WO2015024139A1 - 离心式伞喷喷油嘴 - Google Patents

离心式伞喷喷油嘴 Download PDF

Info

Publication number
WO2015024139A1
WO2015024139A1 PCT/CN2013/000964 CN2013000964W WO2015024139A1 WO 2015024139 A1 WO2015024139 A1 WO 2015024139A1 CN 2013000964 W CN2013000964 W CN 2013000964W WO 2015024139 A1 WO2015024139 A1 WO 2015024139A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
nozzle
spray
oil
hole
Prior art date
Application number
PCT/CN2013/000964
Other languages
English (en)
French (fr)
Inventor
王抗美
Original Assignee
Wang Kangmei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Kangmei filed Critical Wang Kangmei
Priority to US14/910,666 priority Critical patent/US10006427B2/en
Priority to PCT/CN2013/000964 priority patent/WO2015024139A1/zh
Publication of WO2015024139A1 publication Critical patent/WO2015024139A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/06Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being furnished at seated ends with pintle or plug shaped extensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/04Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means

Definitions

  • the invention relates to a reciprocating internal combustion engine, a new fuel atomization method and a spray automatic opening and closing control structure for a turbine and a turboshaft engine, and is a centrifugal umbrella spray nozzle.
  • the injector is a key component of the internal combustion engine organization and control of the combustion process.
  • the known diesel injectors are divided into a shaft type and a hole type.
  • the shaft needle type injector is used for the non-direct injection type combustion chamber, which can ensure the smooth flow of the nozzle hole, but the oil line sprayed is coarse and the atomization effect is not as good as that of the hole type, and has been gradually replaced by the hole type fuel injector.
  • the hole type injector is used for the direct injection type combustion chamber.
  • the atomization quality is better than the shaft type. However, due to the small diameter of the nozzle hole, it is easy to block during use, and the fuel quality is high.
  • the hole type injector is a liquid column type injection, and several fixed nozzle holes emit a relatively large dead angle of the oil bundle and a high penetration degree, and the problem of the spray wall (wet wall) is difficult to overcome, fuel distribution and spray particles.
  • the diameter is not uniform, the fuel can not be fully vaporized and evenly burned, which is difficult to achieve high-quality compression ignition and low-temperature combustion on the direct injection diesel engine.
  • the HCCI combustion process is primarily controlled by the chemical kinetics of the mixture, but the method of rapid formation of the mixture is mandatory. Therefore, the current HCCI fuel atomization method for typical gasoline engines and diesel engines generally adopts direct injection in the cylinder.
  • the control of the mixture is a dynamic control, even in static, the fuel particles in the premixed mixture are more affected by gravity due to the mass than the gas molecules, and naturally settle and adsorb. The mass of the oil droplets is much larger than the mass of the gas molecules.
  • Airway heating, increasing the temperature in the cylinder and promoting the evaporation of the oil droplets will result in low temperature and cold start performance of the internal combustion engine, and the mixing rate and combustion rate are significantly reduced.
  • Theoretical analysis and extensive experiments have shown that the time required for the oil droplet to burn out is proportional to the square of its diameter. Excessive difference in spray particle size can also seriously affect the burning rate and temperature non-uniformity.
  • It is an oil jet (liquid column) jet that is passively atomized rather than actively atomized.
  • the oil column type injection of high-pressure fuel concentrates the kinetic energy penetration on several oil bundles.
  • the combustion of a conventional diesel engine is a "diffusion combustion under a theoretical equivalent ratio.”
  • the combustion flame temperature at the theoretical equivalent ratio is the highest, up to 2700K, which is accompanied by the maximum nitrogen oxide (NOx) generation rate. Therefore, the current traditional oil column injection method must be changed to achieve an advanced gas mixture control strategy.
  • HCCI has a tendency to burn quickly, and is extremely sensitive to the temperature of the mixture. It is prone to cyclic fluctuations and is therefore difficult to control. It is currently limited to low-load, medium- and low-speed operation areas, and cannot be used in high compression ratio, high speed, and high load conditions. Practical. Therefore, it is necessary to improve the robustness of HCCI combustion by changing the injection mode and atomization method of the fuel, and to prevent cyclic fluctuations in which knocking and misfire occur alternately.
  • HCCI combustion has some similar common problems, mainly fire timing and combustion rate control issues. Due to these problems, HCCI combustion is still difficult to operate on a wide range of speeds and load conditions. The control is not good, and even the fuel consumption is deteriorating. It is unable to meet the national IV (Euro IV) and above emission regulations.
  • Euro IV national IV
  • HCCI combustion feedback controls such as cylinder pressure sensors, ion current sensors, crankshaft acceleration signals, and knock sensors have been explored, but all have different degrees of problems.
  • due to the complexity of the spray time and the precise ignition electronic control system and the high cost it may increase the difficulty of industrialization of the HCCI engine. Therefore, there is a need for a mandatory precision ignition control method and a reliable, low-cost solution.
  • centrifugal injectors Unlike the bore and pin needle injectors used in reciprocating internal combustion engines, the currently known turbine and turboshaft engines use an open centrifugal injector or a centrifugal oil pan. There are no devices inside the centrifugal injector and the centrifugal oil pan that can directly close the orifice, so the orifice is always open.
  • the structure of the centrifugal injector has a simple centrifugal injector, a double-lubricating double-nozzle centrifugal injector and a dual-oil single-nozzle centrifugal injector.
  • Centrifugal injectors generally have good atomization properties and have a large spray cone angle.
  • the hollow hollow umbrella mist in the middle is easily matched with the flow field of the air in the combustion chamber.
  • the simple centrifugal injector has a narrow range of fuel flow adjustment at the highest injection pressure drop. Due to the size of the tangential hole It is constant, so when the fuel injection amount is reduced, the speed of the fuel flowing in the swirl chamber will inevitably decrease significantly. This will cause the tangential speed of the fuel to leave the nozzle to be greatly reduced, resulting in a serious deterioration of the atomization quality. .
  • the double-lubricating double-nozzle centrifugal injector is essentially a combination of two simple centrifugal injectors that are independent of each other, so that the fuel flow can be adjusted in a range comparable to a simple injector. The flow can be adjusted to a much larger range.
  • the disadvantage is that when the second main oil circuit is just put into operation, the spray quality is deteriorated in a short time due to the low initial injection pressure.
  • (3) The advantage of the double-injection single-nozzle centrifugal injector is that the fuel flow can be adjusted in a wide range.
  • the disadvantage is that the two oil passages interfere with each other. Due to the back pressure, the second-stage main oil passage When put in, the rotation speed of the oil flow in the swirl chamber is slowed down, which seriously deteriorates the atomization quality of the fuel.
  • centrifugal injectors can expand the adjustable range of fuel flow to a certain extent, and can properly improve the quality of injection atomization under low load conditions, when the second oil circuit is just put into operation The quality of the spray will always deteriorate significantly, and the amount of fuel injected will also instantaneously jump. At the same time, due to the limitation of the range of fuel injection pressure, the adjustable range of fuel flow is still not likely to be made very large.
  • the injection and closing of such centrifugal injectors is achieved by the starting and stopping of the fuel pump. There is one or two oil supply pipes from the oil pump to the fuel injector.
  • the injection pressure of the initial atomization pressure drop is lower than the critical value, so the initial moment of the injection is too low, and the fuel pressure does not reach the rated pressure value, the centrifugal injector has started to spray, resulting in atomization. And the combustion effect is not good, causing exhaust smoke, slow start response and other issues.
  • the carbon particles and the trace amounts of metal salts of the main components increase the carbon deposit of the flame tube, the combustor casing, and the turbine blades, thereby reducing the work efficiency.
  • the carbon deposits will insulate the flame tube, the combustor casing, and the metal surface of the turbine blade from the cold air, causing local overheating over a large area, resulting in local thermal stress phenomena, warpage, deformation, and cracks.
  • the carbon deposit will also block some of the injectors, so that the temperature field unevenness before the turbine increases when the engine is used, and the flame direction is not parallel to the combustion chamber axis, which causes the combustion process of the combustion chamber to be destroyed, resulting in turbine guide vanes and work. Blade burns, causing an accident.
  • the injector When the injector is mostly blocked, it will cause the engine to stall or stop automatically, which will endanger the safety of the aircraft.
  • Some turboshaft engines are supplied with a centrifugal oil pan.
  • the centrifugal oil pan ensures that the sprayed fuel is fully atomized, simple in construction, light in weight and easy to maintain.
  • the oil injection hole is likely to form carbon deposits along the deposit, causing partial blockage of the oil hole, causing a decrease in oil supply and a corresponding decrease in engine power.
  • the engine oscillates at the ground speed, or does not reach the normal maximum speed; in flight, when the pitch is increased or decreased instantaneously, The engine can not quickly return to a constant speed. When the throttle is added or removed, the engine will pulsate and cause the body to shake.
  • Public (announcement) number: CN1818372 is an umbrella spray nozzle with a needle valve head cover.
  • the fuel injection method of the patented technical solution is completed by high pressure fuel striking the needle valve head, and this simple impact jet is performed. Some of the fuel will be splashed back inside the protective cover, the oil particles will be combined, the kinetic energy loss will be large, the spray penetration will be low, and the combustion will deteriorate under high load conditions.
  • Public (announcement) No.: CN201092922 is a vortex umbrella spray nozzle.
  • the high-pressure fuel in the patented technical solution is to enter the symmetrical tangential direction along the wall of the pit through the annular gap of the nozzle and the outer circle.
  • the oil groove forms a vortex in the plane pit and is sprayed through the nozzle hole at the front end of the nozzle.
  • the fuel flow has many turning points, large resistance and weak vortex capacity. There is no self-cleaning function in the flat pit, and there is too much residual fuel. It is easy to form carbon deposits in a high temperature environment and cannot be removed.
  • the middle hole of the nozzle has an interference fit with the outer circle. Due to the inconsistent expansion coefficient, the middle hole of the nozzle is easy to loosen and fall off under high temperature and high pressure environment.
  • Publication (Announcement) No.: CN2173311 is a liquid spray atomizing nozzle.
  • the spiral groove has a long fuel passage, a shallow depth, and a large fuel flow and injection resistance.
  • Public (announcement) number: CN1204747 is a return-oil type mechanical atomizing nozzle. This technical solution has no needle valve, can not control timing injection, and therefore cannot be used on reciprocating internal combustion engine; and because its nozzle hole is open type Can not be directly shut down, used on turbine and turboshaft engines, gas turbines, still can not solve the fuel leakage of the fuel supply pipeline after shutdown, resulting in low initial fuel pressure, affecting atomization combustion effect, exhaust smoke, start The response is slow, and it is easy to form problems such as carbon deposition.
  • CN101368740 is a closed-pulse centrifugal injector. This patented technical solution may increase the thickness of the nozzle when the circulating fuel injection volume of the high-power heavy-duty engine is large, which may cause the oil film to become thicker. Atomization quality.
  • the present invention hopes to find a new way through the technical reorganization and functional innovation, and designs and develops a centrifugal umbrella spray nozzle.
  • the main technical features are: setting a needle valve in the centrifugal injector (5 ), the needle valve (5) is provided with a throttle guiding cone (13).
  • the oil inlet passages (3) and (6), the pressure chamber (8), the tangential hole (9), the swirl chamber (10), the spray hole (11), and the spout (12) are integrated.
  • the technical features of the technical solution are related to each other and support each other, and new functions and technical effects are obtained, which overcome the shortcomings and deficiencies in the prior art, and respectively solve the reciprocating internal combustion engine and the turbine and turboshaft engine injectors. There are problems.
  • the object of the present invention is to provide a new fuel atomization method and structural design for a reciprocating internal combustion engine by using a centrifugal umbrella spray technology, which converts the direct penetration force of the injection into a rotational force, and the fuel liquid.
  • the splitting of the column is changed to liquid film splitting.
  • the nozzle hole (11) is no longer a few isolated oil bundles, nor is it an oil mist generated by collision, but a core without a dense oil bundle and a controlled distance.
  • Rotating umbrella-shaped atomized oil film Under the same injection pressure conditions, the average particle size of the spray particle size, the average particle size of the Sauter and the particle size distribution are better than the oil column injection of the hole type and the shaft needle type injector, which can increase the oil and gas combination.
  • the rotating umbrella-shaped oil film spray guiding method adopted in this patent is not to inject oil during the intake process, but to inject oil when the compression stroke is close to the top dead center, and to guide the wall and guide the airflow.
  • the pre-mixed combustion and low-temperature premixed combustion fuel passive atomization method is different.
  • spark plug assisted ignition can be used to solve the fire reliability.
  • the high-speed rotation of the umbrella-shaped oil film atomization method solves the problem of controlling HC (homogeneous mixture).
  • This patent adopts high-pressure centrifugal injection (the effect is better than more dense nozzles or similarly leaner GDI gasoline engines relying on the extrusion and collision jet nozzles), pulsating needle width control spray time and ignition time (do not use any
  • the technical solution and fuel injection strategy of feedback control superior to the complexity of the electronic control system and high cost
  • to achieve HCCS combustion process achieve homogeneous compression ignition, strengthen the whole process of combustion, avoid spray collision (wet wall) ), Precise control of spray time and ignition timing, ensuring combustion stability, and expanding HCCI operating areas provide a reliable, low-cost solution.
  • this technical solution provides a control structure and method for expanding the fuel flow range of the turbine and turboshaft engine centrifugal injectors, which can automatically open and close the nozzles directly, and solve the current open centrifugal type.
  • the adjustable range of the fuel flow of the injector is small, the nozzle can not be directly closed, the fuel is leaked after the shutdown, the fuel injection pressure is low at the initial start, affecting the atomization combustion effect, the exhaust fumes, the starting response is slow, and the carbon deposition is increased. Easy to block the problem.
  • the object of the present invention is achieved by: a needle valve (5) located in the nozzle needle body (1), reciprocatingly sliding under the change of the fuel pressure of the oil pump, the needle valve (5) seat surface (16) and the swirl chamber (10) Seat (17) Coupling, pulsating directly opens and closes the nozzle hole (11) and nozzle (12) at the center front end of the swirl chamber (10) to ensure timely injection.
  • a needle valve (5) located in the nozzle needle body (1), reciprocatingly sliding under the change of the fuel pressure of the oil pump, the needle valve (5) seat surface (16) and the swirl chamber (10)
  • Seat (17) Coupling, pulsating directly opens and closes the nozzle hole (11) and nozzle (12) at the center front end of the swirl chamber (10) to ensure timely injection.
  • the oil flow is ejected from the nozzle (12) under the action of tangential centrifugal force to form a high-speed rotating umbrella-shaped atomized oil film, which is quickly split into fuel particles under the action of external force (airflow motion and reaction force of the combustion chamber). , the formation of oil and gas mixture.
  • the needle valve (5) seat surface (16) closes the tangential hole (9), the swirl chamber (10), and the spray hole (11), and cleans the carbon deposit and prevents the blockage. Self-cleaning effect.
  • the fuel injection starts, as the needle width (5) rises upward, the cross-sectional area of the tangential hole (9) is gradually opened, and the fuel injection amount is gradually increased.
  • the oil supply pressure is constant, the circulating fuel injection amount is reduced, and the lift and duration of the needle lift (14) is shortened under the restriction of the injector pressure spring.
  • the needle valve (5) The elevation and duration of the lift of the seat (16) is also shortened.
  • the cross-sectional area of the tangential hole (9) and the volume of the swirl chamber (10) are reduced, and the fuel enters the inlet of the swirl chamber (10). The speed increases, the rotation is more intense, and the tangential velocity at the exit of the orifice (11) also increases.
  • the cross-sectional area of the tangential hole (9) and the reduction of the volume of the swirl chamber (10) increase the fuel flow resistance in the oil supply pipe, and the fuel volume is instantaneously compressed, and the injection pressure is increased.
  • the fuel will still have sufficient tangential velocity and swirl strength as it exits the orifice (11) and orifice (12) through the swirl chamber (10).
  • the injection pressure drops, the discharge speed of the oil decreases, and the negative pressure inside the oil mist decreases, so that the tendency of the oil mist to contract toward the center is reduced, so that the atomization angle is slightly increased.
  • the invention has a tangential penetration of the fuel leaving the orifice (11) and the orifice (12) due to a change in the atomization method.
  • Force and rotational force, turbulent pulsation in the oil flow, sucking effect on the air flow is stronger than when it is not rotating, so it is more compact than the currently known shaft pin, hole type and umbrella spray type nozzle *6
  • the atomization quality of the force collision jet is better.
  • the ray formed by the fuel is distributed 360° around the bottom of the hollow atomizing cone. In fact, one or several fixed directions that can be achieved by the pin and hole nozzles are limited. The oil bundle is cracked and broken down into countless finer fuel rays.
  • the front portion of the throttle guiding cone (13) is a gas vortex. Due to its large equivalent orifice area, the frictional force of fuel injection and the release of surface tension and cohesive force are reduced, and the flow rate of the same time is increased to accelerate the fuel ray speed, particle fineness, uniformity, and homogeneity. Better, so there is no need to significantly increase the pressure of the currently matched fuel injection pump.
  • the same amount of fuel injection, increasing the fuel injection rate helps to increase the absolute time of the formation of the mixture, which can speed up the combustion rate and end the combustion, provide more time for the gas expansion process, reduce fuel consumption, and exhaust end temperature.
  • the umbrella oil film of the present invention is not ejected by the extrusion and collision guiding cone like the umbrella spray nozzle, but is tangentially rotated and freely ejected, avoiding collision with the guide cone and oil beam splashing, the oil bundle
  • the kinetic energy loss of the oil particles is small, and the penetration rate is not too high because of the large windward area.
  • the lead angle (21) can influence and control the rotating hollow oil film atomization cone angle (22).
  • the diameter of the spout (12) can be adjusted to adjust the thickness of the oil film.
  • the cross-sectional area can be adjusted by increasing or decreasing the diameter of the outer circumference and the inner circumference of the circular section (20), increasing or decreasing the cross-sectional area of the circular section (20), and adjusting the control orifice (11) and the nozzle (12)
  • the amount of circulating fuel can also control the spray thickness of the oil film.
  • the rotating umbrella oil film compensates for the dead angle between several oil jets, increases the distribution space and uniformity of the fuel, increases the oil and gas contact area on a large scale, avoids the local over-concentration zone, and accelerates the suction.
  • the heat and gasification process makes the reaction time of the mixture sufficient.
  • the amount of fuel for heat absorption of the gasification increases, thereby prolonging the negative value of the heat release rate curve before ignition.
  • the ignition period (stagnation period) and the start of the rapid combustion period are postponed.
  • the fuel that is subsequently ejected still maintains the state of the umbrella-shaped atomized oil film rotating at a high speed, and the homogeneous distribution characteristics are stable, almost simultaneously with the rapid burning period, improving the premixed combustion stage and diffusion combustion.
  • Stage heterogeneity Characteristics avoiding the high heat release rate of the oil column spray ⁇
  • the oil mixture at the root of the oil beam is too rich and oxygen-poor, mainly relying on the high temperature during the fire period and the fast burning period to evaporate and atomize.
  • the problem of producing a large amount of NOx, soot and PM makes the oil droplets burn more fully and completely, improves the thermal efficiency and economic performance of the engine, and reduces pollution emissions.
  • the post-combustion period and the exothermic duration are shortened, which is beneficial to reduce combustion noise and vibration, reduce the burning severity, and improve and avoid the "double peak" phenomenon unique to diesel combustion.
  • the present invention provides a new structure and a new method for expanding the fuel flow adjustable range for turbine and turboshaft engine centrifugal injectors. Since the invention can directly open and close the injection hole directly, it also solves that when the turbine and the turboshaft engine are stopped, the fuel in the oil supply pipe and the fuel injection nozzle is automatically discharged through the injection hole, and when it is restarted, it appears.
  • the injection pressure at the initial atomization pressure drop is lower than the critical value, the fuel pressure at the initial injection is too low, affecting the atomization combustion effect, the exhaust smoke, and the slow start response, improving the starting sensitivity of the engine and shortening the engine start. Time reduces the carbon deposit of the flame tube, the combustion chamber casing and the turbine blades, prevents the nozzle from being blocked, and improves the safety and working efficiency of the aircraft.
  • the oil supply can be reliably and effectively opened and closed, so that after each injection, the injection hole (11) Residual fuel between the needle valve (5) and the needle valve (5) is minimized.
  • Needle valve (5) Throttle guiding cone (13) of the head (10)
  • the transitional arc surface (18) at the position of the orifice (10) and the transitional arc surface (19) of the orifice (10) of the bushing (10) are avoided.
  • the tangential hole (9), the tangentially rotating oil beam of the swirl chamber (10) collide with the throttle guiding cone (13), and play a role of guiding the oil flow to smoothly transition and accelerate the tangential rotation.
  • Annular section (20) The outer diameter of the transitional guide cone (13) and the corresponding outer diameter of the bushing (4) of the transitional arc surface (19) (11) The adjustment of the area plays a role in controlling the amount of fuel injected in the cycle.
  • the nozzle diameter (15) controls the spray thickness of the oil film.
  • Throttle guide cone (13) The spray guide angle (21) at the nozzle (12) position adjusts the rotating spray cone angle (22).
  • the injectors for reciprocating internal combustion engines and turbine and turboshaft engines are precision control devices that operate in high-speed, high-temperature, high-pressure environments. Small differences can lead to large differences in unit operating quality and energy savings.
  • the inside of the injector is closed under the condition of ultra-high pressure and ultra-short pulse fuel injection, which may affect the atomization quality, oil leakage, and oil flow path, and solve the oil inlet (3) and 6), between the pressure chamber (8), the tangential hole (9), the swirl chamber (10), the needle valve (5) and the bushing (4), the needle valve body (1) and the lining
  • the invention provides a new mixed gas organization and control method and an automatic injection opening and closing control structure for the HCCI combustion of the reciprocating internal combustion engine; meanwhile, it provides an expanded fuel flow for the turbine and turboshaft engine centrifugal injectors. Adjust the range and structure and method that can directly open and close the nozzle hole, prevent fuel leakage, improve starting sensitivity and atomization quality, and avoid blockage of nozzle carbon deposit.
  • Figure 1 is a cross-sectional structural view of a centrifugal umbrella spray nozzle coupler.
  • the needle valve (5) is in the open position of the spray atomization state.
  • Figure 2 is a right side view of Figure 1.
  • Figure 3 is a left side view of Figure 1.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 1.
  • Figure 6 is the device bushing (4), needle valve (5), tangential hole (9), swirl chamber (10), nozzle hole (11), spout (12), throttle guiding cone (13) , a partial enlargement of the needle lift (14) and the nozzle diameter (15).
  • the needle valve (5) is in the open position of the spray atomization state.
  • Figure 7 is a partial enlarged view of the device bushing (4), needle valve (5), tangential hole (9), nozzle hole (11), and throttle guiding cone (13).
  • the needle valve (5) is in the closed position to stop the spray atomization.
  • Figure 8 is the device bushing (4), needle valve (5), tangential hole (9), swirl chamber (10), nozzle hole (11), spout (12), throttle guiding cone (13) , needle valve (5) seat surface (16), swirl chamber (10) seat surface (17), throttle guiding cone (13) transitional arc surface (18) located at the orifice (11), bushing ( 4) A partial enlarged view of the transitional arc surface (19) at the location of the orifice (11).
  • the needle valve (5) is in the open position of the spray atomization state.
  • Figure 9 is the device bushing (4), needle valve (5), tangential hole (9), swirl chamber (10), orifice (11), throttle guiding cone (13), throttle guiding cone A partial enlarged view of the ejection guide angle (21) at the position of the nozzle (12) and the rotating spray cone angle (22).
  • the needle valve (5) is in the open position of the spray atomization state.
  • Figure 10 is a cross-sectional view taken along line C-C of Figure 9.
  • (20) is the transitional arc surface (19) of the bushing (4) at the position of the orifice (11) and the transitional arc surface of the throttle guiding cone (13) at the position of the orifice (11) in the C-C section ( 18) Between the orifice (11) the annular section of the gap.
  • the needle valve (5) is in the open position of the spray atomization state.
  • the device comprises a needle wide body (1), the needle valve body (1) has positioning holes (2) and (7), and the needle valve body (1) has a bushing (4) and a needle valve (5).
  • the bushing (4), the oil inlet passages (3) and (6), the pressure chamber (8), the tangential hole (9), the swirl chamber (10), the injection hole (11), and the spout (12) are integrated.
  • the needle valve (5) has a throttling guide cone (13) at the head. In Figure 1, the needle valve (5) is in the open position of the spray atomization state.
  • the needle valve When the pressure fuel in the oil pump enters the pressure chamber (8) from the oil inlet passages (3) and (6) between the needle valve body (1) and the bushing (4) to reach the rated pressure, the needle valve is pushed on the one hand (5). Move back, open the nozzle hole (11), and enter the tangential hole (9). After the fuel pushed by the tangential force enters the swirl chamber (10), a circular rotation motion is generated, which is sprayed under the action of the tangential centrifugal force.
  • the hole (11) is ejected from the nozzle (12) to form a high-speed rotating umbrella-shaped atomized oil film, and is quickly split into fine oil particles under the action of external force (airflow movement and reaction force in the combustion chamber) to form an oil and gas mixture. gas.
  • the needle valve (5) When the oil pump stops supplying oil, the needle valve (5) is in the injector pressure spring (the injector and the injector are collectively referred to as the injector assembly, and the injector body has an oil inlet, a filter element, a pressure spring, and a pressure. Adjust the gasket, oil inlet, oil return joints and other components. Because it is not a nozzle nozzle, it is not shown in the figure.) Under pressure, as shown in Figure 7, the head seat surface (16) and swirl The chamber (10) seat (17) is fitted with the nozzle hole (11) closed.
  • the bushing (4) and the needle valve body (1) should be slightly interference fit to avoid the inconsistency between the two expansion coefficients in the high temperature and high pressure environment, causing loose oil leakage.
  • the structural size and processing quality of the injector have a great influence on the quality of the atomization, and should be given enough attention. Where the oil flows, such as tangential holes (9), swirl chamber (10), orifices
  • the swirl chamber (10) and the orifice (11) should be concentric, and the tangential hole (9) should be cut into the swirl chamber (10).
  • the main dimensions should not exceed the specified tolerances. range.
  • the number of tangential holes (9) should be more than 2 uniform. Uniform tangential holes (9) The sum of the cross-sectional areas should not be greater than the sum of the cross-sectional areas of the inlets (3) and (6). The number of tangential holes (9) is more appropriate to distribute the fuel evenly along the swirl chamber (10), which is beneficial to obtain better atomization quality. However, the number of tangential holes (9) is too large, causing troubles in processing. Moreover, when there are too many tangential holes (9), the cross-sectional area of each hole is relatively small, and it is easy to block during operation, and the improvement of atomization quality is not large, and generally 3 to 6 are preferable.
  • the length of the tangential hole (9) should not be too short, too short, and the fuel will enter the orifice (11) directly, and the shape will not swirl.
  • the flow characteristics, and participate in the adjustment of the intensity of the control swirl can be matched according to the cycle fuel injection amount of the engine power, the combustion chamber structure, and the gas distribution mode.
  • the tangential hole (9) may be circular or square or elliptical depending on the processing method and needs. Cut The tangential jet angle and swirl direction of the hole (9) clockwise or counterclockwise should be adjusted according to the valve distribution. The horizontal angle of the tangential hole (9) injection should be close to the angle of the needle (5) seat surface (16) to reduce the partial fuel injected by the tangential hole (9) and the needle width (5) seat surface (16) The frontal impact.
  • the fuel has started to crack in the swirl chamber (10) and a very small proportion of the gas is involved in the mixing. Since the fuel passes through the tangential hole (9) and the swirl chamber (10), the injection time should be slightly advanced.
  • the injector should be placed in the center of the combustion chamber as much as possible to carry out the high-speed rotation of the umbrella-shaped oil film spray guide to avoid the "wet wall". Penetration rate 1, to prevent the flame from being “locked” in the center area, resulting in incomplete combustion.
  • the transitional camber (18) of the throttling guide cone (13) is to prevent the tangential swirl of the tangential hole (9) from colliding perpendicularly with the cylinder of the throttling guide cone (13), resulting in a small amount of bounce. If the transitional camber (18) is not used, the length of the orifice (11) should be shortened, but that would result in faster wear of the orifice (11).
  • the upper set of large flow tangential holes (9) is the main spray. At the same time, increase the needle valve (5) lift, and open the upper and lower tangential holes (9) to achieve two injections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

公开了一种离心式伞喷雾化装置,针阀体(1)内的针阀(5)头部有节流导向锥体(13),针阀(5)的座面(16)与旋流室(10)的座面(17)配合从而脉动式直接开闭喷孔(11),压力室(8)与旋流室(10)之间有一组切向孔(9),带有切向力的燃油经过旋流室(10)切向旋转后,从喷口(12)喷出,在燃烧室内形成一个无密实油束核心、具有可控的贯穿距且高速旋转的中空的伞状油膜。上述离心式伞喷雾化装置的燃料流量可调范围大,能自动开闭喷孔,不易形成积碳和堵塞喷孔。

Description

离心式伞喷喷油嘴
本发明涉及往复式内燃发动机及涡轮和涡轮轴发动机一种新的燃油雾化方法和 喷射自动开闭控制结构, 是一种离心式伞喷喷油嘴。
喷油嘴是内燃机组织和控制燃烧过程的关键部件。目前公知的柴油机喷油嘴分为 轴针式、 孔式两种。 轴针式喷油嘴用于非直喷式燃烧室, 能保证喷孔畅通, 但喷射的 油线粗大, 雾化效果不如孔式, 目前已逐渐被孔式喷油嘴取代。孔式喷油嘴用于直喷 式燃烧室, 雾化质量比轴针式好, 但由于喷孔直径小, 使用中容易堵塞, 对燃油品质 要求高。另外,孔式喷油嘴是液柱式喷射,几个固定的喷孔喷出的油束死角相对较大、 贯穿度高, 喷雾撞壁 (湿壁) 的问题难以克服, 燃油分布和喷雾粒径不均匀, 燃油不 能充分气化和均匀燃烧,这是在直喷式柴油机上很难实现高均质压燃和低温燃烧以及
NOx、 碳烟和 PM排放量较高的主要原因。 另外, 还有一种伞喷喷油嘴, 优点是喷油 速率高, 喷雾油粒细而匀, 宏观上喷雾周向分布均匀。 其缺点是: 油束与导向锥体碰 撞后,油粒动能损失过大,导致喷雾贯穿度过低。由于这个原因,在中低负荷工况下, 伞喷燃烧发动机的比油耗、烟度、排气温度低于传统发动机; 在高负荷工况下, 伞喷 燃烧发动机的性能恶化。当油束过多时, 由于碰撞后横向展开面积大, 各油束产生相 互干涉, 在相交处油滴聚结为较大的颗粒, 造成燃烧不充分, 形成碳烟, 后燃严重。
为解决这些问题, 目前普遍采用的方法是:喷孔细小化、增加喷孔数量和喷油高 压化。 这样就带来三个难以解决的问题:
1、 进一步縮小喷孔直径, 有的喷孔直径已縮小到 (D O.OSmm , 甚至更小。 过小的 喷孔更加容易堵塞, 工艺难度和成本增加, 对燃油品质要求更加苛刻。喷孔直径尺寸 的减少受到喷油持续期和贯穿率的限制, 随着转速的提高, 尽管涡流增强了, 但所能 达到的均质化程度却变差了,这是因为混合气形成的绝对时间縮短了。超细喷孔在超 高压喷射条件下, 压力室内存在强烈的高频压力振荡, 喷孔内会存在 "气泡"(空化) 现象, 而这种喷孔内的流态会影响喷孔近场的流态和油滴雾化。
2、 大幅度增加喷孔数量 (有的多达 17个), 会使过多的密集的油线根部燃油相 对较浓, 较远的油线受燃烧室内气流运动影响互相干扰, 并在一些区域内, 能把小油 粒合并, 影响雾化质量, 造成局部燃油过富, 污染排放加重。
3、 喷油超高压化, 受供油系统最大共轨压力的限制, 它本身受零件强度与油泵 驱动能量的限制, 会给供油系统带来复杂性和危险性, 甚至难以承受, 发动机能量的 附加损失也将增加。
为应对日益严峻的环境和能源问题,近年来被认为是能满足未来超低排放、甚至 零排放内燃机最具潜力的 "均质压燃 ( homogeneous charge compres-sion ignition, HCCL ) 低温燃烧 (low temperature combustion, LTC)"新一代内燃机燃烧理论和 技术的研究开始受到重视。 HCCI发动机的燃烧与传统汽油机火花点火和柴油机缸内 喷射直接控制发动机的燃烧过程不同,它是通过压縮缸内的混合气达到自然着火燃烧 的, 是一种着火极限和稳定燃烧极限条件下的燃烧过程。
为创造 HCCI运行所需的条件, 人们采用了许多不同的研究模型和方法, 如: 利 用外部和内部热源提高缸内温度和压力、引入辛烷值特别低的燃料、预混合充气压縮 燃烧、采用可变压縮比和可变气门正时等, 但都存在着一些相似的共性问题, 主要是 着火时刻和燃烧速率难以控制,还不能完全满足 HCCI燃烧在宽广的转速及负荷工况 平面上运 的要求。
因此, 需要研究开发新的燃油喷射技术和雾化方法, 解决实现 HCCI燃烧的三个 问题:
1、 如何实现先进的混合气控制策略
HCCI燃烧过程主要由混合气化学动力学控制, 但混合气快速形成的方法带有强 制性。 因此, 目前典型汽油机、 柴油机 HCCI燃油雾化方法普遍采用了缸内直喷。 在 HCCI稀薄预混合燃烧与低温预混合燃烧的研究中, 人们发现, 完全均质的混合气对 于内燃机是很难实现的, HCCI的燃烧不是也不可能是绝对均匀的。因为混合气的控 制是一种动态控制, 即使在静态中,缸外预混好的混合气中的燃油微粒因质量重于气 体分子,也会受重力影响, 自然沉降、吸附合并。油滴的质量远大于气体分子的质量, 迸入燃烧室后, 在缸内气流运动的作用下, 作不规则的紊流脉动, 运动速度远快于气 体分子。相对运动速度会使油滴和气体分子产生分离。质量较重、加速度较快的油滴 经过相对速度的分离, 会在较远的地方碰撞聚集、 吸附合并, 形成过浓区, 导致热分 层。 质量重、 密度大的油滴进入燃烧室后, 受惯性影响会穿过质量轻、密度小的气体 分子撞在缸壁、 活塞端面上, 如果不加大供油量, 不利用外部热源对迸气道加热, 提 高缸内温度, 促进油滴蒸发, 会导致内燃机低温、 冷启动性能差, 混合速率、 燃烧速 率明显降低。理论分析和大量试验证明,油滴燃烧完所需要的时间和它的直径的平方 成正比。喷雾粒径的差别过大, 也会严重影响燃烧速率和温度的不均匀性。 目前, 不 论是汽油机, 还是柴油机, 进气道喷射和缸内直喷, 一个共同的问题是: 燃油雾化都 是油束式(液柱)喷射, 是被动雾化而不是主动雾化。 高压燃油的油柱式喷射, 动能 的贯穿力集中在几条油束上, 不仅燃油分布不均匀, 喷雾粒径也不均匀, 形成油雾过 浓区、 高温区的弊端无法克服, 不能充分气化, 还极易造成喷雾撞壁 (湿壁), 形成 积碳、 稀释机油。 大量研究证明, 孔式喷油嘴的油柱式喷射方式, 即使在超高压、 超 细喷孔的条件下, 柴油燃料在燃烧室内形成的 "喷雾"也处于贫氧的或 "过浓"的状 态(通常比理论化学当量比浓 4倍),这种高温缺氧的状态正好有利于多环芳烃(PAHs) 生成, 而多环芳烃的生成正是碳烟生成的源头。 传统柴油机的燃烧是一种 "理论当 量比下的扩散燃烧"。 由化学动力学理论可知, 理论当量比下的燃烧火焰温度最高, 可达 2700K, 此时伴随着最大的氮氧化物 (NOx) 生成率。 因此, 必须改变目前传统 的油柱式喷射方式, 才能实现先进的混合气控制策略。
2、 如何解决 HCCI在高压縮比、 高速、 高负荷工况下出现的循环波动问题
HCCI具有快速燃烧的倾向, 并且对混合气温度极为敏感, 容易出现循环波动, 因而难以控制, 目前只限于应用在低负荷、 中低速运转区域, 还不能在高压縮比、 高 速、 高负荷工况下实用。 因此, 需要通过改迸燃油的喷射方式和雾化方法, 进一步提 高 HCCI燃烧的鲁棒性, 防止爆震和失火交替发生的循环波动。
3、 如何解决喷雾时间控制和精确着火问题
汽油机和柴油机 HCCI燃烧存在一些相似的共性问题,主要是着火时刻和燃烧速 率控制问题。 由于这些问题, HCCI燃烧要在宽广的转速及负荷工况平面上运行还有 较大困难, 控制不好, 甚至出现油耗恶化, 无法满足国 IV (欧 IV )及其以上排放法规。 为保证可靠的着火和燃烧控制精度, 目前探讨研究了多种 HCCI燃烧反馈控制, 如: 缸压传感器、 离子电流传感器、 曲轴加速度信号、 爆震传感器等, 但都存在不同程度 的问题。 同时, 由于喷雾时间和精确着火电控系统的复杂和成本过高, 可能会增大 HCCI发动机产业化的难度。 因此, 需要一种强制性的精确着火控制手段和一个可靠 的低成本的解决方案。
与往复式内燃发动机使用的孔式、轴针式喷油嘴不同, 目前公知的涡轮和涡轮轴 发动机使用的是一种开式离心式喷油嘴或离心式甩油盘。离心式喷油嘴和离心式甩油 盘内部没有能够直接关闭喷孔的装置, 因而喷孔始终是开放的。离心式喷油嘴的结构 型式有简单离心式喷油嘴、双油路双喷口离心式喷油嘴和双油路单喷口离心式喷油嘴 之分。离心式喷油嘴的雾化性能一般良好, 并具有较大的喷雾锥角。 中间空心的伞状 油雾容易与燃烧室中空气的流场相配合。 可是它有以下一些缺点: (1 )、 简单离心式 喷油嘴在最高喷油压力降的情况下,燃料流量可调范围相当窄。由于切向孔的尺寸固 定不变, 因而当喷油量减少时, 燃油流迸旋流室的速度必然会明显下降, 这样, 也就 会使燃料离开喷口时的切向速度大幅度降低, 从而导致雾化质量严重恶化。 (2)、 双 油路双喷口离心式喷油嘴实质上是把两个彼此独立的简单离心式喷油嘴并联在一起 联合工作, 因而燃料流量的可调范围比一个相当的简单喷油嘴的流量可调范围大得 多, 缺点是当第二条主油路刚投入工作时, 由于起始喷油压力很低, 在瞬时间内会使 喷雾质量有所恶化。 (3)、 双油路单喷口离心式喷油嘴的优点是燃料流量可调范围比 较宽, 缺点是两条油路之间相互有干扰, 由于反压的作用, 当第二级主油路投入时, 会使旋流室中油流的旋转速度减慢, 从而严重地恶化了燃料的雾化质量。另外, 还有 一种结构比较复杂的切向孔(槽)面积可以调节的离心式喷油嘴。上述几种离心式喷 油嘴虽能在一定程度上扩大了燃料流量的可调范围,并能适当改善低负荷工况下的喷 油雾化质量, 但是当第二条油路刚投入工作时, 喷雾质量总会有明显恶化, 喷油量也 会发生瞬时间的突跳。同时, 由于喷油压力变化范围的限制, 燃料流量的可调范围仍 然不可能做得很大。这种离心式喷油嘴的喷射和关闭, 是靠燃油泵的起动和停止来实 现的。从油泵到喷油嘴之间, 有一条或两条供油管道, 发动机关闭后, 燃油泵停止工 作时, 由于离心式喷油嘴的喷孔始终是开放的,从油泵到喷油嘴之间的燃油会从供油 管道、喷油嘴经喷孔自动泄出排空, 使供油系统处于无油的中空状态。发动机再次起 动时,燃油泵需将燃油再次注满排空的供油管道和喷油嘴之间的空间, 才能到达喷孔 喷射, 燃油压力有一个短暂的缓慢升高过程, 造成发动机起动瞬时燃油压力下降, 起 始雾化压力降的喷油压力低于临界数值, 因而喷射初始瞬间油压过低,燃油压力在没 有达到额定压力值之前, 离心式喷油嘴已开始喷油, 导致雾化及燃烧效果不好, 引起 排气发烟,起动响应慢等问题。燃油未充分燃烧的排气黑烟含有的微小颗粒状物质中, 主要成分的碳粒、微量的金属盐类等,会增加火焰筒、燃烧室机匣、涡轮叶片的积碳, 降低工作效率。积碳会使火焰筒、 燃烧室机匣、涡轮叶片金属表面与冷空气隔绝, 造 成大面积局部过热, 导致局部热应力现象、 翘曲、 变形和裂纹。 另外, 积碳还会使部 分喷油嘴堵塞,使发动机使用时涡轮前温度场不均匀性增大,火苗方向与燃烧室轴线 不平行,导致燃烧室燃烧过程被破坏,造成涡轮导向叶片和工作叶片烧伤,引发事故。 喷油嘴大部分堵塞时, 会引起发动机失速或自动停车, 危害飞行器安全。部分涡轮轴 发动机的供油方式采用了离心式甩油盘。 离心式甩油盘能够保证喷出的燃油充分雾 化, 构造简单、 重量轻、 便于维护。 但发动机经长时间工作后和每次起动后, 射油孔 易形成沿淀性积碳, 造成油孔部分堵塞, 引起供油减少, 发动机功率相应降低。严重 时,发动机在地面转速摆动,或达不到正常最大转速;在飞行中,当瞬间增减桨矩时, 发动机不能迅速恢复恒定转速,在加减油门时,发动机会出现脉动性振动并引起机身 抖动; 在起动过程中, 当喷油孔截面积被堵塞达 60〜80 %时, 会引起供油压力严重 不足, 使发动机转速受到限制。 目前的离心式喷油嘴和离心式甩油盘容易形成积碳、 造成堵塞的主要原因是不能直接关闭喷孔,导致发动机关闭后,从油泵到喷油嘴之间 的燃油从供油管道、喷油嘴经喷孔自动泄出排空时,在还没有得到冷却的燃烧室内残 留的高温、 高热环境下, 长时间反复蒸发分解、 附着沉淀、 变硬变厚形成的。
公开(公告)号: CN1818372是一种带针阀头部保护罩的伞喷喷油嘴, 该专利技 术方案的燃油喷射方法是靠高压燃油撞击针阀头部完成的,这种单纯的撞击喷射会使 部分燃油反溅在保护罩内, 使油粒合并, 动能损失大, 喷雾贯穿度低, 在高负荷工况 下, 燃烧恶化。 公开(公告)号: CN201092922是一种涡旋伞喷喷油嘴, 该专利技术 方案中的高压燃油要经过喷嘴与外圆的环隙迸入沿凹坑坑壁上设置的对称的切向进 油槽, 在平面凹坑内形成涡流, 再通过喷嘴前端的喷孔喷射, 燃油流动环节转折多, 阻力大, 涡旋能力弱。 平面凹坑内没有自洁功能, 残留燃油过多, 在高温环境下容易 形成积炭, 无法清除。 喷嘴的中孔与外圆过盈配合, 由于膨胀系数的不一致, 在高温 高压环境下, 喷嘴的中孔容易松动脱落。 公开(公告)号: CN2173311是一种液体喷 射雾化喷嘴,该专利技术方案当燃油液体在油泵的高压下通过其针阀下端柱塞圆柱形 表面上均匀分布的多条螺旋形沟槽时,会对多条螺旋形沟槽产生斜向反作用力,推动 螺旋形沟槽带动针阀反向旋转,抵消螺旋形沟槽的雾化作用;多条螺旋形沟槽的齿状 外圆接触面, 不是光滑的圆柱体, 与针阀体内圆的动配合密封间隙难以保证;螺旋形 的斜向喷射, 燃油的雾化锥角相对较小, 燃烧中心前移, 火焰较长, 会限制发动机的 运转负荷; 螺旋形沟槽的燃油通道长, 深度浅, 燃油的流动和喷射阻力大。 公开 (公 告)号: CN1204747是一种回油式机械雾化喷嘴, 该技术方案没有针阀, 不能控制正 时喷油, 因而不能在往复式内燃发动机上使用; 又由于其喷孔是开式的, 不能被直接 关闭, 在涡轮和涡轮轴发动机、燃气轮机上使用, 仍然不能解决停机后供油管道燃油 外泄, 造成喷射初始瞬间燃油压力低, 影响雾化燃烧效果, 排气发烟, 起动响应慢, 容易形成积碳等问题。 公开 (公告) 号: CN101368740是一种闭式脉动离心喷油嘴, 该专利技术方案在大功率重型发动机循环喷油量较大时,如果增大喷孔直径,可能会 使油膜变厚, 影响雾化质量。
为解决上述问题, 本发明通过技术重组、 功能创新, 希望能找到一个新的途径, 设计开发了离心式伞喷喷油嘴, 主要技术特征是: 在离心式喷油嘴中设置针阀 (5), 针阀 (5) 头部设置节流导向锥体(13)。 在针阀体 (1 ) 内设置衬套 (4), 衬套 (4)、 进油道 (3 )和 (6)、压力室(8)、切向孔(9)、旋流室 ( 10)、喷孔 ( 11)、喷口 ( 12) 为一体。本技术方案各技术特征彼此相互关联、相互支持, 取得了新的功能和技术效 果, 克服了现有技术中存在的缺点和不足,分别解决了往复式内燃发动机及涡轮和涡 轮轴发动机喷油嘴存在的问题。
本发明的目的是用离心式伞状喷雾这一技术方案,为往复式内燃发动机提供一种 新的燃油雾化方法及结构设计,把喷射的直向贯穿力变为旋转力,把燃油的液柱分裂 改为液膜分裂, 喷孔(11 )喷出的不再是几条互相孤立的油束, 也不是靠碰撞产生的 油雾, 而是一个无密实油束核心、贯穿距可控的旋转的伞状雾化油膜。在同等喷油压 力条件下, 喷雾粒径的平均粒径、索特平均粒径和粒径分布的指标, 均好于孔式和轴 针式喷油嘴的油柱式喷射, 能增加油气结合面积, 实现相对大尺度的快速混合, 改善 和提高燃油的分布均质特性, 促进快速放热, 縮短油束的贯穿度, 避免喷雾撞壁, 提 高喷射雾化质量和燃烧效率, 减少污染排放, 防止喷孔(11 )堵塞, 延长喷油嘴使用 寿命。在汽油机 HCCI燃烧中, 本专利采取的旋转的伞状油膜喷束引导方式, 不是在 进气过程中喷油,而是在压縮行程接近上止点时喷油,与壁面引导和气流引导的稀薄 预混合燃烧、低温预混合燃烧的燃油被动雾化方式不同,是一种燃油的主动雾化方式, 接近于柴油机的质调节, 因而可以精确控制着火相位和燃烧速率, 避免 HCCI临界状 态时, 燃烧不稳定, 循环波动大, 着火发生在上止点后, 爆震和失火交替发生, 转速 和输出转矩波动较大的问题。采用高压縮比时, 随压縮过程的进行, 缸内空气压力和 温度不断升高, 在上止点喷油始点附近气体温度高达 60CTC以上, 高于汽油燃料在当 时压力下的自燃温度 (300〜400°C)。 高速旋转的伞状油膜在高压喷射过程中产生的 动能, 在和密度、 黏性、 阻力较大的高压縮比空气的大面积摩擦、 撞击、 穿透和混合 中,释放出的热能会使油滴迅速升温。均布的燃油微粒表面张力和内聚力破碎时的微 小气泡释放出的高温累积效应和气体分子在急剧压縮后能量转换释放出的热能,可以 使放热速率大于散热速率,使焰前温度升高到油滴的蒸发沸点,从而实现链式热力着 火, 达到混合气自燃和多点同时着火, 解决了控制 CI (压縮着火)、 着火时刻和燃烧 速率的问题。 在低温、 冷启动阶段, 可采取火花塞辅助点火, 解决着火的可靠性。 在 柴油机的 HCCI燃烧中, 高速旋转的伞状油膜雾化方式, 解决了控制 HC (均质混合 气) 的问题。 本专利采取高压离心喷射(效果优于更多的密集的喷孔或类似稀燃 GDI 汽油机单靠挤压、 碰撞喷射的伞喷油嘴)、 脉动针阔控制喷雾时间和着火时刻 (不采 用任何反馈控制、优于电控系统的复杂性和高昂的成本)的技术方案和喷油策略, 对 解决 HCCI燃烧过程中,实现均质压燃,燃烧全历程强化混合,避免喷雾撞壁(湿壁)、 精确控制喷雾时间和着火时刻, 确保燃烧稳定性, 扩大 HCCI运行区域等问题, 提供 了一个可靠的低成本解决方案。同时, 用这一技术方案, 为涡轮和涡轮轴发动机离心 式喷油嘴提供了一种扩大燃料流量可调范围, 能够直接自动开启、关闭喷孔的控制结 构和方法, 解决目前开式离心式喷油嘴燃料流量的可调范围小, 不能直接关闭喷孔, 停机后燃油外泄, 起动初始瞬间燃油喷射压力低, 影响雾化燃烧效果, 排气发烟, 起 动响应慢, 增加积碳, 容易堵塞的问题。
本发明的目的是这样实现的: 位于喷油嘴针阀体 (1 ) 内的针阀 (5), 在油泵燃 油压力变化下往复滑动, 针阀 (5) 座面 (16) 与旋流室 (10) 座面 (17) 配合, 脉 动式直接开启和关闭位于旋流室 (10) 中央前端的喷孔 (11 ) 和喷口 (12), 保证正 时喷油。在针阀体(1 )内的压力室(8)与喷孔(Π )之间,有多个均布的切向孔(9), 带有切向力的燃油经过旋流室 (10) 旋转后, 离开喷孔 (11 ) 时具有切向运动速度。 油流在切向离心力的作用下从喷口 (12) 喷出, 形成一个高速旋转的伞状雾化油膜, 并很快在外力 (燃烧室的气流运动及反作用力)作用下, 分裂成为燃油微粒, 形成油 气混合气。 在停止喷油时, 针阀 (5) 座面 (16)将切向孔 (9)、 旋流室 (10)、 喷孔 ( 11 )全部封闭,并起到清刷积碳、防止堵塞的自洁作用。开始喷油时,随着针阔 (5) 抬高上移, 切向孔 (9) 截面积逐渐被打开, 喷油量也就逐渐增加。 在低转速的情况 下,供油压力不变,循环喷油量减少,在喷油器压力弹簧的限制作用下,针阀升程(14) 的抬高和持续时间缩短, 针阀 (5) 座面 (16) 升程的抬高和持续时间也随之縮短, 切向孔 (9) 开启的截面积和旋流室 (10) 容积同吋减少, 燃油进入旋流室 (10) 的 入口速度增加, 旋转更为强烈, 在喷孔 (11 ) 出口处的切向速度也随之增加。 同时, 切向孔 (9) 开启的截面积和旋流室 (10) 容积的减少, 使供油管道内的燃油流动阻 力相对增大, 燃油体积瞬间被相对压縮, 喷射压强增大, 流速加快, 燃油在经过旋流 室 (10) 离开喷孔 (11 ) 和喷口 (12) 时仍可保证有足够的切向速度和旋流强度。 在 喷油结束阶段, 由于喷油压力下降, 油的喷出速度降低, 油雾内部的负压减小, 所以 使油雾向中心收縮的趋势减小, 从而使雾化角稍有增加。在这个过程中, 由于喷油器 弹簧压力和燃油压力的相互作用, 针阀 (5) 上下反复滑动, 针阀升程 (14) 不断变 化, 切向孔 (9) 截面积和旋流室 (10) 容积的开启程度是不断变化的, 即使在低负 荷工况下循环喷油量较少时, 油流在旋流室(10) 中的切向速度仍然可以很高, 这样 就能够保证燃油的雾化质量始终是良好的。因此, 燃料流量可调范围比较宽, 以适应 往复式内燃机和涡轮、 涡轮轴发动机机组不断加速及全负荷范围内的需要。
本发明由于雾化方法的改变, 燃油离开喷孔 (11 )和喷口 (12)时带有切向贯穿 力和旋转力, 油流中的紊流脉动、对气流的巻吸作用要比不旋转时强烈, 因此比目前 公知的轴针式、 孔式以及伞喷式喷油嘴单 *6靠挤压力进行碰撞喷射的雾化质量要好。 燃油在贯穿力和离心力的作用下, 形成的射线沿中空的雾化锥体底圆 360° 分布, 实 际上是把轴针式、孔式喷油嘴所能达到的一个或几个固定方向有限的油束,裂化分解 为无数条更细的燃油射线。 高速旋转的伞状油膜从喷孔(11 )和喷口 (12) 的环形截 面喷出时, 节流导向锥体(13)前部是气体漩涡。 由于它的当量喷孔面积较大, 燃油 喷射的摩擦力和表面张力、内聚力的释放阻力减少, 同等时间喷出的流量增大, 使燃 油射线速度加快, 颗粒细度、 均匀度、 均质性更好, 从而不需要大幅度增加现已匹配 的喷油泵压力。相同的循环喷油量,提高喷油速率有助于增加混合气形成的绝对时间, 可使燃烧速率加快、 燃烧提前结束, 为燃气的膨胀过程提供更多的时间, 减少油耗, 排气终了温度较低, 低温、 冷启动性能好。 喷孔(U )直径的相对增大, 燃油流动的 摩擦力、阻力减少, 使喷油持续时间较供油持续时间縮短, 最大喷油速率较最大供油 速率提高, 使喷油规律初期缓慢, 中期急速, 后期快短。 喷油压力的减轻, 可以使目 前广泛使用的高压共轨喷油系统存在的对燃油品质的 "容忍"度较小、系统成本相对 较高、控制变量多、产品开发周期长等许多不足得到改善。 由于本发明伞状油膜不是 像伞喷喷油嘴那样靠挤压、碰撞导向锥体喷出, 而是切向旋转自由喷出, 避免了与导 向锥体的碰撞和油束反溅, 油束、 油粒的动能损失小, 不会因为迎风面积大, 导致贯 穿率过低。 节流导向锥体 (13 ) 过渡弧面 (18) 和与之相对应的衬套 (4) 过渡弧面 ( 19) 的弧度, 以及节流导向锥体 (13 ) 喷口 (12) 位置的喷射引导角 (21 ), 可以 影响和控制旋转的中空的油膜雾化锥角 (22)。 喷口 (12) 直径 (15) 的调整, 可以 调整控制油膜厚度。节流导向锥体(13 )过渡弧面(18)的外径与其相对应的衬套(4) 过渡弧面 (19) 的内径之间的喷孔 (11 ) 间隙所形成的环形截面 (20) 的截面积, 可 通过同时增加或减少环形截面 (20) 外圆和内园的直径, 增加或减少环形截面 (20) 的截面积大小, 即可调整控制喷孔 (11 )、 喷口 (12) 循环喷油量, 又可控制油膜的 喷射厚度。旋转的伞状油膜弥补了油柱式喷射的几条油束之间的死角,扩大了燃油的 分布空间和均匀性, 大尺度的增加了油气接触面积, 避免了局部过浓区, 加速了吸热 和气化过程, 使混合气的反映时间充足。在相同的循环喷油量、喷油速率情况下, 由 于混合气形成的面积增加、速度加快、 吋间縮短, 气化吸热的燃油量增大, 从而使着 火前放热率曲线负值延长, 着火落后期 (滞燃期)、 速燃期放热始点时间推迟。 在缓 燃期和后燃期,后续喷出的燃油仍然保持着高速旋转的伞状雾化油膜状态,均质分布 特性稳定,几乎与速燃期同时着火,改善了预混合燃烧阶段和扩散燃烧阶段的非均质 特性, 避免了油柱式喷射放热速率前高后^^ 缓燃期和后燃期油束根部混合气过浓、 贫氧, 主要依赖着火落后期和速燃期的高温进行蒸发雾化, 导致产生大量的 NOx、 碳烟和 PM的问题, 使油滴燃烧更加充分完全, 提高了发动机的热效率和经济性能, 减少了污染排放。后燃期和放热持续期时间縮短, 有利于减少燃烧噪声和振动, 降低 燃烧粗暴度, 改善和避免柴油机燃烧特有的 "双峰"现象。为解决 HCCI具有快速燃 烧的倾向, 对混合气温度极为敏感, 容易出现循环波动, 因而难以控制, 目前只限于 应用在低负荷、 中低速运转区域, 还不能完全满足 HCCI燃烧在宽广的转速及负荷工 况平面上运行的要求,无法在发动机整个运转范围内实用的问题,提供了一个新方法。
同时,本发明为涡轮和涡轮轴发动机离心式喷油嘴提供了一种扩大燃料流量可调 范围的新结构、新方法。 由于本发明能够直接自动开启、 关闭喷孔, 也就解决了涡轮 和涡轮轴发动机在停机时,供油管道和喷油嘴里的燃油经喷孔自动泄出排空,再次起 动时, 出现起始雾化压力降的喷油压力低于临界数值, 喷射初始瞬间燃油压力过低, 影响雾化燃烧效果, 排气发烟, 起动响应慢的问题, 提高了发动机的起动灵敏度, 縮 短了发动机起动时间, 减少了火焰筒、 燃烧室机匣、 涡轮叶片积碳, 防止了喷油嘴堵 塞, 提高了飞行器的安全性和工作效率。
本发明由于针阔 (5) 座面 (16) 与旋流室 (10) 座面 (17) 直接配合, 能可靠 有效的开启和关闭供油, 使每次完成喷射后, 喷孔 (11 ) 与针阀 (5) 之间的残留燃 油减少到最小限度。 针阀 (5) 头部的节流导向锥体 (13 ) 喷孔 (10) 位置的过渡弧 面 (18)和衬套 (4)喷孔 (10)位置的过渡弧面 (19), 避免了切向孔(9)、 旋流室 ( 10)切向旋转的油束与节流导向锥体(13)的撞击, 并起到引导油流圆滑过渡、 加 快切向旋转的作用。节流导向锥体(13 )过渡弧面(18)的外径与其相对应的衬套(4) 过渡弧面 (19) 的内径之间喷孔(11 ) 间隙所形成的环形截面 (20) 面积的调整, 起 到控制循环喷油量的作用。喷口直径(15)可控制油膜的喷射厚度。节流导向锥体(13 ) 喷口 (12) 位置的喷射引导角 (21 ) 可调整旋转的喷雾锥角 (22)。 针对往复式内燃 发动机及涡轮和涡轮轴发动机的喷油嘴是一种在高速、高温、高压环境中工作的精量 控制装置, 微小的差别就会导致机组运行质量、节能减排大的差别。本专利采取的衬 套(4)与进油道(3)和 (6)、 压力室(8)、切向孔(9)、 旋流室 (10)、 喷孔(11 )、 喷口 (12)为一体的技术方案, 封闭了喷油嘴内部在超高压、超短脉冲燃料喷射状态 下, 可能影响雾化质量, 漏油、 窜油的流动途径, 解决了进油道 (3 ) 和 (6)、 压力 室 (8)、 切向孔 (9)、 旋流室 (10) 各组件之间, 针阀 (5) 与衬套 (4) 的动配合, 针阀体 (1 ) 与衬套 (4) 的静配合, 所有要素的整体配合密封性难题, 可靠有效, 作 用突出。本发明为往复式内燃发动机 HCCI燃烧提供了一种新的混合气组织和控制方 法及喷射自动开闭控制结构;同时, 为涡轮和涡轮轴发动机离心式喷油嘴提供了一种 扩大燃料流量可调范围和能够直接自动开闭喷孔, 防止燃油外泄,提高起动灵敏度和 雾化质量, 避免喷孔积炭堵塞的结构和方法。
本发明的具体结构由以下的实施例及其附图给出:
图 1是离心式伞喷喷油嘴偶件的剖面结构图。 图中针阀 (5) 处于喷油雾化状态 的开启位置。
图 2是图 1的右视图。
图 3是图 1的左视图。
图 4是图 1的 A— A剖面图。
图 5是图 1的 B— B剖面图。
图 6是该装置衬套 (4)、 针阀 (5)、 切向孔 (9)、 旋流室 (10)、 喷孔 (11 )、 喷 口 (12)、 节流导向锥体 (13)、 针阀升程 (14)、 喷口直径 (15) 的局部放大图。 图 中针阀 (5) 处于喷油雾化状态的开启位置。
图 7是该装置衬套(4)、针阀(5)、切向孔(9)、喷孔(11 )、节流导向锥体(13) 局部放大图。 图中针阀 (5) 处于停止喷油雾化状态的关闭位置。
图 8是该装置衬套 (4)、 针阀 (5)、 切向孔 (9)、 旋流室 (10)、 喷孔 (11 )、 喷 口 (12)、 节流导向锥体 (13)、 针阀 (5) 座面 (16)、 旋流室 (10) 座面 (17)、 节 流导向锥体 (13 ) 位于喷孔 (11 ) 位置的过渡弧面 (18)、 衬套 (4) 位于喷孔 (11 ) 位置的过渡弧面 (19) 的局部放大图。 图中针阀 (5)处于喷油雾化状态的开启位置。
图 9是该装置衬套 (4)、 针阀 (5)、 切向孔 (9)、 旋流室 (10)、 喷孔 (11 )、 节 流导向锥体 (13)、 节流导向锥体 (13 )喷口 (12)位置的喷射引导角 (21 )、 旋转的 喷雾锥角 (22) 的局部放大图。 图中针阀 (5) 处于喷油雾化状态的开启位置。
图 10是图 9的 C一 C剖面图。 (20) 是 C一 C剖面图中衬套 (4) 位于喷孔 (11 ) 位置的过渡弧面 (19) 和节流导向锥体 (13 ) 位于喷孔 (11 ) 位置的过渡弧面 (18) 之间的喷孔 (11 ) 间隙的环形截面。 图中针阀 (5) 处于喷油雾化状态的开启位置。
在图中:
图 1 : 该装置包括一个针阔体 (1 ), 针阀体 (1 ) 上有定位孔 (2) 和 (7), 针阀 体 (1 ) 内有衬套 (4)、 针阀 (5)、 进油道 (3 ) 和 (6)、 压力室 (8)、 切向孔 (9)、 旋流室(10)、喷孔(11 )。衬套(4)、进油道(3 )和(6)、压力室(8)、切向孔(9)、 旋流室(10)、 喷孔(11 )、 喷口 (12)为一体。针阀(5)头部有节流导向锥体(13)。 图 1中, 针阀 (5) 处于喷油雾化状态的开启位置。
它的工作原理如下:
当油泵中的压力燃油从针阀体(1 ) 与衬套 (4) 之间的进油道 (3 )和 (6)进入 压力室 (8) 达到额定压力后, 一方面推动针阀 (5) 后移, 开启喷孔 (11 ), 同时进 入切向孔(9), 受切向力推动的燃油进入旋流室 (10)后, 产生圆周旋转运动, 在切 向离心力的作用下经喷孔(11 )从喷口 (12)喷出, 形成一个高速旋转的伞状雾化油 膜, 并很快在外力 (燃烧室内的气流运动及反作用力) 作用下, 分裂成为细小油粒, 形成油气混合气。
当油泵停止供油时, 针阀 (5) 在喷油器压力弹簧 (喷油器与喷油嘴合称为喷油 器总成, 喷油器体内有进油口、 滤芯、 压力弹簧、 压力调整垫片、 进油道、 回油接头 等组件。因不属于喷油嘴偶件,故图中未画出。)压力下,如图 7所示,头部座面(16) 与旋流室 (10) 座面 (17) 配合关闭喷孔 (11 )。
需要注意的是:
1、 衬套 (4) 与针阀体 (1 ) 应轻度过盈配合, 以避免在高温高压环境中两者膨 胀系数的不一致, 引起松动漏油。喷油嘴的结构尺寸、加工质量对雾化质量的影响很 大, 应当给予足够重视。 凡是油流经过的地方, 如切向孔 (9)、 旋流室 (10)、 喷孔
( 111 ) 要达到较高的光洁度, 旋流室 (10)、 喷孔 (11 ) 应当同心, 切向孔 (9) 应 当切于旋流室 (10), 各主要尺寸不应超过规定的公差范围。
2、 切向孔 (9) 数量应在 2个以上均布。 均布的切向孔 (9) 截面积总和, 不应 大于进油道 (3 ) 和 (6) 截面积的总和。 切向孔 (9) 的数量适当多一些, 使燃油沿 旋流室 (10)分布均匀, 有利于获得较好的雾化质量。 但是, 切向孔(9)数量太多, 给加工带来麻烦。 而且, 切向孔 (9) 太多时, 每个孔的截面积相对要小, 运行时容 易堵塞, 对雾化质量的改善也不大, 一般以 3〜6个为宜。 切向孔 (9) 的长度不能太 短, 太短, 燃油会直接进入喷孔 (11 ), 形不成旋流。 切向孔(9) 的孔数、 长度、 直 径、流量、流速和切向喷射角度,旋流室(10)直径,喷孔(11 )直径,针阀升程(14), 这些要素共同组成流通特性,并参与调整控制旋流的强度, 可根据发动机功率的循环 喷油量、 燃烧室结构、 配气方式进行匹配。
3、 切向孔 (9)喷射的切向角度和水平度、 旋流室 (10) 的座面 (16)锥度、 喷 孔 (11 ) 的几何形状和流通截面积、 针阀升程 (14)、 喷口 (12) 喷射导引角 (21 ) 相互作用, 共同形成不同的喷雾锥角。
4、 切向孔(9)根据加工方法和需要, 可以是圆形, 也可以是方形或椭圆形。切 向孔 (9) 顺时针或逆时针的切向喷射角度、 旋流方向, 应根据配气方式调整。 切向 孔 (9) 喷射的水平角度应与针阀 (5 ) 座面 (16)的角度相接近, 以减少切向孔 (9) 喷射的部分燃油与针阔 (5) 座面 (16)的正面撞击。
5、 针阀 (5)座面 (16) 的锥度 =旋流室 (10) 座面 (17) 的锥度, 以保证针阀 (5)座面 (16)、 旋流室 (10)座面 (17) 两者配合的封闭精度, 尽量减少残余燃油 的空间。
6、 燃油在旋流室 (10) 已开始裂解, 并有极小比例的气体参与混合。 由于燃油 要经过切向孔 (9)、 旋流室 (10) 旋流, 喷油时间应当稍微提前。
7、 根据 HCCI的燃烧特性和本喷油嘴的雾化方法, 喷油嘴应当尽量在燃烧室居 中置顶设计, 进行高速旋转的伞状油膜喷束引导, 避免 "湿壁"。 贯穿率 1, 防止火 焰被 "锁定"在中心区域, 造成燃烧不完全。
8、 节流导向锥体 (13 ) 的过渡弧面 (18) 是为了避免切向孔 (9) 的切向旋流与 节流导向锥体 (13) 的柱面垂直撞击, 形成少量反弹。 如果不采用过渡弧面 (18), 应当縮短喷孔 (11 ) 长度, 但那样会使喷孔 (11 ) 磨损加快。
9、 考虑到单次喷油策略更适合 HCCI高压縮比、 高速、 高负荷工况的情况, 可 以不用多脉冲喷射, 因此图中切向孔(9)只画出了一组。 由于内燃机功率差别很大, 对于不需要预喷的中小型高速内燃机, 一组切向孔 (9) 即可满足需要。 对于需要预 喷和主喷的大功率低速内燃机, 两组切向孔(9)可能比较合适。切向孔(9)可根据 预喷、主喷两次喷射的需要, 实行上下两组重叠设计。靠近喷孔的一组小流量切向孔
(9) 为预喷, 上面一组大流量切向孔 (9) 为主喷。 同时加大针阀 (5) 升程, 先后 开启上下两组切向孔 (9), 实现两次喷射。

Claims

1、用于往复式内燃发动机及涡轮和涡轮轴发动机燃油系统的离心式伞喷雾化装置,其特 征是:针阀体(1 )上有定位孔(2)、 (7), 针阀体(1 )内有衬套(4)、针阀(5)、进油道(3) 和 (6)、 压力室 (8)、 切向孔 (9)、 旋流室 (10)、 喷孔 (11 )、 喷口 (12), 压力室 (8) 与 旋流室 (10) 之间有一组能使燃油产生旋转运动的切向孔(9), 针阀 (5)头部有节流导向锥 体 (13), 针阀 (5) 座面 (16) 与旋流室 (10) 座面 (17) 配合, 可关闭、 开启喷孔 (11 )。
2、 根据权利要求 1所述的离心式伞喷雾化装置, 其特征是: 衬套 (4)、 进油道 (3 ) 和 (6)、 压力室 (8)、 切向孔 (9)、 旋流室 (10)、 喷孔 (11 )、 喷口 (12) 为一体, 衬套 (4) 与针阀体 (1 ) 过盈配合。
3、 根据权利要求 1或 2所述的离心式伞喷雾化装置, 其特征是: 针阔 (5) 头部的节流 导向锥体(13 )喷孔(10)位置有过渡弧面(18),衬套(4)喷孔(10)位置有过渡弧面(19), 节流导向锥体 (13 ) 喷口 (12) 位置有喷射引导角 (21 ), 衬套 (4) 喷口 (12) 位置有旋转 的喷雾锥角 (22), 节流导向锥体 (13 ) 过渡弧面 (18) 的外径与其相对应的衬套 (4) 过渡 弧面 (19) 的内径之间有喷孔 (11 ) 间隙所形成的环形截面 (20)。
PCT/CN2013/000964 2013-08-19 2013-08-19 离心式伞喷喷油嘴 WO2015024139A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/910,666 US10006427B2 (en) 2013-08-19 2013-08-19 Centrifugal conical-spray nozzle
PCT/CN2013/000964 WO2015024139A1 (zh) 2013-08-19 2013-08-19 离心式伞喷喷油嘴

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000964 WO2015024139A1 (zh) 2013-08-19 2013-08-19 离心式伞喷喷油嘴

Publications (1)

Publication Number Publication Date
WO2015024139A1 true WO2015024139A1 (zh) 2015-02-26

Family

ID=52482897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000964 WO2015024139A1 (zh) 2013-08-19 2013-08-19 离心式伞喷喷油嘴

Country Status (2)

Country Link
US (1) US10006427B2 (zh)
WO (1) WO2015024139A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105570932A (zh) * 2016-02-25 2016-05-11 上海电气燃气轮机有限公司 自抑制回火的中心喷嘴结构
CN105605616A (zh) * 2016-03-22 2016-05-25 上海电气燃气轮机有限公司 用于燃气轮机的燃烧器及火焰燃烧方法
CN106594802A (zh) * 2016-11-29 2017-04-26 同济大学 一种双旋流贫预混喷嘴及其应用
US9840994B2 (en) 2015-11-04 2017-12-12 Ford Global Technologies, Llc Annulus nozzle injector with tangential fins
US9845780B2 (en) 2015-11-04 2017-12-19 Ford Global Technologies, Llc Annulus nozzle injector with tangential fins
CN108087907A (zh) * 2017-12-17 2018-05-29 北京工业大学 一种双油路离心式喷嘴
CN108592084A (zh) * 2018-05-17 2018-09-28 北京航空航天大学 一种主燃级采用轴向旋流预膜板匹配叶片喷射结构的低排放燃烧室头部
CN114856827A (zh) * 2022-05-12 2022-08-05 中国航发四川燃气涡轮研究院 可调节喷嘴位置及喷射方向的可拆卸扇形喷嘴

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654498A (zh) * 2019-01-18 2019-04-19 北京基鼎环保科技有限公司 一种油气两用低氮燃烧器
CN111520757B (zh) * 2020-03-31 2022-06-10 西北工业大学 直射式凹腔旋流喷嘴
CN112729853B (zh) * 2020-12-24 2023-04-14 中国航空工业集团公司西安飞机设计研究所 一种螺旋桨飞机主发进气口阻力修正方法
CN113974216B (zh) * 2021-11-22 2023-12-22 真味生物(深圳)集团有限公司 一种具有自主疏通功能的电子雾化器
CN114543118B (zh) * 2022-02-21 2023-04-25 中国航发贵阳发动机设计研究所 离心式起动喷嘴
CN114602866B (zh) * 2022-03-11 2022-12-16 重庆臻宝实业有限公司 一种带孔产品的高压清洗装置及其清洗方法
CN114576653A (zh) * 2022-03-15 2022-06-03 西北工业大学 一种带有异形扰流柱的甩油盘
CN115264535A (zh) * 2022-07-29 2022-11-01 中国航发湖南动力机械研究所 一种喷嘴及具有其的燃气涡轮发动机
CN116066277B (zh) * 2023-01-17 2023-10-31 仪征威业油泵油嘴有限公司 一种防堵油嘴

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2228137Y (zh) * 1995-05-18 1996-05-29 隆武强 喷油器
JPH10299613A (ja) * 1997-04-25 1998-11-10 Denso Corp 燃料噴射弁
CN2818826Y (zh) * 2005-07-14 2006-09-20 侯德洋 伞喷与多孔组合式微位移喷油嘴
CN101368740A (zh) * 2007-08-16 2009-02-18 王抗美 闭式脉动离心喷油嘴
JP2011163327A (ja) * 2010-02-15 2011-08-25 Keihin Corp ピントル型電磁式燃料噴射弁
CN103397964A (zh) * 2013-08-19 2013-11-20 王抗美 离心式伞喷喷油嘴

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531052A (en) * 1968-02-19 1970-09-29 Clayton Dewandre Holdings Ltd Fuel injector for internal combustion engines
JPS5836176B2 (ja) * 1977-02-21 1983-08-08 株式会社クボタ 内燃機関の停止時における徐冷運転装置
US4365746A (en) * 1979-06-20 1982-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Swirl injection valve
DE3602956A1 (de) * 1986-01-31 1987-08-06 Vdo Schindling Elektromagnetisch betaetigbares kraftstoffeinspritzventil
US4865003A (en) * 1988-12-28 1989-09-12 Eaton Corporation Method and apparatus for activating fuel prior to combustion
JP3296212B2 (ja) * 1996-10-22 2002-06-24 三菱自動車工業株式会社 燃料噴射ノズル
JPH10176630A (ja) * 1996-12-13 1998-06-30 Daihatsu Motor Co Ltd ディーゼル機関用燃料噴射ノズル
JPH11107888A (ja) * 1997-10-07 1999-04-20 Nippon Soken Inc 燃料噴射弁
US6042028A (en) * 1999-02-18 2000-03-28 General Motors Corporation Direct injection fuel injector spray nozzle and method
DE10050752B4 (de) * 2000-10-13 2005-06-02 Robert Bosch Gmbh Brennstoffeinspritzventil mit einem drallerzeugenden Element
DE10052146A1 (de) * 2000-10-20 2002-05-08 Bosch Gmbh Robert Brennstoffeinspritzventil
US6748872B2 (en) * 2001-11-08 2004-06-15 Bombardier Motor Corporation Of America Swirl-producing fuel injection nozzle and system and method incorporating same
JP4079144B2 (ja) * 2004-12-20 2008-04-23 株式会社豊田中央研究所 燃料噴射弁
DE102006022672A1 (de) * 2006-05-16 2007-11-22 FÜSSNER, Paul Piezo-Inline-Injektor
US8006500B1 (en) * 2008-01-29 2011-08-30 Florida Turbine Technologies, Inc. Swirl combustor with counter swirl fuel slinger
US20100155510A1 (en) * 2008-12-22 2010-06-24 Bamber Daniel W Nozzle trumpet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2228137Y (zh) * 1995-05-18 1996-05-29 隆武强 喷油器
JPH10299613A (ja) * 1997-04-25 1998-11-10 Denso Corp 燃料噴射弁
CN2818826Y (zh) * 2005-07-14 2006-09-20 侯德洋 伞喷与多孔组合式微位移喷油嘴
CN101368740A (zh) * 2007-08-16 2009-02-18 王抗美 闭式脉动离心喷油嘴
JP2011163327A (ja) * 2010-02-15 2011-08-25 Keihin Corp ピントル型電磁式燃料噴射弁
CN103397964A (zh) * 2013-08-19 2013-11-20 王抗美 离心式伞喷喷油嘴

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840994B2 (en) 2015-11-04 2017-12-12 Ford Global Technologies, Llc Annulus nozzle injector with tangential fins
US9845780B2 (en) 2015-11-04 2017-12-19 Ford Global Technologies, Llc Annulus nozzle injector with tangential fins
CN105570932A (zh) * 2016-02-25 2016-05-11 上海电气燃气轮机有限公司 自抑制回火的中心喷嘴结构
CN105605616A (zh) * 2016-03-22 2016-05-25 上海电气燃气轮机有限公司 用于燃气轮机的燃烧器及火焰燃烧方法
CN106594802A (zh) * 2016-11-29 2017-04-26 同济大学 一种双旋流贫预混喷嘴及其应用
CN106594802B (zh) * 2016-11-29 2019-02-01 同济大学 一种双旋流贫预混喷嘴及其应用
CN108087907A (zh) * 2017-12-17 2018-05-29 北京工业大学 一种双油路离心式喷嘴
CN108592084A (zh) * 2018-05-17 2018-09-28 北京航空航天大学 一种主燃级采用轴向旋流预膜板匹配叶片喷射结构的低排放燃烧室头部
CN114856827A (zh) * 2022-05-12 2022-08-05 中国航发四川燃气涡轮研究院 可调节喷嘴位置及喷射方向的可拆卸扇形喷嘴
CN114856827B (zh) * 2022-05-12 2023-06-30 中国航发四川燃气涡轮研究院 可调节喷嘴位置及喷射方向的可拆卸扇形喷嘴

Also Published As

Publication number Publication date
US10006427B2 (en) 2018-06-26
US20160177905A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2015024139A1 (zh) 离心式伞喷喷油嘴
CN103397964B (zh) 离心式伞喷喷油嘴
CN110657452B (zh) 低污染燃烧室及其燃烧控制方法
US7861529B2 (en) Device for injecting a mixture of air and fuel, and combustion chamber and turbomachine both equipped with such a device
JP2008267387A (ja) 自己着火内燃機関の燃焼室及び当該機関の制御方法
CN101440742A (zh) 火花点火甲醇缸内直喷复合导流分层燃烧系统
CN112112729B (zh) 一种双燃料缸内直喷发动机的可变进气滚流装置
CN105332840B (zh) 一种柴油机喷油器及其实现预混燃烧的方法
CN105673281A (zh) 一种气/液双燃料缸内/缸外双喷射装置及控制方法
RU2359136C2 (ru) Двигатель внутреннего сгорания и способ сжигания топлива в двигателе внутреннего сгорания
WO2006024207A1 (fr) Systeme et procede de combustion a injection directe pour moteurs diesel avec pre-melange chaud reglable a auto-adaptation
CN101368740B (zh) 闭式脉动离心喷油嘴
CN203146098U (zh) 一种适用于低温预混合燃烧技术的燃烧室
CN114034061A (zh) 一种用于双径向涡流器双燃料燃烧室的液体燃料喷嘴
CN110953067A (zh) 发动机及其双射流燃烧方法
EP0958450B1 (en) Direct injection spark ignition engine
CN204921139U (zh) 一种直喷式柴油机燃烧装置
CN112412677B (zh) 一种高强化柴油机卷流喷嘴
CN112066412A (zh) 燃烧室、燃气轮机以及抑制振荡燃烧的方法
CN114233465A (zh) 氨燃料燃烧系统、发动机及燃烧控制方法
CN2825992Y (zh) 伞喷微位移喷油嘴
Lee et al. Spray applications in internal combustion engines
CN101769195B (zh) 空间分散式直喷柴油机燃烧系统
CN101368506A (zh) 一种直喷式柴油机燃烧系统
CN216518261U (zh) 氨燃料燃烧系统及发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910666

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891894

Country of ref document: EP

Kind code of ref document: A1