WO2015022734A1 - 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 - Google Patents
高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 Download PDFInfo
- Publication number
- WO2015022734A1 WO2015022734A1 PCT/JP2013/071892 JP2013071892W WO2015022734A1 WO 2015022734 A1 WO2015022734 A1 WO 2015022734A1 JP 2013071892 W JP2013071892 W JP 2013071892W WO 2015022734 A1 WO2015022734 A1 WO 2015022734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- aluminum alloy
- alumite
- strength
- alloy plate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
- C23C22/66—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
- C25D11/08—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/14—Producing integrally coloured layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/16—Pretreatment, e.g. desmutting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
- C25D11/246—Chemical after-treatment for sealing layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12583—Component contains compound of adjacent metal
- Y10T428/1259—Oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12597—Noncrystalline silica or noncrystalline plural-oxide component [e.g., glass, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12597—Noncrystalline silica or noncrystalline plural-oxide component [e.g., glass, etc.]
- Y10T428/12604—Film [e.g., glaze, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
- Y10T428/12618—Plural oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/1266—O, S, or organic compound in metal component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/1266—O, S, or organic compound in metal component
- Y10T428/12667—Oxide of transition metal or Al
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12764—Next to Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12993—Surface feature [e.g., rough, mirror]
Definitions
- the present invention relates to an aluminum alloy plate having high strength and excellent thermal conductivity capable of applying a uniform alumite film having a white tone and suitable yellowness, which is used for a housing for an electronic device or the like. .
- Al-Fe-based 8000-based alloys have high strength and relatively good alumite treatment properties, and thus have been used as raw materials for manufacturing decorative panels for building materials, casings for electronic devices, and the like. After being formed into a plate material, it is cut into a desired size, and after being molded as necessary, it is used as a building material by subjecting the outer surface to an alumite treatment. Further, it is glossy by buffing after anodizing, and is also used as a housing for electronic equipment.
- Patent Document 1 includes Fe: 0.1 to 1.0% by weight, Si: 0.01 to 0.5% by weight, Mn: 0.05 to 1.0% by weight, with the balance being Al and inevitable.
- An aluminum alloy plate which is made of an aluminum alloy which is a typical impurity and exhibits a uniform color tone by anodizing treatment, and an aluminum alloy ingot having the above composition are subjected to homogenization treatment at 400 to 600 ° C. After hot rolling is performed on the ingot to obtain a hot rolled sheet, the hot rolled sheet is subjected to cold rolling including intermediate annealing and / or final annealing, and uniform color tone is obtained by anodizing. It is described that an aluminum alloy plate exhibiting the following is obtained.
- Patent Document 2 contains Fe: 0.2 to 0.6% by weight, Si: 0.03 to 0.20% by weight, and Ti: 0.005 to 0.05% by weight, with the balance being Al and inevitable.
- the formation of the metastable phase is suppressed, and the intermetallic compound is reduced. It becomes a stable phase mainly, and the uniformity of the pits and the color tone of the anodic oxide coating during the roughening treatment are remarkably improved.
- the alloy plate based on 1000 series has a problem that the uniformity of etch pits and the color tone of the anodized film in the alkali etching treatment with caustic soda are excellent, and further, the moldability is excellent but the strength is low. . Therefore, since it is expected that high strength characteristics are also required while white anodized color tone is required, there is a problem in applying an aluminum material based on 1000 series.
- the Al—Mg based alloy plate containing Cr is light green with a yellow color as much as possible even if it is coated with an anodized film with a sulfuric acid bath by keeping the Cr-containing intermetallic compound below a predetermined level. It is said that an aluminum alloy plate that develops white color can be produced.
- an alumite film having a white tone and a uniform color tone has been used favorably for a housing for an electronic device.
- electronic devices have been reduced in thickness and size, and materials that are not only high in strength but also excellent in heat dissipation are desired.
- it is effective to increase the electrical conductivity by reducing the content of Mg that is easily dissolved in the matrix.
- an A5052 alloy plate for example, tempered: H 32 .
- the uniformity of the color tone as the casing is required, and the color tone according to the color tone of the alumite coating applied to the A5052 alloy plate is applied to the alumite coating applied to the low Mg 5000 series alloy plate. Is required.
- the A5052 alloy is specified to have an Mg content of 2.2 to 2.8% by mass and a Cr content of 0.15 to 0.35% by mass. Because it is high, the strength is high, and the lightness (L * value) of the anodized film tends to be slightly high, but on the other hand, it is inferior in thermal conductivity, and since it contains Cr, the anodized color tends to be light yellowish is there. Therefore, even if the technique shown in Patent Document 3 is applied as it is to a 5000 alloy plate having a low Mg content, which has a lower Mg content than the A5052 alloy and has good thermal conductivity, it is white and appropriate.
- An object of the present invention is to provide an aluminum alloy plate having high strength and excellent thermal conductivity.
- the high-strength aluminum alloy plate for alumite treatment of the present invention has Mg: 0.80 to 1.8% by mass, Fe: 0.05 to 0.30% by mass, Si: 0.20. Less than 0.1% by mass, Cu: 0.03 to 0.15% by mass, Mn: 0.05 to 0.20% by mass, Cr: 0.05 to 0.15% by mass, Zn: less than 0.15% by mass It is characterized by being composed of the balance Al and inevitable impurities, having a 0.2% proof stress of 180 MPa or more and a conductivity of 40 (IACS%) or more.
- the high-strength aluminum alloy plate for alumite treatment according to the present invention has an integral diffraction intensity ratio (I ⁇ -Al (Fe ⁇ Mn) Si / IAl 3 Fe) of 0.1 to 0.8 when X-ray diffraction analysis is performed. Those within the range are preferred.
- Such a high-strength aluminum alloy sheet for alumite treatment is obtained by subjecting an aluminum alloy ingot having the above-described composition to a homogenization treatment for 1 to 5 hours at a temperature of 560 to 620 ° C., and then hot rolling. And cold rolling with a final cold rolling rate of 15 to 95%, with or without intermediate annealing.
- the aluminum alloy plate having high strength and good thermal conductivity provided by the present invention produces a uniform alumite film with white tone and appropriate yellowness when anodized.
- An alumite treatment material suitable as a housing for equipment can be provided at low cost.
- an alumite film having a white tone and a uniform color tone has been favorably used in a casing for an electronic device.
- a slightly thin aluminum alloy plate is formed into a predetermined shape by a mold, and strength after forming is also required. Therefore, a material having high strength is often required as a material to be used.
- the Al 6 Fe metastable phase formed in the ingot is converted into an Al 3 Fe stable phase by homogenization treatment. It is necessary to perform diffusion transformation.
- the higher the homogenization treatment temperature of the ingot the more white the white by changing the Al 6 Fe metastable phase formed in the ingot to the Al 3 Fe stable phase by a relatively high temperature homogenization treatment. There is a tendency to become a toned anodized film.
- the particles of the Al 6 Fe metastable phase are incorporated into the alumite film without being oxidized, so that the film thickness increases,
- the anodized film is gray.
- the Al 3 Fe stable phase generated in the ingot remains in the anodized material, it is oxidized and incorporated into the anodized film, so that there is little decrease in lightness even when the film thickness increases, and the anodized film is gray It is difficult to present.
- an ⁇ -Al (Fe ⁇ Mn) Si phase is generated in the ingot.
- the ⁇ -Al (Fe ⁇ Mn) Si phase particles formed in the ingot partially dissolve in the matrix by the homogenization process, but remain in the final plate and are taken into the alumite film. It has been found that as the film thickness increases, the anodized film tends to exhibit a gray color.
- the precipitation state of the precipitates changes and the dislocation density also changes depending on the tempering of the final plate including the intermediate annealing conditions in the cold rolling process. For this reason, the state of the etch pit in the alkali etching process changes, and as a result, the color tone after the alumite film treatment and the uniformity of the color tone are also affected. Therefore, it is considered that the rolling rate at the time of final cold rolling after intermediate annealing becomes a problem. Accordingly, the present inventors have closely investigated the influence of the production conditions such as the homogenization temperature and cold rolling (tempering) on the color tone of the alumite film.
- a uniform alumite film with a white tone and appropriate yellowness through tensile tests, measurement of electrical conductivity, and X-ray diffraction intensity analysis of intermetallic compounds present in alumite treatment materials.
- the present invention has been achieved through intensive studies to obtain an aluminum alloy plate having high strength and excellent thermal conductivity. The contents will be described below.
- Mg 0.80 to 1.8% by mass
- Mg is an essential element for securing the strength of the aluminum alloy plate. If the Mg content is less than 0.80% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable.
- the Mg content exceeds 1.8% by mass, not only the electrical conductivity (thermal conductivity) of the final plate is lowered, but also depending on the homogenization temperature, the Mg segregation layer ( ⁇ -Mg phase) may cause burning (local melting). Therefore, the Mg content is defined as 0.80 to 1.8% by mass. A more preferable Mg content is in the range of 0.85 to 1.7% by mass. A more preferable Mg content is in the range of 0.90 to 1.6% by mass.
- Fe 0.05 to 0.30% by mass Fe is an essential element for securing the strength of the aluminum alloy plate. If the Fe content is less than 0.05% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable. When the Fe content exceeds 0.30% by mass, not only the moldability is lowered, but also depending on the homogenization temperature, the amount of ⁇ -Al (Fe ⁇ Mn) Si phase remaining in the final plate is small. The amount of ⁇ -Al (Fe ⁇ Mn) Si phase particles increases, which is not preferable because it is incorporated into the alumite film, tends to be gray and decreases in lightness (L * value). Therefore, the Fe content is defined as 0.05 to 0.30 mass%. A more preferable Fe content is in the range of 0.07 to 0.28% by mass. A more preferable Fe content is in the range of 0.10 to 0.25% by mass.
- Si 0.20 mass% or less Si is mixed from the raw metal and the return material. Si forms an intermetallic compound with Mg, but in the range exceeding 0.20%, the solidus temperature is lowered, and a homogenization treatment at a holding temperature of 560 ° C. or more becomes impossible.
- the Si content is defined as a range of 0.20% by mass or less. A more preferable Si content is in the range of 0.18% by mass or less. A more preferable Si content is in the range of 0.15% by mass or less.
- Cu 0.03 to 0.15% by mass
- Cu is mixed from raw metal and return material.
- Cu is an essential element for imparting an appropriate yellowness (b * value of CIE standard) to the alumite color tone.
- the yellowness (b * value) of the alumite color tone becomes too weak and the gloss necessary for the casing cannot be obtained.
- the Cu content exceeds 0.15 mass%, depending on the precipitation amount, such as CuAl 2 and CuMgAl 2 in the final plate, the anodized color yellowish (b * value) becomes too strong. Therefore, the Cu content is defined as 0.03 to 0.15% by mass.
- a more preferable Cu content is in the range of 0.03 to 0.12% by mass.
- a more preferable Cu content is in the range of 0.03 to 0.10% by mass.
- Mn 0.05 to 0.20% by mass Mn is mixed from raw metal and return material. Mn is an essential element for imparting an appropriate yellowness (b * value) to the alumite color tone. When the Mn content is less than 0.05% by mass, an appropriate yellowness (b * value) cannot be obtained.
- the Mn content is defined as a range of 0.05 to 0.20% by mass.
- a more preferable Mn content is in the range of 0.05 to 0.18% by mass.
- a more preferable Mn content is in the range of 0.05 to 0.15% by mass.
- Cr 0.05 to 0.15% by mass Cr is mixed from raw metal and return material. Cr is an essential element for imparting an appropriate yellowness (b * value) to the alumite color tone. When the Cr content is less than 0.05% by mass, an appropriate yellowness (b * value) cannot be obtained. When the Cr content exceeds 0.15% by mass, the yellowness (b * value) of the alumite color tone becomes too strong, which is not preferable. Therefore, the Cr content is defined as 0.05 to 0.15% by mass. A more preferable Cr content is in the range of 0.05 to 0.12% by mass. A more preferable Cr content is in the range of 0.05 to 0.10% by mass.
- Zn Less than 0.15% by mass Zn is inevitably mixed from the return material. Zn is a component that enhances the yellowness (b * value) of the alumite color tone. In the present invention, the Zn content is restricted to less than 0.15% by mass. When the Zn content is 0.15% by mass or more, the amount of Zn dissolved in the treatment liquid increases in the alkali etching with caustic soda, which is an alumite pretreatment, and an alkaline bath containing zinc oxide is formed. If the pretreatment is continued in the alkaline bath, Zn is deposited on the surface of the aluminum alloy plate, and the appearance after the alumite treatment may be uneven, which may hinder the design. Therefore, the Zn content is restricted to less than 0.15% by mass. A more preferable Zn content is less than 0.12% by mass. A more preferable Zn content is less than 0.10% by mass.
- Ti 0.001 to 0.10% by mass Ti is mixed from raw metal and return material. Ti acts as a crystal grain refining agent during ingot casting, and can also prevent casting cracks. Of course, Ti may be added alone, but when coexisting with B, a more powerful grain refinement effect can be expected, so addition with a rod hardener such as Al-5% Ti-1% B There may be. If the Ti content is less than 0.001% by mass, the effect of refining at the time of ingot casting is insufficient, which may cause casting cracks, which is not preferable. If the Ti content exceeds 0.10% by mass, a coarse intermetallic compound such as TiAl 3 may be crystallized during ingot casting, which may cause streak-like defects, which is not preferable. Therefore, the preferable Ti content is in the range of 0.001 to 0.10% by mass. A more preferable Ti content is in the range of 0.005 to 0.07% by mass. A more preferable Ti content is in the range of 0.01 to 0.05% by mass.
- the required characteristic of the aluminum alloy plate of this invention is demonstrated.
- 0.2% proof stress 180 MPa or more
- An alloy plate obtained by subjecting the aluminum alloy material of the present invention to a white-colored alumite treatment is used as a casing for an electronic device, and therefore requires high strength.
- electronic devices have been made thinner and smaller, and therefore, there is a demand for an alumite treatment material that is not easily deformed and has a high-class feeling when using even thinner materials than before. Therefore, the alloy sheet according to the present invention is limited to a 0.2% proof stress in a tensile test of 180 MPa or more.
- Anodized color tone L * value: 85 to 90, a * value: -1.0 to -0.3, b * value: 0.5 to 1.0
- the final plate is subjected to alkali etching and sulfuric acid alumite treatment, the color tone is measured when the thickness of the alumite film is 7 ⁇ m, and the CIE standard L * value is within the range of 85 to 90. If the a * value is in the range of -1.0 to -0.3 and the b * value is also in the range of 0.5 to 1.0, the alumite film having a white tone and appropriate yellowness It can be said that it is a material for anodizing that can be applied.
- the alumite treatment material according to the present invention is an A5052 alloy plate.
- a color tone similar to the alumite color tone can be realized.
- Integral diffraction intensity ratio (I ⁇ -Al (Fe ⁇ Mn) Si / IAl 3 Fe): 0.1 to 0.8
- L * value the lightness of the alumite color tone is related to the type of Fe-based intermetallic compound present in the alumite treatment material.
- the Al 3 Fe stable phase it is oxidized and incorporated into the alumite film, so that the lightness is hardly lowered even when the film thickness is increased, and the alumite film is hardly gray.
- an ⁇ -Al (Fe ⁇ Mn) Si phase is generated in the ingot.
- the ⁇ -Al (Fe ⁇ Mn) Si phase particles generated in the ingot are partially dissolved in the matrix by the homogenization process, but remain in the final plate, and are taken into the alumite film, increasing the film thickness. At the same time, it has been found that the anodized film tends to be gray.
- the amount of the Al 3 Fe stable phase and ⁇ -Al (Fe ⁇ Mn) Si phase in the final plate varies depending on the production conditions such as Fe, Mn, Si content, homogenization temperature of the aluminum alloy composition. is there.
- the Fe and Mn contents affect the color tone of the alumite film. Therefore, the integral diffraction intensity ratio (I ⁇ -Al (Fe ⁇ Mn) Si / IAl 3 Fe) when the anodized material was subjected to X-ray diffraction analysis was defined as a factor affecting the color tone of the anodized film.
- the integrated diffraction intensity ratio (I ⁇ -Al (Fe ⁇ Mn) Si / IAl 3 Fe) is 0.1 to 0.8. If it is within the range, the anodized color tone falls within the specified range.
- strength aluminum alloy plate of this invention is demonstrated below.
- the flux is appropriately charged and stirred, and further, if necessary, degassing in the furnace using a lance or the like, Hold the sedation to separate the soot from the surface of the melt.
- the sedation time is usually preferably 30 minutes or longer.
- the molten aluminum alloy melted in the melting furnace may be cast after it is once transferred to the holding furnace, but may be cast directly from the melting furnace.
- a more desirable sedation time is 45 minutes or more.
- in-line degassing or filtering may be performed.
- In-line degassing is mainly of a type in which an inert gas or the like is blown into a molten aluminum from a rotating rotor, and hydrogen gas in the molten metal is diffused and removed in bubbles of the inert gas.
- nitrogen gas is used as the inert gas, it is important to control the dew point to, for example, ⁇ 60 ° C. or lower.
- the amount of hydrogen gas in the ingot is preferably reduced to 0.20 cc / 100 g or less.
- Homogenization temperature 560-620 ° C
- an ⁇ -Al (Fe ⁇ Mn) Si phase exists.
- a part of the ⁇ -Al (Fe ⁇ Mn) Si phase can be dissolved in the matrix by the homogenization.
- Al 6 Fe and Al m Fe metastable phases may be formed in the as-cast ingot. Even in such a case, by setting the homogenization treatment temperature high, these Al 6 Fe and Al m Fe metastable phases can be diffused and transformed into Al 3 Fe stable phases.
- the homogenization temperature is less than 560 ° C., the solid solution of the ⁇ -Al (Fe ⁇ Mn) Si phase and the holding time required for the diffusion transformation become longer, which is not preferable.
- the homogenization temperature exceeds 620 ° C., depending on the amount of Mg, as described above, burning (local melting) may occur in the micro Mg segregation layer ( ⁇ -Mg phase) generated during solidification of the ingot. There is. Therefore, the homogenization temperature is set in the range of 560-620 ° C.
- Holding time at homogenization temperature 1 to 5 hours If the holding time at the homogenization temperature is less than 1 hour, depending on the temperature rise rate in the processing furnace, the actual temperature of the entire ingot is predetermined. The homogenization temperature may not be reached. When the holding time at the homogenization treatment temperature exceeds 5 hours, although it depends on the homogenization treatment temperature, no further effect can be expected, and generation of scale due to oxidation becomes severe and the productivity is lowered, which is not preferable. Therefore, the holding time at the homogenization temperature is 1 to 5 hours.
- the ingot that has been homogenized by hot rolling is then suspended by a crane and brought from the homogenizing furnace to the hot rolling mill. Depending on the type of hot rolling mill, it is usually several times.
- the sheet is hot-rolled by such a rolling pass and wound on a roll as a hot-rolled sheet having a predetermined thickness, for example, about 3 to 8 mm.
- the roll on which the cold-rolled hot-rolled sheet is wound is passed through a cold-rolling machine and usually subjected to several passes of cold-rolling.
- an intermediate annealing treatment is performed as necessary.
- the intermediate annealing is also a softening treatment.
- a cold rolling roll is inserted into a batch furnace and kept at a temperature of 300 to 400 ° C. for 1 hour or longer. When the holding temperature is lower than 300 ° C., softening is not promoted, and when the holding temperature exceeds 400 ° C., the productivity is lowered and the processing cost is increased.
- this intermediate annealing is performed in a continuous annealing furnace (CAL)
- the holding is performed at a temperature of 420 to 480 ° C. within 15 seconds.
- the holding temperature is lower than 420 ° C., softening is not promoted, and when the holding temperature exceeds 480 ° C., the productivity is lowered and the processing cost is increased.
- Final cold rolling rate 15-95%
- the precipitation state of the precipitates changes and the dislocation density also changes depending on the tempering of the final plate including intermediate annealing conditions during cold rolling. For this reason, the state of the etch pit in the alkali etching process changes, and the color tone after the alumite film treatment and the uniformity of the color tone are also affected.
- the final cold rolling rate is less than 15%, the dislocation density of the final plate is low, so the etch pit density is also low, the lightness (L * value) of the anodized material is reduced, and the effect of eliminating the streak is reduced. To do.
- the final cold rolling rate is 15% or more, the dislocation density of the final plate increases and the etch pit density also increases, increasing the lightness (L * value) of the anodized material and eliminating the streak. is there. If the final cold rolling rate exceeds 95%, the ear cracks of the coil occur and the yield may be lowered, which is not preferable. Therefore, the final cold rolling rate is preferably 15 to 95%. A more preferable final cold rolling rate is in the range of 20 to 95%. A more preferable final cold rolling rate is in the range of 30 to 95%.
- the final annealing performed after the final cold rolling may be, for example, a batch process in which an annealing furnace is maintained at a temperature of 150 to 200 ° C. for 1 hour or longer. It may be a continuous annealing process held at a temperature of 250 ° C. within 15 seconds.
- the final annealing is not necessarily essential in the present invention, but it is desirable to soften the final plate somewhat in consideration of the case where the mold is formed before the alumite treatment. In consideration of moldability in mold forming, it is desirable to perform annealing at a relatively low temperature.
- this relatively low-temperature annealing treatment has a meaning as a softening treatment, but also has a meaning as a stabilization treatment.
- a decrease in proof stress is observed with the passage of time over a long period of time. Therefore, there is an aim to stabilize the proof stress for a long period of time by pre-aging.
- Preparation of the final plate Predetermined various ingots and scrap materials were weighed and blended and put into a melting furnace and holding furnace. When melted at 800 ° C., 2 kg of degassing flux was charged, and then the molten aluminum in the furnace was sufficiently stirred with a stirring rod. Next, the Mg ingot was added, and after further sedation for 30 minutes, a disk sample was collected with a spoon as a component analysis mold. Next, the soot that floated on the surface of the molten metal was removed with a stirring rod, and various ingots were added to the missing components based on the results of the intermediate analysis of the disk sample collected earlier, and the molten metal was further stirred. Thereafter, sedation was further performed for 30 minutes, and a disk sample was again collected with a spoon in a component analysis mold.
- the molten metal was poured from the tap into the bowl, and when the molten metal surface reached a predetermined position of the bowl, pouring from the dip tube into the mold was started. In all the molds, when the molten metal surface reached a predetermined position of the mold, the lower mold started to be lowered. The lower mold lowering speed was 50 mm / min in a steady state. In this way, an ingot having a width of 1350 mm, a thickness of 560 mm, and a length of 3500 mm was cast. Each disk sample was subjected to composition analysis by emission spectroscopic analysis. The final result of the molten metal component analysis is shown in Table 1.
- the ingot was cut at the front and rear ends, and then both sides of the ingot were chamfered with a mill.
- the ingot is inserted into a homogenization furnace, heated to a predetermined temperature (530 ° C., 580 ° C.) at a temperature increase rate of 30 ° C./hr, and held at the predetermined temperature for 1 hour to perform the homogenization process. gave.
- the ingot is hung with a crane, moved from the homogenization furnace to the table of the hot rolling mill, hot-rolled to a predetermined thickness with the hot rolling mill, and rolled as a hot rolled plate Rolled up.
- the hot-rolled sheet was cold-rolled, and subjected to intermediate annealing at a predetermined thickness, or a cold-rolled sheet having a final thickness of 0.8 mm was obtained without performing intermediate annealing.
- the cold-rolled sheet is passed through a continuous annealing furnace (CAL) and subjected to a continuous annealing process that is maintained at a predetermined temperature for 15 seconds or less, and then water-cooled or 1 at a predetermined temperature.
- the coil was air-cooled after performing a batch annealing treatment with time retention. Table 2 shows the production conditions of the test materials.
- each sample material was evaluated for tensile properties.
- Evaluation of tensile properties The strength of the final plate obtained was evaluated by 0.2% yield strength (MPa) in a tensile test. Specifically, a JIS No. 5 test piece is collected so that the tensile direction is parallel to the rolling direction, and a tensile test is performed according to JISZ2241, to obtain tensile strength, 0.2% proof stress, and elongation (breaking elongation). It was. In the present specification, a test material having a 0.2% proof stress of 180 MPa or more was evaluated as good strength (O), and a test material having a 0.2% proof stress of less than 180 MPa was determined as insufficient in strength (x). The evaluation results are shown in Table 3.
- the alkali etching process shown below was performed.
- the test material was immersed in a 30% by mass nitric acid solution at room temperature for 5 minutes and then sufficiently washed with water, and then immersed in a 5% by mass sodium hydroxide solution at 50 ° C. for 3 minutes and then washed with water. Further, after being immersed in a 30% by mass nitric acid solution at room temperature for 3 minutes, it was washed with water.
- the sample material is alumite treated in a solution having a sulfuric acid concentration of 170 g / L and dissolved Al: 10 g / L at a liquid temperature of 18 ° C.
- the color tone of the alumite film (7 ⁇ m thickness) applied as described above was measured and evaluated.
- the alumite film tone was measured according to JIS Z8722 using a color difference meter (CR-300 manufactured by MINOLTA) and a D65 light source.
- the colorimetric values are expressed in the CIE standard L * a * b * color system.
- the L * value represents lightness, and the larger the value, the brighter the color becomes and the closer it is to white.
- a * values and b * values represent shades, a * value + side is red, the - side is green, b * value + side is yellow - side represents a blue tint becomes stronger the larger the respective absolute values.
- L * value and hue evaluated good ( ⁇ ) the test materials had been in the range of 85-90, L * value hue rated poor the test material was outside the range of 85-90 (X).
- a * value of the sample material had been within the range of -1.0 to -0.3 and color evaluated good ( ⁇ ), a * value is outside the range of -1.0 to -0.3
- the test material was determined to have poor color tone evaluation (x).
- b * value and hue evaluated good ( ⁇ ) the test materials had been in the range of 0.5-1.0, b * values of the test materials was outside the range of 0.5-1.0
- the color tone evaluation was poor (x).
- the evaluation results are also shown in Table 3.
- IACS% The conductivity (IACS%) was measured with a conductivity meter (AUTOSIGMA 2000, manufactured by Nippon Hocking Co., Ltd.). A test material having an electrical conductivity of 40 (IACS%) or higher was evaluated as good conductivity (O), and a test material having an electrical conductivity of less than 40 (IACS%) was determined as poor conductivity (x). The evaluation results are also shown in Table 3.
- the alloy composition is within the specified range, and the L * value, a * value, and b * value of the anodized color tone are all within the above-described reference range, and the proof stress is 180 MPa or more.
- the electrical conductivity was 40 (IACS%) or more, and the overall evaluation was good ( ⁇ ). Since the sample material of Comparative Example 1 (A5052 alloy composition) had a high Mg content of 2.7% by mass, the homogenization temperature was set as low as 530 ° C. The sample material of Comparative Example 1 had a low Mn content of 0.02% by mass but a high Cr content of 0.18% by mass. Therefore, the L * value, a * value, and b * value of anodized color tone. Both were within the specified range. However, since the Mg content was as high as 2.7% by mass, the conductivity was too low at 35 (IACS%) and was outside the specified range.
- the test material of Comparative Example 2 had a homogenization temperature as low as 530 ° C., the L * value of the alumite color tone was too low and out of the specified range. Further, since the Cu content was as low as 0.02% by mass, the b * value of the alumite color tone was too low and out of the specified range. Since the test material of Comparative Example 3 had a high homogenization temperature of 580 ° C., the L * value of the alumite color tone was within the specified range. However, since the Cu content was as low as 0.02 mass%, the b * value of the alumite color tone was too low and out of the specified range. The sample material of Comparative Example 4 had a Cu content as high as 0.17% by mass, so the L * value of the alumite color tone was low, and the b * value was too high, which was outside the specified range.
- the sample material of Comparative Example 5 had a high Fe content of 0.34% by mass, but the Mn content, Cr content, and Mg content were both low and less than 0.01% by mass .
- the value, a * value, and b * value were within the specified ranges. However, since the Mg content was less than 0.01% by mass, the proof stress was too low, 110 MPa, and was outside the specified range.
- the test material of Comparative Example 6 had a high Fe content of 0.49% by mass, a very high Mn content of 1.09% by mass, and a low homogenization temperature of 530 ° C. * Value was low, a * value, b * value was too high and out of specified range. Since the Mn content and the Cr content of the test material of Comparative Example 7 were as low as 0.01% by mass, the b * value of the alumite color tone was too low and out of the specification range.
- the L * value of the alumite color tone is 85 or more, and the integrated diffraction intensity ratio (I ⁇ -Al (Fe ⁇ Mn) Si / IAl 3 Fe) is in the range of 0.1 to 0.8.
- aluminum having high strength and excellent thermal conductivity that can be applied to a casing for electronic equipment, etc., and can be applied with a uniform alumite film having a white tone and appropriate yellowness.
- An alloy plate can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
- Casings For Electric Apparatus (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
前記8000系合金とともに5000系合金をベースとして強度を確保しつつ、Si、Fe、Mn量などを規定して、アルマイト色調を淡灰色としたアルミニウム合金板や、前記8000系合金をベースとして強度を確保しつつ、さらにMn、Siを添加して、アルマイト色調を均一にするアルミニウム合金板及びその製造方法なども開発されてきた。また、最近では、1000系合金をベースとしたアルマイト皮膜の色調の均一性を向上させたアルミニウム合金板及びその製造方法なども開発されている。
特許文献2には、Fe:0.2~0.6重量%、Si:0.03~0.20重量%及びTi:0.005~0.05重量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板及びその製造方法が記載されている。これによると、材料の化学成分Fe、Si及びTiの含有量を適切に調整するとともに、特にFe/Si比を適正な範囲にすることにより、準安定相の形成が抑制され、金属間化合物が安定相主体となり、粗面化処理の際のピットの均一性及び陽極酸化被膜の色調の均一性が著しく向上するとのことである。
特許文献3では、質量%で、Mg:2.0~3.0%、Cr:0.15~0.25%、Ti:0.005~0.20%、またはTi:0.005~0.20%及びB:0.0005~0.05%を含有し、残部Al及び不可避不純物からなり、該不純物中のSiを0.15%以下、Feを0.4%以下、Mnを0.06%以下とし、前記Crの含有量をTCR%、Crの固溶量をSCR%としたとき、PCR=TCR-SCR≦0.065%であるアルミニウム合金板が提案されている。
これによると、Crを含有させたAl-Mg系合金板は、Cr含有の金属間化合物を所定以下とすることにより、硫酸浴による陽極酸化皮膜を被覆しても黄色味を極力抑えた淡緑白色に発色するアルミニウム合金板を製造できるとのことである。
強度の高い5000系合金板では、放熱性を高めるためにはマトリックスに固溶し易いMgの含有量を低下させて導電率を高めることが有効である。しかしながら、このようにMg含有量を低下させた5000系合金板を筺体用の素材として適用する際、A5052合金板(例えば、調質:H32)と組み合されて使用される場合がある。このような場合、当然のことながら筺体としての色調の統一性が要求され、低Mgの5000系合金板に施されたアルマイト皮膜には、A5052合金板に施されたアルマイト皮膜の色調に準ずる色調が求められる。
本発明は、このような課題を解決するために案出されたものであり、電子機器用の筺体等に用いられ、白色調でかつ適切な黄味がある均一なアルマイト皮膜を施すことが可能な高強度で熱伝導性に優れたアルミニウム合金板を提供することを目的とするものである。
本発明のアルマイト処理用高強度アルミニウム合金板としては、X線回折分析を行った際の積分回折強度比(Iα-Al(Fe・Mn)Si/IAl3Fe)が0.1~0.8の範囲内であるものが好ましい。
そして、本発明で提供されるアルマイト処理用アルミニウム合金板に、前処理としてアルカリエッチングを施し、さらに硫酸アルマイト処理を施すと、CIE規格の、L*値:85~90、a*値:-1.0~-0.3、b*値:0.5~1.0の範囲の色調を呈するアルマイト皮膜が得られる。
ところで、Al-Mg-Fe系アルミニウム合金板において白色調でかつ色調の均一なアルマイト皮膜を得るためには、鋳塊に生成したAl6Fe準安定相を均質化処理によってAl3Fe安定相に拡散変態させることが必要となる。一般的には、鋳塊の均質化処理温度は高い方が、鋳塊に生成したAl6Fe準安定相を比較的高温の均質化処理によってAl3Fe安定相に拡散変態させることにより、白色調のアルマイト皮膜となる傾向がある。
また、本発明のように、アルマイト色調に適切な黄味を付与するため所定量のMnを含有する場合には、鋳塊にα-Al(Fe・Mn)Si相が生成している。詳細については後述するが、鋳塊に生成したα-Al(Fe・Mn)Si相の粒子は、均質化処理によって一部マトリックスに固溶するものの最終板まで残存し、アルマイト皮膜中に取り込まれ、皮膜厚さが厚くなるとともに、アルマイト皮膜は灰色を呈し易いことが判明している。
そこで、本発明者らは、均質化処理温度、冷間圧延(調質)等製造条件等がアルマイト皮膜の色調に及ぼす影響を綿密に調査した。さらに、引張り試験、導電率の測定、アルマイト処理用素材中に存在する金属間化合物のX線回折強度分析等を通じて、白色調でかつ適切な黄味がある均一なアルマイト皮膜を施すことが可能な高強度で熱伝導性に優れたアルミニウム合金板を得るべく鋭意検討を重ね、本発明に到達した。
以下にその内容を説明する。
Mg:0.80~1.8質量%
Mgは、アルミニウム合金板の強度を確保するため、必須の元素である。Mg含有量が0.80質量%未満であると、アルミニウム合金板の強度が低下するため、好ましくない。Mgの含有量が1.8質量%を超えると、最終板の導電率(熱伝導度)が低下するばかりではなく、均質化処理温度にもよるが、鋳塊に存在するMg偏析層(β-Mg相)によって、バーニング(局部融解)を起こすおそれがある。
したがって、Mg含有量は、0.80~1.8質量%と規定する。より好ましいMg含有量は、0.85~1.7質量%の範囲である。さらに好ましいMg含有量は、0.90~1.6質量%の範囲である。
Feは、アルミニウム合金板の強度を確保するため、必須の元素である。Fe含有量が0.05質量%未満であると、アルミニウム合金板の強度が低下するため、好ましくない。Feの含有量が0.30質量%を超えると、成形性が低下するばかりではなく、均質化処理温度にもよるが、最終板に残存するα-Al(Fe・Mn)Si相の量が多くなり、α-Al(Fe・Mn)Si相の粒子はアルマイト皮膜中に取り込まれ、灰色を呈し易くなり明度(L*値)が低下するため、好ましくない。
したがって、Fe含有量は、0.05~0.30質量%と規定する。より好ましいFe含有量は、0.07~0.28質量%の範囲である。さらに好ましいFe含有量は、0.10~0.25質量%の範囲である。
Siは、原料地金、返り材から混入する。Siは、Mgと金属間化合物を形成するが、0.20%を超える範囲では、固相線温度を下げることになり、保持温度560℃以上の均質化処理が不可能になる。本発明においては、保持温度560℃以上の均質化処理が必要なため、Si含有量は、0.20質量%以下の範囲と規定する。より好ましいSi含有量は、0.18質量%以下の範囲である。さらに好ましいSi含有量は、0.15質量%以下の範囲である。
Cuは、原料地金、返り材から混入する。Cuは、アルマイト色調に適切な黄味(CIE規格のb*値)を付与する上で必須の元素である。Cu含有量が0.03質量%未満では、アルマイト色調の黄味(b*値)が弱くなりすぎるとともに、筺体等に必要な光沢が得られない。また、Cu含有量が0.15質量%を超えると、最終板におけるCuAl2やCuMgAl2等の析出量にもよるが、アルマイト色調の黄味(b*値)が強くなりすぎる。
したがって、Cu含有量は、0.03~0.15質量%と規定する。より好ましいCu含有量は、0.03~0.12質量%の範囲である。さらに好ましいCu含有量は、0.03~0.10質量%の範囲である。
Mnは、原料地金、返り材から混入する。Mnは、アルマイト色調に適切な黄味(b*値)を付与する上で必須の元素である。Mn含有量が0.05質量%未満では、適切な黄味(b*値)が得られない。Mn含有量が0.20質量%を超えると、黄味(b*値)が強くなりすぎるばかりではなく、均質化処理温度にもよるが、最終板に残存するα-Al(Fe・Mn)Si相の量が多くなり、α-Al(Fe・Mn)Si相の粒子はアルマイト皮膜中に取り込まれ、灰色を呈し易くなり明度(CIE規格のL*値)が低下するため、好ましくない。
したがって、Mn含有量は、0.05~0.20質量%の範囲と規定する。より好ましいMn含有量は、0.05~0.18質量%の範囲である。さらに好ましいMn含有量は、0.05~0.15質量%の範囲である。
Crは、原料地金、返り材から混入する。Crは、アルマイト色調に適切な黄味(b*値)を付与する上で必須の元素である。Cr含有量が0.05質量%未満では、適切な黄味(b*値)が得られない。Cr含有量が0.15質量%を超えると、アルマイト色調の黄味(b*値)が強くなりすぎるため、好ましくない。
したがって、Cr含有量は、0.05~0.15質量%と規定する。より好ましいCr含有量は、0.05~0.12質量%の範囲である。さらに好ましいCr含有量は、0.05~0.10質量%の範囲である。
Znは、返り材等から不可避的に混入する。Znは、アルマイト色調の黄味(b*値)を強める成分である。本発明においては、Zn含有量は、0.15質量%未満に規制する。Zn含有量が、0.15質量%以上であると、アルマイト前処理である苛性ソーダによるアルカリエッチングにおいて、処理液中へのZn溶解量が増し、酸化亜鉛を含むアルカリ浴が形成される。そのアルカリ浴中で前処理を続けると、アルミニウム合金板の表面上にZnが析出するようになり、アルマイト処理後の外観にムラが出て意匠性を阻害するおそれがある。
したがって、Zn含有量は、0.15質量%未満に規制する。より好ましいZn含有量は、0.12質量%未満である。さらに好ましいZn含有量は、0.10質量%未満である。
Tiは、原料地金、返り材から混入する。Tiは、鋳塊鋳造時に結晶粒微細化剤として作用し、鋳造割れを防止することもできる。勿論、Tiは単独で添加してもよいが、Bと共存することによりさらに強力な結晶粒の微細化効果を期待できるので、Al-5%Ti-1%Bなどのロッドハードナーでの添加であってもよい。Ti含有量が、0.001質量%未満であると、鋳塊鋳造時の微細化効果が不十分なため、鋳造割れを招くおそれがあり、好ましくない。Ti含有量が、0.10質量%を超えると、鋳塊鋳造時にTiAl3等の粗大な金属間化合物が晶出して、ストリーク状の欠陥が発生する可能性があるため、好ましくない。
したがって、好ましいTi含有量は、0.001~0.10質量%の範囲である。より好ましいTi含有量は、0.005~0.07質量%の範囲である。さらに好ましいTi含有量は、0.01~0.05質量%の範囲である。
不可避的不純物は原料地金、返り材等から不可避的に混入するもので、それらの許容できる含有量は、例えば、Niの0.10質量%未満、Zrの0.10質量%未満、Ga、B及びVの0.05質量%未満、Pb、Bi、Sn、Na、Ca、Srについては、それぞれ0.02質量%未満、その他各0.05質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
特に、Bについては、Tiと同様に鋳塊鋳造時に結晶粒微細化剤として作用し、鋳造割れを防止することもできる。このため、必要に応じて含有させることもできる。B含有量が0.05質量%を超えると、TiB2が安定化した金属間化合物となって、結晶粒微細化効果が減衰するとともに、アルマイト色調の均一性が低下するおそれがあるため、好ましくない。
0.2%耐力:180MPa以上
本発明のアルミニウム合金素材に白色色調のアルマイト処理を施した合金板は、電子機器用の筺体等として使用されるため、高い強度が要求される。特に最近では、電子機器の薄型小型化が進んでいるため、従来よりもさらに薄肉の材料でも使用する際には容易に変形しづらく、かつ高級感を醸し出すアルマイト処理材が望まれている。
したがって、本発明に係る合金板は、引張り試験における0.2%耐力が180MPa以上のものに限定した。
前述したように、近年、電子機器の薄型小型化が進んでおり、放熱性の優れた素材も望まれている。このため、本発明に係る合金板は、導電率が40(IACS%)以上のものに限定した。導電率が40(IACS%)以上の合金板であれば、熱伝導性が高く、放熱性の優れた素材として、電子機器の筺体等の用途として好適である。
詳細については後述するが、最終板に対して、アルカリエッチング、硫酸アルマイト処理を施し、アルマイト皮膜の厚さが7μmの時に色調を測定して、CIE規格のL*値が85~90の範囲内、同じくa*値が-1.0~-0.3の範囲内、同じくb*値が0.5~1.0の範囲内であれば、白色調でかつ適切な黄味があるアルマイト皮膜を施すことが可能なアルマイト処理用素材であるといえる。すなわち、A5052合金板のアルマイト色調が、規格範囲内での組成変動や調質、或いはアルマイト皮膜厚さ等の要因で多少変動したとしても、本発明であるアルマイト処理用素材は、A5052合金板のアルマイト色調に準ずる色調を実現することができる。
前述のとおり、アルマイト色調の明度(L*値)は、アルマイト処理用素材に存在するFe系の金属間化合物の種類と関係があることが知られている。鋳塊に生成したAl6Fe準安定相がアルマイト処理用素材に残存する場合、このAl6Fe準安定相の粒子はアルマイト皮膜中に酸化されずに取り込まれるため、皮膜厚さが厚くなるとともに、アルマイト皮膜は灰色を呈する。一方、Al3Fe安定相の場合には、アルマイト皮膜中に酸化されて取り込まれるため、皮膜厚が厚くなっても明度の低下が少なく、アルマイト皮膜は灰色を呈しにくい。
また、本発明のように、アルマイト色調に適切な黄味を付与するため所定量のMnを含有する場合には、鋳塊にα-Al(Fe・Mn)Si相が生成している。鋳塊に生成したα-Al(Fe・Mn)Si相の粒子は、均質化処理によって一部マトリックスに固溶するものの最終板まで残存し、アルマイト皮膜中に取り込まれ、皮膜厚さが厚くなるとともに、アルマイト皮膜は灰色を呈し易いことが判明している。
したがって、アルマイト皮膜の色調に影響を及ぼす因子として、アルマイト処理用素材をX線回折分析した際の積分回折強度比(Iα-Al(Fe・Mn)Si/IAl3Fe)を定義した。本発明の合金組成の範囲内において、アルマイト処理用素材をX線回折分析した際に、積分回折強度比(Iα-Al(Fe・Mn)Si/IAl3Fe)が0.1~0.8の範囲内にあれば、アルマイト色調が規定範囲内に収まる。
溶解・溶製
溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、前記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば-60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
鋳造のままの鋳塊においては、α-Al(Fe・Mn)Si相が存在している。均質化処理温度にもよるが、このα-Al(Fe・Mn)Si相の一部を均質化処理によってマトリックス中に固溶させることができる。また、Mn含有量にもよるが、鋳造のままの鋳塊においては、Al6Fe、AlmFe準安定相が生成している可能性もある。このような場合であっても、均質化処理温度を高く設定することによって、これらAl6Fe、AlmFe準安定相をAl3Fe安定相に拡散変態させることができる。
均質化処理温度が560℃未満であると、α-Al(Fe・Mn)Si相の固溶や上記拡散変態に要する保持時間が長くなり、生産性が低下するので好ましくない。均質化処理温度が620℃を超えると、前述のようにMg量にもよるが、鋳塊の凝固時に生成したミクロ的なMg偏析層(β-Mg相)においてバーニング(局部融解)を起こすおそれがある。
したがって、均質化処理温度は560~620℃の範囲とする。
均質化処理温度における保持時間が1時間未満であると、処理炉内の昇温速度などにもよるが、鋳塊全体の実体温度が所定の均質化温度に到達しないおそれがある。均質化処理温度における保持時間が5時間を超えると、均質化処理温度にもよるが、それ以上の効果は期待できず、酸化によるスケールの発生が激しくなり生産性も低下するため、好ましくない。したがって、均質化処理温度における保持時間は、1~5時間とする。
熱間圧延
均質化処理を施された鋳塊は、その後クレーンで吊るされて、均質化処理炉から熱間圧延機に持ち来たされ、熱間圧延機の機種にもよるが、通常何回かの圧延パスによって熱間圧延されて所定の厚み、例えば3~8mm程度の厚みの熱延板としてロールに巻き取る。
熱間圧延板を巻き取ったロールは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、必要に応じて、中間焼鈍処理が行なわれる。通常中間焼鈍は軟化処理でもあるので、材料にもよるがバッチ炉に冷延ロールを挿入し、300~400℃の温度で、1時間以上の保持が行なわれる。保持温度が300℃よりも低いと、軟化が促進されず、保持温度が400℃をこえると、生産性が低下して処理コストが高くなる。また、この中間焼鈍を連続焼鈍炉(CAL)にて行う場合には、420~480℃の温度で、15秒以内の保持が行われる。保持温度が420℃よりも低いと、軟化が促進されず、保持温度が480℃をこえると、生産性が低下して処理コストが高くなる。
前述したように、冷間圧延時の中間焼鈍条件も含めた最終板の調質によっても、析出物の析出状態が変化し、転位密度も変化する。このため、アルカリエッチング処理におけるエッチピットの状態が変化することになり、アルマイト皮膜処理後の色調及び色調の均一性にも影響を及ぼすことになる。
最終冷延率が15%未満の場合、最終板の転位密度が低いため、エッチピット密度も低くなり、アルマイト処理材の明度(L*値)を低下させ、筋っぽさを消す効果が低下する。最終冷延率は15%以上であれば、最終板の転位密度も高くなってエッチピット密度も高くなり、アルマイト処理材の明度(L*値)を増加させ、筋っぽさを消す効果がある。最終冷延率が95%を超えると、コイルの耳割れが発生して、歩留まりが低下するおそれがあるため、好ましくない。したがって、最終冷延率は、15~95%が好ましい。より好ましい最終冷延率は、20~95%の範囲である。さらに好ましい最終冷延率は、30~95%の範囲である。
本発明において、最終冷間圧延の後に行なわれる最終焼鈍は、例えば焼鈍炉によって温度150~200℃で1時間以上保持するバッチ処理であってもよいが、連続焼鈍炉によって例えば200℃~250℃の温度で15秒以内保持する連続焼鈍処理であってもよい。いずれにしても、本発明において最終焼鈍は必ずしも必須ということではないが、アルマイト処理前に金型成形を行う場合も考慮すると、最終板をやや軟化させておくことが望ましい。金型成形における成形性も考慮すると、比較的低温で焼鈍処理しておくことが望ましい。また、この比較的低温の焼鈍処理は、軟化処理としての意味もあるが、安定化処理としての意味もある。焼鈍処理を施さない圧延のまま材では、長期間の時間経過とともに耐力の低下が認められるため、予め時効処理しておき、耐力を長期間安定化させる狙いがある。
所定の各種インゴットおよびスクラップ材を計量、配合して、溶解炉兼保持炉内に投入した。800℃溶解したところで、脱滓用フラックス1kgを2個投入し、次いで、撹拌棒によって、炉内のアルミニウム溶湯を十分に撹拌した。次いで、Mgインゴットを投入し、さらに30分間の鎮静を行った後、スプーンで成分分析用鋳型にディスクサンプルを採取した。次いで、溶湯表面に浮上した滓を攪拌棒にて除去し、先ほど採取したディスクサンプルの中間分析結果を基に、不足している成分について、各種インゴットを投入添加し、さらに溶湯を撹拌した。その後、さらに30分間の鎮静を行ってスプーンで成分分析用鋳型にディスクサンプルを再度採取した。
引張り特性の評価
得られた最終板の強度評価は、引張り試験における0.2%耐力(MPa)によって行った。具体的には、引張り方向が圧延方向と平行になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張強度、0.2%耐力、伸び(破断伸び)を求めた。本明細書において、0.2%耐力が180MPa以上であった供試材を強度良好(○)とし、0.2%耐力が180MPa未満であった供試材を強度不足(×)とした。評価結果を表3に示す。
次にアルマイト処理では、供試材を硫酸濃度170g/L、溶存Al:10g/Lの溶液中で液温18℃、電流密度1.0A/dm2でアルマイト処理を行い、皮膜厚さが7μmになるようアルマイト処理した後、水洗し、95℃で、15分間封孔処理させた後、水洗し、常温乾燥させた。
上記のようにして施したアルマイト皮膜(7μm厚さ)の色調を測定して評価を行った。アルマイト皮膜色調の測定は、色彩色差計(CR-300 MINOLTA社製)を用いて、D65光源を用いて、JIS Z8722に準じて行った。測色値はCIE規格のL*a*b*表色系で表す。L*値は明度を表し、値が大きいほど明るくなり、白色調に近くなる。a*値とb*値は色合いを表し、a*値は+側が赤色、-側が緑色、b*値は+側が黄色、-側が青色を表し、それぞれの絶対値が大きいほど色合いが強くなる。
本明細書において、L*値が85~90の範囲内であった供試材を色調評価良好(○)とし、L*値が85~90の範囲外であった供試材を色調評価不良(×)とした。a*値が-1.0~-0.3の範囲内であった供試材を色調評価良好(○)とし、a*値が-1.0~-0.3の範囲外であった供試材を色調評価不良(×)とした。b*値が0.5~1.0の範囲内であった供試材を色調評価良好(○)とし、b*値が0.5~1.0の範囲外であった供試材を色調評価不良(×)とした。評価結果を併せて表3に示す。
導電率(IACS%)は、導電率計(AUTOSIGMA 2000 日本ホッキング株式会社製)にて、測定を実施した。導電率が40(IACS%)以上であった供試材を導電率良好(○)とし、導電率が40(IACS%)未満であった供試材を導電率不良(×)とした。評価結果を併せて表3に示す。
総合評価は、アルマイト皮膜の厚さが7μmの時のアルマイト色調の測定結果のL*値、a*値、b*値の全てが上述した基準範囲内にあり、0.2%耐力が180MPa以上、かつ導電率が40(IACS%)以上の全てを満たした供試材のみ総合評価良好(○)とし、前記項目のひとつでも満たさないものがあれば総合評価不良(×)とした。
比較例1の供試材(A5052合金組成)は、Mg含有量が2.7質量%と高かったため、均質化処理温度は530℃と低く設定された。比較例1の供試材は、Mn含有量が0.02質量%と低かったが、Cr含有量が0.18質量%と高かったため、アルマイト色調のL*値、a*値、b*値とも規定範囲内であった。しかし、Mg含有量が2.7質量%と高かったため、導電率が35(IACS%)で低すぎて規定範囲外であった。
比較例3の供試材は、均質化処理温度が580℃と高かったため、アルマイト色調のL*値は規定範囲内であった。しかし、Cu含有量が0.02質量%と低かったため、アルマイト色調のb*値が低すぎて規定範囲外であった。
比較例4の供試材は、Cu含有量が0.17質量%と高かったため、アルマイト色調のL*値が低く、b*値が高すぎて規定範囲外であった。
比較例6の供試材は、Fe含有量が0.49質量%と高く、Mn含有量が1.09質量%と極めて高く、さらに均質化処理温度が530℃と低かったため、アルマイト色調のL*値が低く、a*値、b*値が高すぎて規定範囲外であった。
比較例7の供試材は、Mn含有量、Cr含有量ともに0.01質量%と低かったため、アルマイト色調のb*値が低すぎて規格範囲外であった。
XRD装置は、(株)リガク製X線回折装置RAD-rRを用いて測定した。測定条件は、管球Cu-Kα、管電圧50kV、管電流200mA、走査速度1°/min、走査範囲(2θ)10°~70°とした。そして、検出された各相を代表するピークのうち、強度が高く、他成分に由来するピークと重複の無い1ピークについて、すなわちα-Al(Fe・Mn)Siは2θ=41.7°付近、Al3Feは2θ=24.1°付近、AlmFeは2θ=25.7°付近のピークについて積分回折強度を求めた。なお、これらの積分回折強度は各試料につき3回の平均値(n=3)で算出した。表4に、分析した供試材No、均質化処理温度、アルマイト7μm時のL*値、およびXRD回折の強度測定結果を示す。
Claims (6)
- Mg:0.80~1.8質量%、Fe:0.05~0.30質量%、Si:0.20質量%以下、Cu:0.03~0.15質量%、Mn:0.05~0.20質量%、Cr:0.05~0.15質量%を含み、Zn:0.15質量%未満に規制し、残部Alおよび不可避的不純物からなり、0.2%耐力が180MPa以上、導電率が40(IACS%)以上であることを特徴とする高強度アルマイト処理用アルミニウム合金板。
- X線回折分析を行った際の積分回折強度比(Iα-Al(Fe・Mn)Si/IAl3Fe)が0.1~0.8の範囲内である請求項1に記載の高強度アルマイト処理用アルミニウム合金板。
- 請求項1に記載の成分組成を有するアルミニウム合金鋳塊を、560~620℃の温度で1~5時間保持する均質化処理を施した後、熱間圧延と、中間焼鈍を介して或いは介さずに、最終冷延率15~95%の冷間圧延を施すことを特徴とする高強度アルマイト処理用アルミニウム合金板の製造方法。
- 前記冷間圧延の後に、さらに最終焼鈍を施す請求項3に記載の高強度アルマイト処理用アルミニウム合金板の製造方法。
- 請求項1又は請求項2に記載の高強度アルマイト処理用アルミニウム合金板に、前処理としてアルカリエッチングを施し、さらに硫酸アルマイト処理を施した後のアルマイト皮膜の色調範囲が、L*値:85~90、a*値:-1.0~-0.3、b*値:0.5~1.0であることを特徴とする高強度アルマイト皮膜付きアルミニウム合金板。
- アルマイト皮膜付きA5052合金板と組み合わせて電子機器の筺体として使用される請求項5に記載の高強度アルマイト皮膜付きアルミニウム合金板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/912,342 US10131971B2 (en) | 2013-08-13 | 2013-08-13 | High strength aluminum alloy sheet for anodic oxide coated material and method of producing same and high strength anodic oxide aluminum alloy sheet |
PCT/JP2013/071892 WO2015022734A1 (ja) | 2013-08-13 | 2013-08-13 | 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 |
CN201380076096.3A CN105189795B (zh) | 2013-08-13 | 2013-08-13 | 电子设备框体用的具有耐酸铝皮膜的高强度铝合金板及其制造方法 |
KR1020157030783A KR101773695B1 (ko) | 2013-08-13 | 2013-08-13 | 전자기기 하우징용 고강도 알루마이트 피막이 부착된 알루미늄 합금판 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/071892 WO2015022734A1 (ja) | 2013-08-13 | 2013-08-13 | 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022734A1 true WO2015022734A1 (ja) | 2015-02-19 |
Family
ID=52468135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071892 WO2015022734A1 (ja) | 2013-08-13 | 2013-08-13 | 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10131971B2 (ja) |
KR (1) | KR101773695B1 (ja) |
CN (1) | CN105189795B (ja) |
WO (1) | WO2015022734A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105525167A (zh) * | 2016-02-05 | 2016-04-27 | 中铝瑞闽股份有限公司 | 一种超高强度阳极氧化用铝合金带材及其制备方法 |
CN105628437A (zh) * | 2015-12-21 | 2016-06-01 | 赣州江钨拉法格高铁铜材有限公司 | 一种上引法铜合金铸造的炉前取样方法 |
CN107190184A (zh) * | 2017-07-06 | 2017-09-22 | 中铝瑞闽股份有限公司 | 一种镜面状阳极氧化用铝板带材及其制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10030294B2 (en) * | 2015-02-16 | 2018-07-24 | The Boeing Company | Method for manufacturing anodized aluminum alloy parts without surface discoloration |
CN105624483B (zh) * | 2016-02-05 | 2017-11-14 | 中铝瑞闽股份有限公司 | 一种中等强度阳极氧化用铝合金带材及其制备方法 |
CN105695821B (zh) * | 2016-02-05 | 2017-10-17 | 中铝瑞闽股份有限公司 | 一种高强度阳极氧化用铝合金带材及其制备方法 |
CN105936994A (zh) * | 2016-05-31 | 2016-09-14 | 浙江安然电气科技有限公司 | 一种铝合金型材钢圈材料 |
CN106756325B (zh) * | 2016-12-30 | 2018-11-16 | 中山瑞泰铝业有限公司 | 一种Al-Mg-Si-Cu合金及其制备方法和应用 |
CN108149085B (zh) * | 2017-12-14 | 2020-08-28 | 中铝材料应用研究院有限公司 | 一种无退火处理的表面质量优异的铝材及其制备方法 |
CN110257875A (zh) * | 2018-03-12 | 2019-09-20 | 深圳市裕展精密科技有限公司 | 阳极氧化膜及其制作方法 |
CN110257876A (zh) * | 2018-03-12 | 2019-09-20 | 深圳市裕展精密科技有限公司 | 阳极氧化膜的制作方法 |
CN110512250A (zh) * | 2018-05-21 | 2019-11-29 | 深圳市裕展精密科技有限公司 | 阳极氧化膜及其制作方法 |
CN109468555A (zh) * | 2018-11-19 | 2019-03-15 | 广西柳州银海铝业股份有限公司 | 消除冷轧铝卷边部白斑缺陷的方法 |
US11139553B2 (en) * | 2018-12-27 | 2021-10-05 | Intel Corporation | Technologies for a metal chassis for an electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811769A (ja) * | 1981-07-15 | 1983-01-22 | Mitsubishi Alum Co Ltd | すぐれた陽極酸化処理表面を有する光輝性Al合金板材の製造方法 |
JPS63143234A (ja) * | 1986-12-06 | 1988-06-15 | Mitsubishi Alum Co Ltd | 印刷版用アルミニウム合金 |
JPS63250493A (ja) * | 1987-04-03 | 1988-10-18 | Kobe Steel Ltd | 器物用アルミニウム合金の表面処理方法 |
JPH09143602A (ja) * | 1995-11-15 | 1997-06-03 | Nippon Light Metal Co Ltd | 陽極酸化皮膜が無彩色な淡灰色に発色するアルミニウム合金板 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275546A (ja) | 1987-01-24 | 1987-11-30 | Sky Alum Co Ltd | 圧延用アルミニウム合金鋳塊の製造方法 |
DE69717182T2 (de) * | 1996-03-07 | 2003-07-24 | Canon K.K., Tokio/Tokyo | Excimerlasergenerator |
PT802267E (pt) * | 1996-04-18 | 2000-04-28 | Alusuisse Lonza Services Ag | Superficie de aluminio com cores de interferencia |
US7122107B2 (en) * | 2003-08-28 | 2006-10-17 | General Motors Corporation | Color stabilization of anodized aluminum alloys |
JP4564328B2 (ja) * | 2004-10-18 | 2010-10-20 | 古河スカイ株式会社 | 生産性および意匠性に優れる電子機器用筐体 |
JP5004007B2 (ja) * | 2007-04-12 | 2012-08-22 | 日本軽金属株式会社 | 電池蓋用アルミニウム合金板及びその製造方法 |
JP5064935B2 (ja) | 2007-08-22 | 2012-10-31 | 株式会社神戸製鋼所 | 耐久性と低汚染性を兼備した陽極酸化処理アルミニウム合金 |
JP5640399B2 (ja) * | 2010-03-03 | 2014-12-17 | 日本軽金属株式会社 | 陽極酸化皮膜を備えたアルミニウム合金板およびその製造方法 |
-
2013
- 2013-08-13 KR KR1020157030783A patent/KR101773695B1/ko active IP Right Grant
- 2013-08-13 WO PCT/JP2013/071892 patent/WO2015022734A1/ja active Application Filing
- 2013-08-13 US US14/912,342 patent/US10131971B2/en active Active
- 2013-08-13 CN CN201380076096.3A patent/CN105189795B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811769A (ja) * | 1981-07-15 | 1983-01-22 | Mitsubishi Alum Co Ltd | すぐれた陽極酸化処理表面を有する光輝性Al合金板材の製造方法 |
JPS63143234A (ja) * | 1986-12-06 | 1988-06-15 | Mitsubishi Alum Co Ltd | 印刷版用アルミニウム合金 |
JPS63250493A (ja) * | 1987-04-03 | 1988-10-18 | Kobe Steel Ltd | 器物用アルミニウム合金の表面処理方法 |
JPH09143602A (ja) * | 1995-11-15 | 1997-06-03 | Nippon Light Metal Co Ltd | 陽極酸化皮膜が無彩色な淡灰色に発色するアルミニウム合金板 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105628437A (zh) * | 2015-12-21 | 2016-06-01 | 赣州江钨拉法格高铁铜材有限公司 | 一种上引法铜合金铸造的炉前取样方法 |
CN105525167A (zh) * | 2016-02-05 | 2016-04-27 | 中铝瑞闽股份有限公司 | 一种超高强度阳极氧化用铝合金带材及其制备方法 |
CN107190184A (zh) * | 2017-07-06 | 2017-09-22 | 中铝瑞闽股份有限公司 | 一种镜面状阳极氧化用铝板带材及其制备方法 |
CN107190184B (zh) * | 2017-07-06 | 2018-07-20 | 中铝瑞闽股份有限公司 | 一种镜面状阳极氧化用铝板带材及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105189795A (zh) | 2015-12-23 |
KR20150133842A (ko) | 2015-11-30 |
US10131971B2 (en) | 2018-11-20 |
CN105189795B (zh) | 2017-03-22 |
KR101773695B1 (ko) | 2017-08-31 |
US20160201178A1 (en) | 2016-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015022734A1 (ja) | 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板 | |
JP5640399B2 (ja) | 陽極酸化皮膜を備えたアルミニウム合金板およびその製造方法 | |
JP2009209426A (ja) | 筐体用アルミニウム合金材 | |
KR102213570B1 (ko) | 양극산화된-품질 알루미늄 합금 및 관련된 제품 및 방법 | |
CN111690844B (zh) | 一种共晶型Al-Fe-Mn-Si-Mg压铸合金及制备方法与应用 | |
WO2015114880A1 (ja) | 高強度アルミニウム合金及びその製造方法 | |
JP2007056365A (ja) | 銅−亜鉛−錫合金及びその製造方法 | |
CN110396628B (zh) | 一种铝合金及其制备方法 | |
TWI589705B (zh) | Aluminum alloy plate attached with high-strength alumite film for electronic equipment frame and its manufacturing method | |
JP5924585B2 (ja) | 高強度アルマイト処理用アルミニウム合金板及びその製造方法、並びに高強度陽極酸化皮膜付きアルミニウム合金板 | |
JPH09143602A (ja) | 陽極酸化皮膜が無彩色な淡灰色に発色するアルミニウム合金板 | |
US20190390305A1 (en) | Semi-solid die-casting aluminum alloy and method for preparing semi-solid die-casting aluminum alloy casting | |
TWI548754B (zh) | An aluminum alloy plate for high strength anodic oxidation of an electronic machine frame, a method of manufacturing the same, and an aluminum alloy plate with a high-strength anodic oxidation film for an electronic machine frame | |
RU2717622C1 (ru) | Анодированный алюминий темно-серого цвета | |
CN114351016B (zh) | 一种粗晶铝合金及其制备方法和应用 | |
JP4040787B2 (ja) | 陽極酸化処理後の色調が灰色で安定なアルミニウム合金圧延板およびその製造方法 | |
CN102108461A (zh) | 一种适合阳极氧化处理的压铸铝合金及其制备方法 | |
JP2544235B2 (ja) | 陽極酸化処理後の色調が灰色の高強度アルミニウム合金展伸材およびその製造方法 | |
JP3200523B2 (ja) | グレー発色用時効硬化型アルミニウム合金押出形材及びその製造方法 | |
TW201843311A (zh) | 鋁合金板、及、陽極氧化處理鋁合金板 | |
CN106636808A (zh) | 一种铝合金及其制备方法 | |
JPH05132731A (ja) | 陽極酸化処理後の色調が黄金色のアルミニウム合金およびその製造方法 | |
KR100230685B1 (ko) | 유산전해법에 의한 연회색 및 아이보리색상을 가지는 알미늄합금기물의 제조방법 및 알미늄합금기물 | |
KR20180038783A (ko) | 고기능성 알루미늄-마그네슘-규소 합금 및 그 제조방법 | |
JP3644817B2 (ja) | 陽極酸化処理後の色調が灰色のアルミニウム合金圧延板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380076096.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13891345 Country of ref document: EP Kind code of ref document: A1 |
|
WD | Withdrawal of designations after international publication |
Designated state(s): JP |
|
ENP | Entry into the national phase |
Ref document number: 20157030783 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14912342 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13891345 Country of ref document: EP Kind code of ref document: A1 |