferably both.
  • the mass ratio K 2 O / Na 2 O of the K 2 O content to the Na 2 O content is preferably 0.52 or less, and preferably 0.40 or less. More preferred.
  • mass ratio K 2 O / Na 2 O can be, for example, 0.20 or more.
  • Na 2 O content for example, can be 0% or more, preferably at least 8%, more preferably 11% or more.
  • the K 2 O content can be, for example, 0% or more, preferably 2% or more, and more preferably 3% or more.
  • the content of Na 2 O of the optical glass described above can be, for example, 16% or less, preferably 15% or less, and more preferably 14% or less.
  • the K 2 O content is preferably 6% or less, more preferably 5% or less.
  • the content of alkali metal oxides (when multiple types are included, the total content thereof) is preferably 10% or more, and preferably 30% or less from the viewpoint of maintaining devitrification resistance. 20% or less is more preferable. A preferred lower limit is 15%.
  • TiO 2 is a component that can impart high refractive index and high dispersion characteristics to the glass when added in an appropriate amount, and is introduced as an essential component in the optical glass described above.
  • the content thereof is Nb 2 O 5 , WO 3 , which is a component that can provide other high refractive index / high dispersion characteristics.
  • TiO 2 content mass ratio of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 total content is set to an amount in the range of 0.059 to 0.96.
  • this mass ratio is less than 0.059, it is difficult to obtain the above-described high refractive index / high dispersion characteristics, and when it exceeds 0.96, it is difficult to maintain devitrification resistance.
  • the mass ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is preferably 0.10 or more, more preferably 0.12 or more, and It is preferably 50 or less, and more preferably 0.20 or less. From the viewpoint of high refractive index and high dispersion characteristics, the TiO 2 content is more preferably 6% or more. Further, from the viewpoint of maintaining the solubility of the glass and suppressing coloring, it is preferably 11% or less, and more preferably 9% or less.
  • the total content of P 2 O 5 and B 2 O 3 or the total content of P 2 O 5 , B 2 O 3 and SiO 2 is increased. It is specified with respect to the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 and Ta 2 O 5 which are components for imparting refractive index and high dispersion characteristics. More specifically, in the glass A, the mass ratio [(P 2 O 5 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is more than 0.53.
  • the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is set to exceed 0.53.
  • the mass ratio [(P 2 O 5 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is It is preferable to set it as 0.75 or less, and it is more preferable to set it as 0.58 or less.
  • the mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] should be 0.75 or less. Preferably, it is 0.58 or less.
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 is preferably more than 47% and 50% or more from the viewpoint of increasing the refractive index. More preferably. From the viewpoint of glass stability, the total content of TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 is preferably 60% or less, and 55% or less. More preferably.
  • Nb 2 O 5 is a component useful for obtaining a high refractive index and a high dispersion characteristic, and is also a component having an effect of improving durability. From the viewpoint of maintaining devitrification resistance and suppressing coloration, the Nb 2 O 5 content is preferably 47% or less. On the other hand, from the viewpoint of maintaining high refractive index and high dispersion characteristics, the Nb 2 O 5 content is preferably 19% or more, more preferably 40% or more, and more preferably 43% or more. preferable.
  • WO 3 and Bi 2 O 3 are components that can be added to obtain high refractive index and high dispersion characteristics.
  • the content of WO 3 and the content of Bi 2 O 3 in the optical glass described above can each be 15% or less. Can be introduced.
  • the WO 3 content and the Bi 2 O 3 content are each preferably 12% or less, preferably 6% or less, and may be 0%.
  • the upper limit of WO 3 is preferably less than 3%, more preferably 2% or less.
  • Ta 2 O 5 is an optional component that can be added to adjust the refractive index.
  • the content can be, for example, 0 to 2%.
  • the optical glass described above may contain one or more of the alkaline earth metal oxides MgO, CaO, SrO and BaO.
  • the total content of MgO, CaO, SrO and BaO can be, for example, in the range of 0 to 10%.
  • Alkaline earth metal oxide is a component having an effect of increasing the glass stability, but since it may cause a decrease in refractive index and a decrease in dispersibility, the total content is preferably suppressed to 2% or less, It may be 0%.
  • the preferable lower limit of MgO content is 0% or more, and a preferable upper limit is 5% or less.
  • the preferable lower limit of the CaO content is 0% or more, and the preferable upper limit is less than 1%.
  • the preferable lower limit value of the SrO content is 0% or more, and the preferable upper limit value is 5% or less.
  • the preferable lower limit of the BaO content is 0% or more, and the preferable upper limit is less than 7%, more preferably 6% or less.
  • ZnO and Al 2 O 3 can also be added to the above optical glass as an optional component for adjusting the refractive index.
  • the ZnO content is preferably less than 5% and may be 0%.
  • the Al 2 O 3 content is preferably 2% or less, and may be 0%.
  • F can be added in an amount of 2% or less based on the oxide. From the viewpoint of obtaining homogeneous glass, it is preferable not to introduce F. Further, SnO 2 and Sb 2 O 3 may be added to the above-mentioned optical glass in amounts of, for example, 0 to 1%, respectively, as external addition amounts.
  • the glass composition of the above optical glass has been described above. Next, the glass characteristics of the above optical glass will be described.
  • the above optical glass is a high refractive index and high dispersion optical glass having a refractive index nd in the range of 1.78 to 1.83 and an Abbe number ⁇ d in the range of 20 to 25.
  • the lower limit of the refractive index nd is preferably 1.790 or more, more preferably 1.800 or more, and the upper limit is preferably less than 1.820, more preferably 1.815 or less.
  • the lower limit of the Abbe number ⁇ d is preferably 21 or more, more preferably 22 or more, and the upper limit is preferably 24 or less, more preferably 23 or less.
  • the optical glass having the above refractive index nd and Abbe number ⁇ d is useful in an optical system.
  • the above-mentioned optical glass is an optical glass having high refractive index and high dispersion characteristics that can exhibit excellent devitrification resistance.
  • One of the indicators of devitrification resistance is the liquidus temperature.
  • the optical glass described above can exhibit a liquidus temperature of 1050 ° C. or lower, for example, and can also exhibit a liquidus temperature of 1000 ° C. or lower.
  • the minimum of the liquidus temperature of the above-mentioned optical glass is 900 degreeC or more, for example, it is not specifically limited. Since glass with a low liquidus temperature has high devitrification stability near the softening point, it is possible to prevent crystals from being precipitated in the glass during heating for reheat pressing or heating in precision press molding.
  • the temperature at the time of flowing out molten glass can be made low.
  • the temperature at the time of flowing out molten glass can be made low.
  • by reducing the temperature at which the molten glass flows out it is possible to suppress the occurrence of striae due to volatilization and to reduce fluctuations in optical characteristics.
  • by lowering the liquidus temperature it is possible to suppress erosion of the melting crucible glass. As a result, it is possible to avoid a substance such as platinum constituting the crucible from being mixed into the glass due to erosion and becoming a foreign substance, or being dissolved as an ion and causing coloring of the glass.
  • the glass transition temperature is preferably 500 ° C. or higher from the viewpoint of glass stability. On the other hand, from the viewpoint of obtaining good press formability, the glass transition temperature is preferably low, for example, preferably 570 ° C. or lower.
  • the above-described optical glass is a glass having a high refractive index and a high dispersion characteristic, and suitable for any of the direct press method, the reheat press method, and the precision press method.
  • the optical glass according to Aspect 3 has an oxide-based glass composition in which P 2 O 5 is 24 to 34% by mass, B 2 O 3 is more than 0% by mass and 4% by mass, Na 2 O, K 2 O, and It contains 12 to 20% by mass of Li 2 O, 15 to 30% by mass of Nb 2 O 5 , 8 to 15% by mass of TiO 2 , and 4 to 25% by mass of Bi 2 O 3 , and the mass ratio (TiO 2 / Nb 2 O 5 ) is in the range of 0.36 to 1.00, the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) is in the range of 0.16 to 1.67, and the refractive index nd is 1.
  • P 2 O 5 is an essential component as a glass forming component in phosphate glass.
  • Phosphate glass has the characteristics that it can melt glass at a relatively low temperature and has high transmittance in the visible region.
  • P 2 O 5 is a component located on the high dispersion side as compared with SiO 2 and B 2 O 3 which are the same glass forming components, and the content thereof is obtained in order to obtain the high dispersion characteristic indicating the above Abbe number ⁇ d.
  • it is 27% or more, more preferably 28% or more.
  • the content is set to 34% or less.
  • it is 31% or less, More preferably, it is 30% or less.
  • SiO 2 is an optional component that can be added to the above-described optical glass, and has an effect of increasing devitrification resistance. From the viewpoint of obtaining a high refractive index characteristic, if the above-mentioned optical glass includes SiO 2, is preferably SiO 2 content is 1.2% or less. More preferably, it is 1.0% or less, more preferably less than 0.5%, still more preferably 0.4% or less, and it may not be introduced (even if the SiO 2 content is 0%).
  • B 2 O 3 is a component having an action of improving devitrification resistance by adding an appropriate amount to the phosphate glass. Therefore, more than 0% is introduced into the above optical glass as an essential component.
  • the B 2 O 3 content is preferably 0.4% or more, more preferably 0.7% or more. However, if an excessive amount is included, it is difficult to realize a high refractive index and a high dispersion characteristic, so the content is made 4% or less. Preferably it is 3% or less, More preferably, it is 1.5% or less.
  • the B 2 O 3 content of 0% includes a case where B 2 O 3 is contained in a glass in a trace amount to an impurity level.
  • the content of B 2 O 3 is greater than 0% refers to the B 2 O 3 is contained in an amount exceeding about impurity levels. Specifically, it is 700 ppm (mass ratio) or more, or 1000 ppm (mass ratio) or more, for example.
  • the glass characteristics that the glass suitable for precision press molding desirably has include a low glass transition temperature. This is because it is necessary to increase the press molding temperature in order to press-mold a glass having a high glass transition temperature Tg. However, if the precision press molding temperature is increased, it is provided on the molding die itself or the molding surface of the molding die. It is because the release film which exists is damaged. In the precision press molding method, an optical functional surface is formed by transferring a molding die molding surface without machining such as grinding and polishing. Therefore, when the molding die or the release film is damaged and the molding surface becomes rough, the rough surface shape is transferred to the optical element, and an optical functional surface having high surface smoothness cannot be obtained.
  • the above-described optical glass preferably has a relatively low glass transition temperature, specifically, a glass transition temperature of 520 ° C. or lower.
  • the glass transition temperature is more preferably 510 ° C. or lower, further preferably 500 ° C. or lower, and further preferably 490 ° C. or lower.
  • the glass transition temperature is preferably higher than 460 ° C, more preferably 465 ° C or higher, and further preferably 470 ° C or higher.
  • the mass ratio (B 2 O 3 / P 2 O 5 ) between the P 2 O 5 content and the B 2 O 3 content is set to 0 It is preferable to be over 0.1. More preferably, it is more than 0 and 0.083 or less.
  • the total content of the alkali metal oxides Na 2 O, K 2 O, and Li 2 O in the above optical glass is 12% or more.
  • the total content is 20% or less. Preferably it is 17% or less, More preferably, it is 16% or less.
  • Li 2 O may include one or two or more selected from the group consisting of Na 2 O and K 2 O.
  • Introducing at least Na 2 O as the alkali metal oxide is advantageous for obtaining an optical glass exhibiting a low glass transition temperature.
  • the Na 2 O content in the optical glass is preferably 2% or more, more preferably 4% or more, and further preferably 5% or more.
  • the Na 2 O content is preferably 12% or less, more preferably 9% or less, and even more preferably 8% or less.
  • K 2 O and Li 2 O are all components that can be added to lower the glass transition temperature.
  • the K 2 O content of the optical glass described above can be, for example, 2% or more, and is preferably 4% or more.
  • the Li 2 O content can be, for example, 1% or more, and is preferably 2% or more. Further, from the viewpoint of devitrification resistance, the K 2 O content can be, for example, 8% or less, and preferably 7% or less.
  • the Li 2 O content can be, for example, 5% or less, and is preferably 4% or less.
  • Nb 2 O 5 is an indispensable component for obtaining a high refractive index and a high dispersion characteristic, and is also a component having an effect of improving durability. If Nb 2 O 5 is less than 15%, it is difficult to obtain the desired high refractive index and high dispersion characteristics, and if it exceeds 30%, the devitrification resistance of the glass is lowered. Therefore, in the above optical glass, the Nb 2 O 5 content is in the range of 15 to 30%. From the viewpoint of realizing more preferable high refractive index and high dispersion characteristics, the Nb 2 O 5 content is preferably 25% or less, more preferably 22% or less, and even more preferably 20% or less. . Further, from the viewpoint of devitrification resistance, the Nb 2 O 5 content is preferably 16% or more, and more preferably 18% or more.
  • TiO 2 is a component that can impart high refractive index and high dispersion characteristics to the glass when added in an appropriate amount, and 8% or more is introduced into the optical glass.
  • the TiO 2 content is preferably 9% or more, more preferably 10% or more. However, when the content exceeds 15%, the devitrification resistance decreases, so the TiO 2 content in the optical glass is set to 15% or less. Preferably it is 13% or less, More preferably, it is 12% or less.
  • Bi 2 O 3 is a useful component for lowering the glass transition temperature and improving precision press molding. Therefore, 4% or more of Bi 2 O 3 is introduced into the above optical glass.
  • the Bi 2 O 3 content is preferably 6% or more, more preferably 10% or more.
  • the Bi 2 O 3 content in the optical glass is set to 25% or less. Preferably it is 20% or less, More preferably, it is 15% or less.
  • Nb 2 O 5 , TiO 2 , and Bi 2 O 3 are as described above. Further, in the above optical glass, the mass ratio (TiO 2 / Nb 2 O 5 ) is in the range of 0.36 to 1.00, and the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) is 0.16 to The range is 1.67.
  • the ratio of Nb 2 O 5 and TiO 2 which are useful components for imparting high refractive index and high dispersion characteristics, and Bi 2 O 3 which is a component useful for improving precision press moldability are within the above range.
  • a phosphoric acid optical glass having a high refractive index and a high dispersion characteristic of a refractive index nd of 1.78 or more and less than 1.83 and an Abbe number ⁇ d in the range of 20 to 25 and suitable for precision press molding can be obtained.
  • the lower limit of the mass ratio (TiO 2 / Nb 2 O 5 ) is preferably 0.40 or more, and preferably 0.50 or more. Is more preferably 0.55 or more.
  • the upper limit is preferably 0.80 or less, more preferably 0.70 or less, and even more preferably 0.60 or less.
  • the lower limit of the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) is preferably 0.20 or more, more preferably 0.40 or more, and 0.50 or more. More preferably, it is more preferably 0.60 or more.
  • the upper limit is preferably 0.87 or less, more preferably 0.80 or less, and even more preferably 0.70 or less.
  • the optical glass described above may contain one or more of the alkaline earth metal oxides MgO, CaO, SrO and BaO.
  • Alkaline earth metal oxides are components that have the effect of enhancing glass stability, but may cause a decrease in refractive index and a decrease in dispersibility. Therefore, the total content of the alkaline earth metal oxides MgO, CaO, SrO and BaO is preferably suppressed to 2% or less, and may be 0%.
  • the total content of the alkali metal oxide and the alkaline earth metal oxide (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) may be in the range of 12 to 17% from the viewpoint of realizing high refractive index and high dispersion characteristics.
  • the upper limit value is more preferably 17% or less, and still more preferably 16% or less.
  • the preferable lower limit of MgO content is 0% or more, and a preferable upper limit is 2% or less.
  • the preferable lower limit of the CaO content is 0% or more, and the preferable upper limit is 2% or less, more preferably less than 1%.
  • the preferable lower limit value of the SrO content is 0% or more, and the preferable upper limit value is 2% or less.
  • the preferable lower limit of the BaO content is 0% or more, and the preferable upper limit is 2% or less.
  • WO 3 is an optional component that can be added to the glass described above, and has the effect of contributing to the low Tg of the glass and improving the precision press formability. From the viewpoint of forming an optical glass suitable for precision press molding, it is preferable that 3% or more of WO 3 is contained in the optical glass. More preferably, it is 6% or more, More preferably, it is 10% or more. On the other hand, from the viewpoint of devitrification resistance, the content of WO 3 is preferably 23% or less, more preferably 20% or less, and even more preferably less than 13%.
  • the ratio of the WO 3 content to the Nb 2 O 5 content is set so that the mass ratio (WO 3 / Nb 2 O 5 ) is in the range of 0.12 to 0.92. It is preferable to adjust. From the viewpoint of achieving both high refractive index / high dispersion characteristics and low Tg, the lower limit of the mass ratio (WO 3 / Nb 2 O 5 ) is more preferably 0.20, still more preferably 0.50, and more More preferably, it is 0.55. The upper limit value is more preferably 0.80, and still more preferably 0.70.
  • ZnO, Al 2 O 3 , and Ta 2 O 5 can also be added to the above optical glass as optional components for adjusting the refractive index.
  • the contents of ZnO, Al 2 O 3 and Ta 2 O 5 can be, for example, in the range of 0 to 5%, preferably in the range of 0 to 3%.
  • La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , Cs 2 O, ZrO 2 , PbO, etc. each in an amount in the range of 0 to 1%, for example, does not impair the purpose of the present invention. You may add in the range.
  • SnO 2 and Sb 2 O 3 may be added to the above-mentioned optical glass in amounts of, for example, 0 to 1%, respectively, as external addition amounts.
  • the glass composition of the above optical glass has been described above. Next, the glass characteristics of the above optical glass will be described.
  • the above-mentioned optical glass is a high refractive index and high dispersion optical glass having a refractive index nd of 1.78 or more and less than 1.83 and an Abbe number ⁇ d in the range of 20-25.
  • the lower limit of the refractive index nd is preferably 1.790 or more, more preferably 1.795 or more, and further preferably 1.800 or more.
  • the upper limit is preferably 1.820 or less, more preferably 1.815 or less, and still more preferably 1.810 or less.
  • the lower limit of the Abbe number ⁇ d is preferably 21.0 or more, and more preferably 22.0 or more.
  • the upper limit is preferably 24.0 or less, and more preferably 23.5 or less.
  • the optical glass having the above refractive index nd and Abbe number ⁇ d is useful in an optical system.
  • a preferred embodiment of the above-described optical glass includes a glass having a refractive index and an Abbe number ⁇ d satisfying the following formula (1).
  • nd ⁇ 15 / ⁇ d + 1.18 (1)
  • the glass transition temperature of the optical glass described above is as described above.
  • compositions effective for lowering Tg include the following compositions. Although the Tg can be lowered simply by increasing the content of alkali metal oxide or alkaline earth metal oxide, the weather resistance may deteriorate as a result. On the other hand, the following composition is mentioned as a preferable composition which can aim at low Tg suitable for precision press molding, maintaining a weather resistance.
  • the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO is in the range of 12 to 17%, and the mass ratio (B 2 O 3 / P 2 O 5 ) In the range of more than 0 and 0.1 or less.
  • the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO is in the range of 12 to 17%, and the mass ratio (B 2 O 3 / P 2 O 5 ) Is preferably a composition in the range of more than 0 and 0.083 or less.
  • the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO is in the range of 12 to 17%, and the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) In the range of 0.16 to 1.67.
  • the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO is in the range of 12 to 17%, and the mass ratio (Bi 2 O 3 / Nb 2 O 5 ) In the range of 0.16 to 0.87.
  • the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO is in the range of 12 to 17%, and the mass ratio (WO 3 / Nb 2 O 5 ) is 0 Composition in the range of 12 to 0.92.
  • the mass ratio (TiO 2 / Nb 2 O 5 ) is in the range of 0.36 to 1.00, and the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO A composition whose amount ranges from 12 to 17%.
  • the mass ratio (TiO 2 / Nb 2 O 5 ) is in the range of 0.40 to 0.80, and the total content of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO
  • a preferred range of amounts is a composition in the range of 12-17%.
  • the optical glass desirably has from the point of precision press moldability
  • a low liquidus temperature can also be mentioned.
  • Glass having a low liquidus temperature has high devitrification stability in the vicinity of the softening point. Therefore, the preform is heated to be softened and precision press-molded to obtain an optical element having high transparency without devitrification. Because it can. From this point, it is preferable that the above-mentioned optical glass has a liquidus temperature of 1000 ° C. or lower.
  • the liquidus temperature is more preferably 970 ° C. or less, and still more preferably 960 ° C. or less. Further, from the viewpoint of glass stability, the liquidus temperature is preferably 850 ° C. or higher, and more preferably 880 ° C. or higher.
  • the above-described optical glass is an optical glass having high refractive index and high dispersion characteristics and suitable for precision press molding.
  • the raw materials such as oxide, carbonate, sulfate, nitrate, and hydroxide are weighed, prepared, and mixed so that the desired glass composition can be obtained.
  • a mixed batch can be obtained by heating, melting, defoaming and stirring in a melting container to form a molten glass that is homogeneous and free of bubbles, and is molded. Specifically, it can be made using a known melting method.
  • Optical element blanks, glass materials for press molding, and methods for producing them are: Optical element blank made of optical glass according to aspect 1 or aspect 2; A glass material for press molding comprising the optical glass according to aspect 1 or aspect 2; A method for producing a glass material for press molding, comprising a step of forming the optical glass according to aspect 1 or 2 into a glass material for press molding; and In the state where the glass material for press molding is softened by heating, a method for producing an optical element blank including a step of producing an optical element blank by press molding using a press mold, About.
  • the optical element blank is an optical element base material that approximates the shape of the target optical element and adds a grinding and polishing margin to the shape of the optical element.
  • the optical element is finished by grinding and polishing the surface of the optical element blank.
  • An optical element blank can be produced by press molding using a press mold in a state where the glass material for press molding made of the optical glass is softened by heating. Since the optical glass described above can exhibit excellent devitrification resistance, crystals can be prevented from being precipitated in the glass by heating during press molding.
  • Both heating and press molding of the glass material for press molding can be performed in the air.
  • a powder release agent such as boron nitride
  • heating and press molding it is possible to reliably prevent the glass and the mold from being fused, and the molding surface of the press mold
  • the glass can be smoothly extended along.
  • a uniform optical element blank can be obtained by annealing after press molding to reduce strain inside the glass.
  • a glass material for press molding also called a preform
  • machining such as cutting, grinding and polishing
  • a cutting method a groove is formed in a portion of the surface of the glass plate to be cut by a method called scribing, and a local pressure is applied to the groove portion from the back surface of the surface on which the groove is formed.
  • a method of breaking a plate and a method of cutting a glass plate with a cutting blade.
  • barrel polishing etc. are mentioned as a grinding
  • An optical element comprising the optical glass according to aspect 1 or 2;
  • a method for producing an optical element comprising a step of producing an optical element by grinding and / or polishing the above-described optical element blank;
  • Method B a method for producing an optical element including a step of producing an optical element by press molding using a press mold, About.
  • Method A known methods may be applied to grinding and polishing, and an optical element having high internal quality and high surface quality can be obtained by sufficiently washing and drying the surface of the optical element after processing.
  • Method A is suitable as a method for manufacturing optical elements such as various spherical lenses and prisms.
  • Precision press molding in Method B is also called mold optics molding, and is a method of forming the optical functional surface of the optical element by transferring the molding surface of the press mold.
  • a surface that transmits, refracts, diffracts, or reflects light rays of the optical element is referred to as an optical functional surface.
  • a lens surface such as an aspherical surface of an aspherical lens or a spherical surface of a spherical lens corresponds to an optical functional surface.
  • the precision press molding method is a method of forming an optical functional surface by press molding by precisely transferring a molding surface of a press mold to glass.
  • the precision press molding method is suitable for manufacturing optical elements such as lenses, lens arrays, diffraction gratings, and prisms, and is particularly suitable as a method for manufacturing an aspheric lens with high productivity.
  • the preform having a clean surface was reheated so that the viscosity of the glass constituting the preform was in the range of 10 5 to 10 11 Pa ⁇ s, and reheated.
  • the preform is press-molded with a mold having an upper mold and a lower mold.
  • a mold release film may be provided on the molding surface of the mold as necessary.
  • the press molding is preferably performed in an atmosphere of nitrogen gas or inert gas in order to prevent oxidation of the molding surface of the mold.
  • the press-molded product is taken out from the mold and gradually cooled as necessary.
  • the molded product is an optical element such as a lens, an optical thin film may be coated on the surface as necessary.
  • Optical elements such as arrays, diffraction gratings, and prisms can be manufactured.
  • Aspect 3 also relates to a precision press-molding preform made of the optical glass described above.
  • a precision press-molding preform (hereinafter also referred to as a preform) means a glass lump to be subjected to precision press molding, and is a glass molded body corresponding to the mass of a precision press-molded product.
  • the precision press molding is as described above.
  • the preform may be manufactured through cold processing such as grinding and polishing, or by hot processing (also referred to as hot forming) in which a molded product is obtained from molten glass without undergoing cold processing such as grinding and polishing. It may be produced.
  • hot processing also referred to as hot forming
  • Glass properties suitable for this hot working include low Tg and low liquidus temperature. Since the above-mentioned optical glass can have these glass characteristics, it is also suitable for obtaining a preform by hot working.
  • a uniform molten glass is produced by melting, clarifying, and stirring the glass raw material from which the above optical glass can be obtained. Thereafter, the molten glass is allowed to flow out from a platinum or platinum alloy pipe to produce a glass lump from a predetermined amount of molten glass, and a hot-formed product is formed using the glass lump.
  • the molten glass is continuously discharged from the outlet of the above-mentioned pipe, and the tip portion of the glass that has flowed out of the outlet is separated to obtain a predetermined amount of glass lump.
  • the obtained glass lump is formed into a preform shape while the glass is in a temperature range where plastic deformation is possible.
  • Examples of the method for separating the tip portion of the outflow glass include a dropping method and a descending cutting method.
  • a dropping method By using the optical glass described above, it is possible to separate the tip portion of the glass flowing out from the pipe outlet without devitrifying the glass.
  • a preform with a constant weight By keeping the outflow speed and outflow temperature constant, and keeping the dripping condition or descent condition constant, a preform with a constant weight can be manufactured with high reproducibility and high accuracy.
  • a preform having a mass of, for example, 1 to 5000 mg can be manufactured with high mass accuracy.
  • the separated glass tip is received by a molding die in which gas is ejected from a concave molding surface, and is molded into a preform such as a sphere or an ellipsoid by levitation and rotation by the wind pressure of the gas. .
  • a molding method is called a floating molding method.
  • a method of obtaining a preform by press-molding a molten glass lump with a lower mold and an upper mold is also known, and can be used for the above-described hot forming.
  • the hot-formed product thus manufactured may be provided with a known release film on the surface as necessary.
  • An optical element comprising the optical glass according to aspect 3; and An optical element manufacturing method comprising a step of producing an optical element by precision press molding using a press mold in a state where the above-described precision press molding preform is softened by heating, About.
  • the precision press molding method is as described above. Since the above-mentioned preform can have a low Tg, which is a glass characteristic suitable for precision press molding, the glass can be pressed at a relatively low temperature. Therefore, since the burden on the molding surface of the press mold is reduced, the life of the molding die can be extended and the molding surface of the molding die can be prevented from being damaged and roughened.
  • Optical elements such as lens arrays, diffraction gratings, and prisms can be manufactured with high accuracy and high productivity.
  • the molten glass is poured into a 40 ⁇ 70 ⁇ 15 mm carbon mold, allowed to cool to the glass transition temperature, immediately put into an annealing furnace, annealed for about 1 hour in the glass transition temperature range, and room temperature in the furnace.
  • Each optical glass was produced.
  • the refractive index, Abbe number, glass transition temperature, and liquidus temperature of each optical glass were measured by the following methods.
  • a 1 cm square glass sample was heated in the first test furnace set to the glass transition temperature Tg of the glass for 10 minutes, and further heated to the second test furnace set to Tg plus 10 ° C. of the glass for 10 minutes.
  • the presence or absence of crystals or cloudiness was confirmed with an optical microscope (observation magnification: 10 to 100 times).
  • observation magnification 10 to 100 times.
  • Examples 1-1 to 1-28 are examples according to Aspect 1
  • Comparative Examples 1-1 and 1-2 are comparative examples with respect to Aspect 1.
  • Examples 2-1 to 2-28 are examples according to aspect 2
  • comparative examples 2-1 to 2-3 are comparative examples for aspect 2.
  • the optical glass having the composition of Examples 2, 3, and 6 described in JP-A-6-345481 having a glass composition different from that of the optical glass according to one embodiment of the present invention is obtained.
  • Optical glass was produced in the same manner as in the example. About the produced optical glass, when the above-mentioned devitrification evaluation was performed, all the evaluation results were "x".
  • the optical glass having the composition of Example 10 described in JP-A No. 5-270853 having a glass composition different from that of the optical glass according to one embodiment of the present invention is obtained.
  • Optical glass was produced by the same method.
  • nd was 1.762202 and ⁇ d was 25.24, which did not have the optical characteristics that the above optical glass satisfies. It was confirmed.
  • the same evaluation was performed on Example 4 described in Japanese Patent Laid-Open No. 6-345481 which has a glass composition different from that of the optical glass according to one embodiment of the present invention.
  • nd was 1.72914 and ⁇ d was 26.22. In other words, it was confirmed that the above optical glass does not have optical characteristics.
  • Examples 3-1 to 3-19 are examples according to Aspect 3.
  • a high-quality and homogenized molten glass from which each optical glass of Examples according to Embodiments 1 to 3 was obtained was continuously discharged from a platinum alloy pipe.
  • the molten glass flowing out was dropped from the pipe outlet, received one after another by a plurality of preform molding dies, and a plurality of spherical preforms were molded by a floating molding method.
  • the temperature of the glass at the time of outflow was made several degree C higher than the liquidus temperature.
  • the preform obtained from the optical glass of the example was transparent and homogeneous with no crystal observable with a microscope. None of these preforms was devitrified, and a material with high mass accuracy was obtained.
  • a preform was produced by using a descending cutting method instead of the dropping method. Similarly, devitrification was not observed in the preform obtained by the descending cutting method, and a preform with high mass accuracy was obtained. Moreover, the trace at the time of isolation
  • Examples relating to optical elements The surface of the above-mentioned preform is coated as necessary, and introduced into a press mold including an upper and lower mold made of SiC and a body mold provided with a carbon-based release film on the molding surface, and nitrogen. A mold and a preform are heated together in an atmosphere to soften the preform, precision press-molded, and aspherical convex meniscus lens, aspherical concave meniscus lens, aspherical biconvex lens, aspherical both Various lenses of concave lenses were prepared. In addition, each condition of precision press molding was adjusted in the above-mentioned range.
  • the surface of the lens thus obtained may be coated with an antireflection film.
  • the same preform as the above-mentioned preform is heated and softened, introduced into a separately preheated press mold, precision press-molded, and aspherical convex meniscus lens, aspherical concave meniscus lens, Various lenses such as a spherical biconvex lens and an aspherical biconcave lens were prepared.
  • each condition of precision press molding was adjusted in the above-mentioned range.
  • the surface of the lens thus obtained may be coated with an antireflection film.
  • Examples relating to optical element blank and optical element Prepare clarified and homogenized molten glass from which the glass of the example according to the above-described aspect 1 and the example according to the aspect 2 can be obtained, and continuously from a platinum pipe at a constant flow rate. Then, the glass plate was poured into a mold having a side wall opened horizontally below the pipe, and formed into a glass plate having a certain width and thickness, and the molded glass plate was pulled out from the opening of the mold. The drawn glass plate was annealed in an annealing furnace to obtain a glass plate made of each of the above optical glasses with reduced distortion, no striae or foreign matter, and little coloration.
  • these glass plates were cut vertically and horizontally to obtain a plurality of rectangular parallelepiped glass pieces having the same dimensions. Further, a plurality of glass pieces were barrel-polished to make a glass gob for press molding according to the weight of the target press-formed product.
  • the molten glass flows out from the platinum nozzle at a constant flow rate, and a number of receiving molds are successively transferred to the lower part of the nozzle to receive a predetermined mass of molten glass ingot one after another.
  • a glass gob may be formed into a spherical or rotating body shape, annealed and then barrel-polished to match the mass of the target press-formed product, and a glass gob for press forming may be used.
  • a powder mold release agent for example, boron nitride powder, is applied to the entire surface of each glass gob, heated and softened with a heater, and then placed in a press mold having an upper mold and a lower mold.
  • Each lens blank having a shape approximate to a lens obtained by adding pressure to the target lens shape by applying pressure and grinding and polishing was formed.
  • each lens blank was annealed to reduce distortion.
  • the cooled lens blank was ground and polished to finish the target lens.
  • the series of steps was performed in the atmosphere.
  • Each of the obtained lenses had excellent light transmittance.
  • the lens may be coated with an optical multilayer film such as an antireflection film. With such a lens, a good imaging optical system can be configured.
  • other optical elements such as a prism, can also be manufactured by appropriately setting the shape of the press mold and the volume of the glass gob.
  • the P 2 O 5 content is 20 to 34% by mass
  • the B 2 O 3 content is more than 0% by mass and 10% by mass or less
  • the mass ratio (B 2 O 3 / P 2 O 5 ) is more than 0 and less than 0.39
  • the mass ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is 0.059 to 0.180.
  • the range and mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (Na 2 O + K 2 O + Li 2 O)] are in the range of 1.39 to 1.80, and the refractive index nd is 1.78 to 1 It is possible to provide an optical glass having excellent devitrification resistance having a high refractive index and a high dispersion characteristic in a range of .83 and an Abbe number ⁇ d of 20 to 25.
  • the optical glass according to aspect 1 can exhibit a liquidus temperature of 1050 ° C. or lower by adjusting the composition described above.
  • the optical glass according to aspect 1 satisfies the following one or more glass compositions.
  • the mass ratio [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is 0.12 or less; Li 2 O content is 0 mass% or more and less than 0.3 mass%; The mass ratio [Li 2 O / (Na 2 O + K 2 O + Li 2 O)] is less than 0.0115; Li 2 O content is 0 mass% or more and less than 0.3 mass%; The mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is 0.49 or more.
  • P 2 O 5 , B 2 O 3 and TiO 2 are essential components, and SiO 2 , Li 2 O, Nb 2 O 5 , WO 3 , Bi 2 O 3 , and Ta 2 O 5 are In the glass composition which is an optional component, P 2 O 5 content is 20 to 34% by mass, B 2 O 3 content is more than 0% by mass and 10% by mass or less, Li 2 O content is 0% by mass to less than 0.3% by mass, B 2 O 3 / P 2 O 5 ) greater than 0 and less than 0.39, mass ratio [(P 2 O 5 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] Exceeds 0.53, and the mass ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is in the range of 0.059 to 0.96 (glass 2-A), Or P 2 O 5 content is 20 to 34%
  • P 2 O 5 content is 20 to 34% by mass
  • B 2 O 3 content is more than 0% by mass and 10% by mass or less
  • Li 2 O content is 0% by mass to less than 0.3% by mass
  • mass ratio [(P 2 O 5 + B 2 O 3 + SiO 2 ) / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2) O 5 )] is 0.6 or more and the mass ratio [TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 + Bi 2 O 3 + Ta 2 O 5 )] is in the range of 0.059 to 0.96 (glass 2-C ),
  • an optical glass having excellent devitrification resistance having a high refractive index and a high dispersion characteristic in which the refractive index nd is in the range of 1.78 to 1.83 and the Abbe number ⁇ d is in the range of 20 to 25. Can be obtained.
  • the optical glass according to aspect 2 can exhibit a liquidus temperature of 1050 ° C. or lower by adjusting the composition described above.
  • the glass 2-A has a mass ratio [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )]. Preferably it is less than 0.02.
  • the optical glass according to the aspect 2 satisfies one or more of the following glass compositions.
  • the Nb 2 O 5 content is in the range of 19-47% by weight;
  • the TiO 2 content is in the range of 6-24% by weight;
  • the alkali metal oxide content is in the range of 10-30% by weight; Na 2 O content is in the range of 0-16% by mass; K 2 O content is in the range of 0-6% by mass; Bi 2 O 3 content is in the range of 0-15% by mass;
  • the WO 3 content is in the range of 0 to 15% by mass.
  • optical glass according to aspects 1 and 2 described above can suppress devitrification in any of the direct press method, the reheat press method, and the precision press method, the optical element blank, the glass material for press molding, and the optical It is suitable as glass for obtaining an element.
  • an optical element blank made of the optical glass according to Aspect 1 or Aspect 2 a glass material for press molding, and an optical element are provided.
  • Aspects 1 and 2 there is provided a method for producing a press-molding glass material comprising a step of molding the optical glass according to Aspect 1 or Aspect 2 into a press-molding glass material.
  • manufacture of an optical element blank provided with the process of producing an optical element blank by press-molding using the press molding die in the state which softened the glass material for press molding mentioned above by heating.
  • a method is also provided.
  • an optical element manufacturing method including a step of manufacturing an optical element by grinding and / or polishing the above-described optical element blank.
  • an optical element manufacturing method including a step of producing an optical element by press molding using a press mold in a state where the glass material for press molding is softened by heating. Is done.
  • P 2 O 5 is 24 to 34%
  • B 2 O 3 is more than 0% and 4% or less
  • Li 2 O, Na 2 O and K 2 O are combined in a total of 12 to 20%
  • Nb In a glass composition containing 15-30% 2 O 5 , 8-15% TiO 2 and 4-25% by mass Bi 2 O 3 , the mass ratio (TiO 2 / Nb 2 O 5 ) is 0.36-1.
  • the refractive index nd is 1.78 or more and less than 1.83
  • the Abbe number ⁇ d is An optical glass suitable for precision press molding having a high refractive index and high dispersion characteristic of 20 to 25 can be obtained.
  • the optical glass according to the aspect 3 includes Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO in a total of 12 to 17%. It is preferable to include in a range.
  • the optical glass according to aspect 3 has a mass ratio (B 2 O 3 / P 2 O 5 ) in the range of more than 0 and 0.1 or less from the viewpoint of realizing a glass transition temperature suitable for precision press molding. preferable. From the same viewpoint, it is also preferable that the mass ratio (WO 3 / Nb 2 O 5 ) is in the range of 0.12 to 0.92, and the WO 3 content is in the range of 3 to 23% by mass.
  • the CaO content is less than 1% by mass, and the total content of MgO, CaO, SrO, and BaO is less than 2% by mass.
  • the optical glass according to Aspect 3 can have a glass transition temperature Tg of 520 ° C. or lower suitable for precision press molding by adjusting the composition described above.
  • the optical glass according to the aspect 3 has glass characteristics such as low Tg suitable for precision press molding, a precision press molding preform and an optical element obtained by precision press molding the preform are obtained. It is suitable as the glass.
  • Aspect 3 a precision press-molding preform and an optical element made of the optical glass according to Aspect 3 are provided.
  • an optical element manufacturing method including a step of manufacturing an optical element by precision press molding using a press mold in a state where the above-described precision press molding preform is softened by heating. Provided.
  • the optical glass according to one embodiment of the present invention can be obtained by performing the composition adjustment described in the specification on the glass composition exemplified above.
  • the composition adjustment described in the specification on the glass composition exemplified above.
  • the present invention is useful in the field of manufacturing various optical elements such as glass lenses, lens arrays, diffraction gratings, and prisms.

Abstract

本発明の一態様は、酸化物基準のガラス組成において、P含有量が20~34質量%、B含有量が0質量%超かつ10質量%以下、質量比(B/P)が0超かつ0.39未満、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲、質量比[(P+B+SiO)/(NaO+KO+LiO)]が1.39~1.80の範囲であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラスに関する。

Description

光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法 関連出願の相互参照
 本出願は、2013年2月19日出願の日本特願2013-030211号および日本特願2013-030212号、2013年9月30日出願の日本特願2013-205432号、ならびに2014年1月14日出願の日本特願2014-004423号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 本発明は、光学ガラス、光学ガラスブランク、プレス成形用ガラス素材、光学素子、およびそれらの製造方法に関する。詳しくは、耐失透性に優れる高屈折率・高分散特性を有するリン酸系光学ガラス、この光学ガラスからなる光学ガラスブランク、プレス成形用ガラス素材、光学素子、およびそれらの製造方法に関する。
 ガラスのネットワークフォーマーとしてリン酸を多く含む所謂リン酸系光学ガラスとしては、特許文献1~8に記載されているように様々な屈折率を有するものが知られている。それらの中でも、高い屈折率とともに高分散特性(低アッベ数)を有する光学ガラスは、各種レンズなどの光学素子材料として需要が高い。例えば、高屈折率低分散性のレンズと組合せることにより、コンパクトで高機能な色収差補正用の光学系を構成することができるからである。さらに、高屈折率高分散特性のレンズの光学機能面を非球面化することにより、各種光学系の一層の高機能化、コンパクト化を図ることができる。
特開平5-270853号公報 特開平6-345481号公報 特開平8-157231号公報 特開2003-238197号公報 特開2003-160355号公報 特開2008-303112号公報 特開2009-96649号公報 特開2012-17261号公報
 ところで、レンズなどの光学素子を作製する方法としては、光学素子の形状に近似した光学素子ブランクと呼ばれる中間製品を作り、この中間製品に研削、研磨加工を施して光学素子を製造する方法が知られている。このような中間製品の作製方法の一態様としては、適量の熔融ガラスをプレス成形して中間製品とする方法(ダイレクトプレス法という)がある。また、他の態様としては、熔融ガラスを鋳型に鋳込みガラス板に成形し、このガラス板を切断して複数個のガラス片とし、このガラス片を再加熱、軟化してプレス成形により中間製品にする方法、適量の熔融ガラスをガラスゴブと呼ばれるガラス塊に成形し、このガラス塊にバレル研磨を施した後に再加熱、軟化してプレス成形し、中間製品を得る方法などがある。ガラスを再加熱、軟化してプレス成形する方法は、ダイレクトプレス法に対してリヒートプレス法と呼ばれる。
 また、光学素子を作製する方法としては、熔融ガラスからプレス成形用ガラス素材を作製し、このプレス成形用ガラス素材を成形型により精密プレス成形することにより光学素子を得る方法(精密プレス成形法という)も知られている。精密プレス成形法では、成形型成形面形状を転写することにより、研磨、研削等の機械加工を経ることなく、光学素子の光学機能面を形成することができる。
 以上記載したダイレクトプレス法、リヒートプレス法、精密プレス成形法のいずれにおいても、製造過程においてガラス中に結晶が析出してしまっては、優れた透明性を有する光学素子を得ることは困難となる。そのため、結晶析出が抑制された、即ち耐失透性の高い光学ガラスが求められている。
 しかしながら、ガラスのネットワークフォーマーとしてリン酸を多く含むとともに、高屈折率付与成分および高分散性付与成分を含む組成の光学ガラスは、一般に失透傾向が強い。そのため、高屈折率・高分散特性を有するリン酸系光学ガラスにおける耐失透性を向上することは、従来困難であった。
 本発明の一態様は、高屈折率・高分散特性を有するとともに、耐失透性に優れるリン酸系光学ガラスを提供する。
 更に本発明の一態様によれば、上述の光学ガラスからなる光学ガラスブランク、プレス成形用ガラス素材、光学素子、およびそれらの製造方法も提供される。
 本発明の一態様(以下、「態様1」と記載する。)は、酸化物基準のガラス組成において、
含有量が20~34質量%、
含有量が0質量%超かつ10質量%以下、
質量比(B/P)が0超かつ0.39未満、
質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲、
質量比[(P+B+SiO)/(NaO+KO+LiO)]が1.39~1.80の範囲、
であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス、
に関する。
 態様1にかかる光学ガラスは、必須成分としてPを含むリン酸系光学ガラスであって、更に必須成分としてBおよびTiOを含み、かつ上述の含有量および質量比を満たすことにより、1.78~1.83の範囲の屈折率ndおよび20~25の範囲のアッベ数νdという高屈折率高分散特性を有するとともに、優れた耐失透性を示すことができる。
 また、本発明の一態様(以下、「態様2」と記載する。)にかかる光学ガラスは、
酸化物基準のガラス組成において、
、BおよびTiOが必須成分であり、SiO、LiO、Nb、WO、Bi、およびTaが任意成分であり、
含有量が20~34質量%、
含有量が0質量%超かつ10質量%以下、
LiO含有量が0質量%以上0.3質量%未満、
質量比(B/P)が0超かつ0.39未満、
質量比[(P+B)/(TiO+Nb+WO+Bi+Ta)]が0.53超、
質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.96の範囲、
であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス(以下、「ガラス2-A」と記載する。);
酸化物基準のガラス組成において、
、BおよびTiOが必須成分であり、SiO、LiO、Nb、WO、Bi、およびTaが任意成分であり、
含有量が20~34質量%、
含有量が0質量%超かつ10質量%以下、
LiO含有量が0質量%以上0.3質量%未満、
質量比(B/P)が0超かつ0.39未満、
質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]が0.53超、
質量比[SiO/(SiO+P+B)]が0.02未満、
質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.96の範囲、
であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス(以下、「ガラス2-B」と記載する)、
を包含する。
 上述のガラス2-Aおよび2-Bは、必須成分としてP、BおよびTiOを含み、SiO、LiO、Nb、WO、Bi、およびTaを任意に含むことができる。そのうえで上述の含有量および質量比を満たすことにより、1.78~1.83の範囲の屈折率ndおよび20~25の範囲のアッベ数νdという高屈折率高分散特性を有するとともに、優れた耐失透性を示すリン酸系光学ガラスを得ることが可能となる。
 態様1および態様2によれば、ダイレクトプレス法、リヒートプレス法、精密プレス成形法のいずれにも好適な、高屈折率高分散特性を有するリン酸系光学ガラスを提供することができる。更なる一態様によれば、上述の光学ガラスからなる光学素子ブランク、プレス成型用ガラス素材、および光学素子も提供される。
 ところで上述の精密プレス成形法は、非球面レンズ等の光学素子を効率よく製造できる方法である。したがって上述のリン酸系光学ガラスは、高屈折率・高分散特性とともに、精密プレス成形に適した性質(良好な精密プレス成形性)を有することが、非球面レンズ等の光学素子を生産性よく製造するために望ましい。
 そこで本発明の一態様は、高屈折率・高分散特性を有するとともに、精密プレス成形法に好適なリン酸系光学ガラスを提供する。
 更に本発明の一態様によれば、上述の光学ガラスからなる精密プレス成形用プリフォームおよび光学素子、ならびにこの精密プレス成形用プリフォームを精密プレス成形する光学素子の製造方法が提供される。
 本発明の一態様(以下、「態様3」と記載する。)は、酸化物基準のガラス組成において、
     24~34質量%、
     0質量%超4質量%以下、
NaO、KO、およびLiOを合計で12~20質量%、
Nb   15~30質量%、
TiO     8~15質量%、
Bi   4~25質量%、
を含み、
質量比(TiO/Nb)が0.36~1.00の範囲であり、
質量比(Bi/Nb)が0.16~1.67の範囲であり、
屈折率ndが1.78以上1.83未満、かつアッベ数νdが20~25の範囲である光学ガラス、
に関する。
 態様3にかかる光学ガラスは、必須成分として、P、B3、Nb、TiO、Bi、アルカリ金属酸化物(NaO、KO、およびLiOからなる群から選ばれる一種以上)を含むとともに、光学ガラスに高屈折率高分散特性を付与するために有用な成分であるTiOとNbとの比率、良好な精密プレス成形性を付与することができる成分であるBiとNbとの比率が規定されている。こうして1.78以上1.83未満の屈折率ndおよび20~25の範囲のアッベ数νdという高屈折率高分散特性を有するとともに、精密プレス成形に好適なリン酸系光学ガラスを得ることが可能となる。
 態様3によれば、精密プレス成形用プリフォームを得るために好適な、高屈折率高分散特性を有するリン酸系光学ガラスを提供することができる。更なる一態様によれば、上述の光学ガラスからなる精密プレス成形用プリフォームおよび光学素子も提供される。
[光学ガラス]
 前述の通り、本発明では光学ガラスのガラス組成を酸化物基準で表示する。ここで「酸化物基準のガラス組成」とは、ガラス原料が熔融時にすべて分解されて光学ガラス中で酸化物として存在するものとして換算することにより得られるガラス組成をいうものとする。また、特記しない限り、ガラス組成は質量基準で表示するものとする。
本発明におけるガラス組成は、ICP-AES(Inductively Coupled Plasma - Atomic Emission Spectrometry)により求められたものである。また、本分析方法により求められた分析値は、±5%程度の測定誤差を含んでいる。
 また、本明細書および本発明において、構成成分の含有量が0%とは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指す。
 以下、態様1、態様2および態様3について説明する。特記しない限り、ある態様に関する記載は、他の態様についても適用可能である。また、態様1~3のいずれか2つ以上に該当する光学ガラスも、本発明の一態様にかかる光学ガラスに包含される。
<態様1>
 態様1にかかる光学ガラスは、酸化物基準のガラス組成において、P含有量が20~34質量%、B含有量が0質量%超かつ10質量%以下、質量比(B/P)が0超かつ0.39未満、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲、質量比[(P+B+SiO)/(NaO+KO+LiO)]が1.39~1.80の範囲であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラスである。
 以下、その詳細について説明する。
 Pはリン酸系光学ガラスにおいてガラス形成成分として欠かせない成分である。リン酸系ガラスは比較的低い温度でガラスを熔解することができ、可視域の透過率が高いという特徴を有する。ガラスの耐失透性向上の観点から、P含有量の下限は20%以上、好ましくは21%以上である。また、上限は34%以下、好ましくは30%以下、より好ましくは24%以下である。
 Bは、リン酸系光学ガラスに適量添加することにより耐失透性を高める作用を有する成分である。そのため上述の光学ガラスには必須成分として、0%超導入する。B含有量は、好ましくは2%以上、より好ましくは6%以上である。ただし、過剰量含まれると高屈折率・高分散特性を実現することが困難となるため、その含有量は10%以下とする。好ましくは9%以下、より好ましくは8%以下である。
 ここでB含有量が0%とは、Bがガラス中に不純物レベル程度に微量に含有されている場合を含む。したがって、B含有量0%超とは、Bが不純物レベル程度を超えて含有されていることを指す。具体的には、例えば700ppm(質量比)以上、または1000ppm(質量比)以上である。
 P、Bのそれぞれの含有量については、先に記載の通りである。更に上述の光学ガラスにおいては、高屈折率・高分散特性を有するリン酸系光学ガラスの耐失透性を高めるために、P含有量とB含有量との質量比(B/P)を、0超かつ0.39未満とする。より好ましい下限は0.15、さらに好ましい下限は0.25である。より好ましい上限は0.38である。
 SiOは、上述の光学ガラスに含まれていてもよい任意成分である。高屈折率化の観点からは、その含有量は2%以下であることが好ましく、1.2%以下であることが好ましく、1.0%以下であることが好ましく、0.4%以下であることが更に好ましく、0.3%以下であることが一層好ましく、0.3%未満であることがより一層好ましく、導入しなくても(SiO含有量が0%でも)よい。
 また、耐失透性向上と溶解性の観点からは、SiO、PおよびBの合計含入量に対するSiO含有量の質量比[SiO/(SiO+P+B)]は、0.12以下であることが好ましく、0~0.04の範囲であることが、より好ましい。
 上述の光学ガラスは、LiO、NaOおよびKOからなる群から選択されるアルカリ金属酸化物の一種以上を必須成分として含む。これらアルカリ金属酸化物量(二種以上含まれる場合は、それらの合計含有量)を、上記のP、BおよびSiOの合計含有量に対して規定することにより、優れた耐失透性を示す高屈折率・高分散リン酸系光学ガラスを得ることができる。詳しくは、上述の光学ガラスでは、LiO、NaOおよびKOの合計含有量に対するP、BおよびSiOの合計含有量の質量比[(P+B+SiO)/(NaO+KO+LiO)]は、1.39~1.80の範囲である。この質量比が1.39を下回ると、耐失透性を維持することが困難となる。質量比[(P+B+SiO)/(NaO+KO+LiO)]は、好ましくは1.40以上であり、より好ましくは1.42以上であり、更に好ましくは1.43以上であり、一層好ましくは1.45以上である。他方、高屈折率・高分散特性維持の観点から、質量比[(P+B+SiO)/(NaO+KO+LiO)]は、好ましくは1.67以下であり、より好ましくは1.60以下である。 
 耐失透性向上の観点からは、上述の光学ガラスがLiOを含む場合には、LiO含有量は0.3%未満とすることが好ましい。より好ましくは0.2%以下である。耐失透性をより一層向上する観点からは、LiOを含まないこと(LiO含有量が0%)が、好ましい。同様の観点から、アルカリ金属酸化物の合計含有量に対するLiO含有量を抑えることが好ましい。具体的には、質量比[LiO/(NaO+KO+LiO)]は、0.0115未満とすることが好ましく、0.003以下とすることがより好ましい。
 その他のアルカリ金属酸化物のNa2OおよびK2Oは、少なくとも一方、好ましくは少なくともNaO、より好ましくは両方を、上述のガラスに添加することができる。屈折率低下抑制の観点からは、Na2O含有量に対するK2O含有量の質量比K2O/Na2Oは、0.52以下であることが好ましく、0.40以下であることがより好ましい。なお質量比K2O/Na2Oは、例えば0.20以上であることができる。
 また、Na2O含有量は、例えば0%以上とすることができ、8%以上であることが好ましく、11%以上であることがより好ましい。K2O含有量は、例えば0%以上とすることができ、2%以上であることが好ましく、3%以上であることがより好ましい。
 耐失透性の観点からは、上述の光学ガラスのNa2O含有量は、例えば16%以下とすることができ、15%以下であることが好ましく、14%以下であることがより好ましい。同様の観点から、K2O含有量は、6%以下とすることが好ましく、より好ましくは5%以下である。
 アルカリ金属酸化物の含有量(複数種含む場合には、それらの合計含有量)は、10%以上とすることが好ましく、耐失透性維持の観点からは、30%以下とすることが好ましく、20%以下とすることがより好ましい。好ましい下限は15%である。
 TiOは、適量添加することにより、ガラスに高屈折率・高分散特性を与えることができる成分であり、上述の光学ガラスに必須成分として導入する。ただし、高屈折率・高分散特性、および耐失透性を維持するために、その含有量は、他の高屈折率・高分散特性を与えることができる成分であるNb、WO、Bi、Taの含有量に対して、TiO、Nb、WO、Bi、およびTaの合計含有量に対するTiO含有量の質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲となる量とする。この質量比が0.059を下回ると、上述の高屈折率・高分散特性を得ることが困難となる。また、着色抑制の観点から、上限は0.180とする。質量比[TiO/(TiO+Nb+WO+Bi+Ta)]について、下限は0.10以上であることが好ましく、0.12以上であることがより好ましい。上限は、0.178以下であることが好ましく、0.170以下であることがより好ましく、0.135以下であることがさらに好ましい。高屈折率・高分散特性の観点から、TiO含有量は6%以上であることがより好ましい。また、ガラスの溶解性の維持および着色抑制の観点からは、11%以下であることが好ましく、9%以下であることがより好ましい。
 更に上述の光学ガラスでは、耐失透性向上の観点から、P、BおよびSiOの合計含有量を、高屈折率・高分散特性付与成分であるTiO、Nb、WO、BiおよびTaの合計含有量に対して、質量比[(P+B+SiO)/(TiO+Nb+Bi+Ta)]が0.49以上となる量とすることが好ましく、0.51以上がより好ましく、0.52以上とすることがさらに好ましい。また、高屈折率・高分散特性を維持する観点からは、質量比[(P+B)/(TiO+Nb+Bi+Ta)]を0.58以下とすることが好ましい。
 上述のTiO、Nb、WO、Bi、およびTaの合計含有量は、高屈折率化の観点から、47%超であることが好ましく、50%以上であることがより好ましい。また、ガラス安定性の観点からは、TiO、Nb、WO、Bi、およびTaの合計含有量は、60%以下であることが好ましく、55%以下であることがより好ましい。
 Nbは、高屈折率・高分散特性を得るために有用な成分であり、また耐久性を高める効果のある成分でもある。耐失透性維持および着色抑制の観点からは、Nb含有量は47%以下とすることが好ましい。一方、高屈折率・高分散特性を維持する観点からは、Nb含有量は19%以上であることが好ましく、40%以上であることがより好ましく、43%以上であることがより好ましい。
 WOおよびBiは、高屈折率・高分散特性を得るために添加可能な成分である。例えば、上述の光学ガラスおけるWO含有量、Bi含有量は、それぞれ15%以下とすることができる。着色抑制の観点からは、WO含有量、Bi含有量は、それぞれ12%以下とすることが好ましく、6%以下とすることが好ましく、0%としてもよい。さらに、WOの上限は、好ましくは13%未満であり、より好ましくは3%未満であり、更に好ましくは2%以下である。
 Taは、屈折率調整のために添加可能な任意成分である。その含有量は、例えば0~2%とすることができる。好ましくは、Ta含有量の上限値は2%未満である。
 上述の光学ガラスには、アルカリ土類金属酸化物MgO、CaO、SrOおよびBaOの一種または二種以上が含まれていてもよい。MgO、CaO、SrOおよびBaOの合計含有量は、例えば0~10%の範囲とすることができる。アルカリ土類金属酸化物は、ガラス安定性を高める作用を有する成分であるが、屈折率の低下や分散性の低下を招く場合があるため、合計含有量は2%以下に抑えることが好ましく、0%であってもよい。
 また、各アルカリ土類金属酸化物の含有量については、MgO含有量の好ましい下限値は0%以上であり、好ましい上限値は5%以下である。CaO含有量は好ましい下限値は0%以上であり、好ましい上限値は1%未満である。SrO含有量の好ましい下限値は0%以上であり、好ましい上限値は5%以下である。BaO含有量の好ましい下限値は0%以上であり、好ましい上限値は7%未満であり、より好ましくは6%以下である。
 上述の光学ガラスには、更に任意成分として、屈折率調整のためにZnO、Alを添加することもできる。ZnO含有量は、5%未満とすることが好ましく、0%であってもよい。一方、Al含有量は、3%未満とすることが好ましく、2%以下とすることがより好ましく、0%であってもよい。また、La、Y、Gd、CsO、ZrO、PbO等の成分を、それぞれ例えば0~1%の範囲の量で、本発明の目的を損わない範囲で添加してもよい。ただし、PbOは環境影響上、使用を控えることが望まれる成分であるから、PbOは導入しないことが好ましい。また、Fを酸化物基準で、2%以下の量、好ましくは2%未満の量で添加することもできる。均質なガラスを得る観点からは、Fを導入しないことが好ましい。また、Sbは、外割添加量として、例えば0~0.1%の範囲の量で上述の光学ガラスに添加してもよい。Sbの外割添加量は、着色防止の観点から、0~0.02%の範囲が好ましい。
 以上、上述の光学ガラスのガラス組成について説明した。次に、上述の光学ガラスのガラス特性について説明する。
 上述の光学ガラスは、1.78~1.83の範囲の屈折率ndおよび20~25の範囲のアッベ数νdを有する高屈折率高分散光学ガラスである。屈折率ndの下限は好ましくは1.790以上、より好ましくは1.800以上、上限は好ましくは1.820未満、より好ましくは1.815以下である。アッベ数νdの下限は好ましくは21以上、より好ましくは22以上、上限は好ましくは24以下、より好ましくは23以下である。以上の屈折率ndおよびアッベ数νdを有する光学ガラスは、光学系において有用である。
 上述の光学ガラスは、優れた耐失透性を示すことができる高屈折率・高分散特性を有する光学ガラスである。耐失透性の指標の1つとしては、液相温度を挙げることができる。上述の光学ガラスは、例えば1050℃以下の液相温度を示すことができ、1000℃以下の液相温度を示すこともできる。なお上述の光学ガラスの液相温度の下限は、例えば900℃以上であるが、特に限定されるものではない。
 液相温度の低いガラスは、軟化点付近での失透安定性が高いため、リヒートプレスのための加熱や精密プレス成形における加熱においてガラス中に結晶が析出することを防ぐことができる。また、液相温度の低いガラスは、低温で流出させることができるため、熔融ガラスを流出する際の温度を低くすることができる。ここでの温度を低くすることにより、ダイレクトプレス法による光学素子ブランク作製時や精密プレス成形法に用いるプレス成形用ガラス素材の作製時においてガラス中に結晶が析出することを防ぐことが可能となる。
 また、熔融ガラスを流出する際の温度を低くすることにより、揮発による脈理発生を抑えること、および光学特性変動を低減することもできる。
 更に、液相温度を低くすることにより、熔解を行うルツボのガラスによる侵蝕を抑えることができる。その結果、ルツボを構成する白金などの物質が、侵蝕によってガラス中に混入し異物となることや、イオンとして溶け込んでガラスの着色を引き起こすことを回避することができる。
 ガラス転移温度は、ガラス安定性の観点からは、500℃以上であることが好ましい。他方、良好なプレス成形性を得る観点からは、ガラス転移温度は低いことが好ましく、例えば570℃以下であることが好適である。
 以上説明したように、上述の光学ガラスは、高屈折率・高分散特性を有する、ダイレクトプレス法、リヒートプレス法、精密プレス法のいずれの方法にも好適なガラスである。
<態様2>
 次に、態様2について説明する。
態様2にかかる光学ガラスは、上述のガラス2-Aおよび2-Bを包含する。以下、その詳細について説明する。特記しない限り、下記記載は、ガラス2-Aおよび2-Bの両ガラスに適用される。
 Pはリン酸系ガラスにおいてガラス形成成分として欠かせない成分である。リン酸系ガラスは比較的低い温度でガラスを熔解することができ、可視域の透過率が高いという特徴を有する。ガラスの耐失透性向上の観点から、P含有量の下限は20%以上、好ましくは21%以上である。また、上限は34%以下、好ましくは30%以下、より好ましくは24%以下である。
 Bは、リン酸系ガラスに適量添加することにより耐失透性を高める作用を有する成分である。そのため上述の光学ガラスには必須成分として、0%超導入する。B含有量は、好ましくは2%以上、より好ましくは6%以上である。ただし、過剰量含まれると高屈折率・高分散特性を実現することが困難となるため、その含有量は10%以下とする。好ましくは9%以下、より好ましくは8%以下である。
 ここでB含有量が0%とは、Bがガラス中に不純物レベル程度に微量に含有されている場合を含む。したがって、B含有量0%超とは、Bが不純物レベル程度を超えて含有されていることを指す。具体的には、例えば700ppm(質量比)以上、または1000ppm(質量比)以上である。
 P、Bのそれぞれの含有量については、先に記載の通りである。更に上述の光学ガラスにおいては、高屈折率・高分散特性を有するリン酸系光学ガラスの耐失透性を高めるために、P含有量とB含有量との質量比(B/P)を、0超かつ0.39未満とする。より好ましい下限は0.15、さらに好ましい下限は0.25である。より好ましい上限は0.38である。加えて、耐失透性向上のために、PおよびBの合計含有量とTiO、Nb、WO、BiおよびTaの合計含有量との質量比を規定する。その詳細は後述する。
 SiOは、上述の光学ガラスに含まれていてもよい任意成分である。高屈折率化の観点からは、その含有量は2%以下であることが好ましく、1.2%以下であることが好ましく、1.0%以下であることが好ましく、導入しなくても(SiO含有量が0%でも)よい。また、耐失透性向上の観点からは、ガラスBにおいては、SiO、PおよびBの合計含有量に対するSiO含有量の質量比[SiO/(SiO+P+B)]は、0.02未満とし、0~0.01の範囲とすることが好ましい。同様の観点から、ガラスAにおいては、SiO、PおよびBの合計含有量に対するSiO含有量の質量比[SiO/(SiO+P+B)]は、0.02未満とすることが好ましく、0~0.01の範囲とすることがより好ましい。
 上述の光学ガラスはアルカリ金属酸化物を一種または二種以上含むことができる。ここでアルカリ金属酸化物には、LiO、NaOおよびKOが包含される。ただし、耐失透性向上の観点から、LiOを含む場合には、その含有量は0.3%未満とする。より好ましくは0.2%以下である。耐失透性をより一層向上する観点からは、LiOを含まないこと(LiO含有量が0%)が、好ましい。
 その他のアルカリ金属酸化物のNa2OおよびK2Oは、少なくとも一方、好ましくは少なくともNaO、より好ましくは両方を、上述のガラスに添加することができる。屈折率低下抑制の観点からは、Na2O含有量に対するK2O含有量の質量比K2O/Na2Oは、0.52以下であることが好ましく、0.40以下であることがより好ましい。なお質量比K2O/Na2Oは、例えば0.20以上であることができる。
 また、Na2O含有量は、例えば0%以上とすることができ、8%以上であることが好ましく、11%以上であることがより好ましい。K2O含有量は、例えば0%以上とすることができ、2%以上であることが好ましく、3%以上であることがより好ましい。
 耐失透性の観点からは、上述の光学ガラスのNa2O含有量は、例えば16%以下とすることができ、15%以下であることが好ましく、14%以下であることがより好ましい。同様の観点から、K2O含有量は、6%以下とすることが好ましく、より好ましくは5%以下である。
 アルカリ金属酸化物の含有量(複数種含む場合には、それらの合計含有量)は、10%以上とすることが好ましく、耐失透性維持の観点からは、30%以下とすることが好ましく、20%以下とすることがより好ましい。好ましい下限は15%である。
 TiOは、適量添加することにより、ガラスに高屈折率・高分散特性を与えることができる成分であり、上述の光学ガラスに必須成分として導入する。ただし、高屈折率・高分散特性、および耐失透性を維持するために、その含有量は、他の高屈折率・高分散特性を与えることができる成分であるNb、WO、Bi、Taの含有量に対して、TiO、Nb、WO、Bi、およびTaの合計含有量に対するTiO含有量の質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.96の範囲となる量とする。この質量比が0.059を下回ると、上述の高屈折率・高分散特性を得ることが困難となり、0.96を上回ると、耐失透性を維持することが困難となる。質量比[TiO/(TiO+Nb+WO+Bi+Ta)]は、0.10以上であることが好ましく、0.12以上であることがより好ましく、0.50以下であることが好ましく、0.20以下であることがより好ましい。高屈折率・高分散特性の観点から、TiO含有量は6%以上であることがより好ましい。また、ガラスの溶解性の維持および着色抑制の観点からは、11%以下であることが好ましく、9%以下であることがより好ましい。
 更に上述の光学ガラスでは、耐失透性向上の観点から、PおよびBの合計含有量、またはP、BおよびSiOの合計含有量を、高屈折率・高分散特性付与成分であるTiO、Nb、WO、BiおよびTaの合計含有量に対して規定する。より詳しくは、ガラスAにおいては、質量比[(P+B)/(TiO+Nb+WO+Bi+Ta)]を0.53超とする。ガラスBにおいては、質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]を0.53超とする。また、高屈折率・高分散特性を維持する観点からは、質量比[(P+B)/(TiO+Nb+WO+Bi+Ta)]は0.75以下とすることが好ましく、0.58以下とすることがより好ましい。同様の観点から、質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]は、0.75以下とすることが好ましく、0.58以下とすることがより好ましい。
 上述のTiO、Nb、WO、Bi、およびTaの合計含有量は、高屈折率化の観点から、47%超であることが好ましく、50%以上であることがより好ましい。また、ガラス安定性の観点からは、TiO、Nb、WO、Bi、およびTaの合計含有量は、60%以下であることが好ましく、55%以下であることがより好ましい。
 Nbは、高屈折率・高分散特性を得るために有用な成分であり、また耐久性を高める効果のある成分でもある。耐失透性維持および着色抑制の観点からは、Nb含有量は47%以下とすることが好ましい。一方、高屈折率・高分散特性を維持する観点からは、Nb含有量は19%以上であることが好ましく、40%以上であることがより好ましく、43%以上であることがより好ましい。
 WOおよびBiは、高屈折率・高分散特性を得るために添加可能な成分である。例えば、上述の光学ガラスおけるWO含有量、Bi含有量は、それぞれ15%以下とすることができる。で導入することができる。着色抑制の観点からは、WO含有量、Bi含有量は、それぞれ12%以下とすることが好ましく、6%以下とすることが好ましく、0%としてもよい。さらに、WOの上限は好ましくは3%未満、より好ましくは2%以下である。
 Taは、屈折率調整のために添加可能な任意成分である。その含有量は、例えば0~2%とすることができる。
 上述の光学ガラスには、アルカリ土類金属酸化物MgO、CaO、SrOおよびBaOの一種または二種以上が含まれていてもよい。MgO、CaO、SrOおよびBaOの合計含有量は、例えば0~10%の範囲とすることができる。アルカリ土類金属酸化物は、ガラス安定性を高める作用を有する成分であるが、屈折率の低下や分散性の低下を招く場合があるため、合計含有量は2%以下に抑えることが好ましく、0%であってもよい。
 また、各アルカリ土類金属酸化物の含有量については、MgO含有量の好ましい下限値は0%以上であり、好ましい上限値は5%以下である。CaO含有量は好ましい下限値は0%以上であり、好ましい上限値は1%未満である。SrO含有量の好ましい下限値は0%以上であり、好ましい上限値は 5 %以下である。BaO含有量の好ましい下限値は0%以上であり、好ましい上限値は7%未満であり、より好ましくは6%以下である。
 上述の光学ガラスには、更に任意成分として、屈折率調整のためにZnO、Alを添加することもできる。ZnO含有量は、5%未満とすることが好ましく、0%であってもよい。一方、Al含有量は、2%以下とすることが好ましく、0%であってもよい。また、La、Y、Gd、CsO、ZrO、PbO等の成分を、それぞれ例えば0~1%の範囲の量で、本発明の目的を損わない範囲で添加してもよい。ただし、PbOは環境影響上、使用を控えることが望まれる成分であるから、PbOは導入しないことが好ましい。また、Fを酸化物基準で、2%以下の量で添加することもできる。均質なガラスを得る観点からは、Fを導入しないことが好ましい。また、SnO2、Sbは、外割添加量として、それぞれ例えば0~1%の範囲の量で上述の光学ガラスに添加してもよい。
 以上、上述の光学ガラスのガラス組成について説明した。次に、上述の光学ガラスのガラス特性について説明する。
 上述の光学ガラスは、1.78~1.83の範囲の屈折率ndおよび20~25の範囲のアッベ数νdを有する高屈折率高分散光学ガラスである。屈折率ndの下限は好ましくは1.790以上、より好ましくは1.800以上、上限は好ましくは1.820未満、より好ましくは1.815以下である。アッベ数νdの下限は好ましくは21以上、より好ましくは22以上、上限は好ましくは24以下、より好ましくは23以下である。以上の屈折率ndおよびアッベ数νdを有する光学ガラスは、光学系において有用である。
 上述の光学ガラスは、優れた耐失透性を示すことができる高屈折率・高分散特性を有する光学ガラスである。耐失透性の指標の1つとしては、液相温度を挙げることができる。上述の光学ガラスは、例えば1050℃以下の液相温度を示すことができ、1000℃以下の液相温度を示すこともできる。なお上述の光学ガラスの液相温度の下限は、例えば900℃以上であるが、特に限定されるものではない。
 液相温度の低いガラスは、軟化点付近での失透安定性が高いため、リヒートプレスのための加熱や精密プレス成形における加熱においてガラス中に結晶が析出することを防ぐことができる。また、液相温度の低いガラスは、低温で流出させることができるため、熔融ガラスを流出する際の温度を低くすることができる。ここでの温度を低くすることにより、ダイレクトプレス法による光学素子ブランク作製時や精密プレス成形法に用いるプレス成形用ガラス素材の作製時においてガラス中に結晶が析出することを防ぐことが可能となる。
 また、熔融ガラスを流出する際の温度を低くすることにより、揮発による脈理発生を抑えること、および光学特性変動を低減することもできる。
 更に、液相温度を低くすることにより、熔解を行うルツボのガラスによる侵蝕を抑えることができる。その結果、ルツボを構成する白金などの物質が、侵蝕によってガラス中に混入し異物となることや、イオンとして溶け込んでガラスの着色を引き起こすことを回避することができる。
 ガラス転移温度は、ガラス安定性の観点からは、500℃以上であることが好ましい。他方、良好なプレス成形性を得る観点からは、ガラス転移温度は低いことが好ましく、例えば570℃以下であることが好適である。
 以上説明したように、上述の光学ガラスは、高屈折率・高分散特性を有する、ダイレクトプレス法、リヒートプレス法、精密プレス法のいずれの方法にも好適なガラスである。
<態様3>
 次に、態様3について説明する。
 態様3にかかる光学ガラスは、酸化物基準のガラス組成において、Pを24~34質量%、Bを0質量%超4質量%以下、NaO、KO、およびLiOを合計で12~20質量%、Nbを15~30質量%、TiOを8~15質量%、Biを4~25質量%含み、質量比(TiO/Nb)が0.36~1.00の範囲であり、質量比(Bi/Nb)が0.16~1.67の範囲であり、屈折率ndが1.78以上1.83未満、かつアッベ数νdが20~25の範囲である光学ガラスである。
 以下、その詳細について説明する。
 Pはリン酸系ガラスにおいてガラス形成成分として欠かせない成分である。リン酸系ガラスは比較的低い温度でガラスを熔解することができ、可視域の透過率が高いという特徴を有する。また同じガラス形成成分であるSiOやBと比べてP5 は高分散側に位置する成分であり、上述のアッベ数νdを示す高分散特性を得るために、その含有量は24%以上とする。好ましくは27%以上、より好ましくは28%以上である。ただし、過剰量導入するとガラスが失透しやすくなるため、その含有量は34%以下とする。好ましくは31%以下、より好ましくは30%以下である。
 SiOは、上述の光学ガラスに添加可能な任意成分であり、耐失透性を高める作用を有する。高屈折率特性を得る観点から、上述の光学ガラスがSiOを含む場合、SiO含有量は1.2%以下であることが好ましい。より好ましくは1.0%以下であり、さらに好ましくは0.5%未満、一層好ましくは0.4%以下であり、導入しなくても(SiO含有量が0%でも)よい。
 Bは、リン酸系ガラスに適量添加することにより耐失透性を高める作用を有する成分である。そのため上述の光学ガラスには必須成分として、0%超導入する。B含有量は、好ましくは0.4%以上、より好ましくは0.7%以上である。ただし、過剰量含まれると高屈折率・高分散特性を実現することが困難となるため、その含有量は4%以下とする。好ましくは3%以下、より好ましくは1.5%以下である。
 ここで、B含有量0%とは、Bがガラス中に不純物レベル程度に微量に含有されている場合を含む。したがって、B含有量が0%超とは、Bが不純物レベル程度を超えて含有されていることを指す。具体的には、例えば700ppm(質量比)以上、または1000ppm(質量比)以上である。
 精密プレス成形に好適なガラスが有することが望ましいガラス特性としては、低ガラス転移温度であることが挙げられる。これは、ガラス転移温度Tgが高いガラスをプレス成形するためにはプレス成形温度を高温にする必要があるが、精密プレス成形温度が高くなると、成形型自体や成形型の成形面に設けられている離型膜が損傷してしまうからである。精密プレス成形法では、研削、研磨等の機械加工なしに成形型成形面を転写することにより光学機能面を形成する。したがって、成型型や離型膜が損傷し成形面が粗くなると、その粗い表面形状が光学素子に転写されてしまい、高い表面平滑性を有する光学機能面を得ることができなくなってしまう。
 以上の点から、上述の光学ガラスは、比較的低いガラス転移温度、具体的には520℃以下のガラス転移温度を有することが好ましい。ガラス転移温度は、より好ましくは510℃以下、更に好ましくは500℃以下、一層好ましくは490℃以下である。また、ガラス安定性の観点からは、ガラス転移温度は460℃超であることが好ましく、465℃以上であることがより好ましく、470℃以上であることが更に好ましい。
 上述のような精密プレス成形に好適な低Tgを実現するためには、P含有量とB含有量との質量比(B/P)を、0超かつ0.1以下とすることが好ましい。より好ましくは、0超かつ0.083以下である。
 また、低ガラス転移温度を実現する観点から、上述の光学ガラスにおいて、アルカリ金属酸化物NaO、KO、およびLiOの合計含有量は、12%以上とする。他方、耐失透性を維持する観点からは、その合計含有量は20%以下とする。好ましくは17%以下、より好ましくは16%以下である。
 上述の光学ガラスはアルカリ金属酸化物として、LiO、NaOおよびKOからなる群から選ばれる一種または二種以上を含むことができる。アルカリ金属酸化物としては、少なくともNaOを導入することが、低いガラス転移温度を示す光学ガラスを得るうえで有利である。ガラス転移温度を下げる観点からは、上述の光学ガラスにおけるNaO含有量は2%以上とすることが好ましく、4%以上とすることがより好ましく、5%以上とすることが更に好ましい。他方、ガラスの耐失透性の観点からは、NaO含有量は12%以下とすることが好ましく、9%以下とすることがより好ましく、8%以下とすることが更に好ましい。
 その他のアルカリ金属酸化物、K2OおよびLi2Oも、いずれもガラス転移温度を低下させるために添加することができる成分である。上述の光学ガラスのK2O含有量は、例えば2%以上とすることができ、4%以上であることが好ましい。Li2O含有量は、例えば1%以上とすることができ、2%以上であることが好ましい。また、耐失透性の観点からは、KO含有量は、例えば8%以下とすることができ、7%以下であることが好ましい。Li2O含有量は、例えば5%以下とすることができ、4%以下であることが好ましい。
 Nbは、高屈折率・高分散特性を得るために不可欠な成分であり、また耐久性を高める効果のある成分でもある。Nbが15%未満では、目的とする高屈折率・高分散特性を得ることが困難となり、30%を超えるとガラスの耐失透性が低下する。したがって上述の光学ガラスでは、Nb含有量は15~30%の範囲とする。より好ましい高屈折率・高分散特性を実現する観点から、Nb含有量は25%以下とすることが好ましく、22%以下とすることがより好ましく、20%以下とすることが一層好ましい。また、耐失透性の観点からは、Nb含有量は16%以上とすることが好ましく、18%以上とすることがより好ましい。
 TiOは、適量添加することにより、ガラスに高屈折率・高分散特性を与えることができる成分であり、上述の光学ガラスに8%以上導入する。TiO含有量は、好ましくは9%以上、より好ましくは10%以上である。ただし、その含有量が15%を超えると耐失透性が低下するため、上述の光学ガラスにおけるTiO含有量は15%以下とする。好ましくは13%以下、より好ましくは12%以下である。
 Biはガラス転移温度を下げ精密プレス成形を向上するために有用な成分である。したがって上述の光学ガラスにはBiを4%以上導入する。Bi含有量は、好ましくは6%以上、より好ましくは10%以上である。ただし、過剰量導入すると耐失透性が低下するため、上述の光学ガラスにおけるBi含有量は25%以下とする。好ましくは20%以下、より好ましくは15%以下である。
 Nb、TiO、Biの各含有量については先に説明した通りである。更に、上述の光学ガラスでは、質量比(TiO/Nb)は0.36~1.00の範囲であり、質量比(Bi/Nb)が0.16~1.67の範囲である。高屈折率・高分散特性を付与するために有用な成分であるNbおよびTiO、ならびに精密プレス成形性の向上に有用な成分であるBiの比率を、上述の範囲内とすることにより、1.78以上1.83未満の屈折率ndおよび20~25の範囲のアッベ数νdという高屈折率・高分散特性を有するとともに、精密プレス成形に好適なリン酸系光学ガラスを得ることができる。高屈折率・高分散特性と精密プレス成形性を両立する観点から、質量比(TiO/Nb)は、下限は0.40以上であることが好ましく、0.50以上であることがより好ましく、0.55以上であることがより一層好ましい。上限は、0.80以下であることが好ましく、0.70以下であることがより好ましく、0.60以下であることがより一層好ましい。一方、同様の観点から、質量比(Bi/Nb)は、下限は0.20以上であることが好ましく、0.40以上であることがより好ましく、0.50以上であることが一層好ましく、0.60以上であることがさらに好ましい。上限は、0.87以下であることが好ましく、0.80以下であることがより好ましく、0.70以下であることがより一層好ましい。
 上述の光学ガラスには、アルカリ土類金属酸化物MgO、CaO、SrOおよびBaOの一種または二種以上が含まれていてもよい。アルカリ土類金属酸化物は、ガラス安定性を高める作用を有する成分であるが、屈折率の低下や分散性の低下を招く場合がある。したがって、アルカリ土類金属酸化物MgO、CaO、SrOおよびBaOの合計含有量は2%以下に抑えることが好ましく、0%であってもよい。
 アルカリ金属酸化物とアルカリ土類金属酸化物の合計含有量(LiO+NaO+KO+MgO+CaO+SrO+BaO)は、高屈折率・高分散特性を実現する観点からは、12~17%の範囲とすることが好ましい。上限値は、より好ましくは17%以下であり、更に好ましくは16%以下である。
 また、各アルカリ土類金属酸化物の含有量については、MgO含有量の好ましい下限値は0%以上であり、好ましい上限値は2%以下である。CaO含有量は好ましい下限値は0%以上であり、好ましい上限値は2%以下であり、より好ましくは1%未満である。SrO含有量の好ましい下限値は0%以上であり、好ましい上限値は2%以下である。BaO含有量の好ましい下限値は0%以上であり、好ましい上限値は2%以下である。
 WOは、上述のガラスに添加可能な任意成分であり、ガラスの低Tg化に寄与し精密プレス成形性を向上する作用を有する。精密プレス成形に好適な光学ガラスとする観点からは、上述の光学ガラスに3%以上のWOが含まれることが好ましい。より好ましくは6%以上、更に好ましくは10%以上である。一方、耐失透性の観点からは、WO含有量は23%以下とすることが好ましく、20%以下とすることがより好ましく、13%未満とすることが一層好ましい。
 ガラスの低Tg化の観点からは、Nb含有量に対するWO含有量の比率を、質量比(WO/Nb)が0.12~0.92の範囲となるように調整することが好ましい。高屈折率・高分散特性と低Tg化を両立する観点から、質量比(WO/Nb)の下限値は、より好ましくは0.20、更に好ましくは0.50であり、より一層好ましくは0.55である。上限値は、より好ましくは0.80、更に好ましくは0.70である。
 上述の光学ガラスには、更に任意成分として、屈折率調整のためにZnO、Al、Taを添加することもできる。ZnO、Al、Taの含有量は、それぞれ例えば0~5%の範囲とすることができ、0~3%の範囲とすることが好ましい。また、La、Y、Gd、CsO、ZrO、PbO等の成分を、それぞれ例えば0~1%の範囲の量で、本発明の目的を損わない範囲で添加してもよい。また、SnO2、Sbは、外割添加量として、それぞれ例えば0~1%の範囲の量で上述の光学ガラスに添加してもよい。
 以上、上述の光学ガラスのガラス組成について説明した。次に、上述の光学ガラスのガラス特性について説明する。
 上述の光学ガラスは、1.78以上1.83未満の屈折率ndおよび20~25の範囲のアッベ数νdを有する高屈折率高分散光学ガラスである。屈折率ndは、下限値は好ましくは1.790以上であり、より好ましくは1.795以上であり、更に好ましくは1.800以上である。上限値は、好ましくは1.820以下であり、より好ましくは1.815以下であり、更に好ましくは1.810以下である。アッベ数νdは、下限値は好ましくは21.0以上であり、より好ましくは22.0以上である。上限値は、好ましくは24.0以下であり、より好ましくは23.5以下である。以上の屈折率ndおよびアッベ数νdを有する光学ガラスは、光学系において有用である。
 高屈折率高分散ガラスとしては、同じ屈折率ndにおいてアッベ数νdが小さなものほど、光学系における有用性が高い。この点から上述の光学ガラスの好ましい一態様としては、屈折率とアッベ数νdが、下記式(1)を満たすガラスを挙げることができる。
    nd≦15/νd+1.18 …(1)
 先に説明した組成調整を行うことで、前述の範囲の屈折率ndおよびアッベ数νdを有するとともに、式(1)を満たす光学ガラスを得ることができる。
 その他のガラス物性として、上述の光学ガラスのガラス転移温度については、先に説明した通りである。低Tg化に有効な組成の一例としては、以下の組成を挙げることもできる。単にアルカリ金属酸化物またはアルカリ土類金属酸化物等の含有量を増やすことによりTgを下げることができるが、結果として耐候性が悪化してしまう場合がある。これに対し、耐候性を維持しつつ、精密プレス成形に適した低Tg化を図ることができる好ましい組成としては、以下の組成が挙げられる。
(A)LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲であり、かつ質量比(B/P)が0超かつ0.1以下の範囲である組成。好ましくは、LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲であり、かつ質量比(B/P)については、好ましくは0超かつ0.083以下の範囲である組成。
(B)LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲であり、かつ質量比(Bi/Nb)が0.16~1.67の範囲である組成。好ましくは、LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲であり、かつ質量比(Bi/Nb)が0.16~0.87の範囲である組成。
(C)LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲であり、かつ質量比(WO/Nb)が0.12~0.92の範囲である組成。
(D)LiO、NaOおよびKOの合計含有量が12~20%の範囲であり、かつ質量比(WO/Nb)が0.12~0.92の範囲である組成。
(E)LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~20%の範囲であり、かつ質量比(WO/Nb)が0.12~0.92の範囲である組成。
 また、高分散特性と低Tg化を両立するうえで有効な組成の一例としては、以下の組成を挙げることができる。
(F)質量比(TiO/Nb)が0.36~1.00の範囲であり、かつLiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17%の範囲である組成。好ましくは、質量比(TiO/Nb)が0.40~0.80の範囲であり、かつLiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量の好ましい範囲は12~17%の範囲である組成。
 精密プレス成形性の点から光学ガラスが有することが望ましいガラス特性としては、液相温度が低いことを挙げることもできる。液相温度の低いガラスは、軟化点付近での失透安定性が高いため、プリフォームを昇温して軟化し精密プレス成形することで、失透のない高い透明性を有する光学素子を得ることができるからである。この点から、上述の光学ガラスは、1000℃以下の液相温度を有することが好ましい。液相温度は、より好ましくは970℃以下、更に好ましくは960℃以下である。また、ガラス安定性の観点からは、液相温度は850℃以上であることが好ましく、880℃以上であることがより好ましい。
 以上説明したように、上述の光学ガラスは、高屈折率・高分散特性を有する、精密プレス成形に好適な光学ガラスである。
 態様1~3にかかる光学ガラスは、いずれも、目的のガラス組成が得られるように、原料である酸化物、炭酸塩、硫酸塩、硝酸塩、水酸化物などを秤量、調合し、十分に混合して混合バッチとし、熔融容器内で加熱、熔融し、脱泡、攪拌を行い均質かつ泡を含まない熔融ガラスを作り、これを成形することによって得ることができる。具体的には公知の熔融法を用いて作ることができる。
[光学素子ブランク、プレス成型用ガラス素材、およびそれらの製造方法]
<態様1、態様2>
 本発明の他の一態様は、
 態様1または態様2にかかる光学ガラスからなる光学素子ブランク;
 態様1または態様2にかかる光学ガラスからなるプレス成形用ガラス素材;
態様1または態様2にかかる光学ガラスをプレス成形用ガラス素材に成形する工程を備えるプレス成形用ガラス素材の製造方法;および、
上述のプレス成形用ガラス素材を加熱により軟化した状態で、プレス成形型を用いてプレス成形することにより光学素子ブランクを作製する工程を備える光学素子ブランクの製造方法、
に関する。
 光学素子ブランクとは、目的とする光学素子の形状に近似し、光学素子の形状に研削、研磨しろを加えた光学素子母材である。光学素子ブランクの表面を研削、研磨することにより、光学素子が仕上げられる。上述の光学ガラスからなるプレス成形用ガラス素材を加熱により軟化した状態で、プレス成形型を用いてプレス成形することにより光学素子ブランクを作製することができる。上述の光学ガラスは、優れた耐失透性を示すことができるため、プレス成形時の加熱によりガラス中に結晶が析出することを防ぐことができる。
 プレス成形用ガラス素材の加熱、プレス成形は、ともに大気中で行うことができる。プレス成形用ガラス素材の表面に、窒化硼素などの粉末状離型剤を均一に塗布し、加熱、プレス成形すると、ガラスと成形型の融着を確実に防止できるほか、プレス成形型の成形面に沿ってガラスをスムーズに延ばすことができる。プレス成形後にアニールしてガラス内部の歪を低減することにより、均質な光学素子ブランクを得ることができる。
 一方、プレス成形用ガラス素材とは、プリフォームとも呼ばれ、そのままの状態でプレス成形に供されるものに加え、切断、研削、研磨などの機械加工を施すことによりプレス成形に供されるものも含む。切断方法としては、ガラス板の表面の切断したい部分にスクライビングと呼ばれる方法で溝を形成し、溝が形成された面の裏面から溝の部分に局所的な圧力を加えて、溝の部分でガラス板を割る方法や、切断刃によってガラス板をカットする方法などがある。また、研削、研磨方法としてはバレル研磨などが挙げられる。
[光学素子およびその製造方法]
 本発明の他の一態様は、
態様1または態様2にかかる光学ガラスからなる光学素子;
上述の光学素子ブランクを研削および/または研磨することにより光学素子を作製する工程を備える光学素子の製造方法(以下、「方法A」という);
上述のプレス成形用ガラス素材を加熱により軟化した状態で、プレス成形型を用いてプレス成形することにより光学素子を作製する工程を備える光学素子の製造方法(以下、「方法B」という)、
に関する。
 方法Aにおいて、研削、研磨は公知の方法を適用すればよく、加工後に光学素子表面を十分洗浄、乾燥させるなどすることにより、内部品質および表面品質の高い光学素子を得ることができる。方法Aは、各種球面レンズ、プリズムなどの光学素子を製造する方法として好適である。
 方法Bにおける精密プレス成形とは、モールドオプティクス成形とも呼ばれ、光学素子の光学機能面をプレス成形型の成形面を転写することにより形成する方法である。ここで、光学素子の光線を透過したり、屈折させたり、回折させたり、反射させたりする面を光学機能面と呼ぶ。例えばレンズを例にとると、非球面レンズの非球面や球面レンズの球面などのレンズ面が光学機能面に相当する。精密プレス成形法は、プレス成形型の成形面を精密にガラスに転写することにより、プレス成形で光学機能面を形成する方法である。つまり光学機能面を仕上げるために研削や研磨などの機械加工を加える必要がない。精密プレス成形法は、レンズ、レンズアレイ、回折格子、プリズムなどの光学素子の製造に好適であり、特に非球面レンズを高生産性のもとに製造する方法として最適である。
 精密プレス成形法の一実施態様では、表面が清浄状態のプリフォームを、プリフォームを構成するガラスの粘度が105~1011Pa・sの範囲を示すように再加熱し、再加熱されたプリフォームを上型、下型を備えた成形型によってプレス成形する。成形型の成形面には必要に応じて離型膜を設けてもよい。なお、プレス成形は、成形型の成形面の酸化を防止する上から、窒素ガスや不活性ガス雰囲気で行うことが好ましい。プレス成形品は成形型より取り出され、必要に応じて徐冷される。成形品がレンズなどの光学素子の場合には、必要に応じて表面に光学薄膜をコートしてもよい。
 このようにして、屈折率ndが1.78~1.83の範囲であり、アッベ数νdが20~25の範囲であって、各種成形法に好適なリン酸系光学ガラスからなるレンズ、レンズアレイ、回折格子、プリズムなどの光学素子を製造することができる。
<態様3>
[精密プレス成形用プリフォーム]
 態様3は、上述の光学ガラスからなる精密プレス成形用プリフォームにも関する。精密プレス成形用プリフォーム(以下、プリフォームともいう)は、精密プレス成形に供されるガラス塊を意味し、精密プレス成形品の質量に相当するガラス成形体である。また、精密プレス成形については、先に記載した通りである。
 プリフォームは、研削、研磨等の冷間加工を経て作製してもよく、研削、研磨等の冷間加工を経ずに熔融ガラスから成形品を得る熱間加工(熱間成形ともいう)により作製してもよい。高機能性ガラスを使用した非球面レンズを低コストで大量に安定供給するためには、熱間加工により得られたプリフォームを精密プレス成形することが好ましい。この熱間加工に適したガラス特性としては、低Tgであること、液相温度が低いこと等が挙げられる。上述の光学ガラスは、これらガラス特性を有し得るものであるため、熱間加工によりプリフォームを得るためにも好適なガラスである。
 熱間加工によりプリフォームを作製する一実施態様によれば、前述の光学ガラスが得られるようなガラス原料を熔解、清澄、攪拌して均一な熔融ガラスを作る。その後、この熔融ガラスを白金製または白金合金製のパイプから流出させて、所定量の溶融ガラスからガラス塊を作製し、これを用いて熱間成形品を成形する。本実施形態では、熔融ガラスを上述のパイプの流出口から連続して流出させ、流出口より流出したガラスの先端部分を分離して所定量のガラス塊を得る。得られたガラス塊をガラスが塑性変形可能な温度範囲にある間にプリフォーム形状に成形する。流出ガラスの先端部分の分離方法としては、滴下法と降下切断法を例示できる。上述の光学ガラスを用いることにより、ガラスを失透させることなく、パイプ流出口から流出したガラス先端部分を分離することができる。流出スピード、流出温度を一定に保ち、滴下条件または降下条件も一定に保つことにより、一定重量のプリフォームを再現性よく高精度に製造することができる。本実施態様によれば、例えば1~5000mgの質量のプリフォームを、高い質量精度のもとに製造することができる。
 一実施態様では、分離したガラス先端部分は、例えば、凹状の成形面からガスが噴出する成形型で受け、ガスの風圧によって浮上、回転させることによって球状、楕円球状などのプリフォームに成形される。このような成形方法は、浮上成形法と呼ばれる。または、熔融ガラス塊を下型と上型とによりプレス成形することによりプリフォームを得る方法も知られており、上述の熱間成形に使用することができる。こうして製造された熱間成形品には、必要に応じて表面に公知の離型膜を設けてもよい。
[光学素子およびその製造方法]
 本発明の他の一態様は、
 態様3にかかる光学ガラスからなる光学素子;および、
上述の精密プレス成形用プリフォームを加熱により軟化した状態で、プレス成形型を用いて精密プレス成形することにより光学素子を作製する工程を備える光学素子の製造方法、
に関する。
 精密プレス成形法については、先に記載した通りである。上述のプリフォームは、精密プレス成形に適したガラス特性である低Tgを有し得るものであるため、ガラスのプレス成形としては比較的低い温度でプレスが可能である。したがって、プレス成形型の成形面への負担が軽減されるため、成形型の寿命を延ばすことができるとともに、成形型成形面が損傷を受け粗くなること防ぐこともできる。
 精密プレス成形法の一実施態様は、先に記載した通りである。態様3によれば、屈折率ndが1.78以上1.83未満の範囲であり、アッベ数νdが20~25の範囲であって、精密プレス成形に好適なリン酸系光学ガラスからなるレンズ、レンズアレイ、回折格子、プリズムなどの光学素子を高精度に生産性よく製造することができる。
 以下、本発明を実施例に基づき更に説明する。但し本発明は、実施例に示す態様に限定されるものではない。
1.光学ガラスおよび精密プレス成形用プリフォームに関する実施例、比較例
下記表に示す組成の光学ガラスが得られるように、各ガラス成分に対応する酸化物、炭酸塩、硫酸塩、硝酸塩、水酸化物等のガラス原料を所定の割合に150~300g秤量し、十分に混合して調合バッチとした。これを白金ルツボに入れ、1000~1250℃で攪拌しながら空気中で2~4時間、ガラスの熔解を行った。熔解後、熔融ガラスを40×70×15mmのカーボンの金型に流し、ガラス転移温度まで放冷してから直ちにアニール炉に入れ、ガラスの転移温度範囲で約1時間アニールして炉内で室温まで放冷し、各光学ガラスを作製した。
 下記方法により、各光学ガラスの屈折率、アッベ数、ガラス転移温度、および液相温度を測定した。
測定方法
(1)屈折率(nd)およびアッべ数(νd)
徐冷降温速度を-30℃/時にして得られた光学ガラスについて測定した。
(2)ガラス転移温度Tg
示差走査熱量計(DSC(Differential Scanning Calorimetry))により、昇温速度10℃/分にして測定した。
(3)液相温度LT
 ガラス試料任意温度に設定した試験炉に2時間保持し、倍率10~100倍の光学顕微鏡により結晶の有無を観察し、液相温度を測定した。
(4)失透性評価
 下記表中、失透性評価を行ったガラス試料については、以下の方法により耐失透性を評価した。
1cm角ガラス試料を、そのガラスのガラス転移温度Tgに設定した第1の試験炉で10分間加熱し、さらにそのガラスのTgプラス10℃に設定した第2の試験炉に10分間加熱した後、結晶または白濁の有無を光学顕微鏡(観察倍率:10~100倍)で確認した。結晶も白濁も確認されなかった場合は○、結晶および白濁の少なくとも一方が確認された場合は×と判定した。本明細書では、耐失透性の指標として、以上の評価結果を用いた。
 測定結果を、下記表に示す。
 表中、実施例1-1~1-28は態様1にかかる実施例、比較例1-1、1-2は、態様1に対する比較例である。実施例2-1~2-28は、態様2にかかる実施例、比較例2-1~2-3は、態様2に対する比較例である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-T000008
 比較例として、本発明の一態様にかかる光学ガラスとはガラス組成が相違する特開平6-345481号公報記載の実施例2、3、6の組成の光学ガラスが得られるように、上述の実施例と同様の方法により光学ガラスを作製した。作製した光学ガラスについて、上述の失透性評価を行ったところ、評価結果はいずれも「×」であった。
 他の比較例として、本発明の一態様にかかる光学ガラスとはガラス組成が相違する特開平5-270853号公報記載の実施例10の組成の光学ガラスが得られるように、上述の実施例と同様の方法により光学ガラスを作製した。作製した光学ガラスについて実施例と同様の方法により屈折率およびアッベ数の測定を行ったところ、ndは1.76202、νdは25.24であり、上述の光学ガラスが満たす光学特性を有さないことが確認された。
 本発明の一態様にかかる光学ガラスとはガラス組成が相違する特開平6-345481号公報記載の実施例4についても同様の評価を行ったところ、ndは1.72914、νdは26.22であり、上述の光学ガラスが満たす光学特性を有さないことが確認された。
 下記表中、実施例3-1~3-19は、態様3にかかる実施例である。
Figure JPOXMLDOC01-appb-T000009
 態様1~3にかかる実施例の各光学ガラスが得られる高品質かつ均質化された熔融ガラスを白金合金製のパイプから連続流出させた。流出する熔融ガラスをパイプ流出口から滴下させ、複数のプリフォーム成形型で次々と受け、浮上成形法により複数個の球状のプリフォームを成形した。なお、流出時のガラスの温度は液相温度よりも数℃高温とした。
 実施例の光学ガラスから得られたプリフォームは、顕微鏡で観察できる結晶はなく、透明かつ均質であった。これらのプリフォームはいずれも失透しておらず、高い質量精度のものが得られた。
 実施例の光学ガラスから、滴下法に変えて降下切断法を用いてプリフォームを作製した。降下切断法により得られたプリフォームにも同様に失透が認められず、高質量精度のプリフォームが得られた。また、滴下法、降下切断法ともプリフォームに分離の際の痕跡は認められなかった。白金製パイプを使用しても、白金合金製パイプと同様、熔融ガラスの流出によってパイプが破損することはなかった。
2.光学素子に関する実施例
 上述のプリフォームの表面に必要に応じてコーティングを施し、成形面に炭素系離型膜を設けたSiC製の上下型および胴型を含むプレス成形型内に導入し、窒素雰囲気中で成形型とプリフォームを一緒に加熱してプリフォームを軟化し、精密プレス成形して上記各種ガラスからなる非球面凸メニスカスレンズ、非球面凹メニスカスレンズ、非球面両凸レンズ、非球面両凹レンズの各種レンズを作製した。なお、精密プレス成形の各条件は前述の範囲で調整した。
 このようにして作製した各種レンズを観察したところ、レンズ表面に傷、クモリ、破損は全く認められなかった。
 こうしたプロセスを繰り返し行い、各種レンズの量産テストを行ったが、ガラスとプレス成形型の融着などの不具合は発生せず、表面および内部ともに高品質のレンズを高精度に生産することができた。このようにして得たレンズの表面には反射防止膜をコートしてもよい。
 次いで、上述のプリフォームと同様のものを加熱、軟化し、別途、予熱したプレス成形型に導入し、精密プレス成形して上記各種ガラスからなる非球面凸メニスカスレンズ、非球面凹メニスカスレンズ、非球面両凸レンズ、非球面両凹レンズの各種レンズを作製した。なお、精密プレス成形の各条件は前述の範囲で調整した。
 このようにして作製した各種レンズを観察したところ、分相による白濁等は認められず、レンズ表面に傷、クモリ、破損は全く認められなかった。
 こうしたプロセスを繰り返し行い、各種レンズの量産テストを行ったが、ガラスとプレス成形型の融着などの不具合は発生せず、表面および内部ともに高品質のレンズを高精度に生産することができた。このようにして得たレンズの表面には反射防止膜をコートしてもよい。
 プレス成形型の成形面の形状を適宜、変更し、プリズム、マイクロレンズ、レンズアレイなどの各種光学素子を作製することもできる。
3.光学素子ブランクおよび光学素子に関する実施例
 上述の態様1にかかる実施例および態様2にかかる実施例の各ガラスが得られる清澄、均質化した熔融ガラスを用意し、白金製パイプから一定流量で連続して流出し、パイプ下方に水平に配置した一側壁が開口した鋳型に流し込み、一定の幅を厚みを有するガラス板に成形しつつ、鋳型の開口部から成形したガラス板を引き出した。引き出されたガラス板を、アニール炉内でアニール処理し、歪を低減し、脈理や異物が無く、着色の少ない上記各光学ガラスからなるガラス板を得た。
 次に、これら各ガラス板を縦横に切断し、同一寸法を有する直方体形状のガラス片を複数個得た。さらに複数個のガラス片をバレル研磨して、目的とするプレス成形品の重量にあわせ、プレス成形用ガラスゴブとした。
 なお、上述の方法とは別に、熔融ガラスを一定流速で白金製ノズルから流出し、このノズルの下方に多数の受け型を次々と移送して所定質量の熔融ガラス塊を次々と受け、これら熔融ガラス塊を球または回転体形状に成形し、アニール処理してからバレル研磨して目的とするプレス成形品の質量にあわせ、プレス成形用ガラスゴブとしてもよい。
 上述各ガラスゴブの全表面に粉末状の離型剤、例えば窒化ホウ素粉末を塗布し、ヒーターで加熱、軟化してから上型および下型を備えたプレス成形型内に投入し、プレス成形型で加圧して目的とするレンズ形状に研削、研磨による取り代を加えたレンズに近似した形状の各レンズブランクを成形した。
 続いて、各レンズブランクをアニール処理して歪を低減した。冷却したレンズブランクに研削、研磨加工を施して、目的とするレンズに仕上げた。なお、一連の工程は大気中で行った。得られた各レンズとも優れた光透過性を備えていた。レンズには必要に応じて反射防止膜などの光学多層膜をコートすることもできる。
 このようなレンズにより、良好な撮像光学系を構成することができる。
なお、プレス成形型の形状、ガラスゴブの体積を適宜設定することにより、プリズム等その他の光学素子を製造することもできる。
 最後に、前述の各態様を総括する。
 態様1によれば、酸化物基準のガラス組成において、P含有量が20~34質量%、B含有量が0質量%超かつ10質量%以下、質量比(B/P)が0超かつ0.39未満、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲、質量比[(P+B+SiO)/(NaO+KO+LiO)]が1.39~1.80の範囲であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲の高屈折率・高分散特性を有する、優れた耐失透性を有する光学ガラスを提供することができる。
 態様1にかかる光学ガラスは、先に記載した組成調整を行うことにより、1050℃以下の液相温度を示すことができる。
 より一層優れた耐失透性と、高屈折率・高分散特性とを両立する観点から、態様1にかかる光学ガラスは、以下の1つ以上のガラス組成を満たすことが、好ましい。
質量比[SiO/(SiO+P+B)]が0.12以下である;
LiO含有量が0質量%以上0.3質量%未満である;
質量比[LiO/(NaO+KO+LiO)]が0.0115未満である; 
LiO含有量が0質量%以上0.3質量%未満である;
質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]が0.49以上である。
 態様2によれば、P、BおよびTiOが必須成分であり、SiO、LiO、Nb、WO、Bi、およびTaが任意成分であるガラス組成において、
含有量を20~34質量%、B含有量を0質量%超かつ10質量%以下、LiO含有量を0質量%以上0.3質量%未満、質量比(B/P)を0超かつ0.39未満、質量比[(P+B)/(TiO+Nb+WO+Bi+Ta)]を0.53超、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]を0.059~0.96の範囲(ガラス2-A)、または、
含有量を20~34質量%、B含有量を0質量%超かつ10質量%以下、LiO含有量が0質量%以上0.3質量%未満、
質量比(B/P)を0超かつ0.39未満、質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]を0.53超、質量比[SiO/(SiO+P+B)]を0.02未満、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]を0.059~0.96の範囲(ガラス2-B)、
とすることにより、屈折率ndが1.78~1.83の範囲、かつアッベ数νdが20~25の範囲の高屈折率・高分散特性を有する、優れた耐失透性を有する光学ガラスを得ることができる。
 態様2では、
 P含有量を20~34質量%、B含有量を0質量%超かつ10質量%以下、LiO含有量を0質量%以上0.3質量%未満、質量比(B/P)を0超かつ0.39未満、質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]を0.6以上、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]を0.059~0.96の範囲(ガラス2-C)、
とすることによって、屈折率ndが1.78~1.83の範囲、かつアッベ数νdが20~25の範囲の高屈折率・高分散特性を有する、優れた耐失透性を有する光学ガラスを得ることができる。
 ガラス2-Cの詳細については、ガラス2-A、2-Bに関する上述の記載を適用することができる。
 態様2にかかる光学ガラスは、先に記載した組成調整を行うことにより、1050℃以下の液相温度を示すことができる。
 より一層優れた耐失透性と、高屈折率・高分散特性とを両立する観点から、ガラス2-Aは、質量比[SiO/(SiO+P+B)]が0.02未満であることが好ましい。
 より一層優れた耐失透性と、高屈折率・高分散特性とを両立する観点から、態様2にかかる光学ガラスは、以下の1つ以上のガラス組成を満たすことが、好ましい。
 Nb含有量が19~47質量%の範囲である;
 TiO含有量が6~24質量%の範囲である;
 アルカリ金属酸化物の含有量が10~30質量%の範囲である;
 NaO含有量が0~16質量%の範囲である;
 KO含有量が0~6質量%の範囲である;
 Bi含有量が0~15質量%の範囲である;
 WO含有量が0~15質量%の範囲である。
 以上説明した態様1、2にかかる光学ガラスは、ダイレクトプレス法、リヒートプレス法、精密プレス法のいずれにおいても失透を抑制することができるため、光学素子ブランク、プレス成形用ガラス素材、および光学素子を得るためのガラスとして、好適なものである。
 即ち、態様1、2によれば、態様1または態様2にかかる光学ガラスからなる光学素子ブランク、プレス成形用ガラス素材、および光学素子が提供される。
 態様1、2によれば、態様1または態様2にかかる光学ガラスをプレス成形用ガラス素材に成形する工程を備えるプレス成形用ガラス素材の製造方法が提供される。
 また、態様1、2によれば、上述のプレス成形用ガラス素材を加熱により軟化した状態で、プレス成形型を用いてプレス成形することにより光学素子ブランクを作製する工程を備える光学素子ブランクの製造方法も提供される。
 更に態様1、2によれば、上述の光学素子ブランクを研削および/または研磨することにより光学素子を作製する工程を備える光学素子の製造方法も提供される。
 更に態様1、2によれば、上述のプレス成形用ガラス素材を加熱により軟化した状態で、プレス成形型を用いてプレス成形することにより光学素子を作製する工程を備える光学素子の製造方法も提供される。
 また、態様3によれば、Pを24~34%、Bを0%超4%以下、LiO、NaOおよびKOを合計で12~20%、Nbを15~30%、TiOを8~15%、Biを4~25質量%含むガラス組成において、質量比(TiO/Nb)が0.36~1.00の範囲、質量比(Bi/Nb)が0.16~1.67の範囲とすることにより、屈折率ndが1.78以上1.83未満、かつアッベ数νdが20~25の範囲という高屈折率・高分散特性を有する、精密プレス成形に適した光学ガラスを得ることができる。
 態様3にかかる光学ガラスは、より好ましい高屈折率・高分散特性を実現する観点から、LiO、NaO、KO、MgO、CaO、SrOおよびBaOを合計で12~17%の範囲で含むことが好ましい。
 態様3にかかる光学ガラスは、精密プレス成形に適したガラス転移温度を実現する観点から、質量比(B/P)が0超かつ0.1以下の範囲であることが好ましい。同様の観点か、質量比(WO/Nb)は0.12~0.92の範囲であること、WO含有量が3~23質量%の範囲であることも、好ましい。
 より好ましい高屈折率・高分散特性を実現する観点から、CaO含有量が1質量%未満であること、MgO、CaO、SrO、およびBaOの合計含有量が2質量%未満であることも、好ましい。
 態様3にかかる光学ガラスは、先に記載した組成調整を行うことにより、精密プレス成形に適した520℃以下のガラス転移温度Tgを有するものとなり得る。
 態様3にかかる光学ガラスは、精密プレス成形に適した低Tg等のガラス特性を有するものであるため、精密プレス成形用プリフォームおよびこのプリフォームを精密プレス成形して得られる光学素子を得るためのガラスとして好適なものである。
 即ち、態様3によれば、態様3にかかる光学ガラスからなる精密プレス成形用プリフォームおよび光学素子が提供される。
 また、態様3によれば、上述の精密プレス成形用プリフォームを加熱により軟化した状態で、プレス成形型を用いて精密プレス成形することにより光学素子を作製する工程を備える光学素子の製造方法も提供される。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、上述の例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる光学ガラスを得ることができる。
 また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。
 本発明は、ガラスレンズ、レンズアレイ、回折格子、プリズムなどの各種光学素子の製造分野において有用である。

Claims (34)

  1. 酸化物基準のガラス組成において、
    含有量が20~34質量%、
    含有量が0質量%超かつ10質量%以下、
    質量比(B/P)が0超かつ0.39未満、
    質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.180の範囲、
    質量比[(P+B+SiO)/(NaO+KO+LiO)]が1.39~1.80の範囲、
    であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス。
  2. 質量比[SiO/(SiO+P+B)]が0.12以下である請求項1に記載の光学ガラス。
  3. LiO含有量が0質量%以上0.3質量%未満である請求項1または2に記載の光学ガラス。
  4. 質量比[LiO/(NaO+KO+LiO)]が0.0115未満である請求項1~3のいずれか1項に記載の光学ガラス。
  5. 質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]が0.49以上である請求項1~4のいずれか1項に記載の光学ガラス。
  6. 1050℃以下の液相温度を有する請求項1~5のいずれか1項に記載の光学ガラス。
  7. 酸化物基準のガラス組成において、
    、BおよびTiOが必須成分であり、SiO、LiO、Nb、WO、Bi、およびTaが任意成分であり、
    含有量が20~34質量%、
    含有量が0質量%超かつ10質量%以下、
    LiO含有量が0質量%以上0.3質量%未満、
    質量比(B/P)が0超かつ0.39未満、
    質量比[(P+B)/(TiO+Nb+WO+Bi+Ta)]が0.53超、
    質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.96の範囲、
    であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス。
  8. 質量比[SiO/(SiO+P+B)]が0.02未満である請求項7に記載の光学ガラス。
  9. 酸化物基準のガラス組成において、
    、BおよびTiOが必須成分であり、SiO、LiO、Nb、WO、Bi、およびTaが任意成分であり、
    含有量が20~34質量%、
    含有量が0質量%超かつ10質量%以下、
    LiO含有量が0質量%以上0.3質量%未満、
    質量比(B/P)が0超かつ0.39未満、
    質量比[(P+B+SiO)/(TiO+Nb+WO+Bi+Ta)]が0.53超、
    質量比[SiO/(SiO+P+B)]が0.02未満、
    質量比[TiO/(TiO+Nb+WO+Bi+Ta)]が0.059~0.96の範囲、
    であり、屈折率ndが1.78~1.83の範囲であり、かつアッベ数νdが20~25の範囲である光学ガラス。
  10. 1050℃以下の液相温度を有する請求項7~9のいずれか1項に記載の光学ガラス。
  11. Nb含有量が19~47質量%の範囲である請求項7~10のいずれか1項に記載の光学ガラス。
  12. TiO含有量が6~24質量%の範囲である請求項7~11のいずれか1項に記載の光学ガラス。
  13. アルカリ金属酸化物の含有量が10~30質量%の範囲である請求項7~12のいずれか1項に記載の光学ガラス。
  14. NaO含有量が0~16質量%の範囲、
    O含有量が0~6質量%の範囲、
    である請求項7~13のいずれか1項に記載の光学ガラス。
  15. Bi含有量が0~15質量%の範囲である請求項7~14のいずれか1項に記載の光学ガラス。
  16. WO含有量が0~15質量%の範囲である請求項7~15のいずれか1項に記載の光学ガラス。
  17. 請求項1~16のいずれか1項に記載の光学ガラスからなる光学素子ブランク。
  18. 請求項1~16のいずれか1項に記載の光学ガラスからなるプレス成形用ガラス素材。
  19. 請求項1~16のいずれか1項に記載の光学ガラスからなる光学素子。
  20. 請求項1~16のいずれか1項に記載の光学ガラスをプレス成形用ガラス素材に成形する工程を備えるプレス成形用ガラス素材の製造方法。
  21. 請求項18に記載のプレス成形用ガラス素材を、プレス成形型を用いてプレス成形することにより光学素子ブランクを作製する工程を備える光学素子ブランクの製造方法。
  22. 請求項17に記載の光学素子ブランクを研削および/または研磨することにより光学素子を作製する工程を備える光学素子の製造方法。
  23. 請求項18に記載のプレス成形用ガラス素材を、プレス成形型を用いてプレス成形することにより光学素子を作製する工程を備える光学素子の製造方法。
  24. 酸化物基準のガラス組成において、
         24~34質量%、
         0質量%超4質量%以下、
    LiO、NaOおよびKOを合計で12~20質量%、
    Nb   15~30質量%、
    TiO     8~15質量%、
    Bi   4~25質量%、
    を含み、
    質量比(TiO/Nb)が0.36~1.00の範囲であり、
    質量比(Bi/Nb)が0.16~1.67の範囲であり、
    屈折率ndが1.78以上1.83未満、かつアッベ数νdが20~25の範囲である光学ガラス。
  25. LiO、NaO、KO、MgO、CaO、SrOおよびBaOの合計含有量が12~17質量%の範囲である請求項24に記載の光学ガラス。
  26. 質量比(B/P)が0超かつ0.1以下の範囲である請求項24または25に記載の光学ガラス。
  27. 質量比(WO/Nb)が0.12~0.92の範囲である請求項24~26のいずれか1項に記載の光学ガラス。
  28. WO含有量が3~23質量%の範囲である請求項24~27のいずれか1項に記載の光学ガラス。
  29. CaO含有量が1質量%未満である請求項24~28のいずれか1項に記載の光学ガラス。
  30. MgO、CaO、SrO、およびBaOの合計含有量が2質量%未満である請求項24~29のいずれか1項に記載の光学ガラス。
  31. ガラス転移温度Tgが520℃以下である請求項24~30のいずれか1項に記載の光学ガラス。
  32. 請求項24~31のいずれか1項に記載の光学ガラスからなる精密プレス成形用プリフォーム。
  33. 請求項24~31のいずれか1項に記載の光学ガラスからなる光学素子。
  34. 請求項32に記載の精密プレス成形用プリフォームを加熱により軟化した状態で、プレス成形型を用いて精密プレス成形することにより光学素子を作製する工程を備える光学素子の製造方法。
PCT/JP2014/053945 2013-02-19 2014-02-19 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法 WO2014129510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157020789A KR20150120346A (ko) 2013-02-19 2014-02-19 광학 유리, 광학 유리 블랭크, 프레스 성형용 유리 소재, 광학 소자, 및 그들의 제조 방법
CN201480007782.XA CN104981439B (zh) 2013-02-19 2014-02-19 光学玻璃、光学玻璃坯件、压制成型用玻璃材料、光学元件、及它们的制造方法
US14/767,322 US9561980B2 (en) 2013-02-19 2014-02-19 Optical glass, optical glass blank, glass material for press molding, optical element, and methods for producing them

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013030212A JP5986938B2 (ja) 2013-02-19 2013-02-19 光学ガラス、精密プレス成形用ガラス素材、光学素子およびその製造方法
JP2013030211 2013-02-19
JP2013-030211 2013-02-19
JP2013-030212 2013-02-19
JP2013205432A JP6444021B2 (ja) 2013-09-30 2013-09-30 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP2013-205432 2013-09-30
JP2014004423A JP6587276B2 (ja) 2013-02-19 2014-01-14 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP2014-004423 2014-01-14

Publications (1)

Publication Number Publication Date
WO2014129510A1 true WO2014129510A1 (ja) 2014-08-28

Family

ID=51391296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053945 WO2014129510A1 (ja) 2013-02-19 2014-02-19 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2014129510A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210655A (ja) * 2015-05-12 2016-12-15 株式会社オハラ 光学ガラス
US20190322571A1 (en) * 2017-01-25 2019-10-24 Corning Incorporated High refractive index titanium-niobium phosphate glass
CN110655322A (zh) * 2018-06-29 2020-01-07 Hoya株式会社 再加热压制用玻璃材料、再加热压制完成的玻璃材料、抛光完成的玻璃、及其制造方法
US20200131076A1 (en) * 2017-06-16 2020-04-30 Ohara Inc. Optical glass, preform, and optical element
WO2023286630A1 (ja) * 2021-07-16 2023-01-19 株式会社 オハラ リン酸塩ガラス、光学ガラス、及び光学素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146732A (ja) * 1984-12-17 1986-07-04 Minolta Camera Co Ltd 高屈折率高分散ガラス
JP2008303112A (ja) * 2007-06-08 2008-12-18 Konica Minolta Opto Inc 光学ガラス及びこれから作製される光学素子
JP2010260740A (ja) * 2009-04-30 2010-11-18 Ohara Inc 光学ガラス及び光学素子
JP2011136884A (ja) * 2009-12-28 2011-07-14 Ohara Inc 光学ガラスの製造方法及び光学機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146732A (ja) * 1984-12-17 1986-07-04 Minolta Camera Co Ltd 高屈折率高分散ガラス
JP2008303112A (ja) * 2007-06-08 2008-12-18 Konica Minolta Opto Inc 光学ガラス及びこれから作製される光学素子
JP2010260740A (ja) * 2009-04-30 2010-11-18 Ohara Inc 光学ガラス及び光学素子
JP2011136884A (ja) * 2009-12-28 2011-07-14 Ohara Inc 光学ガラスの製造方法及び光学機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210655A (ja) * 2015-05-12 2016-12-15 株式会社オハラ 光学ガラス
US20190322571A1 (en) * 2017-01-25 2019-10-24 Corning Incorporated High refractive index titanium-niobium phosphate glass
US10974989B2 (en) * 2017-01-25 2021-04-13 Corning Incorporated High refractive index titanium-niobium phosphate glass
US20200131076A1 (en) * 2017-06-16 2020-04-30 Ohara Inc. Optical glass, preform, and optical element
CN110655322A (zh) * 2018-06-29 2020-01-07 Hoya株式会社 再加热压制用玻璃材料、再加热压制完成的玻璃材料、抛光完成的玻璃、及其制造方法
WO2023286630A1 (ja) * 2021-07-16 2023-01-19 株式会社 オハラ リン酸塩ガラス、光学ガラス、及び光学素子

Similar Documents

Publication Publication Date Title
JP6382256B2 (ja) 光学ガラスおよびその利用
US9561980B2 (en) Optical glass, optical glass blank, glass material for press molding, optical element, and methods for producing them
JP5180758B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6587276B2 (ja) 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
CN110128004B (zh) 光学玻璃及其应用
US8728963B2 (en) Optical glass
JP5931173B2 (ja) 光学ガラスおよびその利用
JP5174368B2 (ja) 光学ガラス
JP6055545B2 (ja) 光学ガラス、光学素子ブランク、プレス成形用ガラス素材、光学素子、およびそれらの製造方法
JP5986938B2 (ja) 光学ガラス、精密プレス成形用ガラス素材、光学素子およびその製造方法
JP2009179522A (ja) 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5209897B2 (ja) 光学ガラス
JP5802707B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6943995B2 (ja) 光学ガラスおよびその利用
WO2014129510A1 (ja) 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP5174373B2 (ja) 光学ガラス
TWI773862B (zh) 光學玻璃和光學元件
JP6444021B2 (ja) 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP6472657B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP5301740B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6067482B2 (ja) 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5185463B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2016013969A (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2018172275A (ja) 光学ガラスおよびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157020789

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754176

Country of ref document: EP

Kind code of ref document: A1