WO2015024625A1 - Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde - Google Patents

Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde Download PDF

Info

Publication number
WO2015024625A1
WO2015024625A1 PCT/EP2014/002100 EP2014002100W WO2015024625A1 WO 2015024625 A1 WO2015024625 A1 WO 2015024625A1 EP 2014002100 W EP2014002100 W EP 2014002100W WO 2015024625 A1 WO2015024625 A1 WO 2015024625A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sampling
gas
temperature
cooling air
sampling tube
Prior art date
Application number
PCT/EP2014/002100
Other languages
English (en)
French (fr)
Inventor
Ludwig KÖNNING
Michael Streffing
Heinz BREDEMEIER
Alfons LEUER
Original Assignee
Thyssenkrupp Industrial Solutions Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Industrial Solutions Ag filed Critical Thyssenkrupp Industrial Solutions Ag
Priority to DK14747840.8T priority Critical patent/DK3036519T3/da
Priority to EP14747840.8A priority patent/EP3036519B1/de
Priority to ES14747840T priority patent/ES2900522T3/es
Priority to RU2016109974A priority patent/RU2664517C2/ru
Priority to BR112016003060-5A priority patent/BR112016003060B1/pt
Priority to CN201480046022.XA priority patent/CN105473993B/zh
Priority to US14/913,353 priority patent/US9915595B2/en
Publication of WO2015024625A1 publication Critical patent/WO2015024625A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2282Devices for withdrawing samples in the gaseous state with cooling means

Definitions

  • the invention relates to a gas sampling probe and a method for operating a gas sampling probe, wherein a gas to be analyzed in the region of a front end of a gas sampling tube removed from a process chamber and guided in the gas sampling tube to a rear end and thereby cooled.
  • oil-cooled gas sampling probes which use a heat transfer oil for cooling.
  • the difference to the water cycle is that the heat transfer oil can be operated in higher temperature ranges. As a result, an additional heating of the gas sampling tube can be omitted.
  • the thermal oil is problematic in terms of leaks to assess, since a fire hazard can not be excluded.
  • CONFIRMATION COPY Gas sampling tube is not cooled below 250 ° and so condensation is avoided.
  • the invention has for its object to provide a novel concept for operating a gas sampling probe, with which a sufficient cooling of the front end of the gas sampling tube is ensured and a drop below the dew point of the components to be analyzed in the gas-containing components is reliably avoided.
  • a gas to be analyzed in the region of a front end of a gas sampling tube is removed from a process space and guided in the gas sampling tube to a rear end and thereby cooled by cooling air is conducted between the gas sampling tube and at least one outer jacket surrounding the gas sampling tube wherein the cooling air at the rear end of the gas sampling tube is supplied and discharged and the temperature of the gas to be analyzed in the region of the front end of the gas sampling tube is higher than the temperature of the supplied cooling air, wherein the gas sampling probe radiates to the outside and the temperature of the supplied cooling air higher than the temperature of the discharged cooling air.
  • the inventive concept in which the temperature of the supplied cooling air is higher than the temperature of the discharged cooling air, based on the exploitation of the fact that the process only low amounts of heat are removed and the heat loss of the gas sampling probe to the outside.
  • the cooling air guided through the gas sampling tube causes the temperature of the front end of the gas sampling probe to be reduced, while the gas sampling tube is heated in the rear region.
  • the extracted gas to be analyzed is cooled from the front to the rear end. It thus takes place a homogenization of the temperature of the gas sampling tube over its entire length.
  • the temperature of the front end of the gas sampling tube can be specifically raised in comparison to the water cooling, in order to reduce the risk of external caking. This is due to the fact that in water cooling, the surface temperature of the gas sampling probe is significantly lower, since the heat transfer coefficient between water and probe wall is significantly greater than between the air and the probe wall. In addition, water can dissipate more heat due to the higher heat capacity. Furthermore, in the solution according to the invention, caking or condensation in the gas sampling tube is likewise minimized by the higher operating temperatures.
  • the gas sampling probe is preferably arranged on the process space such that it absorbs heat from the outside in a front region facing the process space and radiates heat to the outside in a rear region, the gas sampling probe radiating more heat than absorbing it in an overall heat balance.
  • the difference between the absorbed and radiated heat of the gas sampling probe corresponds to the sum of the cooling heat of the gas to be analyzed and the cooling air.
  • the temperature of the supplied cooling air is higher than the temperature of the gas to be analyzed and the temperature of the discharged cooling air is less than or equal to the temperature of the gas to be analyzed.
  • the temperature profile of the gas sampling tube is adjusted over its entire length such that the minimum temperature is greater than or equal to the dew point temperature of the components contained in the gas to be analyzed.
  • the temperature of the discharged cooling air before re-feeding by at least 20 ° C, preferably by at least 50 ° C, most preferably by at least 75 ° C, increased.
  • the temperature of the supplied cooling air in the region of the rear end of the gas sampling tube is preferably set in a range of 100 ° C and 600 ° C.
  • the temperature of the gas to be analyzed in the process space, ie before removal, may be in a range of 200 ° C to 1600 ° C.
  • the gas sampling probe is further operated with cooling air such that the Temperature of the gas to be removed and analyzed from the front to the rear of the gas sampling tube by at least 50%, preferably at least 60%, most preferably cooled by at least 70%. Furthermore, it is expedient to keep the temperature of the discharged cooling air less than or equal to the temperature of the gas sampling tube in the region of the rear end of the gas sampling tube.
  • the air heater is expediently in communication with a control device which controls the air heater in response to a temperature signal of a temperature measuring device, wherein the temperature measuring device detects the temperature of a discharged via the cooling air discharge opening cooling air.
  • a control device which controls the air heater in response to a temperature signal of a temperature measuring device, wherein the temperature measuring device detects the temperature of a discharged via the cooling air discharge opening cooling air.
  • the cooling zone formed between the gas sampling tube and the outer jacket has two concentrically arranged annular spaces, which are connected to each other in the front region of the gas sampling tube via an overflow region and thede Kunststoffzu Technologyö réelle and thede Kunststoffab technologicalö réelle are each connected to one of the two annular spaces in the rear region of the gas sampling tube ,
  • the maximum temperature of the gas to be analyzed is given by the temperature in the process space from which the gas is withdrawn. For the application of a gas analysis in the inlet region of a furnace for cement clinker production, this temperature is about 1200 ° C. When removing the gas to be analyzed by the Gasentddlingrohrmuss must be ensured that the gas does not condense. The minimum temperature of the analyzing gas is therefore determined by the lowest dew point of the gaseous components within the gas. For the above application in gas analysis in Inlet area of a furnace for cement clinker production is a gas temperature of about 200 ° C above the expected dew points. On the other hand, the temperature of the gas sampling tube should be as high as possible in order to minimize the formation of deposits.
  • the maximum wall temperature in the region of the front end of the gas sampling tube is determined by the desired creep strength of the material used.
  • An air-cooled gas sampling probe can be operated with significantly higher wall temperatures than liquid-cooled gas sampling tubes, so that temperatures in the front range of 500 ° C to 600 ° C can be set.
  • the minimum wall temperature along the gas sampling tube should not be less than the lowest dew point temperature of the components in the gas to be analyzed.
  • the adjustment of the minimum temperature of the gas to be analyzed and the distribution of the heat along the gas sampling tube is determined essentially by the temperature of the supplied cooling gas and the amount of cooling air or speed and has to be adapted to the respective conditions.
  • the cooling air must be at a velocity within the gas sampling probe that is high enough to cause a turbulent flow.
  • FIG. 1 is a schematic diagram of a gas sampling device
  • FIG. 2a is a longitudinal sectional view of a gas sampling probe according to a first embodiment
  • FIG. 2b shows a cross-sectional view along the line GG of Fig. 2a
  • 3a is a longitudinal sectional view of a gas sampling probe according to a second embodiment
  • FIG. 3b is a cross-sectional view along the line J-J of Fig. 3a
  • Fig. 4 is a schematic diagram of a gas sampling device with a
  • Control device for controlling the air heater in dependence on a temperature signal
  • Fig. 5 is a schematic sectional view of the installation situation of
  • FIG. 6 shows a diagram for illustrating the heat input into the gas sampling probe through the installation situation
  • Fig. 8 Diagram showing the temperature profile of the removed
  • Fig. 10 Detail view of the front end of the gas sampling probe.
  • the gas sampling device shown in Fig. 1 has a gas sampling probe 1 with a gas sampling tube 2 to remove a gas to be analyzed in the region of a front end la from a process room and to lead in the gas sampling tube to a rear end 1 b.
  • the gas sampling tube is surrounded by an outer casing 3, wherein between the gas sampling tube 2 and outer shell 3 cooling air 14 is guided, which is supplied at the rear end lb via ade povertyzu Technologyö réelle 4 and discharged via adeluftab Technologyö réelle 5. Thede povertyabtechnologieö réelle and thede povertyzuFINö réelle are to form a closed circuit connected to each other, with a fan 6 and an air heater 7 are provided therebetween.
  • a gas sampling probe F according to a first embodiment is shown in more detail, there is between the gas sampling tube 2 'and outer shell 3' formed cooling zone in two over the length of the gas sampling tube 2 'extending halves 8'a, 8'b divided, which are connected to each other in the front region l 'a of the gas sampling probe via an overflow region 9'.
  • the cooling air supply opening 4 ' is connected to one half 8'a and the cooling air discharge opening 5' to the other half 8'b in the rear region of the gas sampling probe.
  • the cooling air 14 supplied via the cooling air supply opening 4 'thus flows from the rear end 1' b of the gas sampling probe F in the lower half 8'a of the cooling zone to the front region 1 'a, where it reaches the upper half 8' via the overflow region 9 '. b the cooling zone and flows there back to the cooling air discharge opening 5 '.
  • the delimitation of the two halves takes place by partitions 10 ', 1 F (Fig. 2b).
  • the outer jacket 3 ' is surrounded by an insulation 12' and a protective tube 13 '.
  • the flow of the cooling air 14 supplied via the cooling air supply opening 4 ' is indicated by arrows within the cooling zone.
  • FIG. 3a and 3b show a gas sampling probe 1 "according to a second exemplary embodiment, which differs essentially only in the design of the cooling zone 12.
  • the cooling zone formed between the gas sampling tube 2" and the outer jacket 3 " is hereby arranged by two concentrically arranged ones Annular spaces 8 "c and 8” d formed, which are in the front region l "a of the gas sampling probe 1" again connected via an overflow region 9 ".
  • the cooling air supply opening 4 "and the cooling air discharge opening 5" are respectively connected to one of the two annular spaces 8 "c, 8" d in the rear area l "b of the gas sampling probe 1".
  • the flow of Cooling air 14 supplied via the cooling air supply opening 4 " is shown with arrows within the cooling zone.
  • control device 15 which is in communication with the air heater 7 and controls the air heater in response to a temperature signal of a temperature measuring device 16, wherein the temperature measuring device 16, the temperature of a via thede Kunststoffzu Kunststoffö réelle. 5 discharged cooling air detected.
  • the controller 15 may further drive the fan 6 to thereby regulate the amount of cooling air / velocity of the cooling air.
  • the gas sampling probe 1 opens flush with the wall 18 in the process chamber 17. Furthermore, the temperature profile is outside the Gas sampling probe shown.
  • the wall is constructed in the illustrated embodiment 2-ply, with an inwardly facing refractory lining 18a and an insulation 18b and possibly a further housing wall are provided. Assuming a situation in which the gas in the process chamber 17 is about 1200 ° C hot, the temperature of the wall 18 at the point A is about 1 100 ° C and at point B about 960 ° C while at the outside in Area of point C only about 200 ° C measures. Outside the wall in region D, the ambient temperature is, for example, 30 ° C.
  • FIG. 6 shows a diagram for illustrating the heat input into the gas sampling probe by the installation situation according to FIG. 5.
  • heat is introduced through the hot environment (wall, process space) into the front part of the gas sampling probe stuck in the wall 18 (heat absorption area).
  • the rear part of the gas sampling probe emits heat energy to the outside through contact with the ambient air (heat radiation area).
  • the heat input or heat discharge is symbolized by arrows in these areas.
  • FIG. 9 shows with dashed lines the flow temperature range 14a of the cooling air and with solid lines de return temperature range 14b of the cooling air. It can be seen very clearly that the temperature of the cooling gas in the region of the cooling air supply opening is higher than in the region of the cooling air discharge opening. This very unusual temperature distribution is achieved in that the cooling air on the one hand distributes the heat from the front area l 'a of the gas sampling probe to the rear area l' b and at the same time cools the 19 to be analyzed. Furthermore, the gas sampling probe, in particular in the areas where it is not installed in the wall 18, radiates outwards.
  • the strong cooling effect on the gas to be analyzed is based on the fact that approximately 500 times to 2,500 times the amount of cooling air is supplied compared to the amount of gas to be analyzed.
  • a material with a high thermal conductivity for example carbon nanotubes.
  • the insulation 12 is used primarily to ensure that no additional heat is entered from the outside into the gas sampling probe.
  • the cooling air 14 is guided with turbulent flow in the gas sampling probe.
  • the required turbulent flow is created by appropriate selection of the parameters "fluid velocity” and “viscosity”, which influence the characteristic Reynolds number for the flow, as well as the surface condition of the pipe wall. Furthermore, the generation of the turbulent flow could be assisted by a correspondingly rough surface of the walls delimiting the cooling zone.
  • the cooling air in its speed / amount and its temperature can be adapted to the external conditions, on the one hand to avoid excessive cooling of the gas to be analyzed below the dew point of the components to be analyzed in the gas-containing components and on the other hand to achieve a comparison of the temperature profile along the gas sampling probe.
  • the wall thickness tl of the gas sampling tube 2 and the wall thickness t2 of the outer shell 3 with respect to the flow cross-sectional area of the gas sampling tube with the inner diameter D is defined such that the surface formed by the annular surfaces with the wall thicknesses t1 and t2 is greater than or equal to 0.4 times the flow cross-sectional area of the gas sampling tube.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Beim Verfahren zum Betreiben einer Gasentnahmesonde (1) wird ein zu analysierendes Gas im Bereich eines vorderen Endes (la) eines Gasentnahmerohrs (2) aus einem Prozessraum (17) entnommen und im Gasentnahmerohr bis zu einem hinteren Ende (lb) geführt und dabei gekühlt, indem zwischen dem Gasentnahmerohr und wenigstens einem das Gasentnahmerohr umgebenden Außenmantel (3) Kühlluft (14) geführt wird, wobei die Kühlluft am hinteren Ende des Gasentnahmerohres zu- und abgeführt wird und die Temperatur des zu analysierenden Gases im Bereich des vorderen Endes des Gasentnahmerohts höher als die Temperatur der zugeführten Kühlluft ist, und die Gasentnahmesonde nach außen abstrahlt, wobei die Temperatur der zugeführten Kühlluft höher als die Temperatur der abgeführten Kühlluft ist.

Description

Gasentnahmesonde und Verfahren zum Betreiben einer Gasentnahmesonde
Die Erfindung betrifft eine Gasentnahmesonde und ein Verfahren zum Betreiben einer Gasentnahmesonde, wobei ein zu analysierendes Gas im Bereich eines vorderen Endes eines Gasentnahmerohrs aus einem Prozessraum entnommen und im Gasentnahmerohr bis zu einem hinteren Ende geführt und dabei gekühlt wird.
Aus der DE 103 15 996 AI ist eine Sonde zu Entnahme einer Gasprobe aus einem heißen Reaktionsraum bekannt, wobei ein durch einen Außenmantel begrenzter Ringraum mit Kühlwasser durchströmt wird. Da der Siedepunkt des Wassers nicht erreicht werden darf, liegt die maximale Rücklauftemperatur bei ca. 90°C. Bei diesen niedrigen Temperaturen können aber Taupunktunterschreitungen innerhalb der Gasentnahmesonde nicht sicher ausgeschlossen werden. Deshalb wird bei einigen Herstellern das Gasentnahmerohr zusätzlich elektrisch beheizt, um so die Taupunktunterschreitungen im Messgas zu verhindern. In der DE 103 15 996 A I wird die Taupunktunterschreitung dadurch verhindert, dass das Gasentnahmerohr mit einem evakuierbaren Hohlraum umgeben ist. Die starke Wasserkühlung hat aber auch den weiteren Nachteil, dass der äußere Teil der Gasentnahmesonde unnötig stark abgekühlt wird, wobei eine zu kalte Spitze der Gasentnahmesonde im heißen Prozessgas zu Ansatzbildung neigen kann.
Des Weiteren sind ölgekühlte Gasentnahmesonden bekannt, die zur Kühlung ein Wärmeträgeröl einsetzen. Der Unterschied zum Wasserkreislauf besteht darin, dass das Wärmeträgeröl in höheren Temperaturbereichen betrieben werden kann. Dadurch kann eine zusätzliche Heizung des Gasentnahmerohres entfallen. Problematisch ist das Wärmeträgeröl aber hinsichtlich Leckagen zu beurteilen, da hier eine Brandgefährdung nicht auszuschließen ist.
Aus der DE 103 54 188 AI ist ferner eine Hochtemperaturentnahmesonde bekannt, bei der ein Gasentnahmerohr von einem äußeren Rohr umgeben ist und zwischen diesen beiden Rohren unter Druck stehende Kühlluft geführt wird. Dabei wurde darauf geachtet, dass das entnommene, zu analysierende Gas entlang des
BESTÄTIGUNGSKOPIE Gasentnahmerohres nicht unter 250° abgekühlt wird und so Kondensationen vermieden werden.
Der Erfindung liegt die Aufgabe zugrunde, eine neues Konzept zum Betreiben einer Gasentnahmesonde anzugeben, mit dem eine ausreichende Kühlung des vorderen Endes des Gasentnahmerohres gewährleistet ist und eine Unterschreitung der Taupunkttemperatur der im zu analysierenden Gas enthaltenden Komponenten zuverlässig vermieden wird.
Erfindungsgemäß wird diese Aufgabe durch die Merkmale der Ansprüche 1 und 16 gelöst. Weitere Ausgestaltungen sind Gegenstand der Unteransprüche.
Beim erfindungsgemäßen Verfahren zum Betreiben einer Gasentnahmesonde wird ein zu analysierendes Gas im Bereich eines vorderen Endes eines Gasentnahmerohrs aus einem Prozessraum entnommen und im Gasentnahmerohr bis zu einem hinteren Ende geführt und dabei gekühlt, indem zwischen dem Gasentnahmerohr und wenigstens einem das Gasentnahmerohr umgebenden Außenmantel Kühlluft geführt wird, wobei die Kühlluft am hinteren Ende des Gasentnahmerohres zu- und abgeführt wird und die Temperatur des zu analysierenden Gases im Bereich des vorderen Endes des Gasentnahmerohrs höher als die Temperatur der zugeführten Kühlluft ist, wobei die Gasentnahmesonde nach außen abstrahlt und die Temperatur der zugeführten Kühlluft höher als die Temperatur der abgeführten Kühlluft ist.
Die erfindungsgemäße Gasentnahmeeinrichtung zur Durchführung des obigen Verfahrens weist ein Gasentnahmerohr auf, um ein zu analysierendes Gas im Bereich eines vorderen Endes zu entnehmen und im Gasentnahmerohr bis zu einem hinteren Ende zu führen, wobei das Gasentnahmerohr von wenigstens einem Außenmantel umgeben ist, sodass eine sich über die Länge des Gasentnahmerohres erstreckende Kühlzone ausgebildet ist, die im Bereich des hinteren Endes der Gasentnahmesonde eine Kühlluftzuführöffnung und eine Kühlluftabführöffnung aufweist, wobei die Kühlluftabführöffnung und die Kühlluftzuführöffnung zur Ausbildung eines geschlossenen Kreislaufs miteinander verbunden sind und die Gasentnahmesonde nach außen abstrahlt. Zwischen der Kühlluftabführöffnung und der Kühlluftzuführöffnung ist außerdem ein Lufterhitzer vorgesehen.
Das erfindungsgemäße Konzept bei dem die Temperatur der zugeführten Kühlluft höher als die Temperatur der abgeführten Kühlluft ist, beruht auf der Ausnutzung der Tatsache, dass dem Prozess nur niedrige Wärmemengen entnommen werden und den Wärmeverlusten der Gasentnahmesonde nach außen. Die durch das Gasentnahmerohr geführte Kühlluft bewirkt zum einen, dass die Temperatur des vorderen Endes der Gasentnahmesonde reduziert wird, während das Gasentnahmerohr im hinteren Bereich erwärmt wird. Gleichzeitig wird das entnommene, zu analysierende Gas vom vorderen bis zum hinteren Ende abgekühlt. Es findet somit eine Vergleichmäßigung der Temperatur des Gasentnahmerohrs über seine gesamte Länge statt.
Durch die Kühlung mit Luft kann im Vergleich zur Wasserkühlung die Temperatur des vorderen Endes des Gasentnahmerohres gezielt angehoben werden, um die Gefahr von äußeren Anbackungen zu vermindern. Dies ist dadurch bedingt, dass bei der Wasserkühlung die Oberflächentemperatur die Gasentnahmesonde deutlich geringer ist, da der Wärmeübergangskoeffizient zwischen Wasser und Sondenwand deutlich größer ist als zwischen Luft und Sondenwand. Zusätzlich kann Wasser aufgrund der höheren Wärmekapazität mehr Wärme abführen. Des Weiteren werden bei der erfmdungsgemäßen Lösung Anbackungen bzw. Kondensationen im Gasentnahmerohr durch die höheren Betriebstemperaturen ebenfalls minimiert.
Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Die Gasentnahmesonde ist vorzugsweise so am Prozessraum angeordnet, dass sie in einem vorderen, dem Prozessraum zugewandten Bereich Wärme von außen aufnimmt und in einem hinteren Bereich Wärme nach außen abstrahlt, wobei in einer Gesamtwärmebilanz die Gasentnahmesonde mehr Wärme abstrahlt als aufnimmt. Der Differenzbetrag der aufgenommenen und abgestrahlten Wärme der Gasentnahmesonde entspricht der Summe der Kühlwärme des zu analysierendes Gases und der Kühlluft.
Gemäß einer bevorzugten Ausgestaltung der Erfindung wird die Kühlluft vom hinteren bis zum vorderen Ende des Gasentnahmerohres und zurückgeführt. Des Weiteren kann die Kühlluft im Kreislauf geführt werden, wobei die Temperatur der abgeführten Kühlluft vor dem erneuten Zuführen erhöht wird. Dabei kann auch vorgesehen werden, dass die Temperatur der abgeführten Kühlluft gemessen wird und ein Lufterhitzer in Abhängigkeit der gemessenen Temperatur derart angesteuert wird, dass die Temperatur der im Kreislauf geführten Kühlluft im Bereich der Zuführung am hinteren Ende des Gasentnahmerohres einen vorgegebenen Sollwert aufweist. Die Temperatur des zuzuführenden Kühlgases und deren Menge wird so eingestellt, dass das zu analysierende Gas vom vorderen bis zum hinteren Ende des Gasentnahmerohres höchstens bis zu einer Minimaltemperatur abgekühlt wird, die größer oder gleich der Taupunkttemperatur der im zu analysierenden Gas enthaltenen Komponenten ist. Weiterhin kann vorgesehen werden, dass am hinteren Ende des Gasentnahmerohrs die Temperatur der zugeführten Kühlluft höher als die Temperatur des zu analysierenden Gases und die Temperatur der abgeführten Kühlluft kleiner oder gleich der Temperatur des zu analysierenden Gases ist. Durch die Temperatur und Menge der Kühlluft wird das Temperaturprofil des Gasentnahmerohres über seine gesamte Länge derart eingestellt, dass die minimale Temperatur größer oder gleich der Taupunkttemperatur der im zu analysierenden Gas enthaltenen Komponenten ist. Je nach Temperatur des zu analysierenden Gases wird die Temperatur der abgeführten Kühlluft vor dem erneuten Zuführen um wenigstens 20°C, vorzugsweise um wenigstens 50°C, höchstvorzugs weise um wenigstens 75°C, erhöht. Die Temperatur der zugeführten Kühlluft im Bereich des hinteren Ende des Gasentnahmerohres wird vorzugsweise in einem Bereich von 100°C und 600°C eingestellt. Die Temperatur des zu analysierenden Gases im Prozessraum, also vor der Entnahme, kann in einem Bereich von 200°C bis 1600°C liegen. Die Gasentnahmesonde wird weiterhin mit Kühlluft derart betrieben, dass die Temperatur des entnommenen und zu analysierenden Gases vom vorderen zum hinteren Ende des Gasentnahmerohres um wenigstens 50%, vorzugsweise um wenigstens 60%, höchstvorzugsweise um wenigstens 70% abgekühlt wird. Weiterhin ist es zweckmäßig, die Temperatur der abgeführten Kühlluft kleiner oder gleich der Temperatur des Gasentnahmerohres im Bereich des hinteren Endes des Gasentnahmerohres zu halten.
Der Lufterhitzer steht zweckmäßigerweise mit einer Steuereinrichtung in Verbindung, die den Lufterhitzer in Abhängigkeit eines Temperatursignals einer Temperaturmesseinrichtung ansteuert, wobei die Temperaturmesseinrichtung die Temperatur einer über die Kühlluftabführöffnung abgeführten Kühlluft erfasst. Gemäß einem ersten Ausführungsbeispiel der Gasentnahmesonde ist die zwischen Gasentnahmerohr und Außenmantel ausgebildete Kühlzone in zwei sich über die Länge des Gasentnahmerohres erstreckende Hälften aufgeteilt, die im vorderen Bereich des Gasentnahmerohres über einen Überströmbereich miteinander verbunden sind und die Kühlluftzuführöffnung und die Kühlluftabführöffnung jeweils an einer der beiden Hälften im hinteren Bereich des Gasentnahmerohres vorgesehen sind. Gemäß einem zweiten Ausführungsbeispiel weist die zwischen Gasentnahmerohr und Außenmantel ausgebildete Kühlzone zwei konzentrisch zueinander angeordnete Ringräume auf, die im vorderen Bereich des Gasentnahmerohres über einen Überströmbereich miteinander verbunden sind und die Kühlluftzuführöffnung und die Kühlluftabführöffnung jeweils an einen der beiden Ringräume im hinteren Bereich des Gasentnahmerohres angeschlossen sind.
Die maximale Temperatur des zu analysierenden Gases ist durch die Temperatur im Prozessraum, aus dem das Gas abgezogen wird, gegeben. Für den Anwendungsfall einer Gasanalyse im Einlaufbereich eines Ofens für die Zementklinkerherstellung liegt diese Temperatur bei etwa 1200°C. Bei der Entnahme des zu analysierenden Gases durch das Gasentnahmerohrmuss muss sichergestellt werden, dass das Gas nicht kondensiert. Die minimale Temperatur des analysierenden Gases wird daher durch den niedrigsten Taupunkt der gasförmigen Komponenten innerhalb des Gases festgelegt. Für den oben genannten Anwendungsfall bei der Gasanalyse im Einlaufbereich eines Ofens für die Zementklinkerherstellung liegt eine Gastemperatur von ca. 200°C oberhalb der zu erwartenden Taupunkte. Andererseits soll die Temperatur des Gasentnahmerohres möglichst hoch sein, um eine Ansatzbildung zu minimieren. Die maximale Wandtemperatur im Bereich des vorderen Endes des Gasentnahmerohres ist durch die gewünschte Zeitstandfestigkeit des verwendeten Materials bestimmt. Eine luftgekühlte Gasentnahmesonde kann mit wesentlich höheren Wandtemperaturen als flüssigkeitsgekühlte Gasentnahmerohre betrieben werden, sodass Temperaturen im vorderen Bereich von 500°C bis 600°C eingestellt werden können.
Die minimale Wandtemperatur entlang des Gasentnahmerohres sollte die niedrigste Taupunkttemperatur der Komponenten im zu analysierenden Gas nicht unterschreiten. Die Einstellung der minimalen Temperatur des entnommenen, zu analysierenden Gases und die Verteilung der Wärme entlang des Gasentnahmerohres wird im Wesentlich durch die Temperatur des zugeführten Kühlgases und die Kühlluftmenge bzw. Geschwindigkeit bestimmt und muss an die jeweiligen Gegebenheiten angepasst werden. Um eine optimale Verteilung der Wärme entlang des Gasentnahmerohres zu gewährleisten, ist die Kühlluft mit einer Geschwindigkeit innerhalb der Gasentnahmesonde zu führen, die so hoch ist, dass es zu einer turbulenten Strömung kommt.
Weitere Vorteile und Ausgestaltungen der Erfindung werden anhand der nachfolgenden Beschreibung und der Zeichnung näher erläutert.
In der Zeichnung zeigen
Fig. 1 eine Prinzipdarstellung einer Gasentnahmeeinrichtung,
Fig. 2a eine Längsschnittdarstellung einer Gasentnahmesonde gemäß einem ersten Ausführungsbeispiel,
Fig.2b eine Querschnittdarstellung längs der Linie G-G der Fig. 2a, Fig. 3a eine Längsschnittdarstellung einer Gasentnahmesonde gemäß einem zweiten Ausführungsbeispiel,
Fig. 3b eine Querschnittdarstellung längs der Linie J-J der Fig. 3a,
Fig. 4 eine Prinzipdarstellung einer Gasentnahmeeinrichtung mit einer
Steuereinrichtung zur Ansteuerung des Lufterhitzers in Abhängigkeit eines Temperatursignals,
Fig. 5 schematische Schnittdarstellung der Einbausituation der
Gasentnahmesonde mit Darstellung des Temperaturprofils,
Fig. 6 Diagramm zu Darstellung des Wärmeeintrags in die Gasentnahmesonde durch die Einbausituation,
Fig. 7 Diagramm zu Darstellung des Wärmeeintrags auf das Gasentnahmerohr,
Fig. 8 Diagramm zur Darstellung des Temperaturverlaufs des entnommenen
Gases und der Wandtemperatur des Gasentnahmerohres entlang seiner Länge,
Fig. 9 Diagramm zur Darstellung des Temperaturverlaufs der Kühlluft entlang des Gasentnahmerohres und
Fig. 10 Detailansicht des vorderen Endes der Gasentnahmesonde.
Die in Fig. 1 dargestellte Gasentnahmeeinrichtung weist eine Gasentnahmesonde 1 mit einem Gasentnahmerohr 2 auf, um ein zu analysierendes Gas im Bereich eines vorderen Endes l a aus einem Prozessraum zu entnehmen und im Gasentnahmerohr bis zu einem hinteren Ende 1 b zu führen. Das Gasentnahmerohr ist von einem Außenmantel 3 umgeben, wobei zwischen Gasentnahmerohr 2 und Außenmantel 3 Kühlluft 14 geführt wird, die am hinteren Ende lb über eine Kühlluftzuführöffnung 4 zugeführt und über eine Kühlluftabführöffnung 5 abgeführt wird. Die Kühlluftabführöffnung und die Kühlluftzuführöffnung sind zur Ausbildung eines geschlossenen Kreislaufs miteinander verbunden, wobei dazwischen ein Ventilator 6 und ein Lufterhitzer 7 vorgesehen sind.
In den Fig. 2a und 2b ist eine Gasentnahmesonde F gemäß einem ersten Ausführungsbeispiel näher dargestellt, dort ist die zwischen Gasentnahmerohr 2' und Außenmantel 3' ausgebildete Kühlzone in zwei sich über die Länge des Gasentnahmerohres 2' erstreckende Hälften 8'a, 8'b unterteilt, die im vorderen Bereich l 'a der Gasentnahmesonde über einen Überströmbereich 9' miteinander verbunden sind. Die Kühlluftzuführöffnung 4' ist an die eine Hälfte 8'a und die Kühlluftabführöffnung 5' an die andere Hälfte 8'b im hinteren Bereich der Gasentnahmesonde angeschlossen. Die über die Kühlluftzuführöffnung 4' zugeführte Kühlluft 14 strömt somit vom hinteren Ende l 'b der Gasentnahmesonde F in der unteren Hälfte 8'a der Kühlzone bis zum vorderen Bereich l 'a und gelangt dort über den Überströmbereich 9' in die obere Hälfte 8'b der Kühlzone und strömt dort zurück zur Kühlluftabführöffnung 5'. Die Abgrenzung der beiden Hälften erfolgt dabei durch Trennwände 10', 1 F (Fig. 2b).
Um die Gasentnahmesonde 1 ' vor einem übermäßigen Wärmeeintrag von außen, d. h. durch die Einbausituation, zu schützen, ist der Außenmantel 3' mit einer Isolierung 12' und einem Schutzrohr 13' umgeben. Die Strömung der über die Kühlluftzuführöffnung 4' zugeführten Kühlluft 14 ist innerhalb der Kühlzone mit Pfeilen dargestellt.
In den Fig. 3a und 3b ist eine Gasentnahmesonde 1 " gemäß einem zweiten Ausführungsbeispiel offenbart, die sich im Wesentlichen nur durch die Ausbildung der Kühlzone unterscheidet. Die zwischen dem Gasentnahmerohr 2" und dem Außenmantel 3" ausgebildete Kühlzone wird hier durch zwei konzentrisch zueinander angeordnete Ringräume 8"c und 8"d gebildet, die im vorderen Bereich l "a der Gasentnahmesonde 1 " wiederum über einen Überströmbereich 9" miteinander verbunden sind. Die Kühlluftzuführöffnung 4" und die Kühlluftabführöffnung 5" sind jeweils an einen der beiden Ringräume 8"c, 8"d im hintern Bereich l "b der Gasentnahmesonde 1 " angeschlossen. Die Strömung der über die Kühlluftzuführöffnung 4" zugeführten Kühlluft 14 ist innerhalb der Kühlzone mit Pfeilen dargestellt.
Fig. 4 zeigt die Gasentnahmeeinrichtung gemäß Fig. 1, die jedoch zusätzlich eine Steuereinrichtung 15 aufweist, die mit dem Lufterhitzer 7 in Verbindung steht und den Lufterhitzer in Abhängigkeit eines Temperatursignals einer Temperaturmesseinrichtung 16 ansteuert, wobei die Temperaturmesseinrichtung 16 die Temperatur einer über die Kühlluftzuführöffnung 5 abgeführten Kühlluft erfasst. Die Steuereinrichtung 15 kann ferner den Ventilator 6 ansteuern, um dadurch die Kühlluftmenge/Geschwindigkeit der Kühlluft zu regulieren.
Fig. 5 zeigt die Gasentnahmesonde 1 ' der Fig. 2a in einer konkreten Einbausituation in einer, einen Prozessraum 17 umgebenden Wandung 18. Im dargstellten Ausführungsbeispiel mündet die Gasentnahmesonde 1 ' bündig mit der Wandung 18 in dem Prozessraum 17. Weiterhin ist der Temperaturverlaufs außerhalb der Gasentnahmesonde dargestellt. Die Wand ist im dargestellten Ausführungsbeispiel 2-lagig aufgebaut, wobei eine nach innen weisende feuerfeste Auskleidung 18a und eine Isolierung 18b und ggf. eine weitere Gehäusewand vorgesehen sind. Geht man von einer Situation aus, bei der das Gas im Prozessraum 17 etwa 1200°C heiß ist, beträgt die Temperatur der Wandung 18 an der Stelle A etwa 1 100°C und am Punkt B etwa 960°C während sie an der Außenseite im Bereich des Punktes C nur noch ca. 200°C misst. Außerhalb der Wandung im Bereich D herrscht Umgebungstemperatur von beispielsweise 30°C.
Fig. 6 zeigt ein Diagramm zur Darstellung des Wärmeeintrags in die Gasentnahmesonde durch die Einbausituation gemäß Fig. 5. Dabei wird insbesondere in den in der Wandung 18 steckenden, vorderen Teil der Gasentnahmesonde Wärme durch die heiße Umgebung (Wandung, Prozessraum) eingebracht (Wärmeaufnahmebereich), während der hintere Teil der Gasentnahmesonde durch den Kontakt mit der Umgebungsluft Wärmeenergie nach außen abgibt (Wärmeabstrahlungsbereich). Der Wärmeeintrag bzw. Wärmeaustrag wird durch Pfeile in diesen Bereichen symbolisiert. In Fig. 7 ist der Wärmeeintrag bzw. Wärmeaustrag bezüglich des Gasentnahmerohres 2' dargestellt, wobei das heiße Gasentnahmerohr im das vordere Ende l 'a aufweisenden, vorderen Bereich Wärmeenergie an das umgebende Kühlsystem, insbesondere die Kühlluft abgibt, während die Kühlluft im das hintere Ende l 'b aufweisenden, hinteren Bereich Wärmeenergie in das Gasentnahmerohr einbringt. Der Wärmeaustrag bzw. Wärmeeintrag wird wiederum durch Pfeile in diesen Bereich symbolisiert.
Der zugehörigen Temperaturverlauf des entnommen, zu analysierenden Gases 19 und die Temperatur des Gasentnahmerohres 2' ist aus Fig. 8 über die Länge der Gasentnahmesonde ersichtlich. Man erkennt, dass das zu analysierende Gas 19 von seiner Entnahmetemperatur bei etwa 1200°C auf ca. 200°C abgekühlt wird, während die Temperatur des Gasentnahmerohres am vorderen Ende l 'a ein deutlich niedrigeres Temperaturniveau aufweist und sich die Temperatur in Richtung zum hinteren Ende 1 'b an die Temperatur des zu analysierenden Gases 19 anpasst.
Parallel hierzu zeigt die Fig. 9 mit gestrichelten Linien den Vorlauftemperaturbereich 14a der Kühlluft und mit durchgezogenen Linien de Rücklauftemperaturbereich 14b der Kühlluft. Man sieht hier sehr deutlich, dass die Temperatur des Kühlgases im Bereich der Kühlluftzuführöffnung höher als im Bereich der Kühlluftabfuhröffnung ist. Diese sehr ungewöhnliche Temperaturverteilung wird dadurch erreicht, dass die Kühlluft zum einen die Wärme vom vorderen Bereich l 'a der Gasentnahmesonde zum hinteren Bereich l 'b verteilt und gleichzeitig das zu analysierende 19 abkühlt. Weiterhin strahlt die Gasentnahmesonde, insbesondere in den Bereichen, in denen sie nicht in der Wandung 18 eingebaut ist, nach außen ab. Die starke Kühlwirkung auf das zu analysierende Gas beruht vor allem auch darauf, dass etwa die 500-fache bis 2.500-fache Menge an Kühlluft im Vergleich zur Menge des zu analysierenden Gases zugeführt wird. Um die Wärme vom vorderen Bereich l 'a zum hinteren Bereich 1 'b gut ableiten zu können, wird zweckmäßigerweise ein Material mit einer hohen Wärmeleitfähigkeit, beispielsweise Kohlenstoffnanoröhrchen, verwendet. Die Isolierung 12 dient vor allem dazu, dass keine zusätzliche Wärme von außen in die Gasentnahmesonde eingetragen wird. Um die Verteilung der Wärme entlang des Gasentnahmerohres zu verbessern, wird die Kühlluft 14 mit turbulenter Strömung in der Gasentnahmesonde geführt. Die erforderliche turbulente Strömung entsteht durch entsprechende Auswahl der Parameter „Fluidgeschwindigkeit" und „Viskosität", welche die für die Strömung charakteristische Reynoldszahl beeinflussen, sowie die Oberflächenbeschaffenheit der Rohrwandung. Des Weiteren könnte die Erzeugung der turbulenten Strömung durch eine entsprechend raue Oberfläche der die Kühlzone begrenzenden Wandungen unterstützt werden.
Über den Ventilator 6 und den Lufterhitzer 7 kann die Kühlluft in ihrer Geschwindigkeit/Menge und ihrer Temperatur an die äußeren Gegebenheiten angepasst werden, um einerseits eine zu starke Kühlung des zu analysierenden Gases unterhalb der Taupunkttemperatur der im zu analysierenden Gas enthaltenden Komponenten zu vermeiden und andererseits eine Vergleichsmäßigung des Temperaturprofils entlang der Gasentnahmesonde zu erreichen.
Mit Bezug auf Fig. 10 wird erläutert, wie beide Ziele erreicht werden können. Es hat sich als vorteilhaft erwiesen, wenn die Wandstärke tl des Gasentnahmerohres 2 und die Wandstärke t2 des Außenmantels 3 bezüglich der Strömungsquerschnittsfläche des Gasentnahmerohres mit dem Innendurchmesser D so definiert wird, dass die Fläche, die sich aus den Kreisringflächen mit den Wandstärken tl und t2 gebildet wird, größer oder gleich der 0,4-fachen Strömungsquerschnittsfläche des Gasentnahmerohres ist.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Gasentnahmesonde (1), bei dem ein zu analysierendes Gas (19) im Bereich eines vorderen Endes (la) eines Gasentnahmerohrs (2) aus einem Prozessraum (17) entnommen und im Gasentnahmerohr (2) bis zu einem hinteren Ende (l b) geführt und dabei gekühlt wird, indem zwischen dem Gasentnahmerohr (2) und wenigstens einem das Gasentnahmerohr umgebenden Außenmantel (3) Kühlluft (14) geführt wird, wobei die Kühlluft am hinteren Ende des Gasentnahmerohres zu- und abgeführt wird und die Temperatur des zu analysierenden Gases im Bereich des vorderen Endes des Gasentnahmerohrs höher als die Temperatur der zugeführten Kühlluft ist, und die Gasentnahmesonde nach außen abstrahlt, dadurch gekennzeichnet, dass die Temperatur der zugeführten Kühlluft (14) höher als die Temperatur der abgeführten Kühlluft ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kühlluft vom hinteren bis zum vorderen Ende des Gasentnahmerohres (2) und zurückgeführt wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kühlluft ( 14) im Kreislauf geführt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der abgeführten Kühlluft (14) vor dem erneuten Zuführen erhöht wird.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Temperatur der abgeführten Kühlluft gemessen wird und ein Lufterhitzer (7) in Abhängigkeit der gemessenen Temperatur derart angesteuert wird, dass die Temperatur der im Kreislauf geführten Kühlluft im Bereich der Zuführung am hinteren Ende (lb) des Gasentnahmerohres (2) einen vorgegebenen Sollwert aufweist.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das zu analysierende Gas vom vorderen bis zum hinteren Ende des Gasentnahmerohres (2) höchstens bis zu einer Minimaltemperatur abgekühlt wird, die größer oder gleich der Taupunkttemperatur der im zu analysierenden Gas enthaltenen Komponenten ist.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass am hinteren Ende (lb) des Gasentnahmerohrs (2) die Temperatur der zugeführten Kühlluft höher als die Temperatur des zu analysierenden Gases und die Temperatur der abgeführten Kühlluft kleiner oder gleich der Temperatur des zu analysierenden Gases ist.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Temperaturprofil des Gasentnahmerohres (2) über seine gesamte Länge so eingestellt wird, dass die minimale Temperatur größer oder gleich der Taupunkttemperatur der im zu analysierenden Gas enthaltenen Komponenten ist.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der abgeführten Kühlluft vor dem erneuten Zuführen um wenigstens 20°C erhöht wird.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der zugeführten Kühlluft im Bereich des hinteren Endes (lb) des Gasentnahmerohrs (2) in einem Bereich von 100°C und 600°C eingestellt wird.
1 1. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur des zu analysierenden Gases vor der Entnahme in einem Bereich von 200°C bis 1600°C liegt.
12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur des entnommenen und zu analysierenden Gases vom vorderen zum hinteren Ende des Gasentnahmerohres (2) um wenigstens 50% abgekühlt wird.
13. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Temperatur der abgeführten Kühlluft kleiner oder gleich der Temperatur des Gasentnahmerohrs (2) im Bereich des hinteren Endes des Gasentnahmerohres (2) ist.
14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gasentnahmesonde am Prozessraum derart angeordnet wird, dass sie in einem vorderen Bereich Wärme von außen aufnimmt und in einem hinteren Bereich Wärme nach außen abstrahlt, wobei in einer Gesamtwärmebilanz die Gasentnahmesonde mehr Wärme abstrahlt als aufnimmt.
15. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Differenzbetrag der aufgenommenen und abgestrahlten Wärme der Gasentnahmesonde der Summe der Kühlwärme des zu analysierendes Gases (19) und der Kühlluft (14) entspricht.
16. Gasentnahmeeinrichtung zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche mit einer Gasentnahmesonde (1), die ein Gasentnahmerohr (2) aufweist, um ein zu analysierendes Gas im Bereich eines vorderen Endes (la) zu entnehmen und im Gasentnahmerohr (2) bis zu einem hinteren Ende (l b) zu führen, wobei das Gasentnahmerohr (2) von wenigstens einem Außenmantel (3) umgeben ist, sodass eine sich über die Länge des Gasentnahmerohres (2) erstreckende Kühlzone ausgebildet ist, die im Bereich des hinteren Endes (lb) der Gasentnahmesonde ( 1) eine Kühlluftzuführöffnung und eine Kühlluftabführöffnung (5) aufweist, wobei die Gasentnahmesonde nach außen abstrahlt, dadurch gekennzeichnet, dass die Kühlluftabführöffnung (5) und die
Kühlluftzuführöffnung (4) zur Ausbildung eines geschlossenen Kreislaufs miteinander verbunden sind und zwischen Kühlluftabführöffnung (5) und Kühlluftzuführöffnung (4) ein Lufterhitzer (7) vorgesehen ist.
17. Gasentnahmeeinrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die Gasentnahmesonde derart am Prozessraum angeordnet ist, dass sie in einem vorderen Bereich einen Wärmeaufnahmebereich und in einem hinteren Bereich einen Wärmeabstrahlungsbereich ausbildet.
18. Gasentnahmeeinrichtung nach Anspruch 16, dadurch gekennzeichnet, dass der Lufterhitzer (7) mit einer Steuereinrichtung (15) in Verbindung steht, die den Lufterhitzer (7) in Abhängigkeit eines Temperatursignals einer Temperaturmesseinrichtung (16) ansteuert, wobei die Temperaturmesseinrichtung (16) die Temperatur einer über die Kühlluftabfuhröffnung (5) abgeführten Kühlluft erfasst.
19. Gasentnahmeeinrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die zwischen Gasentnahmerohr (2') und Außenmantel (3 ') ausgebildete Kühlzone in zwei sich über die Länge des Gasentnahmerohres erstreckende Hälften (8'a, 8'b) aufgeteilt ist, die im vorderen Bereich der Gasentnahmesonde (2') über einen Überströmbereich (9') miteinander verbunden sind und die Kühlluftzuführöffnung (4') und die Kühlluftabführöffnung (5') jeweils an einer der beiden Hälften im hinteren Bereich (l 'b) der Gasentnahmesonde (Γ) vorgesehen sind.
20. Gasentnahmeeinrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die zwischen Gasentnahmerohr (2") und Außenmantel (3") ausgebildete Kühlzone zwei konzentrisch zueinander angeordnete Ringräume (8"c, 8"d) aufweist, die im vorderen Bereich (l "a) der Gasentnahmesonde (1 ") über einen Überströmbereich (9") miteinander verbunden sind und die Kühlluftzuführöffnung (4") und die Kühlluftabführöffnung (5") jeweils an einen der beiden Ringräume (8"c; 8"d) im hinteren Bereich der Gasentnahmesonde vorgesehen sind.
PCT/EP2014/002100 2013-08-19 2014-07-31 Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde WO2015024625A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK14747840.8T DK3036519T3 (da) 2013-08-19 2014-07-31 Gasudtagningssonde og fremgangsmåde til drift af en gasudtagningssonde
EP14747840.8A EP3036519B1 (de) 2013-08-19 2014-07-31 Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde
ES14747840T ES2900522T3 (es) 2013-08-19 2014-07-31 Sonda de muestreo de gas y procedimiento para el funcionamiento de una sonda de muestreo de gas
RU2016109974A RU2664517C2 (ru) 2013-08-19 2014-07-31 Газоотборный зонд и способ его эксплуатации
BR112016003060-5A BR112016003060B1 (pt) 2013-08-19 2014-07-31 sonda de amostragem de gás e método para operar uma sonda de amostragem de gás
CN201480046022.XA CN105473993B (zh) 2013-08-19 2014-07-31 气体取样探头以及操作气体取样探头的方法
US14/913,353 US9915595B2 (en) 2013-08-19 2014-07-31 Gas-sampling probe and method for operating a gas-sampling probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013108926.7A DE102013108926A1 (de) 2013-08-19 2013-08-19 Gasentnahmesonde und Verfahren zum Betreiben einer Gasentnahmesonde
DE102013108926.7 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015024625A1 true WO2015024625A1 (de) 2015-02-26

Family

ID=51292905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/002100 WO2015024625A1 (de) 2013-08-19 2014-07-31 Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde

Country Status (9)

Country Link
US (1) US9915595B2 (de)
EP (1) EP3036519B1 (de)
CN (1) CN105473993B (de)
BR (1) BR112016003060B1 (de)
DE (1) DE102013108926A1 (de)
DK (1) DK3036519T3 (de)
ES (1) ES2900522T3 (de)
RU (1) RU2664517C2 (de)
WO (1) WO2015024625A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218397A1 (de) 2016-09-23 2018-03-29 Rwth Aachen Gasentnahmesonde mit einem Verschleißschutz und Verfahren zur Herstellung einer solchen
WO2018054936A1 (de) 2016-09-23 2018-03-29 Thyssenkrupp Industrial Solutions Ag Gasentnahmesonde mit einer leitung zum leiten eines reinigungsmittels
DE102016218398A1 (de) 2016-09-23 2018-03-29 Rwth Aachen Gasentnahmesonde mit generativ hergestelltem Sondenkopf
WO2018054931A1 (de) 2016-09-23 2018-03-29 Thyssenkrupp Industrial Solutions Ag Gasentnahmesonde mit einem sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122256B4 (de) * 2015-12-18 2017-07-13 Enotec Gmbh, Prozess- Und Umweltmesstechnik Messsystem und Messverfahren mit flüssigkeitsgekühlter Messsonde
DE102017102046A1 (de) * 2017-02-02 2018-08-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Entnahmesonde und Verfahren zur Entnahme von Abgas
JP7123962B2 (ja) * 2017-03-17 2022-08-23 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ ガス分析システムのためのランス
CN107831061A (zh) * 2017-11-18 2018-03-23 北京科技大学 一种蠕变持久试验机用样品快速冷却设备
DE102017130755A1 (de) * 2017-12-20 2019-06-27 Bilfinger Noell Gmbh Vorrichtung zur Untersuchung einer Atmosphäre sowie Verwendung der Vorrichtung
WO2024030765A1 (en) * 2022-08-01 2024-02-08 Washington University Flow cell and sampling probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545491A1 (de) * 1985-12-20 1987-07-02 Siemens Ag Sondenanordnung fuer die gasentnahme aus einem drehrohr-zementofen
FR2715732A1 (fr) * 1994-02-02 1995-08-04 Inst Francais Du Petrole Dispositif de prélèvement fonctionnant dans des milieux à forte concentration en poussières.
DE29608694U1 (de) * 1996-05-14 1996-09-05 M & C Products Gasentnahmesonde
AT9667U1 (de) * 2006-12-18 2008-01-15 Iag Ind Automatisierungsgmbh Einrichtung an gasanalysegeräten zur messung der gaskonzentration

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460393A (en) * 1967-03-24 1969-08-12 Westinghouse Electric Corp Liquid metal sample retrieval device
SU1334065A1 (ru) * 1986-04-28 1987-08-30 Белгородский технологический институт строительных материалов им.И.А.Гришманова Устройство дл отбора и подготовки дымовых высокотемпературных пылегазовых проб
SU1659771A1 (ru) * 1989-04-06 1991-06-30 Государственный научно-исследовательский институт цветных металлов "Гинцветмет" Устройство дл отбора проб высокотемпературных запыленных газов
DE4303687C1 (de) * 1993-02-09 1994-06-30 Heraeus Electro Nite Int Probennehmer für Metallschmelze
RU12860U1 (ru) * 1999-07-26 2000-02-10 Канчан Яков Самуилович Устройство для отбора проб газообразной влаги из высокотемпературного газового потока
DE10315996A1 (de) 2003-04-07 2004-10-28 Sobotta Gmbh, Sondermaschinenbau Sonde zur Entnahme einer Gasprobe
DE10354188B4 (de) 2003-11-20 2005-12-29 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Hochtemperaturentnahmesonde
CN2731432Y (zh) * 2004-09-15 2005-10-05 索纪文 热管自清灰式高温取样探头
CN201867404U (zh) * 2010-12-24 2011-06-15 北京雪迪龙科技股份有限公司 移动式高温气体分析系统
DE102011121183B4 (de) * 2011-05-18 2014-02-27 Heraeus Electro-Nite International N.V. Probennehmer für die Probennahme aus Schmelzen mit einem Schmelzpunkt größer 600°C sowie Verfahren zur Probennahme
CN202393629U (zh) * 2011-12-02 2012-08-22 中国科学院山西煤炭化学研究所 一种用于高温高压气体中粉尘取样和测量的装置
DE102013224565A1 (de) * 2013-04-30 2014-10-30 Heraeus Electro-Nite International N.V. Probennehmer und Verfahren zur Probenentnahme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545491A1 (de) * 1985-12-20 1987-07-02 Siemens Ag Sondenanordnung fuer die gasentnahme aus einem drehrohr-zementofen
FR2715732A1 (fr) * 1994-02-02 1995-08-04 Inst Francais Du Petrole Dispositif de prélèvement fonctionnant dans des milieux à forte concentration en poussières.
DE29608694U1 (de) * 1996-05-14 1996-09-05 M & C Products Gasentnahmesonde
AT9667U1 (de) * 2006-12-18 2008-01-15 Iag Ind Automatisierungsgmbh Einrichtung an gasanalysegeräten zur messung der gaskonzentration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218397A1 (de) 2016-09-23 2018-03-29 Rwth Aachen Gasentnahmesonde mit einem Verschleißschutz und Verfahren zur Herstellung einer solchen
WO2018054936A1 (de) 2016-09-23 2018-03-29 Thyssenkrupp Industrial Solutions Ag Gasentnahmesonde mit einer leitung zum leiten eines reinigungsmittels
DE102016218398A1 (de) 2016-09-23 2018-03-29 Rwth Aachen Gasentnahmesonde mit generativ hergestelltem Sondenkopf
WO2018054931A1 (de) 2016-09-23 2018-03-29 Thyssenkrupp Industrial Solutions Ag Gasentnahmesonde mit einem sensor
DE102016218400A1 (de) 2016-09-23 2018-03-29 Thyssenkrupp Ag Gasentnahmesonde mit einer Leitung zum Leiten eines Reinigungsmittels
DE102016218399A1 (de) 2016-09-23 2018-03-29 Rwth Aachen Gasentnahmesonde mit einem Sensor

Also Published As

Publication number Publication date
EP3036519A1 (de) 2016-06-29
US20160209306A1 (en) 2016-07-21
CN105473993A (zh) 2016-04-06
DK3036519T3 (da) 2022-01-10
BR112016003060B1 (pt) 2020-10-13
EP3036519B1 (de) 2021-10-27
US9915595B2 (en) 2018-03-13
RU2016109974A (ru) 2017-09-26
CN105473993B (zh) 2019-02-19
RU2664517C2 (ru) 2018-08-20
ES2900522T3 (es) 2022-03-17
DE102013108926A1 (de) 2015-02-19
RU2016109974A3 (de) 2018-03-19

Similar Documents

Publication Publication Date Title
EP3036519B1 (de) Gasentnahmesonde und verfahren zum betreiben einer gasentnahmesonde
EP3159646A1 (de) Wärmeübertrager
EP1156282B1 (de) Backofen-Entlüftung
WO2010086025A1 (de) Rohrtarget
EP1681519A2 (de) Wärmetauscherkörper und Fahrzeugheizgerät mit einem Wärmetauscherkörper
DE102015205318B4 (de) Fahrzeug mit einem Verbrennungsmotor und einer Abgasanlage, welche einen Schalldämpfer aufweist
DD149383A5 (de) Verfahren und vorrichtung zum kontinuierlichen waermebehandeln von vereinzeltem,langgestrecktem metallischem gut
DE2801499C3 (de) Extruder zur Behandlung hochtemperaturempfindlicher Kunststoffe
EP2052830A2 (de) Verfahren zum Erwärmen eines extrudierten Kunststoffprofils durch Infrarothstrahlung
DE102015104036B4 (de) Gargerät, insbesondere Backofen
DE102013100581A1 (de) Gasentnahmesonde und Verfahren zum Betreiben einer Gasentnahmesonde
DE102010017731A1 (de) Verfahren zur Herstellung von Glasrohren mit zumindest einem Rohrendabschnitt reduzierter Spannung
EP2348269A1 (de) System zur Wärmerückgewinnung an einem Drehrohrofen
DE102007006029A1 (de) Kraftfahrzeug
EP1712319B1 (de) Anlage und Verfahren zum Herstellen von gelöteten Bauteilen mit einem Durchlauflötofen und einer statischen Abkühlzone
DE102008059811A1 (de) Einbrennofen mit Kombinations-Strahler
DE102007062551A1 (de) Vorrichtung zur Erwärmung von Metallbolzen
DE102015122256A1 (de) Messsystem und Messverfahren mit flüssigkeitsgekühlter Messsonde
DE102004038247B3 (de) Vorrichtung und Verfahren zur Erwärmung von Strangpresswerkzeugen vor dem Einbau in eine Strangpresse
EP4308842A1 (de) Vorrichtung zur temperierung von fluiden
DE102015015311A1 (de) Einrichtung und Verfahren zum Verteilen eines insbesondere CO2-reichen Abgases, insbesondere eines Abgases einer Sauergasentfernungseinheit
EP4194412A1 (de) Ofensystem zur erwärmung von verbundglasscheiben
DE2420823A1 (de) Strahlrohrbeheitzter waerm- bzw. gluehofen
DE3534822A1 (de) Glasrohrwaermetauscher
AT354619B (de) Ueberhitzungssicherung fuer elektrische heizein- richtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046022.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14747840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14913353

Country of ref document: US

Ref document number: 2014747840

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016003060

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016109974

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016003060

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160212