WO2015024162A1 - 光隔离器 - Google Patents
光隔离器 Download PDFInfo
- Publication number
- WO2015024162A1 WO2015024162A1 PCT/CN2013/081774 CN2013081774W WO2015024162A1 WO 2015024162 A1 WO2015024162 A1 WO 2015024162A1 CN 2013081774 W CN2013081774 W CN 2013081774W WO 2015024162 A1 WO2015024162 A1 WO 2015024162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- film
- optical isolator
- metal film
- magneto
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 72
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 239000010408 film Substances 0.000 claims abstract description 33
- 230000005291 magnetic effect Effects 0.000 claims abstract description 25
- 239000012788 optical film Substances 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000012792 core layer Substances 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 abstract description 20
- 238000010586 diagram Methods 0.000 description 5
- 101100408455 Arabidopsis thaliana PLC7 gene Proteins 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
- G02F1/0955—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
- G02F1/0036—Magneto-optical materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/193—Magnetic semiconductor compounds
Definitions
- the present invention relates to the field of optical communications, and in particular, to an optical isolator.
- An optical isolator is an optical component that allows light to be transmitted in one direction without being transmitted in the reverse direction. For example, after the optical isolator is placed at the exit end of the semiconductor laser, the light emitted from the laser is transmitted through the optical isolator, and can be used as a light source for optical communication. On the contrary, the light that is incident on the semiconductor laser through the optical isolator is blocked by the optical isolator and cannot be incident on the semiconductor laser. If the optical laser is not provided with an optical isolator, the reflected light is incident on the semiconductor laser, resulting in deterioration of the oscillation characteristics of the semiconductor laser, variation in output intensity (intensity noise generation), and oscillation wavelength variation (phase noise generation).
- optical isolators are classic optical isolators, such as Faraday magneto-optical rotating crystal optical isolator or birefringent crystal optical isolator. These classic optical isolators are used in the packaging of coaxial optoelectronic devices. .
- classic optical isolators are not easy to integrate, the main reason is that the classic isolators themselves are large in size, and the classic isolators need to be placed perpendicular to the direction of light propagation. Will increase the package size of the device, in addition The material of the classic isolator is different from the material of the PLC optoelectronic device, and there is a large insertion loss.
- Embodiments of the present invention provide an optical isolator for isolating optical signals for transmission.
- An embodiment of the present invention provides an optical isolator comprising a planar lightwave circuit (10), a magneto-optical film (20), and a metal film (30) having a magnetic field;
- a light transmission channel is disposed in the planar lightwave circuit (10); the magneto-optical film (20) is laid on the planar lightwave circuit (10), and the plane of the magneto-optical film (20) is The transmission path of the optical signal is parallel; the metal film (30) having a magnetic field is laid on the magneto-optical film (20).
- the planar lightwave circuit (10) includes three layers of a cladding layer, a core layer and a substrate, the core layer is located between the cladding layer and the substrate, and the core layer is a transmission channel of the optical signal. .
- the metal film (30) having a magnetic field is a ferromagnetic metal film (301).
- the metal film (30) having a magnetic field is composed of a metal film (302) and a constant magnetic film (304), and the metal film (302) is laid on the magneto-optical film (20).
- the constant magnetic film (304) is laid on the metal film (302).
- the constituent material of the metal thin film (302) comprises: one or more of gold, silver and copper.
- the planar lightwave circuit (10) is composed of silicon dioxide.
- the constituent material of the planar lightwave circuit (10) includes lithium niobate
- III-V semiconductor compound comprises one or more of InP and GaAs.
- a dielectric grating is disposed in the transmission channel of the optical signal.
- a dielectric grating is disposed in the core layer.
- the optical isolator provided by the implementation of the invention can enable the optical signal transmitted in the forward direction to be smoothly transmitted in the PLC; and the optical signal transmitted in the reverse direction cannot be transmitted in the PLC, thereby realizing the function of the isolated light.
- FIG. 1 is a schematic structural diagram of an optical isolator according to an embodiment of the present invention.
- FIG. 2 is a schematic structural diagram of an optical isolator according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of an optical isolator according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of an optical isolator according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an optical isolator according to an embodiment of the present invention.
- One embodiment of the present invention provides an optical isolator, as shown in Fig. 1, comprising a PLC 10, a magneto-optical film 20, and a metal film 30 having a magnetic field.
- the PLC 10 is provided with a transmission path of an optical signal, and the magneto-optical film 20 is laid on the PLC 10, and the plane of the magneto-optical film 20 is parallel to the transmission path of the optical signal in the PLC 10.
- a metal thin film 30 having a magnetic field is laid on the magneto-optical film 20.
- the constituent material of the PLC 10 may be silicon dioxide, or may be lithium niobate (LiNb0 3 ), III-V group.
- a semiconductor compound silicon on insulator, silicon oxynitride (SiON), and high molecular polymer.
- the III-V semiconductor compound may include one or more of InP and GaAs.
- the composition of the PLC 10 is very extensive, and the above is merely a list of several commonly used constituent materials.
- the PLC 10 includes three layers of a cladding layer, a core layer and a lining layer, as shown in FIG. 2, wherein the core layer is sandwiched between the cladding layer and the lining layer for transmitting optical signals, and belongs to a transmission channel of the optical signal. .
- an embodiment may be implemented by providing a thickness of one or more of the cladding, the core layer and the liner.
- the thickness of each layer will vary depending on the materials used in the PLC10.
- the thickness of the core layer can be set to about 4 to 8 ⁇ m, and the thickness of the substrate is set to about 12 ⁇ m, the cladding layer. The thickness is set to about 19 ⁇ m or the like.
- the magneto-optical film 20 may be a medium capable of generating a magneto-optical effect, and the constituent material may be garnet or the like.
- the metal film 30 having a magnetic field may have various implementations. As an embodiment, it may be a ferromagnetic metal film. As shown in FIG. 3, the ferromagnetic metal film 301 is deposited as a metal film capable of generating a magnetic field. On the light film 20.
- the metal thin film 30 having a magnetic field may also be composed of a metal thin film 302 and a constant magnetic thin film 304. As shown in Fig. 4, a metal film 302 is laid on the magneto-optical film 20, and a constant magnetic film 304 is laid on the metal film 302.
- the constituent material of the metal thin film 302 may be one or more of gold, silver, and copper, and may of course be other metals.
- the surface of the ferromagnetic metallic thin film 301 has a high density and a uniform distribution of free electrons.
- these electric electrons are excited by an electric field, they are unevenly distributed according to the direction of the electric field. distributed. That is to say, these free electrons generate an instantaneous induced electric dipole when excited by an electric field.
- SPP Surface Plasmon Polariton
- TM Transverse Magnetic
- TE Transverse Electric
- the PLC 10 in this embodiment allows the TM to pass due to the SP (Surface Plasmon) effect.
- SP Surface Plasmon
- the parameters of the ferromagnetic metal film 301 when the current TM is matched with the SPP mode, the two are mutually converted in the PLC 10 to be forwarded.
- the reverse TM due to the polarization non-reciprocity, the dielectric constant of the metal changes, and the matching conditions of the reverse TM and SPP modes are destroyed, so that the PLC 10 cannot be entered, thereby achieving the purpose of optical isolation.
- the metal thin film 30 having the magnetic field is composed of the metal thin film 302 and the constant magnetic thin film 304
- the forward-transferred TM is transported in the PLC 10
- the SP effect is excited on the surface of the metal thin film 302 through the magneto-optical film 20.
- the TM and SPP modes are mutually converted, thereby smoothly passing through the PLC 10.
- the reverse TM cannot be mutually converted between the reverse TM and the SPP modes, so that it cannot pass through the PLC 10.
- the TM and SPP modes are mutually converted and smoothly transmitted in the PLC; when the reverse transmission is performed, the two modes cannot be mutually converted, and the reverse TM cannot be transmitted in the PLC. , thus achieving the effect of isolating light.
- a dielectric grating may be added to the optical isolator provided above, and the dielectric grating may be disposed in the transmission channel of the optical signal of the PLC 10, specifically Set in the core layer of PLC10, because the dielectric grating is installed in the optical isolator, not only can the TM be isolated, but also the TE can be isolated. As shown in Figure 5.
- the dielectric constant of the metal thin film 30 (the ferromagnetic metal thin film 301 in Fig. 3 or the metal thin film 302 in Fig. 4) changes due to the polarization non-reciprocity, and the matching conditions of the SPP mode and the TM are broken. , Reverse TM cannot enter PLC10.
- the optical isolator provided in this embodiment can further reduce the insertion loss of the optical isolator by adding a dielectric grating in the transmission channel of the optical signal, thereby further improving the isolation of the optical isolator.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明提供一种光隔离器,包括平面光波回路(10)、磁光薄膜(20)以及具有磁场的金属薄膜(30);所述平面光波回路(10)中设置有光信号的传输通道;所述磁光薄膜(20)铺设在所述平面光波回路(10)上,所述磁光薄膜(20)所在平面与所述光信号的传输通道平行;所述具有磁场的金属薄膜(30)铺设在所述磁光薄膜(20)上。
Description
光隔离器
技术领域
本发明涉及光通信领域, 尤其涉及一种光隔离器。
背景技术
光隔离器是一种能使得光向一个方向传输、 而不能反向传输的光元件。 例 如, 将光隔离器设置在半导体激光器出射端后, 从激光器射出的光透过光隔离 器, 能够作为光通信用的光源。 相反, 要通过光隔离器向半导体激光器入射的 光, 则会被光隔离器阻止, 无法入射到半导体激光器。 如果半导体激光器出射 端不设置光隔离器, 反射回来的光会入射到半导体激光器, 导致半导体激光器 振荡特性恶化, 输出强度产生变动 (产生强度噪声)和振荡波长变化(产生相 位噪声)等。
不仅是半导体激光器, 对于光放大器等有源元件中, 未预料的光反向入射 也会导致这些有源元件工作特性的退化。 为了避免这种现象, 需要在半导体激 光器或者有源元件的输出端配置光隔离器, 避免半导体激光器或者有源元件的 产生上述不良现象。 尤其是将半导体激光器用作高速光纤通信用的光源时, 光 源的振荡稳定性是绝对条件, 因此必须使用光隔离器。
目前市场上的光隔离器多为经典的光隔离器, 如采用法拉第磁光旋转晶体 型光隔离器或者双折射晶体型光隔离器等, 这些经典的光隔离器用于同轴光电 器件的封装中。 对于 PLC ( Planar Lightwave Circuit, 平面光波回路)等光电器 件, 经典的光隔离器不易集成封装, 其主要原因是经典的隔离器本身尺寸较大, 并且经典的隔离器需要垂直于光传播方向放置, 会增大器件的封装尺寸, 另外
经典的隔离器的材料与 PLC光电器件的材料不同, 存在较大的插入损耗。
发明内容
本发明实施例提供一种光隔离器, 用于传输的光信号进行隔离。
本发明一个实施例提供一种光隔离器, 包括平面光波回路( 10)、 磁光薄膜 (20) 以及具有磁场的金属薄膜(30);
所述平面光波回路(10) 中设置有光信号的传输通道; 所述磁光薄膜(20) 铺设在所述平面光波回路(10)上, 所述磁光薄膜(20) 所在平面与所述光信 号的传输通道平行; 所述具有磁场的金属薄膜(30)铺设在所述磁光薄膜(20) 上。
其中, 所述平面光波回路(10) 包括包层、 芯层和衬底三层, 所述芯层位 于所述包层和所述衬底中间, 所述芯层为所述光信号的传输通道。
作为一种实施方式,所述具有磁场的金属薄膜(30)为铁磁金属薄膜(301 )。 作为一种实施方式, 所述具有磁场的金属薄膜(30)为金属薄膜(302)和 恒磁薄膜(304)组成, 所述金属薄膜(302)铺设于所述磁光薄膜(20)上, 所述恒磁薄膜(304)铺设在所述金属薄膜(302)上。
其中, 所述金属薄膜(302)的组成材料包括: 金、 银和铜中的一种或多种。 作为一种实施方式, 所述平面光波回路(10) 由二氧化硅组成。
作为一种实施方式, 所述平面光波回路 ( 10 ) 的组成材料包括铌酸锂
(LiNb03)、 III-V族半导体化合物、 绝缘体上的硅、 氮氧化硅 (SiON)、 高分子聚 合物中的一种或者多种。
其中 , 所述 III-V族半导体化合物包括 InP和 GaAs中的一种或多种。
作为一种实施方式, 所述光信号的传输通道中设置有介质光栅。
具体的, 所述芯层中设置有介质光栅。 本发明实施提供的光隔离器,能使得正向传输的光信号在 PLC中顺利传输; 而反向传输的光信号无法在 PLC中传输, 从而实现了隔离光的作用。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明实施例提供的一种光隔离器的结构示意图。 图 2为本发明实施例提供的一种光隔离器的结构示意图。 图 3为本发明实施例提供的一种光隔离器的结构示意图。 图 4为本发明实施例提供的一种光隔离器的结构示意图。 图 5为本发明实施例提供的一种光隔离器的结构示意图。 具体实施例
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明一个实施例提供一种光隔离器, 如图 1所示, 包括 PLC 10、 磁光薄 膜 20以及具有磁场的金属薄膜 30。 其中, PLC10中设置有光信号的传输通道, 磁光薄膜 20铺设在 PLC10上,磁光薄膜 20所在平面与 PLC10中的光信号的传 输通道平行。 具有磁场的金属薄膜 30铺设在磁光薄膜 20上。
PLC 10的组成材料可以是二氧化硅, 也可以是由铌酸锂 (LiNb03)、 III-V族
半导体化合物、 绝缘体上的硅、 氮氧化硅 (SiON)、 高分子聚合物中的一种或者 多种组成。 其中, III-V族半导体化合物可以包括 InP和 GaAs中的一种或多种。 PLC 10的组成材料非常广泛, 上述仅仅是列举了几种常用的组成材料。
作为一种实施方式, PLC10包括包层、 芯层和衬层三层, 如图 2所示, 其 中芯层夹在包层和衬层之间, 用于传输光信号, 属于光信号的传输通道。
为了传输不同波长的光信号, 一种实施方式可以是通过设置包层、 芯层和 衬层中的一层或者多层的厚度来实现。 当然, 随着 PLC10的制作材料不同, 各 层的厚度也会有所不同。 作为举例, 比如要传输 1550nm 波段的光信号, 如果 PLC 10由二氧化硅组成, 则可以把芯层的厚度设置成约 4〜8微米, 衬底的厚度 设置成约 12 μ m, 包层的厚度设置成约 19 μ m等。
本实施例中, 磁光薄膜 20可以是一种能产生磁光效应的介质, 组成材料可 以是石榴石等。 具有磁场的金属薄膜 30可以有多种实现方式, 作为一种实施方 式, 可以是是铁磁金属薄膜, 如图 3所示, 铁磁金属薄膜 301作为一种可以产 生磁场的金属薄膜铺设在磁光薄膜 20上。
作为另一种实施方式, 具有磁场的金属薄膜 30还可以是由金属薄膜 302和 恒磁薄膜 304组成。 如图 4所示, 金属薄膜 302铺设在磁光薄膜 20上, 恒磁薄 膜 304铺设在金属薄膜 302上。
其中金属薄膜 302 的组成材料可以是金、 银和铜中的一种或多种, 当然也 可以是其他金属。
当具有磁场的金属薄膜 30为铁磁金属薄膜 301时, 铁磁金属薄膜 301表面 有着密度很高且分布均匀的自由电子, 这些自由电子在受到电场激发时, 会依 电场方向以不均匀的密度分布。 也就是说这些自由电子在受到电场激发时, 会 生成瞬间的诱导式电偶极。 而诱导式电偶极在以某一特定频率进行集体式的电 偶极振荡时, 会形成 SPP ( Surface Plasmon Polariton, 表面等离子体振子) 。 根 据 Maxwell理论, 作为光信号的 TM ( Transverse Magnetic, 横磁波)可以沿着
金属的表面传输, 而同样作为光信号的 TE ( Transverse Electric, 横电波) 不可 以。 由于 SP ( Surface Plasmon, 表面等离子 )效应, 本实施例中的 PLC10允许 TM通过。 通过调整铁磁金属薄膜 301的参数, 当前向 TM与 SPP模匹配时, 两 者会在 PLC10中相互转化, 从而向前传输。 对于反向 TM, 由于偏振非互易性, 金属的介电常数改变, 反向 TM 和 SPP模的匹配条件被破坏, 从而不能进入 PLC10, 从而达到光隔离的目的。
当具有磁场的金属薄膜 30由金属薄膜 302和恒磁薄膜 304组成时, 正向传 输的 TM在 PLC10中传输时, 穿过磁光薄膜 20在金属薄膜 302表面激发出 SP 效应。 从而在 PLC 10中, TM和 SPP模和之间相互转化 , 从而顺利通过 PLC 10。 而反向的 TM由于磁光薄膜 20的偏振非互易性,反向 TM和 SPP模之间不能相 互转化, 从而不能通过 PLC10。
本实施例提供的光隔离器, 在 TM正向传输时, TM和 SPP模相互转化, 在 PLC中顺利传输; 反向传输时, 两种模式不能相互转化而导致反向 TM无法在 PLC中传输, 从而实现了隔离光的作用。
为了进一步降低光隔离器的插入损耗, 进一步提高光隔离器的隔离度 , 还 可以在上面提供的光隔离器中添加介质光栅, 介质光栅可以设置在 PLC10的光 信号的传输通道中, 具体可以是设置在 PLC10的芯层中, 由于在光隔离器中设 置了介质光栅, 不仅仅可以对 TM进行隔离, 还可以对 TE进行隔离。 如图 5所 示。
当正向传输的 TM经过介质光栅 50时, 由于介质光栅 50破坏了 SPP模和 TM的匹配, 因此, 更多的 TM会转化为 SPP模, 越过介质光栅 50后再转化为 TM, 并进入 PLC10的芯层中传输, 从而可以进一步降低插入损耗。 对于反射的 TM, 由于偏振非互易性, 金属薄膜 30 (图 3中的铁磁金属薄膜 301或者图 4中 的金属薄膜 302 )的介电常数发生改变, SPP模和 TM的匹配条件被破坏, 反向 TM不能进入 PLC10。 即使有少量反向的 TM和 TE进入 PLC 10中,也会被介质
光栅 50反射掉, 从而可以进一步提高了光隔离器的隔离度。 本实施例提供的光隔离器, 通过在光信号的传输通道中添加介质光栅, 可 以进一步降低光隔离器的插入损耗, 从而进一步提高光隔离器的隔离度 。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内, 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。
Claims
1、 一种光隔离器, 其特征在于, 包括平面光波回路( 10)、 磁光薄膜(20) 以及具有磁场的金属薄膜(30);
所述平面光波回路(10) 中设置有光信号的传输通道; 所述磁光薄膜(20) 铺设在所述平面光波回路(10)上, 所述磁光薄膜(20) 所在平面与所述光信 号的传输通道平行; 所述具有磁场的金属薄膜(30)铺设在所述磁光薄膜(20) 上。
2、根据权利要求 1所述的光隔离器, 其特征在于, 所述平面光波回路(10) 包括包层、 芯层和衬底三层, 所述芯层位于所述包层和所述衬底中间, 所述芯 层为所述光信号的传输通道。
3、 根据权利要求 1或 2所述的光隔离器, 其特征在于, 所述具有磁场的金 属薄膜(30) 为铁磁金属薄膜(301)。
4、 根据权利要求 1或 2所述的光隔离器, 其特征在于, 所述具有磁场的金 属薄膜 ( 30 )为金属薄膜 ( 302 )和恒磁薄膜 ( 304 )组成, 所述金属薄膜 ( 302 ) 铺设于所述磁光薄膜( 20 )上, 所述恒磁薄膜 ( 304 )铺设在所述金属薄膜 ( 302 ) 上。
5、 根据权利要求 4所述的光隔离器, 其特征在于, 所述金属薄膜(302) 的组成材料包括: 金、 银和铜中的一种或多种。
6、 根据权利要求 1或 2所述的光隔离器, 其特征在于, 所述平面光波回路 ( 10) 由二氧化硅组成。
7、 根据权利要求 1或 2所述的光隔离器, 其特征在于, 所述平面光波回路
( 10 )的组成材料包括铌酸锂 (LiNb03)、 III-V族半导体化合物、 绝缘体上的硅、 氮氧化硅 (SiON)、 高分子聚合物中的一种或者多种。
8、 根据权利要求 7所述的光隔离器, 其特征在于, 所述 III-V族半导体化 合物包括 InP和 GaAs中的一种或多种。
9、 根据权利要求 1所述的光隔离器, 其特征在于, 所述光信号的传输通道 中设置有介质光栅。
10、 根据权利要求 2所述的光隔离器, 其特征在于, 所述芯层中设置有介 质光栅。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380005828.XA CN104541197B (zh) | 2013-08-19 | 2013-08-19 | 光隔离器 |
EP13891714.1A EP3001241B1 (en) | 2013-08-19 | 2013-08-19 | Optoisolator |
PCT/CN2013/081774 WO2015024162A1 (zh) | 2013-08-19 | 2013-08-19 | 光隔离器 |
JP2016524653A JP2016523393A (ja) | 2013-08-19 | 2013-08-19 | 光アイソレーター |
US15/046,646 US9588361B2 (en) | 2013-08-19 | 2016-02-18 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/081774 WO2015024162A1 (zh) | 2013-08-19 | 2013-08-19 | 光隔离器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/046,646 Continuation US9588361B2 (en) | 2013-08-19 | 2016-02-18 | Optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015024162A1 true WO2015024162A1 (zh) | 2015-02-26 |
Family
ID=52482917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/081774 WO2015024162A1 (zh) | 2013-08-19 | 2013-08-19 | 光隔离器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9588361B2 (zh) |
EP (1) | EP3001241B1 (zh) |
JP (1) | JP2016523393A (zh) |
CN (1) | CN104541197B (zh) |
WO (1) | WO2015024162A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110119007A (zh) * | 2018-02-07 | 2019-08-13 | 华为技术有限公司 | 光隔离器 |
CN111999801A (zh) * | 2019-05-27 | 2020-11-27 | 华为技术有限公司 | 一种plc芯片、tosa、bosa、光模块、以及光网络设备 |
CN112698518A (zh) * | 2021-01-26 | 2021-04-23 | 中国科学院半导体研究所 | 一种铌酸锂纵模光隔离器 |
CN112711146A (zh) * | 2021-01-26 | 2021-04-27 | 中国科学院半导体研究所 | 一种具有波长调谐功能的铌酸锂光隔离器 |
CN112711147A (zh) * | 2021-01-26 | 2021-04-27 | 中国科学院半导体研究所 | 一种与偏振无关的铌酸锂光隔离器 |
CN112764247A (zh) * | 2021-01-26 | 2021-05-07 | 中国科学院半导体研究所 | 一种铌酸锂横模光隔离器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112799240B (zh) * | 2020-12-30 | 2022-09-16 | 广东省科学院半导体研究所 | 磁光器件及其制作方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318878A (zh) * | 2000-03-27 | 2001-10-24 | 日立金属株式会社 | 不可逆电路元件及使用它的无线通信设备 |
US20050089263A1 (en) * | 2002-08-13 | 2005-04-28 | Avanex France | Optical circulator |
CN101672987A (zh) * | 2008-09-12 | 2010-03-17 | 华为技术有限公司 | 光隔离器、光分插复用器和光合束器 |
CN102659070A (zh) * | 2012-05-28 | 2012-09-12 | 西安交通大学 | 一种集成光子芯片及其制备方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419309A (en) * | 1987-07-15 | 1989-01-23 | Ibiden Co Ltd | Thin film waveguide type isolator |
US5408565A (en) * | 1993-02-22 | 1995-04-18 | The Trustees Of Columbia University In The City Of New York | Thin-film magneto-optic polarization rotator |
US5598492A (en) * | 1995-10-10 | 1997-01-28 | Hammer; Jacob M. | Metal-ferromagnetic optical waveguide isolator |
JPH11352345A (ja) * | 1998-06-11 | 1999-12-24 | Mitsubishi Electric Corp | 平面光導波路装置とその製造方法並びに光送受信装置とその製造方法 |
JP2000171650A (ja) * | 1998-12-04 | 2000-06-23 | Mitsubishi Electric Corp | 光導波路とその製造方法、およびこの光導波路を用いた光デバイス |
CN1293763A (zh) * | 1999-01-29 | 2001-05-02 | 株式会社东金 | 包含法拉第旋转器的光隔离器 |
JP3240301B2 (ja) * | 1999-03-10 | 2001-12-17 | 独立行政法人産業技術総合研究所 | 半導体光集積回路 |
JP2002311403A (ja) * | 2001-04-16 | 2002-10-23 | Minebea Co Ltd | ファラデー回転子 |
US7065271B2 (en) * | 2002-10-25 | 2006-06-20 | Intel Corporation | Optical grating coupler |
US7065265B2 (en) * | 2003-05-12 | 2006-06-20 | Photodigm, Inc. | Ferromagnetic-semiconductor composite isolator and method |
US7260281B2 (en) | 2005-03-30 | 2007-08-21 | Intel Corporation | Integratable optical isolator in a Mach-Zehnder interferometer configuration |
CN101356470A (zh) * | 2006-01-10 | 2009-01-28 | 株式会社理光 | 磁光装置 |
WO2007088991A1 (ja) | 2006-01-31 | 2007-08-09 | Tokyo Institute Of Technology | 集積型光アイソレータ |
JP4770506B2 (ja) * | 2006-02-17 | 2011-09-14 | ミツミ電機株式会社 | 導波路型光アイソレータ及び導波路型光アイソレータに用いられる磁石ホルダ |
US20110019957A1 (en) * | 2006-12-06 | 2011-01-27 | St Synergy Limited | Magneto-opto micro-ring resonator and switch |
JP4640370B2 (ja) * | 2007-04-09 | 2011-03-02 | ヤマハ株式会社 | 磁気センサ |
WO2009107194A1 (ja) * | 2008-02-25 | 2009-09-03 | 学校法人芝浦工業大学 | 光非相反素子製造方法 |
US8849072B2 (en) * | 2009-02-13 | 2014-09-30 | Physical Sciences, Inc. | Surface plasmon enhanced optical devices for integrated photonics |
JP2012235003A (ja) * | 2011-05-06 | 2012-11-29 | Hitachi Ltd | 薄膜磁石 |
JP5769238B2 (ja) * | 2011-06-09 | 2015-08-26 | 国立研究開発法人物質・材料研究機構 | 磁気光学材料、磁気光学素子、および磁気光学材料の製造方法 |
FR2981803B1 (fr) * | 2011-10-20 | 2016-01-08 | Alcatel Lucent | Structure optique integree comportant un isolateur optique |
JP5975331B2 (ja) * | 2012-07-04 | 2016-08-23 | 国立研究開発法人産業技術総合研究所 | プラズモニック導波路を用いた光デバイス及び光アイソレーター |
-
2013
- 2013-08-19 EP EP13891714.1A patent/EP3001241B1/en active Active
- 2013-08-19 WO PCT/CN2013/081774 patent/WO2015024162A1/zh active Application Filing
- 2013-08-19 JP JP2016524653A patent/JP2016523393A/ja active Pending
- 2013-08-19 CN CN201380005828.XA patent/CN104541197B/zh active Active
-
2016
- 2016-02-18 US US15/046,646 patent/US9588361B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318878A (zh) * | 2000-03-27 | 2001-10-24 | 日立金属株式会社 | 不可逆电路元件及使用它的无线通信设备 |
US20050089263A1 (en) * | 2002-08-13 | 2005-04-28 | Avanex France | Optical circulator |
CN101672987A (zh) * | 2008-09-12 | 2010-03-17 | 华为技术有限公司 | 光隔离器、光分插复用器和光合束器 |
CN102659070A (zh) * | 2012-05-28 | 2012-09-12 | 西安交通大学 | 一种集成光子芯片及其制备方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110119007A (zh) * | 2018-02-07 | 2019-08-13 | 华为技术有限公司 | 光隔离器 |
CN110119007B (zh) * | 2018-02-07 | 2020-09-08 | 华为技术有限公司 | 光隔离器 |
CN111999801A (zh) * | 2019-05-27 | 2020-11-27 | 华为技术有限公司 | 一种plc芯片、tosa、bosa、光模块、以及光网络设备 |
WO2020238279A1 (zh) * | 2019-05-27 | 2020-12-03 | 华为技术有限公司 | 一种plc芯片、tosa、bosa、光模块、以及光网络设备 |
CN112698518A (zh) * | 2021-01-26 | 2021-04-23 | 中国科学院半导体研究所 | 一种铌酸锂纵模光隔离器 |
CN112711146A (zh) * | 2021-01-26 | 2021-04-27 | 中国科学院半导体研究所 | 一种具有波长调谐功能的铌酸锂光隔离器 |
CN112711147A (zh) * | 2021-01-26 | 2021-04-27 | 中国科学院半导体研究所 | 一种与偏振无关的铌酸锂光隔离器 |
CN112764247A (zh) * | 2021-01-26 | 2021-05-07 | 中国科学院半导体研究所 | 一种铌酸锂横模光隔离器 |
CN112711147B (zh) * | 2021-01-26 | 2023-02-17 | 中国科学院半导体研究所 | 一种与偏振无关的铌酸锂光隔离器 |
Also Published As
Publication number | Publication date |
---|---|
EP3001241A4 (en) | 2016-04-27 |
EP3001241A1 (en) | 2016-03-30 |
CN104541197B (zh) | 2018-05-29 |
JP2016523393A (ja) | 2016-08-08 |
CN104541197A (zh) | 2015-04-22 |
US9588361B2 (en) | 2017-03-07 |
EP3001241B1 (en) | 2018-05-23 |
US20160161772A1 (en) | 2016-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015024162A1 (zh) | 光隔离器 | |
US8396337B2 (en) | Ring resonator based optical isolator and circulator | |
JP3054707B1 (ja) | 光アイソレ―タ | |
KR101067137B1 (ko) | 집적된 변조기 어레이 및 하이브리드 결합된 다중 파장 레이저 어레이를 갖는 송신기-수신기 | |
US9647426B1 (en) | Polarization insensitive colorless optical devices | |
JP2004503816A (ja) | マイクロささやき回廊モード共振器における直接電気光変換及び光変調 | |
CN104280823B (zh) | 一种基于波导结构的新型光隔离器 | |
TW200533966A (en) | Method and apparatus for modulating an optical beam in an optical device with a photonic crystal lattice | |
Zayets et al. | Complete magneto-optical waveguide mode conversion in Cd 1− x Mn x Te waveguide on GaAs substrate | |
Wang et al. | Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity | |
JP2016523393A5 (zh) | ||
JP2016156933A (ja) | 光集積回路および製造方法 | |
KR20180062120A (ko) | 흑린을 이용하는 초고속 광 스위칭 장치 | |
KR101550502B1 (ko) | 편광 모드 제어 기능을 이용한 평면 도파로 집적형 광 아이솔레이터 및 서큘레이터 | |
JPH11330503A (ja) | 信号処理の光電子工学方法、その実施装置と用途 | |
US7787176B2 (en) | On-chip optical amplifier | |
KR20110087509A (ko) | 표면 플라즈몬 공명 현상을 이용한 전광 논리소자 및 광변조기 | |
US20220173572A1 (en) | Optical system and method for locking a wavelength of a tunable laser | |
US10067363B2 (en) | Polarizer and polarization modulation system | |
Pintus et al. | Integrated optical isolator and circulator in silicon photonics | |
Davenport et al. | Heterogeneous photonic integration by direct wafer bonding | |
Demkov et al. | Ferroelectric BaTiO 3 for electro-optic modulators in Si photonics | |
Sorianello et al. | Optical delay inverse weight compensation with graphene electro absorption modulators | |
Moss | Design of microring resonators integrated with 2D graphene oxide films for FWM | |
JP2971419B2 (ja) | 光スイッチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13891714 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013891714 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016524653 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |