WO2015025679A1 - 複層ガラス - Google Patents

複層ガラス Download PDF

Info

Publication number
WO2015025679A1
WO2015025679A1 PCT/JP2014/069818 JP2014069818W WO2015025679A1 WO 2015025679 A1 WO2015025679 A1 WO 2015025679A1 JP 2014069818 W JP2014069818 W JP 2014069818W WO 2015025679 A1 WO2015025679 A1 WO 2015025679A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
space
spacer
frame member
layer glass
Prior art date
Application number
PCT/JP2014/069818
Other languages
English (en)
French (fr)
Inventor
秀明 森
大輔 芹田
直也 森
純平 細川
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2015532783A priority Critical patent/JPWO2015025679A1/ja
Publication of WO2015025679A1 publication Critical patent/WO2015025679A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66366Section members positioned at the edges of the glazing unit specially adapted for units comprising more than two panes or for attaching intermediate sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66314Section members positioned at the edges of the glazing unit of tubular shape

Definitions

  • the present invention relates to a multi-layer glass used for a building, for example.
  • first space the space between the glass plate and the hollow plate
  • second space the space between the hollow plates
  • a third space is a separate and isolated space.
  • the heat insulating property is lowered, and when the deformation occurs, an image seen through the window is distorted and the seeing through property is lowered.
  • the intermediate plate or the like is not damaged, pressure concentrates on weak portions of the multi-layer glass such as the primary sealing material, and there is a possibility that breakage may occur in these portions.
  • the intermediate plate is polycarbonate or the like, the temperature of the plate becomes non-uniform because polycarbonate has poor heat conduction.
  • the resin expands up to a certain temperature, but shrinks when heated to a higher temperature. For this reason, as a result, only one side of the plate may be warped because the temperature rises.
  • An object of the present invention is to provide a multi-layer glass that has high heat insulating properties and does not impair the transparency.
  • the present invention solves the above problems by the following means.
  • the invention according to claim 1 two glass plates which are joined in a state of being separated from each other by disposing a spacer (2) therebetween, and provided with a first space (3) between each other, A sheet-like or plate-like translucent member (4a) disposed in the first space (3), and the translucent members (4a) adjacent to each other are spaced apart from each other.
  • a second space (4c) is provided, and the first space (3) and the second space (4c) communicate with each other. ).
  • Invention of Claim 2 is the multilayer glass (1,200,300) of Claim 1, Comprising: The said translucent member (4a) is a peripheral part of the said translucent member (4a) It is the multilayer glass (1,200,300) characterized by being hold
  • Invention of Claim 3 is the multilayer glass (1,200,300) of Claim 2, Comprising: The said frame member (7U, 7D) is the said periphery of the said translucent member (4a) A multi-layer glass (1,200,300) characterized by comprising a cutout portion that partially exposes the portion.
  • the invention of Claim 4 is the multilayer glass (1,200,300) of Claim 2 or 3, Comprising:
  • the said frame member (7U, 7D) is the said translucent member (4a).
  • Multi-layer glass (1,200) characterized in that it has two wall portions (7b) protruding outward from a portion (7a) covering the peripheral portion and being spaced apart from each other and extending along the peripheral portion (7a). , 300).
  • the invention according to claim 5 is the multilayer glass (1, 200, 300) according to any one of claims 2 to 4, wherein at least one side of the frame member (7U, 7D) It is a multilayer glass (1, 200, 300) characterized by not being in direct contact with the spacer (2).
  • the invention according to claim 6 is the double-glazed glass (1,200,300) according to any one of claims 1 to 5, wherein the spacer (2) holds the desiccant (5). It is the multilayer glass (1,200,300) characterized by being.
  • the invention according to claim 7 is the double-glazed glass (1, 200, 300) according to any one of claims 1 to 6, wherein an interval between the translucent members (4a) adjacent to each other is set.
  • the multilayer glass (1, 200, 300) is characterized in that it is an interval at which convection contributing to heat conduction does not occur.
  • the said structure may be improved suitably, and at least one part may substitute for another structure.
  • FIG. It is the multilayer glass 300 of 3rd Embodiment, (a) is a front view, (b) Cross section, (c) is the C section enlarged view of (b), (d) is DD cross section of (c).
  • FIG. It is the figure which showed the part containing the notch part of the frame member of an Example, (a) is a perspective view, (b) is a front view. It is the graph which showed the result of having measured the sound insulation performance of an Example and a comparative example. It is the graph which showed the result of having measured the sound insulation performance of an Example and a comparative example. It is the graph of the Example which put the laminated body between glass, and the comparative example which stuck the laminated body on the outer side of glass.
  • FIG. 1A and 1B are diagrams showing a multilayer glass 1 according to a first embodiment of the present invention, in which FIG. 1A is a front view, and FIG. 1B is a longitudinal section of the multilayer glass 1 of FIG. (C) is a cross-sectional view of the multilayer glass 1 of (a) cut along line BB, and (d) is an enlarged view of part C of (b).
  • FIG. 1 is a diagram in which a multilayer glass 1 is arranged with the Y direction plus side facing up and the thickness direction in the Z direction.
  • the Y plus direction is up
  • the Y minus direction is down
  • the X plus direction is right
  • the X minus direction is left
  • the Z plus direction is front
  • the Z minus direction is back.
  • the multi-layer glass 1 of the present embodiment has two glass plates (or hard resin plates) G1 and G2 installed in parallel to each other and the two glass plates G1 and G2 at a predetermined interval.
  • Two glass plates G1 and G2 are sandwiched between a single float glass plate, polished glass plate, and two or more plate glasses with a resin interlayer such as PVB (polyvinyl butyral) or EVA (ethylene-vinyl acetate copolymer). Laminated glass or the like bonded to the entire surface.
  • the glass plates G1, G2 are green glass such as heat-absorbing glass, laminated glass using an intermediate film having functions such as sound insulation, heat insulation, and coloring.
  • the thickness of the glass plates G1 and G2 is preferably 2 mm to 25 mm, and the intermediate layer 3 is preferably 4 mm to 24 mm in thickness.
  • the first spacer 2 of the present embodiment is a thin aluminum plate formed into a cylindrical shape by roll forming or the like.
  • the first spacer 2 includes four linear members arranged on the top, bottom, left, and right, and a corner key (not shown) that connects the four members.
  • the first spacer 2 is filled with a desiccant 5 such as zeolite.
  • a plurality of ventilation holes 6 are provided on the intermediate layer 3 side of the cylindrical portion of the first spacer 2 so that the desiccant 5 can absorb the moisture of the intermediate layer 3.
  • the laminate 4 is obtained by laminating a plurality of translucent thin plate members (hereinafter referred to as thin plate members 4a) such as a film, a resin plate, or thin glass with a predetermined width between each other.
  • thin plate members 4a such as a film, a resin plate, or thin glass with a predetermined width between each other.
  • Each thin plate member 4a is thinner than the glass plates G1 and G2, and preferably has a thickness of 10 ⁇ m to 3 mm, for example.
  • the gap between the individual thin plate members 4a is an interval at which convection contributing to heat conduction does not occur, and is 16 mm or less.
  • This interval differs depending on the gas filling the intermediate layer 3 and may be set so that the gas Nusselt number defined in JIS R3107 is 1 or less. For example, it is 16 mm or less for air, 15 mm or less for Ar, and 10 mm or less for Kr.
  • the lower limit is not particularly limited as long as a gap is formed between the thin plate members 4a, but may be, for example, 0.1 mm or more.
  • the thin plate member 4a is laminated
  • the individual thin plate members 4a are arranged in parallel to each other while holding a gap 4c (second space, see FIG. 4D) having a predetermined width by sandwiching the second spacer 4b therebetween.
  • the second spacer 4b is a cylindrical member that continuously extends from the top to the bottom of the thin plate member 4a as shown in FIG.
  • the second spacer 4b is not provided over the entire vertical region of the thin plate member 4a. That is, as shown in FIG. 1A, the upper end of the second spacer 4b and the upper end of the upper frame member 7U are separated by a distance t. Further, the distance t is also spaced from the lower end of the second spacer 4b and the lower end of the lower frame member 7D. Due to the separated regions, the respective gaps 4c between the thin plate members 4a and the spaces other than the gaps 4c in the intermediate layer 3 can communicate with each other. Since the second spacer 4b extends continuously although there are portions other than the upper and lower portions, when a soft member such as a film is used as the thin plate member, the deflection of the thin plate member can be suppressed.
  • the present invention is not limited to this, and the second spacer 4b may be a cylindrical member that extends intermittently.
  • the left and right sides of the gap 4c communicate with each other at a portion that is cut without being continuous, so that when gas or the like is introduced, the gap 4c becomes more uniform.
  • the upper end of the laminate 4 is held by the upper frame member 7U, and the lower end is held by the lower frame member 7D.
  • These frame members 7U and 7D are U-shaped members in cross section, and the front and rear surfaces of the laminate 4 as a whole, that is, the front surfaces of the thin plate members 4a that are arranged at the forefront, The laminated body 4 is sandwiched so as to be in contact with the rear surface of the one disposed at the rearmost part.
  • the upper and lower two sides of the laminate 4 are thus held by the upper frame member 7U and the lower frame member 7D, respectively.
  • the present invention is not limited to this.
  • the left and right sides of the laminate 4 may be held.
  • maintain is not limited to 2 sides, 1 side may be sufficient if the thin plate member 4a does not isolate
  • the four sides are held by the frame member 7, in the intermediate layer 3 between the two glass plates G1 and G2 as described later, the gap 4c between the laminates 4 and Communicate with other spaces.
  • the laminated body 4 is disposed so that the outer surface of the lower frame member 7D is in contact with the inner surface of the lower side of the first spacer 2.
  • the outer surface of the upper frame member 7U is not in contact with the inner surface of the upper side of the first spacer 2, and there is a predetermined distance d (see FIG. 5) between the outer surface of the upper frame member 7U and the inner surface of the upper side of the first spacer 2. 1 (d)) and the gap 3a is opened.
  • the gap 3a is not arranged at all (air or gas exists), but is not limited thereto, and an elastic member may be interposed.
  • the left and right sides of the laminate 4 are separated from the left and right sides of the spacer 2, and a gap 3b is provided. That is, the side part of the laminated body 4 is not in contact with the spacer 2. Therefore, the gaps 4c between the thin plate members 4a of the laminated body 4 are not separated from each other, and communicate with spaces (for example, the gaps 3a and 3b) other than the gap 4c in the intermediate layer 3 (air is not blocked from each other). Can)).
  • the third spacer 8 is disposed between the front surface of the frame members 7U and 7D and the inner surface of the front glass plate G2, and between the rear surface of the frame members 7U and 7D and the inner surface of the rear glass plate G1,
  • the laminated body 4 is held in the Z direction in the intermediate layer 3.
  • the third spacers 8 are arranged in a total of eight locations, two on the front side and two on the top and two on the back.
  • the first spacer 2 between the two glass plates G1 and G2 is disposed slightly inside the outer edges of the two glass plates G1 and G2. ing.
  • the space between the first spacer 2 and the glass plates G1 and G2 is sealed with a primary sealant 9.
  • a silicone sealant, a polysulfide sealant, or the like is provided outside the first spacer 2 so that moisture or the like does not enter the concave portion of the cross section surrounded by the two glass plates G1 and G2 and the first spacer 2.
  • the secondary sealing material 10 is filled.
  • the secondary sealant 10 is preferably made of a material having a dense internal structure that hardly transmits gas as much as possible. For example, an inexpensive polysulfide sealant is used.
  • FIG. 2 is a view showing a method for assembling the multi-layer glass 1.
  • first spacers 2 each having a rectangular shape are prepared by connecting linear spacer base materials each encapsulating a desiccant 5 with a corner key (FIG. 2A).
  • a primary sealing material 9 is applied to both sides of the first spacer 2 (FIG. 2B).
  • coated is affixed on the front surface of the glass plate G1 (FIG.2 (c)).
  • the laminated body 4 in a state where the third spacer 8 is adhered to the frame members 7U and 7D of the laminated body 4 is disposed between the first spacers 2.
  • the lower frame member 7 ⁇ / b> D is disposed so as to contact the inner surface of the lower side of the first spacer 2.
  • a gap d is opened between the outer surface of the upper frame member 7 ⁇ / b> U and the inner surface of the upper side of the first spacer 2.
  • the second glass plate G2 is arranged so as to face the first glass plate G1 (FIG. 2e). At this time, the inner surface of the glass plate G2 and the primary seal 9 are in close contact with each other, and the space between the glass plate G2 and the first spacer 2 is sealed. As a result, the intermediate layer 3 is formed between the glass plates G1 and G2. At this time, the position of the frame members 7U and 7D with respect to the inner surface of the glass plate G2 is defined by the third spacer 8, and the laminate 4 is held in the intermediate layer 3 in a state in which the wobble is prevented.
  • the sealing material 10 is filled in the concave portion surrounded by the two glass plates G1 and G2 and the first spacer 2 outside the first spacer 2 (FIG. 2 (f)), and the multi-layer glass is formed. 1 is completed.
  • the manufacturing method of the multilayer glass 1 of this embodiment is not necessarily limited to this method.
  • the laminate 4 is arranged in the intermediate layer 3 between the glass plates G1 and G2.
  • the laminate 4 includes a plurality of thin plate members 4a, and a gap 4c is provided between the thin plate members 4a. For this reason, the number of air layers increases and the heat insulation of the multilayer glass 1 improves. The verification results of the heat insulation actually performed will be described later.
  • the multilayer glass 1 of this embodiment also improves sound-insulating property. The actual verification results of the sound insulation will be described later.
  • each clearance gap between the thin plate members 4a in the laminated body 4 is mutually, and the other of the intermediate
  • a gap 3a is provided between the upper surface of the laminate 4 (the upper surface of the upper frame member 7U) and the upper inner surface of the first spacer 2.
  • FIGS. 3A and 3B show a multilayer glass 200 according to the second embodiment, in which FIG. 3A is a front view, FIG. 3B is a cross-sectional view, and FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the second embodiment is different from the first embodiment in that a space 12 is provided between the inner surfaces of the frame members 7U and 7D and the end of the laminate 4, and flows into one end of the upper frame member 7U.
  • the holes 16 and 17 are also provided at locations corresponding to the notch portions 14, respectively. These notches 13 and 14 partially expose the peripheral edge of the thin plate member 4a.
  • the holes 16 and 17 of the secondary sealing material 10 are sealed after a gas described later flows in.
  • the gas to be enclosed is not particularly limited, for example, He, Ne, Ar, Kr, Xe, and SF 6 gas are used. He and Ne gas are gases for the purpose of soundproofing.
  • the gas is selected according to the function desired to be added to the double-glazed glass 1 (improved heat insulation and sound insulation performance). Moreover, you may enclose dry air like gas, without enclosing special gas.
  • the hole 16a of the upper secondary sealing material 10, the hole 16b of the first spacer 2, and the inflow notch 13 of the upper frame member 7U are connected (facing).
  • the hole 17a of the lower secondary sealing material 10, the hole 17b of the first spacer 2, and the exhaust notch 14 of the lower frame member 7D are connected (facing).
  • the upper holes 16 a and 16 b and the inflow notch 13, and the lower hole 17 a, hole 17 b and exhaust notch 14 are located at both ends of the diagonal line of the rectangular laminate 4. Thereby, the gas sealing efficiency is improved.
  • a diffusion nozzle for gas injection (not shown) is inserted from the outside into the space 12 between the upper frame member 7U and the multilayer glass 1 through the upper holes 16a and 16b and the inflow notch 13 connected to each other. Is possible.
  • the second spacer 4b is provided over the entire vertical region of the thin plate member 4a. That is, as shown in FIG. 1A, the distance t between the upper end of the second spacer 4b and the upper end of the upper frame member 7U, and between the lower end of the second spacer 4b and the lower end of the lower frame member 7D. The interval is not provided. This is because, in the case of the present embodiment, the space 12 can communicate with the space 4c between the thin plate members 4a and the space other than the space 4c in the intermediate layer 3 without providing the distance t. . According to the present embodiment, the second spacer 4b extends continuously across the entire upper and lower portions of the thin plate member 4a. Therefore, when a soft material such as a film is used as the thin plate member, the thin plate member is further further than the first embodiment. Can be suppressed.
  • the space 12 is first filled with the gas. Then, gas flows from the space 12 into each gap 4c. That is, after the space 12 becomes a buffer region and is temporarily stored, the gas flows into the gap 4c. Further, the gas flows from both ends of the upper frame member 7U to the outside of the stacked body 4, and the gas flows into the outside of the stacked body 4 of the intermediate layer 3 (including the gaps 3a and 3b). The air replaced by the inflowed gas is discharged through the exhaust notch 14 and the hole 17 provided in the lower part.
  • the second embodiment has the following effects in addition to the effects of the first embodiment. Since the space 12 is provided between the inner surface of the upper frame member 7U and the end portion of the multilayer glass 1, the gas flowing into the intermediate layer 3 once flows into the space 12 and then another portion (lamination) Flows into the gap 4a of the body 4 and other regions in the intermediate layer 3). As described above, the gas flows from the top to the bottom after the gas is uniformly distributed on the upper part of the laminate 4, so that the gas can evenly flow through the gaps of the laminate 4, and the gas effect can be obtained uniformly. .
  • FIG. 4 is a multilayer glass 300 of the third embodiment, (a) is a front view, (b) a cross-sectional view, (c) is an enlarged view of part C of (b), and (d) is D of (c). It is -D sectional drawing.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the third embodiment is different from the first embodiment in that the upper frame member 7U has an H shape and a space 20 is provided between the second spacer 2 and the upper frame member 7U.
  • an inflow notch 13 is provided on one end of the upper frame member 7, and an exhaust notch 14 is provided on the other end of the lower frame member 7, the first spacer.
  • the second and second sealing materials 10 are different from the first embodiment in that holes 16 and 17 are also provided at locations corresponding to the inflow notch 13 and the exhaust notch 14, respectively.
  • the shape of the frame members 7U and 7D becomes complicated. Therefore, it is preferable to use a resin material that can be extruded as the frame members 7U and 7D.
  • the frame member 7 is H-shaped.
  • the frame member 7 is not limited to the H shape, and may be a convex shape or a comb shape.
  • the protruding portion of the H shape may be manufactured with a soft member or an elastic member in order to prevent the multi-layer glass 1 from being broken due to the difference in the linear expansion coefficient described above.
  • the frame member 7 is H-shaped, that is, extends left and right along the end surface of the thin plate member 4a, extends to the left and right together with the base 7a on both sides in the width direction of the base 7a, And a wall portion held perpendicular to 7a.
  • the wall portion includes a portion 7b extending toward the outside of the base portion 7a and a portion 7c extending inward from the base portion 7a to hold the thin plate member 4a.
  • openings 7d are provided at predetermined intervals in the base 7a that covers the ends of the thin plate members 4a of the frame members 7U and 7D.
  • the present embodiment it is H-shaped in this way, and the gap between the upper frame member 7U and the primary spacer 2 becomes narrow, so that gas convection can be prevented.
  • it is not limited to this and may be convex.
  • the groove part along the up-and-down edge of the laminated body 4 is formed in the outer side of frame member 7U, 7D by the H shape of frame member 7U, 7D, and the space 20 is provided in the inside.
  • gas flows into the space 20 from a nozzle (not shown)
  • the air displaced by the inflowed gas is discharged through holes 14 and 17 provided in the lower part.
  • gas can flow evenly in the gaps 4c of the laminate 4, and the gas effect can be obtained uniformly.
  • a multilayer glass 1 was prepared as Example 1 of the first embodiment.
  • a multilayer glass 1A having the same configuration was prepared as Comparative Example 1 except that the multilayer body 4 was not included between the two glasses G1 and G2 with respect to the multilayer glass 1.
  • the glass plates G1 and G2 are float glass (hereinafter sometimes referred to as “FL glass”), and the intermediate layer 3 between the glass plates G1 and G2 is air.
  • the size of the glass plates G1 and G2 of Example 1 and Comparative Example 1 is 300 mm ⁇ 300 mm, the total thickness of the multilayer glass 1 and 1A is 23 mm, the thickness of the FL glass G1 is 8 mm (FL8), and the FL glass G2 The thickness is 5 mm (FL5), and the intermediate layer 3 is 10 mm (A10).
  • the laminated body 4 used used the laminated film which laminated
  • the thermal resistance was measured by a method based on JIS A1412-1 (protective hot plate method (GHP method)), and the heat transmissivity was calculated based on the following formula of JIS R 3107.
  • h e, h i is used the number specified in JIS R 3107.
  • U Thermal conductivity W / (m 2 ⁇ K)
  • R Thermal resistance of multilayer glass (m 2 ⁇ K) / W h e : outdoor surface heat transfer coefficient W / (m 2 ⁇ K)
  • h i Indoor surface heat transfer coefficient W / (m 2 ⁇ K) It is.
  • glass plates having different thicknesses were used on the indoor side and the outdoor side, in order to avoid a decrease in sound insulation performance due to the resonance transmission phenomenon.
  • the upper and lower sides of the laminated body 4 were fitted into U-shaped acrylic resin frame members 7 ⁇ / b> U and 7 ⁇ / b> D and placed in the intermediate layer 33. Further, an elastic member (natural rubber plate) is sandwiched as a spacer 8 between the frame members 7U and 7D and the FL glasses G1 and G2 so that the laminate 4 does not move. At this time, the elastic member 8 is bonded to the frame members 7U and 7D and is not bonded to the FL glass G. This is to prevent the laminated body 4 from tilting, and therefore, it does not matter whether or not the elastic member 8 is in contact with the FL glasses G1 and G2.
  • the thickness of the frame members 7U and 7D is 7 mm
  • the elastic member 8 is 1 mm
  • the total thickness is 9 mm because two of these are used. A thicker glass plate was installed outside the room.
  • the thermal conductivity is 2.9 W / m 2 ⁇ K in Comparative Example 1 in which the laminated body 4 is not included between the two FL glasses G1 and G2, but the two FL glasses.
  • Example 1 including the laminated body 4 between G1 and G2 is 2.4 W / m 2 ⁇ K.
  • the heat transmissibility is a value representing the ease of heat transfer. The smaller the value, the less heat is transferred and the better the heat insulation. That is, according to Example 1, it was verified that the heat insulating property was improved as compared with Comparative Example 1 not including the laminate 4.
  • a multilayer glass 200 was prepared as an example (Example 2) of the second embodiment. Further, as a comparative example 2, a multilayer glass 200A having a similar configuration was prepared except that the multilayer body 4 was not included between the two FL glasses G1 and G2 with respect to the multilayer glass 200.
  • the intermediate layer (Ne10) between the FL glasses G1 and G2 is filled with 95% by volume of neon gas.
  • FIGS. 5A and 5B are views showing a portion including the notch 13 of the frame member of the second embodiment, where FIG. 5A is a perspective view and FIG. 5B is a front view.
  • the size of the inflow notch 13 provided on one end of the frame member 7U (7D) in Example 2 is 9 mm from the end of the frame member 7U (7D), as shown in FIG.
  • the width is 20 mm and the depth is 4 mm.
  • variety of the space 12) of the inner surface of the frame member 7U (7D) and the edge part of the laminated body 4 is 5 mm, as shown to Fig.5 (a).
  • the neon gas is charged by flowing neon gas from the gas inflow hole 16 provided in the upper part of the second sealant 10 and provided in the lower part of the second sealant 10.
  • the air in the intermediate layer 3 was exhausted from the holes 17 for gas outflow, thereby replacing the air in the intermediate layer 3 with neon gas.
  • the neon gas flows in from the upper notch 13 and flows out from the lower notch 14 inside the frame members 7U and 7D.
  • Example 2 No. in Table 1 above. 2 is the measurement result of the heat insulation effect of Example 2 and Comparative Example 2. As shown in the table, in the case of Comparative Example 2 in which the laminated body 4 is not included between the two FL glasses G1 and G2, the thermal conductivity is 3.4 W / m 2 ⁇ K, but the two FL glasses Example 2 including the laminate 4 between the glasses G1 and G2 was 3.0 W / m 2 ⁇ K. That is, in Example 2, it was verified that the heat insulating property was improved as compared with Comparative Example 2 that did not include the laminate.
  • FIG. 6 is a graph showing the results of measuring the sound insulation performance of Examples 3 and 4 and Comparative Examples 3 and 4 of the first embodiment.
  • Examples 3 and 4 are indicated by solid line graphs
  • Comparative Examples 3 and 4 are indicated by dotted line graphs.
  • the graph A in which the measured values are shown as squares in the solid line graph is an intermediate of 10 mm (A10) filled with dry air between the FL glass G1 (FL8) having a thickness of 8 mm and the FL glass G2 (FL5) having a thickness of 5 mm. It is Example 3 of 1st Embodiment which provided the layer 3 and inserted the laminated body 4 formed with the film of 6 layers.
  • the graph B showing the measurement values in the solid line graph is a 4 mm thick FL glass, a 0.76 mm thick sound insulation interlayer (sound insulation PVB (polyvinyl butyral)), and a 4 mm thick FL glass. It is Example 4 of 1st Embodiment which inserted the laminated body 4 of 6 layers between glass G1 and 5 mm FL glass G2.
  • the graph a in which the measured values are indicated by circles in the dotted line graph is a comparative example 3 in which the laminated body 4 is not included between the FL glass G1 having a thickness of 8 mm and the FL glass G2 having a thickness of 5 mm.
  • a graph b in which the measured values are indicated by triangles in the dotted line graph is a sound insulation laminated glass G1 including a FL glass having a thickness of 4 mm, a sound insulation interlayer having a thickness of 0.76 mm, and a FL glass having a thickness of 4 mm, and a FL glass having a thickness of 5 mm. It is the comparative example 4 which does not contain the laminated body 4 between G2.
  • the human audible range is said to be 20 Hz to 20 kHz.
  • the region below 100 Hz is a region that feels as vibration rather than sound, and sound insulation is virtually impossible.
  • the energy is small at 2 kHz or more, it is easy to attenuate and the sound insulation is relatively easy.
  • sound insulation is difficult in the range of 200 Hz to 1 kHz (a range including a lot of sounds that are generated on a daily basis).
  • sound insulation is possible in the range of 50 Hz to 10 kHz including 200 Hz to 1 kHz.
  • FIG. 7 is the verification result of sound insulation performance similarly.
  • graphs A and a are the same graphs as in FIG.
  • a graph C in which the measured values are indicated by black squares in the solid line graph is Example 5 in which one film is disposed between the glasses.
  • One sheet of PET film (thickness: 0.188 mm) was cut into a predetermined shape, and the periphery was sandwiched from both sides of the film using an aluminum frame material to stretch the film.
  • a double-sided tape (acrylic adhesive material) was applied between the frame material and the film, and the film was fixed to the frame material.
  • FIG. Graphs A and a are the same graphs as in FIG.
  • the multilayer glass 1 in which the laminated body 4 is disposed in the intermediate layer 3 between the glass plates G1 and G2 has improved heat insulation, It was verified that the sound insulation was improved.
  • G1 rear glass plate
  • G2 front glass plate
  • 1, 200, 300 double-glazed glass
  • 2 spacer
  • 3 intermediate layer (first space)
  • 3a gap
  • 3b gap
  • 4 laminate 4a: thin plate member
  • 4a gap
  • 4b second spacer
  • 4c gap
  • 4d opening
  • 5 desiccant
  • 7D lower frame member
  • 7U upper frame member
  • 8 third spacer
  • 9 primary Sealing material
  • 10 secondary sealing material
  • 12 space
  • 20 space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 断熱性が高く且つ透視性を損なわない複層ガラスを提供する。本発明の複層ガラス1,200,300は、間にスペーサ2を配置することで互いに離間した状態で接合され、互いの間に第1の空間3が設けられた2枚のガラス板と、前記第1の空間3内に配置されたシート状または板状の透光性部材4aと、を備え、互いに隣接する前記透光性部材4aは互いに離間し、それぞれの間に第2の空間4cが設けられ、前記第1の空間3と前記第2の空間4cとは連通していること、を特徴とする。これにより、例えば薄板部材4a間の隙間4cの一部が結露して透明度が損なわれるようなことがない。

Description

複層ガラス
 本発明は、例えば建築物に用いられる複層ガラスに関するものである。
 国土交通省、経済産業省及び環境省の3省は、2020年を目処に、すべての新築建築物に対して改正省エネ基準を適合義務化させる予定である。このため、建築物の省エネ対策が、今後、厳しくなることが予想される。
 省エネ対策の一つとして、従来、断熱性を備えた複層ガラスが提案されている(例えば、特許文献1参照)。この従来技術では、平行に配した二枚の板ガラスの間に、二枚の透光性のポリカーボネート中空板を配置している。板ガラス間には、互いの間隔を保持すべく四辺に沿ってスペーサが配置されている。ポリカーボネート中空板の縁部は、保持部材に設けられた係止溝にはめ込まれて支持され、保持部材の外側にスペーサが配置されている。
特開2012-237147号公報
 上記従来技術では、ガラス板と中空板との間の空間(第1空間)と、中空板同士の間の空間(第2空間)と、中空板とガラス板との間のもう一つ空間(第3空間)と、が隔離された別個の空間である。
 断熱性に優れる複層ガラスは、部屋の窓等に使用した場合、室内外でかなりの温度差が生じる場合がある。この時、これらの第1空間と、第2空間と、第3空間との間でも温度差が生じ、これらの各空間の間で内圧差を生じる。
 このように内圧差が生じると、内圧の高い空間が低い空間を押すように力が加わる為、空間を隔てている中間板や部材にも同様の向きの力が加わり、中間板等に破壊や変形が生じる可能性がある。
 破壊が生じると断熱性は低下し、また、変形が生じると窓を透して見える像が歪み透視性が低下する。また、中間板等を破損しなかったとしても、例えば一次シール材等の複層ガラスの弱い部分に圧力が集中し、これらの部分に破壊が生じる可能性がある。
 さらに中間板がポリカーボネート等であると、ポリカーボネートは熱伝導が悪いため板の温度が不均一になる。また、樹脂はある程度の温度までは膨張するが、それ以上の温度に加熱していくと縮むという特性がある。このため、結果的に板の片面だけが温度が上昇することになり反る可能性がある。
 本発明の課題は、断熱性が高く且つ透視性を損なわない複層ガラスを提供することである。
 本発明は、以下のような解決手段により前記課題を解決する。
 請求項1に記載の発明は、間にスペーサ(2)を配置することで互いに離間した状態で接合され、互いの間に第1の空間(3)が設けられた2枚のガラス板と、前記第1の空間(3)内に配置されたシート状または板状の透光性部材(4a)と、を備え、互いに隣接する前記透光性部材(4a)は互いに離間し、それぞれの間に第2の空間(4c)が設けられ、前記第1の空間(3)と前記第2の空間(4c)とは連通していること、を特徴とする複層ガラス(1,200,300)である。
 請求項2に記載の発明は、請求項1に記載の複層ガラス(1,200,300)であって、前記透光性部材(4a)は、前記透光性部材(4a)の周縁部に沿って配置された枠部材(7U,7D)によって一体的に保持されていること、を特徴とする複層ガラス(1,200,300)である。
 請求項3に記載の発明は、請求項2に記載の複層ガラス(1,200,300)であって、前記枠部材(7U,7D)は、前記透光性部材(4a)の前記周縁部を一部露出する切り欠き部を備えること、を特徴とする複層ガラス(1,200,300)である。
 請求項4に記載の発明は、請求項2または3に記載の複層ガラス(1,200,300)であって、前記枠部材(7U,7D)は、前記透光性部材(4a)の前記周縁部を覆う部分(7a)から外側に突出し、互いに離間して前記周縁部(7a)に沿って延びる2つの壁部(7b)を有すること、を特徴とする複層ガラス(1,200,300)である。
 請求項5に記載の発明は、請求項2から4のいずれか1項に記載の複層ガラス(1,200,300)であって、前記枠部材(7U,7D)の少なくとも一辺は、前記スペーサ(2)と直接接していないことと、を特徴とする複層ガラス(1,200,300)である。
 請求項6に記載の発明は、請求項1から5のいずれか1項に記載の複層ガラス(1,200,300)であって、前記スペーサ(2)は乾燥剤(5)を保持していること、を特徴とする複層ガラス(1,200,300)である。
 請求項7に記載の発明は、請求項1から6のいずれか1項に記載の複層ガラス(1,200,300)であって、互いに隣接する前記透光性部材(4a)の間隔は、熱の伝導に寄与する対流が起きない間隔であること、を特徴とする複層ガラス(1,200,300)である。
 なお、上記構成は、適宜改良してもよく、また、少なくとも一部を他の構成物に代替してもよい。
 本発明によれば、断熱性が高く且つ透視性を損なわない複層ガラスを提供することができる。
第1実施形態の複層ガラスを示した図であり、(a)は正面図、(b)は(a)の複層ガラスをA―A線で切断した縦断面図、(c)は(a)の複層ガラスをB-B線で切断した断面図であり、(d)は(b)のC部拡大図である。 複層ガラスの組立て方法を示した図である。 第2実施形態の複層ガラスであり、(a)は正面図、(b)断面図、(c)は(b)のC部拡大図である。 第3実施形態の複層ガラス300であり、(a)は正面図、(b)断面図、(c)は(b)のC部拡大図、(d)は(c)のD-D断面図である。 実施例の枠部材の切り欠き部を含む部分を示した図であり、(a)は斜視図、(b)は正面図である。 実施例と比較例との遮音性能を測定した結果を示したグラフである。 実施例と比較例との遮音性能を測定した結果を示したグラフである。 積層体をガラスの間に入れた実施例と、積層体をガラスの外側に貼着した比較例のグラフである。
(第1実施形態)
 以下、本発明の第1実施形態にかかる複層ガラス1について説明する。
 図1は本発明の第1実施形態の複層ガラス1を示した図であり、(a)は正面図、(b)は(a)の複層ガラス1をA―A線で切断した縦断面図、(c)は(a)の複層ガラス1をB-B線で切断した断面図であり、(d)は(b)のC部拡大図である。
 図中、説明のためにXYZ座標を設けた。図1は、Y方向プラス側を上にして、厚さ方向をZ方向として複層ガラス1を配置した図である。以下の説明において、適宜、Yプラス方向を上、Yマイナス方向を下、Xプラス方向を右、Xマイナス方向を左、Zプラス方向を前、Zマイナス方向を後ろ、として説明する。
 図示するように、本実施形態の複層ガラス1は、互いに平行に設置された2枚のガラス板(または硬質樹脂板)G1,G2と、その2枚のガラス板G1,G2を所定間隔に保持するための第1スペーサ2と、その2枚のガラス板G1,G2と第1スペーサ2に囲まれた範囲(中間層3,第1の空間)に配置された、積層体4と、を備える。
 2枚のガラス板G1,G2は、単板のフロートガラス板、磨きガラス板、2枚以上の板ガラスをPVB(ポリビニルブチラール)、EVA(エチレン-酢酸ビニル共重合体)等の樹脂中間膜で挟み全面接着した合わせガラス等である。ただし、これに限定されず、施工条件に応じて、ガラス板G1,G2として熱線吸収ガラス等の緑色に着色されたガラス、遮音、遮熱、着色等の機能を有する中間膜を使用した合わせガラス、網入りガラス、風冷強化ガラス、化学強化ガラス、型板ガラス、低膨張ガラスを用いてもよい。また、板ガラス表面に機能性の膜や層を被覆したガラスを用いて、熱線反射機能や防汚機能等を付与してもよい。また、ガラス板G1,G2の厚さは、2mm~25mmが好ましく、また中間層3は、厚さ4mm~24mmが好ましい。
 本実施形態の第1スペーサ2は、薄いアルミの板をロールフォーミング等により筒状に形成したものである。第1スペーサ2は、上下左右に配置される4本の直線状部材と、その4本を連結するコーナーキー(図示せず)とを備える。
 第1スペーサ2の内部には、ゼオライト等の乾燥剤5が充填されている。そして、第1スペーサ2の筒状部の中間層3側には、複数の通気孔6が設けられ、乾燥剤5が中間層3の湿気を吸湿可能になっている。
 積層体4は、フィルム、樹脂板または薄ガラス等の透光性薄板部材(以下、薄板部材4aという)を、互いの間に所定幅の間隔を設けて複数枚積層したものである。個々の薄板部材4aは、ガラス板G1,G2よりも薄く、たとえば、厚さ10μm~3mmが好ましい。
 個々の薄板部材4a間の隙間は、熱の伝導に寄与する対流が発生しない間隔であり、16mm以下である。この間隔は、中間層3を充填する気体によって異なり、JIS R3107に定義される気体のヌセルト数が1以下となるように設定すればよい。例えば、空気では16mm以下、Arでは15mm以下、Krでは10mm以下となる。下限値は薄板部材4a間に隙間が出来れば特に限定するものではないが、例えば0.1mm以上としてもよい。
 なお、本実施形態で薄板部材4aは6枚積層されているが、これに限定されない。これ以上でもこれ以下であってもよい。
 また、個々の薄板部材4aは、間に第2スペーサ4bを挟むことによって、所定幅の隙間4c(第2の空間,図4(d)参照)を保持して互いに平行に配置されている。第2スペーサ4bは、図1(a)に示すように薄板部材4aの上から下に向かって、連続的に延びる円柱部材である。
 ただし、第2スペーサ4bは、薄板部材4aの上下方向の全領域にわたって設けられていない。すなわち、図1(a)に示すように、第2スペーサ4bの上端と上部枠部材7Uの上端との間は距離t離間している。また、第2スペーサ4bの下端と下部枠部材7Dの下端との間も距離t離間している。この離間している領域によって、薄板部材4a間のそれぞれの隙間4cと、中間層3における隙間4c以外の空間とが連通可能となる。
 なお、第2スペーサ4bは、上下を除いた部分はあるが連続して延びているので、薄板部材としてフィルム等の柔らかいものを使用する場合、薄板部材のたわみを抑制することができる。
 ただし、本発明はこれに限定されず、第2スペーサ4bは断続的に延びる円柱部材であってもよい。この場合、連続せずに切断されている部分において、隙間4cの左右は連通しているので、ガス等を流入した場合、より均一になる。
 積層体4の上端は上部枠部材7Uに保持され、下端は下部枠部材7Dに保持されている。これらの枠部材7U,7Dは、断面コの字型の部材で、積層体4全体としての前面と後面、すなわち、積層されている薄板部材4aのうちの最前部に配置されたものの前面と、最後部に配置されたものの後面と接するようにして、積層体4を挟んでいる。
 本実施形態では、このように積層体4の上下の2辺がそれぞれ上部枠部材7U、下部枠部材7D枠部材に保持されているが、これに限定されない。例えば積層体4の左右の2辺を保持してもよい。また、保持する辺は2辺に限定されず、薄板部材4aが分離しなければ1辺でもよく、撓みやすいフィルム等の場合は、4辺を固定してもよい。ただし、4辺が枠部材7で保持されている場合であっても、後述するように2枚のガラス板G1,G2の間の中間層3において、積層体4相互間の隙間4cと、それ以外の空間とを連通させる。
 積層体4は、第1スペーサ2の下辺の内面に、下部枠部材7Dの外面が接するようにして配置されている。一方、上部枠部材7Uの外面は、第1スペーサ2の上辺の内面と接しておらず、上部枠部材7Uの外面と第1スペーサ2の上辺の内面との間は、所定の間隔d(図1(d)参照)離間し、隙間3aが開いている。
 なお、隙間3aは、本実施形態ではなにも配置されていない(空気やガスは存在する)が、これに限定されず、弾性部材を介在していても良い。
 図1(a)に示すように積層体4の左右は、スペーサ2の左右の辺から離間し、隙間3bが設けられている。すなわち、積層体4の側部はスペーサ2と接していない。このため、積層体4の薄板部材4a間のそれぞれの隙間4cは互いに隔離されず、中間層3における隙間4c以外の空間(例えば隙間3a,3b)と連通(互いに遮断されていない、空気が通ることができる)している。
 また、枠部材7U,7Dの前面と前ガラス板G2の内面との間、及び、枠部材7U,7Dの後面と後ガラス板G1の内面との間には、第3スペーサ8が配置され、中間層3内において積層体4をZ方向において保持している。第3スペーサ8は、前側において上下それぞれ2箇所、後ろ側において上下それぞれ2箇所、合計8箇所配置されている。
 図1(b)、図1(d)に示すように、2枚のガラス板G1,G2の間の第1スペーサ2は、2枚のガラス板G1,G2の外縁よりもやや内側に配置されている。
 そして、第1スペーサ2とガラス板G1,G2との間は、1次シール材9でシールされている。
 また、第1スペーサ2の外側であって、2枚のガラス板G1、G2と第1スペーサ2に囲まれた断面凹状の部分には、水分などが浸入しないように、シリコーンシーラントやポリサルファイドシーラントなどの2次シール材10が充填されている。2次シール材10は、極力ガスを透過させにくく、密な内部構造の材料を用いることが好ましく、例えば、安価なポリサルファイド系シーラントを用いる。
 図2は複層ガラス1の組立て方法を示した図である。
 まず、それぞれ内部に乾燥剤5が封入された直線状のスペーサ基材をコーナーキーにより連結して矩形にした第1スペーサ2を準備する(図2(a))。
 第1スペーサ2の両側に1次シール材9を塗布する(図2(b))。
 ガラス板G1の前面に、1次シール材9が塗布された第1スペーサ2を貼着する(図2(c))。
 積層体4の枠部材7U,7Dに第3スペーサ8が貼着された状態の積層体4を、第1スペーサ2の間に配置する。この際、下部枠部材7Dが第1スペーサ2の下辺の内面と接するように配置する。ここで、上部枠部材7Uの外面と第1スペーサ2の上辺の内面との間には間隔dが開いている。
 2枚目のガラス板G2を、1枚目のガラス板G1と対向するようにして配置する(図2e)。この際、ガラス板G2の内面と1次シール9とが密着して、ガラス板G2と第1スペーサ2との間がシールされる。これによりガラス板G1とG2との間に中間層3が形成される。
 この際、第3スペーサ8によって枠部材7U,7Dのガラス板G2の内面に対する位置が規定され、積層体4は、中間層3内においてぐらつきが防止された状態で保持される。
 次いで、第1スペーサ2の外側であって、2枚のガラス板G1、G2と第1スペーサ2に囲まれた凹部の部分にシール材10を充填し(図2(f))、複層ガラス1が完成する。なお、本実施形態の複層ガラス1の製造方法はこの方法に限定されるわけではない。
 以上、本実施形態の複層ガラス1は、ガラス板G1,G2間の中間層3に、積層体4が配置されている。積層体4は、複数の薄板部材4aを備え、互いの薄板部材4aの間に隙間4cが設けられている。このため、空気層の数が増加し、複層ガラス1の断熱性が向上する。実際に行った断熱性の検証結果については後述する。
 また、本実施形態の複層ガラス1は、ガラス板G1,G2間の中間層3に、積層体4が配置されているので、遮音性も向上する。実際に行った遮音性の検証結果についても後述する。
 さらに、ガラス板G1,G2間の中間層3に、積層体4が配置されている構造であるが、積層体4における薄板部材4aの間のそれぞれの隙間は、互いに、そして中間層3のその他の空間と連通している。すなわち、中間層3はすべて連通している。
 したがって、複層ガラス内部の内圧の差が生じることを抑制することができる。これにより、複層ガラスを破壊することがなく、また、薄板部材4aが歪み透視性が損なわれることがない。
 また、スペーサ2に配置された乾燥剤は、薄板部材4a間の隙間4cも含めて効果を及ぼすことが期待できる。これにより、例えば薄板部材4a間の隙間4cの一部が結露して透視性が損なわれるようなことがない。
 また、積層体4を枠部材7U,7Dによって一体化させることにより、積層体4のたわみが防止される。また、組立て時においてガラス板G1,G2の間に、予め一体化されている積層体4を配置するので、中間層に積層体4が配置された複層ガラス1の製造が容易になる。
 本実施形態では、積層体4の上面(上部枠部材7Uの上面)と第1スペーサ2の上部内面との間に隙間3aが設けられている。このため、ガラス板G1,G2や第1スペーサ2と、積層体4との線膨張係数の差に由来して発生する、複層ガラス1の破壊を防ぐことができる。
(第2実施形態)
 図3は第2実施形態の複層ガラス200であり、(a)は正面図、(b)断面図、(c)は(b)のC部拡大図である。第1実施形態と同様の部分には同一の符号を付し、その説明を省略する。
 第2実施形態が第1実施形態と異なる点は、枠部材7U,7Dの内面と積層体4の端部との間に空間12が設けられている点、上部枠部材7Uの一端側に流入用切り欠き部13、下部枠部材7の他端側に排気用切り欠き部14が設けられている点、第1スペーサ2及び2次シール材10における、流入用切り欠き部13及び排気用切り欠き部14と対応する箇所にも穴16,17がそれぞれ設けられている点である。これらの切り欠き部13,14は、薄板部材4aの周縁部を一部露出している。
 なお、2次シール材10の穴16,17は、後述するガスが流入された後、封止される。封入されるガスは、特に限定されないが、例えばHe、Ne、Ar、Kr、Xe、SFガスである。なお、He,Neガスは防音性を目的とするガスである。ガスは、複層ガラス1に付加を希望する機能(断熱性向上や遮音性能)に応じて選択される。また、特殊なガスを封入せずに、乾燥空気をガスのように封入してもよい。
 上部の2次シール材10の穴16a、第1スペーサ2の穴16b、及び上部枠部材7Uの流入用切り欠き部13とは繋がっている(対面している)。
 また、下部の2次シール材10の穴17a、第1スペーサ2の穴17b、及び下部枠部材7Dの排気用切り欠き部14は繋がっている(対面している)。
 また、上部の穴16a、16b及び流入用切り欠き部13と、下部の穴17a、穴17b及び排気用切り欠き部14とは、矩形の積層体4の対角線の両端に位置する。これにより、ガスの封入効率が良好となる。
 その繋がっている上部の穴16a、16b及び流入用切り欠き部13を通して、ガス注入用の拡散ノズル(図示せず)を外部から上部枠部材7Uと複層ガラス1との間の空間12に挿入可能である。
 また、本実施形態で第2スペーサ4bは、第1実施形態と異なり、薄板部材4aの上下方向の全領域にわたって設けられている。すなわち、図1(a)に示すような、第2スペーサ4bの上端と上部枠部材7Uの上端との間、及び、第2スペーサ4bの下端と下部枠部材7Dの下端との間の距離tの間隔は設けられていない。
 それは、本実施形態の場合、この距離tの間隔を設けなくとも、空間12によって、薄板部材4a相互間の隙間4cと、中間層3における隙間4c以外の空間とが連通可能であるからである。
 本実施形態によると、第2スペーサ4bは薄板部材4aの上下を全域にわたって連続して延びているので、薄板部材としてフィルム等の柔らかいものを使用する場合、第1実施形態よりもさらに、薄板部材のたわみを抑制することができる。
 そして、空間12に挿入されたノズルを介してガスを流入すると、図3(a)に矢印で示すように、まず、空間12にガスが充填される。そして空間12から各隙間4cにガスが流入される。すなわち、空間12がバッファ領域となり一旦蓄えられた後、隙間4cにガスが流入される。
 さらに、ガスは上部枠部材7Uの両端から積層体4の外側にも流れ、中間層3の積層体4の外部(隙間3a及び3bも含む)にもガスが流入する。
 流入されたガスによって置換された空気は、下部に設けられている排気用切り欠き部14及び穴17を通して排出される。
 第2実施形態によると、第1実施形態の効果に加えて以下の効果を有する。
 上部枠部材7Uの内面と複層ガラス1の端部との間に空間12が設けられているので、中間層3に流入するガスは、その空間12に一旦流れ込んだ後、他の部分(積層体4の隙間4a及びその中間層3におけるその他の領域)に流れる。
 このように積層体4の上部にガスが略均等に分散した後、上から下に流れるので、積層体4の隙間に均等にガスが流れることができ、ガスの効果を均一に得ることができる。
(第3実施形態)
 図4は第3実施形態の複層ガラス300であり、(a)は正面図、(b)断面図、(c)は(b)のC部拡大図、(d)は(c)のD-D断面図である。第1実施形態と同様の部分には同一の符号を付し、その説明を省略する。
 第3実施形態が第1実施形態と異なる点は、上部枠部材7UがH形であり、2次スペーサ2との間に空間20が設けられる点である。また、第2実施形態と同様に、上部枠部材7の一端側に流入用切り欠き部13、下部枠部材7の他端側に排気用切り欠き部14が設けられている点、第1スペーサ2及び2次シール材10における、流入用切り欠き部13及び排気用切り欠き部14と対応する箇所にも穴16,17がそれぞれ設けられている点も第1実施形態と異なる。
 なお、本実施形態の場合、他の実施形態と異なり、枠部材7U,7Dの形状が複雑になるので、枠部材7U,7Dとしては押出し成型可能な樹脂材を用いるのが好ましい。
 第1実施形態及び第2実施形態では、膨張を吸収するために、枠部材7と第1スペーサ2との間に隙間を設ける。しかし、この隙間が広いと封入ガスの対流により断熱性を損なう可能性がある。このため、本実施形態では枠部材7をH形にしている。ただし、枠部材7はH形に限らず凸形・櫛型であってもよい。また、このH形の突出した部分は、上述した線膨張係数の差に由来して発生する、複層ガラス1の破壊を防ぐために軟質部材や弾性部材で製造してもよい。
 枠部材7は、H形、すなわち、薄板部材4aの端面に沿って左右に延び、薄板部材4aの周縁部を覆う基部7aと、基部7aの幅方向両側において基部7aとともに左右に延び且つ、基部7aに対して垂直に保持された壁部とを備える。壁部は、基部7aの外側向かって延びる部分7bと、基部7aよりも内側に延びて薄板部材4aを保持する部分7cとを有する。さらに、枠部材7U,7Dの薄板部材4aの端部を覆う基部7aには、所定の間隔で開口7d(図4(d)参照)が設けられている。
 本実施形態によると、このようにH形であり、上部枠部材7Uと、1次スペーサ2との間の間隔が狭くなるので、ガスの対流を防止することができる。ただし、これに限定されず凸形であっても良い。
 また、本実施形態によると、枠部材7U,7DのH形によって、枠部材7U,7Dの外側に積層体4の上下の縁に沿った溝部が形成され、その内部に空間20が設けられる。
 この空間20に図示しないノズルからガスを流入すると、溝部に沿って、図中、矢印で示すようにガスが流れる。この際、枠部材7に設けられた開口7dより、薄板部材4aの間の各隙間にガスが流入される。
 すなわち、ガスは空間20に沿って流れつつ、そこから開口7dより隙間4cにほぼ均等に流入される。流入されたガスによって置換された空気は、下部に設けられている穴14,17を通して排出される。
 本実施形態においても、積層体4の隙間4cに均等にガスが流れることができ、ガスの効果を均一に得ることができる。
(断熱効果の検証結果)
 以下、上述した実施形態の複層ガラスの断熱効果の検証結果について説明する。第1実施形態の断熱効果を検証するために第1実施形態の実施例1として複層ガラス1を用意した。
 また、複層ガラス1に対して2枚のガラスG1とG2との間に積層体4を含まない以外、同様の構成である複層ガラス1Aを比較例1として用意した。ガラス板G1とG2はフロートガラス(以下「FLガラス」と記載することもある)、ガラス板G1とG2との間の中間層3は空気である。
 実施例1及び比較例1のガラス板G1,G2の大きさは300mm×300mm、複層ガラス1,1Aとしての全体の厚みは23mm、FLガラスG1の厚みは8mm(FL8)、FLガラスG2の厚みは5mm(FL5)、中間層3は10mm(A10)である。また、使用した積層体4は、0.16mmのフィルムを6枚等間隔に積層(総厚み4mm)した積層フィルムを用いた。
 断熱効果の測定方法は、JIS A1412-1(保護熱板法(GHP法))に準拠する方法で熱抵抗を測定し、JIS R 3107の以下の式に基づいて熱貫流率を算出した。尚、h、hはJIS R 3107に指定された数値を用いた。
Figure JPOXMLDOC01-appb-M000001
ここで、
 U:熱貫流率 W/(m・K)
 R:複層ガラスの熱抵抗 (m・K)/W
 h:室外側表面熱伝達率 W/(m・K)
 h:室内側表面熱伝達率 W/(m・K)
である。
 なお、室内側と室外側で異なる厚みのガラス板を使用したが、これは、共鳴透過現象による遮音性能低下を回避する為である。
 積層体4は、図1に示すように、上辺と下辺を、コ字型のアクリル樹脂製の枠部材7U,7Dに嵌め込み、中間層33内に立て置きした。また、積層体4が動かないように、枠部材7U,7DとFLガラスG1,G2との間にはスペーサ8として弾性部材(天然ゴム板)を挟んだ。
 この時、弾性部材8は枠部材7U,7Dに接着してあり、FLガラスGには接着していない。これは、積層体4の傾きを防止するためのものであるので、弾性部材8とFLガラスG1,G2とが接触しているか否かにこだわらないからである。枠部材7U,7Dの厚みは7mmで、弾性部材8は1mm、これを2枚用いたため合計の厚みは9mmである。なお、厚い方のガラス板を室外側に設置した。
 実施例1及び比較例1の断熱効果の測定結果を以下の表1のNo.1に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表1のNo.1に示すように、熱貫流率は、2枚のFLガラスG1とG2との間に積層体4を含まない比較例1が2.9W/m・Kであるが、2枚のFLガラスG1,G2間に積層体4を含む実施例1は2.4W/m・Kである。
 熱貫流率は、熱の伝えやすさを表した値である。数値が小さいほど熱を伝えにくく、断熱性が良いことになる。すなわち、実施例1によると、積層体4を含まない比較例1と比べて断熱性が向上したことが検証された。
 次に、断熱効果を検証するために第2実施形態の実施例(実施例2)として複層ガラス200を用意した。
 また、複層ガラス200に対して、2枚のFLガラスG1とG2との間に積層体4を含まない以外、同様の構成である複層ガラス200Aを比較例2として、用意した。FLガラスG1とG2との間の中間層(Ne10)はネオンガス95体積%が充填されている。
 実施例2及び比較例2のFLガラスG1,G2の大きさ、複層ガラスとしての全体の厚み、FLガラスG1の厚み、FLガラスG2の、中間層3の幅は実施例1と同様である。
 図5は、実施例2の枠部材の切り欠き部13を含む部分を示した図であり、(a)は斜視図、(b)は正面図である。実施例2における枠部材7U(7D)の一端側に設けた流入用切り欠き部13の大きさは、図5(a)に示すように、枠部材7U(7D)の端部から9mmで、幅20mm、深さ4mmである。切り欠き部13の大きさを上記のようにすることで、積層体4の内部だけでなく、積層体4とFLガラスG1,G2の隙間にもガスを流すことが可能となる。
 また、枠部材7U(7D)の内面と積層体4の端部との間隔(空間12のX方向幅)は図5(a)に示すように5mmである。
 ネオンガスの充填は、上述の第2実施形態で説明したように、第2シール材10の上部に設けられたガス流入用の孔16からネオンガスを流入し、第2シール材10の下部に設けられたガス流出用の孔17より中間層内の空気を排気することにより、中間層3内の空気をネオンガスによって置き換える事によって行った。
 また、枠部材7U,7D内部においてネオンガスは、上方の切り欠き部13から流入し、下方の切り欠き部14から流出する。
 上記した表1のNo.2はこの実施例2及び比較例2の断熱効果の測定結果である。表に示すように、2枚のFLガラスG1とG2との間に積層体4を含まない比較例2の場合、熱貫流率は3.4W/m・Kであるが、2枚のFLガラスG1,G2間に積層体4を含む実施例2は3.0W/m・Kとなった。すなわち、実施例2の場合も、積層体を含まない比較例2と比べて断熱性が向上したことが検証された。
(遮音性能の検証結果)
 次に、実施形態の遮音性能を検証するために行った実験結果について説明する。
 遮音性能の検証は、「サッシ」JIS A4706:2000に準拠し、「実験室における音響透過損失の測定方法」JIS A 1416に基づき行った。その際、前記JISに基づいて、規程の1/3オクターブ中心周波数における音響透過損失を測定した。
 図6は第1実施形態の実施例3,4と比較例3,4との遮音性能を測定した結果を示したグラフである。図中、実施例3,4は実線グラフで示し、比較例3,4は点線グラフで示す。
 実線グラフにおいて測定値を四角で示したグラフAは、厚さ8mmのFLガラスG1(FL8)と5mmのFLガラスG2(FL5)との間に、乾燥空気で満たされた10mm(A10)の中間層3を設け、6層のフィルムで形成された積層体4を挿入した第1実施形態の実施例3である。
 実線グラフにおいて測定値をバツで示したグラフBは、厚さ4mmのFLガラス、厚さ0.76mmの遮音中間膜(遮音PVB(ポリビニルブチラール))、及び厚さ4mmのFLガラスを備える遮音合わせガラスG1と、5mmのFLガラスG2との間に6層の積層体4を挿入した第1実施形態の実施例4である。
 点線グラフにおいて測定値を丸で示したグラフaは、厚さ8mmのFLガラスG1と5mmのFLガラスG2との間に積層体4を含まない比較例3である。
 点線グラフにおいて測定値を三角で示したグラフbは、厚さ4mmのFLガラス、厚さ0.76mmの遮音中間膜、及び厚さ4mmのFLガラスを備える遮音合わせガラスG1と、5mmのFLガラスG2との間に積層体4を含まない比較例4である。
 図6のグラフに示すように、8mmのFLガラスG1と5mmのFLガラスG2との間に10mmの間隔を設けた積層ガラスにおいて、積層体4が配置された実施例3(グラフA)と積層体4を含まない比較例3(グラフa)とを比較すると、図示する50Hzから10kHzの範囲において遮音性能が向上した。
 また、遮音ガラスG1とFLガラスG2との間に積層体4を含む実施例4(グラフB)と、積層体4を含まない比較例4(グラフb)とを比較しても、図示する50Hzから10kHzの範囲において遮音性能が向上した。
 人間の可聴範囲は20Hz~20kHzと言われている。100Hz以下は音ではなく振動として感じる領域であり、遮音は実質的に不可能である。また、2kHz以上はエネルギーが小さい為に減衰させ易く、遮音が比較的容易な範囲である。例えば、複層ガラスの厚み(ガラス板や中間層3)を厚くしたり、ガラスの片面に合わせガラスを用いる等で対応可能である。
 従来、このうちの200Hz~1kHzの範囲(日常的に発生する音を多く含む範囲)は遮音が困難であった。
 しかし、本発明によると、このように200Hz~1kHzを含む50Hz~10kHzの範囲において遮音が可能となった。
 また、図7は、同様に遮音性能の検証結果である。図中、グラフA,aは図6と同じグラフである。実線グラフにおいて測定値を黒い四角で示したグラフCは、ガラスの間に1枚のフィルムを配置した実施例5である。
 1枚のフィルムとしてPETフィルム(厚み0.188mm)を一枚所定形状に切断し、周縁をアルミ製の枠材を用いてフィルムの両面から狭持し、フィルムを展張させた。当該枠材とフィルムとの間には両面テープ(アクリル系粘着材)を塗布し、フィルムを該枠材に固定した。
 図示するように、2枚のガラスの間に介在しているフィルムが1枚の場合でも200Hz~1kHzを含む200kHz~2.5kHz程度の範囲において遮音が可能となった。
 なお、本実施形態では積層体4をガラスGの間に入れたが、積層体4をガラスGの間ではなく外側に貼着した比較例5及び6のグラフを図8に示す。
 図中、2枚のガラスG1及びG2のうちの厚いガラスG1の外側に複層ガラスを配置した場合を比較例5としてグラフdで示す。また、薄いガラスG2の外側に複層ガラスを配置した場合を比較例6としてグラフeで示す。グラフA,aは図6と同じグラフである。
 比較例5(グラフd)、及び比較例6(グラフe)のいずれにおいても、周波数2KHz以下の音において、本実施形態の実施例3(グラフA)と比べると遮音効果が低い。
 すなわち、ガラスG1,G2の内部に積層体4を入れる本願は、積層体4を2枚のガラスの外部に貼着した場合に比べて遮音効果が高いことが分かる。
 以上、本実施形態の一例として行った種々の実施例によると、ガラス板G1,G2間の中間層3に積層体4が配置されている複層ガラス1は、断熱性が向上し、また、遮音性も向上することが検証された。
 G1:後ガラス板、G2:前ガラス板、1、200,300:複層ガラス、2:スペーサ、3:中間層(第1の空間)、3a:隙間、3b:隙間、4:積層体、4a:薄板部材、4a:隙間、4b:第2スペーサ、4c:隙間、4d:開口、5:乾燥剤、7D:下部枠部材、7U:上部枠部材、8:第3スペーサ、9:1次シール材、10:2次シール材、12:空間、20:空間

Claims (7)

  1.  間にスペーサを配置することで互いに離間した状態で接合され、互いの間に第1の空間が設けられた2枚のガラス板と、
     前記第1の空間内に配置されたシート状または板状の透光性部材と、を備え、
     互いに隣接する前記透光性部材は互いに離間し、それぞれの間に第2の空間が設けられ、前記第1の空間と前記第2の空間とは連通していること、
    を特徴とする複層ガラス。
  2.  請求項1に記載の複層ガラスであって、
     前記複数の透光性部材は、前記透光性部材の周縁部に沿って配置された枠部材によって一体的に保持されていること、
    を特徴とする複層ガラス。
  3.  請求項2に記載の複層ガラスであって、
     前記枠部材は、前記透光性部材の前記周縁部を一部露出する切り欠き部を備えること、
    を特徴とする複層ガラス。
  4.  請求項2または3に記載の複層ガラスであって、
     前記枠部材は、前記透光性部材の前記周縁部を覆う部分から外側に突出し、互いに離間して前記周縁部に沿って延びる2つの壁部を有すること、
    を特徴とする複層ガラス。
  5.  請求項2から4のいずれか1項に記載の複層ガラスであって、
     前記枠部材の少なくとも一辺は、前記スペーサと直接接していないことと、
    を特徴とする複層ガラス。
  6.  請求項1から5のいずれか1項に記載の複層ガラスであって、
     前記スペーサは乾燥剤を保持していること、
    を特徴とする複層ガラス。
  7.  請求項1から6のいずれか1項に記載の複層ガラスであって、
     互いに隣接する前記透光性部材の間隔は、熱の伝導に寄与する対流が起きない間隔であること、
    を特徴とする複層ガラス。
PCT/JP2014/069818 2013-08-20 2014-07-28 複層ガラス WO2015025679A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532783A JPWO2015025679A1 (ja) 2013-08-20 2014-07-28 複層ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-170617 2013-08-20
JP2013170617 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025679A1 true WO2015025679A1 (ja) 2015-02-26

Family

ID=52483460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069818 WO2015025679A1 (ja) 2013-08-20 2014-07-28 複層ガラス

Country Status (2)

Country Link
JP (1) JPWO2015025679A1 (ja)
WO (1) WO2015025679A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532203A (ja) * 2016-10-18 2019-11-07 サン−ゴバン グラス フランス 断熱グレージングユニット、特に、三重断熱グレージングユニット、及び断熱グレージングユニットの製造方法
WO2022178061A1 (en) * 2021-02-17 2022-08-25 Vitro Flat Glass Llc Multi-pane insulating glass unit having a rigid frame for a third pane and method of making the same
US11879290B2 (en) 2021-02-17 2024-01-23 Vitro Flat Glass Llc Multi-pane insulating glass unit having a rigid frame for a third pane and method of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125248A (en) * 1980-03-06 1981-10-01 Teijin Ltd Plural layer glass
JPS59190243A (ja) * 1983-03-28 1984-10-29 シヤルル・モンドン 窓ガラス及びその製造方法
JP2003335556A (ja) * 2002-05-15 2003-11-25 Fukuchi Kenso:Kk 熱割れ防止多層高断熱ガラス
JP2010270444A (ja) * 2009-05-19 2010-12-02 Tatsufumi Kodama 複層ガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125248A (en) * 1980-03-06 1981-10-01 Teijin Ltd Plural layer glass
JPS59190243A (ja) * 1983-03-28 1984-10-29 シヤルル・モンドン 窓ガラス及びその製造方法
JP2003335556A (ja) * 2002-05-15 2003-11-25 Fukuchi Kenso:Kk 熱割れ防止多層高断熱ガラス
JP2010270444A (ja) * 2009-05-19 2010-12-02 Tatsufumi Kodama 複層ガラス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532203A (ja) * 2016-10-18 2019-11-07 サン−ゴバン グラス フランス 断熱グレージングユニット、特に、三重断熱グレージングユニット、及び断熱グレージングユニットの製造方法
WO2022178061A1 (en) * 2021-02-17 2022-08-25 Vitro Flat Glass Llc Multi-pane insulating glass unit having a rigid frame for a third pane and method of making the same
US11879290B2 (en) 2021-02-17 2024-01-23 Vitro Flat Glass Llc Multi-pane insulating glass unit having a rigid frame for a third pane and method of making the same

Also Published As

Publication number Publication date
JPWO2015025679A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6479172B2 (ja) 絶縁グレージングユニットに用いられるスペーサ、当該スペーサを有する絶縁グレージングユニット、当該スペーサの製造方法及び使用
US20140065329A1 (en) Aerogel Window Film System
WO2015025679A1 (ja) 複層ガラス
JP6606092B2 (ja) 多重ガラス障子
JP2015145569A (ja) 多重ガラス障子
WO2016098839A1 (ja) 複層ガラス
JP6576943B2 (ja) 複層ガラス
JP6550077B2 (ja) 多重ガラス障子
JP2009102182A (ja) 光制御ガラス
WO2016068306A1 (ja) 多重ガラス障子
JP2008223261A (ja) 遮音採光断熱材
JP2005145725A (ja) 複層ガラス
JPH06306966A (ja) 断熱パネル
JP4546870B2 (ja) 採光断熱材
JP6655026B2 (ja)
JP5436489B2 (ja) 複層ガラス
JP3058802U (ja) 光発電素子を有した複層ガラス材
WO2016068307A1 (ja)
WO2018163783A1 (ja) 複層ガラスユニット及び窓建具
JP2005180096A (ja) 複層パネル
WO2009118930A1 (ja) パネルブロック
JP2020059620A (ja) 複層ガラス及びその組立方法
JP6256269B2 (ja) 建築物窓用多層ガラス
JPH11117632A (ja) 複層ガラスおよびその製造法
JP2022189355A (ja) 複層ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838325

Country of ref document: EP

Kind code of ref document: A1