WO2015024354A1 - 一种低熔点金属导热膏及其制备方法和应用 - Google Patents

一种低熔点金属导热膏及其制备方法和应用 Download PDF

Info

Publication number
WO2015024354A1
WO2015024354A1 PCT/CN2014/000328 CN2014000328W WO2015024354A1 WO 2015024354 A1 WO2015024354 A1 WO 2015024354A1 CN 2014000328 W CN2014000328 W CN 2014000328W WO 2015024354 A1 WO2015024354 A1 WO 2015024354A1
Authority
WO
WIPO (PCT)
Prior art keywords
point metal
melting point
low melting
low
thermal
Prior art date
Application number
PCT/CN2014/000328
Other languages
English (en)
French (fr)
Inventor
郭瑞
Original Assignee
Guo Rui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Rui filed Critical Guo Rui
Publication of WO2015024354A1 publication Critical patent/WO2015024354A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • C09K5/12Molten materials, i.e. materials solid at room temperature, e.g. metals or salts

Definitions

  • the invention relates to a low melting point metal thermal conductive paste and a preparation method and application thereof, in particular to a low melting point metal thermal conductive paste comprising a low melting point metal, an antioxidant and a sodium gallate, and the invention belongs to the field of thermal conductive materials.
  • Thermal grease is a key material for heat dissipation in electronic devices. This is mainly because there is a very fine uneven air gap between the heat source surface and the heat sink, and the air is a bad heat, which will form a clear contact heat between the heat source and the heat sink, and reduce heat dissipation.
  • the performance of the device The thermal grease is filled between the heat source and the heat sink; the air in the interface is removed, and an effective heat conduction path is established therebetween to reduce the contact thermal resistance and improve the heat transfer performance.
  • the interface material has a thermal conductivity far exceeding that of the conventional thermal grease, and the heat transfer effect is remarkable.
  • the common liquid metal thermal paste is a gallium-based alloy. Because of its low melting point, it is most suitable as an interface material at room temperature, but its fluidity is not easy to smear, and it is prone to runny failure. Subsequently, other researchers added a gallium oxide component, which greatly improved the adhesion of the liquid metal, making it easy to apply, and the operation was more convenient.
  • the thermal conductivity of gallium oxide is very low, which will reduce the transfer performance of liquid metal thermal paste.
  • the liquid metal thermal paste is gradually oxidized by air during long-term use, which has become a key bottleneck and problem in the application of liquid metal thermal paste. Therefore, finding materials and methods that can prevent the oxidation of liquid gold thermal paste while ensuring the viscosity of liquid metal is an important issue to ensure the large-scale market application of liquid metal thermal interface materials.
  • the present invention proposes a novel low-melting-point metal thermal conductive paste which uses a low-melting-point metal (gallium-based, indium-based or bismuth-based alloy) as a heat-conducting functional body, and an appropriate amount of sodium gallate to increase liquid metal. Adhesion, and then add the right amount of antioxidants to improve the overall oxidation resistance.
  • the typical advantages are as follows: (1) sodium gallate can reduce the surface tension of low-melting metal, increase the viscosity of the thermal paste, and make the thermal paste paste. (2) Add anti-oxidant to the thermal paste to prevent the thermal paste from being used for a long time.
  • the low melting point metal as the main functional material can exhibit a liquid state at 30 ° C and above, and has a very high thermal conductivity compared with the conventional thermal grease.
  • the low-melting-point metal thermal paste has excellent thermal conductivity, easy handling, easy application, and is not easily oxidized in the air, ensuring long-term stable operation of the heat transfer system. Summary of the invention
  • the object of the present invention is to provide a low-melting-point metal thermal conductive paste which uses a bismuth melting point metal as a heat-conducting functional body, and at the same time, uses an antioxidant to improve the overall oxidation resistance, and adds sodium gallate to improve its adhesion, thereby ensuring heat conduction.
  • the excellent smear characteristics of the paste solve the problem of oxidation failure of the conventional low melting point metal thermal paste: When used, the thermal paste is uniformly applied to the surface of the heat source, and the low-melting-point metal thermal paste realizes rapid heat transfer between the heat source and the dispersing device, reduces contact thermal resistance, realizes high thermal conductivity, high viscosity, and is safe and stable. High-end thermal paste.
  • the invention can be widely used in the field of heat conduction and heat dissipation, such as navigation heat control, advanced energy, information electronics, etc., which need to reduce contact thermal resistance.
  • the invention provides a low melting point metal thermal grease, which comprises the following points according to the shield fraction:
  • the low melting point metal is from 90% to 99.8°/.
  • the antioxidant is 0.1% to 5% and sodium gallate 0.1. /. ⁇ 5%; Preferably, the low melting point metal is 92% to 97%, and the antioxidant is 1.5 ⁇ /. ⁇ 4% and sodium gallate 1.5% ⁇ 4%; more excellent, low melting point metal is 94%, antioxidant is 3%. and sodium gallate 3%.
  • the low melting point metal disclosed in the present invention can exhibit a liquid state at 3.0 ° C and above, and a thermal conductivity higher than 10 W / (m - K);
  • the low melting point metal is selected from the group consisting of a gallium based binary alloy, a gallium based multi-alloy, an indium-based alloy or a chelating gold; and the gallium-based binary alloy is selected from a gallium indium alloy, a gallium-lead alloy or a gallium amalgam. ;
  • the gallium-based multi-alloy is selected from the group consisting of gallium antimony alloy or gallium indium tin alloy;
  • the antioxidants described in the present invention are derived from sodium sulfide, ferrous hydride, magnesium sulfide, ferrous sulfate or potassium hydride.
  • a method for preparing a low melting point metal thermal paste as disclosed in the present invention comprising the steps of:
  • sodium gallate can reduce the surface tension of the low melting point metal, increase the viscosity of the thermal paste, and make the thermal paste easy to apply;
  • the low melting point metal as the main functional material can exhibit a liquid state at a temperature of 30 ⁇ and above, and has an ultrahigh thermal conductivity compared with the conventional thermal grease.
  • FIG. 1 is a schematic view of a low melting point metal thermal paste used in a heat dissipation system of the present invention. detailed description
  • a low melting point metal thermal paste consisting of the following components by mass fraction:
  • the mass fraction of the gallium-rhenium alloy (wherein the mass fraction of each component is Ga: 66%, In: 20.5% > Sn: 13.5°/.) is 94.9%, and the mass fraction of sodium halide is 0.i°/. , the sodium gallate mass fraction is 5%.
  • the gallium indium tin alloy can be at 10. Maintain liquid state at temperatures above C and above.
  • a low melting point metal thermal paste consisting of the following components by mass fraction:
  • the mass fraction of gallium antimony-zinc alloy (in which the mass fraction of each component is Ga: 6l%, In: 24% > Sn: 13%, Zn: 2%) is 94.9%, and the mass fraction of thorium chloride is 5%. , the mass fraction of sodium gallate is 0.1%,
  • gallium indium tin zinc alloy can be at 10. Maintain liquid state at temperatures above C and above.
  • a low melting point metal thermal paste consisting of the following 4 mass fractions:
  • the mass fraction of lead alloy (in which the mass fraction of the component is Ga: 98%, Pb: 2%) is 99.8%, and the mass fraction of magnesium sulfide is 0.1 °/. , the mass fraction of sodium gallate is 0.1%.
  • gallium-lead alloy can be 30. Keep liquid in case of C and above,
  • a low melting point metal thermal paste consisting of the following components in terms of metric scores:
  • the gallium amalgam (where the mass fraction of each component is Ga: 99%, Hg: 1%) has a mass fraction of 90%, the mass fraction of ferrous sulfate is 5%, and the mass fraction of sodium gallate is 5%.
  • gallium amalgam can maintain a liquid state at temperatures of 30 ° C and above.
  • a low melting point metal thermal paste consisting of the following components by mass fraction:
  • the mass fraction of gallium steel alloy (in which the component fraction is Ga: 80%, In: 20°/.) is 94%.
  • the mass fraction of remaining potassium is 3%, and the mass fraction of sodium gallate is -3°/. .
  • gallium indium alloy can maintain liquid state at 15 ° C and above.
  • Test Example 1 The low melting point metal thermal paste of the present invention is compared with the thermal paste of the prior art.
  • the test bench for the thermal paste used in the present invention is shown in FIG.
  • the heat source is used to heat the copper block, and the heating area is 4cmx4cm, and the heating power is 100W.
  • the radiator is convectively cooled by a fan.
  • the temperature measurement hole was opened at the top of the heat source 3 and the heater 1 and the temperature was measured by a thermocouple.
  • the temperature is collected using the Agilent 34970A with a temperature measurement accuracy of plus or minus 0,5 °C.
  • the low-melting-point metal thermal paste is in the form of a paste, which is convenient for the user to directly apply or screen printing, and is convenient to use.
  • the main component of the conventional thermal conductive silicone grease is silicone oil, which is easy to volatilize and dry out for a long time, and the low melting point metal thermal grease of the present invention not only does not evaporate and leak, but also is not easy to oxidize and fail in the east, and can be safely used for a long time, stably used, and has a long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

本发明提供了一种低熔点金属导热膏及其制备方法和应用,本发明制备的低熔点金属导热膏包括低熔点金属、抗氧化剂和镓酸钠。低熔点金属具有高热导率,可保证导热膏优异的导热性能;抗氧化剂可以抑制低熔点金属遇空气氧化,防止导热膏在使用过程中逐渐氧化失效;镓酸钠可降低低熔点金属表面张力,提升导热膏的粘度,增强导热膏的易涂抹特性,防止导热膏在使用过程中出现流淌泄露现象。本发明可广泛用于航天热控、先进能源、信息电子等需降低接触热阻的导热散热领域。

Description

一种低熔点金属导热膏及其制备方法和应用 技术领域
本发明涉^ L一种低熔点金属导热膏及其制备方法和应用, 具体涉及包括低熔点金属, 抗氧化剂和镓酸钠的低熔点金属导热膏, 本发明属于导热材料领域。 背景技术
导热硅脂是电子 器件散热的关键材料。这主要是罔为热源表面和散热器之间存在极 细微的凹凸不平的空气间隙,而空气是热的不良專休,将会在热源与散热器之间形成明显 的接触热 f且, 降低散热器的效能。 而导热硅脂填充于热源与散热器之间;可 除界面中的 空气, 并在其间漣立有效的热传导通道, 降低接触热阻, 提升传热性能。
传统的导热膏均以硅油为基础填充高热导率颗粒而成, 热导率一般较柢(低子 5W/(m« ) )0在近些年逐渐发展的液态金属导热膏是一种高端热界面材料, 其具有远超传 统导热硅脂的热导率, 传热效果显著。 常见的液态金属导热膏为镓基合金, 因其熔点低, 常温下呈液态 最为适合用作界面材料, 但其流动性大不易涂抹, 易出现流淌失效问题。 随后其它研究者向其中加入氧化镓成分, 大大提高了液态金属的粘附性, 使其易于涂抹, 操作更加方便。 然而, 氧化镓的热导率很低, 会降低液态金属导热膏的传^性能。 而且, 液态金属导热膏在长期使用过程中逐渐被空气氧化导致性能恶化已经成为液态金属导热 膏应用的关键瓶颈和难题。 因此,寻找能防止液态金 导热膏氧化, 同时又能保证液态金 属粘度的材料和方法是保证液态金属热界面材料大规模市场应用的重要课题。
为解^上述问题, 本发明提出一种新型的低熔点金属导热膏, 该导热膏以低熔点金 属(镓基、 铟基或铋基合金)为导热功能主体, 加入适量镓酸钠提升液态金属的粘附性, 再加入适量抗氧化剂来提高整体的抗氧化性。其典型优点如下:( 1 )镓酸钠可降低低熔点 金属表面张力, 增加导热膏的粘度, 使导热膏傈于涂抹; (2 )导热膏中添加抗氧化剂, 防 止导热膏在长期使用过程中的氧化失效; ( 3 )作为主要功能材料的低熔点金属在 30°C及 以上温度下能呈现液态, 与传统的导热硅脂相比, 具有极高的热导率。 总之, 这种低熔点 金属导热膏导热性能优异、操作方便易于涂抹、且在空气中不易氧化,可保证传热系统的 长期要全稳定运行。 发明内容
本发明的目的在于提供一种低熔点金属导热膏,其以牴熔点金属为导热功能主体,同 时采用抗氧化剂提高整体的抗氧化性,并加入镓酸钠提高其粘附性,可在保证导热膏优异 的涂抹特性的同时解决常规低熔点金属导热膏氧化失效的:问题。使用时,将导热膏均匀地 涂在热源表面, 低熔点金属导热膏实现热源与散 器件间迅速的热传递, 降低接触热阻, 实现了一种高导热性能, 高粘度,且安全稳定不易失效的高端导热膏。本发明可广泛用于 航夭热控、 先进能源、 信息电子等需降低接触热阻的导热散热领域
本发明的技术方案如下:
本发明提供的一种低熔点金属导热膏, 包括以下按盾量分数计的纽分:
低熔点金属为 90%〜99.8°/。, 抗氧化剂为 0.1%~5%和镓酸钠 0.1。/。~5%; 优选的, 低熔 点金属为 92%~97%, 抗氧化剂为 1.5β/。~4%和镓酸钠 1.5%~4%; 更优逸的,低熔点金属为 94%, 抗氧化剂为 3%.和镓酸钠 3%.
本发明中所迷的低熔点金属在 3.0°C及以上 ^度下能呈现液态, 热导率高于 10W/(m-K);
进一步的,所述低熔点金属选自镓基二元合金、镓基多元合金、铟基合金或 基会金; 所述镓基二元合金选 %镓铟合金、 镓铅合金或镓汞合佥;
所述镓基多元合金选自镓锢锡合金或镓铟锡辞合金;
本发明中所述的抗氧化剂逸自硫化钠、 氡化亚铁、 硫化镁、 硫酸亚铁或埃化钾。 制备本发明中所迷的低熔点金属导热膏的方法,. 包括以下步骤:
( 1 )采用热熔法熔化低熔点金属, 其在导热膏中的质量分数为 90%~9.9.8%;
( 2 )向熔化的低熔点金属中添加质量分数为 0Λ%~5%的抗氧 ^剂和质量分数为 0 1%~5%的镓酸钠粉枣;
( 3 ) 在隔绝空气的环境下对步骤(2 ) 中的混合物进行搅拌: 搅拌时转速为 10rpm〜500rpm, 搅拌时间为 5min~300min。
本发明所述的一种低熔点金属导热膏具有如下优点:
( 1 )镓酸钠可降低低熔点金属表面张力, 增加导热膏的粘度, 使导热膏便于涂抹;
( 2 )导热膏中添加抗氧化剂, 可防止导热膏中的低熔点金属被空气中的氧气氧化, 防止导热膏在长期使用过程中氧化失效;
( 3 )作为主要功能材料的低熔点金属在 30Ό及以上温度下能呈现液态, 与传统的导 热硅脂相比, 具有超高热导率。 附图说明
图 1为本发明低熔点金属导热膏应用于散热系统中的示意图。 具体实施方式
下面结合具体实施例来进一步揭述本发明,本发明的优点和特点将会随着描述而更为 清楚。但实施例仅是范例性的, 并不对本发明的范围枸成任何限制 本领域拔术人员应读 理解的是,在不僞离本发明的精神和范围下可以对.本发明技术方案的细节和形式进行修改. 或替换, 但这些修改和替换均落入本发明的保护范围内 » 实施例 1 低熔点金属导热膏的制备
一种低熔点金属导热膏, 由以下按质量分数计的組分组成:
镓锢鵪合金(其中各组分质量分数为 Ga: 66%, In: 20.5% > Sn: 13.5°/。)的质量分 数为 94.9%, 碌化钠质量分敎为 0.i°/。, 镓酸钠质量分数为 5%。
丼中, 镓铟锡合金可在 10。C及以上温度情况下保持液态。
制备本实施 M中所述的低熔点佥属导热膏的方法, 包括以下步骤:
( 1 )采用热熔法熔化镓錮锡合金, 其在导热膏中的质量分数为 94,9%;
( 2 )向熔化的低熔点金属中添加质量分数为 0.1°/。的 化钠和质量分数为 5%的镓酸 钠粉末;
( 3 )在隔绝空气的坏境下对步骤 ( 2 )中的混合物进行搅拌, 搅拌时转速为 480rpm, 搅拌时间为 5m i。 实施例 2低熔点金属导热膏的制备
一种低熔点金属导热膏, 由以下按质量分数计的组分组成:
镓锢锡锌合金(其中各组分质量分数为 Ga:6l%、 In:24%> Sn:13%, Zn:2%)的质量 分数为 94.9%, 氯化亚铗的质量分数为 5%, 镓酸钠的质量分数为 0.1%,
其中, 镓铟锡锌合金可在 10。C及以上温度情况下保持液态。
制备本实施例中所述的低熔点金属导热膏的方法, 包括以下步骤:
( 1 )采用热熔法熔化„ 合金, 其在导热膏中的质量分数为 94.9%;
( 2 )向熔化的低熔点金属中添加质量分数为 5%的氯化亚铗和质量分数为 0.1%的镓 酸钠粉末; ( 3 )在隔绝空气的环境下对步骤(2 )中的混合物进行搅拌, 搅拌时转速为 120rpm, 搅拌时间为 200mi 实施例 3低熔点金属导热膏的制备
一种低熔点金属导热膏, 由以下 4 质量分数计的組分組成:
傢铅合金(其中备组分质量分数为 Ga:98%, Pb:2% )的质量分数为 99.8%, 硫化镁 的质量分数为 0.1°/。, 镓酸钠的质量分数为 0.1%.
其中, 镓铅合金可在 30。C及以上温度情况下保持液态,
制备本实施例中所述的低熔点金属导热膏的方法, 包括 下步骤:
( 1 )采用热熔法熔化镓铅合金, 其在导热膏中的质量分数为 99.8%;
( 2 )向熔化的低熔点金属中添加质量分数为 0.1%的硫化镁和质量分数为 0.1%的镓 酸钠粉末;
( 3 )在隔绝空气的环境下对歩骤(2 )中的混合物进行搅拌, 搅拌时转速为 300rpm, 槺拌时间为 120min 实施例 4低熔点金属导热膏的制备
一种低熔点金属导热膏, 由以下按度量分数计的組分组成:
镓汞合金(其中各组分质量分数为 Ga:99%、 Hg:l% )的质量分数为 90%, 硫酸亚铁 的质量分数为 5%, 镓酸钠的质量分数为 5%。
其中, 镓汞合金可在 30°C及以上温度情况下保持液态。
制备本实施例中所述的低熔点金属导热膏的方法, 包括以下步骧:
( 1 )采用热熔法 化镓汞合金, 其在导热膏中的质量分数为 90%;
( 2 )向熔化的低熔点金属中添加质量分数为 5%的硫酸亚铁和质量分麩为 5%的镓酸 钠
(3 )在隔绝空气的环境下对步驟 ( 2 )中的混合物进行搅拌,搅抨时转速为 450ipm, 挽拌时间为 30min。 实施例 5低熔点金属导热膏的制备
一种低熔点金属导热膏, 由以下按质量分数计的組分组成:
镓鋼合金 (其中各組分 量分数为 Ga:80%, In:20°/。)的质量分数为 94%, 剩匕钾的质量分数为 3%, 镓酸钠的质量分数为 -3°/。。
其中, 镓铟合金可在 15°C及以上温度情况下保持液态.
制备本实施例中所述的低熔点金属导热膏的方法, 包括以下步骤:
( 1 )采用热熔法熔化镓铟合金, 其在导热膏中的质量分数为 94%;
( 2 )向熔化的低熔点金属中添加质量分数为 3%的碘 钾和质量分数为 3%的镓酸钠 粉末;
( 3 )在隔绝空气的环境下对步驟(2)中的混合物进行搅拌, 搅拌时转速为 480rpm, 搅拌时:间为 20min。 试验例 1 本发明的低熔点金属导热膏与现有技术中的导热膏相比较
导热骨的使用方法:将导热膏 2均匀涂抹于热源 3的表面,并用扣具将散热器 1紧密 固定在热溽 3上。
实验平台: 用于本发明中导热膏的测试乎台如图 1所示。热源乘用电加热铜块,发热 面积 4cmx4cm,发热功率 100W。散热器采用岚扇驿制对流冷却。在热源 3顶部及來热器 1威部开测温孔, 采用热电偶测量两处温度。 温度采集采用安捷伦 34970A, 其测温精度 可达到正负 0,5 °C。
实验步骤;
( 1 )搭建两套同样的上述实验乎台。 按上述导热膏涂抹方法, 在其中一套实验平台 的 表面涂抹传统导热膏(信越 7783 ),然后在其 ±装配散热器。 随后,按同样的方法, 在另一套实验平台的热源表面涂抹实施例 5 +的低熔点金属导热膏, 装配散热莾。
(2 )两套实验平台均开启热源。持系统温度稳定后, 夯别测试两套实验平台中两测 温孔的溢差,
( 3 )实聆发现, 涂抹了传统导热骨(信越 7783 )的实验平台中, 热源 3顶部及散热 器 1底部两测温孔的温差为 12。C, 而涂抹了实施例 5中低熔点金属导热膏的实验平台中 两测温孔温差仅有 3 V , 温降优势明显。
上迷实验数据与理论计算数值非常接近。低熔点金属 (比如镓铟锡合金)的热导率一 般可达到 25W/(m-K), 而传统的高端非金属导热硅脂(如信越 7783 )的热导率一般为 6 W/(m-K)e 两者热导率差距约 4倍, 因此传热界面温差约 1/4是非常合理和一致的。
此外,低熔点金属导热膏为膏状,方便用户直接涂抹或丝网印刷,使用方便。传统导 热硅脂主要成分为硅油,长期使用容易挥发变干失效,而本发明中的低熔点金属导热膏不 仅不会蒸发泄露, 東不容易氧化失效, 可长期安全, 稳定使用, 寿命长。

Claims

权利要求
1、 一种低熔点金属导热膏, 包括以下按质量分数计的組分:
低熔点金属为 90%~99.8%, 抗氧化剂为 0.1%~5%和俸酸钠 0.1%~5%。
2、 根据权利要求 1所述的低熔点金属导热膏, 其特征在于, .包括以下按质量分数计 的组分:
低熔点金属为 92%~97%, 抗氧化剂为 1.5°/。~4%和镓酸钠 1.5%~4%。
3、 根据权利要求 2所述的低熔点金属导热膏, 其特征在于, 包括以下按质量分数计 的组分:
低熔点金属为 94%, 抗氧化剂为 3%和镓酸钠 3%β
4、根据权利要求 1所述的低熔点金属导热膏,其特征在于,所述的低熔点金属在 30°C 及以上温度下能呈现液态, 热导率高于 10W/(m.K)。
5、 根摒权利要求 1所迷的低熔点金属导热膏, 其特征在于, 所述低熔点金属选自镓 基二元合金 > 镓基多元合金、 铟基合金或叙 -基合金4
6、 根据权利要求 5所迷的低熔点金属导热骨, 其特征在于, 所述镓基二元合金选自 镓铟合金、 镓铅合金或镓汞合金。
1、 根据权利要求 5所述的低熔点金属导热膏, 其特征在于, 所迷镓基多元合金选自 镓铟锡合金或镓铟锡辞合金。
8> 根据权利要求 1所述的低熔点金属导热膏, 其特征在于, .所述的抗氧化剂选自硫 化钠、 氯化亚铁、 硫化镁、 硫酸亚铗或碘化钾。
9、 制备如权利要求 1-8任一项所迷的低熔点金属导热膏的方法, 包括以下步骤:
( 1 )采用热熔法熔化低熔点金属, 其在导热膏中的质量分数为 90%~99,8%;
( 2 ) 向熔化的低熔点金属中添加质量分数为 0.1%~5°/。的抗氧化剂和质量分数为 0.1 %~5%的镓酸钠粉末;
( 3 ) 在隔绝空气的环境下对步骤(2 ) 中的混合物进行搅拌, 搅拌时转速为 10rpm~500rpm, 挽拌时间为 5min~300min。
10、权利要求 1-8任一项所述的低熔点金属导热膏在航天热控、 先进能源、信息电子 等需降低接触热阻的导热领域中的应用。
PCT/CN2014/000328 2013-08-21 2014-03-26 一种低熔点金属导热膏及其制备方法和应用 WO2015024354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310367485.3 2013-08-21
CN201310367485.3A CN103396769B (zh) 2013-08-21 2013-08-21 一种低熔点金属导热膏及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2015024354A1 true WO2015024354A1 (zh) 2015-02-26

Family

ID=49560500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000328 WO2015024354A1 (zh) 2013-08-21 2014-03-26 一种低熔点金属导热膏及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN103396769B (zh)
WO (1) WO2015024354A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396769B (zh) * 2013-08-21 2014-05-28 北京依米康科技发展有限公司 一种低熔点金属导热膏及其制备方法和应用
CN104992742B (zh) * 2015-07-08 2018-05-18 北京态金科技有限公司 高粘度低熔点金属导电膏及其制备方法
CN105400497A (zh) * 2015-10-28 2016-03-16 苏州天脉导热科技有限公司 一种全金属导热膏及其制备方法
CN107548260A (zh) * 2016-06-24 2018-01-05 苏州天脉导热科技有限公司 一种手机摄像头散热结构
CN106206793B (zh) * 2016-09-06 2018-06-19 晶科能源有限公司 光伏组件
CN110643331B (zh) * 2019-10-12 2021-11-09 云南靖创液态金属热控技术研发有限公司 一种液态金属导热膏及其制备方法和应用
CN111690381B (zh) * 2020-07-22 2021-06-04 福建美庆热传科技有限公司 一种液态金属导热膏及其制备方法
CN112358854A (zh) * 2020-10-12 2021-02-12 湖南中材盛特新材料科技有限公司 一种液态金属导热膏及其制备方法和应用
CN116380599B (zh) * 2023-06-06 2023-08-11 江苏省沙钢钢铁研究院有限公司 一种大尺寸非金属夹杂物的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1432619A (zh) * 2001-12-11 2003-07-30 信越化学工业株式会社 导热性硅氧烷组合物,以及使用该组合物的散热结构
CN101747870A (zh) * 2009-12-18 2010-06-23 东南大学 散热界面材料的制备方法、使用方法及制备装置
CN101899288A (zh) * 2009-05-27 2010-12-01 清华大学 热界面材料及其制备方法
US20110310562A1 (en) * 2010-06-16 2011-12-22 Laird Technologies, Inc. Thermal interface material assemblies, and related methods
JP2012003878A (ja) * 2010-06-15 2012-01-05 Sony Chemical & Information Device Corp 保護素子、及び、保護素子の製造方法
CN103396769A (zh) * 2013-08-21 2013-11-20 北京依米康科技发展有限公司 一种低熔点金属导热膏及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1432619A (zh) * 2001-12-11 2003-07-30 信越化学工业株式会社 导热性硅氧烷组合物,以及使用该组合物的散热结构
CN101899288A (zh) * 2009-05-27 2010-12-01 清华大学 热界面材料及其制备方法
CN101747870A (zh) * 2009-12-18 2010-06-23 东南大学 散热界面材料的制备方法、使用方法及制备装置
JP2012003878A (ja) * 2010-06-15 2012-01-05 Sony Chemical & Information Device Corp 保護素子、及び、保護素子の製造方法
US20110310562A1 (en) * 2010-06-16 2011-12-22 Laird Technologies, Inc. Thermal interface material assemblies, and related methods
CN103396769A (zh) * 2013-08-21 2013-11-20 北京依米康科技发展有限公司 一种低熔点金属导热膏及其制备方法和应用

Also Published As

Publication number Publication date
CN103396769A (zh) 2013-11-20
CN103396769B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2015024354A1 (zh) 一种低熔点金属导热膏及其制备方法和应用
CN103642465B (zh) 一种液态金属导热膏及其制备方法和应用
JP6737538B2 (ja) 逆溶融性を有する液体金属熱界面材料及びその製造方法
CN108192576B (zh) 一种液态金属热界面材料及其制备方法和应用
CN104031600B (zh) 一种绝缘的导热金属胶及其制造方法
CN109135685B (zh) 一种基于液态金属的绝缘导热纳米材料及其制备和应用
CN103289650B (zh) 一种低熔点金属导热膏
CN104745911A (zh) 一种高粘度低熔点金属导热片的制备方法及应用
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
CN108129841A (zh) 一种液态金属绝缘导热材料及其制备方法
CN105349866A (zh) 一种熔点为40~60℃的低熔点合金及其制备方法
CN106701031A (zh) 一种由金属网格与低熔点合金构成的复合热界面材料
WO2014106313A1 (zh) 基于低熔点金属及其氧化物降低接触电阻的方法
CN104032199A (zh) 一种低熔点液态金属及其制备方法和应用
CN106929733B (zh) 一种泡沫铝复合的液态金属热界面材料
CN107053786B (zh) 具有自熔特性的液态金属热界面材料
CN108997980B (zh) 一种光纤激光器用相变导热材料、制备方法及应用方法
CN103740995A (zh) 一种镓基液态合金材料及其制备方法
CN110306091A (zh) 一种高浸润性低热阻液态金属片及其制备方法
CN106222490A (zh) 一种液态金属导热材料
JP5542280B2 (ja) 放熱グリース組成物
CN107052308B (zh) 一种泡沫铜复合的液态金属热界面材料
CN105400497A (zh) 一种全金属导热膏及其制备方法
CN204369797U (zh) 一种金属垫片
CN104911441A (zh) 一种低熔点金属及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837203

Country of ref document: EP

Kind code of ref document: A1