WO2015024399A1 - 一种转向系统及独立悬架轮式重载车辆 - Google Patents

一种转向系统及独立悬架轮式重载车辆 Download PDF

Info

Publication number
WO2015024399A1
WO2015024399A1 PCT/CN2014/077860 CN2014077860W WO2015024399A1 WO 2015024399 A1 WO2015024399 A1 WO 2015024399A1 CN 2014077860 W CN2014077860 W CN 2014077860W WO 2015024399 A1 WO2015024399 A1 WO 2015024399A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
trapezoidal
rocker arm
wheel
oil
Prior art date
Application number
PCT/CN2014/077860
Other languages
English (en)
French (fr)
Inventor
丁宏刚
王志芳
马云旺
刘宝銮
曹书源
鹿鹏程
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to RU2015141800A priority Critical patent/RU2634738C2/ru
Priority to EP14838036.3A priority patent/EP2944540B1/en
Priority to US14/780,822 priority patent/US9981688B2/en
Priority to PCT/CN2014/077860 priority patent/WO2015024399A1/zh
Priority to BR112016012729-3A priority patent/BR112016012729B1/pt
Publication of WO2015024399A1 publication Critical patent/WO2015024399A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/14Steering gears hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/142Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks
    • B62D7/144Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks for vehicles with more than two axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/20Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application
    • B62D5/26Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application for pivoted axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings

Definitions

  • the present invention relates to the field of construction machinery, and more particularly to a steering system and an independent suspension wheeled heavy-duty vehicle to which the steering system is applied.
  • the independent suspension vehicle has the advantages of small non-springing weight, and the impact load transmitted by the suspension to the vehicle body is relatively small, which is beneficial to improve the ride comfort of the vehicle and the grounding performance of the tire; there is no direct interaction between the left and right wheel jumps. It can reduce the tilt and vibration of the body.
  • the suspension structure adopted by the all-terrain crane chassis is gradually transformed into an independent suspension structure. Because the oil and gas independent suspension device has strong nonlinearity, it can realize the independent movement of the two wheels without being affected, improve the ride comfort of the vehicle, and ensure the vehicle has better smoothness under no-load and full-load driving. In this way, the independent suspension technology is gradually being applied to wheeled heavy-duty vehicles that require high off-road performance.
  • Some of the existing disconnected steering trapezoidal mechanisms rely on the torque of one or two steering gears to drive the steering of the left/right wheels of the vehicle, and some rely on the torque provided by a steering gear and a steering assist follower. Steering of the left/right wheel of the vehicle, the above only relying on the torque output by the steering gear or relying solely on the steering gear and the steering assist follower output The torque to overcome the steering resistance from the ground, the split steering trapezoidal mechanism can only be applied to the light weight of the off-road vehicle. There is no set of wheeled heavy-duty vehicles with high off-road performance requirements. Relatively perfect steering system. Summary of the invention
  • the present invention provides a steering system including a steering mechanism and a steering hydraulic assist system; the steering mechanism for providing steering force to a wheel, the steering hydraulic assist system for providing the wheel with a steering resistance torque from the ground The steering boost.
  • the steering mechanism includes a steering output mechanism for outputting torque, the steering output mechanism is coupled to a trapezoidal mechanism of an axle, or a ladder mechanism that sequentially connects a plurality of axles, the steering An output mechanism provides torque to the left and right wheels of the axle of the axle through the trapezoidal mechanism;
  • the steering hydraulic assist system includes a steering assist that provides steering assistance to the left and/or right wheels of the axle a cylinder, and a hydraulic circuit and a valve control device corresponding to the steering assist cylinder.
  • the steering output mechanism is coupled to a trapezoidal mechanism of an axle, the trapezoidal mechanism of the axle is a disconnected trapezoidal mechanism, the disconnected torque of the left-wheel steering mechanism and the right-wheel steering mechanism
  • the right wheel steering mechanism and the left wheel steering mechanism are connected by a tie rod assembly, and the left wheel steering mechanism or the right wheel steering mechanism and the steering output mechanism are connected by a link assembly and transmit power.
  • the left wheel steering mechanism and the right wheel steering mechanism each include a trapezoidal arm and a transition rocker arm, and the trapezoidal arm and the transition rocker arm are coupled by a tie rod assembly and transmit power.
  • the transition rocker arm of the left wheel steering mechanism and the transition rocker arm of the right wheel steering mechanism are coupled and transmit power through a tie bar assembly, and the left wheel turn-out mechanism is coupled and transmits power through the link assembly.
  • the steering output mechanism sequentially connects the trapezoidal mechanisms of the plurality of axles, the trapezoidal mechanism of the plurality of axles is a disconnected trapezoidal mechanism, and the right wheel provides a torque of the left wheel steering mechanism
  • the right wheel steering mechanism, the right wheel steering mechanism and the left wheel steering mechanism are connected by a tie rod assembly, and the steering mechanism and the steering output mechanism are connected and transmitted through the link assembly, the plurality of The disconnected trapezoidal mechanisms adjacent to the axles in the axles are connected by a tie rod assembly and transmit power.
  • the left wheel steering mechanism and the right wheel steering mechanism each include a trapezoidal arm and a transition rocker arm, and the trapezoidal arm and the transition rocker arm are coupled by a tie rod assembly and transmit power.
  • a transition rocker arm of the left wheel steering mechanism and a transition rocker arm of the right wheel steering mechanism are connected by the tie rod assembly and transmit power, and the transition rocker arm adjacent to the right wheel steering mechanism and the steering output mechanism pass through the connecting rod
  • the assembly connects and transmits power, and a left wheel steering mechanism of the plurality of axles adjacent to the axle receives and transmits power.
  • a steering assist cylinder is provided on the transition rocker arm of the left wheel steering mechanism and/or the transition rocker arm of the right wheel steering mechanism of at least one of the axles.
  • each of the link assemblies and the steering assist cylinders are each coupled by a ball joint.
  • the steering output mechanism includes an angular transmission, a steering transmission shaft, a steering gear, a first tie rod assembly, a first rocker arm assembly, and a second tie rod assembly; One end of the shaft is connected to the angular actuator, and the other end is connected to the input shaft of the steering gear; the output shaft of the steering gear is provided with a steering vertical arm; the steering vertical arm and the first pull rod One end of the assembly is connected, the other end of the first tie rod assembly is connected to one end of the first rocker arm assembly; the other end of the first rocker arm assembly is in a ball joint manner and the first One ends of the two tie rod assemblies are connected, and the other end of the second tie rod assembly is connected to the adjacent trapezoidal mechanism of the axle in a ball joint manner.
  • the steering assist oil rainbow is supplied with oil through at least one steering pump, and a hydraulic oil flow path between the steering assist cylinder and the steering pump and between the oil tanks is provided with a switching pressure oil flow direction. Steering gear.
  • an emergency pump is provided on the hydraulic circuit of the steering assist cylinder, and a switching valve for switching the emergency pump and the fuel supply circuit of the steering pump.
  • both the steering mechanism and the steering hydraulic assist system are used to provide steering and steering assistance to the wheels of the front axle, the steering system further including for providing wheels for the rear axle Steering axle steering control for steering forces.
  • the rear axle steering control device includes a trapezoidal mechanism and a hydraulic power system that provides steering force to the trapezoidal mechanism.
  • the trapezoidal mechanism is a disconnected trapezoidal mechanism, and the disconnected trapezoidal mechanism includes revolvers corresponding to the left and right wheels of the rear axle, respectively.
  • a steering mechanism and a right wheel steering mechanism wherein the right wheel steering mechanism and the left wheel steering mechanism are connected by a tie rod assembly, the hydraulic movement
  • the force system includes a steering cylinder disposed on the left wheel steering mechanism and/or the right wheel steering mechanism, and a hydraulic oil passage and a valve control device corresponding to the steering cylinder.
  • the left wheel steering mechanism and the right wheel steering mechanism each include a trapezoidal arm and a transition rocker arm that are coupled and transmit power through a tie rod assembly, the left wheel steering The transition rocker arm of the mechanism and the transition rocker arm of the right wheel steering mechanism are connected and transmit power through a tie rod assembly, and the steering cylinder is disposed on the transition rocker arm of the left wheel steering mechanism and/or the transition rock of the right wheel steering mechanism On the arm.
  • the steering oil rainbow is supplied with oil through a variable pump, and a hydraulic power path between the steering cylinder and the variable pump and between the fuel tanks is provided with a left steering that cuts the rear vehicle Or turn right.
  • the hydraulic oil passage between the working oil port of the proportional valve block and the working chamber of the steering cylinder is further provided with a working oil port for controlling the proportional valve block and the A lock valve group that opens and closes the hydraulic circuit between the working chambers of the steering cylinder.
  • the lock valve group includes a two-position two-way solenoid valve, a relief valve, and a one-way valve, and an oil inlet of the two-position two-way solenoid valve and the proportional valve group
  • the working port of the two-position two-way solenoid valve is connected to an oil outlet of the one-way valve, an oil inlet of the overflow valve, and a working chamber of the steering cylinder,
  • the oil outlet of the overflow valve and the oil inlet of the check valve are in communication with the fuel tank.
  • a bypass circuit of the proportional valve block is further provided on the hydraulic circuit between the steering cylinder and the variable pump and between the oil tanks for In the state, a three-position four-way solenoid valve is disposed on the bypass passage.
  • the present invention also provides an independent suspension wheel reloading vehicle, including the steering system of any of the above embodiments. Based on the above technical solution, the present invention has at least the following advantageous effects: The present invention provides a steering force for providing a steering force to a wheel, and a steering hydraulic assist system for providing a steering assist force for overcoming a steering resistance torque from the ground.
  • the present invention can effectively overcome the steering resistance distance from the ground and provide the steering capability of the vehicle to a variety of venues, with respect to the steering system that relies solely on the torque output from the steering gear or the torque output from the steering assisted follower. . DRAWINGS
  • FIG. 1 is a schematic structural view of a steering system provided by the present invention
  • FIG. 2 is a schematic structural view of a steering hydraulic power assisting system provided by the present invention
  • FIG. 3 is a schematic structural view of a rear axle steering control device provided by the present invention
  • FIG. 4 is an embodiment of the locking valve block shown in FIG.
  • FIG. 5 is a schematic structural view of the proportional valve group shown in FIG. 3 with a bypass circuit
  • FIG. 6 is a schematic view showing the overall structure of the independent suspension wheel heavy-duty vehicle provided by the present invention
  • Figure 7 (a) is a schematic view showing the normal road driving mode of the independent suspension wheel type heavy-duty vehicle provided by the present invention.
  • Figure 7 (b) is a schematic view of a small turn mode of an independent suspension wheeled heavy-duty vehicle provided by the present invention.
  • Figure 7 (c) is a schematic view showing the crab line mode of the independent suspension wheel type heavy-duty vehicle provided by the present invention.
  • Figure 7 (d) is a schematic illustration of the anti-snap mode of the independent suspension wheeled heavy-duty vehicle provided by the present invention.
  • 1-angle actuator 2-steering drive shaft; 3-steering gear; 4-steering boom arm; 5-first tie rod assembly; 6-first rocker arm assembly; 7-second lever assembly; First axis right trapezoidal arm; 9-third tie rod assembly; 10-first axis right transition rocker arm; 11-fourth tie rod assembly; 12-first axis left transition rocker arm; 13-fifth tie rod assembly 14-first axis left trapezoidal arm; 15-first axis left steering assist cylinder; 16-first axis right steering assist cylinder; 17- sixth tie rod assembly; 18- second axis right trapezoidal arm; 19- Seven tie rod assembly; 20-second axis right transition rocker arm; 21-fth assembly; 22-second axis left transition rocker arm; 23-ninth tie rod assembly; 24-second axis left trapezoidal arm; -Second shaft left steering assist cylinder; 26-second shaft right steering assist cylinder; 101-emergency pump; 102-first steering pump; 103-
  • Independent suspension Its structural feature is that the axle is broken.
  • the wheels on each side can be connected to the frame (or body) through the elastic suspension separately.
  • the wheels on both sides can jump separately and do not affect each other. Independent suspension.
  • the steering horizontal f is the overall trapezoid ⁇ .
  • the steering tie rod is a segmented trapezoidal mechanism.
  • the steering system provided by the present invention primarily includes a steering mechanism and a steering hydraulic assist system; the steering mechanism is used to provide steering force to the wheels, and the steering hydraulic assist system is used to provide steering assistance to the wheels to overcome steering torque from the ground.
  • the steering hydraulic assist system provides steering assistance to the steering mechanism.
  • the steering assist is large, which can effectively overcome the steering resistance torque from the ground. It is suitable for wheeled heavy-duty vehicles with high requirements for off-road performance.
  • the steering mechanism provided by the present invention may include a steering output mechanism for outputting a torque
  • the steering output mechanism may be connected to only one trapezoidal mechanism of the axle, or may sequentially connect the trapezoidal mechanisms of the plurality of axles (as shown in FIG. Two-axle trapezoidal mechanism) to achieve one-axis or more-axis steering.
  • the steering output mechanism provides torque to the left and right wheels of the axle of the axle through the trapezoidal mechanism;
  • the steering hydraulic assist system may include a steering assist cylinder that provides steering assistance to the left and/or right wheels of the axle, and The hydraulic oil circuit and valve control equipment corresponding to the steering assist cylinder.
  • the above-mentioned trapezoidal mechanism of the axle can adopt a disconnected trapezoidal mechanism, and the disconnected trapezoidal mechanism can ensure that each wheel is not affected by the up and down jump of the other side of the wheel. Provides uniform steering force for each wheel and provides a variety of field steering capabilities for the vehicle.
  • the disconnected trapezoidal mechanism may include a left-wheel steering mechanism and a right-wheel steering mechanism respectively corresponding to the torque provided to the left and right wheels of the axle, right
  • the wheel steering mechanism and the left wheel steering mechanism may be connected by a tie rod assembly, and the left wheel steering mechanism or the right wheel steering mechanism and the steering output mechanism may be connected and transmit power through the link assembly.
  • Both the left wheel steering mechanism and the right wheel steering mechanism may include a trapezoidal arm and a transition rocker arm.
  • the trapezoidal arm and the transition rocker arm may be connected and transmitted by the pull rod assembly, and the transition rocker arm of the left wheel steering mechanism and the transition rocker arm of the right wheel steering mechanism
  • the pull rod assembly can be connected and transmitted with power.
  • the transition rocker arm of the left wheel steering mechanism or the transition rocker of the right wheel steering mechanism and the steering output mechanism can be connected and transmitted through the connecting rod assembly.
  • the disconnected trapezoidal mechanism may include a left-wheel steering mechanism and a right-wheel steering mechanism respectively corresponding to the torque provided to the left and right wheels of the axle.
  • the right wheel steering mechanism and the left wheel steering mechanism can be connected by the tie rod assembly, and the disconnected link assembly adjacent to the steering output mechanism is connected and a force is applied, and the adjacent shafts of the plurality of shafts are disconnected.
  • the ladder mechanism can be connected and transmitted through the tie rod assembly
  • Both the left wheel steering mechanism and the right wheel steering mechanism may include a trapezoidal arm and a transition rocker arm.
  • the trapezoidal arm and the transition rocker arm may be connected and transmitted by the pull rod assembly, and the transition rocker arm of the left wheel steering mechanism and the transition rocker arm of the right wheel steering mechanism
  • the pull rod assembly can be coupled and transmitted with power, and the left wheel steering of the disconnected trapezoidal mechanism adjacent to the steering output mechanism is coupled and transmitted through the linkage assembly, between the transition rockers of the left axle steering mechanism of adjacent axles of the plurality of axles or
  • the transition rocker arms of the right wheel steering mechanism can be connected and transmit power through the tie rod assembly.
  • a disconnected ladder with multiple axles connected in turn for the steering output mechanism A specific embodiment of a shape mechanism.
  • the steering output mechanism sequentially connects two disconnected trapezoidal mechanisms, respectively a first shaft-disconnected trapezoidal mechanism a and a second shaft-disconnected trapezoidal mechanism b
  • the first shaft-disconnected trapezoidal mechanism a includes a first shaft right trapezoidal arm 8, a third rod assembly 9, a first shaft right transition rocker 10, a fourth rod assembly 11, and a first The left axis transition rocker arm 12, the fifth pull rod assembly 13, and the first axis left trapezoidal arm 14.
  • One end of the third pull rod assembly 9 is coupled to the first shaft right trapezoidal arm 8 in a ball joint manner, and the other end of the third shaft rod assembly 9 is coupled to the first shaft right transition rocker arm 10 in a ball joint manner;
  • One end of the fourth pull rod assembly 11 is connected to the first shaft right transition rocker arm 10 in a ball joint manner, and the other end of the fourth pull rod assembly 11 is connected to the first shaft left transition rocker arm 12 in a ball joint manner.
  • One end of the fifth pull rod assembly 13 is coupled to the first shaft left trapezoidal arm 14 in a ball joint manner, and the other end of the fifth pull rod assembly 13 is coupled to the first shaft left transition rocker arm 12 in a ball joint manner.
  • the second shaft-disconnected trapezoidal mechanism b includes a second shaft right trapezoidal arm 18, a seventh rod assembly 19, a second shaft right transition rocker 20, an eighth rod assembly 21, and a second The left axis transition rocker arm 22, the ninth tie rod assembly 23, and the second axis left trapezoidal arm 24.
  • One end of the seventh pull rod assembly 19 is coupled to the second shaft right trapezoidal arm 18 in a ball joint manner, and the other end of the seventh pull rod assembly 19 is coupled to the second shaft right transition rocker arm 20 in a ball joint manner;
  • One end of the eighth pull rod assembly 21 is connected to the second shaft right transition rocker arm 20 in a ball joint manner, and the other end of the eighth pull rod assembly 21 is connected to the second shaft left transition rocker arm 22 in a ball joint manner.
  • One end of the ninth pull rod assembly 23 is coupled to the second shaft left trapezoidal arm 24 in a ball joint manner, and the other end of the ninth pull rod assembly 23 is coupled to the second shaft left transition rocker arm 22 in a ball joint manner.
  • the first shaft-disconnected trapezoidal mechanism a and the second shaft-disconnected trapezoidal mechanism b are connected by the sixth rod assembly 17, specifically: one end of the sixth rod assembly 17 and the first shaft-disconnected trapezoidal mechanism a
  • the first shaft right transition rocker arm 10 is connected by a ball joint, and the other end of the sixth rod rod assembly 17 and the second shaft right transition in the second shaft disconnection trapezoidal mechanism b
  • the rocker arms 20 are connected in a ball joint manner.
  • the steering output mechanism may include a steering wheel, an angular transmission 1, a steering transmission shaft 2, a steering gear 3, and a steering vertical arm 4.
  • the steering wheel is connected to the angular actuator 1, one end of the steering transmission shaft 2 is connected to the angular transmission 1, and the other end of the steering transmission shaft 2 is connected to the input shaft of the steering gear 3;
  • the steering vertical arm 4 is disposed at On the output shaft of the steering gear 3;
  • one end of the first tie rod assembly 5 is connected to the steering vertical arm 4, and the other end of the first tie rod assembly 5 is connected to one end of the first rocker arm assembly 6;
  • the other end of the 6 is connected to one end of the second pull rod assembly 7 in a ball joint manner, and the other end of the second pull rod assembly 7 and the first shaft left transition in the adjacent first shaft disconnecting trapezoidal mechanism a
  • the rocker arms 12 are connected in a ball joint manner.
  • the steering hydraulic assist system provided by the present invention includes a steering assist cylinder that provides steering assist to the left and/or right side wheels of the axle, and specifically may be a transition rocker and/or a right wheel of the left wheel steering mechanism of at least one axle.
  • a steering assist cylinder is disposed on the transition rocker of the steering mechanism.
  • FIG. 1 shows a specific embodiment in which a steering assist cylinder is provided on a transition rocker arm of a left wheel steering mechanism of two axles and a transition rocker arm of a right wheel steering mechanism, which includes a first axle left steering assist cylinder 15 in this embodiment.
  • one end of the first shaft left steering assist cylinder 15 is connected to the first shaft left transition rocker arm 12 in a ball joint manner, and the other end is hinged to the bracket welded to the frame. The way they are connected provides steering hydraulic boost to the left wheel of the first shaft.
  • one end of the first shaft right steering assist cylinder 16 is connected to the first shaft right transition rocker arm 10 in a ball joint manner, and the other end is connected to the bracket welded on the frame in a ball joint manner, which is the first The right side wheel of the shaft provides steering hydraulic boost.
  • one end of the second shaft left steering assist cylinder 25 is connected to the second shaft left transition rocker arm 22 in a ball joint manner, and the other end is connected to the bracket welded to the frame in a ball joint manner.
  • one end of the second shaft right steering assist cylinder 26 is connected to the second shaft right transition rocker arm 20 in a ball joint manner, and the other end is connected to the bracket welded on the frame in a ball joint manner, which is a second The right side wheel of the shaft provides steering hydraulic boost.
  • the technical solution of the steering system shown in Fig. 1 can be used for the steering of the front two axles (the first two axles) of the wheeled heavy-duty vehicle, not only to ensure that the left and right wheels rotate according to Acherman's theorem, but also to ensure one side wheel The side will not be affected by the up and down of the other side of the wheel.
  • the steering assist cylinder in the steering hydraulic assist system of the present invention can be supplied with oil through at least one steering pump, and the hydraulic oil passage between the steering assist cylinder and the steering pump and between the oil tank can be set to be switched.
  • An emergency pump can also be provided on the hydraulic oil passage of the steering assist cylinder, and a switching valve for switching the oil supply passage of the emergency pump and the oil supply passage of the steering pump.
  • a specific embodiment of the steering hydraulic assist system As shown in Fig. 2, a specific embodiment of the steering hydraulic assist system, the form shown in this embodiment is applicable to the steering mechanism shown in Fig. 1.
  • the steering hydraulic assist system shown in Fig. 1 may include at least two steering circuits, which are a first steering circuit and a second steering circuit, respectively, and the first steering circuit and the second steering circuit operate as follows.
  • the first steering circuit and the second steering circuit control the first axis when the vehicle is turned to the left
  • the left steering assist cylinder 15 is extended, the first shaft right steering assist cylinder 16 is retracted, the second shaft left steering assist cylinder 25 is extended, and the second shaft right steering assist cylinder 26 is retracted.
  • the first steering circuit and the second steering circuit control the first shaft left steering assist cylinder 15 to retract, the first shaft right steering assist cylinder 16 is extended, and the second shaft left steering assist cylinder 25 is retracted.
  • the second shaft right steering assist cylinder 26 extends.
  • the first steering circuit may include a first steering pump 102, a switching valve 104, a first steering control valve I, a first shaft left steering assist cylinder 15, and a first shaft right steering assist cylinder 16.
  • the second steering circuit may include a second steering pump 103, a second steering control valve II, a first shaft left steering assist cylinder 15, a first shaft right steering assist cylinder 16, a second shaft left steering assisting oil rainbow 25 and a second The shaft right turns to assist the oil rainbow 26.
  • the oil inlet of the first steering pump 102 is in communication with the oil tank, the oil outlet of the first steering pump 102 is in communication with the second port P2 of the switching valve 104, and the third port A of the switching valve 104 and the first steering valve control valve
  • the first port Q1 of I is connected, the fourth port T of the switching valve 104 is respectively associated with the oil tank, the second port Q2 of the first steering control valve I, and the second port S2 of the second converter control valve II.
  • the oil inlet of the second steering pump 103 is in communication with the oil tank, and the oil outlet of the second steering pump 103 is in communication with the first port S1 of the second steering control valve ;
  • the third port D of the first steering control valve I is in communication with the rodless chamber of the first shaft left steering assist cylinder 15, the fourth port E of the first steering control valve I and the first shaft right steering assist cylinder 16 Rodless cavity connection;
  • the third port F of the second converter control valve is respectively connected to the rodless cavity of the second shaft left steering assist cylinder 25, the rod cavity of the second shaft right steering assist cylinder 26, and the first shaft right steering assist oil red 16
  • the second converter controls the fourth port G of the Gang II and the rod-cavity of the first shaft left steering assist cylinder 15 and the second shaft left steering assist cylinder
  • the rodless chamber of the second shaft right steering assist cylinder 26 has a rod chamber.
  • An emergency device is also provided on the first steering circuit for steering the main oil circuit (the main oil circuit provided by the steering oil pump). Immediately after the occurrence of a flashover or failure, the first steering back 5 is condensed and assisted.
  • the emergency device includes an emergency pump 101.
  • the oil inlet of the emergency pump 101 communicates with the oil tank, and the oil outlet of the emergency pump 101 communicates with the first port P1 of the switching valve 104.
  • the present invention can also be modified with the steering hydraulic assist system shown in Fig. 2, as follows.
  • the first steering circuit may include a first steering pump 102, an emergency pump 101, a switching valve 104, a first steering control valve I, a first shaft left steering assist cylinder 15, and a first shaft rightward assist oil red 16.
  • the second steering circuit may include a second steering pump 103, a second steering control valve II, a first shaft right steering assist cylinder 16 and a second shaft right steering assist cylinder 26.
  • the modified steering hydraulic assist system works in the same manner as the steering hydraulic assist system shown in Figure 2.
  • the steering mechanism and the steering hydraulic assist system provided by the steering system in the above embodiments can be used to provide steering force and steering assist to the wheels of the front axle, and the steering provided by the present invention is provided to provide maneuverability and cornering capability of the vehicle.
  • the system may also include a rear axle steering control for providing steering force to the rear axle of the wheeled heavy-duty vehicle.
  • the rear axle steering control device may include a rear axle trapezoidal mechanism and a hydraulic power system that provides steering force for the rear axle trapezoidal mechanism.
  • the rear axle trapezoidal mechanism can also adopt a disconnected trapezoidal mechanism, and the disconnected trapezoidal mechanism can include a rear axle right steering mechanism respectively, and the rear axle right wheel steering mechanism and the rear axle left wheel steering mechanism can be connected through the tie rod assembly.
  • the hydraulic power system may include a steering cylinder disposed on the rear axle left steering mechanism and/or the rear axle right steering mechanism, and a hydraulic oil passage and a valve control device corresponding to the steering cylinder.
  • the rear axle left steering mechanism and the rear axle right steering mechanism may both include a rear axle trapezoidal arm and a rear axle transition rocker arm, and the rear axle trapezoidal arm and the rear axle transition rocker arm may be connected and transmitted by the tie rod assembly, and the rear axle left wheel steering
  • the rear axle transition rocker arm of the mechanism and the rear axle transition rocker arm of the rear axle right wheel steering mechanism can be connected and transmitted through the pull rod assembly, and the steering cylinder can be disposed on the rear axle transition rocker arm of the rear axle left steering mechanism and/or The rear axle of the right-hand steering mechanism of the shaft is transferred to the rocker arm.
  • the rear axle steering control device provided by the present invention provides flexible steering travel for wheeled heavy-duty vehicles, meeting the needs of driving in a variety of venues.
  • the rear axle trapezoidal mechanism in this embodiment includes a rear axle left transition rocker 210, a left steering tiebar assembly 213, and a rear axle left.
  • the rear axle left trapezoidal arm 215 is disposed on the rear axle of the rear axle, the rear axle left trapezoidal arm 215 is coupled to one end of the left steering lever assembly 213, and the other end of the left steering tiebar assembly 213 is coupled to the rear axle left transition rocker 210.
  • the rear axle right trapezoidal arm 216 is disposed on the right axle of the rear axle, the rear axle right trapezoidal arm 216 is coupled to one end of the right steering lever assembly 214, and the other end of the right steering linkage assembly 214 is coupled to the rear axle right transition rocker arm 211.
  • the rear axle left transition rocker 210 and the rear axle right transition rocker arm 211 are connected by an intermediate transition link assembly 212.
  • the hydraulic power system provided by the present invention may include a steering cylinder provided on the rear axle left wheel steering mechanism and/or the rear axle right wheel steering mechanism.
  • the steering cylinder can be supplied with oil through a variable pump.
  • the hydraulic oil line between the steering cylinder and the variable pump and between the oil tanks can be provided with a proportional valve group for switching the flow of the pressure oil, and the hydraulic fluid is introduced into the proportional valve group through the variable pump, and the proportional valve is adopted.
  • the group controls the reversal of the oil passage to realize the left or right steering of the rear axle.
  • Hydraulic oil line between the working port of the proportional valve block and the working chamber of the steering cylinder A lock valve group for controlling the on and off of the hydraulic circuit between the working port of the proportional valve block and the working chamber of the steering cylinder may also be provided.
  • the hydraulic fluid passing through the proportional valve group is controlled by the lock valve group to enter the working chamber of the steering cylinder.
  • the hydraulic fluid of the proportional valve group is blocked by the lock valve group to prevent the hydraulic fluid from entering the steering.
  • the working chamber of the cylinder is controlled by the lock valve group to enter the working chamber of the steering cylinder.
  • FIG. 3 shows a specific embodiment of a hydraulic power system, in which the rear axle left transition arm of the rear axle left steering mechanism and the rear axle right transition rocker arm of the rear axle right steering mechanism are both A steering cylinder is provided, which is respectively corresponding to the left steering cylinder 208 and the right steering cylinder 209.
  • the variable pump 201, the filter 202, the proportional valve group 203, the first locking valve group 204, and the second locking valve are further included.
  • Group 205, third lock valve group 206 and fourth lock valve group 207 are further included.
  • the specific connection manner of the hydraulic oil circuit in the hydraulic power system is: the oil inlet B and the drain port L of the variable pump 201 are both connected to the fuel tank, and the variable pump 201 is connected to the oil outlet S and the filter 202.
  • the oil port is connected, the oil outlet of the filter 202 is connected to the first port P of the proportional valve group 203, the second port T of the proportional valve group 203 is connected to the oil tank, and the third port A of the proportional valve group 203 Connected to the oil inlets of the first lock valve group 204 and the second lock valve group 205, the fourth port B of the proportional valve block 203 and the third lock valve group 206 and the fourth lock valve group 207 The oil inlets are connected.
  • the oil outlet of the first lock valve group 204 communicates with the rod chamber port of the right steering cylinder 209; the oil outlet of the second lock valve group 205 communicates with the rodless chamber port of the left steering oil rainbow 208;
  • the oil outlet of the three lock valve group 206 communicates with the rodless chamber port of the right steering cylinder 209, and the oil outlet of the fourth lock valve group 207 communicates with the rod chamber port of the left steering oil 208.
  • the proportional valve block 203 in this embodiment further has a load feedback port LS, and the load feedback port LS is in communication with the control port X of the variable pump 201.
  • the working principle of the hydraulic power system driving the rear axle steering shown in FIG. 3 is as follows: When the rear axle is turned, the first oil port P ⁇ the third oil port A and the fourth oil of the proportional valve group 203 are realized by controlling the proportional valve group 203. Port B - second port T or first port P - fourth port B, The third port A - the second port T realizes the left/right steering of the rear axle, and the first lock valve group
  • the solenoid valve inlet port and the oil outlet port of the second lock valve group 205, the third lock valve group 206, and the fourth lock valve group 207 are in a communicating state.
  • the core of the proportional valve group 203 is returned to the neutral position, the first lock valve group 204, the second lock valve group 205, and the third lock valve group 206.
  • the solenoid valve inlet port and the oil outlet port in the fourth lock valve group 207 are not in communication, that is, the pressure oil outputted by the variable pump 201 is no longer turned to oil red.
  • the first lock valve group 204, the second lock valve group 205, the third lock valve group 206, and the fourth lock valve group 207 each have at least two operating states.
  • the pressure oil of the third port A or the fourth port B of the proportional valve group 203 can enter the rod cavity or the rodless cavity of the steering cylinder through the oil inlet of the lock valve group.
  • the pressure oil of the third port A or the fourth port B of the proportional valve block 203 is cut off, and cannot enter the rod cavity of the steering cylinder through the oil inlet of the lock valve group 203 or No rod cavity.
  • the lock valve group may include a two-position two-way solenoid valve 301, a relief valve 303, and a one-way valve 302.
  • the oil inlet of the two-position two-way solenoid valve 301 is connected to the working oil port of the proportional valve group 203.
  • the oil outlet of the two-position two-way solenoid valve 301 is connected to the oil outlet of the check valve 302, the oil inlet of the relief valve 303, and the working chamber of the steering cylinder, and the oil outlet and the check valve of the relief valve 303
  • the inlet port of 302 is connected to the fuel tank.
  • the first lock valve group 204, the second lock valve group 205, the third lock valve group 206, and the fourth lock valve group 207 may be selectively cancelled without affecting the technical solution.
  • the first lock valve group 204, the second lock valve group 205, the third lock valve group 206, and the fourth lock valve group 207 may be selectively cancelled without affecting the technical solution.
  • the proportional valve block 203 can have a control port LS, and the proportional valve block 203 has at least three operating states. In the first working state, the first port P, the third port A, the fourth port B, and the second port T of the proportional valve block 203 are not in communication with each other. In the second working state, the first port P of the proportional valve block 203 communicates with the fourth port B, and the third port A and The second port T communicates. In the third working state, the first port ⁇ is in communication with the third port port, and the fourth port B is in communication with the second port T.
  • the control port LS can be used to detect the control port oil pressure of the pressure compensating valve located behind the proportional valve block 203.
  • a bypass circuit of the proportional valve group may be provided on the hydraulic circuit between the steering cylinder and the variable pump and between the oil tanks, for manual or automatic after the failure of the proportional valve group. Start the bypass steering circuit to adjust the faulty rear axle to the neutral position.
  • a three-position four-way solenoid valve 219 is disposed on the bypass circuit, and the first port P, the third port A, and the fourth port B of the three-position four-way solenoid valve 219 respectively correspond to the proportional group
  • the first port P, the third oil OA, and the fourth port B of the 203 are in communication.
  • the second port T of the three-position four-way solenoid valve 219 is in communication with the fuel tank.
  • the bypass three-position four-way solenoid valve 219 does not function.
  • the proportional valve group 203 and the three-position four-way solenoid valve 219 can also implement the above solution by using different oil sources.
  • the above-mentioned locking valve group or two-way can be added between the steering cylinder and the proportional valve group and the three-position four-way solenoid valve group respectively.
  • the hydraulic lock is used to achieve the locked state of the steering center.
  • the present invention also provides an independent suspension wheeled heavy-duty vehicle comprising the steering system of any of the above embodiments.
  • an independent suspension wheel heavy-duty vehicle that can be embodied by the present invention includes a left/right oil and gas suspension cylinder 401 , a left/right wheel side 402 and a left/right thrust rod 403 , and the present invention
  • a steering system is provided for use on the independent suspension wheeled heavy-duty vehicle, including a left/right steering assist cylinder 404, a left/right transition arm 405, a left/right pull rod assembly 406, a left/right trapezoidal arm 407, and the like.
  • the left/right trapezoidal arm 407 is connected to the left/right wheel side 402; the left/right pull rod assembly 406 and the left/right transition arm 405 and the left/right trapezoidal arm 407 are respectively connected by a ball joint that allows a certain angular displacement. .
  • the suspension guide mechanism When a wheel of the wheel jumps up or down, the suspension guide mechanism is fixed around it
  • the two spatial hinge points on the frame or the final drive bracket are rotated to drive the movement of the left/right trapezoidal arm 407 and the left/right drawbar assembly 406.
  • the left/right drawbar assembly 406 is hinged by a ball joint, which ensures that one side of the wheel is not affected by the upward or downward jump of the other side of the wheel, and can avoid problems such as wheel alignment, poor steering stability, and abnormal tire wear.
  • a wheel type replanting vehicle can realize various steering modes, such as a small turning mode (as shown in FIG. 7(b)) and a crab row mode (FIG. 7). (c) shown), wind-proof tail mode (as shown in Figure 7 (d)), etc., have strong maneuverability, and are analyzed by enumerating a specific embodiment.
  • various steering modes such as a small turning mode (as shown in FIG. 7(b)) and a crab row mode (FIG. 7). (c) shown), wind-proof tail mode (as shown in Figure 7 (d)), etc.
  • a steering control method for a four-axle automobile universal chassis which includes the following steps:
  • the wheels disposed on the first axle and the second axle are respectively driven by the steering wheel through the trolley-type steering transmission mechanism and the disconnected trapezoidal mechanism; (the first axle and the second axle adopt the steering mechanism and steering hydraulic power provided by the present invention) system).
  • the third axle and the fourth axle employ the rear axle steering control device provided by the present invention.
  • the steering cylinders on the disconnected trapezoidal mechanism of the third axle and the four axles are locked or unlocked, and the corresponding steering cylinders are driven to drive corresponding steering according to the rotation direction and the rotation angle of the first axle. Wheel steering.
  • the steering mode in which the current vehicle is at a low speed, a medium speed, or a highway is obtained based on the vehicle speed signal.
  • the steering mode of the current working condition of the vehicle is obtained, and the user-selectable working condition steering modes include a small turning steering mode, a crab walking mode and an anti-tailing mode.
  • the wheels of the respective axles are controlled to perform different steerings corresponding to different steering modes, provided that the steering cylinders on the respective axle-disconnected trapezoidal mechanisms are first unlocked.
  • Fig. 7 (a) when the vehicle is in the low speed male steering mode, each steering cylinder is unlocked, and each steering cylinder is extended and contracted with the rotation direction and the rotation angle of the steering wheel, so that the wheels on the fourth axle and the first The steering direction of the wheels on the axle is reversed, and the wheels on the third axle do not participate in the steering;
  • the steering cylinders on the third and fourth axles are locked, and the wheels on the third and fourth axles cannot be turned.
  • each steering cylinder is unlocked, and each steering cylinder is extended and contracted with the rotation direction and the rotation angle of the steering wheel, so that the wheels on the third and fourth axles are The steering directions of the wheels on the first and second axles are opposite.
  • each steering cylinder when the vehicle is in the crab mode, each steering cylinder is unlocked, and each steering cylinder is extended and contracted with the rotation direction and the rotation angle of the steering wheel, so that the wheels on the third and fourth axles and the first 1.
  • the steering directions of the wheels on the second axle are the same.
  • each steering cylinder when the vehicle is in the anti-tail mode, each steering cylinder is unlocked, and each steering cylinder is extended and contracted with the rotation direction and the rotation angle of the steering wheel, so that the wheels on the third axle are first and second.
  • the steering directions of the wheels on the two axles are the same.
  • the invention provides an independent suspension wheel replanting vehicle using the steering system of any of the above embodiments, which has various steering modes, which can meet the needs of the vehicle to travel on a road or in a narrow field.
  • the technical solutions shown in FIG. 1, FIG. 2, and FIG. 3 can be modified to change the disconnected trapezoidal mechanism to the integral steering trapezoidal mechanism, and also to the wheeled heavy load of the non-independent suspension. On the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明涉及一种转向系统及独立悬架轮式重载车辆,其中,转向系统包括转向机构和转向液压助力系统;所述转向机构用于为车轮提供转向力,所述转向液压助力系统用于为所述车轮提供克服来自地面的转向阻力矩的转向助力。本发明通过设置转向机构用于为车轮提供转向力,并通过设置转向液压助力系统用于为车轮提供克服来自地面的转向阻力矩的转向助力,相对于仅仅依靠转向器输出的转矩或者仅仅依靠转向器和转向助力随动器输出的转矩的转向系统,本发明能够有效克服来自地面的转向阻力距,为车辆提供多种场地的转向能力。

Description

一种转向系统及独立悬架轮式重载车辆 技术领域
本发明涉及工程机械领域, 尤其涉及一种转向系统, 以及应 用该转向系统的独立悬架轮式重载车辆。
目前, 大多轮式重载车辆多采用钢板弹簧和油气悬架作为弹性 元件的非独立悬架, 非独立悬架的左右轮及其轮胎紧固在同一根轴 上, 通过悬架与车架或车身相连接。 这样, 地面传递给车身的冲击 载荷不能被悬架有效地衰减,且两车轮的上下跳动均能使车身倾斜。
而独立悬架车辆具有非簧栽重量小, 悬架受到并传给车身的冲 击载荷相对小, 有利于提高整车的行驶平顺性及轮胎的接地性能; 左右车轮的跳动没有直接的交互影响, 可减少车身的倾斜和振动。 目前,全地面起重机底盘采用的悬架结构逐步向独立悬架结构转型。 因油气独立悬架装置具有很强的非线性, 可以实现两车轮单独运动 而不受影响, 改善车辆的平顺性, 可以保证车辆在空载和满载行驶 时有较好的平顺性。 这样, 独立悬架技术在对越野性能要求较高的 轮式重载车辆上逐渐被应用。
对于独立悬挂车辆, 为满足每个转向轮能够相对车架做独立运 动、 不受同一车轴上另一侧转向轮的影响, 当转向梯形臂随转向节 / 车轴轮边上下跳动的时候, 转向梯形机构中的梯形横拉杆应采用断 开式, 以降低其与悬架导向机构的运动干涉。
目前存在的断开式转向梯形机构有的仅依靠一个或两个转向 器输出的转矩驱动车辆左 /右车轮的转向, 有的依靠一个转向器和一 个转向助力随动器提供的转矩驱动车辆左 /右车轮的转向, 上述仅仅 依靠转向器输出的转矩或者仅仅依靠转向器和转向助力随动器输出 的转矩来克服来自地面的转向阻力距的断开式转向梯形机构, 只能 适用于整机重量较轻的机动越野车, 对于越野性能要求较高的轮式 重载车辆目前还没有一套相对完善的转向系统。 发明内容
本发明的目的是提出一种转向系统及独立悬架轮式重载车 辆, 其能够有效克服来自地面的转向阻力距, 为车辆提供多种场地 的转向能力。
为此, 本发明实施例采用如下技术方案:
本发明提供了一种转向系统, 包括转向机构和转向液压助力 系统; 所述转向机构用于为车轮提供转向力, 所述转向液压助力 系统用于为所述车轮提供克服来自地面的转向阻力矩的转向助 力。
在一优选或可选实施例中, 所述转向机构包括用来输出转矩 的转向输出机构, 所述转向输出机构连接一个车轴的梯形机构, 或依次连接多个车轴的梯形机构, 所述转向输出机构通过所述梯 形机构为所在车轴的左侧车轮和右侧车轮提供转矩; 所述转向液 压助力系统包括为所在车轴的所述左侧车轮和 /或右侧车轮提供 转向助力的转向助力油缸, 以及与所述转向助力油缸相对应的液 压油路和阀控设备。
在一优选或可选实施例中, 所述转向输出机构连接一个车轴 的梯形机构, 该车轴的梯形机构为断开式梯形机构, 所述断开式 转矩的左轮转向机构和右轮转向机构, 所述右轮转向机构与所述 左轮转向机构之间通过拉杆总成连接, 所述左轮转向机构或所述 右轮转向机构与所述转向输出机构通过连杆总成连接并传递动 力。 在一优选或可选实施例中, 所述左轮转向机构和右轮转向机 构均包括梯形臂和过渡摇臂, 所述梯形臂与所述过渡摇臂通过拉杆 总成连接并传递动力, 所述左轮转向机构的过渡摇臂与所述右轮 转向机构的过渡摇臂通过拉杆总成连接并传递动力, 所述左轮转 出机构通过连杆总成连接并传递动力。
在一优选或可选实施例中, 所述转向输出机构依次连接多个 车轴的梯形机构,所述多个车轴的梯形机构均为断开式梯形机构, 右侧车轮提供转矩的左轮转向机构和右轮转向机构, 所述右轮转 向机构与所述左轮转向机构之间通过拉杆总成连接,临近所述转向 机构与所述转向输出机构通过连杆总成连接并传递动力, 所述多 个车轴中相邻所述车轴的断开式梯形机构之间通过拉杆总成连接 并传递动力。
在一优选或可选实施例中, 所述左轮转向机构和右轮转向机 构均包括梯形臂和过渡摇臂, 所述梯形臂与所述过渡摇臂通过拉杆 总成连接并传递动力, 所述左轮转向机构的过渡摇臂与所述右轮 转向机构的过渡摇臂通过拉杆总成连接并传递动力, 临近所述转 所述右轮转向机构的过渡摇臂与所述转向输出机构通过连杆总成 连接并传递动力, 所述多个车轴中相邻所述车轴的左轮转向机构 接并传递动力。
在一优选或可选实施例中, 在至少一个所述车轴的所述左轮 转向机构的过渡摇臂和 /或所述右轮转向机构的过渡摇臂上设置 有转向助力油缸。 在一优选或可选实施例中, 各个所述连杆总成以及所述转向 助力油缸均通过球铰方式连接设置。
在一优选或可选实施例中,所述转向输出机构包括角传动器、 转向传动轴、 转向器、 第一拉杆总成、 第一摇臂总成和第二拉杆总 成; 所述转向传动轴的一端与所述角传动器相连接, 另一端与所述 转向器的输入轴相连接; 所述转向器的输出轴上设有转向垂臂; 所 述转向垂臂与所述第一拉杆总成的一端连接, 所述第一拉杆总成的 另一端与所述第一摇臂总成的一端相连接; 所述第一摇臂总成的另 一端以球铰的方式与所述第二拉杆总成的一端相连接, 所述第二拉 杆总成的另一端与临近的所述车轴的梯形机构以球铰的方式相连 接。
在一优选或可选实施例中,所述转向助力油虹通过至少一个转 向泵供油, 所述转向助力油缸与所述转向泵之间以及油箱之间的液 压油路上设置有切换压力油流向的转向器。
在一优选或可选实施例中, 在所述转向助力油缸的液压油路 上还设有应急泵, 以及用于切换所述应急泵和所述转向泵的供油油 路的切换阀。
在一优选或可选实施例中, 所述转向机构和转向液压助力系 统均用于为前车车轴的车轮提供转向力和转向助力, 所述转向系 统还包括用于为后车车轴的车轮提供转向力的后轴转向控制装 置。
在一优选或可选实施例中, 所述后轴转向控制装置包括梯形 机构以及为所述梯形机构提供转向力的液压动力系统。
在一优选或可选实施例中,所述梯形机构为断开式梯形机构, 所述断开式梯形机构包括分别对应为所述后车车轴的左侧车轮和 右侧车轮提供转矩的左轮转向机构和右轮转向机构, 所述右轮转 向机构与所述左轮转向机构之间通过拉杆总成连接, 所述液压动 力系统包括在所述左轮转向机构和 /或所述右轮转向机构上设置 的转向油缸,以及与所述转向油缸相对应的液压油路和阀控设备。
在一优选或可选实施例中, 所述左轮转向机构和右轮转向机 构均包括梯形臂和过渡摇臂, 所述梯形臂和过渡摇臂通过拉杆总成 连接并传递动力, 所述左轮转向机构的过渡摇臂与右轮转向机构 的过渡摇臂通过拉杆总成连接并传递动力, 所述转向油缸设置在 所述左轮转向机构的过渡摇臂和 /或所述右轮转向机构的过渡摇 臂上。
在一优选或可选实施例中, 所述转向油虹通过变量泵供油,所 述转向油缸与所述变量泵之间以及油箱之间的液压油路上设置有切 所述后车 的左转向或右转向。 ' β
在一优选或可选实施例中, 所述比例阀组的工作油口与所述 转向油缸的工作腔之间的液压油路上还设置有用于控制所述比例 阀组的工作油口与所述转向油缸的工作腔之间的液压油路通断的 锁止阀组。
在一优选或可选实施例中, 所述锁止阀组包括二位二通电磁 阀、 溢流阀和单向阀, 所述二位二通电磁阀的进油口与所述比例阀 组的工作油口连通, 所述二位二通电磁阀的出油口与所述单向阀的 出油口、 所述溢流阀的进油口和所述转向油缸的工作腔连通, 所述 溢流阀的出油口和所述单向阀的进油口均与油箱相通。
在一优选或可选实施例中,所述转向油缸与所述变量泵之间以 及油箱之间的液压回路上还设有所述比例阀组的旁通回路, 用于在 整到转向中位状态, 所述旁通 路上设置有三位四通电磁阀。 、 为实现上述目的, 本发明还提供了一种独立悬架轮式重栽车 辆, 包括上述任一实施例中的转向系统。 基于上述技术方案, 本发明至少具有以下有益效果: 本发明通过设置转向机构用于为车轮提供转向力,并通过设 置转向液压助力系统用于为车轮提供克服来自地面的转向阻力矩 的转向助力,相对于仅仅依靠转向器输出的转矩或者仅仅依靠转向 器和转向助力随动器输出的转矩的转向系统, 本发明能够有效克服 来自地面的转向阻力距, 为车辆提供多种场地的转向能力。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本 申请的一部分,本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为本发明提供的转向系统的结构示意图;
图 2为本发明提供的转向液压助力系统的结构示意图; 图 3为本发明提供的后轴转向控制装置的结构示意图; 图 4为图 3中所示的锁止阀组的一种实施例的结构示意图; 图 5为图 3中所示的比例阀组带有旁通回路的结构示意图; 图 6 为本发明提供的独立悬架轮式重载车辆的整体结构示意 图;
图 7 ( a )为本发明提供的独立悬架轮式重载车辆正常公路行驶 模式示意图;
图 7 ( b )为本发明提供的独立悬架轮式重载车辆小转弯模式示 意图;
图 7 ( c )为本发明提供的独立悬架轮式重载车辆蟹行模式示意 图;
图 7 ( d )为本发明提供的独立悬架轮式重载车辆防甩尾模式示 意图。
附图中: 1-角传动器; 2-转向传动轴; 3-转向器; 4-转向垂臂; 5-第一拉 杆总成; 6-第一摇臂总成; 7-第二拉杆总成; 8-第一轴右梯形臂; 9- 第三拉杆总成; 10-第一轴右过渡摇臂; 11-第四拉杆总成; 12-第一 轴左过渡摇臂; 13-第五拉杆总成; 14-第一轴左梯形臂; 15-第一轴 左转向助力油缸; 16-第一轴右转向助力油缸; 17-第六拉杆总成; 18- 第二轴右梯形臂; 19-第七拉杆总成; 20-第二轴右过渡摇臂; 21-第 f总成; 22-第二轴左过渡摇臂; 23-第九拉杆总成; 24-第二轴 左梯形臂; 25-第二轴左转向助力油缸; 26-第二轴右转向助力油缸; 101-应急泵; 102-第一转向泵; 103-第二转向泵; 104-切换阀; 201-变量泵; 202-过滤器; 203-比例阀组; 204-第一锁止阀组; 205-第二锁止阀组; 206-第三锁止阀组; 207-第四锁止阀組; 208-左 转向油缸; 209-右转向油缸; 210-后轴左过渡摇臂; 211-后轴右过渡 摇臂; 212-中间过渡拉杆总成; 213-左转向拉杆总成; 214-右转向拉 杆总成; 215-后轴左梯形臂; 216-后轴右梯形臂; 219-三位四通电磁 阀;
301-二位二通电磁阀; 302-单向阀; 303-溢流阀;
401-左 /右油气悬挂油缸; 402-左 /右轮边; 403-左 /右推力杆; 404- 左 /右转向助力油缸; 405-左 /右过渡臂; 406-左 /右拉杆总成; 407-左 /右梯形臂。 具体实施方式
下面将结合本发明实施例中的附图, 对实施例中的技术方案进 行清楚、 完整地描述。 显然, 所描述的实施例仅仅是本发明的一部 分实施例, 而不是全部的实施例。 基于本发明的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其他实施 例, 都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语"中心"、 "纵向"、 "横 "前,,、 "后,,、 "左,,、 "右,,、 "竖直,,、 "水平,,、 "顶,,、 "底,,、 "内"、 "外"等指示的方位或位置关系为基于附图所示的方位或位 置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗 示所指的装置或元件必须具有特定的方位、 以特定的方位构造和 操作, 因此不能理解为对本发明保护范围的限制。
首先对本发明中用到的技术术语进行解释。
独立悬架: 其结构特点是车轴做成断开的, 每一侧的车轮可以 单独地通过弹性悬架与车架 (或车身)连接, 两侧车轮可以单独跳动, 互不影响, 故称为独立悬架。
^^式梯形机构: 转向横 f是整体的梯形 ^。
断开式梯形机构: 转向横拉杆是分段式的梯形机构。
本发明提供的转向系统主要包括转向机构和转向液压助力系 统; 转向机构用于为车轮提供转向力, 转向液压助力系统用于为 车轮提供克服来自地面的转向阻力矩的转向助力。 通过转向液压 助力系统为转向机构提供转向助力, 转向助力大, 能够有效克服 来自地面的转向阻力矩,适用于对越野性能要求较高的轮式重载车 s
本发明提供的转向机构可以包括用来输出转矩的转向输出机 构, 转向输出机构可以只连接一个车轴的梯形机构, 或者可以依 次连接多个车轴的梯形机构 (如图 1所示, 为依次连接两个车轴 的梯形机构), 以实现一轴或一轴以上的转向。 转向输出机构通过 梯形机构为所在车轴的左侧车轮和右侧车轮提供转矩; 转向液压 助力系统可以包括为所在车轴的左侧车轮和 /或右侧车轮提供转 向助力的转向助力油缸, 以及与转向助力油缸相对应的液压油路 和阀控设备。
上述的车轴的梯形机构可以采用断开式梯形机构, 采用断开式 梯形机构能够确保每个车轮不受其他另一侧车轮上下跳动的影响, 为每个车轮提供均匀的转向力,并为车辆提供多种场地的转向能力。 当转向输出机构只连接一个车轴的断开式梯形机构时, 断开 式梯形机构可以包括分别对应为该车轴的左侧车轮和右侧车轮提 供转矩的左轮转向机构和右轮转向机构, 右轮转向机构与左轮转 向机构之间可以通过拉杆总成连接, 左轮转向机构或右轮转向机 构与转向输出机构可以通过连杆总成连接并传递动力。
左轮转向机构和右轮转向机构均可以包括梯形臂和过渡摇 臂, 梯形臂与过渡摇臂可以通过拉杆总成连接并传递动力, 左轮转 向机构的过渡摇臂与右轮转向机构的过渡摇臂可以通过拉杆总成 连接并传递动力, 左轮转向机构的过渡摇臂或右轮转向机构的过 渡摇臂与转向输出机构可以通过连杆总成连接并传递动力。
当转向输出机构依次连接多个车轴的断开式梯形机构时, 断 开式梯形机构可以包括分别对应为所在车轴的左侧车轮和右侧车 轮提供转矩的左轮转向机构和右轮转向机构, 右轮转向机构与左 轮转向机构之间可以通过拉杆总成连接,临近转向输出机构的断开 过连杆总成连接并 递动一力, 多个 轴中 邻 轴的断开
递动力。 i梯 形机构之间可以通过拉杆总成连接并传
左轮转向机构和右轮转向机构均可以包括梯形臂和过渡摇 臂, 梯形臂与过渡摇臂可以通过拉杆总成连接并传递动力, 左轮转 向机构的过渡摇臂与右轮转向机构的过渡摇臂可以通过拉杆总成 连接并传递动力,临近转向输出机构的断开式梯形机构的左轮转向 通过连杆总成连接并传递动力, 多个车轴中相邻车轴的左轮转向 机构的过渡摇臂之间或右轮转向机构的过渡摇臂之间可以通过拉 杆总成连接并传递动力。
如图 1 所示, 为转向输出机构依次连接多个车轴的断开式梯 形机构的一种具体实施例。 在该实施例中, 转向输出机构依次连 接两个断开式梯形机构, 分别为第一轴断开式梯形机构 a和第二 轴断开式梯形机构 b„
如图 1所示,第一轴断开式梯形机构 a,包括第一轴右梯形臂 8、 第三拉杆总成 9、 第一轴右过渡摇臂 10、 第四拉杆总成 11、 第一轴 左过渡摇臂 12、 第五拉杆总成 13、 第一轴左梯形臂 14。 第三拉杆 总成 9的一端与第一轴右梯形臂 8以球铰的方式相连接, 第三拉杆 总成 9的另一端与第一轴右过渡摇臂 10以球铰的方式相连接;第四 拉杆总成 11的一端与第一轴右过渡摇臂 10以球铰的方式相连接, 第四拉杆总成 11的另一端与第一轴左过渡摇臂 12以球铰的方式相 连接; 第五拉杆总成 13的一端与第一轴左梯形臂 14以球铰的方式 相连接, 第五拉杆总成 13的另一端与第一轴左过渡摇臂 12以球铰 的方式相连接。
如图 1所示, 第二轴断开式梯形机构 b, 包括第二轴右梯形臂 18、 第七拉杆总成 19、 第二轴右过渡摇臂 20、 第八拉杆总成 21、 第二轴左过渡摇臂 22、 第九拉杆总成 23、 第二轴左梯形臂 24。 第 七拉杆总成 19的一端与第二轴右梯形臂 18以球铰的方式相连接, 第七拉杆总成 19的另一端与第二轴右过渡摇臂 20以球铰的方式相 连接; 第八拉杆总成 21的一端与第二轴右过渡摇臂 20以球铰的方 式相连接, 第八拉杆总成 21的另一端与第二轴左过渡摇臂 22以球 铰的方式相连接; 第九拉杆总成 23的一端与第二轴左梯形臂 24以 球铰的方式相连接,第九拉杆总成 23的另一端与第二轴左过渡摇臂 22以球铰的方式相连接。
第一轴断开式梯形机构 a与第二轴断开式梯形机构 b通过第六 拉杆总成 17连接, 具体为: 第六拉杆总成 17的一端与第一轴断开 式梯形机构 a中的第一轴右过渡摇臂 10以球铰的方式相连接,第六 拉杆总成 17的另一端与第二轴断开式梯形机构 b中的第二轴右过渡 摇臂 20以球铰的方式相连接。
采用上述第一轴断开式梯形机构 a和第二轴断开式梯形机构 b 的形式, 能够确保每个车轮不受其他另一侧车轮上下跳动的影响, 为每个车了轮提供均匀的转向力, 并为车辆提供多种场地的转向能 力。
图 1中还示出了本发明提供的转向输出 的一具体实施例, 在该实施例中, 转向输出机构可以包括方向盘、 角传动器 1、 转向 传动轴 2、 转向器 3、 转向垂臂 4、 第一拉杆总成 5、 第一摇臂总成 6和第二拉杆总成 7。
如图 1所示, 方向盘连接角传动器 1, 转向传动轴 2的一端与 角传动器 1相连接, 转向传动轴 2的另一端与转向器 3的输入轴相 连接; 转向垂臂 4设置在转向器 3的输出轴上; 第一拉杆总成 5的 一端与转向垂臂 4连接, 第一拉杆总成 5的另一端与第一摇臂总成 6的一端相连接; 第一摇臂总成 6的另一端以球铰的方式与第二拉 杆总成 7的一端相连接, 第二拉杆总成 7的另一端与临近的第一轴 断开式梯形机构 a中的第一轴左过渡摇臂 12以球铰的方式相连接。
本发明提供的转向液压助力系统包括为所在车轴的左侧车轮 和 /或右侧车轮提供转向助力的转向助力油缸,具体可以为在至少 一个车轴的左轮转向机构的过渡摇臂和 /或右轮转向机构的过渡 摇臂上设置转向助力油缸。
图 1示出了在两个车轴的左轮转向机构的过渡摇臂和右轮转 向机构的过渡摇臂上均设置转向助力油缸的具体实施例, 该实施 例中包括第一轴左转向助力油缸 15、第一轴右转向助力油缸 16、第 二轴左转向助力油缸 25和第二轴右转向助力油缸 26, 共四个转向 助力油缸, 具体设置形式如下。
如图 1所示,第一轴左转向助力油缸 15的一端与第一轴左过渡 摇臂 12以球铰的方式相连接,另一端与焊接在车架上的支架以球铰 的方式相连接, 为第一轴的左侧车轮提供转向液压助力。 另外, 第 一轴右转向助力油缸 16的一端与第一轴右过渡摇臂 10以球铰的方 式相连接, 另一端与焊接在车架上的支架以球铰的方式相连接, 为 第一轴的右侧车轮提供转向液压助力。
如图 1所示,第二轴左转向助力油缸 25的一端与第二轴左过渡 摇臂 22以球铰的方式相连接,另一端与焊接在车架上的支架以球铰 的方式相连接, 为第二轴的左侧车轮提供转向液压助力。 另外, 第 二轴右转向助力油缸 26的一端与第二轴右过渡摇臂 20以球铰的方 式相连接, 另一端与焊接在车架上的支架以球铰的方式相连接, 为 第二轴的右侧车轮提供转向液压助力。
图 1所示转向系统的技术方案, 可以用于轮式重载车辆前两车 轴(前两车桥)的转向,不仅可以保证左车轮和右车轮按照 Acherman 定理进行转动, 而且可以保证一侧轮边不会受另一侧轮边上下跳动 的影响。
在具体实施过程中, 也可以在图 1所示技术方案的基础上进行 修改或补充, 实现轮式重载车辆一轴或一轴以上的转向。
为了提供足够的转向助力,本发明提供的转向液压助力系统中 的转向助力油缸可以通过至少一个转向泵供油, 转向助力油缸与转 向泵之间以及与油箱之间的液压油路上可以设置有切换压力油流向 的转向器。 在转向助力油缸的液压油路上还可以设有应急泵, 以及 用于切换应急泵供油油路的和转向泵的供油油路的切换阀。
如图 2所示, 为转向液压助力系统的一种具体实施例, 该实施 例所示形式适用于图 1所示的转向机构。
图 1所示的转向液压助力系统可以包括至少两个转向回路,分 别为第一转向回路和第二转向回路, 第一转向回路和第二转向回路 的工作原理如下。
在车辆向左转向时, 第一转向回路和第二转向回路控制第一轴 左转向助力油缸 15伸出, 第一轴右转向助力油缸 16缩回, 第二轴 左转向助力油缸 25伸出, 第二轴右转向助力油缸 26缩回。
在车辆向右转向时, 第一转向回路和第二转向回路控制第一轴 左转向助力油缸 15缩回, 第一轴右转向助力油缸 16伸出, 第二轴 左转向助力油缸 25缩回, 第二轴右转向助力油缸 26伸出。
采用上述双回路转向助力系统, 可以为每个车轮提供均匀的转 向助力,满足欧盟法规 EN 13000:2004《起重机——流动式起重机》 "4.2.7转向系统"的要求。
第一转向回路可以包括第一转向泵 102、切换阀 104、第一转向 器控制阀 I、第一轴左转向助力油缸 15和第一轴右转向助力油缸 16。
第二转向回路可以包括第二转向泵 103、 第二转向器控制阀 II、 第一轴左转向助力油缸 15、第一轴右转向助力油缸 16、第二轴左转 向助力油虹 25和第二轴右转向助力油虹 26。
第一转向泵 102的进油口与油箱连通, 第一转向泵 102的出油 口与切换阀 104的第二油口 P2连通, 切换阀 104的第三油口 A与 第一转向器控制阀 I的第一油口 Q1连通,切换阀 104的第四油口 T 分别与油箱、 第一转向器控制阀 I的第二油口 Q2, 以及第二转换器 控制阀 II的第二油口 S2连通;
第二转向泵 103的进油口与油箱连通, 第二转向泵 103的出油 口与第二转向器控制阀 Π的第一油口 S1连通;
第一转向器控制阀 I的第三油口 D与第一轴左转向助力油缸 15 的无杆腔连通, 第一转向器控制阀 I的第四油口 E与第一轴右转向 助力油缸 16的无杆腔连通;
第二转换器控制阀 Π的第三油口 F分别与第二轴左转向助力油 缸 25的无杆腔、 第二轴右转向助力油缸 26的有杆腔、 第一轴右转 向助力油紅 16的有杆腔连通; 第二转换器控制岡 II的第四油口 G 分别与第一轴左转向助力油缸 15的有杆腔、第二轴左转向助力油缸 25的有杆腔、 第二轴右转向助力油缸 26的无杆腔连通。
第一转向回路上还设置有应急装置, 用于转向主油路(转向油 泵提供的主油路) 出现闪失或失效后, 立即向第一转向回 5凝供转 向助力。 该应急装置包括应急泵 101, 应急泵 101的进油口连通油 箱, 应急泵 101的出油口与切换阀 104的第一油口 P1连通。
本发明也可以对图 2所示的转向液压助力系统进行修改, 具体 如下。
第一转向回路可以包括第一转向泵 102、 应急泵 101、 切换阀 104、第一转向器控制阀 I、第一轴左转向助力油缸 15和第一轴右转 向助力油紅 16。
第二转向回路可以包括第二转向泵 103、 第二转向器控制阀 II、 第一轴右转向助力油缸 16和第二轴右转向助力油缸 26。
上述修改后的转向液压助力系统的工作原理与图 2 所示的转 向液压助力系统保持一致。
上述各实施例中转向系统提供的转向机构和转向液压助力系 统均可用于为前车车轴的车轮提供转向力和转向助力, 为了提供 车辆的机动灵活性和弯道通过能力, 本发明提供的转向系统也可以 同时包括一种用于为轮式重载车辆的后车车轴提供转向力的后轴转 向控制装置。
本发明提供的后轴转向控制装置可以包括后轴梯形机构以及 为后轴梯形机构提供转向力的液压动力系统。 后轴梯形机构也可 以采用断开式梯形机构, 断开式梯形机构可以包括分别对应为后 轴右轮转向机构, 后轴右轮转向机构与后轴左轮转向机构之间可 以通过拉杆总成连接, 液压动力系统可以包括在后轴左轮转向机 构和 /或后轴右轮转向机构上设置的转向油缸, 以及与转向油缸相 对应的液压油路和阀控设备。 后轴左轮转向机构和后轴右轮转向机构均可以包括后轴梯形 臂和后轴过渡摇臂, 后轴梯形臂和后轴过渡摇臂可以通过拉杆总成 连接并传递动力, 后轴左轮转向机构的后轴过渡摇臂与后轴右轮 转向机构的后轴过渡摇臂可以通过拉杆总成连接并传递动力, 转 向油缸可以设置在后轴左轮转向机构的后轴过渡摇臂和 /或后轴 右轮转向机构的后轴过渡摇臂上。
本发明提供的后轴转向控制装置为轮式重载车辆提供灵活的 转向行驶, 满足其在多种场地行驶转向的需求。
如图 3所示,为本发明提供的后轴梯形机构的以一具体实施例, 该实施例中的后轴梯形机构包括后轴左过渡摇臂 210、 左转向拉杆 总成 213、 后轴左梯形臂 215、 后轴右过渡摇臂 211、 右转向拉杆总 成 214、 后轴右梯形臂 216和中间过渡拉杆总成 212。
后轴左梯形臂 215设置在后轴的左轮上, 后轴左梯形臂 215连 接左转向拉杆总成 213的一端, 左转向拉杆总成 213的另一端连接 后轴左过渡摇臂 210。
后轴右梯形臂 216设置在后轴的右轮上, 后轴右梯形臂 216连 接右转向拉杆总成 214的一端, 右转向拉杆总成 214的另一端连接 后轴右过渡摇臂 211。
后轴左过渡摇臂 210与后轴右过渡摇臂 211通过中间过渡拉杆 总成 212连接。
本发明提供的液压动力系统可以包括在后轴左轮转向机构和 /或后轴右轮转向机构上设置的转向油缸。 转向油缸可以通过变量 泵供油, 转向油缸与变量泵之间以及油箱之间的液压油路上可以设 置有切换压力油流向的比例阀组,通过变量泵将液压流体引入比例 阀组, 通过比例阀组控制油路的换向, 实现后车车轴的左转向或右 转向。
比例阀组的工作油口与转向油缸的工作腔之间的液压油路上 还可以设置有用于控制比例阀組的工作油口与转向油缸的工作腔 之间的液压油路通断的锁止阀组。
在转向状态下, 通过锁止阀组控制经过比例阀组的液压流体进 入转向油缸的工作腔, 在非转向状态下, 通过锁止阀组截止经过比 例阀组的液压流体, 避免液压流体进入转向油缸的工作腔。
图 3示出了液压动力系统的一具体实施例, 在该实施例中, 后轴左轮转向机构的后轴左过渡摇臂上和后轴右轮转向机构的后 轴右过渡摇臂臂上均设置有转向油缸, 分别对应为左转向油缸 208 和右转向油缸 209, 该实施例中还包括变量泵 201、 过滤器 202、 比 例阀组 203、 第一锁止阀组 204 、 第二锁止阀组 205、 第三锁止阀 组 206和第四锁止阀组 207。
如图 3所示, 液压动力系统中液压油路的具体连接方式是: 变 量泵 201的进油口 B和泄油口 L均与油箱连通, 变量泵 201出油口 S与过滤器 202的进油口相连接, 过滤器 202的出油口与比例阀组 203的第一油口 P相连接,比例阀组 203的第二油口 T与油箱连通, 比例阀组 203的第三油口 A与第一锁止阀组 204和第二锁止阀組 205 的进油口相连接, 比例阀组 203的第四油口 B与第三锁止阀组 206 和第四锁止阀组 207的进油口相连接。 第一锁止阀组 204的出油口 与右转向油缸 209的有杆腔油口相通; 第二锁止阀组 205的出油口 与左转向油虹 208的无杆腔油口相通; 第三锁止阀组 206的出油口 与右转向油缸 209的无杆腔油口相通, 第四锁止阀組 207的出油口 与左转向油虹 208的有杆腔油口相通。
本实施例中的比例阀组 203还具有负载反馈口 LS,负载反馈口 LS与变量泵 201的控制口 X相通。
图 3所示的液压动力系统驱动后轴转向的工作原理为: 后轴转 向时, 通过控制比例阀组 203来实现比例阀组 203的第一油口 P→ 笫三油口 A、 第四油口 B—第二油口 T或第一油口 P—第四油口 B、 第三油口 A—第二油口 T实现后轴的左转向 /右转向,第一锁止阀组
204、 第二锁止阀组 205、 第三锁止阀组 206、 第四锁止阀组 207内 的电磁阀进油口和出油口处于相通状态。 当需要后轴保持转向中位 位置、 不再参与转向时, 比例阀组 203的岡芯回中位, 第一锁止阀 组 204、 第二锁止阀组 205、 第三锁止阀组 206、 第四锁止阀组 207 内的电磁阀进油口和出油口不相通, 即变量泵 201输出的压力油液 不再 i£X转向油紅。
图 3中, 第一锁止阀组 204、 第二锁止阀组 205、 第三锁止阀组 206、第四锁止阀组 207均具有至少两个工作状态。 第一个工作状态 下, 比例阀组 203的第三油口 A或第四油口 B的压力油液可以经锁 止阀组的进油口进入转向油缸的有杆腔或无杆腔。 第二个工作状态 下, 比例阀组 203的第三油口 A或第四油口 B的压力油液被截止, 不可以经锁止阀组 203的进油口进入转向油缸的有杆腔或无杆腔。
如图 4所示, 为第一锁止阀組 204、 第二锁止阀组 205、 第三锁 止阀组 206和 /或第四锁止阀组 207 的一种具体实施例的原理示意 图。 该实施例中, 锁止阀组可以包括二位二通电磁阀 301、 溢流阀 303和单向阀 302,二位二通电磁阀 301的进油口与比例阀组 203的 工作油口连通, 二位二通电磁阀 301的出油口与单向阀 302的出油 口、 溢流阀 303的进油口和转向油缸的工作腔连通, 溢流阀 303的 出油口和单向阀 302的进油口均与油箱相通。
图 3中, 在不影响技术方案的前提下, 可以有选择性地取消第 一锁止阀组 204、第二锁止阀组 205、第三锁止阀组 206和第四锁止 阀组 207中的其中一个。
图 3中, 比例阀组 203可以带有控制口 LS, 比例阀组 203具有 至少三种工作状态。 第一种工作状态, 即比例阀组 203的第一油口 P、 第三油口 A、 第四油口 B、 第二油口 T互不相通。 第二种工作状 态, 比例阀组 203的第一油口 P与第四油口 B相通, 第三油口 A与 第二油口 T相通。第三种工作状态,第一油口 Ρ与第三油口 Α相通, 笫四油口 B与第二油口 T相通。 控制口 LS可以用于检测位于比例 阀组 203后的压力补偿阀的控制口油液压力。
图 3中, 转向油缸与变量泵之间以及油箱之间的液压回路上还 可以设有比例阀组的旁通回路(如图 5所示), 用于在比例阀组出现 故障后手动或自动启动旁通转向回路, 将出现故障的后车车轴调整 到转向中位状态。
如图 5所示, 旁通回路上设置有三位四通电磁阀 219, 三位四 通电磁阀 219的第一油口 P、 第三油口 A、 第四油口 B分别对应与 比例岡组 203的第一油口 P、 第三油 O A、 第四油口 B相通。 三位 四通电磁阀 219的第二油口 T与油箱连通。 后桥正常转向过程中, 旁通的三位四通电磁阀 219不起作用。
图 5中, 比例阀组 203、 三位四通电磁阀 219也可以采用不同 的油源实现上述方案。 为了避免后桥在地面冲击力或其他外力作用 下可能会发生偏转转向的几率, 可以分别在转向油缸与比例阀组、 三位四通电磁阀组之间增加上述的锁止阀組或者设置双向液压锁来 实现转向中位的锁定状态。
本发明还提供了一种独立悬架轮式重载车辆, 其包括上述任 一实施例中的转向系统。
如图 6所示, 为本发明可以具体实施的一种独立悬架轮式重载 车辆,其包括左 /右油气悬挂油缸 401、左 /右轮边 402和左 /右推力杆 403, 本发明提供的转向系统用在该独立悬架轮式重载车辆上, 包 括左 /右转向助力油缸 404、 左 /右过渡臂 405、 左 /右拉杆总成 406、 左 /右梯形臂 407等。 其中, 左 /右梯形臂 407与左 /右轮边 402相连 接; 左 /右拉杆总成 406与左 /右过渡臂 405和左 /右梯形臂 407分别 以允许一定角位移的球铰相连接。
当某一轮边车轮向上或向下跳动时, 悬架导向机构绕其与固定 在车架或主减速器支架上的两个空间铰点做旋转运动, 带动左 /右梯 形臂 407、 左 /右拉杆总成 406的运动。 左 /右拉杆总成 406采用球铰 铰接, 能够确保一侧轮边不受另一侧轮边向上或向下跳动的影响, 能够避免车轮摆阵、 操纵稳定性差、 轮胎异常磨损等问题。
本发明技术方案中, 利用图 1、 图 2、 图 3, 轮式重栽车辆可以 实现多种转向模式, 比如小转弯模式(如图 7 ( b )所示)、 蟹行模 式(如图 7 ( c )所示)、 防風尾模式(如图 7 ( d )所示)等, 具有 较强的机动灵活性, 下面通过列举一具体实施例进行分析。
本实施例中提供一种四轴汽车通用底盘的转向控制方法, 其包 括以下步骤:
设置在第一车轴和第二车轴上的车轮由方向盘通过拉杆式转向 传动机构和断开式梯形机构分别驱动其转向; (第一车轴和第二车轴 采用本发明提供的转向机构和转向液压助力系统)。
第三车轴和第四车轴上断开式梯形机构分别设有转向油缸, 且
(第三车轴和第四车轴采用本发明提供的后轴转向控制装置)。
根据车辆当前所处的转向模式, 使第三车轴和笫四车轴的断开 式梯形机构上的转向油缸锁定或解锁, 并根据第一车轴的转动方向 和转动角度控制相应的转向油缸驱动相应转向车轮转向。
在上述方法中, 根据车速信号获得当前车辆处于低速、 中速或 者高速公路行驶的转向模式。
根据用户的选择获得当前车辆所处的工况的转向模式, 可供用 户选择的工况转向模式包括小转弯转向模式、 蟹行模式和防甩尾模 式三种。
具体地说, 对应不同的转向模式, 控制相应车轴的车轮进行不 同的转向, 但前提是相应车轴断开式梯形机构上的转向油缸首先解 锁。 如图 7 ( a )所示, 当车辆处于低速公 驶转向模式时, 每个 转向油缸解锁, 每个转向油缸随方向盘的转动方向和转动角度进行 伸缩, 使第四车轴上的车轮与第一车轴上的车轮的转向方向相反, 第三车轴上的车轮不参与转向;
当车辆处于中速、 高速公 驶转向模式时, 第三、 第四车轴 上的转向油缸锁定, 第三、 第四车轴上的车轮无法转向。
如图 7 ( b )所示, 当车辆处于小转弯转向模式时, 每个转向油 缸解锁, 每个转向油缸随方向盘的转动方向和转动角度进行伸缩, 使第三、 第四车轴上的车轮与第一、 第二车轴上的车轮的转向方向 相反。
如图 7 ( c )所示, 当车辆处于蟹行模式时,每个转向油缸解锁, 每个转向油缸随方向盘的转动方向和转动角度进行伸缩, 使第三和 第四车轴上的车轮与第一、 第二车轴上的车轮的转向方向相同。
如图 7 ( d )所示, 当车辆处于防 尾模式时, 每个转向油缸解 锁, 每个转向油缸随方向盘的转动方向和转动角度进行伸缩, 使第 三车轴上的车轮与第一、 第二车轴上的车轮的转向方向相同。
在本发明提供的转向控制方法中, 如果检测到第一、 第二、 第 三和第四车轴上的任一个车轮的转向角度与该车轮的转向角特征曲 线所对应的标准值之间的差距大于设定值, 则发出报警信号, 提醒 驾驶员紧急停车检查。
本发明提供的采用上述任一实施例中的转向系统的一种独立 悬架轮式重栽车辆,具有多种转向模式,可以满足车辆在公路行驶、 狭窄场地转移的需求。
本发明技术方案中, 可以对图 1、 图 2、 图 3所示的技术方案进 行修改, 将断开式梯形机构改为整体式转向梯形机构, 也应用在非 独立悬架的轮式重载车辆上。
最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

1、 一种转向系统, 其特征在于: 包括转向机构和转向液压助 力系统; 所述转向机构用于为车轮提供转向力, 所述转向液压助 力系统用于为所述车轮提供克服来自地面的转向阻力矩的转向助 力。
2、 如权利要求 1所述的转向系统, 其特征在于: 所述转向机 构包括用来输出转矩的转向输出机构, 所述转向输出机构连接一 个车轴的梯形机构, 或依次连接多个车轴的梯形机构, 所述转向 供转矩; 所述转向液压助力系统包括为所在车轴的所述左侧车轮 和 /或右侧车轮提供转向助力的转向助力油缸, 以及与所述转向助 力油缸相对应的液压油路和阀控设备。
3、 如权利要求 2所述的转向系统, 其特征在于: 所述转向输 出机构连接一个车轴的梯形机构, 该车轴的梯形机构为断开式梯 形机构, 所述断开式梯形机构包括分别对应为该车轴的所述左侧 车轮和右侧车轮提供转矩的左轮转向机构和右轮转向机构, 所述 右轮转向机构与所述左轮转向机构之间通过拉杆总成连接, 所述 总成连接并传递动力。
4、 如权利要求 3所述的转向系统, 其特征在于: 所述左轮转 向机构和右轮转向机构均包括梯形臂和过渡摇臂,所述梯形臂与所 述过渡摇臂通过拉杆总成连接并传递动力, 所述左轮转向机构的 过渡摇臂与所述右轮转向机构的过渡摇臂通过拉杆总成连接并传 递动力, 所述左轮转向机构的过渡摇臂或所述右轮转向机构的过 渡摇臂与所述转向输出机构通过连杆总成连接并传递动力。
5、 如权利要求 2所述的转向系统, 其特征在于: 所述转向输 出机构依次连接多个车轴的梯形机构, 所述多个车轴的梯形机构 均为断开式梯形机构, 所述断开式梯形机构包括分别对应为所在 转向机构, 所述右轮转向机构与所述左轮转向机构之间通过拉杆 总成连接, 临近所述转向输出机构的断开式梯形机构的所述左轮转 向机构或所述右轮转向机构与所述转向输出机构通过连杆总成连 接并传递动力, 所述多个车轴中相邻所述车轴的断开式梯形机构 之间通过拉杆总成连接并传递动力。
6、 如权利要求 5所述的转向系统, 其特征在于: 所述左轮转 向机构和右轮转向机构均包括梯形臂和过渡摇臂,所述梯形臂与所 述过渡摇臂通过拉杆总成连接并传递动力, 所述左轮转向机构的 过渡摇臂与所述右轮转向机构的过渡摇臂通过拉杆总成连接并传 递动力, 临近所述转向输出机构的断开式梯形机构的所述左轮转向 机构通过连杆总成连接并传递动力, 所述多个车轴中相邻所述车 轴的左轮转向机构的过渡摇臂之间或右轮转向机构的过渡摇臂之 间通过拉杆总成连接并传递动力。
7、 如权利要求 4或 6所述的转向系统, 其特征在于: 在至少 一个所述车轴的所述左轮转向机构的过渡摇臂和 /或所述右轮转 向机构的过渡摇臂上设置有转向助力油缸。
8、 如权利要求 7所述的转向系统, 其特征在于: 各个所述连 杆总成以及所述转向助力油缸均通过球铰方式连接设置。
9、 如权利要求 2所述的转向系统, 其特征在于: 所述转向输 出机构包括角传动器、 转向传动轴、 转向器、 第一拉杆总成、 第一 摇臂总成和第二拉杆总成; 所述转向传动轴的一端与所述角传动器 相连接, 另一端与所述转向器的输入轴相连接; 所述转向器的输出 轴上设有转向垂臂;所述转向垂臂与所述第一拉杆总成的一端连接, 所述第一拉杆总成的另一端与所述第一摇臂总成的一端相连接; 所 述第一摇臂总成的另一端以球铰的方式与所述第二拉杆总成的一端 相连接, 所述第二拉杆总成的另一端与临近的所述车轴的梯形机构 以球铰的方式相连接。
10、 如权利要求 2所述的转向系统, 其特征在于: 所述转向 助力油缸通过至少一个转向泵供油, 所述转向助力油缸与所述转向 泵之间以及油箱之间的液压油路上设置有切换压力油流向的转向 器。
11、 如权利要求 10所述的转向系统, 其特征在于: 在所述转 向助力油缸的液压油路上还设有应急泵, 以及用于切换所述应急泵 和所述转向泵的供油油路的切换阀。
12、 如权利要求 1所述的转向系统, 其特征在于: 所述转向 机构和转向液压助力系统均用于为前车车轴的车轮提供转向力和 转向助力, 所述转向系统还包括用于为后车车轴的车轮提供转向 力的后轴转向控制装置。
13、 如权利要求 12所述的转向系统, 其特征在于: 所述后轴 转向控制装置包括梯形机构以及为所述梯形机构提供转向力的液 压动力系统。
14、 如权利要求 13所述的转向系统, 其特征在于: 所述梯形 机构为断开式梯形机构, 所述断开式梯形机构包括分别对应为所 述后车车轴的左侧车轮和右侧车轮提供转矩的左轮转向机构和右 轮转向机构, 所述右轮转向机构与所述左轮转向机构之间通过拉 杆总成连接, 所述液压动力系统包括在所述左轮转向机构和 /或所 述右轮转向机构上设置的转向油缸, 以及与所述转向油虹相对应 的液压油路和阀控设备。
15、 如权利要求 14所述的转向系统, 其特征在于: 所述左轮 转向机构和右轮转向机构均包括梯形臂和过渡摇臂,所述梯形臂和 过渡摇臂通过拉杆总成连接并传递动力, 所述左轮转向机构的过 渡摇臂与右轮转向机构的过渡摇臂通过拉杆总成连接并传递动 力,所述转向油缸设置在所述左轮转向机构的过渡摇臂和 /或所述 右轮转向机构的过渡摇臂上。
16、 如权利要求 14所述的转向系统, 其特征在于: 所述转向 油缸通过变量泵供油, 所述转向油缸与所述变量泵之间以及油箱之 间的液压油路上设置有切换压力油流向的比例阀组,通过所述比例 阀组控制油路的换向, 实现所述后车车轴的左转向或右转向。
17、 如权利要求 16所述的转向系统, 其特征在于: 所述比例 阀组的工作油口与所述转向油缸的工作腔之间的液压油路上还设 置有用于控制所述比例阀組的工作油口与所述转向油缸的工作腔 之间的液压油路通断的锁止阀组。
18、 如权利要求 17所述的转向系统, 其特征在于: 所述锁止 阀组包括二位二通电磁阀、 溢流阀和单向阀, 所述二位二通电磁阀 的进油口与所述比例阀组的工作油口连通, 所述二位二通电磁阀的 出油口与所述单向阀的出油口、 所述溢流阀的进油口和所述转向油 缸的工作腔连通, 所述溢流阀的出油口和所述单向阀的进油口均与 油箱相通。
19、 如权利要求 16所述的转向系统, 其特征在于: 所述转向 油缸与所述变量泵之间以及油箱之间的液压回路上还设有所述比例 阀组的旁通回路, 用于在所述比例阀组出现故障后手动或自动将出 现故障的所述后车车轴调整到转向中位状态, 所述旁通回路上设置 有三位四通电磁阀。
20、 一种独立悬架轮式重载车辆, 其特征在于: 包括如权利 要求 1-19任一项所述的转向系统。
PCT/CN2014/077860 2014-05-20 2014-05-20 一种转向系统及独立悬架轮式重载车辆 WO2015024399A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2015141800A RU2634738C2 (ru) 2014-05-20 2014-05-20 Система рулевого управления и тяжелое транспортное средство колесного типа с независимой подвеской
EP14838036.3A EP2944540B1 (en) 2014-05-20 2014-05-20 Turning system and heavy-load wheeled vehicle having independent suspension
US14/780,822 US9981688B2 (en) 2014-05-20 2014-05-20 Steering system and independent suspension wheel-type heavy vehicle
PCT/CN2014/077860 WO2015024399A1 (zh) 2014-05-20 2014-05-20 一种转向系统及独立悬架轮式重载车辆
BR112016012729-3A BR112016012729B1 (pt) 2014-05-20 2014-05-20 Sistema de direção

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077860 WO2015024399A1 (zh) 2014-05-20 2014-05-20 一种转向系统及独立悬架轮式重载车辆

Publications (1)

Publication Number Publication Date
WO2015024399A1 true WO2015024399A1 (zh) 2015-02-26

Family

ID=52483028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077860 WO2015024399A1 (zh) 2014-05-20 2014-05-20 一种转向系统及独立悬架轮式重载车辆

Country Status (5)

Country Link
US (1) US9981688B2 (zh)
EP (1) EP2944540B1 (zh)
BR (1) BR112016012729B1 (zh)
RU (1) RU2634738C2 (zh)
WO (1) WO2015024399A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108045432A (zh) * 2018-01-16 2018-05-18 徐工集团工程机械有限公司 转向油缸、液压助力转向系统、转向车桥及车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106494502B (zh) * 2016-11-04 2019-04-19 北京航天发射技术研究所 分组转向系统
CN107499376A (zh) * 2017-09-19 2017-12-22 中国重汽集团济南动力有限公司 一种双回路转向系统
CN107933689A (zh) * 2017-12-14 2018-04-20 北奔重型汽车集团有限公司 一种独立悬架多轴越野车双转向器转向传动装置
CN107963132B (zh) * 2017-12-19 2024-01-09 徐州徐工矿业机械有限公司 一种铰接式自卸车底盘
CN109552397B (zh) * 2019-01-02 2024-04-09 徐工集团工程机械股份有限公司科技分公司 车辆转向系统及工程车辆
CN110001774B (zh) * 2019-04-02 2024-04-12 中国煤炭科工集团太原研究院有限公司 一种双转向器整体式支架搬运车
CN111114632A (zh) * 2020-01-07 2020-05-08 江苏永捷工程物流有限公司 一种可适应多种运输需求的模块式液压平板车
CN111332361B (zh) * 2020-04-18 2024-06-18 沙市久隆汽车动力转向器有限公司 一种适用于军用越野车的整体式双回路转向器总成
DE102020135022B4 (de) 2020-12-29 2023-05-25 Liebherr-Werk Ehingen Gmbh Hydraulisches Lenksystem für einen Mobilkran und fahrbares Arbeitsgerät mit einem solchen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435407A (en) * 1994-04-20 1995-07-25 University Of Arkansas Hydrostatic manual vehicle steering system
CN201305027Y (zh) * 2008-10-13 2009-09-09 中国三江航天工业集团公司特种车辆技术中心 紧凑型断开式前双桥转向传动机构
CN202529027U (zh) * 2012-04-19 2012-11-14 湖北航天技术研究院特种车辆技术中心 一种八轴车辆转向机构
CN103738136A (zh) * 2014-01-27 2014-04-23 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN103963825A (zh) * 2014-05-20 2014-08-06 徐州重型机械有限公司 一种转向系统及独立悬架轮式重载车辆

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE342194A (zh) *
FR1479023A (fr) 1966-05-09 1967-04-28 Schwermaschb Kirow Veb Dispositif de commande de direction de l'ensemble des roues de véhicules à quatre essieux, en particulier de grues pivotantes mobiles
US3486576A (en) * 1968-01-18 1969-12-30 Caterpillar Tractor Co Steering system for multiple axle vehicle
FR2093167A5 (zh) 1970-06-04 1972-01-28 Saviem
SU1126482A1 (ru) 1983-09-26 1984-11-30 Предприятие П/Я М-5494 Рулевой привод транспортного средства с двум управл емыми мостами
DE19714485A1 (de) * 1997-04-08 1998-10-15 Kidde Ind Inc Lenkung für ein mehrachsiges Fahrzeug
DE19833383A1 (de) * 1998-07-24 2000-01-27 Claas Selbstfahr Erntemasch Lenkvorrichtung für selbstfahrende Arbeitsmaschinen und Zugmaschinen
EA001082B1 (ru) 1999-05-24 2000-10-30 Виктор Михайлович Писаревский Тяговое транспортное средство
CA2535937A1 (en) * 2005-02-09 2006-08-09 Simard Suspensions Inc. Front to rear steering system mechanical linkage assembly
WO2007128072A1 (en) * 2006-05-08 2007-11-15 Mechanical System Dynamics Pty Ltd Steering system for road transport vehicles
US7913800B2 (en) * 2006-10-30 2011-03-29 Deere & Company Steering system with variable flow rate amplification ratio and associated method
US8419032B1 (en) * 2010-04-05 2013-04-16 James R. McGhie Suspension system for a steerable trailer
CN201961369U (zh) 2010-12-06 2011-09-07 中国三江航天工业集团公司特种车辆技术中心 一种多模式全轮转向装置
CN102030035B (zh) 2010-12-06 2012-09-26 徐州重型机械有限公司 九轴汽车底盘起重机及其转向控制系统、方法
RU2464194C1 (ru) 2011-06-08 2012-10-20 Юрий Феликсович Черняков Система рулевого управления колесами мостов самоходной машины
CN102673639B (zh) 2012-05-29 2014-09-24 徐州重型机械有限公司 液压转向控制系统及具有该系统的起重机
CN202669912U (zh) 2012-06-12 2013-01-16 徐州重型机械有限公司 起重机及其自动对中转向系统
CN102923187B (zh) 2012-11-27 2015-08-19 徐州重型机械有限公司 多轴汽车起重机的随动转向控制系统及多轴汽车起重机
US9238481B2 (en) * 2013-03-15 2016-01-19 Trw Automotive U.S. Llc Steering system for turning multiple sets of steerable wheels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435407A (en) * 1994-04-20 1995-07-25 University Of Arkansas Hydrostatic manual vehicle steering system
CN201305027Y (zh) * 2008-10-13 2009-09-09 中国三江航天工业集团公司特种车辆技术中心 紧凑型断开式前双桥转向传动机构
CN202529027U (zh) * 2012-04-19 2012-11-14 湖北航天技术研究院特种车辆技术中心 一种八轴车辆转向机构
CN103738136A (zh) * 2014-01-27 2014-04-23 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN103963825A (zh) * 2014-05-20 2014-08-06 徐州重型机械有限公司 一种转向系统及独立悬架轮式重载车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2944540A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108045432A (zh) * 2018-01-16 2018-05-18 徐工集团工程机械有限公司 转向油缸、液压助力转向系统、转向车桥及车辆
CN108045432B (zh) * 2018-01-16 2023-08-25 江苏徐工国重实验室科技有限公司 转向油缸、液压助力转向系统、转向车桥及车辆

Also Published As

Publication number Publication date
EP2944540B1 (en) 2018-08-22
BR112016012729B1 (pt) 2023-03-14
EP2944540A4 (en) 2016-11-09
RU2634738C2 (ru) 2017-11-03
RU2015141800A (ru) 2017-04-06
US9981688B2 (en) 2018-05-29
US20170137058A1 (en) 2017-05-18
EP2944540A1 (en) 2015-11-18
BR112016012729A2 (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2015024399A1 (zh) 一种转向系统及独立悬架轮式重载车辆
US5427195A (en) Hydraulic drive and steering systems for a vehicle
CN103963825B (zh) 一种转向系统及独立悬架轮式重载车辆
EP2927093B1 (en) Follow-up steering control system of multi-axle automobile crane and multi-axle automobile crane
US9926004B2 (en) Power steering system for a vehicle
CN108556910B (zh) 一种全轮转向系统
CN112550445B (zh) 一种液压助力转向系统
US20100259023A1 (en) Steerable wheel safety system
CN110304137B (zh) 液压系统以及起重机
WO2015097483A1 (en) An axle assembly, a steering mechanism, a vehicle, and a trailer
EP3533688B1 (en) Active steering system for use in hoisting machinery, and hoisting machinery
US20060185926A1 (en) Front to rear steering system mechanical linkage assembly
US7686320B1 (en) Steering system for a tractor and trailer
CN102874309B (zh) 起重机及其转向系统和摇臂
CN213862408U (zh) 一种多轴半挂车的多模式转向液压系统
CN112977600B (zh) 转向系统和车辆
JP2015030303A (ja) 作業用車両のステアリング装置
CN110386193A (zh) 全地形车底盘
CN216546357U (zh) 一种具有冗余安全的电控液压转向系统
JPH028940B2 (zh)
RU2440265C2 (ru) Система управления колесами полуприцепа
CN116252855A (zh) 一种分控式转向系统及独立悬架车辆
CN118457711A (zh) 一种复合转向机构、系统、控制方法及轮式工程车辆
JPH0650280Y2 (ja) オ−ルテレンクレ−ン車の操舵装置
JPS6092987A (ja) 後二軸型車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014838036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14780822

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015141800

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016012729

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016012729

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160603