WO2015025754A1 - ダイオード装置およびその製造方法 - Google Patents

ダイオード装置およびその製造方法 Download PDF

Info

Publication number
WO2015025754A1
WO2015025754A1 PCT/JP2014/071154 JP2014071154W WO2015025754A1 WO 2015025754 A1 WO2015025754 A1 WO 2015025754A1 JP 2014071154 W JP2014071154 W JP 2014071154W WO 2015025754 A1 WO2015025754 A1 WO 2015025754A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
diode
thin film
semiconductor
diode device
Prior art date
Application number
PCT/JP2014/071154
Other languages
English (en)
French (fr)
Inventor
雅信 野村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014559022A priority Critical patent/JP5783340B2/ja
Publication of WO2015025754A1 publication Critical patent/WO2015025754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Definitions

  • the present invention relates to a diode device including a thin film diode and a manufacturing method thereof.
  • FIG. 5 includes an n-type semiconductor layer 502 stacked on a glass substrate 501 and a p-type semiconductor layer 503 stacked on the n-type semiconductor layer 502.
  • the thin-film diode 500 shown in FIG. FIG. 5 is a sectional view showing a conventional diode device.
  • the n-type semiconductor layer 502 is formed of an In—Ga—Zn—O amorphous oxide thin film formed at room temperature using a high frequency sputtering method.
  • the p-type semiconductor layer 503 is formed of a Zn—Rh—O amorphous oxide thin film formed at room temperature using a high frequency sputtering method.
  • a Ti layer and an Au layer are sequentially formed on the upper surface of the n-type semiconductor layer 502, whereby a Ti adhesion layer 504 and an Au electrode 505 that is a cathode electrode are formed. Yes.
  • an Au layer is formed on the upper surface of the p-type semiconductor layer 503 by using an electron beam evaporation method, whereby an Au electrode 506 that is an anode electrode is formed.
  • the I (current) -V (voltage) characteristics of the thin film diode 500 configured as described above are such that current flows when a forward bias voltage is applied, and the current is cut off when a reverse bias voltage is applied. It has general rectification characteristics.
  • JP 2007-73702 paragraphs 0043-0048, FIGS. 6-8, etc.
  • the edge of the pn junction interface between the n-type semiconductor layer 502 and the p-type semiconductor layer 503 is exposed, or a general resin layer (film) for molding in which moisture permeates is used. If it is coated, the following problems may occur. In other words, when the thin film diode 500 is used in a high humidity environment, moisture may enter the vicinity of the edge of the pn junction interface.
  • the present invention has been made in view of the above problems, and can prevent water electrolysis from occurring near the edge of the pn junction interface of a thin film diode when used in a high humidity environment.
  • An object of the present invention is to provide a highly reliable diode device and a manufacturing method thereof.
  • a diode device includes a first semiconductor layer that is one of a p-type semiconductor and an n-type semiconductor, a p-type semiconductor stacked on the first semiconductor layer, and an n-type semiconductor.
  • Each of the semiconductor layers is formed of an oxide semiconductor material or an oxynitride semiconductor material
  • the moisture-resistant protective film is formed of an amorphous oxide insulator material or an amorphous oxynitride insulator material.
  • the edge of the pn junction interface between the first semiconductor layer and the second semiconductor layer of the pn junction type thin film diode included in the diode device is formed of an amorphous oxide insulator material or an amorphous acid. It is covered with a moisture-resistant protective film formed of a nitride insulator material.
  • a moisture-resistant protective film formed of a nitride insulator material.
  • the diode device when used in a high humidity environment, hydrogen is generated by electrolysis of water near the edge of the pn junction interface of the thin film diode due to the electric field generated when a voltage is applied to the thin film diode. Can be prevented. Then, the oxide semiconductor material and the oxynitride semiconductor material forming each of the first semiconductor layer and the second semiconductor layer are reduced when hydrogen is generated, so that the characteristics of the thin film diode are deteriorated, It is possible to prevent the thin film diode from malfunctioning. Therefore, a highly reliable diode device can be provided.
  • the moisture-resistant protective film when the moisture-resistant protective film is formed so as to cover the edge of the pn junction interface, if the moisture-resistant protective film is formed in a reducing atmosphere, the following problems may occur. That is, the oxide semiconductor material and the oxynitride semiconductor material that form each of the first semiconductor layer and the second semiconductor layer that form the pn junction are reduced, and the thin film diode becomes malfunctioning. The characteristics may deteriorate. However, when the moisture-resistant protective film is formed of an oxide insulator material or an oxynitride insulator material in an oxygen-containing atmosphere, the reduction reduces the semiconductor material forming the first semiconductor layer and the second semiconductor layer. Since the atmosphere does not easily occur, it is possible to provide a highly reliable diode device with good thin film diode characteristics.
  • the second semiconductor layer may be formed of an amorphous material.
  • one of the conductive semiconductor layers formed first is crystalline, and the other conductive layer formed and stacked on this crystalline semiconductor layer If the type semiconductor layer is also crystalline, the following problems may occur. That is, the initial growth of the semiconductor layer formed later is affected by the crystal lattice of the semiconductor layer formed earlier, and therefore the initial growth layer of the semiconductor layer formed later is hardly formed in a crystalline form. Therefore, in the initial growth layer of the semiconductor layer that is formed and stacked later on the previously formed semiconductor layer, a heterogeneous phase with a crystal structure that causes deterioration of the characteristics of the thin film diode or malfunction of the thin film diode occurs. Cheap.
  • the second semiconductor layer formed by being stacked on the first semiconductor layer is formed of an amorphous material
  • a heterogeneous phase that deteriorates the characteristics of the thin film diode is formed in the initial growth layer of the second semiconductor layer. Can be suppressed. Therefore, it is possible to provide a diode device including a thin film diode with better characteristics and higher reliability.
  • the first semiconductor layer may be formed of an amorphous material.
  • each of the first and second semiconductor layers and the moisture-resistant protective film is formed of an amorphous material, so that both of the moisture-resistant protective film covering the pn junction interface and its edge are formed of the amorphous material. Is done. Therefore, it is possible to provide a diode device including a thin film diode with good material matching at the atomic structure level, and further excellent characteristics and high reliability.
  • the thin film diode may be a thin film Zener diode.
  • the thin film Zener diode operates in the breakdown behavior region, and even when the pn junction interface is in a high electric field state, the infiltration of water is prevented. Therefore, the electrolysis of water occurs near the edge of the pn junction interface. Generation of hydrogen can be prevented. Therefore, it is possible to prevent the characteristics of the thin film Zener diode from being deteriorated or the thin film Zener diode from malfunctioning by reducing the semiconductor material of the oxide or oxynitride forming the pn junction.
  • the two thin film Zener diodes are arranged side by side so that the first semiconductor layer and the second semiconductor layer are disposed on the same side and face each other, Any one of the first semiconductor layer and the second semiconductor layer may be connected in series in the opposite direction by being connected to each other by a connection electrode.
  • bidirectional Zener diode a diode device including a circuit (hereinafter referred to as “bidirectional Zener diode”) formed by connecting two thin film Zener diodes in series in opposite directions.
  • the bidirectional Zener diode when one thin film Zener diode breaks down due to an overvoltage caused by, for example, static electricity, the overvoltage is always applied in the forward direction to the other Zener diode. Therefore, when one thin film Zener diode breaks down, a current path is always formed in the bidirectional Zener diode.
  • a highly reliable protection circuit for protecting a part having low electrostatic resistance such as a thin film capacitor from an overvoltage caused by static electricity or the like can be configured at low cost. That is, by connecting, for example, a protection circuit formed using a bidirectional Zener diode in parallel to a component to be protected, a current path is formed in the protection circuit against an overvoltage of both positive and negative polarities. Therefore, the protection circuit in which the current path is formed prevents overvoltage from being applied to the component to be protected. Therefore, a component with low electrostatic resistance, such as a thin film capacitor, has both positive and negative polarity caused by static electricity. It can be reliably protected from overvoltage.
  • the thin film Zener diode may further include a third semiconductor layer of the one conductivity type stacked on the second semiconductor layer and formed of an oxide semiconductor material or an oxynitride semiconductor material. Good.
  • the second semiconductor layer formed of the other conductivity type semiconductor is disposed between the first semiconductor layer and the third semiconductor layer formed of one conductivity type semiconductor.
  • a circuit equivalent to a bidirectional Zener diode can be configured.
  • the bidirectional Zener diode is formed by arranging each semiconductor layer in the stacking direction, the area of the diode device can be reduced.
  • the thin film Zener diode and the moisture-resistant protective film may be disposed in a region where the metal electrode is formed in a plan view, further comprising a resin substrate and a flat metal electrode formed on the resin substrate. It may be.
  • the thin-film Zener diode and the moisture-resistant protective film are in the formation region of the flat metal electrode that functions as a reinforcing material in plan view. Has been placed. Therefore, since defects such as cracks can be prevented from occurring in each semiconductor layer and the moisture-resistant protective film, a diode device including a highly reliable thin film Zener diode can be provided.
  • the breakdown voltage of the thin film Zener diode is preferably smaller than 40V.
  • a diode device comprising a thin film Zener diode can be used to form an ESD (Electro-Static Discharge) protection circuit for consumer electronics for general purposes.
  • ESD Electro-Static Discharge
  • a method for manufacturing a diode device according to any one of claims 4 to 8, wherein the partial pressure of oxygen or nitrogen in the atmosphere in which each semiconductor layer is formed is set.
  • the carrier concentration is adjusted, and the breakdown voltage of the thin film Zener diode is controlled.
  • the moisture-resistant protective film is preferably formed by a sputtering method or a vacuum deposition method so that the oxygen partial pressures in the atmosphere in which each semiconductor layer and the moisture-resistant protective film are formed are substantially equal.
  • the oxygen content is consistent at the pn junction interface formed of the oxide semiconductor material or the oxynitride semiconductor material.
  • the oxygen partial pressure of the atmosphere in which the moisture-resistant protective film covering the edge of the pn junction interface is formed is the same, the characteristics of the pn junction interface are not easily deteriorated, and a thin film Zener diode with higher reliability is provided.
  • a diode device can be provided.
  • moisture can be prevented from entering the vicinity of the edge of the pn junction interface by the moisture-resistant protective film, so that the electric field generated when a voltage is applied to the thin film diode causes the pn junction interface of the thin film diode. It is possible to prevent hydrogen from being generated due to electrolysis of water in the vicinity of the edge. Therefore, when the oxide semiconductor material or the oxynitride semiconductor material forming each of the first semiconductor layer and the second semiconductor layer is reduced, characteristics of the thin film diode are deteriorated, or the thin film diode is malfunctioned. Therefore, a highly reliable diode device can be provided.
  • FIG. 5 is a diagram showing an example of a manufacturing method of a diode device, and (a) to (d) show different states. It is a figure which shows the diode apparatus concerning 2nd Embodiment of this invention, Comprising: (a) is sectional drawing, (b) is a figure which shows an equivalent circuit. It is sectional drawing which shows the diode apparatus concerning 3rd Embodiment of this invention. It is sectional drawing which shows the conventional diode apparatus.
  • FIGS. 1 and 2 are diagrams showing a diode device according to a first embodiment of the present invention, where FIG. 1A is a cross-sectional view, FIG. 1B is a diagram showing an equivalent circuit, and FIG. 2 shows an example of a method for manufacturing the diode device. In the figure, (a) to (d) show different states.
  • the diode device 100 includes a pn junction type thin film Zener diode D1 provided on the substrate 1 via a Pt / Ti connection electrode 2 formed on the substrate 1 formed of a glass substrate. Yes.
  • the thin film Zener diode D1 includes a p-type first semiconductor layer 3 and an n-type second semiconductor layer 4 stacked on the first semiconductor layer 3.
  • the first semiconductor layer 3 is formed on the connection electrode 2 by a p-type amorphous Cu—Al—O-based semiconductor (p-type semiconductor) that is an amorphous oxide semiconductor material.
  • the second semiconductor layer 4 is formed on the first semiconductor layer 3 by an n-type amorphous Ti—O based semiconductor (n-type semiconductor) that is an amorphous oxide semiconductor material.
  • a pn junction is formed at the junction interface S between the first semiconductor layer 3 and the second semiconductor layer 4.
  • the diode device 100 is provided on the substrate 1 so as to cover the edge of the pn junction interface S of the first semiconductor layer 3 and the second semiconductor layer 4 of the thin film Zener diode D1 and the connection electrode 2. And an insulating layer 5 (corresponding to the “moisture-resistant protective film” of the present invention).
  • the insulating layer 5 is made of amorphous SiO 2 that is an amorphous oxide insulator material.
  • the upper surface of the insulating layer 5 is connected to the n-type second semiconductor layer 4 through a through-hole formed in the insulating layer 5, thereby providing an Au / Ti lead that forms an external electrode of the diode device 100.
  • An electrode 6 is formed.
  • the diode device 100 is connected to the p-type first semiconductor layer 3 on the upper surface of the insulating layer 5 by being connected to the connection electrode 2 through a through hole formed in the insulating layer 5.
  • An Au / Ti extraction electrode 7 constituting the external electrode is formed.
  • the p-type semiconductor corresponds to “one conductivity type semiconductor” of the present invention
  • the n-type semiconductor corresponds to “the other conductivity type semiconductor” of the present invention
  • a Ti film having a thickness of about 50 nm is formed on the substrate 1 using a lift-off method, and a Pt film having a thickness of about 300 nm is further formed.
  • the connection electrode 2 is formed.
  • a p-type semiconductor film made of an Al—O based semiconductor material is formed with a thickness of about 300 nm.
  • An n-type semiconductor film made of -O-based semiconductor material is formed with a thickness of about 500 nm.
  • the p-type semiconductor film and the n-type semiconductor film are processed using photolithography and ion milling, and the first semiconductor layer 3 and the second semiconductor layer 3 are formed on the connection electrode 2.
  • the thin film Zener diode D1 is formed by forming the semiconductor layer 4 in a stacked state.
  • the first semiconductor layer 3 and the second semiconductor layer 4 are inclined on the side surfaces in order to improve the adhesion with the insulating layer 5 formed in the subsequent process and the coverage with the insulating layer 5. It is processed into a shaped shape. Specifically, after the photoresist shape is inclined by controlling photolithography conditions, the p-type semiconductor film and the n-type semiconductor film are processed using an ion milling method. Then, the photoresist is removed by oxygen ashing.
  • the layer 5 has a thickness of about 1000 nm and is formed so as to cover at least the edge of the pn junction interface S. Then, as shown in FIG. 2C, the insulating layer 5 is processed into a predetermined shape using photolithography and ion milling. Then, the photoresist is removed by oxygen ashing.
  • a lift-off method is used to form a Ti film with a thickness of about 50 nm, and further an Au film with a thickness of about 300 nm is formed, thereby leading the extraction electrode.
  • a lift-off method is used to form a Ti film with a thickness of about 50 nm, and further an Au film with a thickness of about 300 nm is formed, thereby leading the extraction electrode.
  • the carrier concentration of each of the p-type first semiconductor layer 3 and the n-type second semiconductor layer 4 constituting the thin film Zener diode D1 is (Carrier concentration of the first semiconductor layer 3) ⁇ (Carrier concentration of the second semiconductor layer 4) It is set to become.
  • the breakdown voltage of the thin film Zener diode D1 is controlled by adjusting the carrier concentration of the p-type first semiconductor layer 3.
  • the carrier concentration of the first semiconductor layer 3 is adjusted by controlling the oxygen partial pressure of the atmosphere when the first semiconductor layer 3 is formed, so that the thin film Zener diode D1
  • the breakdown voltage is controlled.
  • the breakdown voltage of the thin film Zener diode D1 is controlled to about 12V.
  • the diode device 100 configured as described above is mounted on another wiring board or the like using solder or the like, thereby forming a protection circuit for protecting various components from, for example, overvoltage caused by static electricity or the like. Used to.
  • the edge of the pn junction interface S of the first semiconductor layer 3 and the second semiconductor layer 4 included in the pn junction type thin film Zener diode D1 included in the diode device 100 is amorphous oxide.
  • the insulating layer 5 is formed of a material insulator material and functions as a moisture-resistant protective film. By forming the insulating layer 5 from the amorphous material, it is possible to suppress the generation of crystal grain boundaries in the insulating layer 5, so that the insulating layer 5 having a high moisture resistance effect can be formed. Therefore, even when the diode device 100 is used in a high humidity environment, it is possible to prevent moisture from entering the vicinity of the edge of the pn junction interface S.
  • the diode device 100 when the diode device 100 is used in a high humidity environment, water is electrolyzed near the edge of the pn junction interface S of the thin film Zener diode due to an electric field generated when a voltage is applied to the thin film Zener diode D1. Generation of hydrogen can be prevented.
  • the oxide semiconductor material forming each of the first semiconductor layer 3 and the second semiconductor layer 4 is reduced by the generation of hydrogen, so that the characteristics of the thin film Zener diode D1 are deteriorated or the thin film Zener is reduced. It is possible to prevent the diode D1 from malfunctioning. Therefore, the highly reliable diode device 100 can be provided.
  • the insulating layer 5 when the insulating layer 5 is formed so as to cover the edge of the pn junction interface S, if the insulating layer 5 is formed in a reducing atmosphere, the following problems may occur. That is, the oxide semiconductor material forming each of the first semiconductor layer 3 and the second semiconductor layer 4 constituting the pn junction is reduced, and the thin film Zener diode D1 becomes malfunctioning. The characteristics may deteriorate. However, since the insulating layer 5 is formed of an oxide insulator material in an oxygen-containing atmosphere, it is difficult to form a reducing atmosphere in which the oxide semiconductor material forming the first semiconductor layer 3 and the second semiconductor layer 4 is reduced. Therefore, it is possible to provide the diode device 100 with good characteristics and high reliability of the thin film Zener diode D1.
  • the diode device 100 includes a thin film Zener diode D1 configured by controlling the carrier concentration of each of the first semiconductor layer 3 and the second semiconductor layer 4. Even when a reverse bias voltage is applied, the thin-film Zener diode D1 has a high electric field at the pn junction portion if the reverse bias voltage is greater than or equal to the breakdown voltage. Has the property of causing current to flow by the occurrence of (breakdown behavior). Therefore, when the thin film Zener diode D1 is operating in the breakdown behavior region, the pn junction interface S is in a high electric field state, so that water electrolysis is very likely to occur near the edge of the pn junction interface S. Is likely to occur.
  • the insulating layer 5 prevents moisture from entering the vicinity of the edge of the pn junction interface S of the thin film Zener diode D1
  • the following effects can be achieved. That is, the thin film Zener diode D1 operates in the breakdown behavior region, and even if the pn junction interface S is in a high electric field state, moisture penetration is prevented by the insulating layer 5, so that the edge of the pn junction interface S It is possible to prevent hydrogen from being generated due to electrolysis of water in the vicinity. Therefore, it is possible to prevent deterioration of the characteristics of the thin film Zener diode D1 or the malfunction of the thin film Zener diode D1 by reducing the semiconductor material of the oxide forming the pn junction.
  • the semiconductor layer formed first is crystalline, and the semiconductor layer formed later and stacked on the crystalline semiconductor layer is also crystalline.
  • Such a problem may occur. That is, the initial growth of the semiconductor layer formed later is affected by the crystal lattice of the semiconductor layer formed earlier, and therefore the initial growth layer of the semiconductor layer formed later is hardly formed in a crystalline form. Therefore, in the initial growth layer of the semiconductor layer formed later, a heterogeneous phase having a disordered crystal structure that deteriorates the characteristics of the thin film diode (thin film Zener diode) or makes the thin film diode malfunction is likely to occur.
  • the second semiconductor layer 4 formed by being stacked on the first semiconductor layer 3 is formed of an amorphous material. Therefore, it is possible to suppress the formation of a different phase that deteriorates the characteristics of the thin film Zener diode D1 in the initial growth layer of the second semiconductor layer 4. Therefore, it is possible to provide the diode device 100 including the thin film Zener diode D1 having better characteristics and higher reliability.
  • each of the first and second semiconductor layers 3 and 4 and the insulating layer 5 is formed of an amorphous material. Therefore, since both the pn junction interface S and the insulating layer 5 covering the edge thereof are formed of an amorphous material, the material conformity at the atomic structure level is good, and the characteristics are good and the reliability is high.
  • a diode device 100 including the thin film Zener diode D1 can be provided.
  • the carrier concentration is adjusted by controlling the oxygen partial pressure of the atmosphere in which the first and second semiconductor layers 3 and 4 are formed, and the breakdown voltage of the thin film Zener diode D1 is controlled. ing. Therefore, the breakdown voltage of the thin film Zener diode D1 included in the diode device 100 can be easily adjusted by merely controlling the oxygen partial pressure of the atmosphere in which the first and second semiconductor layers 3 and 4 are formed.
  • the first and second semiconductor layers 3 and 4 and the insulating layer 5 are formed by sputtering, but the first and second semiconductor layers 3 and 4 and the insulating layer 5 are formed.
  • the conditions are set so that the oxygen partial pressure of the atmosphere is substantially equal. Therefore, the oxygen content is good at the pn junction interface S between the first and second semiconductor layers 3 and 4 formed of an oxide semiconductor material.
  • the oxygen partial pressure in the atmosphere in which the insulating layer 5 covering the edge of the pn junction interface S is formed is also the same as the oxygen partial pressure in the atmosphere in which the first and second semiconductor layers 3 and 4 are formed. Therefore, it is possible to provide the diode device 100 including the thin-film Zener diode D1 that is less likely to deteriorate in the characteristics of the pn junction interface S and has high reliability.
  • FIG. 3A and 3B are diagrams showing a diode device according to a second embodiment of the present invention, where FIG. 3A is a cross-sectional view and FIG. 3B is a diagram showing an equivalent circuit.
  • the diode device 100a of this embodiment is different from the diode device 100 of the first embodiment described above in that two thin-film Zener diodes D1 and D2 are in opposite directions as shown in FIGS. 3 (a) and 3 (b). And a circuit (bidirectional Zener diode) formed in series connection with each other.
  • a circuit bidirectional Zener diode formed in series connection with each other.
  • the diode device 100a includes two pn junction type thin film Zener diodes D1 provided on the substrate 1 via the Pt / Ti connection electrodes 2 formed on the substrate 1 formed of a resin substrate. , D2. In this embodiment, a flat connection electrode 2 is formed on the substrate 1.
  • the thin film Zener diode D1 includes a p-type first semiconductor layer 3 and an n-type second semiconductor layer 4 stacked on the first semiconductor layer 3.
  • the thin film Zener diode D ⁇ b> 2 includes a p-type first semiconductor layer 8 and an n-type second semiconductor layer 9 stacked on the first semiconductor layer 8.
  • the first semiconductor layers 3 and 8 are formed on the connection electrode 2 by a p-type amorphous Cu—Al—O—N-based semiconductor (p-type semiconductor) that is an amorphous oxynitride semiconductor material.
  • the second semiconductor layers 4 and 9 are formed on the first semiconductor layers 3 and 8 by an n-type amorphous Ti—O—N-based semiconductor (n-type semiconductor) that is an amorphous oxynitride semiconductor material.
  • a pn junction is formed at the junction interface S between the first semiconductor layer 3 and the second semiconductor layer 4 and at the junction interface S between the first semiconductor layer 8 and the second semiconductor layer 9. Yes.
  • each thin film Zener diode D1, D2 includes the first semiconductor layers 3, 8 and the second semiconductor layers 4, 9 arranged on the same side. It is arranged side by side so as to face each other.
  • the p-type first semiconductor layers 3 and 8 of the thin film Zener diodes D1 and D2 are connected to each other by the connection electrode 2. Therefore, as shown in the equivalent circuit of FIG. 3B, the two Zener diodes D1 and D2 are connected in series in the reverse direction.
  • the diode device 100a includes the edge of the pn junction interface S of the first semiconductor layer 3 and the second semiconductor layer 4 included in the thin film Zener diode D1, the first semiconductor layer 8 and the first semiconductor layer 8 included in the thin film Zener diode D2. And an insulating layer 5 provided on the connection electrode 2 so as to cover the edge of the pn junction interface S of the second semiconductor layer 9.
  • the insulating layer 5 is formed of amorphous SiON which is an amorphous oxynitride insulator material.
  • the thin film Zener diodes D1 and D2 and the insulating layer 5 are disposed in the formation region of the connection electrode 2 in plan view.
  • an external electrode of the diode device 100a is connected to the upper surface of the insulating layer 5 by being connected to the n-type second semiconductor layer 4 of the thin film Zener diode D1 through a through hole formed in the insulating layer 5.
  • An Au / Ti extraction electrode 6 is formed.
  • an external electrode of the diode device 100a is connected to the upper surface of the insulating layer 5 by being connected to the n-type second semiconductor layer 9 of the thin film Zener diode D2 through a through hole formed in the insulating layer 5.
  • An Au / Ti extraction electrode 7 is formed.
  • the p-type semiconductor corresponds to “one conductivity type semiconductor” of the present invention
  • the n-type semiconductor corresponds to “the other conductivity type semiconductor” of the present invention
  • the substrate 1 is formed of a resin substrate, and a part of the configuration is different from the diode device 100 shown in FIG. 1A, but the diode described with reference to FIG.
  • the diode device 100a of this embodiment can be manufactured by a manufacturing method similar to the manufacturing method of the device 100.
  • the first semiconductor layer is controlled by controlling the oxygen partial pressure and the nitrogen partial pressure of the atmosphere when the first semiconductor layers 3 and 8 and the second semiconductor layers 4 and 9 are formed.
  • the breakdown voltages of the thin-film Zener diodes D1 and D2 are controlled by adjusting the carrier concentration of the third and eighth semiconductor layers 4 and 9.
  • this embodiment can provide the same effects as those of the first embodiment described above.
  • the diode device 100a including a highly reliable bidirectional Zener diode formed by connecting two thin film Zener diodes D1 and D2 in series in opposite directions can be provided at low cost.
  • the bidirectional Zener diode when one thin film Zener diode breaks down due to an overvoltage caused by, for example, static electricity, the overvoltage is always applied in the forward direction to the other Zener diode. Therefore, when one thin film Zener diode breaks down, a current path is always formed in the bidirectional Zener diode.
  • a highly reliable protection circuit for protecting a low-static-resistant component such as a thin film capacitor from an overvoltage caused by static electricity or the like can be configured at low cost. That is, by connecting, for example, a protection circuit formed using the diode device 100a in parallel to a component to be protected, a current path is formed in the protection circuit against an overvoltage of both positive and negative polarities. Therefore, the protection circuit in which the current path is formed prevents overvoltage from being applied to the component to be protected. Therefore, a component with low electrostatic resistance, such as a thin film capacitor, has both positive and negative polarity caused by static electricity. It can be reliably protected from overvoltage.
  • the thin film Zener diodes D1 and D2 and the insulating layer 5 are provided on the substrate 1 formed of a resin substrate. However, even when the substrate 1 is distorted under various usage environments, the thin-film Zener diodes D1 and D2 and the insulating layer 5 are in the formation region of the flat connection electrode 2 that functions as a reinforcing material in plan view. Has been placed.
  • the diode device 100a including the highly reliable thin film Zener diodes D1, D2 is provided. be able to.
  • the connection electrode 2 functions as the “metal electrode” of the present invention.
  • the Zener diodes D1 and D2 are connected in series in the reverse direction by connecting the first semiconductor layers 3 and 8 of the Zener diodes D1 and D2 by the connection electrode 2.
  • the second semiconductor layers 4 and 9 of the respective Zener diodes D1 and D2 are connected to each other by, for example, connection electrodes stacked on the second semiconductor layers 4 and 9, so that the respective Zener diodes D1 and D2 are connected. May be connected in series in the opposite direction.
  • two extraction electrodes connected to each of the first semiconductor layers 3 and 8 are individually provided on the substrate 1, and the extraction electrode 6 is connected to the extraction electrode connected to the first semiconductor layer 3. It is connected to the first semiconductor layer 3 by being connected, and the extraction electrode 7 is connected to the first semiconductor layer 8 by being connected to the extraction electrode connected to the first semiconductor layer 8. Good.
  • the substrate 1 formed of a resin substrate is employed.
  • the substrate 1 may be formed of the same glass substrate, ceramic substrate, or Si substrate as in the first embodiment described above.
  • a flat connection electrode 2 is provided on the resin layer formed on the substrate 1, and the connection electrode 2 formation region in plan view
  • the thin film Zener diodes D1 and D2 and the insulating layer 5 may be provided on the connection electrode 2 so as to be disposed inside. Even in this case, it is possible to prevent the semiconductor layers 3, 4, 8, 9 and the insulating layer 5 from being defective such as cracks by the connection electrode 2 functioning as a reinforcing material.
  • FIG. 4 is a sectional view showing a diode device according to a third embodiment of the present invention.
  • the diode device 100b of this embodiment differs from the diode device 100 of the first embodiment described above in that the same conductivity type as that of the first semiconductor layer 3 is formed on the second semiconductor layer 4 as shown in FIG.
  • a thin-film bidirectional Zener diode D3 (thin-film diode) is provided.
  • the diode device 100b includes a pn junction type thin-film bidirectional Zener diode D3 provided on the substrate 1 via a Pt / Ti connection electrode 2 formed on the substrate 1 formed of a glass substrate. I have.
  • the thin-film bidirectional Zener diode D3 is stacked on the p-type first semiconductor layer 3, the n-type second semiconductor layer 4 stacked on the first semiconductor layer 3, and the second semiconductor layer 4.
  • the p-type third semiconductor layer 10 is provided.
  • the first semiconductor layer 3 is formed on the connection electrode 2 by a p-type amorphous Cu—Al—O-based semiconductor (p-type semiconductor) that is an amorphous oxide semiconductor material.
  • the second semiconductor layer 4 is formed on the first semiconductor layer 3 by an n-type amorphous Ti—O based semiconductor (n-type semiconductor) that is an amorphous oxide semiconductor material.
  • the third semiconductor layer 10 is formed on the second semiconductor layer 4 with a p-type amorphous Cu—Al—O based semiconductor material that is an amorphous oxide semiconductor material.
  • a pn junction is formed at the junction interface S between the first semiconductor layer 3 and the second semiconductor layer 4 and at the junction interface S between the second semiconductor layer 4 and the third semiconductor layer 10.
  • the first, second, and third semiconductor layers 3, 4, and 10 may be formed of an oxynitride semiconductor material as in the second embodiment described above.
  • the diode device 100b includes an edge of the pn junction interface S between the first semiconductor layer 3 and the second semiconductor layer 4, and an edge of the pn junction interface S between the second semiconductor layer 4 and the third semiconductor layer 10.
  • An insulating layer 5 is provided on the substrate 1 so as to cover the edge.
  • the insulating layer 5 is made of amorphous SiO 2 that is an amorphous oxide insulator material.
  • the first, second, and third semiconductor layers 3, 4, and 10 are formed of an oxynitride semiconductor material, the oxynitride insulator material is used as in the second embodiment.
  • An insulating layer 5 is preferably formed.
  • the upper surface of the insulating layer 5 is connected to the p-type third semiconductor layer 10 of the thin-film bidirectional Zener diode D3 through a through-hole formed in the insulating layer 5, so that the outside of the diode device 100b.
  • An Au / Ti extraction electrode 6 forming an electrode is formed.
  • the upper surface of the insulating layer 5 is connected to the connection electrode 2 through a through hole formed in the insulating layer 5, thereby being connected to the p-type first semiconductor layer 3 of the thin-film bidirectional Zener diode D 3.
  • the Au / Ti lead electrode 7 constituting the external electrode of the diode device 100b is formed.
  • the p-type semiconductor corresponds to “one conductivity type semiconductor” of the present invention
  • the n-type semiconductor corresponds to “the other conductivity type semiconductor” of the present invention
  • the diode device 100b of this embodiment differs in part from the diode device 100 shown in FIG. 1A, but is manufactured by a manufacturing method similar to the manufacturing method of the diode device 100 described with reference to FIG.
  • the diode device 100a of this embodiment can be manufactured.
  • this embodiment can provide the same effects as those of the first embodiment described above.
  • the n-type second semiconductor layer 4 is disposed between the p-type first semiconductor layer 3 and the p-type third semiconductor layer 10, which has been described in the second embodiment.
  • a thin film bidirectional Zener diode D3 having a function substantially equivalent to that of the bidirectional Zener diode can be easily configured. Further, since the thin-film bidirectional Zener diode D3 is formed by arranging the semiconductor layers 3, 4, and 10 in the stacking direction, the area of the diode device 100b can be reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention.
  • the stacking order of the p-type semiconductor and the n-type semiconductor is not limited to that exemplified in the above-described embodiment, and the n-type semiconductor corresponds to the “one-conductivity-type semiconductor” of the present invention.
  • the type semiconductor may correspond to “the other conductivity type semiconductor” of the present invention.
  • each semiconductor layer is formed of an amorphous material, but each semiconductor layer may be formed in a crystalline form. Note that in the case where a thin film diode is formed by stacking a plurality of semiconductor layers at a low temperature, at least a semiconductor layer to be formed later is preferably formed using an amorphous material. If it does in this way, the above-mentioned effect can be produced notably.
  • the thin film Zener diodes D1 and D2 and the thin film bidirectional Zener diode D3 are described as the thin film diodes of the present invention.
  • the thin film having normal general rectifying characteristics is described.
  • a diode may be formed.
  • the diode device when the diode device includes the thin film Zener diodes D1 and D2 and the thin film bidirectional Zener diode D3, the diode device forms an ESD (Electro-Static Discharge) protection circuit for a general-purpose consumer device.
  • ESD Electro-Static Discharge
  • the ESD protection circuit formed using the diode device may be mounted on a substrate or the like included in a component such as a thin film capacitor having low electrostatic resistance. If it does in this way, the component with an ESD protection function provided with an ESD protection function can be provided easily.
  • the breakdown voltages of the thin film Zener diodes D1 and D2 and the thin film bidirectional Zener diode D3 are converted into components such as a thin film capacitor on which the ESD protection circuit is mounted. Is set to be larger than the rated voltage normally used and smaller than about 40V.
  • the type of the substrate may be appropriately selected according to the purpose of use of the diode device, such as a glass substrate, a ceramic substrate, a resin substrate, or a Si substrate.
  • the semiconductor material forming each semiconductor layer and the insulator material forming the moisture-resistant protective film are not limited to the above examples.
  • the n-type semiconductor material may be formed of an In—Zn—O-based semiconductor thin film
  • the p-type semiconductor material may be formed of an Sr—Cu—O-based semiconductor thin film.
  • the moisture-resistant protective film may be formed of amorphous SiN (silicon nitride) or amorphous alumina.
  • the present invention can be widely applied to a diode device including a thin film diode and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 高湿度環境下で使用されたときに薄膜ダイオードのpn接合界面の端縁付近で水の電気分解が生じるのを防止することができる信頼性の高いダイオード装置を提供する。 耐湿保護膜である絶縁層5によりpn接合界面Sの端縁付近に水分が浸入するのを防止することができるので、ダイオード装置100に電圧が印加されたときに生じる電界によりpn接合界面Sの端縁付近で水の電気分解が生じて水素が発生し、第1の半導体層3および第2の半導体層4のそれぞれを形成する酸化物半導体材料や酸窒化物半導体材料が還元されることにより薄膜ダイオードの特性が劣化したり、薄膜ダイオードが機能不全に陥るのを防止することができるので、信頼性の高いダイオード装置100を提供することができる。

Description

ダイオード装置およびその製造方法
 本発明は、薄膜ダイオードを備えるダイオード装置およびその製造方法に関する。
 図5に示す薄膜ダイオード500は、ガラス基板501上に積層されたn型半導体層502と、n型半導体層502上に積層されたp型半導体層503とを備えている。なお、図5は従来のダイオード装置を示す断面図である。
 n型半導体層502は、高周波スパッタ法を用いて室温で成膜されたIn-Ga-Zn-Oアモルファス酸化物薄膜により形成されている。p型半導体層503は、高周波スパッタ法を用いて室温で成膜されたZn-Rh-Oアモルファス酸化物薄膜により形成されている。
 また、電子ビーム蒸着法を用いて、n型半導体層502の上面にTi層およびAu層が順に成膜されることにより、Ti密着層504と、カソード電極であるAu電極505とが形成されている。また、電子ビーム蒸着法を用いて、p型半導体層503の上面にAu層が成膜されることにより、アノード電極であるAu電極506が形成されている。
 このように構成された薄膜ダイオード500のI(電流)-V(電圧)特性は、順方向バイアス電圧が印加されたときに電流が流れ、逆方向バイアス電圧が印加されたときに電流が遮断される、一般的な整流特性を備えている。
特開2007-73702号公報(段落0043~0048、図6~図8など)
 ところで、図5に示すように、n型半導体層502およびp型半導体層503のpn接合界面の端縁が露出していたり、水分が浸透する一般的なモールド用の樹脂層(膜)等で被覆されていると、次のような問題が生じるおそれがある。すなわち、薄膜ダイオード500が高湿度環境下で使用された場合などに、pn接合界面の端縁付近に水分が浸入するおそれがある。
 pn接合界面の端縁付近に水分が浸入すると、pn接合界面の端縁付近において、薄膜ダイオード500に電圧が印加されたときにpn接合界面に生じる電界により水の電気分解が生じて水素が発生するおそれがある。pn接合界面の端縁付近で水素が発生すると、pn接合を形成する酸化物半導体材料が還元されることによりpn接合が解消されて短絡し、薄膜ダイオード500の特性が劣化したり、薄膜ダイオード500が機能不全に陥るおそれがある。
 この発明は、上記した課題に鑑みてなされたものであり、高湿度環境下で使用されたときに薄膜ダイオードのpn接合界面の端縁付近で水の電気分解が生じるのを防止することができる信頼性の高いダイオード装置を提供すると共に、その製造方法を提供することを目的とする。
 上記した目的を達成するために、本発明のダイオード装置は、p型半導体およびn型半導体のいずれか一方の第1の半導体層および前記第1の半導体層上に積層されたp型半導体およびn型半導体のいずれか他方の第2の半導体層を有するpn接合型の薄膜ダイオードと、前記pn接合界面の端縁を被覆する耐湿保護膜とを備え、前記第1の半導体層および前記第2の半導体層のそれぞれが、酸化物半導体材料または酸窒化物半導体材料により形成され、前記耐湿保護膜が、アモルファス酸化物絶縁体材料またはアモルファス酸窒化物絶縁体材料により形成されていることを特徴としている。
 このように構成された発明では、ダイオード装置が備えるpn接合型の薄膜ダイオードが有する第1の半導体層および第2の半導体層のpn接合界面の端縁が、アモルファス酸化物絶縁体材料またはアモルファス酸窒化物絶縁体材料により形成された耐湿保護膜により被覆されている。アモルファス材料により耐湿保護膜が形成されることにより、耐湿保護膜に結晶粒界が生じるのを抑制することができるので、耐湿効果の高い耐湿保護膜を形成することができる。そのため、ダイオード装置が高湿度環境下で使用される場合でも、pn接合界面の端縁付近に水分が浸入するのを防止することができる。
 したがって、ダイオード装置が高湿度環境下で使用されたときに、薄膜ダイオードに電圧が印加されたときに生じる電界により薄膜ダイオードのpn接合界面の端縁付近で水の電気分解が生じて水素が発生するのを防止することができる。そして、第1の半導体層および第2の半導体層のそれぞれを形成する酸化物半導体材料や酸窒化物半導体材料が水素が発生することにより還元されることによって、薄膜ダイオードの特性が劣化したり、薄膜ダイオードが機能不全に陥るのを防止することができる。したがって、信頼性の高いダイオード装置を提供することができる。
 また、耐湿保護膜がpn接合界面の端縁を被覆して形成されるときに、還元雰囲気で耐湿保護膜が形成されると、次のような問題が生じるおそれがある。すなわち、pn接合を構成する第1の半導体層および第2の半導体層のそれぞれを形成する酸化物半導体材料や酸窒化物半導体材料が還元されて、薄膜ダイオードが機能不全に陥ったり、薄膜ダイオードの特性が劣化するおそれがある。しかしながら、耐湿保護膜が酸化物絶縁体材料や酸窒化物絶縁体材料により酸素含有雰囲気中で形成されることにより、第1の半導体層および第2の半導体層を形成する半導体材料を還元する還元雰囲気となりにくいので、薄膜ダイオードの特性が良好で信頼性の高いダイオード装置を提供することができる。
 前記第2の半導体層は、アモルファス材料により形成されているとよい。
 p型およびn型の半導体層が積層される場合に、先に形成された一方の導電型の半導体層が結晶質であり、この結晶質の半導体層上に形成されて積層される他方の導電型の半導体層も結晶質であると、次のような問題が生じるおそれがある。すなわち、後に形成される半導体層の初期成長時は先に形成された半導体層の結晶格子の影響を受けるので、後に形成される半導体層の初期成長層は結晶質に形成されにくい。したがって、先に形成された半導体層に後から形成されて積層される半導体層の初期成長層において、薄膜ダイオードの特性を劣化させたり、薄膜ダイオードを機能不全にする結晶構造の乱れた異相が生じやすい。
 しかしながら、第1の半導体層に積層されて形成される第2の半導体層がアモルファス材料により形成されることによって、第2の半導体層の初期成長層において薄膜ダイオードの特性を劣化させる異相が形成されるのを抑制することができる。したがって、さらに特性が良好で信頼性が高い薄膜ダイオードを備えるダイオード装置を提供することができる。
 また、前記第1の半導体層が、アモルファス材料により形成されているとよい。
 このように構成すると、第1、第2の半導体層および耐湿保護膜のそれぞれがアモルファス材料により形成されることによって、pn接合界面およびその端縁を被覆する耐湿保護膜がいずれもアモルファス材料により形成される。したがって、原子構造レベルでの材料の整合性がよく、さらに特性が良好で信頼性が高い薄膜ダイオードを備えるダイオード装置を提供することができる。
 また、前記薄膜ダイオードが薄膜ツェナーダイオードであるとよい。
 ツェナーダイオードは、逆方向バイアス電圧が印加された場合であっても、逆方向バイアス電圧の大きさが降伏電圧以上の大きさであれば、pn接合部分が高電界状態となって電子なだれが生じることにより電流が流れる性質を備えている(降伏挙動)。したがって、ツェナーダイオードが降伏挙動領域において動作している場合には、pn接合界面が高電界状態にあるので、pn接合界面の端縁付近において非常に水の電気分解が生じやすく水素が発生しやすい。
 しかしながら、第1の半導体層および第2の半導体層それぞれのキャリア濃度が制御されることにより薄膜ツェナーダイオードが構成されている場合であっても、薄膜ツェナーダイオードのpn接合界面の端縁付近に水分が浸入するのが耐湿保護膜により防止されているので、次のような効果を奏することができる。すなわち、薄膜ツェナーダイオードが降伏挙動領域において動作しており、pn接合界面が高電界状態であっても、水分の浸入が防止されているので、pn接合界面の端縁付近において水の電気分解が生じて水素が発生するのを防止することができる。したがって、pn接合を形成する酸化物または酸窒化物による半導体材料が還元されることにより、薄膜ツェナーダイオードの特性が劣化したり、薄膜ツェナーダイオードが機能不全に陥るのを防止することができる。
 また、2個の前記薄膜ツェナーダイオードを備え、前記両薄膜ツェナーダイオードは、互いの前記第1の半導体層および前記第2の半導体層が同側に配置されて対向するように並設され、前記第1の半導体層および前記第2の半導体層のうちのいずれかが互いに接続電極により接続されることによって逆方向に直列接続されていてもよい。
 このように構成すると、2個の薄膜ツェナーダイオードが逆方向に直列接続されて形成された回路(以下「双方向ツェナーダイオード」と称する)を備えるダイオード装置を提供することができる。双方向ツェナーダイオードでは、一方の薄膜ツェナーダイオードが例えば静電気等に起因する過電圧により降伏した場合には、当該過電圧は他方のツェナーダイオードに対して必ず順方向に印加される。そのため、一方の薄膜ツェナーダイオードが降伏した場合には、双方向ツェナーダイオードに必ず電流パスが形成される。
 したがって、双方向ツェナーダイオードを用いて、薄膜キャパシタ等の静電気耐性の低い部品を静電気等に起因する過電圧から保護するための信頼性の高い保護回路を安価に構成することができる。すなわち、双方向ツェナーダイオードを用いて形成された保護回路を保護対象の部品に例えば並列接続することにより、プラス・マイナス両極性の過電圧に対して保護回路に電流パスが形成される。したがって、電流パスが形成された保護回路により過電圧が保護対象の部品に印加されるのが防止されるので、薄膜キャパシタ等の静電気耐性の低い部品を、静電気等に起因するプラス・マイナス両極性の過電圧から確実に保護することができる。
 また、前記薄膜ツェナーダイオードは、前記第2の半導体層上に積層され、酸化物半導体材料または酸窒化物半導体材料により形成された前記一方の導電型の第3の半導体層をさらに備えていてもよい。
 このようにすると、一方の導電型の半導体により形成された第1の半導体層および第3の半導体層の間に、他方の導電型の半導体により形成された第2の半導体層が配置されることにより、双方向ツェナーダイオードと等価な回路を構成することができる。また、双方向ツェナーダイオードが、各半導体層が積層方向に配置されることにより形成されるので、ダイオード装置の小面積化を図ることができる。
 また、樹脂基板と、前記樹脂基板上に形成された平板状の金属電極とをさらに備え、前記薄膜ツェナーダイオードおよび前記耐湿保護膜が、平面視において前記金属電極の形成領域内に配置されるようにしてもよい。
 このように構成すると、各種の使用環境下で樹脂基板に歪みが生じた場合でも、薄膜ツェナーダイオードおよび耐湿保護膜が、平面視において、補強材として機能する平板状の金属電極の形成領域内に配置されている。したがって、各半導体層および耐湿保護膜にクラック等の欠陥が生じるのを防止することができるので、信頼性の高い薄膜ツェナーダイオードを備えるダイオード装置を提供することができる。
 また、前記薄膜ツェナーダイオードの降伏電圧が40Vよりも小さいとよい。
 このようにすると、薄膜ツェナーダイオードを備えるダイオード装置を、一般用途の民生機器のESD(静電気放電:Electro-Static Discharge)保護回路を形成するのに使用することができる。
 また、本発明のダイオード装置の製造方法は、請求項4ないし8のいずれかに記載のダイオード装置を製造する製造方法において、前記各半導体層が形成される雰囲気の酸素分圧または窒素分圧を制御することでキャリア濃度を調整して、前記薄膜ツェナーダイオードの降伏電圧を制御することを特徴としている。
 このようにすると、ダイオード装置が備える薄膜ツェナーダイオードの降伏電圧を容易に調整することができる。
 また、前記耐湿保護膜は、スパッタ法または真空蒸着法により形成され、前記各半導体層および前記耐湿保護膜が形成される雰囲気の酸素分圧がほぼ等しくなるようにするとよい。
 このようにすると、酸化物半導体材料または酸窒化物半導体材料により形成されるpn接合界面において酸素量の整合性が良い。また、pn接合界面の端縁を被覆する耐湿保護膜が形成される雰囲気の酸素分圧も同じであるため、pn接合界面の特性に劣化が生じにくく、さらに信頼性が高い薄膜ツェナーダイオードを備えるダイオード装置を提供することができる。
 本発明によれば、耐湿保護膜によりpn接合界面の端縁付近に水分が浸入するのを防止することができるので、薄膜ダイオードに電圧が印加されたときに生じる電界により薄膜ダイオードのpn接合界面の端縁付近で水の電気分解が生じて水素が発生するのを防止することができる。したがって、第1の半導体層および第2の半導体層のそれぞれを形成する酸化物半導体材料や酸窒化物半導体材料が還元されることにより薄膜ダイオードの特性が劣化したり、薄膜ダイオードが機能不全に陥るのを防止することができるので、信頼性の高いダイオード装置を提供することができる。
本発明の第1実施形態にかかるダイオード装置を示す図であって、(a)は断面図、(b)は等価回路を示す図である。 ダイオード装置の製造方法の一例を示す図であって、(a)~(d)はそれぞれ異なる状態を示す。 本発明の第2実施形態にかかるダイオード装置を示す図であって、(a)は断面図、(b)は等価回路を示す図である。 本発明の第3実施形態にかかるダイオード装置を示す断面図である。 従来のダイオード装置を示す断面図である。
 <第1実施形態>
 本発明の第1実施形態について図1および図2を参照して説明する。図1は本発明の第1実施形態にかかるダイオード装置を示す図であって、(a)は断面図、(b)は等価回路を示す図、図2はダイオード装置の製造方法の一例を示す図であって、(a)~(d)はそれぞれ異なる状態を示す。
 (構成)
 ダイオード装置100の概略構成について説明する。
 ダイオード装置100は、この実施形態では、ガラス基板により形成される基板1上に形成されたPt/Ti接続電極2を介して基板1上に設けられたpn接合型の薄膜ツェナーダイオードD1を備えている。薄膜ツェナーダイオードD1は、p型の第1の半導体層3と、第1の半導体層3上に積層されたn型の第2の半導体層4とを備えている。
 第1の半導体層3は、接続電極2上にアモルファス酸化物半導体材料であるp型アモルファスCu-Al-O系半導体(p型半導体)により形成されている。第2の半導体層4は、第1の半導体層3上にアモルファス酸化物半導体材料であるn型アモルファスTi-O系半導体(n型半導体)により形成されている。なお、第1の半導体層3と第2の半導体層4との間の接合界面Sにおいてpn接合が形成されている。
 また、ダイオード装置100は、薄膜ツェナーダイオードD1が有する第1の半導体層3および第2の半導体層4のpn接合界面Sの端縁と、接続電極2を被覆して基板1上に設けられた絶縁層5(本発明の「耐湿保護膜」に相当)とを備えている。絶縁層5は、アモルファス酸化物絶縁体材料であるアモルファスSiOにより形成されている。
 また、絶縁層5の上面には、絶縁層5に形成された透孔を介してn型の第2の半導体層4に接続されることにより、ダイオード装置100の外部電極を成すAu/Ti引出電極6が形成されている。また、絶縁層5の上面には、絶縁層5に形成された透孔を介して接続電極2に接続されることによりp型の第1の半導体層3に接続されることによって、ダイオード装置100の外部電極を成すAu/Ti引出電極7が形成されている。
 以上のように、この実施形態では、p型半導体が本発明の「一方の導電型の半導体」に相当し、n型半導体が本発明の「他方の導電型の半導体」に相当する。
 (製造方法)
 ダイオード装置100の製造方法の一例について説明する。
 まず、図2(a)に示すように、基板1上に、リフトオフ法を用いて、約50nmの厚みのTi膜が成膜され、さらに、約300nmの厚みのPt膜が成膜されることにより、接続電極2が形成される。
 次に、RFスパッタ法を用いて、ターゲット:CuAlO、圧力=0.6Pa、Ar/O比=84/16、RF電力=300W、基板温度=室温、の条件で、p型アモルファスCu-Al-O系半導体材料によるp型半導体膜が約300nmの厚みで成膜される。続いて、DC反応性スパッタ法を用いて、ターゲット:Ti、圧力=0.6Pa、Ar/O比=84/16、DC電力=950W、基板温度=室温、の条件で、n型アモルファスTi-O系半導体材料によるn型半導体膜が約500nmの厚みで成膜される。
 続いて、図2(b)に示すように、フォトリソグラフィおよびイオンミリング法を用いてp型半導体膜およびn型半導体膜が加工されて、接続電極2上に第1の半導体層3および第2の半導体層4が積層された状態で形成されることにより薄膜ツェナーダイオードD1が形成される。なお、後に続く工程で形成される絶縁層5との密着性、および、絶縁層5による被覆性を向上するために、第1の半導体層3および第2の半導体層4は、その側面が傾斜化された形状に加工される。具体的には、フォトリソグラフィ条件が制御されることによりフォトレジスト形状が傾斜化された後に、イオンミリング法を用いてp型半導体膜およびn型半導体膜が加工される。そして、フォトレジストが酸素アッシングにより除去される。
 次に、RFスパッタ法を用いて、ターゲット:SiO、圧力=0.6Pa、Ar/O比=84/16、RF電力=600W、基板温度=室温、の条件で、アモルファスSiOによる絶縁層5が約1000nmの厚みで、少なくともpn接合界面Sの端縁を被覆するように形成される。そして、図2(c)に示すように、フォトリソグラフィおよびイオンミリング法を用いて、絶縁層5が所定形状に加工される。そして、フォトレジストが酸素アッシングにより除去される。
 続いて、図2(d)に示すように、リフトオフ法を用いて、約50nmの厚みのTi膜が成膜され、さらに、約300nmの厚みのAu膜が成膜されることにより、引出電極6,7が形成されることにより、ダイオード装置100が完成する。
 なお、この実施形態では、薄膜ツェナーダイオードD1を構成するp型の第1の半導体層3およびn型の第2の半導体層4それぞれのキャリア濃度が、
(第1の半導体層3のキャリア濃度)<(第2の半導体層4のキャリア濃度)
となるように設定されている。また、薄膜ツェナーダイオードD1の降伏電圧はp型の第1の半導体層3のキャリア濃度が調整されることにより制御される。
 すなわち、この実施形態では、第1の半導体層3が形成されるときの雰囲気の酸素分圧が制御されることで第1の半導体層3のキャリア濃度が調整されることにより、薄膜ツェナーダイオードD1の降伏電圧が制御されている。具体的には、p型アモルファスCu-Al-O系半導体材料により第1の半導体層3が形成されるときの雰囲気が、圧力=0.6Pa、Ar/O比=84/16、に制御されることにより、薄膜ツェナーダイオードD1の降伏電圧が約12Vに制御されている。
 このように構成されたダイオード装置100は、他の配線基板等にはんだ等を用いて実装されることにより、例えば、静電気等に起因する過電圧から各種の部品を保護するための保護回路を形成するのに使用される。
 以上のように、この実施形態では、ダイオード装置100が備えるpn接合型の薄膜ツェナーダイオードD1が有する第1の半導体層3および第2の半導体層4のpn接合界面Sの端縁が、アモルファス酸化物絶縁体材料により形成され耐湿保護膜としての機能を有する絶縁層5により被覆されている。アモルファス材料により絶縁層5が形成されることにより、絶縁層5に結晶粒界が生じるのを抑制することができるので、耐湿効果の高い絶縁層5を形成することができる。そのため、ダイオード装置100が高湿度環境下で使用される場合でも、pn接合界面Sの端縁付近に水分が浸入するのを防止することができる。
 したがって、ダイオード装置100が高湿度環境下で使用されたときに、薄膜ツェナーダイオードD1に電圧が印加されたときに生じる電界により薄膜ツェナーダイオードのpn接合界面Sの端縁付近で水の電気分解が生じて水素が発生するのを防止することができる。そして、第1の半導体層3および第2の半導体層4のそれぞれを形成する酸化物半導体材料が水素が発生することにより還元されることによって、薄膜ツェナーダイオードD1の特性が劣化したり、薄膜ツェナーダイオードD1が機能不全に陥るのを防止することができる。したがって、信頼性の高いダイオード装置100を提供することができる。
 また、絶縁層5がpn接合界面Sの端縁を被覆して形成されるときに、還元雰囲気で絶縁層5が形成されると、次のような問題が生じるおそれがある。すなわち、pn接合を構成する第1の半導体層3および第2の半導体層4のそれぞれを形成する酸化物半導体材料が還元されて、薄膜ツェナーダイオードD1が機能不全に陥ったり、薄膜ツェナーダイオードD1の特性が劣化するおそれがある。しかしながら、絶縁層5が酸化物絶縁体材料により酸素含有雰囲気中で形成されることにより、第1の半導体層3および第2の半導体層4を形成する酸化物半導体材料を還元する還元雰囲気となりにくいので、薄膜ツェナーダイオードD1の特性が良好で信頼性の高いダイオード装置100を提供することができる。
 また、ダイオード装置100は、第1の半導体層3および第2の半導体層4それぞれのキャリア濃度が制御されることにより構成された薄膜ツェナーダイオードD1を備えている。薄膜ツェナーダイオードD1は、逆方向バイアス電圧が印加された場合であっても、逆方向バイアス電圧の大きさが降伏電圧以上の大きさであれば、pn接合部分が高電界状態となって電子なだれが生じることにより電流が流れる性質を備えている(降伏挙動)。したがって、薄膜ツェナーダイオードD1が降伏挙動領域において動作している場合には、pn接合界面Sが高電界状態にあるので、pn接合界面Sの端縁付近において非常に水の電気分解が生じやすく水素が発生しやすい。
 しかしながら、絶縁層5により、薄膜ツェナーダイオードD1のpn接合界面Sの端縁付近への水分の浸入が絶縁層5により防止されているので、次のような効果を奏することができる。すなわち、薄膜ツェナーダイオードD1が降伏挙動領域において動作しており、pn接合界面Sが高電界状態であっても、絶縁層5により水分の浸入が防止されているので、pn接合界面Sの端縁付近において水の電気分解が生じて水素が発生するのを防止することができる。したがって、pn接合を形成する酸化物による半導体材料が還元されることにより、薄膜ツェナーダイオードD1の特性が劣化したり、薄膜ツェナーダイオードD1が機能不全に陥るのを防止することができる。
 また、複数の半導体層が積層される場合に、先に形成された半導体層が結晶質であり、後に形成されてこの結晶質の半導体層に積層される半導体層も結晶質であると、次のような問題が生じるおそれがある。すなわち、後に形成される半導体層の初期成長時は先に形成された半導体層の結晶格子の影響を受けるので、後に形成される半導体層の初期成長層は結晶質に形成されにくい。したがって、後に形成された半導体層の初期成長層において、薄膜ダイオード(薄膜ツェナーダイオード)の特性を劣化させたり、薄膜ダイオードを機能不全にする結晶構造の乱れた異相が生じやすい。
 しかしながら、この実施形態の薄膜ツェナーダイオードD1では、第1の半導体層3に積層されて形成される第2の半導体層4がアモルファス材料により形成されている。したがって、第2の半導体層4の初期成長層において薄膜ツェナーダイオードD1の特性を劣化させる異相が形成されるのを抑制することができる。したがって、さらに特性が良好で信頼性が高い薄膜ツェナーダイオードD1を備えるダイオード装置100を提供することができる。
 さらに、この実施形態の薄膜ツェナーダイオードD1では、第1、第2の半導体層3,4および絶縁層5のそれぞれがアモルファス材料により形成されている。したがって、pn接合界面Sおよびその端縁を被覆する絶縁層5のいずれもがアモルファス材料により形成されているので、原子構造レベルでの材料の整合性がよく、さらに特性が良好で信頼性が高い薄膜ツェナーダイオードD1を備えるダイオード装置100を提供することができる。
 また、この実施形態では、第1、第2の半導体層3,4が形成される雰囲気の酸素分圧が制御されることでキャリア濃度が調整されて、薄膜ツェナーダイオードD1の降伏電圧が制御されている。したがって、ダイオード装置100が備える薄膜ツェナーダイオードD1の降伏電圧を、第1、第2の半導体層3,4が形成される雰囲気の酸素分圧を制御するだけで容易に調整することができる。
 また、この実施形態では、第1、第2の半導体層3,4および絶縁層5は、スパッタ法により形成されるが、第1、第2の半導体層3,4および絶縁層5が形成される雰囲気の酸素分圧がほぼ等しくなるように条件設定されている。したがって、酸化物半導体材料により形成された第1、第2の半導体層3,4のpn接合界面Sにおいて酸素量の整合性が良い。また、pn接合界面Sの端縁を被覆する絶縁層5が形成される雰囲気の酸素分圧も、第1、第2の半導体層3,4が形成される雰囲気の酸素分圧と同じであるため、pn接合界面Sの特性に劣化が生じにくく、さらに信頼性が高い薄膜ツェナーダイオードD1を備えるダイオード装置100を提供することができる。
 <第2実施形態>
 本発明の第2実施形態について図3を参照して説明する。図3は本発明の第2実施形態にかかるダイオード装置を示す図であって、(a)は断面図、(b)は等価回路を示す図である。
 この実施形態のダイオード装置100aが、上記した第1実施形態のダイオード装置100と異なるのは、図3(a),(b)に示すように、2個の薄膜ツェナーダイオードD1,D2が逆方向に直列接続されて形成された回路(双方向ツェナーダイオード)を備えている点である。以下の説明では、上記した第1実施形態と異なる点を中心に説明し、その他の構成は上記した第1実施形態と同様であるため、同一符号を付すことによりその構成の説明は省略する。
 ダイオード装置100aは、この実施形態では、樹脂基板により形成された基板1上に形成されたPt/Ti接続電極2を介して基板1上に設けられたpn接合型の2個の薄膜ツェナーダイオードD1,D2を備えている。なお、この実施形態では、基板1上に平板状の接続電極2が形成されている。
 また、薄膜ツェナーダイオードD1は、p型の第1の半導体層3と、第1の半導体層3上に積層されたn型の第2の半導体層4とを備えている。また、薄膜ツェナーダイオードD2は、p型の第1の半導体層8と、第1の半導体層8上に積層されたn型の第2の半導体層9とを備えている。
 第1の半導体層3,8は、接続電極2上にアモルファス酸窒化物半導体材料であるp型アモルファスCu-Al-O-N系半導体(p型半導体)により形成されている。第2の半導体層4,9は、第1の半導体層3,8上にアモルファス酸窒化物半導体材料であるn型アモルファスTi-O-N系半導体(n型半導体)により形成されている。なお、第1の半導体層3と第2の半導体層4との間の接合界面Sおよび第1の半導体層8と第2の半導体層9との間の接合界面Sにおいてpn接合が形成されている。
 以上のように、図3(a)に示すように、各薄膜ツェナーダイオードD1,D2は、互いの第1の半導体層3,8および第2の半導体層4,9が同側に配置されて対向するように並設されている。そして、各薄膜ツェナーダイオードD1,D2それぞれのp型の第1の半導体層3,8が互いに接続電極2により接続されている。したがって、図3(b)の等価回路に示すように、2個のツェナーダイオードD1,D2は逆方向に直列接続されている。
 また、ダイオード装置100aは、薄膜ツェナーダイオードD1が有する第1の半導体層3および第2の半導体層4のpn接合界面Sの端縁と、薄膜ツェナーダイオードD2が有する第1の半導体層8および第2の半導体層9のpn接合界面Sの端縁とを被覆して接続電極2上に設けられた絶縁層5とを備えている。絶縁層5は、アモルファス酸窒化物絶縁体材料であるアモルファスSiONにより形成されている。
 なお、この実施形態では、図3(a)に示すように、各薄膜ツェナーダイオードD1,D2および絶縁層5は、平面視において接続電極2の形成領域内に配置されている。
 また、絶縁層5の上面には、絶縁層5に形成された透孔を介して薄膜ツェナーダイオードD1のn型の第2の半導体層4に接続されることにより、ダイオード装置100aの外部電極を成すAu/Ti引出電極6が形成されている。また、絶縁層5の上面には、絶縁層5に形成された透孔を介して薄膜ツェナーダイオードD2のn型の第2の半導体層9に接続されることにより、ダイオード装置100aの外部電極を成すAu/Ti引出電極7が形成されている。
 以上のように、この実施形態では、p型半導体が本発明の「一方の導電型の半導体」に相当し、n型半導体が本発明の「他方の導電型の半導体」に相当する。
 なお、この実施形態のダイオード装置100aは、基板1が樹脂基板により形成されており、図1(a)に示すダイオード装置100と一部の構成が異なるが、図2を参照して説明したダイオード装置100の製造方法と同様の製造方法によりこの実施形態のダイオード装置100aを製造することができる。
 具体的には、第1の半導体層3,8、第2の半導体層4,9および絶縁層5がスパッタ法により形成されるときの条件を、例えば、
圧力=0.7Pa、Ar/O/N比=10/4/86
のように設定すればよい。
 また、この実施形態では、第1の半導体層3、8および第2の半導体層4,9が形成されるときの雰囲気の酸素分圧および窒素分圧が制御されることで第1の半導体層3,8および第2の半導体層4,9のキャリア濃度が調整されることにより、薄膜ツェナーダイオードD1,D2の降伏電圧が制御されている。
 以上のように、この実施形態では上記した第1実施形態と同様の効果を奏することができる。
 また、2個の薄膜ツェナーダイオードD1,D2が逆方向に直列接続されて形成された信頼性の高い双方向ツェナーダイオードを備えるダイオード装置100aを安価に提供することができる。双方向ツェナーダイオードでは、一方の薄膜ツェナーダイオードが例えば静電気等に起因する過電圧により降伏した場合には、当該過電圧は他方のツェナーダイオードに対して必ず順方向に印加される。そのため、一方の薄膜ツェナーダイオードが降伏した場合には、双方向ツェナーダイオードに必ず電流パスが形成される。
 したがって、双方向ツェナーダイオードを備えるダイオード装置100aを用いて、薄膜キャパシタ等の静電気耐性の低い部品を静電気等に起因する過電圧から保護するための信頼性の高い保護回路を安価に構成することができる。すなわち、ダイオード装置100aを用いて形成された保護回路を保護対象の部品に例えば並列接続することにより、プラス・マイナス両極性の過電圧に対して保護回路に電流パスが形成される。したがって、電流パスが形成された保護回路により過電圧が保護対象の部品に印加されるのが防止されるので、薄膜キャパシタ等の静電気耐性の低い部品を、静電気等に起因するプラス・マイナス両極性の過電圧から確実に保護することができる。
 また、この実施形態では、薄膜ツェナーダイオードD1,D2および絶縁層5が樹脂基板により形成された基板1上に設けられている。しかしながら、各種の使用環境下で基板1に歪みが生じた場合でも、薄膜ツェナーダイオードD1,D2および絶縁層5が、平面視において、補強材として機能する平板状の接続電極2の形成領域内に配置されている。
 したがって、各半導体層3,4,8,9および絶縁層5にクラック等の欠陥が生じるのを防止することができるので、信頼性の高い薄膜ツェナーダイオードD1,D2を備えるダイオード装置100aを提供することができる。以上のように、接続電極2が本発明の「金属電極」として機能している。
 なお、この実施形態では、各ツェナーダイオードD1,D2の第1の半導体層3,8が接続電極2により接続されることによって、各ツェナーダイオードD1,D2が逆方向に直列接続されている。しかしながら、各ツェナーダイオードD1,D2の第2の半導体層4,9が、例えば、各第2の半導体層4,9上に積層された接続電極により接続されることによって、各ツェナーダイオードD1,D2が逆方向に直列接続されるようにしてもよい。
 この場合には、各第1の半導体層3,8それぞれに接続される引出電極を基板1上に個別に2個設け、引出電極6が、第1の半導体層3に接続された引出電極に接続されることにより第1の半導体層3に接続され、引出電極7が、第1の半導体層8に接続された引出電極に接続されることにより第1の半導体層8に接続されるようにするとよい。
 また、この実施形態では、樹脂基板により形成される基板1が採用されているが、上記した第1実施形態と同様のガラス基板や、セラミック基板やSi基板により基板1が形成されていてもよい。ガラス基板やセラミック基板やSi基板により基板1が形成されている場合に、基板1上に形成された樹脂層上に平板状の接続電極2が設けられ、平面視において、接続電極2の形成領域内に配置されるように、薄膜ツェナーダイオードD1,D2および絶縁層5が接続電極2上に設けられていてもよい。このようにしても、補強材として機能する接続電極2により、各半導体層3,4,8,9および絶縁層5にクラック等の欠陥が生じるのを防止することができる。
 <第3実施形態>
 本発明の第3実施形態について図4を参照して説明する。図4は本発明の第3実施形態にかかるダイオード装置を示す断面図である。
 この実施形態のダイオード装置100bが、上記した第1実施形態のダイオード装置100と異なるのは、図4に示すように、第2の半導体層4上に第1の半導体層3と同一の導電型(p型)の第3の半導体層10が積層されることにより、2個の薄膜ツェナーダイオードD1,D2が逆方向に直列接続されて形成された回路(双方向ツェナーダイオード)とほぼ等価な機能を備える薄膜双方向ツェナーダイオードD3(薄膜ダイオード)が形成されている点である。以下の説明では、上記した第1実施形態と異なる点を中心に説明し、その他の構成は上記した第1実施形態と同様であるため、同一符号を付すことによりその構成の説明は省略する。
 ダイオード装置100bは、この実施形態では、ガラス基板により形成された基板1上に形成されたPt/Ti接続電極2を介して基板1上に設けられたpn接合型の薄膜双方向ツェナーダイオードD3を備えている。
 薄膜双方向ツェナーダイオードD3は、p型の第1の半導体層3と、第1の半導体層3上に積層されたn型の第2の半導体層4と、第2の半導体層4上に積層されたp型の第3の半導体層10とを備えている。第1の半導体層3は、接続電極2上にアモルファス酸化物半導体材料であるp型アモルファスCu-Al-O系半導体(p型半導体)により形成されている。第2の半導体層4は、第1の半導体層3上にアモルファス酸化物半導体材料であるn型アモルファスTi-O系半導体(n型半導体)により形成されている。第3の半導体層10は、第2の半導体層4上にアモルファス酸化物半導体材料であるp型アモルファスCu-Al-O系半導体材料により形成されている。
 なお、第1の半導体層3と第2の半導体層4との間の接合界面Sおよび第2の半導体層4と第3の半導体層10との間の接合界面Sにおいてpn接合が形成されている。また、第1、第2、第3の半導体層3,4,10が、上記し第2実施形態と同様に酸窒化物半導体材料により形成されていてもよい。
 また、ダイオード装置100bは、第1の半導体層3および第2の半導体層4のpn接合界面Sの端縁と、第2の半導体層4および第3の半導体層10のpn接合界面Sの端縁とを被覆して基板1上に設けられた絶縁層5を備えている。絶縁層5は、アモルファス酸化物絶縁体材料であるアモルファスSiOにより形成されている。なお、第1、第2、第3の半導体層3,4,10が酸窒化物半導体材料により形成されている場合には、上記した第2実施形態と同様に、酸窒化物絶縁体材料により絶縁層5が形成されるとよい。
 また、絶縁層5の上面には、絶縁層5に形成された透孔を介して薄膜双方向ツェナーダイオードD3のp型の第3の半導体層10に接続されることにより、ダイオード装置100bの外部電極を成すAu/Ti引出電極6が形成されている。また、絶縁層5の上面には、絶縁層5に形成された透孔を介して接続電極2に接続されることにより薄膜双方向ツェナーダイオードD3のp型の第1の半導体層3に接続されることによって、ダイオード装置100bの外部電極を成すAu/Ti引出電極7が形成されている。
 以上のように、この実施形態では、p型半導体が本発明の「一方の導電型の半導体」に相当し、n型半導体が本発明の「他方の導電型の半導体」に相当する。
 なお、この実施形態のダイオード装置100bは、図1(a)に示すダイオード装置100と一部の構成が異なるが、図2を参照して説明したダイオード装置100の製造方法と同様の製造方法によりこの実施形態のダイオード装置100aを製造することができる。
 以上のように、この実施形態では上記した第1実施形態と同様の効果を奏することができる。
 また、p型の第1の半導体層3およびp型の第3の半導体層10の間に、n型の第2の半導体層4が配置されることにより、上記した第2実施形態で説明した双方向ツェナーダイオードとほぼ等価な機能を有する薄膜双方向ツェナーダイオードD3を簡単に構成することができる。また、薄膜双方向ツェナーダイオードD3が、各半導体層3,4,10が積層方向に配置されることにより形成されるので、ダイオード装置100bの小面積化を図ることができる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、p型半導体およびn型半導体の積層順は上記した実施形態に例示されたものに限定されるものではなく、n型半導体が本発明の「一方の導電型の半導体」に相当し、p型半導体が本発明の「他方の導電型の半導体」に相当していてもよい。
 また、上記した実施形態では、各半導体層はアモルファス材料により形成されているが、各半導体層が結晶質に形成されていてもよい。なお、特に低温で複数の半導体層が積層されて薄膜ダイオードが形成される場合には、少なくとも、後に形成される半導体層をアモルファス材料により形成するとよい。このようにすると、上記した効果を特に顕著に奏することができる。
 また、上記した実施形態では、本発明の薄膜ダイオードとして、薄膜ツェナーダイオードD1,D2および薄膜双方向ツェナーダイオードD3が形成される例を挙げて説明したが、通常の一般的な整流特性を備える薄膜ダイオードが形成されてもよい。
 また、ダイオード装置が、薄膜ツェナーダイオードD1,D2および薄膜双方向ツェナーダイオードD3を備える場合には、ダイオード装置を、一般用途の民生機器のESD(静電気放電:Electro-Static Discharge)保護回路を形成するのに使用することができる。この場合には、ダイオード装置を用いて形成されたESD保護回路が、静電気耐性の低い薄膜キャパシタ等の部品が備える基板等に搭載されるようにするとよい。このようにすると、ESD保護機能を備えるESD保護機能付部品を簡単に提供することができる。
 また、ダイオード装置がESD保護回路を形成するのに使用される場合には、薄膜ツェナーダイオードD1,D2および薄膜双方向ツェナーダイオードD3の降伏電圧を、ESD保護回路が搭載される薄膜キャパシタ等の部品が通常使用される定格電圧よりも大きく設定すると共に、約40Vよりも小さくなるように設定するとよい。
 また、ダイオード装置が基板を備える場合には、ガラス基板やセラミック基板、樹脂基板、Si基板など、ダイオード装置の使用目的に応じて適宜基板の種類を選択すればよい。
 また、各半導体層を形成する半導体材料や耐湿保護膜を形成する絶縁体材料は上記した例に限定されるものではない。例えば、n型半導体材料としては、In-Zn-O系半導体薄膜で形成されてもよく、p型半導体材料としてはSr-Cu-O系半導体薄膜で形成されてもよい。例えば、耐湿保護膜が、アモルファスSiN(シリコンナイトライド)やアモルファスアルミナにより形成されていてもよい。
 そして、薄膜ダイオードを備えるダイオード装置およびその製造方法に本発明を広く適用することができる。
 1  基板(樹脂基板)
 2  接続電極(金属電極)
 3,8  第1の半導体層
 4,9  第2の半導体層
 5  絶縁層(耐湿保護膜)
 100,100a,100b  ダイオード装置
 D1,D2  薄膜ツェナーダイオード(薄膜ダイオード)
 D3  薄膜双方向ツェナーダイオード(薄膜ダイオード)
 S  接合界面

Claims (10)

  1.  p型半導体およびn型半導体のいずれか一方の第1の半導体層および前記第1の半導体層上に積層されたp型半導体およびn型半導体のいずれか他方の第2の半導体層を有するpn接合型の薄膜ダイオードと、
     前記pn接合界面の端縁を被覆する耐湿保護膜とを備え、
     前記第1の半導体層および前記第2の半導体層のそれぞれが、酸化物半導体材料または酸窒化物半導体材料により形成され、
     前記耐湿保護膜が、アモルファス酸化物絶縁体材料またはアモルファス酸窒化物絶縁体材料により形成されている
     ことを特徴とするダイオード装置。
  2.  前記第2の半導体層は、アモルファス材料により形成されていることを特徴とする請求項1に記載のダイオード装置。
  3.  前記第1の半導体層が、アモルファス材料により形成されていることを特徴とする請求項2に記載のダイオード装置。
  4.  前記薄膜ダイオードが薄膜ツェナーダイオードであることを特徴とする請求項1ないし3のいずれかに記載のダイオード装置。
  5.  2個の前記薄膜ツェナーダイオードを備え、
     前記両薄膜ツェナーダイオードは、
     互いの前記第1の半導体層および前記第2の半導体層が同側に配置されて対向するように並設され、前記第1の半導体層および前記第2の半導体層のうちのいずれかが互いに接続電極により接続されることによって逆方向に直列接続されている
     ことを特徴とする請求項4に記載のダイオード装置。
  6.  前記薄膜ツェナーダイオードは、前記第2の半導体層上に積層され、酸化物半導体材料または酸窒化物半導体材料により形成された前記一方の導電型の第3の半導体層をさらに備えることを特徴とする請求項4に記載のダイオード装置。
  7.  樹脂基板と、
     前記樹脂基板上に形成された平板状の金属電極とをさらに備え、
     前記薄膜ツェナーダイオードおよび前記耐湿保護膜が、平面視において前記金属電極の形成領域内に配置される
     ことを特徴とする請求項4ないし6のいずれかに記載のダイオード装置。
  8.  前記薄膜ツェナーダイオードの降伏電圧が40Vよりも小さいことを特徴とする請求項4ないし7のいずれかに記載のダイオード装置。
  9.  請求項4ないし8のいずれかに記載のダイオード装置を製造する製造方法において、
     前記各半導体層が形成される雰囲気の酸素分圧または窒素分圧を制御することでキャリア濃度を調整して、前記薄膜ツェナーダイオードの降伏電圧を制御することを特徴とするダイオード装置の製造方法。
  10.  前記耐湿保護膜は、スパッタ法または真空蒸着法により形成され、前記各半導体層および前記耐湿保護膜が形成される雰囲気の酸素分圧がほぼ等しいことを特徴とする請求項9に記載のダイオード装置の製造方法。
     
PCT/JP2014/071154 2013-08-19 2014-08-11 ダイオード装置およびその製造方法 WO2015025754A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559022A JP5783340B2 (ja) 2013-08-19 2014-08-11 ダイオード装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-169453 2013-08-19
JP2013169453 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025754A1 true WO2015025754A1 (ja) 2015-02-26

Family

ID=52483531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071154 WO2015025754A1 (ja) 2013-08-19 2014-08-11 ダイオード装置およびその製造方法

Country Status (2)

Country Link
JP (1) JP5783340B2 (ja)
WO (1) WO2015025754A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544979A (ja) * 2019-09-20 2022-10-24 山東大学 Igzoショットキーダイオードに基づくメタマテリアルの動的調整制御の方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081231A (ja) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd 酸化物半導体素子
JP2008124409A (ja) * 2006-10-17 2008-05-29 Sanken Electric Co Ltd 化合物半導体素子
JP2008187060A (ja) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd メサ型半導体素子とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081231A (ja) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd 酸化物半導体素子
JP2008124409A (ja) * 2006-10-17 2008-05-29 Sanken Electric Co Ltd 化合物半導体素子
JP2008187060A (ja) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd メサ型半導体素子とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544979A (ja) * 2019-09-20 2022-10-24 山東大学 Igzoショットキーダイオードに基づくメタマテリアルの動的調整制御の方法

Also Published As

Publication number Publication date
JPWO2015025754A1 (ja) 2017-03-02
JP5783340B2 (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
US7411221B2 (en) Light emitting device having protection element and method of manufacturing the light emitting device
US6911676B2 (en) Semiconductor LED device and method for manufacturing the same
KR102382656B1 (ko) 적층체
KR102531224B1 (ko) 적층체
US6593597B2 (en) Group III-V element-based LED having ESD protection capacity
US8791548B2 (en) Optoelectronic semiconductor chip, optoelectronic component and a method for producing an optoelectronic component
TW200805715A (en) High-efficiency, overvoltage-protected, light-emitting semiconductor device
US8237192B2 (en) Light emitting diode chip with overvoltage protection
US10121775B2 (en) Optoelectronic semiconductor chip with built-in ESD protection
US6670705B1 (en) Protective layer for a semiconductor device
JP2011165860A (ja) 保護素子及び半導体装置
KR100905884B1 (ko) 보호 소자를 갖춘 발광소자
JP2012256698A (ja) 半導体ダイオード
WO2016024387A1 (ja) 半導体装置
JP5783340B2 (ja) ダイオード装置およびその製造方法
JP2011142265A (ja) 半導体装置およびそれを備えた電子回路
US20120256288A1 (en) Schottky Diode and Method for Making It
US20120003762A1 (en) Method to Protect Compound Semiconductor from Electrostatic Discharge Damage
JP2010205891A (ja) 半導体装置
KR20070016898A (ko) 보호 소자를 갖춘 발광소자 및 그 제조방법
KR101457207B1 (ko) 정전기 방전 보호소자가 구비된 발광 다이오드
US20140374767A1 (en) Light emitting diode structure
US9721915B2 (en) Semiconductor device
US9865748B2 (en) Semiconductor structure and method for manufacturing the same
TW202025517A (zh) 發光元件及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559022

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837918

Country of ref document: EP

Kind code of ref document: A1