WO2015020100A1 - 含フッ素表面処理剤を含有する物品の分析方法 - Google Patents

含フッ素表面処理剤を含有する物品の分析方法 Download PDF

Info

Publication number
WO2015020100A1
WO2015020100A1 PCT/JP2014/070764 JP2014070764W WO2015020100A1 WO 2015020100 A1 WO2015020100 A1 WO 2015020100A1 JP 2014070764 W JP2014070764 W JP 2014070764W WO 2015020100 A1 WO2015020100 A1 WO 2015020100A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
surface treatment
treatment agent
article
containing surface
Prior art date
Application number
PCT/JP2014/070764
Other languages
English (en)
French (fr)
Inventor
田中 勇次
良輔 原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015020100A1 publication Critical patent/WO2015020100A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to an analysis method for determining the number of carbon atoms of a fluoroalkyl group in an article containing a fluorine-containing surface treatment agent.
  • the present invention relates to perfluorooctanoic acid and precursors thereof, such as C 8 F 17 I, C 8 F, in articles treated (processed) with surface treating agents such as water and oil repellents and / or antifouling agents.
  • the present invention relates to a method for analyzing 17 CH 2 CH 2 I, C 8 F 17 CH 2 CH 2 OH, C 8 F 17 CH ⁇ CH 2 , and C 8 F 17 CH 2 CH 2 OCOCH ⁇ CH 2 .
  • Perfluorooctanoic acid is a compound that is used as an additive, a surfactant, or the like used in the synthesis of a fluororesin such as polytetrafluoroethylene (PTFE). It has been confirmed that perfluorooctanoic acid is widely diffused in the environment, for example, it is detected in environmental samples such as river water and groundwater in units of the order of ppt to ppb. Perfluorooctanoic acid has been confirmed to be bioaccumulative, and there are concerns about health hazards. In January 2006, the US Environmental Protection Agency (US EPA) established a voluntary approach to eight major fluorochemical manufacturers. Calling for the abolition of emissions until 2015 (PFOA2010 / 2015 stewardship program), all eight companies have announced their participation.
  • US Environmental Protection Agency US EPA
  • C 8 F 17 I and its derivatives may be contained in fluorine-containing industrial products, and may decompose in the environment to produce perfluorooctanoic acid unintentionally.
  • the possibility of causing diffusion of perfluorooctanoic acid has also been pointed out.
  • JP 2011-526675 A discloses a method for analyzing a low molecular weight organic compound having 20 or less carbon atoms in a cloth made of a chemical fiber treated with a water / oil repellent. This method is a technique for extracting and analyzing free perfluorooctanoic acid and / or perfluorooctanoic acid precursor contained in a fabric sample made of chemical fibers.
  • the octanoic acid precursor does not contain a sufficient concentration for analysis, and it cannot be determined whether or not the perfluorooctanoic acid precursor is used in the sample.
  • Japanese Patent Application Laid-Open No. 2010-54274 discloses a method for analyzing a mixture containing a fluorine compound. This method is not only complicated, but it is necessary to heat the sample to a high temperature (1000 ° C. according to FIG. 9) in order to obtain quantitativeness, so even if the substrate is at a high temperature such as cosmetic powder. Although it can be applied when it is made of a substance that does not decompose, since many substrates cannot withstand high temperatures, gas is generated due to thermal decomposition of the substrate, which hinders analysis of fluorine-based compounds. That is, the applicable base material is extremely limited.
  • One of the objects of the present invention is to easily discriminate whether or not a perfluorooctanoic acid precursor is used in an article containing a fluorine-containing surface treatment agent (for example, processed products such as fibers, clothes, and paper). Is to provide a simple analysis method.
  • a fluorine-containing surface treatment agent for example, processed products such as fibers, clothes, and paper.
  • the present invention collects small pieces of articles containing a fluorine-containing surface treatment agent (that is, fluorine-containing organic compound) (for example, processed products such as water- and oil-repellent processed fibers, clothing, paper, etc.) and heats the small pieces.
  • a fluorine-containing surface treatment agent that is, fluorine-containing organic compound
  • processed products such as water- and oil-repellent processed fibers, clothing, paper, etc.
  • the present invention resides in a method for analyzing an article containing a fluorine-containing surface treatment agent, which comprises (1) a step of heating an article containing a fluorine-containing surface treatment agent, and (2) a step of measuring a gas generated from the article.
  • the analysis method of the present invention is a simple analysis method that does not require complicated operations.
  • the number of carbon atoms of a fluoroalkyl group, particularly a perfluoroalkyl group, contained in the fluorine-containing surface treatment agent can be determined.
  • FIG. 2 is a gas chromatograph mass spectrometry chart (GC chart) obtained in Example 1.
  • FIG. 2 is a gas chromatograph mass spectrometry chart (GC chart) obtained in Example 2.
  • FIG. 2 is a gas chromatograph mass spectrometry chart (GC chart) obtained in Example 12.
  • FIG. 2 is a gas chromatograph mass spectrometry chart (MS chart) obtained in Example 12.
  • the analysis method of the present invention comprises: (1) a step of heating an article containing a fluorine-containing surface treatment agent, and (2) a step of measuring a gas generated from the article.
  • the “article containing a fluorine-containing surface treatment agent” is generally an article treated with a fluorine-containing surface treatment agent.
  • the fluorine-containing surface treatment agent is generally a fluorine-containing water / oil repellent and / or a fluorine-containing antifouling agent.
  • Articles in particular, textile products (yarns, knitted fabrics, woven fabrics, non-woven fabrics, and the like) are used as objects (base materials) to be treated with fluorine-containing surface treatment agents (for example, fluorine-containing water and oil repellent agents) Garments, bedding, curtains, rugs, etc.), stones, filters (eg, electrostatic filters), dust masks, fuel cell components (eg, gas diffusion electrodes and gas diffusion supports), glass, paper, wood Leather, fur, asbestos, brick, cement, metals and oxides, ceramic products, plastics, painted surfaces, plasters and the like.
  • the textile product may in particular be a carpet.
  • Treatment means that a treatment agent is applied to an object to be treated (base material) by dipping, spraying, coating, or the like.
  • the fluoropolymer which is an active ingredient of the treatment agent penetrates into the treatment object and / or adheres to the surface of the treatment object.
  • the heating temperature is preferably a temperature at which pyrolysis gas is not generated from the substrate. This is because the gas generated by the thermal decomposition of the substrate may interfere with the analysis of the fluoroalkyl group. Therefore, it is preferable to perform the heating so that the weight change of the article does not substantially occur.
  • the weight change (weight reduction) of the article due to heating is preferably 5% by weight or less, for example 1% or less, particularly 0.5% by weight or less, based on the weight of the article before heating.
  • the heating temperature is generally from 100 to 250 ° C., for example from 150 ° C. to 210 ° C., in particular from 180 to 200 ° C.
  • the heating time is generally from 1 minute to 300 minutes, for example from 2 minutes to 150 minutes, in particular from 5 minutes to 60 minutes.
  • heating may be performed at a constant temperature, heating may be performed by changing the temperature. For example, heating can be performed by increasing the temperature from a low temperature (eg, 70 ° C.) to a high temperature (eg, 250 ° C.).
  • the container used for heating may be a sealed container or an open container.
  • the sealed container include a container of a type in which a septum seal made of a sealing material such as butyl rubber or silicone rubber is fixed to a glass vial with an aluminum cap.
  • a gas such as air or nitrogen is allowed to flow from one opening of a container having two openings, and a bag-shaped collection container or styrene-divinylbenzene copolymer is inserted into the other opening.
  • the apparatus provided with the adsorbent is exemplified.
  • Gas is generated from the article by heating.
  • This gas includes a gas generated by decomposition of the fluorine-containing surface treatment agent.
  • the gas generated from the article is collected and measured.
  • a static headspace sampling method for collecting a gas phase portion in the sealed container using a syringe or the like is exemplified.
  • a device that is connected to a gas chromatograph device and can automatically collect from heating and perform gas chromatograph measurement is commercially available, and this may be used.
  • a gas such as air or nitrogen is allowed to flow from one opening of the container having the two openings, and the other opening is adsorbed with styrene-divinylbenzene copolymer or the like.
  • a gas collected by an adsorbent is collected by a method such as heating in a device equipped with a material and used as a measurement sample. Since the fluorine-containing surface treatment agent has an Rf group (fluoroalkyl group), the gas generated by decomposition contains a substance having an Rf group.
  • the fluorine-containing surface treatment agent generally contains a fluorine-containing polymer as an active ingredient.
  • Examples of cracked gases having Rf groups are as follows.
  • Rf-ZA [Wherein Rf is a fluoroalkyl group having 1 to 20 carbon atoms, Z is a direct bond or a divalent organic group (for example, an alkylene group), A is —OH, —CH ⁇ CH 2 , —OCOCH ⁇ CH 2 , —COOH or halogen (eg, chlorine or iodine). ].
  • the cracked gas is preferably Rf—Z—OH.
  • Rf is preferably a perfluoroalkyl group. Specific examples of Rf are -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , -C 5 F 11 , -C 6 F 13 , -C 8 F 17 , -C 10 F 21 and -C 12 F 25 .
  • Z is Direct bond, A linear alkylene group having 1 to 20 carbon atoms or a branched alkylene group, [For example, a group represented by the formula — (CH 2 ) x — (wherein x is 1 to 10)], Alternatively, a group represented by the formula —SO 2 N (R 1 ) R 2 — or a formula —CON (R 1 ) R 2 (wherein R 1 is an alkyl group having 1 to 10 carbon atoms, and R 2 is A straight-chain alkylene group or a branched alkylene group having 1 to 10 carbon atoms).
  • a group represented by the formula —CH 2 CH (OR 3 ) CH 2 — (wherein R 3 represents a hydrogen atom or an acyl group having 1 to 10 carbon atoms (eg, formyl or acetyl)).
  • R 3 represents a hydrogen atom or an acyl group having 1 to 10 carbon atoms (eg, formyl or acetyl)).
  • a group represented by the formula —Ar—CH 2 — wherein Ar is an arylene group optionally having a substituent
  • Z is preferably a direct bond, an alkylene group having 1 to 20 carbon atoms, or —SO 2 N (R 1 ) R 2 —.
  • the cracked gas can be detected by mass spectrometer (MS), flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), photoionization detector (PID), etc. .
  • MS mass spectrometer
  • FID flame ionization detector
  • TCD thermal conductivity detector
  • ECD electron capture detector
  • PID photoionization detector
  • a retention time method, a mass spectrometry method or the like can be applied.
  • mass spectrometry it is possible to identify a compound, and it is difficult to be disturbed by gas generated by thermal decomposition of the base material. Therefore, detection is preferably performed by mass spectrometry (MS). That is, it is preferable to use GC-MS (gas chromatograph mass spectrometry).
  • the analysis method of the present invention is generally a qualitative analysis. According to the method of the present invention, the number of carbon atoms of the Rf group contained in the article (an integer of 1 to 20, particularly 4, 6, 8, 10) can be analyzed. In particular, it is possible to easily analyze whether or not an Rf group having 8 carbon atoms (particularly a perfluoroalkyl group) is present.
  • % or “part” means “% by weight” or “part by weight” unless otherwise specified.
  • Synthesis example 3 A 300 ml four-necked flask was charged with 60 g of C 6 F 13 CH 2 CH 2 OCOCH ⁇ CH 2 , 10 g of hydroxyethyl methacrylate, 30 g of hydroxyethyl acrylate, and 200 g of MEK. After heating at 60 ° C., t-butyl peroxypivalate 0. 5 g was added and reacted at 60 ° C. for 8 hours. After the MEK was removed by evaporation, the obtained polymer was adjusted in concentration with pure water so that the solid content was 20% by weight.
  • Example 1 The aqueous dispersion of the polymer obtained in Synthesis Example 1 was diluted with water to 4% by weight, 6% by weight of glyoxal resin, and 1.5% by weight of MDI-based blocked isocyanate emulsion (solid content 30%). A liquid was prepared. A cotton cloth (twill, 25 cm ⁇ 25 cm) was immersed in the treatment liquid, squeezed with a mangle at 4 kg / cm 2 , 4 m / min, and heat treated at 170 ° C. for 2 minutes to obtain a treated cloth. A treated cloth 3 cm ⁇ 3 cm (210 mg) was collected in a vial and sealed. After the vial was heated at 200 ° C.
  • Example 2 A treatment cloth was obtained in the same manner as in Example 1 except that the treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 4% by weight. Qualitative analysis was performed using x 3 cm (219 mg). A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.5 minutes. A GC chart is shown in FIG.
  • Example 3 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 2% by weight.
  • a polyester cloth (taffeta, 25 cm ⁇ 25 cm) was immersed in the treatment liquid, squeezed with a mangle at 4 kg / cm 2 , 4 m / min, and heat treated at 170 ° C. for 1 minute to obtain a treated cloth.
  • a treated cloth 3 cm ⁇ 3 cm (37 mg) was collected in a vial and sealed. After the vial was heated at 200 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS.
  • a peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.5 minutes.
  • the C 8 F 17 CH 2 CH 2 OH peak and the C 10 F 21 CH 2 CH 2 OH peak were not observed.
  • Example 4 Except for preparing the treatment liquid by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with 5% by weight and water with a TDI-based blocked isocyanate emulsion (solid content 30%) 1.5% by weight.
  • a treated cloth was obtained in the same manner as in Example 3, and a qualitative analysis was performed using a treated cloth 3 cm ⁇ 3 cm (54 mg). A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.5 minutes.
  • Example 5 Except that the treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 3% by weight and 2.0% by weight of dimethylsiloxane emulsion (solid content 20%). 3 was obtained, and a qualitative analysis was performed using the treated cloth 3 cm ⁇ 3 cm (39 mg). A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.4 minutes.
  • Example 6 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 2% by weight. A treated cloth was obtained in the same manner as in Example 3 except that the nylon cloth was immersed in the treated liquid, and qualitative analysis was performed using the treated cloth 3 cm ⁇ 3 cm (33 mg). A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.5 minutes.
  • Example 7 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 3% by weight.
  • Nylon cloth (taffeta, 25 cm x 25 cm) is dipped in the treatment solution, squeezed with a mangle at 4 kg / cm 2 , 4 m / min, heat treated at 170 ° C. for 1 minute to obtain a treated cloth, and then MEK / toluene is used as a solvent.
  • An acrylic resin having a concentration of 30% was uniformly applied to one side of a nylon cloth, dried at 100 ° C. for 1 minute, and then heat-treated at 150 ° C. for 1 minute.
  • a 3 cm x 3 cm treated cloth was collected in a vial and sealed.
  • Example 8 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 2 with water to 4% by weight. The cut pile nylon carpet was sprayed with a wet pickup of 15% and heat treated at 120 ° C. for 5 minutes to obtain a treated carpet. 210 mg of treated carpet pile was collected in a vial and sealed. After the vial was heated at 200 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS. A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.4 minutes.
  • Example 9 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 3 with water to 1% by weight and 2% by weight of starch. Paper (kraft pulp, basis weight 70 g / m 2 , 25 cm x 25 cm) is immersed in the treatment liquid, squeezed with mangle at 0.2 kg / cm 2 , 4 m / min, and heat treated at 110 ° C. for 1 minute to obtain a treated paper It was. 0.2 g of treated paper was collected in a vial and sealed. After the vial was heated at 200 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS. A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.5 minutes.
  • Example 10 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 3 with water to 1% by weight and 2% by weight of starch. Paper (kraft pulp, basis weight 70 g / m 2 , 25 cm x 25 cm) is immersed in the treatment liquid, squeezed with mangle at 0.2 kg / cm 2 , 4 m / min, and heat treated at 110 ° C. for 1 minute to obtain a treated paper It was. 0.2 g of treated paper was collected in a vial and sealed. After the vial was heated at 150 ° C. for 30 minutes, the volatile decomposition products in the vial were collected with a syringe, and the volatile decomposition products were qualitatively analyzed using GC-MS. A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.3 minutes.
  • Example 11 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 3 with water to 1% by weight and 2% by weight of starch. Paper (kraft pulp, basis weight 70 g / m 2 , 25 cm x 25 cm) is immersed in the treatment liquid, squeezed with mangle at 0.2 kg / cm 2 , 4 m / min, and heat treated at 110 ° C. for 1 minute to obtain a treated paper It was. 0.2 g of treated paper was collected in a vial and sealed. After the vial was heated at 100 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS. A peak of C 6 F 13 CH 2 CH 2 OH was observed at 15.3 minutes.
  • Example 12 A treatment liquid was prepared by diluting the aqueous dispersion of the polymer obtained in Synthesis Example 4 with water to 2% by weight.
  • a polyester cloth (taffeta, 25 cm ⁇ 25 cm) was immersed in the treatment liquid, squeezed with a mangle at 4 kg / cm 2 , 4 m / min, and heat treated at 170 ° C. for 1 minute to obtain a treated cloth.
  • a treated cloth 3 cm ⁇ 3 cm (39 mg) was collected in a vial and sealed. After the vial was heated at 200 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS.
  • FIG. 4 shows an MS chart at a GC chart retention time of 23.5 minutes.
  • Comparative Example 1 A treatment solution was prepared by diluting with starch to 2% by weight of starch. Paper (kraft pulp, basis weight 70 g / m 2 , 25 cm ⁇ 25 cm) was immersed in the treatment liquid, squeezed with mangle at 4 kg / cm 2 , 4 m / min, and heat treated at 110 ° C. for 1 minute to obtain a treated paper. 0.2 g of treated paper was collected in a vial and sealed. After the vial was heated at 200 ° C. for 30 minutes, the volatile decomposition product in the vial was collected with a syringe, and the volatile decomposition product was qualitatively analyzed using GC-MS. No peak derived from the perfluoro compound was observed.
  • the number of carbon atoms of the fluoroalkyl group in the surface treatment agent can be easily determined in an article treated with a surface treatment agent, particularly a water / oil repellent agent.
  • a surface treatment agent particularly a water / oil repellent agent.
  • the carbon number of the fluoroalkyl group can be easily analyzed. For example, it is possible to easily determine whether the fluoroalkyl group has 8 carbon atoms or 6 carbon atoms (for example, 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

含フッ素表面処理剤が有するフルオロアルキル基の炭素数を求める、含フッ素表面処理剤を含有する物品の分析方法であって、 (1)含フッ素表面処理剤を含有する物品を加熱する工程、および (2)物品から発生したガスを測定する工程 を特徴としている分析方法が開示されている。含フッ素表面処理剤を含有する物品(例えば、繊維、被服および紙)にペルフルオロオクタン酸が使用されているか否かを容易に判別する簡便な分析方法が提供される。

Description

含フッ素表面処理剤を含有する物品の分析方法
 本発明は、含フッ素表面処理剤を含有する物品におけるフルオロアルキル基の炭素数を求める分析方法に関する。特に、本発明は、撥水撥油剤および/または防汚加工剤などの表面処理剤で処理(加工)された物品におけるペルフルオロオクタン酸およびその前駆体、例えば、C8F17I、C8F17CH2CH2I、 C8F17CH2CH2OH、C8F17CH=CH2、C8F17CH2CH2OCOCH=CH2を分析する方法に関する。
 ペルフルオロオクタン酸はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂を合成する際に使用される添加剤、界面活性剤などとして使用されている化合物である。ペルフルオロオクタン酸は、河川水・地下水等の環境試料中にppt~ppbの程度の単位の量で検出されるなど、環境に広く拡散していることが確認されている。
 また、ペルフルオロオクタン酸は、生体蓄積性が確認されており、健康被害の懸念があることから、2006年1月に米国環境保護局(US EPA)は主要なフッ素化学メーカ8社に自主取り組みとして2015年までの排出全廃を呼びかけ(PFOA2010/2015スチュワードシップ・プログラム)、全8社が参加を表明している。
 ペルフルオロオクタン酸の合成原料であるC8F17Iやその誘導体(例えば、C8F17CH2CH2I、 C8F17CH2CH2OH、C8F17CH=CH2、C8F17CH2CH2OCOCH=CH2)は、含フッ素工業製品中に含有されていることがあり、環境中で分解して意図せずペルフルオロオクタン酸を生成する可能性があり、環境へのペルフルオロオクタン酸の拡散原因となっている可能性も指摘されている。そこで、PFOA2010/2015スチュワードシップ・プログラムでは、ペルフルオロオクタン酸を生成する可能性がある化合物(例えば、C8F17I、C8F17CH2CH2I、 C8F17CH2CH2OH、C8F17CH=CH2、C8F17CH2CH2OCOCH=CH2)をペルフルオロオクタン酸前駆体と呼び、参加各社はペルフルオロオクタン酸と同様にペルフルオロオクタン酸前駆体も2015年までに排出を全廃するべく取り組んでいる。
 このため、含フッ素工業製品にペルフルオロオクタン酸前駆体が使用されているか否かを判別する方法が求められている。特に、含フッ素表面処理剤を含有する物品(例えば、繊維、被服および紙等の加工品)の分野では、強く要望されている。
 ペルフルオロオクタン酸を定量する方法が存在する(例えば、水など環境試料ではISO 25101:2009、撥水撥油剤水性分散液では特開2011-237385号公報)。しかし、これらの定量手法を含フッ素工業製品に適用した場合には、試料中のペルフルオロオクタン酸の含有量のみが得られ、その結果から含フッ素工業製品中にペルフルオロオクタン酸前駆体が使用されているか否か判断することが出来ない。
 特開2011-526675号公報は、撥水撥油剤で処理された化学繊維からなる布中の炭素数が20以下である低分子の有機化合物の分析方法を開示している。この方法は、化学繊維からなる布試料中に含まれる遊離のペルフルオロオクタン酸および/またはペルフルオロオクタン酸前駆体を抽出・分析する手法であるが、多くの場合、遊離のペルフルオロオクタン酸および/またはペルフルオロオクタン酸前駆体は分析を行う上で十分な濃度が含まれておらず、試料中にペルフルオロオクタン酸前駆体が使用されているか否か判断することが出来ない。
 特開2010-54274号公報は、フッ素系化合物を含有する混合物を分析する方法を開示している。この方法は煩雑であるのみならず、定量性を得るためには試料を高温(図9によれば1000℃)まで加熱する必要があるため、基材が化粧品用粉体などのように高温でも分解しない物質からなる場合は適用しうるが、多くの基材は高温に耐えないため、基材の熱分解によりガスが発生し、フッ素系化合物の分析を妨げる。すなわち、適用しうる基材が極めて制限される。
特開2011-526675号公報 特開2010-54274号公報
 本発明の目的の1つは、含フッ素表面処理剤を含有する物品(例えば、繊維、被服および紙等の加工品)にペルフルオロオクタン酸前駆体が使用されているか否かを容易に判別する簡便な分析方法を提供することである。
 本発明は、含フッ素表面処理剤(すなわち、含フッ素有機化合物)を含有する物品(例えば、撥水撥油加工された繊維、被服、紙等の加工品)の小片を採取し、小片を加熱して得られる揮発成分中の含フッ素有機化合物の炭素数を求めることを特徴とした、物品にペルフルオロオクタン酸前駆体が使用されているか否かを判別する方法を提供する。
 本発明の要旨は、
(1)含フッ素表面処理剤を含有する物品を加熱する工程、および
(2)物品から発生したガスを測定する工程
を特徴とする含フッ素表面処理剤を含有する物品の分析方法に存する。
 本発明の分析方法は、複雑な操作を要さず、簡便な分析方法である。
 本発明の分析方法によれば、含フッ素表面処理剤が有するフルオロアルキル基、特にペルフルオロアルキル基の炭素数を求めることができる。例えば、含フッ素表面処理剤が炭素数8のフルオロアルキル基、特にペルフルオロアルキル基を有するか否かが容易に判別できる。さらに具体的には、フルオロアルキル基の炭素数が8以上(例えば、8、10または12)であるかあるいは6以下(例えば、6または4)であるかを容易に判別することができる。
実施例1で得られたガスクロマトグラフ質量分析チャート(GCチャート)である。 実施例2で得られたガスクロマトグラフ質量分析チャート(GCチャート)である。 実施例12で得られたガスクロマトグラフ質量分析チャート(GCチャート)である。 実施例12で得られたガスクロマトグラフ質量分析チャート(MSチャート)である。
 本発明の分析方法は、
(1)含フッ素表面処理剤を含有する物品を加熱する工程、および
(2)物品から発生したガスを測定する工程
を有する。
 「含フッ素表面処理剤を含有する物品」とは、一般に、含フッ素表面処理剤で処理された物品である。含フッ素表面処理剤は、一般に含フッ素撥水撥油剤および/または含フッ素防汚加工剤である。「物品」、特に、含フッ素表面処理剤(例えば、含フッ素撥水撥油剤)で処理される被処理物(基材)としては、繊維製品(糸、編物、織物、不織布、およびこれらを使用して作製した被服、寝具、カーテン、敷物類)、石材、フィルター(例えば、静電フィルター)、防塵マスク、燃料電池の部品(例えば、ガス拡散電極およびガス拡散支持体)、ガラス、紙、木、皮革、毛皮、石綿、レンガ、セメント、金属および酸化物、窯業製品、プラスチック、塗面、およびプラスターなどを挙げることができる。繊維製品は、特にカーペットであってよい。「処理」とは、処理剤を、浸漬、噴霧、塗布などにより被処理物(基材)に適用することを意味する。処理により、処理剤の有効成分である含フッ素重合体が被処理物の内部に浸透するおよび/または被処理物の表面に付着する。
 以下、各工程について説明する。
(1)加熱工程
 含フッ素表面処理剤を含有する物品を加熱する。加熱温度は、基材から熱分解ガスが発生しない温度であることが好ましい。基材の熱分解により発生したガスが、フルオロアルキル基の分析を妨げることがあるからである。したがって、加熱は、物品の重量変化が実質的に生じないように行うことが好ましい。加熱による物品の重量変化(重量減少)は、加熱前の物品の重量に基づいて、5重量%以下、例えば1%以下、特に0.5重量%以下であることが好ましい。
 加熱温度は、一般に100~250℃、例えば150℃~210℃、特に180~200℃であってよい。加熱時間は、一般に1分~300分、例えば2分~150分、特に5分~60分であってよい。
 一定温度で加熱してもよいが、温度を変化させて加熱を行ってもよい。例えば、低温(例えば70℃)から高温(例えば250℃)に温度を上昇させることによって、加熱を行うことが可能である。
 加熱に用いる容器は、密閉容器でも開放容器でも良い。密閉容器としては、ガラス製のバイアル瓶にブチルゴム、シリコーンゴム等のシール材からなるセプタムシールをアルミニウム製のキャップで固定する形式の容器が例示される。開放容器を用いる場合、2つの開口部を有する容器の一方の開口部より空気、窒素等の気体を流入させ、他の開口部に袋状の捕集容器またはスチレン-ジビニルベンゼン共重合体等の吸着材を備えた装置が例示される。
(2)測定工程
 加熱により、物品からガスが発生する。このガスは、含フッ素表面処理剤が分解して発生するガスを含む。物品から発生したガスを捕集して、測定を行う。
 捕集法としては、密閉容器を用いる場合は、注射器等を用いて密閉容器中の気相部を捕集するスタティックヘッドスペースサンプリング法が例示される。スタティックヘッドスペースサンプリング法においては、ガスクロマトグラフ装置と接続し、加熱から捕集およびガスクロマトグラフ測定を自動で行うことの出来る装置が市販されており、これを利用しても良い。また、開放容器を用いる場合には、前記の2つの開口部を有する容器の一方の開口部より空気、窒素等の気体を流入させ、他の開口部にスチレン-ジビニルベンゼン共重合体等の吸着材を備えた装置において、吸着材に捕集されたガスを加熱等の方法で回収し、測定試料とするダイナミックヘッドスペースサンプリング法が例示される。
 含フッ素表面処理剤がRf基(フルオロアルキル基)を有するので、分解して発生するガスは、Rf基を有する物質を含む。
 含フッ素表面処理剤は、一般に、含フッ素重合体を有効成分として含む。含フッ素重合体は、一般に、式:
CH2=C(-X)-C(=O)-Y-Z-Rf  
[式中、Xは、水素原子、一価の有機基またはハロゲン原子であり、
Y は、-O- または -NH-であり、 
Zは、直接結合または二価の有機基であり、
Rfは、炭素数1~20のフルオロアルキル基である。]
で示される含フッ素単量体から誘導された繰り返し単位を有する。
 したがって、Rf基を有する分解ガスの例は、次のとおりである。
Rf-Z-A
[式中、Rfは、炭素数1~20のフルオロアルキル基、
Zは、直接結合または二価の有機基(例えば、アルキレン基)、
Aは、-OH、-CH=CH、-OCOCH=CH、-COOHまたはハロゲン(例えば、塩素またはヨウ素)である。]。
 分解ガスは、Rf-Z-OHであることが好ましい。
 Rfはペルフルオロアルキル基であることが好ましい。
Rfの具体例は、-CF3、-C25、-C37、-C49、-C511、-C613、-C817、-C1021、-C1225である。
 Zの具体例は、
直接結合、
炭素数1~20の直鎖アルキレン基または分枝状アルキレン基、
[例えば、式-(CH-(式中、xは1~10である。)で示される基]、
あるいは
式-SON(R)R-または式-CON(R)Rで示される基
(式中、Rは、炭素数1~10のアルキル基であり、Rは、炭素数1~10の直鎖アルキレン基または分枝状アルキレン基である。)、
あるいは
式-CHCH(OR)CH-(式中、Rは、水素原子、または、炭素数1~10のアシル基(例えば、ホルミルまたはアセチルなど)を表す。)で示される基、
あるいは、
式-Ar-CH-(式中、Arは、置換基を必要により有するアリーレン基である。)で示される基、
あるいは
-(CH2)m-SO2-(CH2)n-基または-(CH2)m-S-(CH2)n-基(但し、mは1~10、nは0~10、である)
である。
 本発明において、Zは、直接結合、炭素数1~20のアルキレン基、-SON(R)R-であることが好ましい。
 分解ガスの具体例には、ペルフルオロオクタン酸、ならびにその前駆体(例えば、C8F17I、C8F17CH2CH2I、 C8F17CH2CH2OH、C8F17CH=CH2、C8F17CH2CH2OCOCH=CH2、C8F17SO2N(CH3)CH2CH2OH)が含まれる。
 分解ガスを測定して、Rf基を有する分解ガスの存在または不存在を判定する。測定は、ガスクロマトグラフ(GC)によって行うことが好ましい。分解ガスの検出は、質量分析器(MS)、水素炎イオン化検出器(FID)、熱伝導度検出器 (TCD)、電子捕獲型検出器(ECD)、光イオン化検出器(PID)などによって行える。炭素数の測定は、保持時間法、質量分析法などが適用可能である。質量分析法では化合物の同定が可能であり、基材の熱分解により発生したガスによる妨害を受けにくいことから、検出は質量分析(MS)によって行うことが好ましい。すなわち、GC-MS(ガスクロマトグラフ質量分析)を用いることが好ましい。
 本発明では、ペルフルオロオクタン酸前駆体を定量する必要がないため、加熱による物品の重量変化を求める必要がない。本発明の分析法は、一般に、定性分析である。
 本発明の方法によれば、物品に含まれるRf基の炭素数(1~20の整数、特に4,6,8,10)を分析することができる。特に、炭素数8のRf基(特に、ペルフルオロアルキル基)が存在するか否かを容易に分析することができる。
 以下、実施例を示し、本発明を具体的に説明する。
 以下において、%または部は、特記しない限り、重量%または重量部を意味する。
 次のような分析を行った。
揮発分解物の定性分析
 下記GC/MS装置を用いて揮発分解物の定性分析を行った。
装置    :Turbomass型(Perkin-Elmer製)
カラム   :DB624 (長さ60m、内径0.32mm、膜厚1.8μm)
カラム温度 :50℃(5min)→10℃/min→250℃(5min)
注入口温度 :250℃
トランスファーライン温度:250℃
キャリアガス:He
流量制御法 :定流量モード、1.4ml/min
注入量   :2ml
イオン化法 :電子衝撃イオン化法(EI)
イオン化電圧:70V
測定モード :Scan法
Scan範囲  :10~600
合成例1
 1LオートクレーブにC817CHCHOCOC(CH)=CH /C1021CHCHOCOC(CH)=CH(重量比80/20)179g、ステアリルアクリレート 25g、トリプロピレングリコール 75.8g、純水 446g、ポリオキシエチレンラウリルエーテル 12.7g、ポリオキシエチレンオレイルエーテル 2.47g、ポリオキシエチレンイソトリデシルエーテル5.05g、ジアルキル(牛脂)ジメチルアンモニウムクロライド 2.66gを入れ、60℃で加温後、高圧ホモジナイザーで乳化分散させた。乳化後、ラウリルメルカプラン 0.025gを加え、塩化ビニル 60gを圧入充填した。さらに2,2-アゾビス(2-アミジノプロパン)2塩酸塩1.92gを添加し、60℃で3時間反応させ、重合体の水性分散液を得た。その固形分濃度が30重量%となるように純水で濃度調整した。
合成例2
 1LオートクレーブにC13CHCHOCOC(CH)=CH 154g、ステアリルアクリレート 25g、イソボロニルメタクリレート 25g、トリプロピレングリコール 75.8g、純水 446g、ポリオキシエチレンラウリルエーテル 12.7g、ポリオキシエチレンオレイルエーテル 2.47g、ポリオキシエチレンイソトリデシルエーテル5.05g、ジアルキル(牛脂)ジメチルアンモニウムクロライド 2.66gを入れ、60℃で加温後、高圧ホモジナイザーで乳化分散させた。乳化後、ラウリルメルカプラン 0.025gを加え、塩化ビニル 60gを圧入充填した。さらに2,2-アゾビス(2-アミジノプロパン)2塩酸塩1.92gを添加し、60℃で3時間反応させ、重合体の水性分散液を得た。その固形分濃度が30重量%となるように純水で濃度調整した。
合成例3
 300ml四口フラスコにC13CHCHOCOCH=CH 60g、ヒドロキシエチルメタクリレート 10g、 ヒドロキシエチルアクリレート 30g、MEK 200gを入れ、60℃で加温後、t-ブチルパーオキシピバレート 0.5gを添加し、60℃で8時間反応させた。 得られた重合体はエバポレーションでMEKを除去後、その固形分が20重量%となるように純水で濃度調整した。
合成例4
 300ml四口フラスコにCSON(CH)CHCHOCOCH=CH 51g、ステアリルアクリレート 16g、トリプロピレングリコール 25.3g、純水 148g、ポリオキシエチレンラウリルエーテル 4.23g、ポリオキシエチレンオレイルエーテル 0.82g、ポリオキシエチレンイソトリデシルエーテル1.68g、ジアルキル(牛脂)ジメチルアンモニウムクロライド 0.88gを入れ、60℃で加温後、高圧ホモジナイザーで乳化分散させた。乳化後、ラウリルメルカプラン 0.008gを加え、さらに2,2-アゾビス(2-アミジノプロパン)2塩酸塩0.64gを添加し、60℃で3時間反応させ、重合体の水性分散液を得た。その固形分濃度が30重量%となるように純水で濃度調整した。
実施例1
 合成例1で得られた重合体の水性分散液を4重量%、グリオキザール樹脂 6重量%、MDI系ブロックドイソシアネートエマルション(固形分30%) 1.5重量%になるよう水で希釈して処理液を調製した。 綿布(ツイル、25cm x 25cm)を処理液に浸漬し、マングルで4kg/cm、4m/分で絞って、170℃で2分間熱処理し処理布を得た。
 処理布3cm x 3cm(210mg)をバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MS(ガスクロマトグラフ質量分析)を用いて揮発分解物をGC/MSで 定性分析した。17.4分にC817CHCHOH、19.0分にC1021CHCHOHのピークが見られた。GCチャートを図1に示す。
実施例2
 合成例2で得られた重合体の水性分散液を4重量%になるよう水で希釈して処理液を調製した以外は、実施例1と同様の方法で処理布を得て、処理布3cm x 3cm(219mg)を用いて定性分析を行った。15.5分にC13CHCHOHのピークが見られた。GCチャートを図2に示す。
実施例3
 合成例2で得られた重合体の水性分散液を2重量%になるよう水で希釈して処理液を調製した。 ポリエステル布(タフタ、25cm x 25cm)を処理液に浸漬し、マングルで4kg/cm、4m/分で絞って、170℃で1分間熱処理し処理布を得た。
 処理布3cm x 3cm(37mg)をバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.5分にC13CHCHOHのピークが見られた。C817CHCHOHのピークおよびC1021CHCHOHのピークは観測されなかった。
実施例4
 合成例2で得られた重合体の水性分散液を5重量%、TDI系ブロックドイソシアネートエマルション(固形分30%) 1.5重量%になるよう水で希釈して処理液を調製した以外は、実施例3と同様の方法で処理布を得て、処理布3cm x 3cm(54mg)を用いて定性分析を行った。15.5分にC13CHCHOHのピークが見られた。
実施例5
 合成例2で得られた重合体の水性分散液を3重量%、ジメチルシロキサンエマルション(固形分20%) 2.0重量%になるよう水で希釈して処理液を調製した以外は、実施例3と同様の方法で処理布を得て、処理布3cm x 3cm(39mg)を用いて定性分析を行った。15.4分にC13CHCHOHのピークが見られた。
実施例6
 合成例2で得られた重合体の水性分散液を2重量%になるよう水で希釈して処理液を調製した。 ナイロン布を処理液に浸漬した以外は、実施例3と同様の方法で処理布を得て、処理布3cm x 3cm(33mg)を用いて定性分析を行った。15.5分にC13CHCHOHのピークが見られた。
実施例7
 合成例2で得られた重合体の水性分散液を3重量%になるよう水で希釈して処理液を調製した。 ナイロン布(タフタ、25cm x 25cm)を処理液に浸漬し、マングルで4kg/cm、4m/分で絞って、170℃で1分間熱処理し処理布を得た後、MEK/トルエンを溶媒とする濃度30%のアクリル樹脂をナイロン布の片面に均一に塗布し、100℃で1分間乾燥後、150℃で1分間熱処理した。
 処理布3cm x 3cmをバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.5分にC13CHCHOHのピークが見られた。
実施例8
 合成例2で得られた重合体の水性分散液を4重量%になるよう水で希釈して処理液を調製した。 カットパイルナイロンカーペットにウエットピックアップが15%になるようスプレーで噴霧し、120℃で5分間熱処理し処理カーペットを得た。処理カーペットパイル210mgをバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.4分にC13CHCHOHのピークが見られた。
実施例9
 合成例3で得られた重合体の水性分散液を1重量%、スターチ 2重量%になるよう水で希釈して処理液を調製した。紙(クラフトパルプ、坪量70g/m、25cm x 25cm)を処理液に浸漬し、マングルで0.2kg/cm、4m/分で絞って、110℃で1分間熱処理し処理紙を得た。処理紙0.2gをバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.5分にC13CHCHOHのピークが見られた。
実施例10
 合成例3で得られた重合体の水性分散液を1重量%、スターチ 2重量%になるよう水で希釈して処理液を調製した。 紙(クラフトパルプ、坪量70g/m、25cm x 25cm)を処理液に浸漬し、マングルで0.2kg/cm、4m/分で絞って、110℃で1分間熱処理し処理紙を得た。処理紙0.2gをバイアル瓶に採取し密封した。バイアル瓶を150℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.3 分にC13CHCHOHのピークが見られた。
実施例11
 合成例3で得られた重合体の水性分散液を1重量%、スターチ 2重量%になるよう水で希釈して処理液を調製した。 紙(クラフトパルプ、坪量70g/m、25cm x 25cm)を処理液に浸漬し、マングルで0.2kg/cm、4m/分で絞って、110℃で1分間熱処理し処理紙を得た。処理紙0.2gをバイアル瓶に採取し密封した。バイアル瓶を100℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。15.3分にC13CHCHOHのピークが見られた。
実施例12
 合成例4で得られた重合体の水性分散液を2重量%になるよう水で希釈して処理液を調製した。ポリエステル布(タフタ、25cm x 25cm)を処理液に浸漬し、マングルで4kg/cm、4m/分で絞って、170℃で1分間熱処理し処理布を得た。
 処理布3cm x 3cm(39mg)をバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。保持時間23.5分にCSON(CH)CHCHOHのピークが見られた。C13CHCHOH、C817CHCHOHのピークおよびC1021CHCHOHのピークは観測されなかった。
 GCチャートを図3に示す。GCチャートの保持時間23.5分におけるMSチャートを図4に示す。
比較例1
 スターチ 2重量%になるよう水で希釈して処理液を調製した。 紙(クラフトパルプ、坪量70g/m、25cm x 25cm)を処理液に浸漬し、マングルで4kg/cm、4m/分で絞って、110℃で1分間熱処理し処理紙を得た。処理紙0.2gをバイアル瓶に採取し密封した。バイアル瓶を200℃で30分加熱後、シリンジでバイアル瓶内の揮発分解物を採取し、GC-MSを用いて揮発分解物を 定性分析した。ペルフルオロ化合物に由来するピークは見られなかった。
 本発明の分析方法を用いることによって、表面処理剤、特に撥水撥油剤で処理されている物品において、表面処理剤におけるフルオロアルキル基の炭素数を容易に求めることができる。表面処理剤で既に処理されている物品について、フルオロアルキル基の炭素数を容易に分析することができる。例えば、フルオロアルキル基の炭素数が8であるかあるいは6以下(例えば6)であるかを容易に判別することができる。

Claims (13)

  1. 含フッ素表面処理剤が有するフルオロアルキル基の炭素数を求める、含フッ素表面処理剤を含有する物品の分析方法であって、
    (1)含フッ素表面処理剤を含有する物品を加熱する工程、および
    (2)物品から発生したガスを測定する工程
    を特徴としている分析方法。
  2. 含フッ素表面処理剤が有するフルオロアルキル基の炭素数が、4、6,8、10または12のいずれであるかを判別する請求項1に記載の方法。
  3. 含フッ素表面処理剤を含有する物品が、含フッ素表面処理剤で処理された物品である請求項1または2に記載の方法。
  4.  含フッ素表面処理剤が含フッ素重合体を有効成分として含み、含フッ素重合体が、式:
    CH2=C(-X)-C(=O)-Y-Z-Rf  
    [式中、Xは、水素原子、一価の有機基またはハロゲン原子であり、
    Y は、-O- または -NH-であり、 
    Zは、直接結合または二価の有機基であり、
    Rfは、炭素数1~20のフルオロアルキル基である。]
    で示される含フッ素単量体から誘導された繰り返し単位を有する請求項1~3のいずれかに記載の方法。
  5. 物品が、繊維製品、石材、フィルター、防塵マスク、燃料電池の部品、ガラス、紙、木、皮革、毛皮、石綿、レンガ、セメント、金属および金属酸化物、窯業製品、プラスチック、塗面、およびプラスターからなる群から選択されたものである請求項1~4のいずれかに記載の方法。
  6. 物品から発生したガスが、Rf基を有する分解ガスを含む請求項1~5のいずれかに記載の方法。
  7. Rf基を有する分解ガスが、
    Rf-Z-A
    [式中、Rfは、炭素数1~20のフルオロアルキル基、
    Zは、直接結合または二価の有機基、
    Aは、-OH、-CH=CH、-OCOCH=CH、-COOHまたはハロゲンである。]。
    である請求項1~6のいずれかに記載の方法。
  8. 加熱工程(1)において、加熱は、物品の重量変化が実質的に生じないように行う請求項1~7のいずれかに記載の方法。
  9. 加熱工程(1)において、加熱温度が100℃~250℃である請求項1~8のいずれかに記載の方法。
  10. 測定工程(2)において、分解して発生するガスを捕集して、測定を行う請求項1~9のいずれかに記載の方法。
  11. 測定工程(2)において、分解ガスの検出は、質量分析計(MS)、水素炎イオン化検出器(FID)、熱伝導度検出器 (TCD)、電子捕獲型検出器(ECD)または光イオン化検出器(PID)によって行う請求項1~10のいずれかに記載の方法。
  12.  加熱による物品の重量変化を求めない請求項1~11のいずれかに記載の方法。
  13.  含フッ素表面処理剤が含フッ素撥水撥油剤または含フッ素防汚加工剤である請求項1~12のいずれかに記載の方法。
PCT/JP2014/070764 2013-08-09 2014-08-06 含フッ素表面処理剤を含有する物品の分析方法 WO2015020100A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-165955 2013-08-09
JP2013165955 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015020100A1 true WO2015020100A1 (ja) 2015-02-12

Family

ID=52461431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070764 WO2015020100A1 (ja) 2013-08-09 2014-08-06 含フッ素表面処理剤を含有する物品の分析方法

Country Status (3)

Country Link
JP (1) JP5858106B2 (ja)
TW (1) TWI592659B (ja)
WO (1) WO2015020100A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339838A4 (en) * 2015-08-21 2019-01-16 Daikin Industries, Ltd. ANALYSIS OF AN INFRARED SPECTROSCOPY FLUORINATED POLYMER
CN112505129A (zh) * 2020-10-26 2021-03-16 中国地质大学(武汉) 一种确定石膏类矿物形成年代的方法
WO2023106288A1 (ja) * 2021-12-06 2023-06-15 株式会社Nippo 塵埃抑制処理方法
WO2023106287A1 (ja) * 2021-12-06 2023-06-15 三井・ケマーズ フロロプロダクツ株式会社 塵埃抑制処理剤組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415468B2 (ja) * 2019-11-15 2024-01-17 富士フイルムビジネスイノベーション株式会社 画像形成装置、およびプロセスカートリッジ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206556A (ja) * 1998-01-26 1999-08-03 Mitsubishi Plastics Ind Ltd フッ素樹脂系カーテン素材
JP2010054274A (ja) * 2008-08-27 2010-03-11 Shiseido Co Ltd 分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592474B1 (en) * 2010-07-08 2015-04-08 Mitsui Chemicals, Inc. Pellicle film
JP5764433B2 (ja) * 2011-08-26 2015-08-19 株式会社日立ハイテクノロジーズ 質量分析装置及び質量分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206556A (ja) * 1998-01-26 1999-08-03 Mitsubishi Plastics Ind Ltd フッ素樹脂系カーテン素材
JP2010054274A (ja) * 2008-08-27 2010-03-11 Shiseido Co Ltd 分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SINCLAIR E ET AL.: "Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags", ENVIRON SCI TECHNOL, vol. 41, no. 4, 15 February 2007 (2007-02-15), pages 1180 - 1185 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339838A4 (en) * 2015-08-21 2019-01-16 Daikin Industries, Ltd. ANALYSIS OF AN INFRARED SPECTROSCOPY FLUORINATED POLYMER
CN112505129A (zh) * 2020-10-26 2021-03-16 中国地质大学(武汉) 一种确定石膏类矿物形成年代的方法
WO2023106288A1 (ja) * 2021-12-06 2023-06-15 株式会社Nippo 塵埃抑制処理方法
WO2023106287A1 (ja) * 2021-12-06 2023-06-15 三井・ケマーズ フロロプロダクツ株式会社 塵埃抑制処理剤組成物

Also Published As

Publication number Publication date
TWI592659B (zh) 2017-07-21
JP5858106B2 (ja) 2016-02-10
JP2015057594A (ja) 2015-03-26
TW201514492A (zh) 2015-04-16

Similar Documents

Publication Publication Date Title
JP5858106B2 (ja) 含フッ素表面処理剤を含有する物品の分析方法
Cao et al. C m-history method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates
Chen et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer
Liu et al. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment
Heydebreck et al. Emissions of per-and polyfluoroalkyl substances in a textile manufacturing plant in China and their relevance for workers’ exposure
EP0804537B1 (en) Cleaning process and composition
Washburn et al. Exposure assessment and risk characterization for perfluorooctanoate in selected consumer articles
Posner Perfluorinated compounds: occurrence and uses in products
Zhu et al. Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States
Sayed et al. Finishing of textiles with fluorocarbons
Yeerken et al. Durable superamphiphobic aramid fabrics modified by PTFE and FAS for chemical protective clothing
Bilalov et al. Treatment of different types of cotton fabrics by ammonium palmitate in a supercritical CO2 environment
JP2015028150A (ja) 表面処理剤
JPWO2005047416A1 (ja) ノニオン性界面活性剤を含む撥水撥油剤水性分散液
CA2239523A1 (en) Cleaning process and composition
JP2011526675A (ja) 撥水撥油剤で処理された化学繊維からなる布中の炭素数が20以下である低分子の有機化合物の分析方法
Dolez et al. Toxicity testing of textiles
CN108169380A (zh) 一种用于高效液相色谱检测全氟辛酸的衍生方法
JP6061052B1 (ja) 赤外分光法による含フッ素重合体の分析
US20160265155A1 (en) Application and Activation of Durable Water Repellant Using a Densified Fluid
Yang et al. Preparation of a novel water and oil-repellent fabric finishing agent containing a short perfluoroalkyl chain and its application in textiles
TIAN et al. Determination of Polybrominated Diphenyl Ethers in Water Samples by Headspace Solid‐Phase Microextraction
Santini et al. 19F NMR chemical shifts of nF-alkyl compounds
JPS61276880A (ja) 撥水撥油剤水性分散液
Zille et al. Basis for developing a methodology to estimate fluorinated GHG emissions from the fluorinated treatment of textile, carpet, leather, and paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835168

Country of ref document: EP

Kind code of ref document: A1