WO2015020026A1 - 核酸内包高分子ミセル複合体及びその製造方法 - Google Patents

核酸内包高分子ミセル複合体及びその製造方法 Download PDF

Info

Publication number
WO2015020026A1
WO2015020026A1 PCT/JP2014/070567 JP2014070567W WO2015020026A1 WO 2015020026 A1 WO2015020026 A1 WO 2015020026A1 JP 2014070567 W JP2014070567 W JP 2014070567W WO 2015020026 A1 WO2015020026 A1 WO 2015020026A1
Authority
WO
WIPO (PCT)
Prior art keywords
micelle complex
polymer micelle
nucleic acid
group
peg
Prior art date
Application number
PCT/JP2014/070567
Other languages
English (en)
French (fr)
Inventor
片岡 一則
健介 長田
セオフィルス アグリオス トッカリー
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to KR1020167001466A priority Critical patent/KR101770705B1/ko
Priority to CN201480043775.5A priority patent/CN105451719B/zh
Priority to AU2014303571A priority patent/AU2014303571B2/en
Priority to EP14835122.4A priority patent/EP3031447B1/en
Priority to JP2015530894A priority patent/JP6108369B2/ja
Priority to US14/909,162 priority patent/US10046065B2/en
Priority to CA2920328A priority patent/CA2920328C/en
Publication of WO2015020026A1 publication Critical patent/WO2015020026A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0091Purification or manufacturing processes for gene therapy compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to a polymer micelle complex encapsulating nucleic acid (DNA). More specifically, the present invention relates to a sufficiently small polymeric micelle complex despite the inclusion of relatively long-chain DNA.
  • This application claims priority based on Japanese Patent Application No. 2013-163106 for which it applied to Japan on August 6, 2013, and uses the content here.
  • gene therapy As a next-generation therapy, there is great expectation for gene therapy for treating diseases by controlling gene expression.
  • the biggest problem in gene therapy is that introduction efficiency is insufficient when a gene is introduced into a target cell or tissue.
  • genes In particular, in order to realize gene therapy by systemic administration, genes must circulate stably in the blood and accumulate in target tissues, and gene expression should be performed effectively after entering the target cells. is required. Therefore, in order to solve these problems, development of gene carriers (gene carriers) with more excellent introduction efficiency into target cells and the like and gene expression efficiency in the target cells has been actively conducted.
  • Patent Document 2 discloses an electrostatically-coupled polymeric micelle drug carrier that is stabilized by crosslinking the block copolymers with each other via a crosslinking agent.
  • Patent Document 3 discloses a block copolymer comprising an uncharged hydrophilic polymer chain block and a cationic polyamino acid chain block having a hydrophobic group introduced in a part of the side chain. ing. In the block copolymer, the hydrophobic group is introduced into the side chain, so that the interfacial energy is increased, so that the cohesive force in the micelle is enhanced and the core is reduced, so that the polymeric micelle is stabilized. It is illustrated.
  • the gene carrier When a gene carrier is administered systemically, in order to introduce a gene into target cells, the gene carrier needs to have a high retention in blood. In addition, if the size of the gene carrier is too large, there is a problem that it is difficult to be taken up by cells. Especially for cancers with low blood vessel density such as pancreatic cancer, the permeability of blood vessels becomes a barrier, and it is very difficult to deliver a 100 nm size gene carrier to the deep part of cancer tissue by systemic administration. .
  • the polymer micelle complex containing the gene in the core of the electrostatically coupled polymer micelle drug carrier is very promising as a gene carrier, but there is still room for improvement in terms of size and retention in blood.
  • the main object of the present invention is to provide a polymer micelle complex that encapsulates relatively long-chain DNA, is sufficiently small in size, and can also function as a gene carrier, and a method for producing the same.
  • the present inventors have prepared a block copolymer comprising polyethylene glycol (PEG), which is a biocompatible neutral polymer, and a cationic polymer (hereinafter sometimes abbreviated as “cationic polymer chain block”).
  • PEG polyethylene glycol
  • cationic polymer chain block a cationic polymer
  • the polymer micelle complex encapsulating plasmid DNA (hereinafter sometimes abbreviated as “pDNA”), which is a circular double-stranded DNA, has a high cationic polymer chain block length (degree of polymerization) and a high molecular weight.
  • the polymer micelle complex When the relationship with the particle size of the molecular micelle complex was examined, when the length of the cationic polymer chain block is relatively short, the polymer micelle complex is a rod having a major axis of 100 nm or more, The longer the length of the cationic polymer chain block, the shorter the length of the long axis. When the length of the cationic polymer chain block is sufficiently long, the shape tends to be close to a sphere. It was found that there. Further, when the relationship between the PEG density and the blood residence time was examined, it was also found that the polymer micelle complex having a higher PEG density tends to have a longer blood residence time.
  • the present inventors as a result of mixing with a block copolymer in a state in which the double helix structure of pDNA is dissociated, form a complex, thereby forming an uncharged hydrophilic structure constituting the shell portion.
  • the present inventors have found that a spherical polymer micelle complex much smaller than a rod shape can be formed without reducing the density of the conductive polymer chain block.
  • nucleic acid-encapsulating polymer micelle complex and the production method thereof according to the present invention are the following [1] to [15].
  • [1] A block copolymer containing an uncharged hydrophilic polymer chain block and a cationic polymer chain block, two single-stranded DNAs composed of base sequences complementary to each other having a length of 1000 bases or more, at least two It is formed from a double-stranded DNA having a length of 1000 base pairs or more, or a single single-stranded DNA having a length of 1000 bases or more.
  • a nucleic acid-encapsulating polymer micelle complex which is characterized.
  • nucleic acid-encapsulating polymer micelle complex according to [1] or [2], wherein the single-stranded DNA has a length of 2000 base pairs or more, and the double-stranded DNA has a length of 2000 base pairs or more.
  • the DNA and the cationic polymer chain block bonded to the DNA by electrostatic interaction form a core part, and the non-charged hydrophilic polymer chain block forms a shell part.
  • nucleic acid-encapsulating polymer micelle complex according to any one of [1] to [8], wherein at least some of the block copolymers are cross-linked with each other.
  • a method for producing a nucleic acid-encapsulating polymer micelle complex containing DNA A block copolymer comprising an uncharged hydrophilic polymer chain block and a cationic polymer chain block, and a double-stranded DNA having a length of 1000 base pairs or more in a state in which at least a part of the double helix structure is dissociated
  • a method for producing a nucleic acid-encapsulating polymer micelle complex comprising a step of mixing in an aqueous medium.
  • a rod-like or toroid-like nucleic acid-encapsulating polymer micelle complex is mainly formed. Even when the block copolymer to be used is used, a spherical polymer micelle complex can be provided.
  • the spherical polymer micelle complex has a smaller particle size than the rod-like nucleic acid-encapsulated polymer micelle complex, and the density of the non-charged hydrophilic polymer chain blocks constituting the block copolymer is also large. Excellent in both cell uptake efficiency and blood retention.
  • Example 1 it is the figure (left: PM-1, right: MCPM-1) which showed distribution of the major axis length of the polymer micelle complex calculated from the TEM image.
  • Example 2 it is the fluorescence image of the pancreatic cancer tissue of the mouse
  • Example 2 it is the fluorescence image of the pancreatic cancer tissue of the mouse
  • Example 2 among the polymeric micelle complexes containing the GFP gene, pancreatic cancer model mice administered with PM-2-GFP and pancreatic cancer model mice administered with MCPM-2-GFP, It is the figure which showed the measurement result of the relative fluorescence intensity of GFP expression in a pancreatic cancer tissue deep part.
  • Example 3 the measurement result of the ratio (%) of the amount of the polymer micelle complex retained in the blood after 30 minutes from the systemic administration to the total amount of the polymer micelle complex administered systemically to the mouse was shown.
  • FIG. In Example 4 it is a fluorescence image of the pancreatic cancer tissue of the mouse
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention is formed from a block copolymer containing an uncharged hydrophilic polymer chain block and a cationic polymer chain block, and a nucleic acid (DNA).
  • the nucleic acid associated with the polymer chain block forms a core portion, and the non-charged hydrophilic polymer chain block forms a shell portion. Details will be described below.
  • the block copolymer used in the present invention includes an uncharged hydrophilic polymer chain block and a cationic polymer chain block.
  • the non-charged hydrophilic polymer chain block include polyalkylene glycols such as PEG and polypropylene glycol; poly (2-methyl-2-oxazoline), poly (2-ethyl-2-oxazoline), poly (2- Polyoxazolines such as isopropyl-2-oxazoline); polysaccharides, dextran, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polymethacrylamide, polyacrylic acid ester, polymethacrylic acid ester, and various blocks derived from these derivatives, etc. Illustrated. Among these, PEG, polyoxazoline, dextran, and polyvinyl alcohol are preferable because they are neutral water-soluble polymers with high biocompatibility.
  • the molecular weight of the non-charged hydrophilic polymer chain block is not particularly limited as long as the block copolymer can form a polymer micelle complex containing a nucleic acid therein.
  • a PEG-derived block polyoxyethylene chain block, hereinafter simply referred to as “PEG block”
  • the molecular weight of the PEG block is about 1. 0 to 100 kDa is preferable, 2 to 80 kDa is more preferable, and 8 to 25 kDa is further preferable.
  • the number of oxyethylene repeating units in the PEG block is preferably 22 to 2,300, more preferably 45 to 1,850, and even more preferably 180 to 600.
  • the cationic polymer chain block used in the present invention is not particularly limited as long as it is a block composed of a cationic polymer chain that can be electrostatically bonded to DNA.
  • Specific examples include polyamino acid derivatives having a cationic group in the side chain; polyethyleneimine (PEI); acrylic resins such as polymethacrylic acid derivatives and polyacrylic acid derivatives.
  • the cationic polymer chain block used in the present invention includes a block derived from a polyamino acid of a cationic amino acid or a derivative thereof, or an anionic group (generally a carboxyl group) of an anionic amino acid.
  • a block derived from an amino acid derivative in which is bound by an ester bond or an amide bond is preferably used.
  • cationic amino acids include polylysine, polyornithine, polyarginine, polyhomoarginine, and polyhistidine.
  • an amino acid derivative in which a cationic compound is bonded to an anionic amino acid an amino group, an imino group, a quaternary amino group, or the like other than the site bonded to the carboxyl group is added to one carboxyl group of aspartic acid or glutamic acid.
  • examples thereof include derivatives obtained by binding a compound having a cationic group.
  • the compound having a cationic group include various diamines.
  • a block having a repeating unit derived from an amino acid derivative obtained by reacting one carboxyl group of aspartic acid or glutamic acid with diethylenetriamine has an ethylamine structure in the side chain.
  • a block having a repeating unit derived from a polyamino acid derivative having a propylamine structure introduced in the side chain is also preferred.
  • a block derived from a polyamino acid having lysine and / or a derivative thereof as a repeating unit (hereinafter sometimes referred to as “PLys block”), or an amino acid in which diethylenetriamine is bonded to one carboxyl group of aspartic acid
  • Pys block a block derived from a polyamino acid having lysine and / or a derivative thereof as a repeating unit
  • PAsp (DET) block a block derived from a polyamino acid having the derivative as a repeating unit
  • the block copolymer forms an uncharged hydrophilic polymer chain block that forms a shell when forming a polymer micelle complex containing a nucleic acid inside. 10 to 200 are preferable, and 20 to 100 are more preferable.
  • the hydrophobic group is covalently bonded to the side chain of the cationic polymer chain block or its terminal (the terminal opposite to the terminal that is directly or indirectly covalently bonded to the uncharged hydrophilic polymer chain block).
  • the obtained nucleic acid-encapsulating polymer micelle complex can be further stabilized.
  • Hydrophobic groups include residues of sterol derivatives or C 4-24 hydrocarbyl groups.
  • a sterol means a natural, semi-synthetic or synthetic compound based on a cyclopentanone hydrophenanthrene ring (C 17 H 28 ).
  • natural sterol includes, but is not limited to, cholesterol, Examples thereof include cholestanol, dihydrocholesterol, cholic acid and the like, and semi-synthetic or synthetic compounds include, for example, synthetic precursors of these natural products (if necessary, certain functional groups, hydroxy groups, Including compounds in which some or all are protected by hydroxy protecting groups known in the art or the carboxyl group is protected by a carboxyl protecting group).
  • the sterol derivative means that a C 1-12 alkyl group, a halogen atom such as chlorine, bromine, or fluorine is introduced into the cyclopentanone hydrophenanthrene ring within a range that does not adversely affect the object of the present invention. Often, this means that the ring system can be saturated or partially unsaturated, and the like.
  • the residue of the sterol derivative is preferably a group in which the hydrogen atom of the 3-position hydroxy group of cholesterol, cholestanol, or dihydroxycholesterol is removed, and more preferably a group in which the hydrogen atom of the 3-position cholesterol group is removed.
  • the C 4-24 hydrocarbyl group is a monovalent group formed by removing one hydrogen atom from a hydrocarbon composed of a carbon atom having 4 to 24 carbon atoms and a hydrogen atom.
  • a linear or branched C 4-24 alkyl group preferably a linear or branched C 12-24 alkyl group; a linear or branched C 4-24 alkenyl group, preferably a linear chain Or a branched C 12-24 alkenyl group; a linear or branched C 4-24 alkynyl group, preferably a linear or branched C 12-24 alkynyl group; a C 4-24 cage such as adamantyl Compounds, preferably C 12-24 cage compounds; arylalkyl groups such as benzyl groups where aryl is phenyl or naphthyl and alkyl groups are C 1-5 .
  • Examples of the hydrophobic group provided in the side chain of the cationic polymer chain block in the block copolymer used in the present invention include a linear or branched C 4-20 alkyl group, a linear or branched C 4-4.
  • a 20 alkenyl group or a benzyl group is preferable, and a linear or branched C 12-20 alkyl group, a linear or branched C 12-20 alkenyl group, or a benzyl group is preferable, and a linear or branched C 12 A -20 alkyl group, a linear or branched C 12-20 alkenyl group, or a benzyl group is more preferred.
  • the above-mentioned alkenyl group and alkynyl group may contain a plurality of unsaturated bonds.
  • “C xy ” means carbon number x to y.
  • the block copolymers constituting the nucleic acid complex are crosslinked.
  • a binding site with a crosslinking agent can further stabilize the obtained nucleic acid-encapsulating polymer micelle complex. It can also bridge
  • binding site with the crosslinking agent examples include an amino group (—NH 2 group), a thiol group, a hydroxyl group, and a carboxyl group.
  • Cross-linking agents that can use these as binding sites include glutaraldehyde, succinaldehyde, paraformaldehyde, phthalic dicarboxaldehyde (phthalaldehyde) having a plurality of aldehyde groups in the molecule; maleimide groups and active esters in the molecule N- [ ⁇ -maleimidoacetoxy] succinimide ester, N- [ ⁇ -maleimidopropyloxy] succinimide ester, N- [ ⁇ -maleimidocaproyloxy] succinimide ester, N- [ ⁇ -maleimidobutyryloxy] Succinimide ester, succinimidyl-4- [N-maleimidomethyl] cyclohexane-1-carboxy- [6-amidocaproate], m-male
  • the terminal of the non-charged hydrophilic polymer chain block and the terminal of the cationic polymer chain block are directly or indirectly (that is, via an appropriate linker). It is a covalent bond.
  • the non-chargeable hydrophilic polymer chain block is preferably derived from polyethylene glycol, and the cationic polymer chain block is preferably derived from a polyamino acid or a derivative thereof,
  • the non-chargeable hydrophilic polymer chain block is derived from polyethylene glycol, and the cationic polymer chain block is selected from the group consisting of polylysine, polyornithine, polyarginine, polyhomoarginine, polyhistidine, polyaspartic acid, and polyglutamic acid. Those derived from the selected polyamino acid (including derived from polyamino acid derivatives) are more preferred.
  • block copolymer used in the present invention include those represented by the following general formula (I) or (II).
  • each repeating unit in the following general formula (I) and (II) is shown in the order specified for convenience of description, each repeating unit can exist in random order.
  • R 1a and R 1b each independently represents a hydrogen atom or an unsubstituted or substituted linear or branched C 1-12 alkyl group
  • L 1 and L 2 represents a linking group
  • R 2a and R 2b each independently represent a methylene group or an ethylene group
  • R 3 represents a hydrogen atom, a protecting group, a thiol group, a hydrophobic group or a polymerizable group
  • R 4 represents Hydroxyl group, oxybenzyl group, —NH— (CH 2 ) a —X group (where a is an integer of 1 to 5, and X is independently a primary, secondary, tertiary amine or quaternary ammonium salt.
  • R 5a , R 5b , R 5c and R 5d are each independently a hydroxyl group, oxy Benzyl group or NH— (CH 2 ) a —X group, and among the total number of R 5a and R 5b and the total number of R 5c and R 5d , the —NH— (CH 2 ) a —X group (here X is (NH (CH 2 ) 2 ) e —NH 2 , e is an integer of 1 to 5), and R 6a and R 6b are each independently a hydrogen atom, A protecting group (wherein the protecting group is a Z group, a Boc group, an acetyl group or a trifluoroacetyl group usually used as a protecting group for an amino group), or L 3 —SH (L 3 is C 1-1 A linking group selected from the group consisting of 20 alkylene groups, C 1-6 alkyl-phen
  • N is an integer from 2 to 5,000
  • y is an integer from 0 to 5,000
  • z is an integer from 1 to 5,000
  • y + z is not larger than n.
  • the block whose number of repeating units (polymerization degree) is “m” is a PEG block (uncharged hydrophilic polymer chain block), and the number of repeating units.
  • R 1a and R 1b each independently represent a hydrogen atom or an unsubstituted or substituted linear or branched C 1-12 alkyl group.
  • the linear or branched C 1-12 alkyl group include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n- A pentyl group, n-hexyl group, decyl group, undecyl group and the like can be mentioned.
  • the substituent when substituted includes an acetalized formyl group, a cyano group, a formyl group, a carboxyl group, an amino group, a C 1-6 alkoxycarbonyl group, a C 2-7 acylamide group, the same or different tri-C A 1-6 alkylsiloxy group, a siloxy group or a silylamino group can be mentioned.
  • the acetalization means that the acetal part formed by the reaction of a carbonyl of formyl with, for example, two molecules of an alkanol having 1 to 6 carbon atoms or an alkylene diol having 2 to 6 carbon atoms which may be branched.
  • R 1a and R 1b having a highly reactive substituent such as an amino group are used, an active ester group and a maleimide group are further added through the substitution or as necessary.
  • the target-directing molecule may be bound after introducing the binding group it has. Examples of the target-directed molecule include those described above.
  • L 1 and L 2 represent a linking group.
  • L 1 is preferably — (CH 2 ) b —NH— (where b is an integer of 0 to 5), and L 2 is — (CH 2 ) c —CO—. (Where c is an integer of 1 to 5).
  • b is 0, “— (CH 2 ) b —” represents a single bond.
  • R 2a , R 2b , R 2c and R 2d each independently represent a methylene group or an ethylene group.
  • R 2a and R 2b are methylene groups, they correspond to poly (aspartic acid derivatives), and when they are ethylene groups, they correspond to poly (glutamic acid derivatives), and both R 2c and R 2d are methylene groups.
  • the group corresponds to poly (aspartic acid derivative), and the ethylene group corresponds to poly (glutamic acid derivative).
  • R 2a and R 2b represent both a methylene group and an ethylene group
  • R 2c and R 2d are a methylene group and an ethylene group
  • the repeating units of the aspartic acid derivative and glutamic acid derivative may be present in the form of blocks, respectively, or at random.
  • a residue of a sterol derivative bonded through a linking group B 1 is preferable, and a group in which the hydrogen atom of the 3-position hydroxy group of cholesterol, cholestanol, or dihydroxycholesterol is removed is a linking group.
  • a group bonded through B 1 is more preferable, and a group in which a group from which the hydrogen atom of the cholesterol 3-position hydroxy group is removed is bonded through a linking group B 1 is further preferable.
  • R 4 represents a hydroxyl group, an oxybenzyl group, a —NH— (CH 2 ) a —X group, a thiol group, a hydrophobic group, or an initiator residue.
  • a is an integer of 1 to 5
  • X is an amine compound residue containing one or more of primary, secondary, tertiary amine or quaternary ammonium salt, or a compound which is not an amine It is preferably a residue.
  • R 4 is —NH—R 9 (wherein R 9 represents an unsubstituted or substituted linear or branched C 1-20 alkyl group).
  • the hydrophobic group is specifically a residue of the aforementioned sterol derivative or a C 4-24 hydrocarbyl group.
  • the hydrophobic group for R 4 is preferably a residue of a sterol derivative, more preferably a group in which the hydrogen atom of the 3-position hydroxy group of cholesterol, cholestanol, or dihydroxycholesterol is removed, and the hydrogen atom of the 3-position cholesterol group of cholesterol. More preferred are removed groups.
  • R 5a , R 5b , R 5c and R 5d each independently represent a hydroxyl group, an oxybenzyl group, or a —NH— (CH 2 ) a —X group.
  • a is an integer of 1 to 5
  • X is an amine compound residue containing one or more of primary, secondary, tertiary amine or quaternary ammonium salt, or a compound which is not an amine It is preferably a residue.
  • the —NH— (CH 2 ) a —X group [where X is NH— (CH 2 ) e —NH 2 (where e is an integer of 1 to 5. It is preferable that at least two of them are present, more preferably 50% or more of the total number, more preferably 85% or more of the total number. Further, it is preferable that all or part of R 5a , R 5b , R 5c and R 5d is —NH— (CH 2 ) a —NH— (CH 2 ) e —NH 2 .
  • X is a group consisting of groups represented by the following formulas 15 The case of being more selected is particularly preferable.
  • X 2 represents a hydrogen atom, a C 1-6 alkyl group or an amino C 1-6 alkyl group
  • R 7a , R 7b and R 7c each independently represent a hydrogen atom or Represents a methyl group
  • d1, d2 and d3 each independently represents an integer of 1 to 5
  • e1, e2 and e3 each independently represents an integer of 1 to 5
  • f represents 0 to 15
  • G represents an integer of 0 to 15
  • R 8a and R 8b each independently represent a hydrogen atom, a protecting group, or L 3 —SH
  • L 3 represents a C 1-20 alkylene group, C 1 A -6 alkyl-phenyl group, a C 1-6 alkyl-phenylene-C 1-6 alkyl group, a phenylene group, and a carbonyl-C 1-20 alkyl group.
  • R 6a and R 6b are each independently a hydrogen atom, a protecting group, or L 3 —SH (L 3 is a C 1-20 alkylene group, C 1-6 An linking group selected from the group consisting of an alkyl-phenyl group, a C 1-6 alkyl-phenylene-C 1-6 alkyl group, a phenylene group, and a carbonyl-C 1-20 alkyl group.
  • the protective group is preferably a group selected from the group consisting of a Z group, a Boc group, an acetyl group, and a trifluoroacetyl group, which are usually used as a protective group for an amino group.
  • m is an integer of 5 to 20,000.
  • N is an integer of 2 to 5,000, y is an integer of 0 to 5,000, and z is an integer of 1 to 5,000.
  • the sum (y + z) of y and z is not larger than n.
  • the method for producing the block copolymer represented by the general formulas (I) and (II) is not limited, but for example, a PEG block containing R 1a O— or R 1b O— and a PEG chain is synthesized in advance. A predetermined monomer is polymerized in order on one end of this PEG block (the end opposite to R 1a O— or R 1b O—), and then the side chain is substituted so as to contain a cationic group as necessary.
  • a method for conversion, or the above PEG block and a cationic polymer chain block (a block in which the number of repeating units of “nyz”, “y” and “z” are combined) Can be synthesized separately in advance, and these can be linked together.
  • the PEG block is obtained by using, for example, a method for producing a PEG block portion of a block copolymer described in International Publication No. 96/32434, International Publication No. 96/33233 and International Publication No. 97/06202. Can be prepared.
  • block copolymers represented by the general formulas (I) and (II) for example, a PEG block derivative having an amino group at the terminal is used, and ⁇ -benzyl is bonded to the amino terminal.
  • a block copolymer was synthesized by polymerizing N-carboxylic acid anhydride (NCA) of a protected amino acid such as L-aspartate (BLA) and N ⁇ -ZL-lysine, and then the side chain of each block A method of substitution or conversion with diethylenetriamine (DET) or the like so as to be the side chain having the cationic group described above is preferred.
  • NCA N-carboxylic acid anhydride
  • BLA L-aspartate
  • DET diethylenetriamine
  • block copolymer represented by the general formulas (I) and (II) include, for example, PEG-poly [N- [N ′-(2-aminoethyl) described in Examples described later] -2-aminoethyl)] aspartamide] (PEG-PAsp (DET)), PEG-polylysine (PEG-PLys), and the main chain ends of these cationic blocks, directly or via a linking group as necessary Preferred are those obtained by adding a residue of a sterol derivative, and those obtained by adding a thiol group to the side chain of these cationic blocks.
  • a polymer micelle complex in order to efficiently transport a gene (DNA) to a target tissue or target cell, a molecule having high affinity with a specific cell or tissue (target-directed molecule) Is preferably provided on the surface.
  • target-directed molecule a molecule having high affinity with a specific cell or tissue
  • a suitable linker at the end opposite to the end to be covalently bonded directly or indirectly to the cationic polymer chain block
  • target-directing molecules include ligands or antibodies to specific receptor proteins or the like (fragments thereof: F (ab ′) 2, F (ab), etc.), sugars, nuclear translocation signal molecules, and the like.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention is an unprecedented small particle despite containing therein DNA having a length of 2000 base pairs or more. For this reason, by providing a nuclear translocation signal molecule on the surface layer, non-dividing cells can be successfully introduced by passage through the nuclear pore.
  • the nucleic acid encapsulated in the polymeric micelle complex containing nucleic acid according to the present invention is composed of two single-stranded DNAs having a complementary base sequence of 2000 bases or more, or one single strand of 2000 bases or more. DNA.
  • Two single-stranded DNAs having complementary base sequences are usually double-stranded DNAs that are associated with each other in a double helix structure. Since the double helix structure is very rigid, a nucleic acid-encapsulating polymer is formed by a conventional method in which a double-stranded DNA and a block copolymer are simply mixed and self-organized to form a polymer micelle complex that encapsulates the DNA.
  • the micelle complex was formed, it was not possible to obtain small particles close to a spherical shape unless the density of the uncharged hydrophilic polymer chain block in the shell portion was sufficiently reduced.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention has two base sequences consisting of complementary base sequences of 1000 bases or more (preferably 1500 bases or more, more preferably 2000 bases or more).
  • Single-stranded DNA at least a part of the double helix structure is dissociated into a single-stranded structure and has a length of 1000 base pairs or more (preferably 1500 base pairs or more, more preferably 2000 base pairs or more)
  • Single-stranded DNA having a length of 1000 bases or more (preferably 1500 bases or more, more preferably 2000 bases or more) is included as a core part.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention encapsulates double-stranded DNA such as pDNA, it is 1000 base pairs or more (preferably 1500 base pairs or more, more preferably 2000 base pairs or more. ) In a state in which the double helix structure is dissociated at least partially, preferably entirely, and is electrostatically bound to the cationic polymer chain block in the block copolymer. Yes. Since single-stranded DNA behaves as a flexible strand, when it is electrostatically bound to the block copolymer, it can be condensed and transferred into a spherical shape. That is, the surface area of the core part (DNA) can be made very small, and thereby the density of the non-charged hydrophilic polymer chain block in the shell part can be dramatically increased.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention is mixed with a block copolymer in a state where all or at least a part of the double helix structure of double-stranded DNA is dissociated, and is self-assembled. It is obtained by forming a polymer micelle complex with DNA as a core. Since the DNA is condensed to the minimum and a spherical core is obtained, the double-stranded DNA to be encapsulated is mixed with the block copolymer in the state of two single-stranded DNAs completely dissociated, and self-organized. It is preferable to make it.
  • a nucleic acid-encapsulating polymer micelle complex containing two single-stranded DNAs in the core or a nucleic acid-encapsulating polymer micelle complex containing one single-stranded DNA in the core is formed.
  • the dissociation of the double-stranded DNA into a single-stranded structure can be appropriately performed by a conventionally known denaturation method such as denaturation by heat treatment (thermal denaturation).
  • thermal denaturation thermal denaturation
  • the temperature of heat processing should just be room temperature or more, 60 degreeC or more is preferable, 70 degreeC or more is more preferable, 80 degreeC or more is further more preferable, and 95 degreeC or more is especially preferable.
  • the double helix structure of double-stranded DNA having a length of 1000 base pairs or more can be suitably dissociated.
  • the degree of dissociation of the double helix structure of double-stranded DNA can be determined by examining the melting curve.
  • the DNA to be encapsulated in the block copolymer may be in a state where at least a part, preferably all, of the double helix structure is dissociated when mixed with the block copolymer, and may be a circular DNA.
  • linear DNA is preferred because the double helix structure is more easily dissociated.
  • Circular DNA can be dissociated more easily by preliminarily linearizing by restriction enzyme treatment or the like.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention is disclosed in Patent Documents 1 to 3, etc., except that the double-stranded DNA to be encapsulated is mixed with the block copolymer in a denatured (single-stranded) state.
  • the nucleic acid-containing polymer micelle complex can be formed in the same manner as described above.
  • the aqueous medium serving as a reaction solvent for mixing the denatured DNA and the block copolymer is water (particularly deionized water) or water containing various inorganic or organic buffers, and the present invention.
  • a water-miscible organic solvent such as acetonitrile, dimethylformamide, and ethanol may be included within a range that does not adversely affect the formation reaction of the complex.
  • Isolation and purification of the prepared nucleic acid-encapsulating polymer micelle complex can be recovered from an aqueous medium by a conventional method. Typical methods include ultrafiltration, diafiltration, and dialysis.
  • an aqueous medium containing the polymer micelle complex is formed after forming a polymer micelle complex containing DNA.
  • the cationic polymer chain blocks can be cross-linked by an SS bond via a thiol group.
  • the oxidizing conditions are preferably left under ambient conditions or air-oxidized.
  • the degree of crosslinking is not particularly limited, but 5 to 20%, preferably 8 to 15%, of SH groups are introduced into the cationic polymer chain block forming the polymer micelle complex, and all thiol groups are introduced. The degree of oxidation is preferred.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention preferably has an average particle size in an aqueous medium measured by a dynamic light scattering method of 100 nm or less, more preferably 80 nm or less, and 70 nm or less. Further preferred. Since the nucleic acid-encapsulating polymer micelle complex according to the present invention is very small as described above, it can be efficiently incorporated into target cells and tissues.
  • the particle size of the nucleic acid-encapsulating polymer micelle complex in the aqueous medium is measured using, for example, a dynamic light scattering particle size / particle size distribution measuring apparatus using a non-contact backscattering optical system (NIBS). be able to.
  • NIBS non-contact backscattering optical system
  • the average particle diameter in the aqueous medium of the nucleic acid-encapsulating polymer micelle complex means the zeta average hydrodynamic particle diameter in the aqueous medium measured by a dynamic light scattering method.
  • the core part (DNA) of the nucleic acid-encapsulating polymer micelle complex according to the present invention can be observed with a transmission electron microscope (TEM).
  • the core part of the nucleic acid-encapsulating polymer micelle complex according to the present invention is not a rod shape but a sphere shape.
  • TEM transmission electron microscope
  • a circular core portion is observed instead of a rod shape.
  • “spherical shape” means not only a true sphere but also an ellipsoidal shape close to a sphere (for example, the ratio of the longest diameter of the three diameters to the remaining one is 2: 1. To 1: 1 ellipsoidal shape).
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention has a spherical core portion, so that the block portion per surface area of the core portion is larger than that of a nucleic acid-encapsulating polymer micelle complex having a rod-like core portion.
  • the average density of the polymer can be increased.
  • the higher the average density of the block copolymer per surface area of the core portion the less affected by polyanions present inside and outside cells in the living body. Stability can be increased.
  • the size of the nucleic acid-encapsulating polymer micelle complex according to the present invention is preferably such that the average particle size of the core portion is 50 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less, and 25 nm. The following are even more preferable.
  • the “core portion of the nucleic acid-encapsulating polymer micelle complex” means a portion that is imaged when the nucleic acid-encapsulating polymer micelle complex is imaged by TEM.
  • “Particle diameter of” means a spherical radius (that is, a radius of a circular shape of a core portion captured in a TEM image). The particle diameter of the core portion of the nucleic acid-encapsulating polymer micelle complex can be determined from a TEM image as shown in Reference Example (6) described later.
  • the average density of the block copolymer per surface area of the core portion is preferably 0.01 chain / nm 2 or more, and 0.03 chain / nm 2 or more. More preferably, it is more preferably 0.05 chain / nm 2 or more. Since the nucleic acid-encapsulating polymer micelle complex according to the present invention can sufficiently increase the density of the block copolymer, it can be obtained with good retention in blood when administered systemically.
  • the average number of molecules (unit: chain) of the block copolymer forming one molecule of the nucleic acid-encapsulating polymer micelle complex is calculated. Furthermore, taking a TEM image of the obtained nucleic acid-encapsulating polymer micelle complex, for each of the plurality of nucleic acid-encapsulating polymer micelle complexes in the obtained TEM image, the length of the circular radius of the core portion is obtained, The surface area of the core portion of each nucleic acid-encapsulating polymer micelle complex was calculated as a rotating sphere with the radius on the TEM image as the rotation axis, and the average surface area (nm 2) of the core portion per molecule of nucleic acid-encapsulating polymer micelle complex.
  • the average number of molecules of the block copolymer forming one molecule of the nucleic acid-encapsulating polymer micelle complex is divided by the average surface area of the core portion per molecule of the nucleic acid-encapsulating polymer micelle complex.
  • the average density (chain / nm 2 ) of the block copolymer per surface area of the core part of the encapsulated polymer micelle complex is determined.
  • PEG block-poly (12 kDa, M w / M n 1.05) as an initiator by ring-opening polymerization of N ⁇ -trifluoroacetyl-L-lysine N-carboxylic acid anhydride (NCA)
  • NCA N ⁇ -trifluoroacetyl-L-lysine
  • TSA ⁇ -trifluoroacetyl-L-lysine
  • the degree of polymerization of the PLys block of each PEG-PLys is determined by the total amount of methylene protons of the PEG chain (—CH 2 CH 2 O—) obtained from 1 H-NMR measurement and the lysine repeating unit [— (CH 2 ) 3 CH
  • the ratio of 2 NH 3 ) to the total amount of protons of methylene was 19, 39, and 70, respectively.
  • GPC gel permeation chromatography
  • nucleic acid used In order to form a nucleic acid-encapsulating polymer micelle complex for measuring the average density ⁇ of PEG per surface area of the core portion, a commercially available plasmid pBR322 (4361 bp, manufactured by Takara Bio Inc.) was used. It was. A plasmid pCAG-Luc2 (6.4 kbp) labeled with a fluorescent substance Cy (registered trademark) 5 was used to form a nucleic acid-encapsulating polymer micelle complex for examining retention in blood. The fluorescent labeling of pCAG-Luc2 was performed using Label IT (registered trademark) Tracker Nucleic Acid Localization Kit (manufactured by Mirus Bio). Note that pCAG-Luc2 is a plasmid pCAGGS (provided by Riken Genebank), which is obtained by excising the gene encoding Luc2 from the plasmid pGL4 (Promega).
  • nucleic acid-encapsulated polymer micelle complex PEG-PLys polymer micelle complex encapsulating pDNA by quickly mixing a DNA solution with a PEG-PLys solution so that the N / P ratio is 2. Formed.
  • the N / P ratio is [molar concentration of amine group in PLys block] / [molar concentration of phosphate group in pDNA].
  • the reaction solvent is 10 mM HEPES buffer (pH 7.3), and the pDNA concentration in the reaction solution is 33.3 ng / ⁇ L in the case of forming a nucleic acid-encapsulating polymer micelle complex for measuring the average density ( ⁇ ) of PEG.
  • the concentration was set to 100 ng / ⁇ L.
  • Ultracentrifugation was performed using an ultracentrifuge Optima TLX (Beckman Coulter) equipped with a TLA-120.1 rotor (Beckman Coulter) for 3 hours at 50,000 ⁇ g. Processed. Under these conditions, free PEG-PLys remained in the supernatant, while the polymer micelle complex was completely precipitated, as confirmed by the Beckman analytical ultracentrifuge XL-I (manufactured by Beckman Coulter). Yes.
  • the fluorescence intensity of the supernatant at 702 nm was measured, and the concentration of the fluorescence-labeled PEG-PLys in the supernatant was calculated using a calibration curve prepared based on the result of a standard product of free fluorescence-labeled PEG-PLys. Note that 702 nm is the maximum fluorescence wavelength of the fluorescent substance Alexa Fluor (registered trademark) 680.
  • Total polymeric micelle complex formed by subtracting the amount of fluorescently labeled PEG-PLys in the supernatant from the amount of fluorescently labeled PEG-PLys originally added to the reaction solution for forming the polymeric micelle complex
  • the total amount (mole) of fluorescently labeled PEG-PLys contained in the product is divided by the amount of DNA (mole) originally added to the reaction solution to obtain a fluorescently labeled PEG-bonded to one molecule of pDNA.
  • the average number of molecules of PLys (that is, the average number of molecules of fluorescently labeled PEG-PLys contained per molecule of the polymer micelle complex, unit: chain) was calculated.
  • the average number of molecules of fluorescently labeled PEG-PLys contained per molecule of the polymeric micelle complex is 436 for the polymeric micelle complex containing the fluorescently labeled PEG-PLys having a polymerization degree of PLys block of 19.
  • Polymer micelle complex containing fluorescently labeled PEG-PLys with ⁇ 31.2 chain and PLys block polymerization degree of 39 has fluorescent labeled PEG-PLys with 258 ⁇ 10.4 chain and PLys block polymerization degree of 70.
  • the polymer micelle complex contained was 168 ⁇ 2.5 chains.
  • TEM observation and image acquisition were performed using an electron microscope H-7000 (manufactured by Hitachi High-Technologies Corporation) under the condition of an acceleration voltage of 75 kV.
  • the measurement sample was prepared by adding an equal amount of 2 mass / volume% uranyl acetate solution to the polymer micelle complex solution.
  • a 400-mesh carbon film-coated copper grid (manufactured by Nisshin EM Co., Ltd.) previously glow-discharged using an ion coater (device name: Eiko IB-3, manufactured by Eiko Engineering Co., Ltd.) was immersed in each measurement sample for 30 seconds. After that, the material dried on the filter paper was observed with a TEM.
  • the core part of the polymer micelle complex in the TEM image has a rod shape, and the length of the major axis (L n ) and the length of the minor axis (2r n ) were measured using image processing software ImageJ.
  • FIG. 1 shows a TEM image (left in the figure) of a polymer micelle complex formed using PEG-PLys, and the long axis (L n ) (rod-like shape) of the polymer micelle complex calculated from the image.
  • the particle length) distribution (right in the figure) is shown.
  • “PLys19” is the result of the polymer micelle complex containing the fluorescently labeled PEG-PLys having a polymerization degree of PLys block of 19
  • “PLys39” is the fluorescent labeling having a polymerization degree of PLys block of 39.
  • PEG70 indicates the result of the polymer micelle complex containing fluorescently labeled PEG-PLys having a polymerization degree of PLys block of 70, and the result of the polymer micelle complex containing PEG-PLys. As a result, it was found that as the degree of polymerization of the PLys block increases, the size of the core portion of the polymer micelle complex decreases and approaches the spherical shape from the rod shape.
  • the average molecular number (chain) of the fluorescently labeled PEG-PLys contained per molecule of the polymer micelle complex obtained in (5) above is divided by the average surface area of the core portion of the polymer micelle complex.
  • the average density ⁇ (chain / nm 2 ) of the block copolymer per surface area of the core part of the nucleic acid-encapsulating polymer micelle complex was determined.
  • the average density ⁇ of the block copolymer per surface area of the core portion tends to decrease. I understood it.
  • an isoflurane anesthesia machine (model: 400, made by Univentor) for small animals is used to obtain 2.0. Anesthesia was applied with ⁇ 3.0% isoflurane (Abbott Japan). A catheter connected to a non-toxic medical polyethylene tube (manufactured by Natsume Seisakusho) was inserted into the lateral tail vein of these mice together with a 30-gauge injection needle (manufactured by Becton Dickinson).
  • the anesthetized mouse was placed on a temperature control pad (product name: THERMOPLATE (registered trademark), manufactured by Tokai Hit Co., Ltd.) incorporated in the microscope stage, and the sedated state was maintained during the measurement. Then, 10 seconds after the start of video recording, a polymer micelle complex (injection amount: 200 ⁇ L, DNA concentration: 100 ng / ⁇ L) containing fluorescently labeled pDNA was injected into the mouse from the tail vein. The earlobe skin was fixed under a cover clip with a drop of immersion oil and observed without surgery. Data was acquired as slap shots every 5 minutes in video mode. The experiment was performed four times for each polymer micelle complex on each separate mouse.
  • THERMOPLATE registered trademark
  • the video data was analyzed by selecting a region of interest for the skin tissue inside or outside the blood vessel.
  • the background fluorescence intensity is determined based on the video acquired for 10 seconds (before polymer micelle complex injection) from the start of video recording, and the average fluorescence intensity per pixel at each time point is determined by image integration software. It was determined using NIS-Elements C (Nikon Corporation). In order to obtain the background corrected intensity at each time point, the background value was subtracted from the average intensity per pixel measured after polymer micelle complex injection. The systemic circulation of the polymeric micelle complex was monitored by the fluorescence intensity from the blood vessels from which the fluorescence from the tissue background had been subtracted.
  • FIG. 2 shows the measurement results of changes in fluorescence intensity over time in the ear vein of mice. Until 40 minutes after the start of the experiment, the fluorescence intensity of blood vessels is highest when a polymer micelle complex containing PEG-PLys having a polymerization degree of PLys block of 19 is administered (“PLys19” in the figure). When the polymer micelle complex containing PEG-PLys having a polymerization degree of PLys block of 70 was administered (“PLys70” in the figure) was the lowest.
  • Example 1 Nucleic acid-encapsulating polymeric micelle complex produced by a conventional method of encapsulating pDNA as it is, and a nucleic acid-encapsulating polymeric micelle produced by a method of binding to a block copolymer in a state in which the double helix structure of pDNA is dissociated For the composite, the shape, size, and density of the block copolymer were compared.
  • PEG-PBLA PEG block-poly ( ⁇ -benzyl-L-aspartate) block
  • three types of PEG-PBLA having different degrees of polymerization were produced by adjusting the ratio of the initiator and the monomer NCA.
  • nucleic acid-encapsulating polymer micelle complex in which pDNA is denatured and encapsulated Restriction enzyme is added to plasmid pCAG-Luc (6.4 kbp) solution and treated with restriction enzyme, and pCAG-Luc is digested at one site. It was linear.
  • the DNA solution containing the linear DNA was heat treated at 95 ° C. for 10 minutes to denature the linearized pCAG-Luc into a single strand.
  • the PEG-PAsp (DET) -Cole solution is quickly mixed with the denatured DNA solution so that the N / P ratio is 4, whereby two lines derived from one molecule of pCAG-Luc are obtained.
  • MCPM-1 PEG-PAsp (DET) -Cole polymer micelle complex
  • the solvent was 10 mM HEPES buffer (pH 7.3), and the pDNA concentration in the reaction solution was 33.3 ng / ⁇ L.
  • pCAG-Luc is a plasmid pCAGGS (provided by Riken Genebank) which is obtained by excising the gene encoding Luc from the plasmid pGL3 (Promega).
  • FIG. 3 shows TEM images of both polymer micelle complexes
  • FIG. 4 shows the distribution of major axes of polymer micelle complexes calculated from the TEM images.
  • the core part of the polymer micelle complex in the TEM image was rod-shaped in PM-1 as in Reference Example 1, but was spherical in MCPM-1 (average radius: 23.1 ⁇ 3.8 nm). there were.
  • the average number of molecules (chains) of fluorescently labeled PEG-PAsp (DET) -Cole contained per molecule of the polymer micelle complex obtained in the above (5) is determined as the core part of the polymer micelle complex.
  • the average density ⁇ (chain / nm 2 ) of the block copolymer per surface area of the core portion of the nucleic acid-encapsulating polymer micelle complex was determined.
  • the calculation results of the average value of the surface area of the core part and the average density ⁇ of the block copolymer per surface area of the core part are shown in Table 1, “Surface area of core part (nm 2 )” and “PEG density ⁇ (chain / nm 2 ) ”.
  • PM-1 produced by the conventional method is rod-shaped with a long axis of 100 to 150 nm, and the PEG density is also 0.1 chain / nm.
  • the core portion was very small and spherical with a radius of about 23 nm.
  • the PEG density was significantly higher than 0.3 chain / nm 2 .
  • Example 2 Using a plasmid pCAG-AcGFP (6.5 kbp, provided by Riken Genebank) containing a gene encoding the fluorescent green protein GFP downstream of the CAG promoter, a conventional method of encapsulating pDNA as it is, and a double helix structure of pDNA A GFP gene-encapsulating polymer micelle complex is produced by a method of binding to a block copolymer in a dissociated state, and systemically administered to a model mouse that has developed pancreatic cancer, and GFP expression in the pancreatic cancer tissue I investigated.
  • PCAG-AcGFP is a plasmid pCAGGS (provided by Riken Genebank) in which a gene encoding GFP is incorporated.
  • a polymer micelle complex of PEG-PAsp (DET) -Cole (hereinafter “MCPM-2-GFP”) encapsulating single-stranded DNA was formed.
  • the reaction solvent was 10 mM HEPES buffer (pH 7.3), and the pDNA concentration in the reaction solution was 100 ng / ⁇ L.
  • Pancreatic cancer model mouse A model mouse obtained by transplanting the human pancreatic adenocarcinoma cell line BxPC3 into the pancreas was used as a pancreatic cancer model mouse.
  • the pancreatic cancer model mouse was obtained as follows. First, BLB / c nude mice (made by Charles River Laboratories) were subcutaneously inoculated with BxPC3 (1 ⁇ 10 7 cells) suspended in 100 ⁇ L of PBS (phosphate buffered saline). The tumor progressed to the growth phase (tumor size was about 75 mm 3 ) in 10 days.
  • BLB / c nude mice made by Charles River Laboratories
  • PBS phosphate buffered saline
  • FIGS. 5 shows a fluorescence image of a pancreatic cancer tissue of a mouse to which MCPM-2-GFP was administered systemically
  • FIG. 6 shows a fluorescence image of a pancreatic cancer tissue of a mouse to which PM-2-GFP was systemically administered
  • FIG. 5 Fluorescence images of pancreatic cancer tissues of mice administered with -1 systemically are shown.
  • FIG. 8 shows the measurement results of mice administered with PM-2-GFP and mice administered with MCPM-2-GFP.
  • GFP expression in the deep tumor tissue of pancreatic cancer was 10 times or more that of mice administered with PM-2-GFP.
  • Example 3 The effect of the presence or absence of crosslinking between the cationic polymer chain blocks on the retention in blood when the nucleic acid-encapsulating polymer micelle complex was systemically administered was examined.
  • three types of PEG-PLys (TFA) having different degrees of polymerization were produced by adjusting the ratio between the initiator and the monomer NCA.
  • the TFA groups of the three types of PEG-PLys (TFA) thus obtained were deprotected to obtain three types of PEG-PLys having a degree of polymerization (in the following formula, “n2”) of 20, 40, and 70. .
  • the structure of the obtained polymer was confirmed by 1 H-NMR measurement.
  • the degree of substitution of the PDP group was determined by 1 H-NMR measurement and UV measurement.
  • D 2 O was used as a solvent, and the Pyridyl group proton (C 3 H 4 N: 7.6 ppm) and the PEG methylene group proton (OCH 2 CH 2 : 3.5 ppm)
  • the degree of substitution was determined from the peak intensity ratio.
  • DTT dithiothreitol
  • the resulting PEG-PLys-PDP was added with DTT to a concentration three times that of the PDP group and stirred for 15 minutes before binding with DNA to form a polymer micelle complex.
  • the PDP group was reduced to a thiol residue.
  • Plasmid pCAG-Luc2 labeled with fluorescent substance Cy (registered trademark) 5 used in Reference Example 1 is treated with a restriction enzyme And it digested one place and made it linear.
  • the DNA solution containing the linear DNA was heat-treated at 95 ° C. for 10 minutes to denature the linearized fluorescently labeled pCAG-Luc2 into a single strand.
  • the PEG-PLys-PDP solution after the reduction treatment prepared in (1) above is quickly mixed with the denatured DNA solution so that the N / P ratio is 2, whereby one molecule of fluorescence is obtained.
  • MCPM-3-PLys20 cross-linked MCPM-3-PLys20-CL
  • MCPM-3-PLys40 cross-linked MCPM-3-PLys40-CL
  • MCPM-3-PLys70 cross-linked MCPM -3-PLys70-CL.
  • the polymer micelle complex (injection amount: 200 ⁇ L, DNA concentration: 100 ng / ⁇ L) formed in the above (2) and (3) was injected from the lateral tail vein of the mouse. Each polymer micelle complex was administered to 4 mice. Blood was collected from the vena cava of mice 30 minutes after administration, and serum was prepared by centrifugation. Trypsin and dextran sulfate were added to the obtained serum and incubated overnight at 37 ° C. The fluorescence intensity (670 nm) of Cy (registered trademark) 5 in the serum after the incubation was measured using a fluorescence spectrophotometer (product name: Nano Drop (ND-3300), manufactured by Wilmington).
  • the ratio (%) of the amount of the polymer micelle complex retained in the blood of the mouse 30 minutes after the systemic administration was calculated by the following formula.
  • [F 670 (sample)] means a measurement value of fluorescence intensity at 670 nm of serum (after incubation with trypsin and dextran sulfate) prepared from a mouse administered with a polymer micelle complex. .
  • [F 670 (control)] is obtained by adding a polymer micelle complex equivalent to the polymer micelle complex administered to the mouse to serum prepared from the mouse not administered with the polymer micelle complex ( Control serum) is a measurement of the fluorescence intensity at 670 nm of serum after adding trypsin and dextran sulfate in the same manner as the sample and incubating at 37 ° C. overnight.
  • [Ratio (%) of amount of polymer micelle complex staying in blood] [F 670 (sample)] / [F 670 (control)] ⁇ 100
  • Example 4 Using a plasmid (pVenus, 5.5 kbp) containing a gene encoding the fluorescent green protein Venus, the conventional method in which pDNA is encapsulated as it is, and the double helix structure of pDNA are dissociated and combined with a block copolymer. According to the method, a Venus gene-encapsulating polymer micelle complex was produced and systemically administered to a model mouse that developed pancreatic cancer, and Venus expression in pancreatic cancer tissue was examined. PVenus is a plasmid pCAGGS (provided by Riken Genebank) in which a gene encoding Venus is incorporated.
  • pCAGGS Provided by Riken Genebank
  • Cyclic RGD peptide is a ligand that selectively recognizes ⁇ v ⁇ 3 and ⁇ v ⁇ 5 integrins that are overexpressed in tumor cells and tumor vascular endothelial cells.
  • reaction solution containing the formed polymeric micelle complex was dialyzed for 3 days in the same manner as in Example 3 (3), and the thiol in the polymer micelle complex was oxidized to an SS bond and crosslinked. It was. PM-4-Venus-CL was obtained by crosslinking.
  • a polymer micelle complex of PEG-PLys-PDP (hereinafter “MCPM-4-Venus”) encapsulating two linear single-stranded DNAs derived therefrom was formed.
  • the reaction solvent was 10 mM HEPES buffer (pH 7.3), and the pDNA concentration in the reaction solution was 100 ng / ⁇ L.
  • the reaction solution containing the formed polymeric micelle complex was dialyzed for 3 days in the same manner as in Example 3 (3), and the thiol in the polymer micelle complex was oxidized to an SS bond and crosslinked. It was.
  • MCPM-4-Venus-CL was obtained by crosslinking.
  • pancreatic cancer model mice The polymer micelle composite produced in (3), (4) and (5) above for the same type of pancreatic cancer model mice as in (3) of Example 2
  • the body injection amount: 200 ⁇ L, DNA concentration: 100 ng / ⁇ L
  • the pancreatic cancer tissue transplanted with BxPC3 was surgically excised from a mouse 72 hours after injection, and a section for microscopic observation was prepared. Cell sections and blood vessels were stained with fluorescent staining.
  • FIG. 10 shows a fluorescence image of a pancreatic cancer tissue of a mouse to which MCPM-4-Venus-CL was systemically administered.
  • Example 5 In the same manner as in Example 3 (1), PEG-PLys-PDP (PEG-PLys20-SH 10%) having a polymerization degree of 20 and a PDP group substitution degree of 10%, a polymerization degree of 69 and a PDP group substitution degree 12% PEG-PLys-PDP (PEG-PLys69-SH 12%) was prepared. These block copolymers are prepared by adding DTT to a concentration three times that of PDP groups and stirring for 15 minutes before binding with DNA to form a polymer micelle complex. Was reduced to a thiol residue.
  • FIG. 11 shows a TEM image of a polymer micelle complex using PEG-PLys20-SH 10% (left, “20-SH 10%”) and a TEM image of a polymer micelle complex using PEG-PLys69-SH 12%. (Right, “69-SH12%”).
  • PEG-PLys20-SH 10% two cores that were clearly smaller than the core of the polymeric micelle complex using PEG-PLys69-SH 12% were paired.
  • the shell PEG density is clearly higher with PEG-PLys20-SH 10% than with PEG-PLys69-SH 12%.
  • Example 6 The influence of the presence or absence of crosslinking between the cationic polymer chain blocks on the morphology of the nucleic acid-encapsulating polymer micelle complex was investigated.
  • PEG-PLys having a polymerization degree of 21 and PEG-PLys-PDP having a polymerization degree of 21 and a substitution degree of PDP groups of 12% were produced.
  • DTT is added to the PDP group so that the concentration is three times that of the PDP group, and the mixture is stirred for 15 minutes.
  • the PDP group was reduced to a thiol residue.
  • a plasmid pCAG-Luc2 solution was mixed with these block copolymer solutions, and a polymer micelle complex of PEG-PLys encapsulating pCAG-Luc2 (Hereinafter referred to as “MCPM-6”) and a cross-linked polymer micelle complex of PEG-PLys-PDP (hereinafter referred to as “MCPM-6-CL”) containing pCAG-Luc2.
  • MCPM-6 polymer micelle complex of PEG-PLys encapsulating pCAG-Luc2
  • MCPM-6-CL cross-linked polymer micelle complex of PEG-PLys-PDP
  • FIG. 12 shows a TEM image (left) of a polymeric micelle complex (MCPM-6) using PEG-PLys, and a TEM of a polymeric micelle complex (MCPM-6-CL) using PEG-PLys-PDP. Each image (right) is shown.
  • the distribution of the long axis length of the polymer micelle complex calculated from the image is shown in FIG.
  • no difference in the shape of the core part of the polymer micelle complex was observed depending on the presence or absence of crosslinking, and it was found that the crosslinking did not affect the form of the core part of the polymer micelle complex.
  • Example 6 PEG-PLys having a polymerization degree of 21 was produced. Subsequently, a polymer micelle of PEG-PLys encapsulating pCAG-Luc2 was used in the same manner as in Example 6 except that the linear DNA solution was heated at 25 ° C., 70 ° C., 80 ° C. or 95 ° C. for 10 minutes. A complex was formed.
  • Example 8 The introduction of a gene into a cultured cell line using a nucleic acid-encapsulating polymer micelle complex was examined.
  • a cell line BxPC-3 derived from human pancreatic cancer adenocarcinoma was subjected to liquid culture at 12000 cells / well (3 ⁇ 10 4 cells / mL in a 400 ⁇ L / well culture medium) using a 24-well plate.
  • As the medium RPMI-1640 containing 10% fetal bovine serum (FBS) and 5% penicillin / streptomycin was used. After culturing at 37 ° C.
  • MCPM-8 polymer micelle complex
  • PEG-PLys72 degree of polymerization of PLys block: 72
  • MCPM-8-CL crosslinked polymer micelle complex
  • the polymeric micelle complex of the present invention is introduced into a human cultured cell line regardless of the presence or absence of crosslinking, and the gene contained in the polymeric micelle complex is expressed in the human cultured cell line. I understood it.
  • Example 9 PEG-PLys-PDP
  • PEG-PLys-PDP having a polymerization degree of 21 and a substitution degree of PDP group of 12% was produced.
  • DTT is added to the PDP group so that the concentration is three times that of the PDP group, and the mixture is stirred for 15 minutes.
  • the PDP group was reduced to a thiol residue.
  • the plasmid pCAGGS (provided by Riken Genebank) was incorporated with the sFlt-1 gene to produce plasmid pCAG-sFlt-1 .
  • the sFlt-1 gene is a gene that is considered to have an antitumor effect by inhibiting angiogenesis by antagonizing vascular endothelial growth factor receptor (VEGFR) involved in angiogenesis.
  • VEGFR vascular endothelial growth factor receptor
  • the obtained pCAG-sFlt-1 was treated with a restriction enzyme, digested at one site, and linearized. The DNA solution containing the linear DNA was heat treated at 95 ° C.
  • a polymer micelle complex obtained in the same manner as in the above (2) except that pCAG-sFlt-1 was not denatured by heat treatment
  • a polymer micelle complex obtained in the same manner as in the above (2) except that the Luc2 gene was incorporated in the same manner as in Reference Example 1 instead of the sFlt-1 gene ) was formed.
  • the nucleic acid-encapsulating polymer micelle complex according to the present invention has a small particle size and the density of the non-charged hydrophilic polymer chain block constituting the shell of the nucleic acid-encapsulating polymer micelle complex is high, it stays in the blood. Excellent in permeability, tumor vascular permeability, and tumor tissue permeability. For this reason, the nucleic acid-encapsulating polymer micelle complex according to the present invention can efficiently introduce the DNA to be encapsulated deep into the cancer tissue by systemic administration such as intravenous administration. Therefore, the nucleic acid-encapsulating polymer micelle complex according to the present invention is very useful as a gene carrier for delivering a therapeutic gene to a target cell, although not limited thereto. Can be used in pharmaceutical or medical industry. For example, the present invention is expected to enable gene therapy by systemic administration to refractory cancer with low vascular permeability.

Abstract

本発明の核酸内包高分子ミセル複合体は、非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、1000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上の二本鎖DNA、又は1000塩基長以上の1本の一本鎖DNAとから形成されてなることを特徴とする。

Description

核酸内包高分子ミセル複合体及びその製造方法
 本発明は、核酸(DNA)を内包する高分子ミセル複合体に関する。より詳細には、比較的長鎖のDNAを内包しているにもかかわらず、充分に小さい高分子ミセル複合体に関する。
 本願は、2013年8月6日に日本に出願された、特願2013-163106号に基づき優先権を主張し、その内容をここに援用する。
 次世代の治療法として、遺伝子発現を制御することによって疾患を治療する遺伝子治療に大きな期待が寄せられている。遺伝子治療における最大の課題は、遺伝子を標的の細胞や組織へ導入する際の導入効率が不充分だという点である。特に、全身投与による遺伝子治療を実現するためには、遺伝子が、血中を安定に循環して標的組織に集積すること、さらに、標的細胞に侵入した後、効果的に遺伝子発現が行われることが必要である。そこで、これらを解決すべく、標的細胞等への導入効率や標的細胞内における遺伝子発現効率がより優れた遺伝子運搬体(遺伝子キャリア)の開発が盛んである。
 例えば、一次構造が精密に制御された高分子は、自発的に組織化を生じ、ミセル、ベシクル等の高次構造体を形成しうることが知られており、このような高分子の自己組織化した構造体の利用が、薬物送達システムや材料科学をはじめとする種々の分野において、従前検討されている。例えば特許文献1には、非荷電性セグメント(非荷電性高分子鎖ブロック)と荷電性セグメント(荷電性高分子鎖ブロック)とを有するブロック共重合体からなり、コア部分に当該荷電性セグメントとは反対の荷電を有する薬剤を内包し得る静電結合型高分子ミセル薬剤担体が、開示されている。前記荷電性セグメントとしてカチオン性セグメントを用いることにより、DNAをコア部分に内包することができる。
 また、より高分子ミセルの安定化を図る工夫も各種報告されている。例えば、特許文献2には、静電結合型高分子ミセル薬剤担体において、ブロック共重合体同士を架橋剤を介して架橋させることにより、安定化させた静電結合型高分子ミセル薬剤担体が開示されている。さらに、特許文献3には、非荷電性親水性高分子鎖ブロックと、側鎖の一部に疎水性基が導入されたカチオン性ポリアミノ酸鎖ブロックとを含んでなるブロック共重合体も開示されている。当該ブロック共重合体は、側鎖に疎水性基が導入されていることにより、界面エネルギーが増大するためにミセル内の凝集力が増強してコアが小さくなる結果、高分子ミセルの安定化が図られている。
特開平8-188541号公報 国際公開第2004/105799号 国際公開第2009/113645号
 遺伝子キャリアを全身投与する場合、標的細胞に遺伝子を導入するためには、遺伝子キャリアの血中滞留性が高い必要がある。
 また、遺伝子キャリアの大きさが大きすぎると、細胞に取り込まれ難いという問題がある。特に膵臓がんのように血管密度の低いがんに対しては、血管の透過性が障壁となり、全身投与によって100nmサイズの遺伝子キャリアをがん組織深部にまで送達させることは非常に困難である。
 静電結合型高分子ミセル薬剤担体のコアに遺伝子を収容した高分子ミセル複合体は、遺伝子キャリアとして非常に有望であるものの、大きさや血中滞留性の点でまだまだ改善の余地がある。
 本発明は、比較的長鎖のDNAを内包し、大きさが充分に小さい、遺伝子キャリアとしても機能し得る高分子ミセル複合体、及びその製造方法を提供することを主たる目的とする。
 本発明者らは、生体適合性中性高分子であるポリエチレングリコール(PEG)とカチオン性高分子(以下、「カチオン性高分子鎖ブロック」と略記することがある。)からなるブロック共重合体に環状二本鎖DNAであるプラスミドDNA(以下、「pDNA」と略記することがある。)を内包させた高分子ミセル複合体について、カチオン性高分子鎖ブロックの長さ(重合度)と高分子ミセル複合体の粒子径との関係を調べたところ、カチオン性高分子鎖ブロックの長さが比較的短い場合には、高分子ミセル複合体は長軸が100nm以上のロッド状であるが、カチオン性高分子鎖ブロックの長さが長くなるほど長軸の長さが短くなり、カチオン性高分子鎖ブロックの長さが充分に長くなると、球体状に近い形状にまで小さくなる傾向にあることを見出した。また、PEG密度と血中滞留時間との関係を調べたところ、PEG密度の高い高分子ミセル複合体ほど血中滞留時間が長くなる傾向にあることも見出した。ここで、カチオン性高分子鎖ブロックの長さが長くなると、1分子のpDNAと会合するブロック共重合体数が少なくなる結果、PEG密度は低下してしまう。つまり、pDNAを内包させた高分子ミセル複合体の場合、粒子径を小さくするためにPEG密度を低下させると血中滞留性が低下してしまうことがわかった。
 本発明者らは、さらに研究を進めた結果、pDNAの二重らせん構造を解離させた状態でブロック共重合体と混合して複合体を形成することにより、シェル部分を構成する非電荷性親水性高分子鎖ブロックの密度を低下させることなく、ロッド状よりもはるかに小さい球体状の高分子ミセル複合体を形成し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明に係る核酸内包高分子ミセル複合体及びその製造方法は、下記[1]~[15]である。
[1] 非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、1000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上の二本鎖DNA、又は1000塩基長以上の1本の一本鎖DNAとから形成されてなることを特徴とする、核酸内包高分子ミセル複合体。
[2] 非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、1000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、又は少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上の二本鎖DNAとから形成されてなる、前記[1]の核酸内包高分子ミセル複合体。
[3] 前記一本鎖DNAが2000塩基長以上であり、前記二本鎖DNAが2000塩基対長以上である、前記[1]又は[2]の核酸内包高分子ミセル複合体。
[4] 水性媒体中の動的光散乱法による平均粒子径が100nm以下である、前記[1]~[3]のいずれかの核酸内包高分子ミセル複合体。
[5] DNAと、静電的相互作用によりDNAと結合したカチオン性高分子鎖ブロックとがコア部分を形成し、非電荷性親水性高分子鎖ブロックがシェル部分を形成している、前記[1]~[4]のいずれかの核酸内包高分子ミセル複合体。
[6] 前記コア部分の平均粒子径が、50nm以下である、前記[5]の核酸内包高分子ミセル複合体。
[7] 球体状である、前記[1]~[6]のいずれかの核酸内包高分子ミセル複合体。
[8] 前記一本鎖DNA又は前記二本鎖DNAが、線状である、前記[1]~[7]のいずれかの核酸内包高分子ミセル複合体。
[9] 前記ブロック共重合体の少なくとも一部が、互いに架橋されている、前記[1]~[8]のいずれかの核酸内包高分子ミセル複合体。
[10] 前記カチオン性高分子鎖ブロックの主鎖又は側鎖に、疎水性基が共有結合している、前記[1]~[9]のいずれかの核酸内包高分子ミセル複合体。
[11] 前記カチオン性高分子鎖ブロックの側鎖に、エチルアミン構造又はプロピルアミン構造を有する、前記[1]~[10]のいずれかの核酸内包高分子ミセル複合体。
[12] DNAを収容した核酸内包高分子ミセル複合体を製造する方法であって、
 非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、二重らせん構造の少なくとも一部を解離させた状態の1000塩基対長以上の二本鎖DNAとを、水性媒体中で混合する工程を有することを特徴とする、核酸内包高分子ミセル複合体の製造方法。
[13] 前記二本鎖DNAが、2000塩基対長以上である、[12]の核酸内包高分子ミセル複合体の製造方法。
[14] 前記二本鎖DNAが、線状である、前記[12]又は[13]の核酸内包高分子ミセル複合体の製造方法。
[15] 前記二本鎖DNAが、60℃以上で変性されたものである、[12]~[14]のいずれかの核酸内包高分子ミセル複合体の製造方法。
 本発明によれば、1000塩基対長以上、好ましくは2000塩基対長以上という長鎖のDNAを内部に収容する場合に、従来はロッド状又はトロイド状の核酸内包高分子ミセル複合体が主として形成されるブロック共重合体を用いた場合でも、球体状の高分子ミセル複合体を提供することができる。球体状の高分子ミセル複合体は、ロッド状の核酸内包高分子ミセル複合体よりも粒子径が小さく、かつ当該ブロック共重合体を構成する非電荷性親水性高分子鎖ブロックの密度も大きいため、細胞への取り込み効率と血中滞留性の両方に優れる。
参考例1において、各高分子ミセル複合体のTEM画像と、当該画像から算出された高分子ミセル複合体(ロッド状粒子)の長軸長の分布を示した図である。 参考例1において、各高分子ミセル複合体を全身投与したマウスの耳静脈における蛍光強度の経時的変化の測定結果を示した図である。 実施例1において、蛍光標識PEG-PAsp(DET)-Choleを用いて形成された高分子ミセル複合体(左:PM-1、右:MCPM-1)のTEM画像である。 実施例1において、TEM画像から算出された高分子ミセル複合体の長軸長の分布を示した図(左:PM-1、右:MCPM-1)である。 実施例2において、高分子ミセル複合体MCPM-2-GFPを全身投与したマウスの膵臓がん組織の蛍光画像である。 実施例2において、高分子ミセル複合体PM-2-GFPを全身投与したマウスの膵臓がん組織の蛍光画像である。 実施例2において、高分子ミセル複合体MCPM-1を全身投与したマウスの膵臓がん組織の蛍光画像である。 実施例2において、GFP遺伝子を収容している高分子ミセル複合体のうち、PM-2-GFPを投与した膵臓がんモデルマウスと、MCPM-2-GFPを投与した膵臓がんモデルマウスについて、膵臓がん組織深部におけるGFP発現の相対蛍光強度の測定結果を示した図である。 実施例3において、マウスに全身投与した高分子ミセル複合体の全量に対する、全身投与後30分経過後に血中に滞留している高分子ミセル複合体量の割合(%)の測定結果を示した図である。 実施例4において、高分子ミセル複合体(MCPM-4-Venus-CL)を全身投与したマウスの膵臓がん組織の蛍光画像である。 実施例5において、各高分子ミセル複合体のTEM画像を示した図である。 実施例6において、各高分子ミセル複合体のTEM画像を示した図である。 実施例6において、各高分子ミセル複合体のTEM画像から算出された、高分子ミセル複合体の長軸長の分布を示した図である。 実施例7において、各温度で変性処理を行った高分子ミセル複合体の長軸長及びアスペクト比の分布を示した図である。 実施例8において、ルシフェラーゼ遺伝子を収容しているPEG-PLys、またはPEG-PLys-PDPをトランスフェクトした細胞株において、ルシフェラーゼ発現の相対蛍光強度の測定結果を示した図である。 実施例9において、各高分子ミセル複合体を全身投与したマウスにおける、膵臓がんの大きさを測定した結果を示した図である。
 本発明に係る核酸内包高分子ミセル複合体は、非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と核酸(DNA)とから形成されてなり、前記カチオン性高分子鎖ブロックが会合した核酸がコア部分を形成し、前記非電荷性親水性高分子鎖ブロックがシェル部分を形成している。以下、詳細に説明する。
<非電荷性親水性高分子鎖ブロック>
 本発明において用いられるブロック共重合体は、非電荷性親水性高分子鎖ブロックとカチオン性高分子鎖ブロックとを含むものである。非電荷性親水性高分子鎖ブロックとしては、例えば、PEG、ポリプロピレングリコール等のポリアルキレングリコール;ポリ(2-メチル-2-オキサゾリン)、ポリ(2-エチル-2-オキサゾリン)、ポリ(2-イソプロピル-2-オキサゾリン)等のポリオキサゾリン;ポリサッカライド、デキストラン、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリル酸エステル、ポリメタクリル酸エステル、及びそれらの誘導体由来の各種のブロック等が例示される。中でも、生体適合性が高い中性の水溶性高分子であることから、PEG、ポリオキサゾリン、デキストラン、ポリビニルアルコールが好ましい。
 非電荷性親水性高分子鎖ブロックの分子量は、ブロック共重合体が内部に核酸を収容した高分子ミセル複合体を形成し得る大きさであればよく、特に限定されるものではない。
例えば、非電荷性親水性高分子鎖ブロックとしてPEG由来のブロック(ポリオキシエチレン鎖ブロック、以下、単に「PEGブロック」ということがある。)を用いる場合には、PEGブロックの分子量は約1.0~100kDaが好ましく、2~80kDaがより好ましく、8~25kDaがさらに好ましい。また、PEGブロック中のオキシエチレンの反復単位の数としては、22~2,300個が好ましく、45~1,850個がより好ましく、180~600個がさらに好ましい。
<カチオン性高分子鎖ブロック>
 本発明において用いられるカチオン性高分子鎖ブロックとしては、DNAと静電的に結合し得るカチオン性の高分子鎖からなるブロックであればよく、特に限定されるものではない。具体的には例えば、カチオン性基を側鎖に有するポリアミノ酸誘導体;ポリエチレンイミン(PEI);ポリメタクリル酸誘導体、ポリアクリル酸誘導体等のアクリル系樹脂等が挙げられる。
 本発明において使用されるカチオン性高分子鎖ブロックとしては、カチオン性アミノ酸のポリアミノ酸やその誘導体に由来するブロックや、アニオン性アミノ酸のアニオン性基(一般的には、カルボキシル基)にカチオン性化合物をエステル結合やアミド結合等により結合させたアミノ酸誘導体に由来するブロックが好ましく用いられる。カチオン性アミノ酸のポリアミノ酸としては、ポリリシン、ポリオルニチン、ポリアルギニン、ポリホモアルギニン、及びポリヒスチジン等が挙げられる。また、アニオン性アミノ酸にカチオン性化合物を結合させたアミノ酸誘導体としては、アスパラギン酸やグルタミン酸の1つのカルボキシル基に、カルボキシル基と結合する部位以外にアミノ基、イミノ基、第四級アミノ基等のカチオン性基を有する化合物を結合させた誘導体が挙げられる。当該カチオン性基を有する化合物としては、例えば、種々ジアミン等が挙げられる。アスパラギン酸やグルタミン酸の1つのカルボキシル基にジエチレントリアミンを反応させたアミノ酸誘導体由来の反復単位を有するブロックは、側鎖にエチルアミン構造を有する。その他、側鎖にプロピルアミン構造を導入したポリアミノ酸誘導体由来の反復単位を有するブロックも好ましい。
 本発明においては、リシン及び/又はその誘導体を反復単位とするポリアミノ酸由来のブロック(以下、「PLysブロック」ということがある。)、又はアスパラギン酸の1つのカルボキシル基にジエチレントリアミンを結合させたアミノ酸誘導体及び/又はその誘導体を反復単位とするポリアミノ酸由来のブロック(以下、「PAsp(DET)ブロック」ということがある。)をカチオン性高分子鎖ブロックとするブロック共重合を用いることが特に好ましい。
 カチオン性高分子鎖ブロック中の反復単位の数としては、ブロック共重合体が内部に核酸を収容した高分子ミセル複合体を形成した際に、シェルを形成する非電荷性親水性高分子鎖ブロックの密度を充分に高くしやすいため、10~200個が好ましく、20~100個がより好ましい。
 カチオン性高分子鎖ブロックの側鎖又はその末端(非電荷性親水性高分子鎖ブロックと直接又は間接的に共有結合させる末端とは反対側の末端)に疎水性基が共有結合されていることにより、得られた核酸内包高分子ミセル複合体をより安定化することができる。カチオン性高分子鎖ブロックの側鎖に疎水性基を備える場合、疎水性基は、カチオン性高分子鎖ブロック中にどのように配置されていてもよく、例えばランダムに配置されている場合や、ブロックとして配置されている場合(すなわち、非電荷性親水性高分子鎖ブロックと、側鎖に疎水基が共有結合されている反復単位からなるカチオン性高分子鎖ブロックと、疎水基を担持しない反復単位からなるカチオン性高分子鎖ブロックがトリブロックを形成する場合)が挙げられる。
 疎水性基としては、ステロール誘導体の残基又はC4-24ヒドロカルビル基が挙げられる。ステロールとは、シクロペンタノンヒドロフェナントレン環(C1728)をベースとする天然、半合成又は合成の化合物を意味し、例えば、天然のステロールとしては、限定されるものではないが、コレステロール、コレスタノール、ジヒドロコレステロール、コール酸等が挙げられ、その半合成又は合成の化合物としては、これら天然物の例えば、合成前駆体(必要により、存在する場合には、一定の官能基、ヒドロキシ基の一部若しくは全部が当該技術分野で既知のヒドロキシ保護基により保護されているか、又はカルボキシル基がカルボキシル保護基により保護されている化合物を包含する。)であることができる。また、ステロール誘導体とは、本発明の目的に悪影響を及ぼさない範囲内で、シクロペンタノンヒドロフェナントレン環にC1-12アルキル基、ハロゲン原子、例えば、塩素、臭素、フッ素が導入されていてもよく、当該環系は飽和又は部分不飽和であることができること等を意味する。ステロール誘導体の残基は、コレステロール、コレスタノール、ジヒドロキシコレステロールの3位ヒドロキシ基の水素原子が除去された基が好ましく、コレステロール3位ヒドロキシ基の水素原子が除去された基がより好ましい。C4-24ヒドロカルビル基は、炭素数4~24の炭素原子と水素原子からなる炭化水素から一個の水素原子を除去することにより生成する一価基である。具体的には、直鎖若しくは分岐鎖のC4-24アルキル基、好ましくは直鎖若しくは分岐鎖のC12-24アルキル基;直鎖若しくは分岐鎖のC4-24アルケニル基、好ましくは直鎖若しくは分岐鎖のC12-24アルケニル基;直鎖若しくは分岐鎖のC4-24アルキニル基、好ましくは直鎖若しくは分岐鎖のC12-24アルキニル基;アダマンチル等の、C4-24の籠状化合物、好ましくはC12-24の籠状化合物;ベンジル基等の、アリールがフェニル又はナフチルであり、アルキル基がC1-5であるアリールアルキル基が挙げられる。本発明において用いられるブロック共重合体中のカチオン性高分子鎖ブロックが側鎖に備える疎水性基としては、直鎖若しくは分岐鎖のC4-20アルキル基、直鎖若しくは分岐鎖のC4-20アルケニル基、又はベンジル基が好ましく、直鎖若しくは分岐鎖のC12-20アルキル基、直鎖若しくは分岐鎖のC12-20アルケニル基、又はベンジル基が好ましく、直鎖若しくは分岐鎖のC12-20アルキル基、直鎖若しくは分岐鎖のC12-20アルケニル基、又はベンジル基がより好ましい。なお、上述のアルケニル基及びアルキニル基には、複数の不飽和結合が含まれていてもよい。
 なお、本願明細書において、「Cx-y」は、炭素数x~yを意味する。
 核酸内包高分子ミセル複合体においては、これを構成するブロック共重合体同士が架橋されていることが、高分子ミセル複合体の安定性の点から好ましい。例えば、カチオン性高分子鎖ブロックの側鎖又はその末端(非電荷性親水性高分子鎖ブロックと直接又は間接的に共有結合させる末端とは反対側の末端)に、チオール基(-SH基)や架橋剤との結合部位を有することにより、得られた核酸内包高分子ミセル複合体をより安定化することができる。カチオン性高分子鎖ブロック中のチオール基同士をジスルフィド結合(SS結合)させることにより架橋することもできる。
 架橋剤との結合部位としては、アミノ基(-NH基)、チオール基、水酸基、カルボキシル基等が挙げられる。これらを結合部位とし得る架橋剤としては、分子内に複数個のアルデヒド基を有するグルタルアルデヒド、スクシンアルデヒド、パラホルムアルデヒド、フタリックジカルボキシアルデヒド(フタルアルデヒド)など;分子内にマレイミド基と活性エステル基を有するN-[α-メレイミドアセトキシ]スクシンイミドエステル、N-[β-マレイミドプロピルオキシ]スクシンイミドエステル、N-[ε-マレイミドカプロイルオキシ]スクシンイミドエステル、N-[γ-マレイミドブチリルオキシ]スクシンイミドエステル、スクシニミジル-4-[N-マレイミドメチル]シクロヘキサン-1-カルボキシ-[6-アミドカプロエート]、m-マレイミドベンゾイル-N-ヒドロキシスクシンイミドエステル、スクシニミジル-4-[N-マレイミドメチル]シクロヘキサン-1-カルボキシレート、スクシニミジル-4-[p-メレイミドフェニル]ブチレート、スクシニミジル-6-[(β-マレイミドプロピオンアミド)ヘキサノエート]など;分子内に活性エステルとニトロフェニルアジド基を有するN-5-アジド-2-ニトロベンゾイルオキシスクシンイミド、N-スクシニミジル-6-[4’-アジド-2’-ニトロフェニルアミノ]ヘキサノエートなど;分子内にフェニルアジド基とフェニルグリオキサル基を有するp-アジドフェニルグリオキサルなど;分子内に複数個のマレイミド基を有する1,4-ビス-マレイミドブタン、ビス-マレイミドエタン、ビス-マレイミドヘキサン、1,4-ビス-マレイミジル-2,3-ジハイドロブタン、1,8-ビス-マレイミドトリエチレングリコール、1,11-ビス-マレイミドテトラエチレングリコール、ビス[2-(スクシンイミジルオキシカルボニルオキシ)エチル]スルホン、トリス-[2-マレイミドエチル]アミンなど;分子内に複数個のスルホ活性エステル基を有するビス[スルホスクシンイミジル]スベレート、ビス[2-(スルフォスクシニミドキシカルボニルオキシ)エチル]スルホン、ジスルホスクシニミジルタートレート、エチレングリコールビス[スルホスクシニミジルスクシネート]、トリス-スルホスクシニジルアミノトリアセテートなど;分子内に複数個のアリルハライド基を有する1,5-ジフルオロ-2,4-ジニトロベンゼンなど、;分子内に複数個のイミドエステル基を有するジメチルアジピミデート、ジメチルピメリミデート、ジメチルスベリミデートなど;分子内に複数個のピリジルジチオ基を有する1,4-ジ-[3’-(2’-ピリジルジチオ)プロピオンアミド]ブタンなど;分子内に複数個の活性エステル基を有するジスクシニミジルグルタレート、ジスクシニミジルスベレート、ジスクシニミジルタートレート、エチレングリコールビス[スクシミジルスクシネート]など;分子内に複数個のビニルスルホン基を有する1,6-ヘキサン-ビス-ビニルスルホンなど;分子内にピリジルジチオ基と活性エステル基を有するスクシニミジル-6-[3-(2-ピリジルジチオ)プロピオンアミド]ヘキサノエート、4-スクシニミジルオキシカルボニル-メチル-α-[2-ピリジルジチオ]トルエン、N-スクシニミジル-3-[2-ピリジルジチオ]プロピオネートなど;分子内にヒドロキシフェニルアジド基と活性エステル基を有するN-ヒドロキシスクシニミジル-4-アジドサリサイリック酸など;分子内にマレイミド基とイソシアネート基を有するN-[p-マレイミドフェニル]イソシアネートなど;分子内にマレイミド基とスルホ活性エステル基を有するN-[ε-マレイミドカプロイルオキシ]スルホスクシンイミドエステル、N-[γ-マレイミドブチリルオキシ]スルホスクシンイミドエステル、N-ヒドロキシスルホスクシニミジル-4-アジドベンゾエート、N-[κ-マレイミドウンデカノイルオキシ]スルホスクシンイミドエステル、m-マレイミドベンゾイル-N-ヒドロキシスルホスクシンイミドエステル、スルホスクシニミジル-4-[N-マレイミドメチル]シクロヘキサン-1-カルボキシレート、スルホスクシニミジル-4-[p-マレイミドフェニル]ブチレートなど;分子内にピリジルジチオ基とスルホ活性エステル基を有するスルホスクシニミジル-6-[3’-(2-ピリジルジチオ)プロピオンアミド]ヘキサノエート、スルホスクシニミジル-6-[α-メチル-α-(2-ピリジルジチオ)トルアミド]ヘキサノエートなど;分子内にヒドロキシフェニルアジド基とスルホ活性エステル基を有するスルホスクシニミジル[4-アジドサリサイルアミド]ヘキサノエートなど;分子内にニトロフェニルアジド基とスルホ活性エステル基を有するスルホスクニミジル-6-[4’-アジド-2’-ニトロフェニルアミノ]ヘキサノエートなど;分子内にビニルスルホン基と活性エステル基を有するN-スクシニミジル-[4-ビニルスルホニル]ベンゾエートなど;を用いることができ、グルタルアルデヒドを用いることが特に好ましい。
<ブロック共重合体>
 本発明において用いられるブロック共重合体は、前記非電荷性親水性高分子鎖ブロックの末端と前記カチオン性高分子鎖ブロックの末端が、直接又は間接的(すなわち、適当なリンカーを介して)に共有結合されたものである。
 本発明において用いられるブロック共重合体としては、前記非電荷性親水性高分子鎖ブロックがポリエチレングリコール由来であり、前記カチオン性高分子鎖ブロックがポリアミノ酸若しくはその誘導体由来であるものが好ましく、前記非電荷性親水性高分子鎖ブロックがポリエチレングリコール由来であり、前記カチオン性高分子鎖ブロックがポリリシン、ポリオルニチン、ポリアルギニン、ポリホモアルギニン、ポリヒスチジン、ポリアスパラギン酸、及びポリグルタミン酸からなる群より選択されるポリアミノ酸由来(ポリアミノ酸誘導体由来を含む。)であるものがより好ましい。
 本発明において用いられるブロック共重合体としては、具体的には、下記一般式(I)又は(II)で示されるものが例示できる。なお、下記一般式(I)及び(II)における各反復単位は、記載の便宜上特定した順で示しているが、各反復単位はランダムな順で存在することができる。
Figure JPOXMLDOC01-appb-C000001
[一般式(I)及び(II)中、R1a及びR1bはそれぞれ独立して水素原子又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基を表し、L及びLは連結基を表し、R2a及びR2bはそれぞれ独立してメチレン基又はエチレン基を表し、Rは水素原子、保護基、チオール基、疎水性基又は重合性基を表し、Rは水酸基、オキシベンジル基、-NH-(CH2a-X基(ここで、aは1~5の整数であり、Xはそれぞれ独立して一級、二級、三級アミン又は四級アンモニウム塩の内の一種類又は二種類以上を含むアミン化合物残基であるか、あるいはアミンでない化合物残基である)、チオール基、疎水性基、又は開始剤残基を表し、R5a、R5b、R5c及びR5dはそれぞれ独立して水酸基、オキシベンジル基、又はNH-(CH2a-X基を表し、R5aとR5bとの総数及びR5cとR5dとの総数のうち、-NH-(CH2a-X基(ここで、Xは(NH(CH22e-NH2であり、eは1~5の整数である)が少なくとも2つ以上存在し、R6a及びR6bはそれぞれ独立して水素原子、保護基(ここで、保護基は通常アミノ基の保護基として用いられているZ基、Boc基、アセチル基又はトリフルオロアセチル基である)、又はL-SH(Lは、C1-20アルキレン基、C1-6アルキル-フェニル基、C1-6アルキル-フェニレン-C1-6アルキル基、フェニレン基、及びカルボニル-C1-20アルキル基からなる群より選ばれる連結基である。)であり、mは5~20,000の整数であり、nは2~5,000の整数であり、yは0~5,000の整数であり、zは1~5,000の整数であり、y+zはnより大きくないものとし、また、一般式(I)及び(II)における各繰り返し単位は記載の便宜上特定した順で示しているが、各繰り返し単位はランダムな順で存在することができる。]
 ここで、一般式(I)及び(II)の構造式中、反復単位数(重合度)が「m」のブロックがPEGブロック(非電荷性親水性高分子鎖ブロック)であり、反復単位数が「n-y-z」の部分と「y」の部分と「z」の部分とを合わせたブロックがカチオン性高分子鎖ブロックである。
 上記一般式(I)及び(II)中、R1a及びR1bは、それぞれ独立して水素原子又は未置換若しくは置換された直鎖若しくは分枝のC1-12アルキル基を表す。直鎖若しくは分枝のC1-12アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、デシル基、ウンデシル基等を挙げることができる。また、置換された場合の置換基としては、アセタール化ホルミル基、シアノ基、ホルミル基、カルボキシル基、アミノ基、C1-6アルコキシカルボニル基、C2-7アシルアミド基、同一若しくは異なるトリ-C1-6アルキルシロキシ基、シロキシ基又はシリルアミノ基を挙げることができる。ここで、アセタール化とは、ホルミルのカルボニルと、例えば、炭素数1~6個のアルカノールの2分子又は炭素原子数2~6個の分岐していてもよいアルキレンジオールとの反応によるアセタール部の形成を意味し、当該カルボニル基の保護方法でもある。例えば、置換基がアセタール化ホルミル基であるときは、酸性の温和な条件下で加水分解して他の置換基であるホルミル基(-CHO:又はアルデヒド基)に転化できる。
 また、必要により、R1a及びR1bとしてアミノ基等の反応性の高い置換基を有するものを用いた場合には、当該置換を介して、又は必要に応じてさらに活性エステル基、マレイミド基を有する結合基を導入した後に、標的指向性分子を結合させてもよい。標的指向性分子としては、例えば、前述のものが挙げられる。
 上記一般式(I)及び(II)中、L及びLは、連結基を表す。具体的には、Lは-(CH2b-NH-(ここで、bは0~5の整数である。)であることが好ましく、Lは-(CH2c-CO-(ここで、cは1~5の整数である。)であることが好ましい。なお、bが0の場合、「-(CH2b-」は単結合を表す。
 上記一般式(I)及び(II)中、R2a、R2b、R2c及びR2dは、それぞれ独立してメチレン基又はエチレン基を表す。R2a及びR2bのいずれもがメチレン基の場合はポリ(アスパラギン酸誘導体)に相当し、エチレン基の場合はポリ(グルタミン酸誘導体)に相当し、また、R2c及びR2dのいずれもがメチレン基の場合はポリ(アスパラギン酸誘導体)に相当し、エチレン基の場合はポリ(グルタミン酸誘導体)に相当する。これらの一般式中、R2a及びR2b(R2b及びR2a)がメチレン基及びエチレン基の両者を表す場合、及びR2c及びR2d(R2d及びR2c)がメチレン基及びエチレン基の両者を表す場合、アスパラギン酸誘導体及びグルタミン酸誘導体の反復単位は、それぞれブロックを形成して存在するか、あるいはランダムに存在できる。
 上記一般式(I)及び(II)中、Rは、水素原子、保護基、チオール基、疎水性基又は重合性基を表す。具体的には、Rは、アセチル基、アクリロイル基、メタクリロイル基、チオール基、又は疎水性基であることが好ましい。疎水性基は、具体的には、連結基B〔Bは、単結合、-COO-、-CO-、-CO-(CH-CO-(但し、hは1~5の整数である。)、又は下記式(III)〕を介して結合する前述のステロール誘導体の残基又はC4-24ヒドロカルビル基である。Rにおける疎水性基としては、連結基Bを介して結合するステロール誘導体の残基が好ましく、コレステロール、コレスタノール、又はジヒドロキシコレステロールの3位ヒドロキシ基の水素原子が除去された基が連結基Bを介して結合する基がより好ましく、コレステロール3位ヒドロキシ基の水素原子が除去された基が連結基Bを介して結合する基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)及び(II)中、Rは水酸基、オキシベンジル基、-NH-(CH2a-X基、チオール基、疎水性基、又は開始剤残基を表す。ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であることが好ましい。さらには場合により、Rが-NH-R(ここで、Rは未置換又は置換された直鎖又は分枝のC1-20アルキル基を表す。)であることが好ましい。疎水性基は、具体的には、前述のステロール誘導体の残基又はC4-24ヒドロカルビル基である。Rにおける疎水性基としては、ステロール誘導体の残基が好ましく、コレステロール、コレスタノール、ジヒドロキシコレステロールの3位ヒドロキシ基の水素原子が除去された基がより好ましく、コレステロール3位ヒドロキシ基の水素原子が除去された基がさらに好ましい。
 上記一般式(I)及び(II)中、R5a、R5b、R5c及びR5dは、それぞれ独立して水酸基、オキシベンジル基、-NH-(CH2a-X基を表す。ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であることが好ましい。
 R5aとR5bとの総数及びR5cとR5dとの総数のうち、-NH-(CH2a-X基〔ここで、XはNH-(CH2e-NH2(但し、eは1~5の整数)である。〕であるものが、少なくとも2つ以上存在することが好ましく、上記総数の50%以上存在することがより好ましく、上記総数の85%以上存在することがさらに好ましい。また、R5a、R5b、R5c及びR5dの全て又は一部が、-NH-(CH2a-NH-(CH2e-NH2であることが好ましい。
 さらに、R並びにR5a、R5b、R5c及びR5dの例示として上記した-NH-(CH2a-X基において、Xが下記の15の各式で表される基からなる群より選ばれるものである場合が特に好ましい。
Figure JPOXMLDOC01-appb-C000003
 ここで、上記の各式中、Xは、水素原子又はC1-6アルキル基若しくはアミノC1-6アルキル基を表し、R7a、R7b及びR7cは、それぞれ独立して水素原子又はメチル基を表し、d1、d2及びd3は、それぞれ独立して1~5の整数を表し、e1、e2及びe3は、それぞれ独立して1~5の整数を表し、fは、0~15の整数を表し、gは0~15の整数を表し、R8a及びR8bは、それぞれ独立して水素原子、保護基、又はL-SH(Lは、C1-20アルキレン基、C1-6アルキル-フェニル基、C1-6アルキル-フェニレン-C1-6アルキル基、フェニレン基、及びカルボニル-C1-20アルキル基からなる群より選ばれる連結基である。)を表す。ここで、当該保護基は、通常アミノ基の保護基として用いられているZ基、Boc基、アセチル基及びトリフルオロアセチル基からなる群より選ばれる基であることが好ましい。なお、f及びgが0の場合、それぞれ単結合を意味する。
 上記一般式(I)及び(II)中、R6a及びR6bは、それぞれ独立して水素原子、保護基、又はL-SH(Lは、C1-20アルキレン基、C1-6アルキル-フェニル基、C1-6アルキル-フェニレン-C1-6アルキル基、フェニレン基、及びカルボニル-C1-20アルキル基からなる群より選ばれる連結基である。)である。ここで、保護基は、通常アミノ基の保護基として用いられているZ基、Boc基、アセチル基、及びトリフルオロアセチル基からなる群より選ばれる基であることが好ましい。
 上記一般式(I)及び(II)中、mは5~20,000の整数である。また、nは2~5,000の整数であり、yは0~5,000の整数であり、zは1~5,000の整数である。但し、yとzとの合計(y+z)は、nより大きくないものとする。
 上記一般式(I)及び(II)で示されるブロック共重合体の製造方法は、限定はされないが、例えば、R1aO-又はR1bO-とPEG鎖とを含むPEGブロックを予め合成しておき、このPEGブロックの片末端(R1aO-又はR1bO-と反対の末端)に、所定のモノマーを順に重合し、その後必要に応じて側鎖をカチオン性基を含むように置換又は変換する方法、あるいは、上記PEGブロックと、カチオン性高分子鎖ブロック(反復単位数が「n-y-z」の部分と「y」の部分と「z」の部分とを合わせたブロック)とを予め別々に合成しておき、これらを互いに連結する方法などが挙げられる。当該製法における各種反応の方法及び条件は、常法を考慮し適宜選択又は設定することができる。上記PEGブロックは、例えば、国際公開第96/32434号公報、国際公開第96/33233号公報及び国際公開第97/06202号公報等に記載のブロック共重合体のPEGブロック部分の製法を用いて調製することができる。
 一般式(I)及び(II)で示されるブロック共重合体の、より具体的な製造方法としては、例えば、末端にアミノ基を有するPEGブロック誘導体を用いて、そのアミノ末端に、β-ベンジル-L-アスパルテート(BLA)及びNε-Z-L-リシン等の保護アミノ酸のN-カルボン酸無水物(NCA)を重合させてブロック共重合体を合成し、その後、各ブロックの側鎖が前述したカチオン性基を有する側鎖となるように、ジエチレントリアミン(DET)等で置換又は変換する方法が好ましく挙げられる。
 本発明において、一般式(I)及び(II)で示されるブロック共重合体の具体例としては、例えば、後述する実施例に記載のPEG-poly[N-[N'-(2-aminoethyl)-2-aminoethyl)]aspartamide](PEG-PAsp(DET))や、PEG-ポリリジン(PEG-PLys)、並びにこれらのカチオン性ブロックの主鎖末端に、直接又は必要に応じて連結基を介してステロール誘導体の残基を付加したものや、これらのカチオン性ブロックの側鎖にチオール基を付加したもの等が好ましく挙げられる。
<ブロック共重合体の修飾>
 高分子ミセル複合体を遺伝子キャリアとして使用するには、遺伝子(DNA)を標的組織や標的細胞に効率よく運搬するために、特定の細胞や組織との親和性の高い分子(標的指向性分子)を表面に備えることが好ましい。例えば、非電荷性親水性高分子鎖ブロックの2つの末端のうち、カチオン性高分子鎖ブロックと直接又は間接的に共有結合させる末端とは反対側の末端に、直接又は適当なリンカーを介して標的指向性分子を付加することにより、標的指向性分子が表面に露出した核酸内包高分子ミセル複合体を形成させることができる。標的指向性分子としては、例えば、特定の受容体タンパク質等に対するリガンド又は抗体(その断片:F(ab’)2、F(ab)等)、糖、核移行シグナル分子等が挙げられる。本発明に係る核酸内包高分子ミセル複合体は、2000塩基対長以上という長さのDNAを内部に収容するにもかかわらず、従来になく小さな粒子である。このため、その表層に核移行シグナル分子を備えることにより、非分裂細胞に対しても核膜孔通過による遺伝子導入を成功させ得る。
<核酸内包高分子ミセル複合体>
 本発明に係る核酸内包高分子ミセル複合体が内包する核酸は、2000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、又は2000塩基長以上の1本の一本鎖DNAである。互いに相補的な塩基配列からなる2本の一本鎖DNAは、通常、互いに会合してなる二本鎖DNAが二重らせん構造をとっている。二重らせん構造は非常に剛性が強いため、二本鎖DNAとブロック共重合体を単に混合して自己組織化により、DNAを内包する高分子ミセル複合体を形成させる従来法により核酸内包高分子ミセル複合体を形成させた場合には、シェル部分の非電荷性親水性高分子鎖ブロックの密度を充分に低下させない限り、球体状に近い小さな粒子とすることはできなかった。
 これに対して、本発明に係る核酸内包高分子ミセル複合体は、1000塩基長以上(好ましくは1500塩基長以上、より好ましくは2000塩基長以上)の互いに相補的な塩基配列からなる2本の一本鎖DNA、少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上(好ましくは1500塩基対長以上、より好ましくは2000塩基対長以上)の二本鎖DNA、又は1000塩基長以上(好ましくは1500塩基長以上、より好ましくは2000塩基長以上)の1本の一本鎖DNAを、コア部分として内包している。つまり、本発明に係る核酸内包高分子ミセル複合体がpDNA等の2本鎖DNAを内包する場合には、1000塩基対長以上(好ましくは1500塩基対長以上、より好ましくは2000塩基対長以上)の二本鎖DNAが、二重らせん構造を少なくとも一部、好ましくは全部解離させた状態で、前記ブロック共重合体中のカチオン性高分子鎖ブロックと静電的に結合して収容されている。一本鎖DNAは柔軟鎖としてふるまうため、前記ブロック共重合体と静電的に結合させる際に、球体状への凝縮転移が可能となる。つまり、コア部分(DNA)の表面積を非常に小さくすることができ、これにより、シェル部分の非電荷性親水性高分子鎖ブロックの密度も飛躍的に増大させることができる。
 本発明に係る核酸内包高分子ミセル複合体は、二本鎖DNAの二重らせん構造の全部又は少なくとも一部を解離させた状態で、ブロック共重合体と混合し、自己組織化させることにより、DNAをコアとした高分子ミセル複合体を形成させることにより得られる。DNAを最も小さく凝縮させ、球体状のコアが得られるため、内包させる二本鎖DNAは、完全に解離させた2本の一本鎖DNAとした状態でブロック共重合体と混合し、自己組織化させることが好ましい。これにより、2本の一本鎖DNAをコアに含む核酸内包高分子ミセル複合体、又は1本の一本鎖DNAをコアに含む核酸内包高分子ミセル複合体が形成される。なお、二本鎖DNAの二重らせん構造の一本鎖構造への解離は、加熱処理による変性(熱変性)による変性等の従来公知の変性方法により適宜行うことができる。加熱処理の温度は室温以上であればよいが、60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、95℃以上が特に好ましい。上記温度以上で加熱処理を行うことにより、1000塩基対長以上の二本鎖DNAの二重らせん構造を好適に解離させることができる。二本鎖DNAの二重らせん構造の解離の程度は、融解曲線を調べることにより判別できる。
 本発明において、ブロック共重合体に内包させるDNAは、ブロック共重合体との混合時に二重らせん構造を少なくとも一部、好ましくは全部解離させた状態であればよく、環状DNAであってもよい。本発明においては、二重らせん構造をより解離させやすいため、線状DNAのほうが好ましい。環状DNAは、予め制限酵素処理等により線状化しておくことにより、より容易に二重らせん構造を解離させることができる。
 本発明に係る核酸内包高分子ミセル複合体は、内包させる二本鎖DNAを変性(一本鎖化)させた状態でブロック共重合体と混合する以外は、特許文献1~3等に開示されているような核酸内包高分子ミセル複合体を形成する方法等と同様にして形成することができる。例えば、変性させたDNAとブロック共重合体とを混合させる反応溶媒となる水性媒体としては、水(特に、脱イオン水)、又は水に各種無機若しくは有機緩衝剤を含むものであり、本発明に係る複合体の形成反応に悪影響を及ぼさない範囲で、アセトニトリル、ジメチルホルムアミド、エタノール等の水混和有機溶媒を含んでいてもよい。調製した核酸内包高分子ミセル複合体の単離及び精製は、常法により、水性媒体中から回収することができる。典型的な方法としては、限外濾過法、ダイアフィルトレーション、透析方法が挙げられる。
 また、カチオン性高分子鎖ブロックにチオール基を有するブロック共重合体を用いた場合には、DNAを内包した高分子ミセル複合体を形成させた後、当該高分子ミセル複合体を含有する水性媒体を酸化条件下に置くことにより、カチオン性高分子鎖ブロック同士を、チオール基を介したSS結合により架橋することができる。通常、酸化条件は周囲環境下への放置ないしは空気酸化される条件下に置くのがよい。架橋の程度は特に限定されるものではないが、高分子ミセル複合体を形成するカチオン性高分子鎖ブロックにSH基を5~20%、好ましくは8~15%導入し、すべてのチオール基を酸化させた程度が好ましい。
 本発明に係る核酸内包高分子ミセル複合体は、動的光散乱法により測定した水性媒体中における平均粒子径が、100nm以下のものが好ましく、80nm以下のものがより好ましく、70nm以下のものがさらに好ましい。本発明に係る核酸内包高分子ミセル複合体はこのように非常に小さいため、標的の細胞や組織に効率よく取り込まれることができる。なお、核酸内包高分子ミセル複合体の水性媒体中における粒子径は、例えば、非接触後方散乱光学系(NIBS)を使用した動的光散乱式粒子径・粒度分布測定装置を使用して測定することができる。当該装置としては、例えば、ゼータサイザーナノZS(製品名)(マルバーン社製)が挙げられる。また、核酸内包高分子ミセル複合体の水性媒体中における平均粒子径とは、動的光散乱法により測定した水性媒体中におけるゼータ平均流体力学粒子径を意味する。
 本発明に係る核酸内包高分子ミセル複合体は、透過型電子顕微鏡(TEM)により、コア部分(DNA)を観察することができる。本発明に係る核酸内包高分子ミセル複合体のコア部分は、ロッド状ではなく、球体状である。実際に、本発明に係る核酸内包高分子ミセル複合体をTEMで観察すると、ロッド状ではなく、円状のコア部分が観察される。本発明及び本願明細書において、「球体状」とは、真正の球のみならず、球に近い楕円体状(例えば、3径のうちの最長径と残りの一方の径の比が2:1~1:1の楕円体状)も含む。本発明に係る核酸内包高分子ミセル複合体は、コア部分が球体状であることにより、コア部分がロッド状である核酸内包高分子ミセル複合体に比して、コア部分の表面積当たりのブロック共重合体の平均密度を高くすることができる。本発明に係る核酸内包高分子ミセル複合体においては、コア部分の表面積当たりのブロック共重合体の平均密度を高くするほど、生体内の細胞内外に多く存在するポリアニオンによる影響を受けづらく、生体内安定性を高めることができる。
 また、本発明に係る核酸内包高分子ミセル複合体の大きさとしては、コア部分の平均粒子径が50nm以下のものが好ましく、40nm以下のものがより好ましく、30nm以下のものがさらに好ましく、25nm以下のものがよりさらに好ましい。なお、本発明及び本願明細書において、「核酸内包高分子ミセル複合体のコア部分」とは、核酸内包高分子ミセル複合体をTEMで撮像した場合に撮像される部分を意味し、「コア部分の粒子径」は、球体状の半径(つまり、TEM画像に撮像されたコア部分の円形状の半径)を意味する。核酸内包高分子ミセル複合体のコア部分の粒子径は、後記参考例(6)に示すように、TEM画像から求めることができる。
 本発明に係る核酸内包高分子ミセル複合体は、コア部分の表面積当たりのブロック共重合体の平均密度が0.01鎖/nm以上であることが好ましく、0.03鎖/nm以上であることがより好ましく、0.05鎖/nm以上であることがさらに好ましい。本発明に係る核酸内包高分子ミセル複合体は、充分にブロック共重合体密度を大きくできるため、全身に投与した場合に血中滞留性が良好なものが得られる。
 なお、核酸内包高分子ミセル複合体のコア部分の表面積当たりのブロック共重合体の平均密度は、以下の方法により算出できる。まず、蛍光標識したブロック共重合体を用いて、本発明に係る核酸内包高分子ミセル複合体を得る。次いで、反応溶媒から複合体を遠心除去し、上清に含まれている複合体形成に関与しなかったブロック共重合体を、蛍光強度を指標として定量する。複合体調製時に使用したブロック共重合体総量との差分から、複合体に結合しているブロック共重合体の分子数を算出し、さらにこの分子数を、反応に用いた二本鎖DNAの分子数で除することにより、核酸内包高分子ミセル複合体1分子を形成しているブロック共重合体の平均分子数(単位:鎖)を算出する。さらに、得られた核酸内包高分子ミセル複合体のTEM画像を撮像し、得られたTEM画像中の複数の核酸内包高分子ミセル複合体について、それぞれコア部分の円形の半径の長さを求め、各核酸内包高分子ミセル複合体のコア部分の表面積を、TEM画像上の半径を回転軸とした回転球として算出し、核酸内包高分子ミセル複合体1分子当たりのコア部分の平均表面積(nm)を算出する。最後に、核酸内包高分子ミセル複合体1分子を形成しているブロック共重合体の平均分子数を、核酸内包高分子ミセル複合体1分子当たりのコア部分の平均表面積で除することにより、核酸内包高分子ミセル複合体のコア部分の表面積当たりのブロック共重合体の平均密度(鎖/nm)が求められる。
 次に、実施例等により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。また、以下の全ての動物実験は、国立大学法人東京大学における実験動物の管理と使用に関するガイドラインに従ってなされた。
[参考例1]
 PEGブロックとPLysブロックからなるブロック共重合体により二重らせん構造の二本鎖DNA(pDNA)を内包させた高分子ミセル複合体における、PLysブロックの重合度と、高分子ミセル複合体の形状との関係を調べた。
(1)PEG-PLys
 本発明者の一人により既に開示された方法(Kataoka et al.,Macromolecules,1996,vol.29,p.8556-8557)に準じて得られたα-メトキシ-ω-アミノPEG(PEG、Mw=12kDa、M/M=1.05)を開始剤として用い、Nε-トリフルオロアセチル-L-リシンのN-カルボン酸無水物(NCA)を開環重合することによってPEGブロック-ポリ(ε-トリフルオロアセチル-L-リシン)ブロック(PEG-PLys(TFA))を製造した。この際、開始剤とモノマーであるNCAとの比を調節することにより、重合度の異なる3種のPEG-PLys(TFA)を製造した。こうして得られた3種のPEG-PLys(TFA)のトリフルオロアセチル基(TFA基)を水酸化ナトリウムで脱保護して、重合度(下記化学式中の「n1」)の異なる3種のPEG-PLysを得た。
Figure JPOXMLDOC01-appb-C000004
 各PEG-PLysのPLysブロックの重合度は、H-NMR測定から得られたPEG鎖(-CHCHO-)のメチレンのプロトンの総量とリシン反復単位[-(CHCHNH)のメチレンのプロトンの総量との比より、それぞれ19、39、及び70と求められた。なお、ゲル浸透クロマトグラフィー(GPC)(東ソー社製の高速GPC装置HLC-8220GPCを使用。)の結果、3種のPEG-PLysの全てが、分散度(M/M)は1.1未満であった。
(2)蛍光標識PEG-PLys
 PEG-PLysがDNAと結合したことを確認するために、PEG-PLysを予め蛍光標識した。具体的には、前記(1)で得たPEG-PLysに対して、Alexa Fluor(登録商標)680 carboxylic acid succinimidyl ester(Molecular Probes社製)を、製造者による使用説明書に従って反応させて結合させた。未反応の蛍光物質をPD-10脱塩カラム(GE Healthcare Life Sciences社製)を用いて除去した。PEG-PLysが実際に蛍光標識されたことは、UV検出器、IR検出器、及び蛍光検出器を備えるGPCにより確認した。蛍光標識効率を算出したところ、おおよそ全てのPEG-PLysにおいて、40リシン反復単位当たり1分子の蛍光物質が結合していた。
(3)使用した核酸
 コア部分の表面積当たりのPEGの平均密度σを測定するための核酸内包高分子ミセル複合体を形成するためには、市販のプラスミドpBR322(4361bp、タカラバイオ社製)を用いた。
 血中滞留性を調べるための核酸内包高分子ミセル複合体を形成するためには、蛍光物質Cy(登録商標)5で標識したプラスミドpCAG-Luc2(6.4kbp)を用いた。pCAG-Luc2の蛍光標識は、Label IT(登録商標)Tracker Nucleic Acid Localization Kit(Mirus Bio社製)を用いて行った。なお、pCAG-Luc2は、プラスミドpCAGGS(理研ジーンバンクから供与)に、プラスミドpGL4(プロメガ社製)からLuc2をコードする遺伝子切り出して組み込んだものである。
(4)核酸内包高分子ミセル複合体の形成
 PEG-PLys溶液にDNA溶液を、N/P比が2となるように素早く混合することにより、pDNAを内包したPEG-PLysの高分子ミセル複合体を形成した。なお、N/P比とは、[PLysブロック中のアミン基のモル濃度]/[pDNA中のリン酸基のモル濃度]である。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は、PEGの平均密度(σ)測定のための核酸内包高分子ミセル複合体形成の場合には33.3ng/μL、血中滞留性測定のための核酸内包高分子ミセル複合体形成の場合には100ng/μLとした。
(5)核酸内包高分子ミセル複合体を形成しているPEG-PLysの決定
 蛍光標識PEG-PLysを用いて形成された高分子ミセル複合体については、pDNAと結合した蛍光標識PEG-PLysを、pDNAと結合していない遊離の蛍光標識PEG-PLysから分離するために、高分子ミセル複合体形成後の反応溶液を、壁の厚いポリカーボネート製チューブ(製品番号:343776、ベックマン・コールター社製)に入れて超遠心分離処理を行った。超遠心分離処理は、TLA-120.1ローター(ベックマン・コールター社製)を備えた超遠心分離機Optima TLX(ベックマン・コールター社製)を用い、50,000×gで3時間、超遠心分離処理を行った。当該条件では、遊離のPEG-PLysは上清に残る一方、高分子ミセル複合体は完全に沈殿することが、ベックマン分析用超遠心分離機XL-I(ベックマン・コールター社製)によって確認されている。上清の702nmにおける蛍光強度を測定し、遊離の蛍光標識PEG-PLysの標準品の結果に基づいて作成された検量線を用いて、当該上清の蛍光標識PEG-PLysの濃度を算出した。なお、702nmは、蛍光物質Alexa Fluor(登録商標)680の極大蛍光波長である。
 高分子ミセル複合体形成のための反応溶液に元々添加した蛍光標識PEG-PLysの量から、当該上清中の蛍光標識PEG-PLysの量を差し引いた量を、形成された全高分子ミセル複合体に含まれている蛍光標識PEG-PLysの総量(モル)とし、これを、反応溶液に元々添加したDNA量(モル)で除することにより、1分子のpDNAに結合している蛍光標識PEG-PLysの平均分子数(すなわち、高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PLysの平均分子数、単位:鎖)を算出した。
 この結果、高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PLysの平均分子数は、PLysブロックの重合度が19である蛍光標識PEG-PLysを含む高分子ミセル複合体は436±31.2鎖、PLysブロックの重合度が39である蛍光標識PEG-PLysを含む高分子ミセル複合体は258±10.4鎖、PLysブロックの重合度が70である蛍光標識PEG-PLysを含む高分子ミセル複合体は168±2.5鎖であった。つまり、核酸内包高分子ミセル複合体を構成するブロック共重合体のカチオン性高分子鎖ブロックの重合度が大きいほど、高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PLysの平均分子数が小さくなる傾向にあることがわかった。
(6)TEM観察
 PEG-PLysを用いて形成された高分子ミセル複合体について、TEM画像を撮像した。TEM画像には、高分子ミセル複合体を構成するDNAとPLysブロックが現れ、PEGは観察できない。高分子ミセル複合体中、DNAはコア部分を形成している。つまり、TEM画像から、高分子ミセル複合体のコア部分の形状が確認できる。
 TEM観察及び画像の取得は、電子顕微鏡H-7000(日立ハイテクノロジーズ社製)を用いて、加速電圧を75kVとする条件で行った。測定サンプルは、高分子ミセル複合体溶液に等量の2質量/容量%の酢酸ウラニル溶液を添加して調製した。イオンコーター(装置名:Eiko IB-3、エイコー・エンジニアリング社製)を用いて予めグロー放電させた400メッシュのカーボン膜被覆銅グリッド(日新EM社製)を、それぞれ測定サンプルに30秒間浸漬させた後、フィルターペーパー上で乾燥させたものをTEM観察した。TEM画像中の高分子ミセル複合体のコア部分はロッド状であり、長軸の長さ(L)と短軸の長さ(2r)を、画像処理ソフトウェアImageJを用いて測定した。
 図1に、PEG-PLysを用いて形成された高分子ミセル複合体のTEM画像(図中、左)と、当該画像から算出された高分子ミセル複合体の長軸(L)(ロッド状粒子の長さ)の分布(図中、右)を示した。図1中、「PLys19」は、PLysブロックの重合度が19である蛍光標識PEG-PLysを含む高分子ミセル複合体の結果を、「PLys39」は、PLysブロックの重合度が39である蛍光標識PEG-PLysを含む高分子ミセル複合体の結果を、「PLys70」は、PLysブロックの重合度が70である蛍光標識PEG-PLysを含む高分子ミセル複合体の結果を、それぞれ示す。この結果、PLysブロックの重合度が大きくなるほど、高分子ミセル複合体のコア部分の大きさは小さくなり、ロッド状から球体状に近づいていくことがわかった。
(7)コア部分の表面積の算出、及びPEGの平均密度σの算出
 各高分子ミセル複合体のコア部分の表面積[A]を、TEM画像中における長軸[L]を回転軸とし、短軸の半分の長さ[r]を半径とする円柱として、下記式の通り求めた。TEM画像中の複数のコア部分について測定し、平均を算出した。
コア部分の表面積: [A]=(L×2πr)+2×(π×r
 次いで、前記(5)で求めた高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PLysの平均分子数(鎖)を、高分子ミセル複合体のコア部分の平均表面積で除することにより、核酸内包高分子ミセル複合体のコア部分の表面積当たりのブロック共重合体の平均密度σ(鎖/nm)を求めた。
 この結果、核酸内包高分子ミセル複合体のコア部分の表面積当たりのブロック共重合体の平均密度σは、PLysブロックの重合度が19である蛍光標識PEG-PLysを含む高分子ミセル複合体は0.075鎖/nm、PLysブロックの重合度が39である蛍光標識PEG-PLysを含む高分子ミセル複合体は0.051鎖/nm、PLysブロックの重合度が70である蛍光標識PEG-PLysを含む高分子ミセル複合体は0.038鎖/nmであった。つまり、核酸内包高分子ミセル複合体を構成するブロック共重合体のカチオン性高分子鎖ブロックの重合度が大きいほど、コア部分の表面積当たりのブロック共重合体の平均密度σが小さくなる傾向にあることがわかった。
(8)血中滞留性の評価
 蛍光標識したDNAを用いて形成された高分子ミセル複合体について、マウスに投与し、血中滞留時間を、生体リアルタイム共焦点走査顕微鏡により経時的に観察した。全ての画像及び動画は、正立顕微鏡ECLIPSE FN1(ニコン社製)(対物レンズ:20倍、ダイオードレーザー:640nm、エミッションバンドパスフィルタ:700/75nm)が付属している共焦点レーザー走査顕微鏡システムA1R(ニコン社製)により取得した。
 具体的には、まず、8週齢の雌のBALB/cマウス(チャールス・リバー・ラボラトリーズ社製)に対して、小動物用イソフルラン麻酔器(型式:400、Univentor社製)を用いて2.0~3.0%イソフラン(アボット・ジャパン社製)によって麻酔をかけた。これらのマウスの側面尾静脈に、30ゲージの注射針(ベクトン・ディッキンソン社製)と共に、無毒性の医療用ポリエチレンチューブ(夏目製作所製)に連結したカテーテルを挿入した。麻酔をかけたマウスを、顕微鏡ステージに組み込まれた温度制御パッド(製品名:THERMOPLATE(登録商標)、東海ヒット社製)にのせ、測定中は鎮静状態を維持した。次いで、ビデオの録画開始から10秒後に、蛍光標識したpDNAを内包する高分子ミセル複合体(注入量:200μL、DNA濃度:100ng/μL)を尾静脈からマウスに注入した。耳たぶの皮膚を、1滴の液浸油と共にカバークリップの下に固定し、外科的処置なしで観察した。データは、ビデオモードで5分間ごとのスラップショットとして取得した。当該実験は、各高分子ミセル複合体について、別々のマウスに対してそれぞれ4回行った。
 ビデオデータは、血管内又は血管以外の皮膚組織について、興味がある領域を選択して解析した。まず、バックグラウンドの蛍光強度をビデオ録画開始から10秒間の間(高分子ミセル複合体注入前)に取得されたビデオに基づいて決定し、各時点におけるピクセルあたりの平均蛍光強度を、画像統合ソフトウェアNIS-Elements C(ニコン社製)を用いて決定した。各時点におけるバックグラウンド補正された強度を得るために、バックグラウンド値は、高分子ミセル複合体注入後に測定されたピクセルあたりの平均強度から差し引いた。高分子ミセル複合体の体内循環は、組織バックグラウンドからの蛍光が差し引かれた血管からの蛍光強度によってモニターした。
 マウスの耳静脈における蛍光強度の経時的変化の測定結果を図2に示す。実験開始から40分経過後までは、血管の蛍光強度は、PLysブロックの重合度が19であるPEG-PLysを含む高分子ミセル複合体を投与した場合(図中、「PLys19」)が最も高く、PLysブロックの重合度が70であるPEG-PLysを含む高分子ミセル複合体を投与した場合(図中、「PLys70」)が最も低かった。つまり、核酸内包高分子ミセル複合体を構成するブロック共重合体のカチオン性高分子鎖ブロックの重合度が小さいほど、すなわち、核酸内包高分子ミセル複合体を構成するブロック共重合体の密度が大きいほど、血中滞留性が良好であることがわかった。
[実施例1] 
 pDNAをそのまま内包させる従来法により製造された核酸内包高分子ミセル複合体と、pDNAの二重らせん構造を解離させた状態でブロック共重合体と結合させる方法によりにより製造された核酸内包高分子ミセル複合体とについて、形状、大きさ、ブロック共重合体の密度を比較した。
(1)PEG-PAsp(DET)-Chole
 α-メトキシ-ω-アミノPEG(PEG、Mw=12kDa、M/M=1.05)を開始剤として用い、β-ベンジル-L-アスパルテート(BLA)のNCAを開環重合することによってPEGブロック-ポリ(β-ベンジル-L-アスパルテート)ブロック(PEG-PBLA)を製造した。この際、開始剤とモノマーであるNCAとの比を調節することにより、重合度の異なる3種のPEG-PBLAを製造した。
 得られたPEG-PBLAの末端のアミノ基に、コレステロールの3-ヒドロキシル基を一級アミノ基に置換した後に無水コハク酸と反応させることによって活性化されたカルボキシル基を有するコレステロール誘導体を、10倍当量のジシクロヘキシルカルボジイミドと2倍当量の4-ジメチルアミノピリジンの存在下、N,N-ジメチルホルムアミド中で一晩反応させた。得られたブロック共重合体を、冷ジエチルエーテルとイソプロパノールの混合溶媒(2:1(容量比))に滴下して再沈することを3回繰り返した後、ベンゼンから凍結乾燥することによって、PEG-PBLA-Choleの精製粉末を得た。
 得られたPEG-PBLA-Choleから、エステル-アミド交換反応によりPBLAの側鎖中にジエチレントリアミンを導入することにより、PEG-PAsp(DET)-Choleを得た。
Figure JPOXMLDOC01-appb-C000005
(2)蛍光標識PEG-PAsp(DET)-Chole
 PEG-PAsp(DET)-CholeがDNAと結合したことを確認するために、参考例1の(1)と同様にして、Alexa Fluor(登録商標)680 carboxylic acid succinimidyl ester(Molecular Probes社製)を用いて、PEG-PAsp(DET)-Choleを予め蛍光標識した。PEG-PAsp(DET)-Choleが実際に蛍光標識されたことは、UV検出器、IR検出器、及び蛍光検出器を備えるGPCにより確認した。蛍光標識効率を算出したところ、おおよそ全てのPEG-PAsp(DET)-Choleにおいて、PAsp(DET)ブロック当たり0.3~0.5分子の蛍光物質が結合していた。
(3)pDNAをそのまま内包した核酸内包高分子ミセル複合体の形成
 PEG-PAsp(DET)-Chole溶液に、参考例1で用いたプラスミドpBR322溶液を、N/P比が4となるように素早く混合することにより、pDNAを内包したPEG-PAsp(DET)-Choleの高分子ミセル複合体(以下、「PM-1」(PM:Polyplex Micelle))を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は33.3ng/μLとした。
(4)pDNAを変性させて内包した核酸内包高分子ミセル複合体の形成
 プラスミドpCAG-Luc(6.4kbp)溶液に制限酵素を添加して制限酵素処理し、pCAG-Lucを1箇所消化して線状とした。この線状DNAを含むDNA溶液を、95℃で10分間加熱処理し、線状化したpCAG-Lucを1本鎖に変性させた。次いで、変性させた状態のDNA溶液に、PEG-PAsp(DET)-Chole溶液を、N/P比が4となるように素早く混合することにより、1分子のpCAG-Luc由来の2本の線状の1本鎖DNAを内包したPEG-PAsp(DET)-Choleの高分子ミセル複合体(以下、「MCPM-1」(MCPM:Melt Crumpled Polyplex Micelle))を形成した。溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は33.3ng/μLとした。なお、pCAG-Lucは、プラスミドpCAGGS(理研ジーンバンクから供与)に、プラスミドpGL3(プロメガ社製)からLucをコードする遺伝子切り出して組み込んだものである。
(5)核酸内包高分子ミセル複合体を形成しているPEG-PAsp(DET)-Choleの決定
 前記(3)及び(4)で得られた高分子ミセル複合体のうち、蛍光標識PEG-PAsp(DET)-Choleを用いて形成された高分子ミセル複合体について、DNAと結合した蛍光標識PEG-PAsp(DET)-Chole量を測定するために、参考例1の(5)と同様にして、高分子ミセル複合体形成後の反応溶液を超遠心分離処理し、上清の702nmにおける蛍光強度に基づいて、1分子のpDNAに結合している蛍光標識PEG-PAsp(DET)-Choleの平均分子数(すなわち、高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PAsp(DET)-Choleの平均分子数、単位:鎖)を算出した。算出結果を表1の「結合PEG数(鎖)」に示す。
(6)TEM観察
 前記(3)及び(4)で得られた高分子ミセル複合体のうち、蛍光標識していないPEG-PAsp(DET)-Choleを用いて形成された高分子ミセル複合体について、参考例1の(6)と同様にして、TEM画像を撮像し、TEM画像中の高分子ミセル複合体のコア部分について、長軸の長さ[L]と短軸の長さ[2r]を測定した。この時、コア部分の形状が円の場合には、長軸の長さ[L]が直径となり、短軸の長さ[2r]と等しくなる。図3に、両高分子ミセル複合体のTEM画像を、図4にTEM画像から算出された高分子ミセル複合体の長軸の分布を、それぞれ示す。TEM画像中の高分子ミセル複合体のコア部分は、PM-1では参考例1と同様にロッド状であったが、MCPM-1では球体状(平均半径:23.1±3.8nm)であった。
(7)コア部分の表面積の算出、及びPEGの平均密度σの算出
 TEM画像中の複数のPM-1のコア部分の表面積[A]を、参考例1の(7)と同様にして算出し、その平均を算出した。
 MCPM-1のコア部分の表面積[A]は、TEM画像中における長軸[L]の半分の長さ[r]を半径とする球として、下記式の通り求めた。TEM画像中の複数のコア部分について測定し、平均を算出した。
コア部分の表面積:[A]= 4πr
 次いで、前記(5)で求めた高分子ミセル複合体1分子当たりに含まれている蛍光標識PEG-PAsp(DET)-Choleの平均分子数(鎖)を、高分子ミセル複合体のコア部分の平均表面積で除することにより、核酸内包高分子ミセル複合体のコア部分の表面積当たりのブロック共重合体の平均密度σ(鎖/nm)を求めた。コア部分の表面積の平均値とコア部分の表面積当たりのブロック共重合体の平均密度σの算出結果を、それぞれ、表1の「コア部分の表面積(nm)」及び「PEG密度σ(鎖/nm)」に示す。
Figure JPOXMLDOC01-appb-T000006
 この結果、同じ大きさのDNAを内包しているにもかかわらず、従来法により製造されたPM-1は、長軸が100~150nmのロッド状であり、PEG密度も0.1鎖/nm未満であったのに対して、DNAの二重らせん構造を解離させて高分子ミセル複合体を形成させたMCPM-1では、コア部分が半径23nm程度の球体状と非常に小さい上に、PEG密度が0.3鎖/nm以上と格段に高くなった。つまり、DNAの二重らせん構造を解離させて高分子ミセル複合体を形成させることにより、コア部分の表面積当たりのブロック共重合体の平均密度が大きく、球体状のより小さな核酸内包高分子ミセル複合体が形成できることがわかった。
[実施例2]
 CAGプロモーターの下流に蛍光緑色タンパク質GFPをコードする遺伝子を含むプラスミドpCAG-AcGFP(6.5kbp、理研ジーンバンクから供与)を用いて、pDNAをそのまま内包させる従来法と、pDNAの二重らせん構造を解離させた状態でブロック共重合体と結合させる方法とによりそれぞれGFP遺伝子内包高分子ミセル複合体を製造し、膵臓がんを発症しているモデルマウスに全身投与し、膵臓がん組織におけるGFP発現を調べた。なお、pCAG-AcGFPは、プラスミドpCAGGS(理研ジーンバンクから供与)に、GFPをコードする遺伝子を組み込んだものである。
(1)pGFPをそのまま内包した核酸内包高分子ミセル複合体の形成
 実施例1で製造したPEG-PAsp(DET)-Chole溶液に、プラスミドpGFP溶液を、N/P比が4となるように素早く混合することにより、pDNAを内包したPEG-PAsp(DET)-Choleの高分子ミセル複合体(以下、「PM-2-GFP」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のプラスミド濃度は100ng/μLとした。
(2)pGFPを変性させて内包した核酸内包高分子ミセル複合体の形成
 プラスミドpGFP溶液に制限酵素を添加して制限酵素処理し、pGFPを1箇所消化して線状とした。この線状DNAを含むDNA溶液を、95℃で10分間加熱処理し、線状化したpGFPを1本鎖に変性させた。次いで、変性させた状態のDNA溶液に、PEG-PAsp(DET)-Chole溶液を、N/P比が4となるように素早く混合することにより、1分子のpGFP由来の2本の線状の1本鎖DNAを内包したPEG-PAsp(DET)-Choleの高分子ミセル複合体(以下、「MCPM-2-GFP」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は100ng/μLとした。
(3)膵臓がんモデルマウス
 膵臓がんモデルマウスとして、ヒト膵臓腺がん細胞株BxPC3を膵臓に移植したモデルマウスを用いた。
 当該膵臓がんモデルマウスは、以下のようにして得た。まず、BALB/cヌードマウス(チャールス・リバー・ラボラトリーズ社製)の皮下に、100μLのPBS(リン酸緩衝生理食塩水)に懸濁させたBxPC3(1×10細胞)を接種した。腫瘍は10日間で増殖期(腫瘍の大きさが75mm程度)にまで進行した。
(4)膵臓がんモデルマウスへの全身投与
 膵臓がんモデルマウスに対して、前記(1)、(2)及び実施例1の(4)で製造した高分子ミセル複合体(注入量:200μL、DNA濃度:100ng/μL)を、それぞれ尾静脈から注入した。注入から72時間経過した後のマウスから、BxPC3が移植された膵臓がん組織を外科的に切除し、乾燥冷却したアセトン中で凍結させたものから、クライオスタットにより薄さ10μmの薄層切片を作製した。得られた切片について、細胞核を、Hoecst33342を用いて染色した。また、血管内皮細胞を、抗マウスPECAM-1抗体(BD Pharmingen社製)、並びに抗ヒト及びマウスVEGFR1抗体(製品番号:ab32152、Abcam Japan社製)を用いて染色した。
 染色後、共焦点蛍光顕微鏡(製品番号:CLSM780、カール・ツァイス社製)により観察したところ、PM-2-GFPを全身投与したマウスの膵臓がん組織では、GFPの発現が観察された細胞は組織全体のごく一部であった。これに対して、MCPM-2-GFPを全身投与したマウスの膵臓がん組織では、腫瘍組織深部にも、非常に多くの細胞においてGFPの発現が観察された。蛍光顕微鏡から撮像された蛍光画像を図5~7に示す。図5がMCPM-2-GFPを全身投与したマウスの膵臓がん組織の蛍光画像を、図6がPM-2-GFPを全身投与したマウスの膵臓がん組織の蛍光画像を、図7がMCPM-1を全身投与したマウスの膵臓がん組織の蛍光画像を、それぞれ示す。
 この蛍光画像から、BxPC3が移植された膵臓がん組織において発現しているGFPの蛍光強度(画像の明度)を測定し、バックグラウンドを差し引いたものの8イメージの平均値を蛍光強度として算出した。PM-2-GFPを投与したマウスと、MCPM-2-GFPを投与したマウスの測定結果を図8に示す。MCPM-2-GFPを投与したマウスでは、膵臓がんの腫瘍組織深部におけるGFP発現が、PM-2-GFPを投与したマウスの10倍以上であった。
[実施例3]
 カチオン性高分子鎖ブロック同士の架橋の有無による、核酸内包高分子ミセル複合体を全身投与した場合の血中滞留性に対する影響を調べた。
(1)PEG-PLys-PDP
 参考例1の(1)と同様にして、α-メトキシ-ω-アミノPEG(PEG、Mw=20kDa)を開始剤として用い、NCAを開環重合することによってPEG-PLys(TFA)を製造した。この際、開始剤とモノマーであるNCAとの比を調節することにより、重合度の異なる3種のPEG-PLys(TFA)を製造した。こうして得られた3種のPEG-PLys(TFA)のTFA基を脱保護して、重合度(下記式中、「n2」)が20、40、及び70の3種のPEG-PLysを得た。
 次いで、PEG-PLysへのピリジルジチオプロピオニル基(PDP基)の導入を行った。この導入は、N-スクシンイミジル3-(2-ピリジルジチオ)プロピオネート(SPDP)を用いて行った。PEG-PLysは臭素酸塩のものを0.1N、pH6.5の酢酸緩衝液に溶解させ、同緩衝液に対して透析し、対イオンを酢酸イオンに交換して用いた。PEG-PLys酢酸塩(200mg)とSPDP(56mg、リジン残基に対して0.5モル当量)を5mLのN-メチルピロリドン(NMP、5質量%の塩化リチウムを添加し脱気したもの)に溶解させた。この溶液に0.5mLのN,N-ジイソプロピルエチルアミンを、アミンを脱プロトン化するために添加し、反応を開始した。反応液は、室温で1時間撹拌し、反応の追跡は逆相クロマトグラフィーによって行った。
 反応の終了後、反応液をPEGの貧溶媒であるエーテルに滴下し再沈した。粗生成物をメタノールに溶解させた後、エーテルに再沈する操作を繰り返し、水に不要な不純物を取り除いた。過剰の塩は、生成物を0.1Nの酢酸水溶液に溶解させ、蒸留水に対して1時間透析することによって取り除いた。最終精製物は、凍結乾燥し回収した。
 得られた高分子の構造はH-NMR測定によって確認した。PDP基の置換度は、H-NMR測定とUV測定によって決定した。H-NMR測定ではDOを溶媒として用い、PDP基のピリジル基のプロトン(CN:7.6ppm)とPEGのメチレン基のプロトン(OCHCH:3.5ppm)のピークの強度比から、置換度を求めた。UV測定では、PDP基をジチオスレイトール(DTT)によって還元したときに遊離する2-チオピリドンの吸光度(λmax=343nm.ε=7.06×10)から、置換度を求めた。異なる二つの方法で求められた置換度はよく一致しており、リシン由来反復単位のアミノ基の約12%にPDP基が導入されたことが示された。
 得られたPEG-PLys-PDPは、DNAと結合させて高分子ミセル複合体を形成する前に、予め、PDP基に対して3倍の濃度となるようにDTTを加えて15分間撹拌し、PDP基をチオール残基に還元しておいた。
Figure JPOXMLDOC01-appb-C000007
(2)蛍光標識したpDNAを変性させて内包した未架橋の核酸内包高分子ミセル複合体の形成
 参考例1で用いた蛍光物質Cy(登録商標)5で標識したプラスミドpCAG-Luc2を制限酵素処理し、1箇所消化して線状とした。この線状DNAを含むDNA溶液を、95℃で10分間加熱処理し、線状化した蛍光標識pCAG-Luc2を1本鎖に変性させた。次いで、変性させた状態のDNA溶液に、前記(1)で調製した還元処理後のPEG-PLys-PDP溶液を、N/P比が2となるように素早く混合することにより、1分子の蛍光標識pCAG-Luc2由来の2本の線状の1本鎖DNAを内包したPEG-PLys-PDPの高分子ミセル複合体(以下、リシン由来反復単位の重合度20、40、又は70の高分子を用いたものを、それぞれ「MCPM-3-PLys20」、「MCPM-3-PLys40」、「MCPM-3-PLys70」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は100ng/μLとした。
(3)蛍光標識したpDNAを変性させて内包し、ブロック共重合体同士が架橋化された核酸内包高分子ミセル複合体の形成
 前記(2)で形成された高分子ミセル複合体を含む反応溶液を、分画分子量6000-8000の透析膜を用いて1Lの10mMリン酸緩衝液(pH7.4)に対して透析し、DTT等を除いた。透析は3日間続け、この間、空気中の酸素によって、チオールをSS結合に酸化し架橋させた。3日間の透析後、未酸化のチオールが存在しないことは、Ellman法によって確認した。MCPM-3-PLys20を架橋化したものをMCPM-3-PLys20-CL、MCPM-3-PLys40を架橋化したものをMCPM-3-PLys40-CL、MCPM-3-PLys70を架橋化したものをMCPM-3-PLys70-CLとした。
(4)血中滞留性の評価
 前記(2)及び(3)で形成された高分子ミセル複合体(注入量:200μL、DNA濃度:100ng/μL)を、マウスの側面尾静脈から注入した。各高分子ミセル複合体について、4匹のマウスにそれぞれ投与した。投与から30分間経過後のマウスの大静脈から血液を採取し、遠心分離処理により血清を調製した。得られた血清に、トリプシンと硫酸デキストランを加えて、37℃で一晩インキュベートした。インキュベート後の血清のCy(登録商標)5の蛍光強度(670nm)を、蛍光分光光度計(製品名:Nano Drop(ND-3300)、Wilmington)社製)を用いて測定した。
 全身投与後30分経過後におけるマウスの血中に滞留している高分子ミセル複合体量の割合(%)は、下記の式で算出した。式中、[F670(サンプル)]は、高分子ミセル複合体が投与されたマウスから調製された血清(トリプシンと硫酸デキストランとのインキュベート後のもの)の670nmの蛍光強度の測定値を意味する。また、[F670(コントロール)]は、高分子ミセル複合体未投与のマウスから調製された血清に、マウスに投与した高分子ミセル複合体と等量の高分子ミセル複合体を添加したもの(コントロール血清)を、サンプルと同様にトリプシンと硫酸デキストランを加えて37℃で一晩インキュベートした後の血清の670nmの蛍光強度の測定値である。
[血中に滞留している高分子ミセル複合体量の割合(%)]=[F670(サンプル)]/[F670(コントロール)]×100
 測定結果を図9に示す。図9中、「MCPM」は、「MCPM-3-PLys20」、「MCPM-3-PLys40」、及び「MCPM-3-PLys70」を投与したマウスの結果を、「MCPM-CL」は、「MCPM-3-PLys20-CL」、「MCPM-3-PLys40-CL」、及び「MCPM-3-PLys70-CL」を投与したマウスの結果を、それぞれ示す。ブロック共重合体を架橋化することにより、血中滞留性が顕著に改善した。
[実施例4]
 蛍光緑色タンパク質Venusをコードする遺伝子を含むプラスミド(pVenus、5.5kbp)を用いて、pDNAをそのまま内包させる従来法と、pDNAの二重らせん構造を解離させた状態でブロック共重合体と結合させる方法とによりそれぞれVenus遺伝子内包高分子ミセル複合体を製造し、膵臓がんを発症しているモデルマウスに全身投与し、膵臓がん組織におけるVenus発現を調べた。なお、pVenusは、プラスミドpCAGGS(理研ジーンバンクから供与)に、Venusをコードする遺伝子を組み込んだものである。
(1)PEG-PLys-PDP
 参考例1の(1)と同様にして、α-メトキシ-ω-アミノPEG(PEG、Mw=20kDa)を開始剤として用い、NCAを開環重合することによってPEG-PLys(TFA)を製造した。この際、開始剤とモノマーであるNCAとの比を調節することにより、重合度の異なる3種のPEG-PLys(TFA)を製造した。こうして得られた3種のPEG-PLys(TFA)のTFA基を脱保護して、重合度が72のPEG-PLysを得た。
 次いで、実施例3の(1)と同様にして、得られたPEG-PLysにPDP基を導入した。得られた高分子の構造はH-NMR測定によって確認したところ、リシン由来反復単位のアミノ基の約12%にPDP基が導入されたことが示された。
 得られたPEG-PLys-PDPは、DNAと結合させて高分子ミセル複合体を形成する前に、予め、PDP基に対して3倍の濃度となるようにDTTを加えて15分間撹拌し、PDP基をチオール残基に還元しておいた。
(2)cRGD-PEG-PLys-PDP
 環状RGDペプチド(cRGD)は、腫瘍細胞及び腫瘍血管内皮細胞に過剰発現しているαvβ3及びαvβ5インテグリンを選択的に認識するリガンドである。PEGブロックの末端にcRGDを導入したcRGD-PEG-PLys-PDPを合成した。
 具体的には、α-メトキシ-ω-アミノPEGに代えてα-アセチル-ω-アミノPEG(PEG、Mw=20kDa)を開始剤として用いた以外は、実施例1(1)と同様にして、アセチル-PEG-PBLA-Choleを得た。得られたアセチル-PEG-PBLA-Choleを水に溶解させて塩酸でpH2に調整し、アセチル基を完全に活性型のアルデヒド基に変換させた(酸性化したアセチル-PEG-PBLA-Chole溶液)。
 これとは別に、cyclo{RGDfK(CX-)}ペプチドを、これらのペプチド間に形成されているかもしれないSS結合を切断するために、ペプチドの10倍当量のDTTを含有する炭酸水素ナトリウムバッファー(0.1N、pH7.4)に溶解させ、1時間インキュベートした(cRGDペプチド溶液)。
 次いで、酸性化したアセチル-PEG-PBLA-Chole溶液に、cRGDペプチドがアセチル-PEG-PBLA-Choleの10倍等量となるように前記cRGDペプチド溶液を加え、pH5に調整し、一晩反応させた。最終反応生成物であるcRGD-PEG-PAsp(DET)-Choleは、1Mの塩化ナトリウム水溶液中で3回透析した後、脱イオン水で3回透析した。
(3)pVenusをそのまま内包した核酸内包高分子ミセル複合体の形成
 前記(1)で製造したPEG-PLys-PDP溶液に、プラスミドpVenus溶液を、N/P比が2となるように素早く混合することにより、pVenusを内包したPEG-PLys-PDPの高分子ミセル複合体(以下、「PM-4-Venus」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のプラスミド濃度は100ng/μLとした。
 次いで、実施例3の(3)と同様にして、形成された高分子ミセル複合体を含む反応溶液を3日間透析し、当該高分子ミセル複合体中のチオールをSS結合に酸化し、架橋させた。架橋化して得られたものをPM-4-Venus-CLとした。
(4)pVenusを変性させて内包した核酸内包高分子ミセル複合体の形成
 pVenusを制限酵素処理し、1箇所消化して線状とした。この線状DNAを含むDNA溶液を、95℃で10分間加熱処理し、線状化した蛍光標識pVenusを1本鎖に変性させた。次いで、変性させた状態のDNA溶液に、前記(1)で調製した還元処理後のPEG-PLys-PDP溶液を、N/P比が2となるように素早く混合することにより、1分子のpVenus由来の2本の線状の1本鎖DNAを内包したPEG-PLys-PDPの高分子ミセル複合体(以下、「MCPM-4-Venus」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は100ng/μLとした。
 次いで、実施例3の(3)と同様にして、形成された高分子ミセル複合体を含む反応溶液を3日間透析し、当該高分子ミセル複合体中のチオールをSS結合に酸化し、架橋させた。架橋化して得られたものをMCPM-4-Venus-CLとした。
(5)pVenusを変性させて内包したcRGD導入核酸内包高分子ミセル複合体の形成
 前記(1)で調製した還元処理後のPEG-PLys-PDP溶液に代えて、前記(2)で調製した還元処理後のcRGD-PEG-PLys-PDP溶液を用いた以外は、前記(4)と同様にして、1分子のpVenus由来の2本の線状の1本鎖DNAを内包し、架橋化されたMCPM-4-Venus-CL-cRGDを得た。
(6)膵臓がんモデルマウスへの全身投与
 実施例2の(3)と同種の膵臓がんモデルマウスに対して、前記(3)、(4)及び(5)で製造した高分子ミセル複合体(注入量:200μL、DNA濃度:100ng/μL)を、それぞれ尾静脈から注入した。実施例2の(4)と同様にして、注入から72時間経過した後のマウスから、BxPC3が移植された膵臓がん組織を外科的に切除し、顕微鏡観察用の切片を作製し、得られた切片について、細胞核と血管を蛍光染色した。
 染色後、共焦点蛍光顕微鏡により観察したところ、pVenusをそのまま収容したPM-4-Venus-CLを全身投与したマウスの膵臓がん組織では、Venusの発現が観察された細胞は組織全体のごく一部であった。これに対して、pVenusを変性して収容したMCPM-4-Venus-CLを全身投与したマウスの膵臓がん組織では、腫瘍組織深部にもかかわらず、非常に多くの細胞においてVenusの発現が観察された。また、cRGBリガンドを付加したMCPM-4-Venus-CL-cRGDを全身投与したマウスの膵臓がん組織でも、MCPM-4-Venus-CLと同様に、多くの細胞においてVenusの発現が観察された。MCPM-4-Venus-CLを全身投与したマウスの膵臓がん組織の蛍光画像を図10に示す。
[実施例5]
 実施例3の(1)と同様にして、重合度が20かつPDP基の置換度10%のPEG-PLys-PDP(PEG-PLys20-SH10%)と、重合度が69かつPDP基の置換度12%のPEG-PLys-PDP(PEG-PLys69-SH12%)を製造した。これらのブロック共重合体は、DNAと結合させて高分子ミセル複合体を形成する前に、予め、PDP基に対して3倍の濃度となるようにDTTを加えて15分間撹拌し、PDP基をチオール残基に還元しておいた。
 次いで、実施例1の(3)と同様にして、これらのブロック共重合体溶液にプラスミドpCAG-Luc溶液を混合し、pCAG-Lucを内包したPEG-PLys-PDPの高分子ミセル複合体を形成した。
 得られた高分子ミセル複合体について、参考例1の(6)と同様にして、TEM画像を撮像した。図11に、PEG-PLys20-SH10%を用いた高分子ミセル複合体のTEM画像(左、「20-SH10%」)と、PEG-PLys69-SH12%を用いた高分子ミセル複合体のTEM画像(右、「69-SH12%」)をそれぞれ示す。PEG-PLys20-SH10%を用いた高分子ミセル複合体では、PEG-PLys69-SH12%を用いた高分子ミセル複合体のコアよりも明らかに小さなコアが2つペアになっていた。PEG-PLys20-SH10%を用いたほうが、PEG-PLys69-SH12%を用いたものよりも明らかにシェルのPEG密度は高い。これらの結果から、PEG-PLys20-SH10%を用いた高分子ミセル複合体では、pCAG-Luc由来の2本の一本鎖DNAがそれぞれ別個に凝縮してペアとなっているものと推察される。ペアになっていたのは、熱処理後でもDNA鎖同士が絡み合っていることから、凝縮後も完全には離れられないためであろう。つまり、PEG-PLys69-SH12%を用いた高分子ミセル複合体では、pCAG-Luc由来の2本の一本鎖DNAが1つのコアに含まれていると考えられる。
[実施例6]
 カチオン性高分子鎖ブロック同士の架橋の有無による、核酸内包高分子ミセル複合体の形態に対する影響を調べた。
 実施例3の(1)と同様にして、重合度が21のPEG-PLysと、重合度が21かつPDP基の置換度12%のPEG-PLys-PDPを製造した。PEG-PLys-PDPのブロック共重合体は、DNAと結合させて高分子ミセル複合体を形成する前に、予め、PDP基に対して3倍の濃度となるようにDTTを加えて15分間撹拌し、PDP基をチオール残基に還元しておいた。
 次いで、実施例3の(2)、(3)と同様にして、これらのブロック共重合体溶液にプラスミドpCAG-Luc2溶液を混合し、pCAG-Luc2を内包したPEG-PLysの高分子ミセル複合体(以下、「MCPM-6」)と、pCAG-Luc2を内包し、架橋を行ったPEG-PLys-PDPの高分子ミセル複合体(以下、「MCPM-6-CL」)を形成した。
 得られた高分子ミセル複合体について、参考例1の(6)と同様にして、TEM画像を撮像した。図12に、PEG-PLysを用いた高分子ミセル複合体(MCPM-6)のTEM画像(左)と、PEG-PLys-PDPを用いた高分子ミセル複合体(MCPM-6-CL)のTEM画像(右)をそれぞれ示す。また、当該画像から算出された高分子ミセル複合体の長軸長の分布を図13にそれぞれ示す。この結果、架橋の有無による高分子ミセル複合体のコア部分の形態の違いは認められず、架橋は高分子ミセル複合体のコア部分の形態に影響を与えないことがわかった。
[実施例7]
 核酸変性温度による、核酸内包高分子ミセル複合体の大きさ及び形態に対する影響を調べた。
 実施例6と同様にして、重合度が21のPEG-PLysを製造した。
 次いで、線状DNA溶液の加熱処理を、25℃、70℃、80℃又は95℃で10分間行った以外は実施例6と同様にして、pCAG-Luc2を内包したPEG-PLysの高分子ミセル複合体を形成した。
 得られた高分子ミセル複合体について、参考例1の(6)と同様にして、TEM画像を撮像し、得られた画像から算出された高分子ミセル複合体の長軸長及びアスペクト比に基づく分布を調べた。結果を図14に示す。この結果、室温以上の温度(70℃以上)で加熱処理を行うことにより、長軸長、アスペクト比が共に小さくなり、かつ高分子ミセル複合体間の分散も小さくなることがわかった。特に、95℃で加熱処理を行うことで、小粒径かつ小分散の高分子ミセル複合体集団を得られることがわかった。
[実施例8]
 核酸内包高分子ミセル複合体を用いた培養細胞株への遺伝子導入について調べた。
 まず、ヒト膵臓がん腺癌由来の細胞株BxPC-3を、24ウェルプレートを用いて、12000cells/ウェル(400μL/ウェルの培養液中、3×10cells/mL)で液体培養した。培地は、10%ウシ胎児血清(FBS)及び5%ペニシリン/ストレプトマイシンを含むRPMI-1640を用いた。37℃で24時間培養した後、実施例3(1)と同様にして得たPEG-PLys72(PLysブロックの重合度:72)の高分子ミセル複合体(以下、「MCPM-8」)溶液、またはPEG-PLys69-SH12%の架橋化した高分子ミセル複合体(以下、「MCPM-8-CL」)溶液30μL(33ng/μL)を用いて、各サンプル6例ずつトランスフェクションした。コントロールにはHEPESを用いた。
 24時間後に培地交換を行った後、3日間培養した。その後、PBS溶液で3回ウォッシュし、150μLのpassive lysis bufferを用いて回収した。溶解物40μLを用いて、GloMaxTM 96 Microplate Luminomaterにより、ルシフェラーゼ遺伝子の発現を、バックグラウンドを差し引いた蛍光強度で定量した。結果を図15に示す。
 この結果から、本発明の高分子ミセル複合体は、架橋の有無に関わらずヒト培養細胞株に導入されること、及び、該高分子ミセル複合体が含有する遺伝子はヒト培養細胞株において発現することがわかった。
[実施例9]
(1)PEG-PLys-PDP
 実施例4の(1)と同様にして、重合度が21かつPDP基の置換度12%のPEG-PLys-PDPを製造した。PEG-PLys-PDPのブロック共重合体は、DNAと結合させて高分子ミセル複合体を形成する前に、予め、PDP基に対して3倍の濃度となるようにDTTを加えて15分間撹拌し、PDP基をチオール残基に還元しておいた。
(2)pCAG-sFlt-1を変性して内包した核酸内包高分子ミセル複合体の形成
 プラスミドpCAGGS(理研ジーンバンクから供与)に、sFlt-1遺伝子を組み込み、プラスミドpCAG-sFlt-1を作製した。sFlt-1遺伝子は、血管新生に関わる血管内皮細胞増殖因子受容体(VEGFR)と拮抗することで、血管新生を阻害し、抗腫瘍効果を有すると考えられる遺伝子である。得られたpCAG-sFlt-1を制限酵素処理し、1箇所消化して線状とした。この線状DNAを含むDNA溶液を、95℃で10分間加熱処理し、線状化したpCAG-sFlt-1を1本鎖に変性させた。
 前記(1)で製造したPEG-PLys-PDP溶液に、1本鎖に変性させた線状pCAG-sFlt-1溶液を、N/P比が2となるように素早く混合することにより、1分子のプラスミドpCAG-sFlt-1由来の2本の線状の1本鎖DNAを内包したPEG-PLys-PDPの高分子ミセル複合体(以下、「MCPM-9-sFlt1-PDP」)を形成した。反応溶媒は、10mM HEPESバッファー(pH7.3)とし、反応溶液中のpDNA濃度は100ng/μLとした。
 次いで、実施例3の(3)と同様にして、形成されたMCPM-9-sFlt1-PDPを含む反応溶液を3日間透析し、当該高分子ミセル複合体中のチオールをSS結合に酸化し、架橋させた。架橋化して得られたものをMCPM-9-sFlt1-CLとした。
 コントロールとして、pCAG-sFlt-1を加熱処理により変性させなかった以外は上記(2)と同様にして得られた高分子ミセル複合体(以下、「PM-9-sFlt1-CL」)、及び、sFlt-1遺伝子に代えて参考例1と同様の方法によりLuc2遺伝子を組み込んだ以外は上記(2)と同様にして得られた高分子ミセル複合体(以下、「MCPM‐9-Luc2-CL」)を形成した。
(3)膵臓がんモデルマウスへの全身投与
 実施例3の(6)と同種の膵臓がんモデルマウスに対して、前記(2)で製造した3種の高分子ミセル複合体のいずれか、又はHEPESを、2日おきに計3回(0日目、3日目、6日目)200μLずつ(プラスミド又はpDNA濃度:100ng/μL)、それぞれ尾静脈から注入した。
 マウスの膵臓がんの体積を22日間測定した結果を図16に示す。この結果から、「MCPM-9-Flt1-CL」を投与することにより、マウスにおける腫瘍増殖が効果的に抑制されることがわかった。
 本発明に係る核酸内包高分子ミセル複合体は、粒子径が小さく、かつ当該核酸内包高分子ミセル複合体のシェルを構成する非電荷性親水性高分子鎖ブロックの密度も高いため、血中滞留性、腫瘍血管透過性、及び腫瘍組織浸透性に優れる。このため、本発明に係る核酸内包高分子ミセル複合体は、経静脈投与等の全身投与により、内包するDNAをがん組織深部にまで効率的に導入することができる。従って、本発明に係る核酸内包高分子ミセル複合体は、限定されるものでないが、治療用遺伝子を標的細胞へ送達するための遺伝子キャリアとして非常に有用である。製薬又は医療産業で利用できる。例えば、本発明により、血管透過性の低い難治性がんへの全身投与による遺伝子治療も可能になると期待される。

Claims (15)

  1.  非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、1000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上の二本鎖DNA、又は1000塩基長以上の1本の一本鎖DNAとから形成されてなることを特徴とする、核酸内包高分子ミセル複合体。
  2.  非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、1000塩基長以上の互いに相補的な塩基配列からなる2本の一本鎖DNA、又は少なくとも二重らせん構造の一部が解離して一本鎖構造となっている1000塩基対長以上の二本鎖DNAとから形成されてなる、請求項1に記載の核酸内包高分子ミセル複合体。
  3.  前記一本鎖DNAが2000塩基長以上であり、前記二本鎖DNAが2000塩基対長以上である、請求項1又は2に記載の核酸内包高分子ミセル複合体。
  4.  水性媒体中の動的光散乱法による平均粒子径が100nm以下である、請求項1~3のいずれか一項に記載の核酸内包高分子ミセル複合体。
  5.  DNAと、静電的相互作用によりDNAと結合したカチオン性高分子鎖ブロックとがコア部分を形成し、非電荷性親水性高分子鎖ブロックがシェル部分を形成している、請求項1~4のいずれか一項に記載の核酸内包高分子ミセル複合体。
  6.  前記コア部分の平均粒子径が、50nm以下である、請求項5に記載の核酸内包高分子ミセル複合体。
  7.  球体状である、請求項1~6のいずれか一項に記載の核酸内包高分子ミセル複合体。
  8.  前記一本鎖DNA又は前記二本鎖DNAが、線状である、請求項1~7のいずれか一項に記載の核酸内包高分子ミセル複合体。
  9.  前記ブロック共重合体の少なくとも一部が、互いに架橋されている、請求項1~8のいずれか一項に記載の核酸内包高分子ミセル複合体。
  10.  前記カチオン性高分子鎖ブロックの主鎖又は側鎖に、疎水性基が共有結合している、請求項1~9のいずれか一項に記載の核酸内包高分子ミセル複合体。
  11.  前記カチオン性高分子鎖ブロックの側鎖に、エチルアミン構造又はプロピルアミン構造を有する、請求項1~10のいずれか一項に記載の核酸内包高分子ミセル複合体。
  12.  DNAを収容した核酸内包高分子ミセル複合体を製造する方法であって、
     非電荷性親水性高分子鎖ブロック及びカチオン性高分子鎖ブロックを含むブロック共重合体と、二重らせん構造の少なくとも一部を解離させた状態の1000塩基対以上の二本鎖DNAとを、水性媒体中で混合する工程を有することを特徴とする、核酸内包高分子ミセル複合体の製造方法。
  13.  前記二本鎖DNAが、2000塩基対長以上である、請求項12に記載の核酸内包高分子ミセル複合体の製造方法。
  14.  前記二本鎖DNAが、線状である、請求項12又は13に記載の核酸内包高分子ミセル複合体の製造方法。
  15.  前記二本鎖DNAが、60℃以上で変性されたものである、請求項12~14のいずれか一項に記載の核酸内包高分子ミセル複合体の製造方法。
PCT/JP2014/070567 2013-08-06 2014-08-05 核酸内包高分子ミセル複合体及びその製造方法 WO2015020026A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167001466A KR101770705B1 (ko) 2013-08-06 2014-08-05 핵산 내포 고분자 미셀 복합체 및 그 제조 방법
CN201480043775.5A CN105451719B (zh) 2013-08-06 2014-08-05 内包核酸的高分子微囊复合体及其制造方法
AU2014303571A AU2014303571B2 (en) 2013-08-06 2014-08-05 Nucleic acid-encapsulating polymer micelle complex and method for producing same
EP14835122.4A EP3031447B1 (en) 2013-08-06 2014-08-05 Nucleic acid-encapsulating polymer micelle complex and method for producing same
JP2015530894A JP6108369B2 (ja) 2013-08-06 2014-08-05 核酸内包高分子ミセル複合体及びその製造方法
US14/909,162 US10046065B2 (en) 2013-08-06 2014-08-05 Nucleic acid-encapsulating polymer micelle complex and method for producing same
CA2920328A CA2920328C (en) 2013-08-06 2014-08-05 Nucleic acid-encapsulating polymer micelle complex and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-163106 2013-08-06
JP2013163106 2013-08-06

Publications (1)

Publication Number Publication Date
WO2015020026A1 true WO2015020026A1 (ja) 2015-02-12

Family

ID=52461357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070567 WO2015020026A1 (ja) 2013-08-06 2014-08-05 核酸内包高分子ミセル複合体及びその製造方法

Country Status (9)

Country Link
US (1) US10046065B2 (ja)
EP (1) EP3031447B1 (ja)
JP (1) JP6108369B2 (ja)
KR (1) KR101770705B1 (ja)
CN (1) CN105451719B (ja)
AU (1) AU2014303571B2 (ja)
CA (1) CA2920328C (ja)
TW (1) TWI565479B (ja)
WO (1) WO2015020026A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096457A1 (en) 2016-11-22 2018-05-31 Kabushiki Kaisha Toshiba Nucleic acid condensing peptide, nucleic acid condensing peptide set, nucleic acid delivery carrier, nucleic acid delivery method, cell production method, cell detection method and kit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188541A (ja) 1995-01-10 1996-07-23 Res Dev Corp Of Japan 静電結合型高分子ミセル薬物担体とその薬剤
WO1996032434A1 (fr) 1995-04-14 1996-10-17 Kazunori Kataoka Oxydes de polyethylene ayant un groupe saccharide a une extremite et un groupe fonctionnel different a l'autre extremite, et procede pour produire lesdits oxydes de polyethylene
WO1996033233A1 (fr) 1995-04-19 1996-10-24 Kazunori Kataoka Copolymeres en blocs heterotelecheliques et procede de production
WO1997006202A1 (fr) 1995-08-10 1997-02-20 Kazunori Kataoka Polymere sequence pourvu de groupes fonctionnels aux deux extremites
JP2000503645A (ja) * 1996-01-06 2000-03-28 ダンバイオシスト、ユーケー、リミテッド ポリマー
WO2004105799A1 (ja) 2003-05-29 2004-12-09 Toudai Tlo, Ltd. 安定化高分子ミセル
WO2009113645A1 (ja) 2008-03-10 2009-09-17 国立大学法人 東京大学 非荷電性親水性ブロック及び側鎖の一部に疎水性基が導入されカチオン性のポリアミノ酸ブロックを含んでなる共重合体、その使用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878766B1 (en) 2005-05-02 2020-01-01 The University of Tokyo Electrostatic bonding type polymer vesicle
JP2011010549A (ja) 2007-10-29 2011-01-20 Univ Of Tokyo ポリエチレングリコールの結合した核酸のコンジュゲートとリン酸カルシウムの有機−無機ハイブリッド型ナノ粒子
JP5622254B2 (ja) 2009-03-31 2014-11-12 国立大学法人東京大学 二本鎖リボ核酸ポリイオンコンプレックス
US8287910B2 (en) * 2009-04-30 2012-10-16 Intezyne Technologies, Inc. Polymeric micelles for polynucleotide encapsulation
JP2012197323A (ja) 2009-07-21 2012-10-18 Univ Of Tokyo Mri造影用高分子ミセル複合体
JP2011105792A (ja) 2009-11-12 2011-06-02 Japan Science & Technology Agency ブロックコポリマー、ブロックコポリマー−金属錯体複合体、及びそれを用いた中空構造体キャリア

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188541A (ja) 1995-01-10 1996-07-23 Res Dev Corp Of Japan 静電結合型高分子ミセル薬物担体とその薬剤
WO1996032434A1 (fr) 1995-04-14 1996-10-17 Kazunori Kataoka Oxydes de polyethylene ayant un groupe saccharide a une extremite et un groupe fonctionnel different a l'autre extremite, et procede pour produire lesdits oxydes de polyethylene
WO1996033233A1 (fr) 1995-04-19 1996-10-24 Kazunori Kataoka Copolymeres en blocs heterotelecheliques et procede de production
WO1997006202A1 (fr) 1995-08-10 1997-02-20 Kazunori Kataoka Polymere sequence pourvu de groupes fonctionnels aux deux extremites
JP2000503645A (ja) * 1996-01-06 2000-03-28 ダンバイオシスト、ユーケー、リミテッド ポリマー
WO2004105799A1 (ja) 2003-05-29 2004-12-09 Toudai Tlo, Ltd. 安定化高分子ミセル
WO2009113645A1 (ja) 2008-03-10 2009-09-17 国立大学法人 東京大学 非荷電性親水性ブロック及び側鎖の一部に疎水性基が導入されカチオン性のポリアミノ酸ブロックを含んでなる共重合体、その使用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATAOKA ET AL., MACROMOLECULARS, vol. 29, 1996, pages 8556 - 8557
See also references of EP3031447A4

Also Published As

Publication number Publication date
CN105451719B (zh) 2019-06-11
KR20160021291A (ko) 2016-02-24
US10046065B2 (en) 2018-08-14
AU2014303571A1 (en) 2016-02-18
EP3031447A1 (en) 2016-06-15
JP6108369B2 (ja) 2017-04-05
JPWO2015020026A1 (ja) 2017-03-02
AU2014303571B2 (en) 2017-03-02
TWI565479B (zh) 2017-01-11
TW201536351A (zh) 2015-10-01
CA2920328C (en) 2017-10-10
KR101770705B1 (ko) 2017-08-23
CN105451719A (zh) 2016-03-30
US20160184457A1 (en) 2016-06-30
CA2920328A1 (en) 2015-02-12
EP3031447B1 (en) 2019-12-25
EP3031447A4 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
Chen et al. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery
Sun et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery
Madkhali et al. Modified gelatin nanoparticles for gene delivery
Zhu et al. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA
Ma et al. A star-shaped porphyrin-arginine functionalized poly (L-lysine) copolymer for photo-enhanced drug and gene co-delivery
Park et al. Degradable polyethylenimine-alt-poly (ethylene glycol) copolymers as novel gene carriers
Ye et al. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles
Li et al. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery
Kim et al. Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer
Dimde et al. Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing
KR20120067168A (ko) 표적 세포에 대한 폴리뉴클레오티드 전달체
Dong et al. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery
Ge et al. PEG–PCL–DEX polymersome–protamine vector as an efficient gene delivery system via PEG-guided self-assembly
Skandrani et al. Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging
Vora et al. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery
Huang et al. Genetic recombination of poly (l-lysine) functionalized apoferritin nanocages that resemble viral capsid nanometer-sized platforms for gene therapy
CN112898579B (zh) 一种高分子材料、混合胶束及其制备方法和应用
Han et al. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA
Mohamed et al. Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells
Ebrahimian et al. Development of targeted gene delivery system based on liposome and PAMAM dendrimer functionalized with hyaluronic acid and TAT peptide: In vitro and in vivo studies
JP6108369B2 (ja) 核酸内包高分子ミセル複合体及びその製造方法
KR100980395B1 (ko) 비-바이러스성 유전자 전달체용 중합체/유전자 복합체
Zhang et al. A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing
Li et al. Cochlear transfection gene Guinea pigs mediates atoh1-EGFP based hyaluronic acid modified polyethyleneimine nanoparticles
Velluto et al. Nanotechnology advances in drug delivery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043775.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530894

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167001466

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014835122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14909162

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2920328

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014303571

Country of ref document: AU

Date of ref document: 20140805

Kind code of ref document: A