WO2015019728A1 - 通信制御装置、通信制御方法及び通信装置 - Google Patents

通信制御装置、通信制御方法及び通信装置 Download PDF

Info

Publication number
WO2015019728A1
WO2015019728A1 PCT/JP2014/066745 JP2014066745W WO2015019728A1 WO 2015019728 A1 WO2015019728 A1 WO 2015019728A1 JP 2014066745 W JP2014066745 W JP 2014066745W WO 2015019728 A1 WO2015019728 A1 WO 2015019728A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
communication
control
information
backhaul
Prior art date
Application number
PCT/JP2014/066745
Other languages
English (en)
French (fr)
Inventor
亮太 木村
亮 澤井
博允 内山
匠 古市
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP14835443.4A priority Critical patent/EP3032874B1/en
Priority to CN201480042845.5A priority patent/CN105409283B/zh
Priority to US14/909,125 priority patent/US10149309B2/en
Priority to AU2014303807A priority patent/AU2014303807B2/en
Priority to BR112016001868A priority patent/BR112016001868A2/pt
Priority to JP2015530746A priority patent/JP6398976B2/ja
Publication of WO2015019728A1 publication Critical patent/WO2015019728A1/ja
Priority to US16/196,319 priority patent/US10750517B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device

Definitions

  • the present disclosure relates to a communication control device, a communication control method, and a communication device.
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • Patent Document 1 discloses a technique for measuring interference at a femtocell base station and updating transmission settings at the femtocell base station based on the measurement result as a technique related to interference control.
  • Patent Document 2 discloses a technique for adjusting data transmission in a sector based on an interference report from another sector as a technique related to interference control.
  • Patent Document 3 discloses a technique for controlling permission and stop of cooperative transmission / reception so that throughput in a set cooperative control area is high as a technique related to cooperative transmission / reception.
  • control related to a plurality of communication nodes for example, a plurality of base stations
  • information related to control is transmitted and received through the backhaul line.
  • transmission / reception delays in the backhaul line or delay variations between the backhaul lines
  • control by these communication nodes is not performed at an appropriate timing.
  • an acquisition unit that acquires quality-related information related to the quality of a backhaul line used to provide control-related information related to control in the control method to a communication node to which the control method of wireless communication is applied; And a control unit that controls application of the control method to the communication node based on the quality-related information.
  • a communication control method executed by a communication control device is provided.
  • a communication device is provided.
  • FIG. 1 An example of the configuration of a control entity according to an embodiment will be described. It is a block diagram which shows an example of a structure of the execution entity which concerns on one Embodiment. It is a sequence diagram which shows the example of the schematic flow of the 1st example of the measurement procedure about the quality of a backhaul line. It is explanatory drawing for demonstrating the information element (IE) contained in the request message which concerns on the 1st example of a measurement procedure. It is explanatory drawing for demonstrating the information element (IE) contained in the response message which concerns on the 1st example of a measurement procedure. It is a sequence diagram which shows the example of the schematic flow of the 2nd example of the measurement procedure about the quality of a backhaul line.
  • IE information element
  • FIG. 10 is a sequence diagram illustrating an example of a schematic flow of a third example of a measurement procedure for the quality of a backhaul line. It is explanatory drawing for demonstrating the information element (IE) contained in the request message which concerns on the 3rd example of a measurement procedure. It is explanatory drawing for demonstrating the information element (IE) contained in the response message which concerns on the 3rd example of a measurement procedure.
  • IE information element
  • IE information element
  • IE information element
  • IE information element
  • radio resources and formats are divided in the time direction.
  • radio resources are partitioned in subframe units in the time direction.
  • FIG. 1 is an explanatory diagram for explaining radio resources in the time direction for FDD (Frequency Division Duplex).
  • FDD Frequency Division Duplex
  • 10 subframes included in a 10 ms radio frame are shown.
  • FDD Frequency Division Duplex
  • an uplink frequency band and a downlink frequency band are prepared, and resource control is performed in subframe units in each frequency band.
  • Each subframe includes two slots.
  • Each slot includes 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • FIG. 2 is an explanatory diagram for explaining radio resources in the time direction for TDD (Time Division Duplex).
  • TDD Time Division Duplex
  • 10 subframes included in a 10 ms radio frame are illustrated.
  • communication is performed according to the link direction in units of subframes. That is, each subframe is a downlink subframe, an uplink subframe, or a special subframe.
  • the special subframe is provided to suppress interference when switching from the downlink subframe to the uplink subframe.
  • the special subframe consists of DwPTS (Downlink Pilot Time Slot), guard period (Guard Period), and UpPTS (Uplink Pilot Time Slot).
  • DwPTS Downlink Pilot Time Slot
  • Guard Period Guard Period
  • UpPTS Uplink Pilot Time Slot
  • FIG. 3 is an explanatory diagram for explaining an example of the configuration in the link direction defined in 3GPP.
  • seven configurations defined in the LTE technical standard (TS 36.211 Table 4.2-2) are shown.
  • the subframe indicated by “D” is a downlink subframe
  • the subframe indicated by “U” is an uplink subframe
  • the subframe indicated by “S” is a special subframe.
  • any one of these seven configurations is selected and applied.
  • radio resources are also divided in the frequency direction. Specifically, subcarriers exist at intervals of 15 kHz in the frequency band direction. It is bundled every 12 subcarriers (ie, 180 kHz).
  • radio resources covering 12 subcarriers in the frequency direction and 1 slot in the time direction are handled as resource blocks (RBs).
  • RBs resource blocks
  • a radio resource of one subcarrier and one OFDM symbol is called a resource element.
  • Each RE is used to transmit a control signal or a data signal.
  • the control signal include a synchronization signal (Synchronization Signal) and a reference signal (Reference Signal: RS).
  • a channel that includes one or more resource elements is defined.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical HARQ Indicator Channel
  • uplink channels are defined as uplink channels.
  • data is transmitted on the PDSCH in the downlink and transmitted on the PUSCH in the uplink.
  • the number of REs that can be used for data transmission affects the size of data to be transmitted and received.
  • Reference signal A UE (User Equipment) measures RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and the like through reception of a reference signal (RS).
  • RS Reference Signal
  • various types of RSs are defined.
  • CRS Cell Specific Reference Signal
  • DMRS Demodulation Reference Signal
  • MBFSFN MBMS Single Frequency Network reference signal
  • PRS Positioning Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CRS is mainly used for channel estimation and measurement for data decoding.
  • DMRS is mainly used for channel estimation for data decoding.
  • the MBFSFN reference signal is used for MBMS (Multimedia Broadcast Multicast Services).
  • PRS is used for estimating the position of the UE.
  • CSI-RS is mainly used for estimation of downlink channel quality.
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is mainly used for channel estimation for data reception, and is transmitted in association with PDSCH and PDCCH.
  • SRS is used for uplink channel quality estimation, mainly for CQI and scheduling, and is not related to PDSCH and PDCCH.
  • Interference control Various interference control techniques exist for improving communication quality.
  • typical interference control techniques include ICIC (Inter-Cell Interference Coordination) and beamforming (BF).
  • the ICIC includes a frequency domain ICIC (Frequency Domain ICIC) and a time domain ICIC (Time domain ICIC).
  • the frequency domain ICIC is an interference control method in which different frequency resources are used between communication nodes (or cells).
  • a frequency resource may correspond to a subcarrier, a resource block (RB), a subband (a set of resource blocks), a component carrier (CC) (an RB or a set of subbands), or the like.
  • CC component carrier
  • FIG. 4 is an explanatory diagram for explaining a first example of the frequency domain ICIC.
  • three cells 10A, 10B and 10C are shown.
  • the frequency band (and its electric power) used by each cell is shown.
  • the usable frequency band is divided into three bands, and each of the three bands is used in the corresponding cell 10. Thereby, interference between the cells 10 is suppressed.
  • FIG. 5 is an explanatory diagram for explaining a second example of the frequency domain ICIC.
  • three cells 10A, 10B and 10C are shown.
  • a frequency band (and its power) used in the center of the cell and a frequency band (and its power) used near the cell edge are shown.
  • the usable frequency band is divided into three bands, and each of the three bands is accompanied by a large amount of power in the corresponding cell 10 and, as a result, is used throughout the corresponding cell 10. The That is, each of the three bands is also used at the cell edge of the corresponding cell 10.
  • Each of the three bands involves a small amount of power in the non-corresponding cell 10 and as a result is used in the center of the non-corresponding cell 10. That is, each of the three bands is not used at the cell edge of the cell 10 that does not correspond. This suppresses interference at the cell edge where interference is likely to occur among the cells 10.
  • Such an ICIC is sometimes called SFR (Soft Frequency Reuse), PFR (Partial Frequency Reuse), or FFR (Fractional Frequency Reuse).
  • the time domain ICIC is an interference control method in which different time resources are used between communication nodes (or between cells).
  • the time resource may correspond to a system time unit such as a slot, a subframe, or a radio frame in LTE, for example.
  • time-domain ICIC is of particular interest in connection with heterogeneous networks (HetNet).
  • HetNet heterogeneous networks
  • FIG. 6 is an explanatory diagram for explaining a first example of the time domain ICIC.
  • a cell 10D that is a macro cell and a cell 10E that is a small cell are shown. Further, the relationship between time and transmission power in each cell 10 is shown. In other words, the time during which communication is performed in each cell is shown. For example, as in this example, the communication in the cell 10D is stopped at the time when the communication in the cell 10D is performed, and the communication in the cell 10E is performed at the time when the communication in the cell 10D is stopped. Thereby, interference between the cells 10 is suppressed.
  • the time during which communication in the macro cell (that is, the cell 10D) is stopped in this manner is also called ABS (Almost Blank Subframe) in LTE.
  • ABS Almost Blank Subframe
  • the unit of time during which communication in the macro cell is stopped is not limited to a subframe unit, and may be another unit of time.
  • FIG. 7 is an explanatory diagram for explaining a second example of the time domain ICIC.
  • a cell 10D that is a macro cell and a cell 10E that is a small cell are shown. Further, the relationship between time and transmission power in each cell 10 is shown. For example, as in this example, when the large power is used for communication in the cell 10D, the communication in the cell 10E is stopped, and when the small power is used for the communication in the cell 10D, the cell 10E is used. Communication is performed at. As a result, the waste of communication capacity in the cell 10D (that is, the macro cell) can be suppressed while interference between the cells 10 is suppressed. Such an ABS is called a Reduced Power ABS.
  • the concept of ABS is introduced in order to realize time domain ICIC.
  • the first of the two methods is a method that does not assign an ABS to any UE.
  • the second of the two methods is a method using a special subframe called an MBSFN subframe.
  • radio resources that can be used when each of the first method and the second method are employed will be described.
  • FIG. 8 is an explanatory diagram for explaining a first example of radio resources available in the ABS. Referring to FIG. 8, two RBs in one subframe are shown. This example is an example where the first method is adopted. When the first method is employed, the transmission of the signal on the PDSCH in the subframe is stopped, but the signal and the CRS on the PDCCH are transmitted. That is, in the ABS, among the radio resources in the PDSCH period, radio resources to which CRS is not transmitted can be used.
  • FIG. 9 is an explanatory diagram for explaining a second example of radio resources available in the ABS.
  • two RBs in one subframe are shown.
  • This example is an example where the second method is employed.
  • the signal on the PMCH Physical MBMS Channel
  • the CRS within the PMCH period are stopped, but the signal on the PDCCH and the CRS within the PDCCH period are Will be sent. That is, any radio resource within the PDSCH period can be used.
  • the time domain ICIC needs to share the ABS timing between cells. Therefore, compared with the above-described frequency domain ICIC, it is considered that the influence of the delay in the backhaul line (that is, the delay in transmitting and receiving information related to control) is greater. However, it is also possible to reduce the influence other than the switching timing by using a subframe that continues to some extent as an ABS.
  • Beamforming is a technique for controlling the directivity of radio waves by adjusting the phase of each antenna element in a communication node having a plurality of antenna elements.
  • the communication node can also dynamically change the directivity of radio waves.
  • the directivity of radio waves is fixed. That is, the beam formed by the communication node is fixed.
  • a communication area for example, a cell
  • a communication node for example, a base station
  • a beam directed to a communication partner (for example, a terminal device) of a communication node is formed.
  • a communication partner for example, a terminal device
  • a communication node for example, a base station
  • communication quality can be improved.
  • the beam direction can be controlled for each time resource and / or for each time resource.
  • a beam for reducing interference with communication of other communication nodes is formed. That is, the beam is formed so that the direction of the other communication node and / or the communication partner of the other communication node is a null point.
  • This type of BF is also called null steering.
  • the beam direction can be controlled for each time resource and / or for each time resource.
  • the influence due to the delay in the backhaul line differs depending on the type of BF.
  • the influence of the delay in the backhaul line is not significant.
  • the influence of delay on the backhaul line can be large. Conceivable.
  • CoMP transmission / reception is a technique in which a plurality of cooperating communication nodes (for example, base stations) transmit signals to one communication node (for example, a terminal device).
  • CoMP transmission / reception includes individual technologies such as JT (Joint Transmission) and DPS (Dynamic Point Selection).
  • JT Joint Transmission
  • DPS Dynamic Point Selection
  • JT Joint Transmission
  • DPS Dynamic Point Selection
  • JT a plurality of communication nodes simultaneously transmit the same signal to one communication node.
  • DPS one of a plurality of communication nodes that is dynamically selected transmits a signal to one communication node.
  • communication control is performed such that communication quality (for example, communication rate, SINR (Signal-to-Noise Ratio), etc.) is improved.
  • communication quality for example, communication rate, SINR (Signal-to-Noise Ratio), etc.
  • SINR Signal-to-Noise Ratio
  • spatial multiplexing Spatial Multiplexing
  • DPS DPS is performed, a communication node that performs transmission can be selected based on CSI of a plurality of communication nodes. It can be said that these operations are transmission / reception diversity, spatial multiplexing, and antenna selection when a MIMO antenna is divided into a plurality of communication nodes.
  • a plurality of communication nodes use the same frequency resource and time resource.
  • FIG. 10 is an explanatory diagram for explaining a first example of the operation of the communication system for CoMP transmission / reception.
  • two eNBs evolved Node B
  • 21A and 21B a UE (User Equipment) 31, and an MME (Mobility Management Entity) 41 are shown.
  • the MME 41 is located in an EPC (Evolved Packet Core) 40 that is a core network.
  • EPC Evolved Packet Core
  • eNB 21A and eNB 21B perform CoMP transmission / reception with respect to UE 31, and the CoMP transmission / reception is controlled by eNB 21A and / or eNB 21B.
  • the eNB 21A receives data from the EPC 40 (S81), decides to perform CoMP (S83), and transmits information (control information and data) related to CoMP transmission / reception to the eNB 21B via the X2 interface (S85). . Then, the eNB 21A and the eNB 21B perform CoMP transmission / reception with respect to the UE 31 (S87).
  • FIG. 11 is an explanatory diagram for explaining a second example of the operation of the communication system for CoMP transmission / reception.
  • two eNBs 21 ⁇ / b> A, 21 ⁇ / b> B, UE 31, and MME 41 are shown as in FIG. 10.
  • the eNB 21A and the eNB 21B perform CoMP transmission / reception with respect to the UE 31, and the control of the CoMP transmission / reception is controlled by the MME.
  • the MME 41 determines to perform CoMP transmission / reception (and radio resources to perform CoMP transmission / reception) (S91), and transmits information (control information and data) related to CoMP transmission / reception to the eNB 21A and the eNB 21B via the S1 interface. (S93). Then, the eNB 21A and the eNB 21B perform CoMP transmission / reception with respect to the UE 31 (S95).
  • CoMP transmission / reception is not limited to a plurality of base stations (for example, eNB), and may be performed by another type of communication node.
  • CoMP transmission / reception is performed by two or more of a base station (including a macro cell base station and a small cell base station), an RRH (Remote Radio Head), a relay station, and a local network (Localized Network: LN) master terminal. May be performed.
  • transmission data and control information are shared through a backhaul line between a plurality of communication nodes.
  • the influence of delay in the backhaul line that is, delay in transmission / reception of control information (transmission data and control information) is considered to be greater than that of the interference control technique.
  • a communication node (for example, a base station) of the communication system communicates with another communication node through a backhaul line. Even if the backhaul line seems to connect the communication nodes directly as a logical path, the physical path can connect the communication nodes via another communication node. Also, the backhaul line can be implemented in various forms from the viewpoint of usage and physical media. Hereinafter, a specific example of LTE will be described with reference to FIG. 12 regarding these points.
  • FIG. 12 is an explanatory diagram for explaining a specific example of a backhaul line in LTE.
  • eNBs 21A and 21B and MME 41 are shown.
  • a backhaul line 51 between the eNB 21 and the core network node (for example, the MME 41) and a backhaul line 53 between the eNB 21A and the eNB 21B are shown.
  • the backhaul line 51 is called an S1 interface as a logical path between the core network node and the eNB
  • the backhaul line 53 is called an X2 interface as a logical path between the eNBs.
  • the backhaul line 51 and the backhaul line 53 seem to be lines that directly connect the communication nodes as logical paths, but the physical path is a line through another communication node. It can be.
  • a router, a switch, etc. may exist as the other communication node.
  • the communication quality (for example, delay in communication) may change depending on how the communication node passes through.
  • the backhaul line 51 and the backhaul line 53 may be dedicated lines or shared lines (public lines) from the viewpoint of usage.
  • a dedicated line is prepared by an operator of the communication system for an eNB of a macro cell, an eNB of a pico cell, or the like.
  • public lines for example, ADSL lines, CATV lines, optical lines, etc.
  • femtocell eNBs installed in homes, offices, and the like.
  • public lines can be used for cost reduction, for example.
  • the stability of communication quality is high in a dedicated line, but the stability of communication quality is low in a shared line (public line).
  • the backhaul line 51 and the backhaul line 53 may be wired lines or may include wireless lines from the viewpoint of physical media.
  • a wireless line is included in the physical path instead of the wired line.
  • the master terminal of the local network (LN) can use a wireless line as a backhaul line.
  • the stability of communication quality is high in a wired line, but the stability of communication quality is low in a wireless line.
  • FIGS. 13 and 14 are explanatory diagrams for explaining the first example and the second example of the type and quality of the backhaul technology, respectively.
  • the example shown in FIG. 13 is an example described in TR36.932 Table 6-1-1 of 3GPP.
  • the example shown in FIG. 14 is an example described in TR36.932 Table 6.1-2 of 3GPP.
  • the latency and throughput differ depending on the backhaul line technology.
  • the embodiment of the present disclosure enables more appropriate control regarding a plurality of communication nodes.
  • FIG. 15 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 1 according to the present embodiment.
  • the communication system 1 includes an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) that is a radio access network and an EPC 40 that is a core network.
  • the communication system 1 includes a macro eNB (MeNB) 21, a pico eNB (PeNB) 23, an RRH 25, a relay node (RN) 27, a home eNB (HeNB) 29, and a UE 31 as radio access network nodes.
  • MeNB macro eNB
  • PeNB pico eNB
  • RRH a relay node
  • HeNB home eNB
  • the communication system 1 includes an MME 41, a serving gateway (S-GW) 43, a HeNB gateway (HeNB-GW) 45, and a packet data network gateway (PDN-GW) 47 as core network nodes.
  • the communication system 1 is a system that complies with LTE, LTE-Advanced, or a communication scheme that conforms to these.
  • MeNB21 performs radio
  • the PeNB 23 performs radio communication with the UE 31 located in the pico cell. For example, the pico cell overlaps with the macro cell partially or entirely.
  • the MeNB 21 and PeNB 23 communicate with the core network node (MME 41 or S-GW 43) via a backhaul line.
  • the backhaul line is called an S1 interface as a logical path.
  • two MeNBs 21, two PeNBs 23, or MeNB 21 and PeNB 23 communicate with each other via a backhaul line.
  • the backhaul line is called an X2 interface as a logical path.
  • Each of these backhaul lines includes one or more physical lines as a physical path. Further, the one or more physical lines may be only wired lines or may include wireless lines.
  • the RRH 25 includes a radio part (for example, an antenna and an RF (Radio Frequency) circuit) in the eNB, and performs radio communication with the UE 31 located in the cell.
  • the RRH 25 is installed separately from the other parts of the eNB.
  • the RRH 25 is a radio part of the pico eNB, and the other parts of the pico eNB are implemented in the apparatus of the macro eNB 21A.
  • the RRH 25 communicates with the macro eNB 21A through the backhaul line.
  • the backhaul line is any physical wired line (for example, an optical fiber cable).
  • RN27 relays between eNB and UE31. That is, the RN 27 performs radio communication with the UE 31 located within the communicable range of the RN 27. Further, the RN 27 communicates with the eNB via a backhaul line.
  • the eNB is the MeNB 21A.
  • the backhaul line is called a Un interface as a logical path and is physically a radio line.
  • the HeNB 29 is a small eNB installed in a home, office or the like.
  • the HeNB 29 is also called a femtocell eNB.
  • the HeNB 29 performs radio communication with the UE 31 located in the home cell (or femto cell).
  • the HeNB 29 communicates with the core network node (HeNB-GW 45) via the backhaul line.
  • HeNB29 communicates with MeNB21, PeNB23, or other HeNB29 via a backhaul line.
  • These backhaul lines include one or more physical lines as physical paths. Further, the one or more physical lines may be only wired lines or may include wireless lines.
  • UE31 performs radio communication with communication nodes such as MeNB21, PeNB23, RRH25, RN27, and HeNB29.
  • the UE 31 can communicate with a plurality of communication nodes simultaneously.
  • a local network (LN) for D2D (Device-to-Device) communication is formed by a plurality of UEs 31.
  • the LN master terminal that is, one of the plurality of UEs 31
  • a master terminal communicates with MeNB21, PeNB23, RRH25, RN27, or HeNB29 via the backhaul line for LN.
  • the backhaul line is called a Uu interface as a logical path, and may be physically a wireless line or a wired line.
  • the PDN-GW 47 enables connection to an external network 60 (for example, the Internet).
  • the communication system 1 includes a control entity 100.
  • the control entity 100 controls application of the control method to the communication node.
  • the communication system 1 includes an execution entity 200 in addition to the control entity 100.
  • the execution entity 200 executes control according to the applied control scheme and / or obtains and provides quality-related information regarding the quality of the backhaul line.
  • the control entity 100 may be implemented in any of the above-described communication nodes included in the communication system 1, or may be implemented in a device independent of the above-described communication node.
  • the control entity 100 is implemented in any core network node (eg, MME 41).
  • the execution entity 200 may be implemented in each communication node included in the communication system 1, or may be implemented in some communication nodes. As an example, the execution entity 200 may be implemented in a radio access network node (MeNB 21, PeNB 23, RRH 25, RN 27, and HeNB 29).
  • a radio access network node MeNB 21, PeNB 23, RRH 25, RN 27, and HeNB 29.
  • FIG. 16 is a block diagram illustrating an example of the configuration of the control entity 100 according to the present embodiment.
  • the control entity 100 includes a communication unit 110, a storage unit 120, and a processing unit 130.
  • the control entity 100 is implemented in a core network node (eg, MME 41).
  • the communication unit 110 communicates with other communication nodes.
  • the communication unit 110 communicates with other communication nodes through a backhaul line.
  • the other communication nodes include MeNB 21, PeNB 23, RRH 25, RN 27, HeNB 29, and / or a core network node.
  • the storage unit 120 temporarily or permanently stores programs and data for the operation of the control entity 100.
  • the storage unit 120 stores quality-related information regarding the quality of the backhaul line.
  • the processing unit 130 provides various functions of the control entity 100.
  • the processing unit 130 includes a quality measurement unit 131, an information collection unit 133, an information acquisition unit 135, and an application control unit 137.
  • the quality measuring unit 131 measures the quality of the backhaul line.
  • the quality measurement unit 131 measures the quality of the backhaul line through a measurement procedure for the quality of the backhaul line, and generates quality-related information (hereinafter, “backhaul quality information”) regarding the quality of the backhaul line. .
  • backhaul quality information quality-related information
  • the quality measuring unit 131 stores the generated backhaul quality information in the storage unit 120.
  • the information collection unit 133 collects backhaul quality information from other devices.
  • the information collection unit 133 acquires the backhaul quality information through a collection procedure for quality related information (that is, backhaul quality information) regarding the quality of the backhaul line.
  • quality related information that is, backhaul quality information
  • the information collection unit 133 causes the storage unit 120 to store the collected backhaul quality information.
  • the information acquisition unit 135 includes quality-related information (that is, backhaul quality) related to the quality of the backhaul line used to provide control-related information related to control in the control method to a communication node to which the control method of wireless communication is applied. Information).
  • quality-related information that is, backhaul quality
  • the backhaul quality information is generated through a measurement procedure for the quality of the backhaul line. Then, the information acquisition unit 135 acquires the generated backhaul quality information.
  • the backhaul quality information is collected from other devices through a collection procedure for the backhaul quality information. Then, the information acquisition unit 135 acquires the collected backhaul quality information.
  • the quality measurement unit 131 generates the backhaul quality information through the measurement procedure and stores the backhaul quality information in the storage unit 120, or the information collection unit 133 uses another communication node through the measurement procedure. The generated backhaul quality information is collected and stored in the storage unit 120. Then, the information acquisition unit 135 acquires the backhaul quality information.
  • control entity 100 can use the backhaul quality information possessed by other devices even when the control entity 100 does not have the backhaul quality information by collecting through the above collection procedure.
  • the control method is a method for improving the communication capacity of a communication system including the communication node.
  • the above control method includes a method (hereinafter referred to as “interference control method”) for suppressing interference between wireless communications in which two or more communication nodes are involved.
  • the interference control method includes frequency domain ICIC, time domain ICIC, BF (null steering), and the like.
  • control method includes CoMP transmission / reception.
  • the communication node to which the control method is applied is, for example, a base station, a relay station, or a terminal device that controls wireless communication in a local network formed by a plurality of terminal devices. It is.
  • the communication node is the execution entity 200 (or the communication node in which the execution entity 200 is mounted) that executes control in the control method. More specifically, for example, the communication node is any one of MeNB21, PeNB23, RRH25, RN27, HeNB29, and / or a core network node.
  • the control-related information related to control in the control method includes, for example, control information for control in the control method and / or data transmitted in accordance with the control.
  • the control related information includes control information (for example, a control command) for interference control.
  • control related information is provided to the execution entity 200 (for example, MeNB 21) by the control entity 100 (for example, MME 41).
  • the backhaul line used to provide the control related information (control information) is a backhaul line (for example, S1 interface) between the control entity 100 and the execution entity 200.
  • control-related information includes data transmitted by CoMP transmission / reception.
  • data transmitted by CoMP transmission / reception is provided to the other by one of two execution entities 200 (for example, MeNB 21) involved in CoMP transmission / reception for sharing.
  • the backhaul line used to provide the control related information is a backhaul line (for example, X2 interface) between the two execution entities 200.
  • data transmitted by CoMP transmission / reception may be provided by the control entity 100 (for example, the MME 41) to the execution entity 200 (for example, the MeNB 21) related to CoMP transmission / reception.
  • the backhaul line used to provide the control-related information may be a backhaul line (for example, an S1 interface) between the control entity 100 and the execution entity 200.
  • the control-related information may include control information (for example, a control command) for CoMP transmission / reception instead of data transmitted by CoMP transmission / reception (or in addition to data transmitted by CoMP transmission / reception).
  • control information for example, a control command
  • the backhaul line used to provide the control related information may be a backhaul line (for example, S1 interface) between the control entity 100 and the execution entity 200.
  • the quality of the backhaul is a delay time in the backhaul line.
  • the backhaul quality information is information relating to a delay time on the backhaul line.
  • the quality of the backhaul line is not limited to the delay time.
  • the quality of the backhaul line may include other information related to quality, such as throughput, in addition to or instead of the delay time.
  • the application control unit 137 controls application of the control method to the communication node based on the backhaul quality information regarding the quality of the backhaul line used for providing the control related information.
  • the application control unit 137 controls the application of the control method to two or more communication nodes including the communication node based on the backhaul quality information.
  • the backhaul quality information is acquired for the two or more communication nodes.
  • control method is a method for improving the communication capacity of a communication system including the communication node.
  • the control method includes an interference control method. More specifically, for example, the interference control method includes frequency domain ICIC, time domain ICIC, BF (null steering), and the like.
  • the interference control method By controlling the application of the interference control method based on the backhaul quality information, for example, a more appropriate interference control method can be selected and applied within the constraints of the backhaul line. Thereby, it becomes possible to suppress interference more appropriately. As a result, the communication quality can be improved and the communication capacity of the communication system 1 can be improved.
  • control method includes CoMP transmission / reception.
  • CoMP transmission / reception can be applied only when possible within the constraints of the backhaul line.
  • the communication quality can be improved and the communication capacity of the communication system 1 can be improved.
  • the communication quality can be improved and the communication capacity can be improved.
  • the application control unit 137 based on the backhaul quality information, two or more control entities 200 (or two or more communications in which the execution entity 200 is implemented) Node) is determined to apply the above control method.
  • the application control unit 137 selects one of frequency domain ICIC, time domain ICIC, and BF (null steering) based on the backhaul quality information. To determine the application of the selected interference control scheme.
  • the application control unit 137 determines whether to apply CoMP transmission / reception based on the backhaul quality information.
  • the application control unit 137 applies the control method to the two or more execution entities 200 (or the two or more communication nodes on which the execution entities 200 are mounted). That is, the application control unit 137 causes the two or more execution entities 200 to execute control using the control method.
  • the application control unit 137 transmits, to the control entity 200, a control command for control in the above control method.
  • the control entity 200 executes control according to the control method.
  • a plurality of communication nodes to which the control method is applied are classified into one or more groups based on information on the plurality of communication nodes. Then, for each group included in the one or more groups, the application control unit 137 sends the information to the one or more communication nodes based on the quality-related information regarding the one or more communication nodes included in the group. Control application of the above control scheme.
  • a plurality of communication nodes to which the control method is applied are classified into one or more groups. Then, the application control unit 137 controls application of the control method for each group.
  • the information on the plurality of communication nodes includes information on the positions of the plurality of communication nodes. That is, the plurality of communication nodes are classified into one or more groups based on the position information of the plurality of communication nodes.
  • communication nodes with close positions can be classified into the same group, and application of the control method can be controlled for each communication node with close positions.
  • application of the control method can be controlled for each communication node with close positions.
  • the information regarding the plurality of communication nodes includes information on radio resources used by the plurality of communication nodes. That is, the plurality of communication nodes are classified into one or more groups based on information on radio resources used by the plurality of communication nodes.
  • the radio resource is, for example, a radio resource with any granularity such as a component carrier (CC), a subband, or a resource block (RB).
  • the information related to the plurality of communication nodes includes quality related information related to the quality of a backhaul line used to provide the control related information to the plurality of communication nodes (that is, backhaul quality information). May be included. That is, the plurality of communication nodes may be classified into one or more groups based on backhaul quality information corresponding to the plurality of communication nodes.
  • control method for example, time domain ICIC, BF () with a higher effect among a plurality of control methods (for example, a plurality of interference control methods)). Null steering), etc.
  • a control method for example, CoMP transmission / reception
  • the interference based on the classification based on the backhaul quality information can occur, it is desirable that the classification based on the backhaul quality information is performed when the possible interference is acceptable.
  • control of application of the control method is performed for each group. Thereby, more appropriate control can be performed.
  • the operation timing is adjusted at the communication node.
  • the adjustment is performed so that the difference in delay time on the backhaul line is reduced between the communication nodes.
  • the operation timing may be different between communication nodes.
  • the application control unit 137 controls application of the control method based on the backhaul quality information.
  • control-related information is transmitted to one eNB with little delay, and the other eNB is transmitted with a long delay.
  • the control method can be applied when there is no problem in the application of the control method in consideration of the delay (or delay variation) of the backhaul line. As described above, it becomes possible to more appropriately perform control (for example, interference control, CoMP transmission / reception) regarding a plurality of communication nodes.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the execution entity 200 according to the present embodiment.
  • the execution entity 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, a storage unit 240, and a processing unit 250.
  • the execution entity 200 is implemented in the MeNB 21, PeNB 23, RRH 25, RN 27, and HeNB 29.
  • the antenna unit 210 receives a radio signal and outputs the received radio signal to the radio communication unit 220.
  • the antenna unit 210 transmits the transmission signal output from the wireless communication unit 220.
  • the radio communication unit 220 performs radio communication with the UE 31 located within the communicable range (for example, cell) of the execution entity 200.
  • the communication unit 230 communicates with other communication nodes.
  • the communication unit 230 communicates with other communication nodes through a backhaul line.
  • the other communication nodes include MeNB 21, PeNB 23, RRH 25, RN 27, HeNB 29, and / or a core network node.
  • the storage unit 240 temporarily or permanently stores a program and data for the operation of the execution entity 200.
  • the storage unit 240 stores quality-related information regarding the quality of the backhaul line.
  • the processing unit 250 provides various functions of the execution entity 200.
  • the processing unit 250 includes a quality measurement unit 251, an information collection unit 253, an information acquisition unit 255, an information provision unit 257, and a communication control unit 259.
  • the quality measuring unit 251 measures the quality of the backhaul line.
  • the quality measurement unit 251 measures the quality of the backhaul line through a measurement procedure for the quality of the backhaul line, and generates quality-related information (that is, backhaul quality information) regarding the quality of the backhaul line.
  • quality-related information that is, backhaul quality information
  • the information collection unit 253 collects backhaul quality information from other devices.
  • the information collection unit 253 acquires the backhaul quality information through a collection procedure for quality related information (that is, backhaul quality information) regarding the quality of the backhaul line.
  • quality related information that is, backhaul quality information
  • the information collection unit 253 causes the storage unit 240 to store the collected backhaul quality information.
  • the information acquisition unit 255 provides quality-related information (that is, backhaul quality) related to the quality of the backhaul line used to provide control-related information related to control in the control method to a communication node to which the control method of wireless communication is applied. Information).
  • quality-related information that is, backhaul quality
  • the at least part of the backhaul quality information is generated through a measurement procedure for the quality of the backhaul line.
  • the information acquisition part 255 acquires the said backhaul quality information produced
  • the at least part of the backhaul quality information is collected from another device through a collection procedure for the backhaul quality information.
  • the information acquisition part 255 acquires the said at least one part of the said backhaul quality information collected.
  • the quality measurement unit 251 generates the backhaul quality information through the measurement procedure and stores the backhaul quality information in the storage unit 240, or the information collection unit 253 performs another communication node through the measurement procedure.
  • the generated backhaul quality information is collected and stored in the storage unit 240.
  • the information acquisition unit 255 acquires the backhaul quality information.
  • the execution entity 200 can use the backhaul quality information possessed by other devices even if it does not have the backhaul quality information by performing the collection through the above collection procedure.
  • the backhaul line is a combination of a plurality of individual backhaul lines.
  • the at least part of the backhaul quality information is information on the quality of at least one individual backhaul line among the plurality of individual backhaul lines (hereinafter referred to as “individual backhaul quality information”). It is.
  • Such acquisition of information on the quality of individual backhaul lines makes it possible to provide information on the quality of individual backhaul lines as well as information on the quality of the entire backhaul line. Thereby, for example, it is possible to more appropriately control the application of the control method in consideration of the quality of individual backhaul lines included in the backhaul line. Further, for example, it becomes possible to generate or collect information on the quality of the entire backhaul line by combining partial information of the backhaul line. Therefore, the time required for measuring the quality of the backhaul line or collecting the backhaul quality information can be reduced.
  • the information providing unit 257 provides at least a part of the quality related information (that is, backhaul quality information).
  • the backhaul quality information is information used for controlling application of the control method to a communication node to which the control method is applied.
  • the information providing unit 257 provides the control entity 100 with at least a part of the backhaul quality information.
  • the communication control unit 259 applies the control method according to the control by the control entity 100. That is, the communication control unit 259 executes control using the control method according to control by the control entity 100.
  • control entity 100 transmits a control command for control in the above control method. Then, the communication control unit 259 executes control by the control method based on the control command.
  • FIG. 18 is a sequence diagram showing an example of a schematic flow of the first example of the measurement procedure for the quality of the backhaul line.
  • the entity X is the control entity 100 or the execution entity 200
  • the entity Y is the execution entity 200.
  • the entity X transmits a request message regarding the measurement of the quality of the backhaul line, and the entity Y receives the request message (S401).
  • the request message includes information for measuring the quality of the backhaul line between the entity X and the entity Y.
  • the entity Y measures the quality of the backhaul line based on the information included in the request message (and the reception time of the request message) (S403).
  • the entity Y transmits a response message regarding the measurement of the quality of the backhaul line, and the entity X receives the request message (S405).
  • the response message includes a measurement result of the quality of the backhaul line.
  • the response message includes information for measuring the quality of the backhaul line between the entity X and the entity Y.
  • the entity X measures the quality of the backhaul line based on the information included in the response message (and the reception time of the response message) (S407).
  • the entity X generates backhaul quality information based on the measurement result of the quality of the backhaul line (S409).
  • FIG. 19 is an explanatory diagram for explaining an information element (IE) included in the request message according to the first example of the measurement procedure.
  • IE information element
  • the request message includes a transmission source (entity X) of the request message and a destination (entity Y) of the request message.
  • the request message includes a request flag for measuring the quality of the backhaul line.
  • the request flag indicates the type of quality (for example, delay time, throughput, etc.) of the backhaul line to be measured.
  • the request message may include a plurality of request flags. This makes it possible to request a plurality of quality measurements with a single request message. As a result, overhead can be suppressed.
  • the request message includes a time stamp indicating the transmission time of the request message. This makes it possible to measure the delay time on the backhaul line.
  • the request message includes the data size of the request message. This makes it possible to easily measure the throughput on the backhaul line.
  • FIG. 20 is an explanatory diagram for explaining the information element (IE) included in the response message according to the first example of the measurement procedure.
  • IE information element
  • the response message includes a transmission source (entity Y) of the response message and a destination (entity X) of the request message.
  • the response message includes a response flag for measuring the quality of the backhaul line.
  • the response flag indicates the type of quality of the measured backhaul line (for example, delay time, throughput, etc.).
  • the response message may include a plurality of response flags. This makes it possible to provide a plurality of quality measurement results with one response message. As a result, overhead can be suppressed.
  • the response message includes a measurement result of the backhaul line quality.
  • the response message may include one type of quality measurement result or may include two or more types of quality measurement result.
  • the response message includes a time stamp indicating the transmission time of the response message and the data size of the response message, like the request message. This makes it possible to measure the delay time and throughput on the backhaul line.
  • the measurement procedure includes sending and receiving one or more messages including a transmission time.
  • the measurement procedure includes sending and receiving one or more messages including a transmission time.
  • the measurement procedure includes measuring the quality of the backhaul line in both directions. Therefore, when the difference in quality between one direction and the other direction is large, it is possible to obtain quality information about both directions. Further, even when the difference in quality between one direction and the other direction is small, more accurate quality information can be obtained.
  • FIG. 21 is a sequence diagram showing an example of a schematic flow of a second example of the measurement procedure for the quality of the backhaul line.
  • request message transmission / reception (S411) and measurement based on the request message (S413), response message transmission / reception (S415), and measurement based on the response message (S417) are repeated a plurality of times. It is.
  • Entity X generates backhaul quality information based on the measurement result of the quality of the backhaul line (S419).
  • FIG. 22 is an explanatory diagram for explaining the information element (IE) included in the request message according to the second example of the measurement procedure.
  • the request message in addition to the information elements included in the request message according to the first example described with reference to FIG. 19, in the second example, the request message includes the total number of request messages and the current request. And an index.
  • the current request index indicates the number of the message among all request messages. The total number of request messages makes it possible to know whether all request messages have been received or if a request message loss has occurred.
  • FIG. 23 is an explanatory diagram for explaining the information element (IE) included in the response message according to the second example of the measurement procedure.
  • IE information element
  • the response message is a response message, similar to the request message. And the current response index.
  • the measurement procedure includes measuring the quality of the backhaul line multiple times. This makes it possible to measure more accurate quality.
  • FIG. 24 is a sequence diagram showing an example of a schematic flow of the third example of the measurement procedure for the quality of the backhaul line.
  • transmission / reception of a request message (S421) and measurement based on the request message (S423) are repeatedly performed a plurality of times.
  • FIG. 25 is an explanatory diagram for explaining the information element (IE) included in the request message according to the third example of the measurement procedure.
  • the request message similar to the request message according to the second example described with reference to FIG. 22, in the third example, the request message further includes a total number of request messages and a current request index. .
  • FIG. 26 is an explanatory diagram for explaining the information element (IE) included in the response message according to the third example of the measurement procedure.
  • the response message includes a measurement result of the quality of the backhaul line.
  • the response message according to the third example may include a plurality of individual measurement results as the measurement result of the quality of the backhaul line, or one measurement result obtained from the plurality of individual measurement results. (For example, an average value (and a variance value)) may be included.
  • the response message further includes the total number of measurements. As a result, it is possible to know whether a packet loss has occurred.
  • the measurement procedure includes measuring the quality of the backhaul line multiple times. This makes it possible to measure more accurate quality.
  • FIG. 27 is a sequence diagram showing an example of a schematic flow of the fourth example of the measurement procedure for the quality of the backhaul line.
  • the entity X transmits a completion message related to the measurement of the quality of the backhaul line, and the entity Y receives the completion message (SXD439).
  • FIG. 28 is an explanatory diagram for explaining an information element (IE) included in the completion message according to the fourth example of the measurement procedure.
  • IE information element
  • the completion message includes a transmission source (entity X) of the completion message and a destination (entity Y) of the completion message.
  • the completion message includes a completion flag for measuring the quality of the backhaul line.
  • the completion flag indicates the type of quality (for example, delay time, throughput, etc.) of the measured backhaul line.
  • the completion message may include a plurality of completion flags.
  • the completion message includes the measurement result of the backhaul line quality.
  • the measurement result is backhaul quality information.
  • the response message may include a plurality of types of quality measurement results.
  • the measurement procedure includes sharing a measurement of the quality of the backhaul line.
  • a plurality of communication nodes involved in the measurement can obtain the measurement result.
  • FIG. 29 is a sequence diagram illustrating a first example of a schematic flow of a fifth example of a measurement procedure for backhaul line quality.
  • FIG. 30 is a sequence diagram showing a second example of a schematic flow of the fifth example of the measurement procedure for the quality of the backhaul line.
  • the transmission / reception of the request message (S441) and the measurement based on the request message (S443) are repeated a plurality of times. Then, the entity Y generates backhaul quality information based on the measurement result of the quality of the backhaul line (S445).
  • the request message according to the fifth example of the measurement procedure is the same as the content of the request message according to the first example of the measurement procedure described with reference to FIG.
  • the measurement procedure includes measuring the quality of the backhaul line in one direction. Thereby, overhead is suppressed.
  • FIG. 31 is a sequence diagram showing an example of a schematic flow of the sixth example of the measurement procedure for the quality of the backhaul line.
  • Entity X transmits any message including a time stamp as required in operation, and entity Y receives the message (S451).
  • the entity Y measures the quality of the backhaul line based on the information included in the message (and the reception time of the request message) (S453).
  • the request message according to the sixth example of the measurement procedure is the same as the content of the response message according to the first example of the measurement procedure described with reference to FIG.
  • the measurement procedure includes sending and receiving messages not intended to measure the quality of the backhaul line. Thereby, it is possible to reduce overhead due to the request message.
  • RTT Round Trip Time
  • a half value of RTT may be regarded as a delay time in one direction.
  • FIG. 32 is a sequence diagram illustrating a first example of a schematic flow of a seventh example of a measurement procedure for backhaul line quality.
  • the entity X is the control entity 100 or the execution entity 200
  • the entity Y and the entity Z are the execution entity 200.
  • the quality of the backhaul line between entity X and entity Y is measured.
  • the entity X transmits a request message regarding the measurement of the quality of the backhaul line, and the entity Z receives the request message (S451).
  • the request message is a message requesting measurement of the quality of the backhaul line between the entity X and the entity Y.
  • the entity Z measures the quality of the backhaul line between the entity X and the entity Z (S463).
  • the entity Z holds the measurement result of the quality of the backhaul line between the entity Z and the entity Y, and acquires the backhaul quality information (S464).
  • the entity Z transmits a response message relating to the measurement of the quality of the backhaul line, and the entity X receives the request message (S465).
  • the response message includes a measurement result of the quality of the backhaul line between the entity X and the entity Z and a measurement result of the quality of the backhaul line between the entity Z and the entity Y.
  • the entity X measures the quality of the backhaul line between the entity X and the entity Z (S467).
  • the entity X After that, the entity X generates backhaul quality information regarding the quality of the backhaul line between the entity X and the entity Y based on the measurement result of the quality of the backhaul line (S469).
  • the backhaul line between the entity X and the entity Z is a wired line
  • the backhaul line between the entity Z and the entity Y is a wireless line
  • the entity Z is one of the eNBs
  • the entity Y is an RN27 or LN master terminal (UE31F).
  • the measurement result of the quality of the backhaul line between the entity Z and the entity Y may be held in the form of backhaul quality information regarding the quality of the backhaul line between the entity Z and the entity Y.
  • FIG. 33 is a sequence diagram showing a second example of a schematic flow of the seventh example of the measurement procedure for the quality of the backhaul line. Again, the quality of the backhaul line between entity X and entity Y is measured.
  • the quality of the backhaul line is measured (S471 to S479).
  • the measurement is performed in the same manner as the first example of the measurement procedure described with reference to FIG.
  • the request message according to the fifth example of the measurement procedure is the same as the content of the request message according to the first example of the measurement procedure described with reference to Fig. 19, for example.
  • FIG. 34 is an explanatory diagram for explaining the information element (IE) included in the response message according to the seventh example of the measurement procedure.
  • the response message includes a measurement result of the quality of the individual backhaul line.
  • the response message includes a measurement result of the quality of the backhaul line between the entity X and the entity Z, and a measurement result of the quality of the backhaul line between the entity Z and the entity Y.
  • the backhaul line is a combination of a plurality of individual backhaul lines.
  • the measurement procedure includes measuring the quality of at least one individual backhaul line among the plurality of individual backhaul lines.
  • FIG. 35 is a sequence diagram showing an example of a schematic flow of a first example of a collection procedure for backhaul quality information.
  • the entity X is the control entity 100 or the execution entity 200
  • the entity Y is the execution entity 200.
  • the entity X transmits a request message regarding the collection of backhaul line information, and the entity Y receives the request message (S501).
  • the request message is a message requesting provision of backhaul quality information regarding the quality of the backhaul line between the entity Y and the entity Z (not shown).
  • entity Y holds the backhaul quality information to be collected. Therefore, the entity Y acquires the backhaul quality information (S503).
  • the entity Y transmits a response message regarding the collection of information on the backhaul line, and the entity X receives the response message (S505).
  • the response message includes the backhaul quality information.
  • FIG. 36 is an explanatory diagram for explaining the information element (IE) included in the request message according to the first example of the collection procedure.
  • IE information element
  • the request message includes a transmission source (entity X) of the request message and a destination (entity Y) of the request message.
  • the request message includes a request flag for collecting backhaul line information.
  • the request flag indicates the type of backhaul quality information to be collected (for example, delay time, throughput, packet loss rate, etc.). Thereby, it is possible to collect a plurality of types of backhaul quality information by one request message. As a result, overhead can be suppressed.
  • the request message includes information indicating a transmission source and a transmission destination of the backhaul line corresponding to the backhaul quality information.
  • FIG. 37 is an explanatory diagram for explaining the information element (IE) included in the response message according to the first example of the collection procedure.
  • IE information element
  • the response message includes a transmission source (entity Y) of the request message and a destination (entity X) of the request message.
  • the response message includes backhaul information.
  • the backhaul information includes backhaul quality information.
  • the request message may include one type of backhaul quality information, or may include two or more types of backhaul quality information.
  • the backhaul information may include information indicating the type of backhaul. When entity Y does not have backhaul quality information to be collected, the request message may include information indicating that it does not have backhaul quality information as backhaul information.
  • the request message includes information indicating a transmission source and a transmission destination of the backhaul line corresponding to the backhaul quality information.
  • the collection procedure includes requesting provision of backhaul quality information and providing backhaul quality information on demand. This makes it possible to actively collect backhaul quality information.
  • FIG. 38 is a sequence diagram showing an example of a schematic flow of the second example of the collection procedure for backhaul quality information.
  • the entity X transmits a request message related to the collection of backhaul line information, and the entity Y receives the request message (S511).
  • entity Y does not have backhaul quality information related to the quality of the backhaul line to be collected. However, entity Y knows the entity (eg, entity Z) that holds the backhaul quality information. Therefore, the entity Y transfers the request message to the entity Z (S513).
  • entity Z holds backhaul quality information related to the quality of the backhaul line to be collected. Therefore, the entity Y acquires the backhaul quality information (S515).
  • the entity Z transmits a response message regarding the collection of backhaul line information, and the entity X receives the response message (S505).
  • the response message includes the backhaul quality information.
  • FIG. 39 is an explanatory diagram for explaining an information element (IE) included in a request message according to the second example of the collection procedure.
  • the request message is a request message transferred from the entity Y to the entity Z.
  • the request message to be transferred includes an information element included in the request message according to the first example of the collection procedure described with reference to FIG.
  • the destination of the request message is changed from the transfer source entity (entity Y) to the transfer destination entity (entity Z) by the transfer source entity (entity Y).
  • a transfer source entity Y
  • entity Y is further added to the request message to be transferred.
  • the request message according to the second example of the collection procedure is the same as the content of the response message according to the first example of the collection procedure described with reference to FIG.
  • the collection procedure includes transferring a request for provision of backhaul quality information to a communication node having the backhaul quality information.
  • FIG. 40 is a sequence diagram showing an example of a schematic flow of the third example of the collection procedure for backhaul quality information.
  • the entity X transmits a request message related to the collection of backhaul line information, and the entity Y receives the request message (S521).
  • entity Y does not have backhaul quality information related to the quality of the backhaul line to be collected. However, entity Y knows the entity (eg, entity Z) that holds the backhaul quality information. Therefore, the entity Y transmits a response message including information on the entity (for example, the entity Z) that holds the backhaul quality information, and the entity X receives the response message (S523).
  • entity Y knows the entity (eg, entity Z) that holds the backhaul quality information. Therefore, the entity Y transmits a response message including information on the entity (for example, the entity Z) that holds the backhaul quality information, and the entity X receives the response message (S523).
  • the request message according to the third example of the collection procedure is the same as the content of the request message according to the first example of the collection procedure described with reference to FIG.
  • FIG. 41 is an explanatory diagram for explaining the information element (IE) included in the response message according to the third example of the collection procedure.
  • the response message is a response message transmitted to the requesting entity (entity X) by an entity (entity Y) that does not have backhaul quality information.
  • the request message includes information elements included in the request message according to the first example of the collection procedure described with reference to FIG.
  • the backhaul information includes information indicating that the backhaul quality information is not included.
  • the request message further includes information on a destination (entity Z) to be requested to provide backhaul quality.
  • the request message transmitted from the entity Z to the entity X is the same as the content of the response message according to the first example of the collection procedure described with reference to FIG.
  • the collection procedure includes requesting provision of backhaul quality information and notifying a communication node having the backhaul quality information in response to the request.
  • the time from the transmission of the request message to the reception of the response message can be shortened as compared with the second example.
  • the collection procedure is simplified.
  • FIG. 42 is a sequence diagram showing an example of a schematic flow of a fourth example of the collection procedure for backhaul quality information.
  • transmission / reception of a request message (S531) and transmission / reception of a response message (S533) are performed between the entity X and the entity Y. Further, the entity Y knows that the entity Z holds the backhaul quality information to be collected.
  • the entity Y transmits a response message regarding the collection of information on the backhaul line, and the entity X receives the response message (S539).
  • the response message includes the backhaul quality information.
  • the request message according to the fourth example of the collection procedure is the same as the content of the request message according to the first example of the collection procedure described with reference to FIG.
  • the first response message (that is, the response message transmitted in S533 in FIG. 42) among the response messages according to the fourth example of the collection procedure is the collection procedure described with reference to FIG. This is the same as the content of the request message according to the third example.
  • the backhaul information does not include information indicating that the backhaul quality information is not included, and does not include any information, for example.
  • the second response message (that is, the response message transmitted in S539 of FIG. 42) among the response messages according to the fourth example of the collection procedure is the same as the collection procedure described with reference to FIG. This is the same as the content of the request message according to the example 1.
  • the collection procedure requests the provision of backhaul quality information and further requests the communication node having the backhaul quality information to provide the backhaul quality information in response to the request. Including. Thereby, the effort for the request source (entity X) in the backhaul quality information collection procedure can be reduced. In addition, overhead can be reduced.
  • FIG. 43 is a sequence diagram showing an example of a schematic flow of the fifth example of the collection procedure for backhaul quality information.
  • entity X transmits a request message relating to collection of backhaul line information
  • entity Y receives the request message (S541).
  • entity Y does not have the backhaul quality information to be collected, but can generate the backhaul quality information through the measurement procedure. Therefore, a backhaul quality measurement procedure is performed between the entity Y and the entity Z, and backhaul quality information to be collected is obtained (S543).
  • the entity Y transmits a response message regarding the collection of information on the backhaul line, and the entity X receives the response message (S539).
  • the response message includes the backhaul quality information.
  • the request message according to the fifth example of the collection procedure is the same as the content of the request message according to the first example of the collection procedure described with reference to FIG.
  • the response message according to the fifth example of the collection procedure is the same as the content of the response message according to the first example of the collection procedure described with reference to FIG.
  • the collection procedure includes generating backhaul quality information relating to the quality of the backhaul line through a backhaul line quality measurement procedure.
  • the effort for the request source (entity X) in the backhaul quality information collection procedure can be reduced.
  • overhead can be reduced.
  • the backhaul line information to be collected is a combination of a plurality of individual backhaul lines.
  • the backhaul quality information to be collected is backhaul quality information related to the quality of the backhaul line between the entity Y and the entity Z.
  • the backhaul line includes an individual backhaul line between the entity Y and the entity W and an individual backhaul line between the entity W and the entity Z.
  • An example of a schematic flow according to the sixth example of the collection procedure is the same as the schematic flow example according to the first example of the collection procedure described with reference to FIG.
  • the request message according to the sixth example of the collection procedure is the same as the content of the request message according to the first example of the collection procedure described with reference to FIG.
  • FIG. 44 is an explanatory diagram for explaining the information element (IE) included in the response message according to the sixth example of the collection procedure.
  • the response message includes backhaul information (backhaul quality information, etc.) about individual backhaul lines.
  • the response message includes backhaul information about the backhaul line between entity Y and entity W and backhaul information about the backhaul line between entity W and entity Z.
  • the backhaul line is a combination of a plurality of individual backhaul lines.
  • the collection procedure includes collecting information on the quality of at least one individual backhaul line among the plurality of individual backhaul lines.
  • a request message may be broadcast instead of being transmitted to an individual entity. Thereby, for example, desired backhaul quality information can be collected more quickly.
  • the transmission source entity of the request message may start a timer for collecting backhaul quality information after transmitting the request message.
  • a predetermined time limit is set for the timer. If any response message is not received within the time limit, for example, the entity determines that collection of backhaul quality information has failed. Further, for example, when the entity of the response message acts as a proxy for collecting the backhaul quality information, the entity of the request message transmits the change of the timer expiration (for example, extension) from the content of the response message. ) May be performed.
  • the request message related to the measurement of the quality of the backhaul line and / or the response message related to the measurement of the quality of the backhaul line may include information (time stamp) indicating the transmission time. This makes it possible to measure the quality of the backhaul line even during the collection procedure.
  • Control of application of control method >> Subsequently, control of application of the control method will be described with reference to FIGS. Specifically, the determination of application of the control method and the application and execution of the control method will be described.
  • Control unit application unit As described above, for example, a plurality of communication nodes to which the control method is applied are classified into one or more groups, and application of the control method is controlled for each of the one or more groups.
  • the plurality of communication nodes are grouped into one or more groups based on information on the positions of the plurality of communication nodes and information on radio resources used by the plurality of communication nodes. being classified.
  • the plurality of communication nodes may be classified into one or more groups based on the backhaul quality information corresponding to the plurality of communication nodes.
  • an index T used to determine application of the control method is calculated.
  • the quality of the backhaul line is a delay time
  • the index is an index related to the delay time.
  • the index T is a value between the worst value and the best value in the quality of the backhaul line used to provide control related information to the two or more communication nodes. It is a difference.
  • the index T is expressed as follows: .
  • T is the maximum of
  • the above-mentioned index is not necessarily the difference between the worst value and the best value.
  • the difference between the m-th worst value and the n-th best value may be used.
  • the m and n may be determined in advance by a communication node (for example, the control entity 100) that calculates the index T, or may be specified by another communication node in the communication system 1.
  • the index may be the worst value instead of the difference between the worst value and the best value. Also in this case, application of the control method is controlled in accordance with the worst case that can be assumed.
  • the index T is a difference between the quality of the backhaul line used to provide control-related information to the two or more communication nodes and a reference value. Average (or variation (for example, standard deviation)).
  • the index T may be statistical information on the quality of the backhaul line (for example, average value, standard deviation, etc.).
  • the index T is an average value of the quality of the backhaul line
  • N T be the number of target backhaul lines
  • T i be the quality of the backhaul line i of the target backhaul lines.
  • the index T is expressed as follows, for example.
  • the index T is the standard deviation of the quality of the backhaul line
  • the number of the target backhaul lines is N T
  • the quality of the backhaul line i among the target backhaul lines is T
  • the index T is expressed as follows, for example.
  • the control method includes an interference control method. More specifically, for example, the control method includes a plurality of interference control methods (for example, frequency domain ICIC, time domain ICIC, BF (null steering), etc.). The determination of application of the control method in this case will be described below.
  • interference control methods for example, frequency domain ICIC, time domain ICIC, BF (null steering), etc.
  • the control entity 100 selects one interference control method from among a plurality of interference control methods based on the backhaul quality information. More specifically, for example, the control entity 100 (application control unit 137) selects one interference control method from a plurality of interference control methods based on the index T calculated from the backhaul quality information. .
  • the control entity 100 selects one interference control method from among a plurality of interference control methods based on the index T calculated from the backhaul quality information.
  • FIG. 45 is an explanatory diagram for describing a specific example of determination of application of an interference control scheme.
  • each interference control method and its application conditions are shown.
  • the index T e.g., variations in the delay time or delay time
  • T D1 is the application of less susceptible the frequency domain the effects of delay in the backhaul ICIC is determined.
  • the index T is equal to or less than the threshold TD4 , it is determined to apply BF (null steering) that is easily affected by delay in the backhaul line but has high utilization efficiency of radio resources.
  • BF nuclea steering
  • control entity 100 (application control unit 137) transmits to each communication node (execution entity 200) to which the interference control method is applied via each backhaul line. Provides information about control (eg, control commands).
  • the interference control method is selected, and the selected interference control method is applied. This makes it possible to perform interference control suitable for the quality of the backhaul line.
  • control method includes CoMP transmission / reception.
  • the determination of application of the control method in this case will be described below.
  • the control entity 100 determines whether to apply CoMP transmission / reception based on the backhaul quality information. For example, when the index T exceeds a certain threshold value (that is, when the delay time (or delay time variation) between backhaul lines is large), it is determined not to apply CoMP transmission / reception. Further, when the index T does not exceed a certain threshold (that is, when the delay time (or delay time variation) between the backhaul lines is not large), it is determined to apply CoMP transmission / reception.
  • a certain threshold value that is, when the delay time (or delay time variation) between backhaul lines is large
  • CoMP transmission / reception is performed only when CoMP transmission / reception is possible due to the quality of the backhaul line.
  • FIG. 46 is an explanatory diagram for explaining the flow of processing of application and execution of the control method in the downlink.
  • control entity 100 transmits a control command to the execution entity 200 (S601).
  • the control command includes information indicating the type of control method, parameters necessary for control in the control method, and the like. The contents of the control command for each control method will be described in detail later.
  • the execution entity 200 transmits a command response message (S603).
  • the control entity 100 can confirm the reception status of the control command by the command response message.
  • the execution entity 200 changes the operation parameter for control in the control method indicated by the control command based on the control command (S605). Thereby, control by a control system is performed. Then, the execution entity 200 transmits control information (scheduling information, MCS (Modulation and Coding Set), precoder information, etc.) and data in the downlink (S607). For example, the control information is transmitted on the PDCCH, and the data is transmitted on the PDSCH. Then, UE31 transmits ACK / NACK to the execution entity 200 (S609).
  • control information scheduling information
  • MCS Modulation and Coding Set
  • precoder information etc.
  • S607 data in the downlink
  • the control information is transmitted on the PDCCH
  • the data is transmitted on the PDSCH.
  • UE31 transmits ACK / NACK to the execution entity 200 (S609).
  • control method is CoMP transmission / reception
  • data transmission to the execution entity 200 that performs CoMP transmission / reception can be further performed at least before the transmission of control information and data by the execution entity 200 (S607).
  • FIG. 47 is an explanatory diagram for explaining a flow of processing of application and execution of a control method in the uplink.
  • control entity 100 transmits a control command to the execution entity 200 (S621). Then, the execution entity 200 transmits a command response message (S623).
  • the execution entity 200 changes the operation parameter for control in the control method indicated by the control command based on the control command (S625). Thereby, control by a control system is performed. Then, the execution entity 200 transmits control information (scheduling information, MCS (Modulation and Coding Set), precoder information, etc.) on the downlink (S627). For example, the control information is transmitted on the PDCCH. Thereafter, the UE 31 transmits data on the uplink according to the uplink scheduling information (S629). For example, the data is transmitted on the PUSCH. Thereafter, the execution entity 200 transmits ACK / NACK to the UE 31 (S631).
  • control information scheduling information, MCS (Modulation and Coding Set), precoder information, etc.
  • the operation parameter may be changed at the UE 31 instead of or along with the change of the operation parameter at the execution entity 200.
  • the control entity 200 may transmit the operation parameter to the UE 31, and the UE 31 may receive and set the operation parameter.
  • parameters for the BF for example, antenna weighting factor, transmission power, etc.
  • FIG. 48 is an explanatory diagram for explaining an example of the content of a command response message for a control command.
  • the command response message includes the source of the command response message (execution entity 200) and the destination of the command execution message (control entity 100).
  • the command response message includes ACK or NACK. Further, when the command response message includes NACK, the reason for NACK is included.
  • the control entity 100 can use the reason for the subsequent response.
  • FIG. 49 is an explanatory diagram for explaining an example of the NACK reason category included in the command response message.
  • NACK reason categories include, for example, error detection due to communication error (index 0), non-correspondence to control method (index 1), control parameter amount out of range (index 2), and control start. Time is out of range (index 3) and others (index 4).
  • FIG. 50 is an explanatory diagram for explaining an example of the content of a control command of the frequency domain ICIC.
  • the control command includes a transmission source (control entity 100) of the control command and a destination (execution entity 200) of the control command.
  • control command includes a control method class ID for identifying the control method.
  • control method class ID is the class ID of the frequency domain ICIC.
  • control command includes information indicating when the control command is applied (for example, timing for starting execution of control in the control method). Further, the control command includes information on frequency resources (RB, RB group, CC, or a set thereof, etc.) to be used in the frequency domain ICIC.
  • the execution entity 200 changes the operation parameter so as to perform resource allocation (scheduling) in the range of the frequency resource indicated by the control command after the timing indicated by the control command. As a result, a frequency domain ICIC is realized.
  • the execution entity 200 may perform resource allocation (scheduling) of frequency resources other than the frequency resource indicated by the control command.
  • the control command may include information indicating a frequency resource that should not be used in the frequency domain ICIC, instead of the information indicating the frequency resource that should be used in the frequency domain ICIC.
  • the execution entity 200 changes the operation parameter so as to perform resource allocation (scheduling) in a frequency resource range other than the frequency resource indicated by the control command after the timing indicated by the control command. Also good.
  • control command includes information indicating the amount of power.
  • FIG. 51A and FIG. 51B are flowcharts showing an example of a schematic flow of a process of the execution entity 200 when the frequency domain ICIC is applied. This process is executed after receiving a control command from the control entity 100.
  • the execution entity 200 checks whether it corresponds to FFR (S701). Further, the execution entity 200 checks the frequency resource used for ICIC (S703). Thereafter, the execution entity 200 performs scheduling in consideration of ICIC (S705). In addition, the execution entity 200 sets transmission power, MCS, data size, and the like (S707). Then, the execution entity 200 generates control information to be provided to the communication partner (UE 31) (S709).
  • the execution entity 200 transmits the control information on the control channel (eg, PDCCH) (S713), and transmits the data on the data channel (eg, PDSCH). Transmit (S715). Thereafter, the execution entity 200 waits for ACK / NACK for data transmission (S717).
  • control channel eg, PDCCH
  • data channel eg, PDSCH
  • the execution entity 200 transmits control information on the control channel (for example, PDCCH) (S719), and transmits data transmitted on the uplink to the data channel ( Wait for PDSCH) (S721).
  • the execution entity 200 receives the data (S723: Yes)
  • the execution entity 200 decrypts the data (S725).
  • the execution entity 200 transmits an ACK (S729), and when the decoding fails (S727: No), the execution entity 200 transmits a NACK (S731). Note that the execution entity 200 also transmits a NACK even when no data is received (S723: No) (S731).
  • FIG. 52 is an explanatory diagram for explaining an example of the content of the control command of the time domain ICIC.
  • the transmission source of the control command similarly to the control command of the frequency domain ICIC described with reference to FIG. 50, the transmission source of the control command, the destination of the control command, the control method class ID, and when the control command is applied. Contains information to indicate.
  • the control method class ID is the class ID of the time domain ICIC.
  • the control command includes information on time resources (subframes, subframe groups, radio frames, or a set thereof, etc.) to be used in the time domain ICIC.
  • the execution entity 200 changes the operation parameter so as to perform resource allocation (scheduling) within the time resource range indicated by the control command after the timing indicated by the control command. As a result, a time domain ICIC is realized.
  • the execution entity 200 may perform resource allocation (scheduling) of time resources other than the time resource indicated by the control command.
  • the control command may include information indicating a time resource that should not be used in the time domain ICIC, instead of information indicating a time resource that should be used in the time domain ICIC.
  • the execution entity 200 changes the operation parameter so as to perform resource allocation (scheduling) in a time resource range other than the time resource indicated by the control command after the timing indicated by the control command. Also good.
  • control command includes information indicating the electric energy.
  • FIG. 53A and FIG. 53B are flowcharts showing an example of a schematic flow of the process of the execution entity 200 when the time domain ICIC is applied. This process is executed after receiving a control command from the control entity 100.
  • the execution entity 200 checks whether or not it corresponds to the Reduced Power ABS (S751). Further, the execution entity 200 checks the time resource used for ICIC (S753). Thereafter, the execution entity 200 performs scheduling in consideration of ICIC (S755). In addition, the execution entity 200 sets transmission power, MCS, data size, and the like (S757). And the execution entity 200 produces
  • UE31 communicating party
  • the execution entity 200 transmits the control information on the control channel (eg, PDCCH) (S763) and transmits the data on the data channel (eg, PDSCH). Transmit (S765). Thereafter, the execution entity 200 waits for ACK / NACK for data transmission (S767).
  • control channel eg, PDCCH
  • data channel eg, PDSCH
  • the execution entity 200 transmits control information on the control channel (for example, PDCCH) (S769), and transmits data transmitted on the uplink to the data channel ( Wait for PDSCH (S771). Then, when the data is received (S773: Yes), the execution entity 200 decrypts the data (S775). Further, when the decoding is successful (S777: Yes), the execution entity 200 transmits an ACK (S7779), and when the decoding fails (S777: No), the execution entity 200 transmits a NACK (S781). Note that the execution entity 200 also transmits a NACK even when no data is received (S773: No) (S781).
  • FIG. 54 is an explanatory diagram for explaining an example of the content of a control command of the time domain ICIC.
  • the transmission source of the control command similarly to the control command of the frequency domain ICIC described with reference to FIG. 50, the transmission source of the control command, the destination of the control command, the control method class ID, and when the control command is applied. Contains information to indicate.
  • the control method class ID is a BF class ID.
  • the control command includes information indicating a weighting factor (or a set thereof) to be used.
  • the execution entity 200 changes the operation parameter so as to perform BF with the weighting factor indicated by the control command after the timing indicated by the control command.
  • BF nucleic acid
  • the control command may include information indicating an angle range to be covered by the BF instead of the antenna weighting factor or together with the weighting factor.
  • FIG. 55 is a flowchart illustrating an example of a schematic flow of a process of the execution entity 200 when BF (null steering) is applied. This process is executed after receiving a control command from the control entity 100.
  • the execution entity 200 checks the antenna weight coefficient from the control command (S801), and sets the antenna weight (S803). Further, the execution entity 200 performs scheduling (S805), and sets transmission power, MCS, data size, and the like (S807). And the execution entity 200 produces
  • the execution entity 200 transmits data on the data channel (for example, PDSCH) (S813) while transmitting control information on the control channel (for example, PDCCH) (S811). Thereafter, the execution entity 200 waits for ACK / NACK for data transmission (S815).
  • data channel for example, PDSCH
  • control information on the control channel for example, PDCCH
  • BF (null steering) by the execution entity 200 may be performed in the uplink.
  • the execution entity 200 may transmit various parameters (for example, antenna weighting factors, transmission power, etc.) to the UE 31, and the UE 31 may receive and set the various parameters.
  • UE31 may transmit data on a data channel according to control information. Thereby, UE31 can transmit data, performing BF (null steering).
  • FIG. 56 is an explanatory diagram for explaining an example of the content of a control command for CoMP transmission / reception.
  • the transmission source of the control command similarly to the control command of the frequency domain ICIC described with reference to FIG. 50, the transmission source of the control command, the destination of the control command, the control method class ID, and when the control command is applied. Contains information to indicate.
  • the control method class ID is a class ID for CoMP transmission / reception.
  • the control command includes the ID of the execution entity 200 related to CoMP transmission / reception and the ID of the UE to which CoMP transmission / reception is applied.
  • the control command includes frequency resources to be used (RB, a set of RBs, or a set thereof) and time resources to be used (a subframe, a subframe group, or a set thereof, etc.) ) Information.
  • the frequency entity and the time resource may not be determined by the control entity 100, but may be determined later by the execution entity 200.
  • control command includes a precoder ID to be used.
  • FIG. 57A and FIG. 57B are flowcharts illustrating an example of a schematic flow of a process of the execution entity 200 when CoMP transmission / reception is applied. This process is executed after receiving a control command from the control entity 100.
  • the executing entity 200 checks other entities involved in CoMP transmission / reception (S851). If the UE to which CoMP transmission / reception is to be applied is not designated (S853: No), the executing entity 200 selects the UE to which CoMP transmission / reception is to be applied (S855).
  • the execution entity 200 performs scheduling according to the resource instruction (S859).
  • the resource to the UE to which CoMP transmission / reception is to be applied is not specified (S857: No)
  • the execution entity 200 performs scheduling as usual (S861). Further, the execution entity 200 sets transmission power, MCS, data size, and the like (S863).
  • the execution entity 200 shares control information related to CoMP transmission / reception (UE to which CoMP transmission / reception should be applied, scheduling information, MCS, data size, etc.) with other entities related to CoMP transmission / reception. (S865).
  • execution entity 200 generates control information to be provided to the communication partner (UE 31) (S867).
  • execution entity 200 shares transmission data with other entities involved in CoMP transmission / reception (S869).
  • the execution entity 200 transmits data on the data channel (eg, PDSCH) (S873) while transmitting the control information on the control channel (eg, PDCCH) (S871). Thereafter, the execution entity 200 waits for ACK / NACK for data transmission (S875).
  • data channel eg, PDSCH
  • control information on the control channel eg, PDCCH
  • CoMP transmission / reception in the uplink may be performed. That is, data transmitted by the UE 31 may be received and combined by both the execution entity 200 and other entities. In this case, the execution entity 200 and other execution entities share the transmission data and receive data transmitted by the UE 31 together, instead of transmitting in cooperation, and receive the received data as the execution entity 200 and other One of the execution entities may be synthesized. This makes it possible to perform CoMP transmission / reception on the uplink.
  • the quality of the backhaul line is a very important matter and greatly affects the decision to apply the control method. Therefore, adjusting the operation timing in the execution entity 200 is effective for reducing the influence due to the quality of the backhaul line and improving the superiority in the application of the control method.
  • the operation timing of a base station such as eNB may be adjusted using, for example, GPS (Global Positioning System) time.
  • GPS Global Positioning System
  • the operation timing is not adjusted according to the quality of the backhaul line. This is because, as described above, when the operator of the communication system facilitates the backhaul line, the problem does not occur so much.
  • FIG. 58 is a sequence diagram illustrating an example of a schematic flow of an operation timing adjustment procedure of the execution entity 200.
  • the control entity 100 transmits a control command for adjusting the operation timing, and the execution entity 200 receives the control command (S901). Then, the execution entity 200 transmits a response message to the control command (S903).
  • the execution entity 200 notifies system information change (S905), and then notifies the changed system information (S907).
  • the execution entity 200 adjusts the operation timing at a predetermined timing (S909), and the UE 31 synchronizes with the adjusted operation timing (S911).
  • FIG. 59 is an explanatory diagram for explaining an information element (IE) included in a control command for adjusting the operation timing.
  • the control command includes information on the source and destination of the control command.
  • the control command includes information on the adjustment amount of the operation timing and information on when to start adjustment (timing for starting adjustment).
  • FIG. 60 is an explanatory diagram for explaining an information element (IE) included in a response message for a control command for adjusting the operation timing.
  • the response message includes information on the source and destination of the response message.
  • the response message includes ACK / NACK.
  • the reason for the NACK is included.
  • the control entity 100 may be able to know information such as the timing at which the operation timing can be adjusted, the adjustment amount of the operation timing, and the like, and try the adjustment again.
  • IE information element
  • FIG. 61 is an explanatory diagram for explaining an example of the category of the reason for NACK included in the response message to the control command for adjusting the operation timing.
  • NACK reason categories include, for example, error detection due to communication error (index 0), unsupported operation timing adjustment (index 1), and operation timing adjustment amount out of range (index 2).
  • the operation timing adjustment start time is out of the range (index 3) and the others (index 4).
  • FIG. 62 is an explanatory diagram for explaining information elements (IE) relating to adjustment of operation timing included in the system information change notification.
  • the notification of system information change includes a flag for indicating that the operation timing is adjusted, and scheduling information of system information including information related to the adjustment.
  • the UE 31 can know whether or not the operation timing is adjusted, and when the information related to the adjustment of the operation timing is transmitted when the operation timing is adjusted.
  • FIG. 63 is an explanatory diagram for explaining an information element (IE) relating to adjustment of operation timing included in the system information.
  • the system information includes information on the source of the control message, information on the amount of operation timing to be adjusted, and information on when the operation timing is adjusted (operation timing adjustment timing). .
  • FIG. 64 is a sequence diagram illustrating an example of a schematic flow of processing of the execution entity 200 in the operation timing adjustment procedure.
  • the execution entity 200 operates normally until a control command for adjusting the operation timing is received (S921).
  • the control entity checks the control command (S925), A response message is transmitted (S927).
  • the execution entity 200 notifies the system information change (S929), and then notifies the system information including the information elements related to the adjustment of the operation timing (S931).
  • the execution entity 200 maintains the existing operation timing until a predetermined timing (S933), and adjusts the operation timing at the predetermined timing (S935). Then, the process ends.
  • FIG. 65 is a sequence diagram illustrating an example of a schematic flow of processing of the UE 31 in the operation timing adjustment procedure.
  • the UE 31 When the UE 31 receives the notification of the system information change, the UE 31 checks the notification (S961) and determines whether there is an adjustment of the operation timing (S963). If the operation timing is not adjusted, the process ends.
  • the UE 31 checks the scheduling information of the system information (S965), and when the system information is notified thereafter, acquires the system information (S967). Then, the UE 31 synchronizes with the adjusted operation timing at a predetermined timing (S969). Then, the process ends.
  • a certain entity for example, control entity 100, execution entity 200, etc.
  • the backhaul quality information includes information on the quality (for example, delay time) of the backhaul line. If the k-th sample of the quality of the backhaul line i is T i, k and the number of samples is N sample , the smoothed backhaul quality T i can be expressed as an average value as follows.
  • the number of samples N sample may be determined by an entity having a sample, or may be specified by any entity (for example, the control entity 100).
  • the backhaul quality T i (n) when the number of samples is n can be expressed as follows. .
  • the filtering coefficient a may also be determined by an entity having a sample, or may be specified by any entity (for example, the control entity 100). Also, the filtering coefficient a may be defined as follows, and the variable k may be determined or specified.
  • the latest sample may be used as the quality of the backhaul line as follows, without performing processing using a plurality of samples.
  • the backhaul line quality information as described above is included in the backhaul quality information.
  • the control command includes, as an information element, information indicating when the control command is applied (for example, timing for starting execution of control in the control method). This information is set by the control entity 100, for example.
  • the information includes the quality of the backhaul line between the execution entity 200 to be controlled (for example, the execution entity 200 classified into the same group) and the control entity 100 that transmits the control command (for example, Based on the delay time).
  • the timing of starting execution of control in the control method is the worst quality (for example, delay time) of a plurality of backhaul lines (for example, delay times) between the execution entity 200 to be controlled and the control entity 100. Is set based on the maximum delay time).
  • the timing for starting execution of control in the control method is a time obtained as a result of adding the maximum delay time to the scheduled transmission time of the control command.
  • the entity may be realized as any type of server such as a tower server, a rack server, or a blade server.
  • a module for example, an integrated circuit module configured by one die or a blade server slot mounted on the server. Card or blade).
  • the entity (control entity 100 or execution entity 200) may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the entity (control entity 100 or execution entity 200) may be realized as another type of base station such as Node B or BTS (Base Transceiver Station).
  • the entity (the control entity 100 or the execution entity 200) includes a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. But you can. Further, the execution entity 200 may be an RRH. Further, various types of terminals to be described later may operate as the execution entity 200 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the entity may be implemented in a base station device or a module for the base station device.
  • the execution entity 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Further, the execution entity 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least a part of the components of the execution entity 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • MTC Machine Type Communication
  • FIG. 66 is a block diagram illustrating an example of a schematic configuration of a server 1100 to which the technology according to the present disclosure may be applied.
  • the server 1100 includes a processor 1101, a memory 1102, a storage 1103, a network interface 1104, and a bus 1106.
  • the processor 1101 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 1100.
  • the memory 1102 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs executed by the processor 1101 and data.
  • the storage 1103 can include a storage medium such as a semiconductor memory or a hard disk.
  • the network interface 1104 is a wired communication interface for connecting the server 1100 to the wired communication network 1105.
  • the wired communication network 1105 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • the bus 1106 connects the processor 1101, the memory 1102, the storage 1103, and the network interface 1104 to each other.
  • the bus 1106 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
  • one or more components included in the processing unit 130 described with reference to FIG. 137
  • the processor 1101 may be implemented in the processor 1101.
  • a program for causing a processor to function as the one or more components is installed in the server 1100, and the processor 1101 is The program may be executed.
  • the server 1100 may include a module including the processor 1101 and the memory 1102, and the one or more components may be mounted on the module.
  • the module may store a program for causing the processor to function as the one or more components in the memory 1102 and execute the program by the processor 1101.
  • the server 1100 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components quality measurement unit 251, information collection unit 253, information acquisition unit 255, information provision unit 257, and / or the like included in the processing unit 250 described with reference to FIG.
  • the communication control unit 259) is the same as the one or more constituent elements included in the processing unit 130.
  • FIG. 67 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 1200 includes one or more antennas 1210 and a base station apparatus 1220. Each antenna 1210 and base station apparatus 1220 may be connected to each other via an RF cable.
  • Each of the antennas 1210 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 1220.
  • the eNB 1200 includes a plurality of antennas 1210 as illustrated in FIG. 67, and the plurality of antennas 1210 may respectively correspond to a plurality of frequency bands used by the eNB 1200, for example. 67 illustrates an example in which the eNB 1200 includes a plurality of antennas 1210, but the eNB 1200 may include a single antenna 1210.
  • the base station apparatus 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 1220. For example, the controller 1221 generates a data packet from the data in the signal processed by the wireless communication interface 1225, and transfers the generated packet via the network interface 1223. The controller 1221 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 1221 performs logic such as radio resource management, radio bearer control, mobility management, inflow control, scheduling, etc. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 1222 includes a RAM and a ROM, and stores programs executed by the controller 1221 and various control data (for example, a terminal list, transmission power data, scheduling data, and the like).
  • the network interface 1223 is a communication interface for connecting the base station device 1220 to the core network 1224.
  • the controller 1221 may communicate with the core network node or other eNB via the network interface 1223.
  • the eNB 1200 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 1223 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 1223 may use a frequency band higher than the frequency band used by the wireless communication interface 1225 for wireless communication.
  • the wireless communication interface 1225 supports any cellular communication method such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 1200 via the antenna 1210.
  • the wireless communication interface 1225 may typically include a baseband (BB) processor 1226, an RF circuit 1227, and the like.
  • the BB processor 1226 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing.
  • Each layer for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP)
  • Various signal processing of Packet Data Convergence Protocol
  • the BB processor 1226 may have some or all of the logical functions described above instead of the controller 1221.
  • the BB processor 1226 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 1226 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station device 1220, or a chip mounted on the card or the blade.
  • the RF circuit 1227 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 1210.
  • the wireless communication interface 1225 includes a plurality of BB processors 1226 as shown in FIG. 67, and the plurality of BB processors 1226 may respectively correspond to a plurality of frequency bands used by the eNB 1200, for example. Further, the wireless communication interface 1225 includes a plurality of RF circuits 1227 as shown in FIG. 67, and the plurality of RF circuits 1227 may respectively correspond to a plurality of antenna elements, for example. 67 illustrates an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 includes a single BB processor 1226 or a single RF circuit 1227. But you can.
  • one or more components may be implemented in the wireless communication interface 1225.
  • the eNB 1200 includes a module including a part (for example, the BB processor 1226) or all of the wireless communication interface 1225 and / or the controller 1221. Even if the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 1200, and the wireless communication interface 1225 (eg, the BB processor 1226) and / or the controller 1221 executes the program.
  • the eNB 1200, the base station apparatus 1220, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components included in the processing unit 130 described with reference to FIG. These are the same as the one or more components included in the processing unit 250.
  • FIG. 68 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 1230 includes one or more antennas 1240, a base station apparatus 1250, and an RRH 1260. Each antenna 1240 and RRH 1260 may be connected to each other via an RF cable. Base station apparatus 1250 and RRH 1260 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1240 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the RRH 1260.
  • the eNB 1230 includes a plurality of antennas 1240 as illustrated in FIG. 68, and the plurality of antennas 1240 may respectively correspond to a plurality of frequency bands used by the eNB 1230, for example.
  • 68 illustrates an example in which the eNB 1230 includes a plurality of antennas 1240, but the eNB 1230 may include a single antenna 1240.
  • the base station apparatus 1250 includes a controller 1251, a memory 1252, a network interface 1253, a wireless communication interface 1255, and a connection interface 1257.
  • the controller 1251, the memory 1252, and the network interface 1253 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG.
  • the wireless communication interface 1255 supports any cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to terminals located in a sector corresponding to the RRH 1260 via the RRH 1260 and the antenna 1240.
  • the wireless communication interface 1255 may typically include a BB processor 1256 and the like.
  • the BB processor 1256 is the same as the BB processor 1226 described with reference to FIG. 67 except that the BB processor 1256 is connected to the RF circuit 1264 of the RRH 1260 via the connection interface 1257.
  • the wireless communication interface 1255 includes a plurality of BB processors 1256 as illustrated in FIG.
  • the wireless communication interface 1255 may include a single BB processor 1256.
  • connection interface 1257 is an interface for connecting the base station device 1250 (wireless communication interface 1255) to the RRH 1260.
  • the connection interface 1257 may be a communication module for communication on the high-speed line connecting the base station apparatus 1250 (wireless communication interface 1255) and the RRH 1260.
  • the RRH 1260 includes a connection interface 1261 and a wireless communication interface 1263.
  • connection interface 1261 is an interface for connecting the RRH 1260 (wireless communication interface 1263) to the base station device 1250.
  • the connection interface 1261 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 1263 transmits and receives wireless signals via the antenna 1240.
  • the wireless communication interface 1263 may typically include an RF circuit 1264 and the like.
  • the RF circuit 1264 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 1240.
  • the wireless communication interface 1263 includes a plurality of RF circuits 1264 as shown in FIG. 68, and the plurality of RF circuits 1264 may correspond to, for example, a plurality of antenna elements, respectively.
  • 68 illustrates an example in which the wireless communication interface 1263 includes a plurality of RF circuits 1264, the wireless communication interface 1263 may include a single RF circuit 1264.
  • the eNB 1230 shown in FIG. 68 one or more components (quality measurement unit 251, information collection unit 253, information acquisition unit 255, information provision unit 257, and the like included in the processing unit 250 described with reference to FIG.
  • the communication control unit 259) may be implemented in the wireless communication interface 1255 and / or the wireless communication interface 1263. Alternatively, at least some of these components may be implemented in the controller 1251.
  • the eNB 1230 includes a module including a part (for example, the BB processor 1256) or all of the wireless communication interface 1255 and / or the controller 1251, and the one or more components may be mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as one or more of the above components is installed in the eNB 1230, and the wireless communication interface 1255 (eg, the BB processor 1256) and / or the controller 1251 executes the program. Good.
  • the eNB 1230, the base station apparatus 1250, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components included in the processing unit 130 described with reference to FIG. These are the same as the one or more components included in the processing unit 250.
  • FIG. 69 is a block diagram illustrating an example of a schematic configuration of a smartphone 1300 to which the technology according to the present disclosure can be applied.
  • the smartphone 1300 includes a processor 1301, a memory 1302, a storage 1303, an external connection interface 1304, a camera 1306, a sensor 1307, a microphone 1308, an input device 1309, a display device 1310, a speaker 1311, a wireless communication interface 1312, and one or more antenna switches 1315.
  • One or more antennas 1316, a bus 1317, a battery 1318, and an auxiliary controller 1319 are provided.
  • the processor 1301 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 1300.
  • the memory 1302 includes a RAM and a ROM, and stores programs and data executed by the processor 1301.
  • the storage 1303 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 1304 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 1300.
  • the camera 1306 includes, for example, an image sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1307 can include, for example, a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1308 converts audio input to the smartphone 1300 into an audio signal.
  • the input device 1309 includes, for example, a touch sensor that detects a touch on the screen of the display device 1310, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from the user.
  • the display device 1310 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1300.
  • the speaker 1311 converts an audio signal output from the smartphone 1300 into audio.
  • the wireless communication interface 1312 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1312 may typically include a BB processor 1313, an RF circuit 1314, and the like.
  • the BB processor 1313 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 1314 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 1316.
  • the wireless communication interface 1312 may be a one-chip module in which the BB processor 1313 and the RF circuit 1314 are integrated.
  • the wireless communication interface 1312 may include a plurality of BB processors 1313 and a plurality of RF circuits 1314 as shown in FIG. 69 illustrates an example in which the wireless communication interface 1312 includes a plurality of BB processors 1313 and a plurality of RF circuits 1314, the wireless communication interface 1312 includes a single BB processor 1313 or a single RF circuit 1314. But you can.
  • the wireless communication interface 1312 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 1313 and an RF circuit 1314 for each wireless communication method may be included.
  • Each of the antenna switches 1315 switches the connection destination of the antenna 1316 among a plurality of circuits included in the wireless communication interface 1312 (for example, circuits for different wireless communication systems).
  • Each of the antennas 1316 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 1312.
  • the smartphone 1300 may include a plurality of antennas 1316 as illustrated in FIG. 69 illustrates an example in which the smartphone 1300 includes a plurality of antennas 1316, the smartphone 1300 may include a single antenna 1316.
  • the smartphone 1300 may include an antenna 1316 for each wireless communication method.
  • the antenna switch 1315 may be omitted from the configuration of the smartphone 1300.
  • the bus 1317 connects the processor 1301, the memory 1302, the storage 1303, the external connection interface 1304, the camera 1306, the sensor 1307, the microphone 1308, the input device 1309, the display device 1310, the speaker 1311, the wireless communication interface 1312, and the auxiliary controller 1319 to each other.
  • the battery 1318 supplies power to each block of the smartphone 1300 illustrated in FIG. 69 via a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 1319 operates the minimum necessary functions of the smartphone 1300 in the sleep mode.
  • one or more components may be implemented in the wireless communication interface 1312.
  • the smartphone 1300 includes a module including a part (for example, the BB processor 1313) or the whole of the wireless communication interface 1312, the processor 1301, and / or the auxiliary controller 1319, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 1300, and the wireless communication interface 1312 (for example, the BB processor 1313), the processor 1301, and / or the auxiliary controller 1319 is The program may be executed.
  • the smartphone 1300 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • FIG. 70 is a block diagram illustrating an example of a schematic configuration of a car navigation device 1320 to which the technology according to the present disclosure may be applied.
  • the car navigation apparatus 1320 includes a processor 1321, a memory 1322, a GPS (Global Positioning System) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage medium interface 1328, an input device 1329, a display device 1330, a speaker 1331, and wireless communication.
  • the interface 1333 includes one or more antenna switches 1336, one or more antennas 1337, and a battery 1338.
  • the processor 1321 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 1320.
  • the memory 1322 includes a RAM and a ROM, and stores programs executed by the processor 1321 and data.
  • the GPS module 1324 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 1320 using a GPS signal received from a GPS satellite.
  • the sensor 1325 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 1326 is connected to the in-vehicle network 1341 via a terminal (not shown), and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 1327 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button, a switch, or the like that detects a touch on the screen of the display device 1330, and receives an operation or information input from the user.
  • the display device 1330 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 1331 outputs the sound of the navigation function or the content to be played back.
  • the wireless communication interface 1333 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1333 may typically include a BB processor 1334, an RF circuit 1335, and the like.
  • the BB processor 1334 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 1335 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 1337.
  • the wireless communication interface 1333 may be a one-chip module in which the BB processor 1334 and the RF circuit 1335 are integrated.
  • the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335 as shown in FIG. 70 illustrates an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 includes a single BB processor 1334 or a single RF circuit 1335. But you can.
  • the wireless communication interface 1333 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 1334 and an RF circuit 1335 may be included for each communication method.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 1333.
  • Each of the antennas 1337 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 1333.
  • the car navigation device 1320 may have a plurality of antennas 1337 as shown in FIG. Note that FIG. 70 illustrates an example in which the car navigation apparatus 1320 includes a plurality of antennas 1337, but the car navigation apparatus 1320 may include a single antenna 1337.
  • the car navigation device 1320 may include an antenna 1337 for each wireless communication method.
  • the antenna switch 1336 may be omitted from the configuration of the car navigation device 1320.
  • the battery 1338 supplies power to each block of the car navigation apparatus 1320 shown in FIG. 70 via a power supply line partially shown by broken lines in the figure. Further, the battery 1338 accumulates electric power supplied from the vehicle side.
  • one or more components included in the processing unit 250 described with reference to FIG. 257 and / or the communication control unit 259) may be implemented in the wireless communication interface 1333.
  • the car navigation apparatus 1320 includes a module including a part (for example, the BB processor 1334) or all of the wireless communication interface 1333 and / or the processor 1321, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 1320, and the wireless communication interface 1333 (eg, the BB processor 1334) and / or the processor 1321 executes the program. May be.
  • the car navigation apparatus 1320 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • an in-vehicle system (or vehicle) 1340 including one or more blocks of the car navigation device 1320 described above, an in-vehicle network 1341, and a vehicle-side module 1342. That is, an in-vehicle system (or vehicle) 1340 may be provided as a device including the one or more components included in the processing unit 250.
  • the vehicle-side module 1342 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 1341.
  • the control entity 100 (information acquisition unit 135) is used to provide control-related information related to control in the control scheme to a communication node to which the radio communication control scheme is applied. Acquires quality-related information (backhaul quality information) about the quality of the backhaul circuit Then, the control entity 100 (application control unit 137) controls application of the control method to the communication node based on the quality-related information (backhaul quality information).
  • control-related information is transmitted to one eNB with little delay, and the other eNB is transmitted with a long delay.
  • the control method can be applied when there is no problem in the application of the control method in consideration of the delay (or delay variation) of the backhaul line. As described above, it becomes possible to more appropriately perform control (for example, interference control, CoMP transmission / reception) regarding a plurality of communication nodes.
  • the control method is a method for improving the communication capacity of a communication system including the communication node.
  • the communication quality can be improved and the communication capacity can be improved.
  • control method includes a method (interference control method) for suppressing interference between wireless communications in which two or more communication nodes are involved.
  • the interference control method By controlling the application of the interference control method based on the backhaul quality information, for example, a more appropriate interference control method can be selected and applied within the constraints of the backhaul line. Thereby, it becomes possible to suppress interference more appropriately. As a result, the communication quality can be improved and the communication capacity of the communication system 1 can be improved.
  • control method includes multi-point coordination (CoMP) transmission / reception.
  • CoMP multi-point coordination
  • CoMP transmission / reception can be applied only when possible within the constraints of the backhaul line.
  • the communication quality can be improved and the communication capacity of the communication system 1 can be improved.
  • control method is the interference control method or CoMP transmission / reception
  • present disclosure is not limited to such an example.
  • the control method may be an arbitrary control method related to a plurality of communication nodes.
  • the backhaul quality information (quality related information) is accumulated in the control entity
  • the present disclosure is not limited to such an example.
  • the backhaul quality information (quality related information) may be stored in another device (database) instead of the control entity.
  • a control entity may acquire the backhaul quality information accumulate
  • control entity may be implemented as a new core network node or may be implemented in a radio access network node (eg, eNB).
  • eNB radio access network node
  • a radio access network node eNB, for example
  • radio resource allocation that is, scheduling
  • a control entity that is a core network node may perform part or all of the allocation of radio resources.
  • the communication system may be a system that complies with another communication standard.
  • the communication system includes another core network node instead of MME, S-GW, etc., includes any base station or access point instead of various eNBs, and replaces any UE instead of any UE.
  • a terminal device may be included.
  • processing steps in the communication control device (control entity, execution entity) of this specification do not necessarily have to be executed in time series in the order described in the flowchart.
  • the processing steps in the communication control process may be executed in an order different from the order described in the flowchart, or may be executed in parallel.
  • a processor for example, a CPU, a DSP, or the like included in a device (for example, a control entity or a module thereof, or an execution entity or a module thereof) of the present specification functions as one or more components of the device.
  • a computer program for causing the processor to execute the operation of the constituent elements of the device
  • a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a finished product or a module for a finished product (a component, a processing circuit, a chip, or the like)
  • a method including the operation of one or more components of the apparatus is also included in the technology according to the present disclosure.
  • An acquisition unit that acquires quality-related information related to the quality of a backhaul line used to provide control-related information related to control in the control method to a communication node to which the control method of wireless communication is applied;
  • a control unit that controls application of the control method to the communication node based on the quality-related information;
  • a communication control device comprising: (2) The communication control device according to (1), wherein the control unit controls application of the control method to two or more communication nodes including the communication node based on the quality-related information.
  • (3) The communication control apparatus according to any one of (1) and (2), wherein the control method is a method for improving a communication capacity of a communication system including the communication node.
  • control method includes a method for suppressing interference between wireless communication in which two or more communication nodes are involved.
  • control method includes multipoint coordinated transmission / reception.
  • a plurality of communication nodes to which the control method is applied are classified into one or more groups based on information on the plurality of communication nodes. For each group included in the one or more groups, the control unit is configured to control the one or more communication nodes based on the quality-related information regarding the one or more communication nodes included in the group. Control the application of The communication control device according to (2).
  • the information regarding the plurality of communication nodes includes information on positions of the plurality of communication nodes, information on radio resources used by the plurality of communication nodes, and the control-related information to the plurality of communication nodes.
  • the communication control device according to (6) including at least one of quality-related information relating to the quality of the backhaul line used for.
  • the quality related information is generated through a measurement procedure for the quality of the backhaul line, The acquisition unit acquires the quality-related information to be generated; The communication control device according to any one of (1) to (7).
  • the communication control device according to (8) or (9), wherein the measurement procedure includes transmitting and receiving one or more messages including a transmission time.
  • the communication control apparatus according to any one of (8) to (10), wherein the measurement procedure includes measuring the quality of the backhaul line a plurality of times.
  • the backhaul line is a combination of a plurality of individual backhaul lines, The measurement procedure includes measuring the quality of at least one individual backhaul line of the plurality of individual backhaul lines;
  • the communication control device according to any one of (8) to (11).
  • the quality related information is collected from other devices through a collection procedure for the quality related information, The acquisition unit acquires the quality-related information to be collected;
  • the communication control apparatus according to any one of (1) to (12).
  • the backhaul line is a combination of a plurality of individual backhaul lines,
  • the collection procedure includes collecting information regarding quality of at least one individual backhaul line of the plurality of individual backhaul lines;
  • the communication control device according to (13).
  • the communication control apparatus according to any one of (1) to (14), wherein the quality of the backhaul line is a delay time in the backhaul line.
  • the communication node according to any one of (1) to (15), wherein the communication node is a base station, a relay station, or a terminal device that controls wireless communication in a local network formed by a plurality of terminal devices. Communication control device.
  • the at least part of the quality-related information is generated through a measurement procedure for the quality of the backhaul line;
  • the acquisition unit acquires the at least part of the generated quality-related information;
  • the backhaul line is a combination of a plurality of individual backhaul lines,
  • the at least part of the quality-related information is information on the quality of at least one individual backhaul line of the plurality of individual backhaul lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】複数の通信ノードに関する制御をより適切に行うことを可能にする。 【解決手段】無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得する取得部と、上記品質関連情報に基づいて、上記通信ノードへの上記制御方式の適用を制御する制御部と、を備える通信制御装置が提供される。

Description

通信制御装置、通信制御方法及び通信装置
 本開示は、通信制御装置、通信制御方法及び通信装置に関する。
 近年、LTE(Long Term Evolution)、WiMAX(Worldwide Interoperability for Microwave Access)等のセルラ方式の通信システムが広く普及している。また、スマートフォンの普及等に起因して、当該通信システムにおけるデータトラフィックが増大している。そのため、各通信事業者にとって、通信システムの通信容量を増加させることが増々重要になっている。
 通信容量を増加させる手法として、個々のセル(又は個々の基地局)に関する制御だけではなく、複数のセル(又は複数の基地局)に関する制御も提案されている。例えば、複数の基地局間での干渉制御、複数の基地局間での協調送受信等が提案されている。これらの手法により、通信品質が向上し得る。その結果、通信容量が増加し得る。
 例えば、特許文献1には、干渉制御に関する技術として、フェムトセル基地局で干渉を測定し、当該測定結果に基づいてフェムトセル基地局での送信の設定を更新する技術が、開示されている。また、特許文献2には、干渉制御に関する技術として、他のセクタからの干渉レポートに基づいて、セクタ内のデータ送信を調整する技術が、開示されている。また、特許文献3には、協調送受信に関する技術として、設定された協調制御エリアにおけるスループットが高くなるように協調送受信の許可及び停止を制御する技術が、開示されている。
特開2011-120095号公報 特開2012-199944号公報 特開2012-209679号公報
 複数の通信ノード(例えば、複数の基地局)に関する制御では、バックホール回線を通じて制御に関する情報(制御情報、制御に従って送信されるデータ、等)が送受信される。しかし、上記特許文献1~3に開示されている技術を含む従来の技術では、バックホール回線での送受信の遅延(又は、バックホール回線間での遅延のばらつき)が考慮されていない。そのため、制御に関する情報を取得するタイミングが、複数の通信ノードのうちの一方と他方との間で大きくずれてしまう可能性がある。その結果、これらの通信ノードによる制御が適切なタイミングで行われなくなることが懸念される。
 そこで、複数の通信ノードに関する制御をより適切に行うことを可能にする仕組みが提供されることが望ましい。
 本開示によれば、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得する取得部と、上記品質関連情報に基づいて、上記通信ノードへの上記制御方式の適用を制御する制御部と、を備える通信制御装置が提供される。
 また、本開示によれば、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得することと、上記品質関連情報に基づいて、上記通信ノードへの上記制御方式の適用を制御することと、を含む、通信制御装置により実行される通信制御方法が提供される。
 また、本開示によれば、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報の少なくとも一部を取得する取得部と、上記品質関連情報の上記少なくとも一部を提供する提供部と、を備え、上記品質関連情報は、上記通信ノードへの上記制御方式の適用の制御に用いられる情報である、通信装置が提供される。
 以上説明したように本開示によれば、複数の通信ノードに関する制御をより適切に行うことが可能となる。なお、上記効果は必ずしも限定的なものではなく、上記効果とともに、または上記効果に代えて、本明細書に記載された他の効果のうちのいずれかが奏されてもよい。
FDDについての時間方向における無線リソースを説明するための説明図である。 TDDについての時間方向における無線リソースを説明するための説明図である。 3GPPにおいて定義されているリンク方向のコンフィギュレーションの例を説明するための説明図である。 周波数ドメインICICの第1の例を説明するための説明図である。 周波数ドメインICICの第2の例を説明するための説明図である。 時間ドメインICICの第1の例を説明するための説明図である。 時間ドメインICICの第2の例を説明するための説明図である。 ABSで利用可能な無線リソースの第1の例を説明するための説明図である。 ABSで利用可能な無線リソースの第2の例を説明するための説明図である。 CoMP送受信のための通信システムの動作の第1の例を説明するための説明図である。 CoMP送受信のための通信システムの動作の第2の例を説明するための説明図である。 LTEにおけるバックホール回線の具体例を説明するための説明図である。 バックホール技術の種類及び品質の第1の例を説明するため説明図である。 バックホール技術の種類及び品質の第2の例を説明するため説明図である。 本開示の一実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 一実施形態に係る制御エンティティの構成の一例を説明する。 一実施形態に係る実行エンティティの構成の一例を示すブロック図である。 バックホール回線の品質についての測定手続きの第1の例の概略的な流れの例を示すシーケンス図である。 測定手続きの第1の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。 測定手続きの第1の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール回線の品質についての測定手続きの第2の例の概略的な流れの例を示すシーケンス図である。 測定手続きの第2の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。 測定手続きの第2の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 、バックホール回線の品質についての測定手続きの第3の例の概略的な流れの例を示すシーケンス図である。 測定手続きの第3の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。 測定手続きの第3の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール回線の品質についての測定手続きの第4の例の概略的な流れの例を示すシーケンス図である。 測定手続きの第4の例に係る完了メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール回線の品質についての測定手続きの第5の例の概略的な流れの第1の例を示すシーケンス図である。 バックホール回線の品質についての測定手続きの第5の例の概略的な流れの第2の例を示すシーケンス図である。 バックホール回線の品質についての測定手続きの第6の例の概略的な流れの例を示すシーケンス図である。 バックホール回線の品質についての測定手続きの第7の例の概略的な流れの第1の例を示すシーケンス図である。 バックホール回線の品質についての測定手続きの第7の例の概略的な流れの第2の例を示すシーケンス図である。 測定手続きの第7の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール品質情報についての収集手続きの第1の例の概略的な流れの例を示すシーケンス図である。 収集手続きの第1の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。 収集手続きの第1の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール品質情報についての収集手続きの第2の例の概略的な流れの例を示すシーケンス図である。 収集手続きの第2の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール品質情報についての収集手続きの第3の例の概略的な流れの例を示すシーケンス図である。 収集手続きの第3の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 バックホール品質情報についての収集手続きの第4の例の概略的な流れの例を示すシーケンス図である。 バックホール品質情報についての収集手続きの第5の例の概略的な流れの例を示すシーケンス図である。 収集手続きの第6の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 干渉制御方式の適用の決定の具体例を説明するための説明図である。 ダウンリンクでの制御方式の適用及び実行の処理の流れを説明するための説明図である。 アップリンクでの制御方式の適用及び実行の処理の流れを説明するための説明図である。 制御コマンドに対するコマンド応答メッセージの内容の例を説明するための説明図である。 コマンド応答メッセージに含まれるNACKの理由のカテゴリの例を説明するための説明図である。 周波数ドメインICICの制御コマンドの内容の例を説明するための説明図である。 周波数ドメインICICが適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(前半)である。 周波数ドメインICICが適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(後半)である。 時間ドメインICICの制御コマンドの内容の例を説明するための説明図である。 時間ドメインICICが適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(前半)である。 時間ドメインICICが適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(後半)である。 時間ドメインICICの制御コマンドの内容の例を説明するための説明図である。 BF(ヌルステアリング)が適用される場合の実行エンティティ200の処理の概略的な流れの一例を示すフローチャートである。 CoMP送受信の制御コマンドの内容の例を説明するための説明図である。 CoMP送受信が適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(前半)である。 CoMP送受信が適用される場合の実行エンティティの処理の概略的な流れの一例を示すフローチャート(後半)である。 実行エンティティの動作タイミングの調整手続きの概略的な流れの一例を示すシーケンス図である。 動作タイミングの調整のための制御コマンドに含まれる情報要素(IE)を説明するための説明図である。 動作タイミングの調整のための制御コマンドに対する応答メッセージに含まれる情報要素(IE)を説明するための説明図である。 動作タイミングの調整のための制御コマンドに対する応答メッセージに含まれるNACKの理由のカテゴリの例を説明するための説明図である。 システム情報変更の通知に含まれる動作タイミングの調整に関する情報要素(IE)を説明するための説明図である。 システム情報に含まれる動作タイミングの調整に関する情報要素(IE)を説明するための説明図である。 動作タイミングの調整手続きにおける実行エンティティの処理の概略的な流れの一例を示すシーケンス図である。 動作タイミングの調整手続きにおけるUEの処理の概略的な流れの一例を示すシーケンス図である。 サーバの概略的な構成の一例を示すブロック図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.本実施形態に係る通信システムの概略的な構成
 3.各エンティティの構成
  3.1.制御エンティティの構成
  3.2.実行エンティティの構成
 4.バックホール品質情報の蓄積
  4.1.測定手続き
  4.2.収集手続き
 5.制御方式の適用制御
  5.1.制御方式の適用の決定
  5.2.制御方式の適用及び実行
 6.その他
  6.1.動作タイミングの調整
  6.2.バックホール品質情報のフィルタリング
  6.3.制御コマンドの適用タイミングの設定
 7.応用例
 8.まとめ
 <<1.はじめに>>
 まず、図1~図14を参照して、無線リソース、干渉制御、多地点協調送受信、バックホール回線、及び技術的課題を説明する。
 (無線リソース及びフォーマット)
 -時間方向
 3GPP(Third Generation Partnership Project)における無線通信では、時間方向に無線リソースが区切られる。例えば、LTEでは、無線リソースは、時間方向においてサブフレーム単位に区切られる。以下、この点について、図1及び図2を参照して説明する。
 図1は、FDD(Frequency Division Duplex)についての時間方向における無線リソースを説明するための説明図である。図1を参照すると、10msの無線フレームに含まれる10のサブフレームが示されている。FDDでは、アップリンク用の周波数帯域及びダウンリンク用の周波数帯域が用意され、それぞれの周波数帯域において、サブフレーム単位でのリソース制御が行われる。なお、各サブフレームは、2つのスロットを含む。また、各スロットは、7のOFDM(Orthogonal Frequency Division Multiplexing)シンボルを含む。
 図2は、TDD(Time Division Duplex)についての時間方向における無線リソースを説明するための説明図である。図2を参照すると、10msの無線フレームに含まれる10のサブフレームが示されている。TDDでは、サブフレーム単位でのリンク方向に応じて通信が行われる。即ち、各サブフレームは、ダウンリンクサブフレーム、アップリンクサブフレーム又はスペシャルサブフレームのいずれかである。スペシャルサブフレームは、ダウンリンクサブフレームからアップリンクサブフレームへの切換えの際に干渉を抑えるために設けられる。スペシャルサブフレームは、DwPTS(Downlink Pilot Time Slot)、ガード期間(Guard Period)及びUpPTS(Uplink Pilot Time Slot)からなる。以下、図3を参照して、TDDにおけるサブフレーム単位のリンク方向の具体例を説明する。
 図3は、3GPPにおいて定義されているリンク方向のコンフィギュレーションの例を説明するための説明図である。図3を参照すると、LTEの技術規格(TS 36.211 Table 4.2-2)で定義されている7つのコンフィギュレーションが示されている。「D」により示されるサブフレームがダウンリンクサブフレームであり、「U」により示されるサブフレームがアップリンクサブフレームであり、「S」により示されるサブフレームがスペシャルサブフレームである。例えば、LTEでは、このような7つのコンフィギュレーションのいずれかのコンフィギュレーションが選択され、適用される。
 -周波数方向
 また、例えばLTEでは、周波数方向にも無線リソースが区切られる。具体的には、周波数帯方向には、15kHzの間隔でサブキャリアが存在する。そして、12個のサブキャリア(即ち、180kHz)ごとに束ねられる。
 -時間方向及び周波数方向
 例えばLTEでは、周波数方向において12個のサブキャリア、時間方向において1スロットにわたる無線リソースが、リソースブロック(Resource Block:RB)として取り扱われる。また、1サブキャリア及び1OFDMシンボルの無線リソースは、リソースエレメント(Resource Element)と呼ばれる。
 各REは、制御信号又はデータ信号の送信に用いられる。制御信号として、例えば、同期信号(Synchronization Signal)、リファレンス信号(Reference Signal:RS)等がある。
 また、1つ以上のリソースエレメントを含むチャネルが定義されている。LTEでは、ダウンリンクのチャネルとして、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PBCH(Physical Broadcast Channel)、PCFICH(Physical Control Format Indicator Channel)及びPHICH(Physical HARQ Indicator Channel)が定義されている。一方、アップリンクのチャネルとして、PUCCH((Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)及びPRACH(Physical Random Access Channel)が定義されている。
 なお、基本的には、データは、ダウンリンクではPDSCHで送信され、アップリンクではPUSCHで送信される。そして、データの送信に使用可能なREの数が、送受信されるデータのサイズに影響する。
 (リファレンス信号)
 UE(User Equipment)は、リファレンス信号(RS)の受信を通じて、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)等を測定する。LTEでは、様々な種類のRSが定義されている。
 例えば、ダウンリンクのRSとして、CRS(Cell Specific Reference Signal)、DMRS(Demodulation Reference Signal)、MBFSFN(MBMS Single Frequency Network)リファレンス信号、PRS(Positioning Reference Signal)及びCSI-RS(Channel State Information Reference Signal)が定義されている。CRSは、主にデータ復号のためのチャネル推定及び測定のために利用される。DMRSは、主にデータ復号のためのチャネル推定のために利用される。MBFSFNリファレンス信号は、MBMS(Multimedia Broadcast Multicast Services)の際に利用される。PRSは、UEの位置の推定に利用される。CSI-RSは、主にダウンリンクのチャネル品質の推定に利用される。
 また、例えば、ダウンリンクのRSとして、DMRS(Demodulation Reference Signal)及びSRS(Sounding Reference Signal)が定義されている。DMRSは、主にデータ受信のためのチャネル推定に利用され、PDSCH及びPDCCHに関連して送信される。SRSは、主にCQI及びスケジューリングのための、アップリンクのチャネル品質の推定に、利用され、PDSCH及びPDCCHに関連しない。
 (干渉制御)
 通信品質の向上のために様々な干渉制御技術が存在する。例えば、代表的な干渉制御の技術として、ICIC(Inter-Cell Interference Coordination)、ビームフォーミング(BF)等がある。また、ICICには、周波数ドメインICIC(Frequency Domain ICIC)と時間ドメインICIC(Time domain ICIC)とがある。
 -周波数ドメインICIC
 周波数ドメインICICは、通信ノード間(又はセル間)で異なる周波数リソースが使用される干渉制御方式である。周波数リソースは、例えばLTEでは、サブキャリア、リソースブロック(RB)、サブバンド(リソースブロックの集合)、又はコンポーネントキャリア(Component Carrier:CC)(RB又はサブバンドの集合)等に該当し得る。以下、図4及び図5を参照して、周波数ドメインICICの具体例を説明する。
 図4は、周波数ドメインICICの第1の例を説明するための説明図である。図4を参照すると、3つのセル10A、10B及び10Cが示されている。また、各セルで使用される周波数帯域(及びその電力)が示されている。例えば、この例のように、使用可能な周波数帯域が3つ帯域に分割され、当該3つの帯域の各々が、対応するセル10で使用される。これにより、セル10間での干渉が抑制される。
 図5は、周波数ドメインICICの第2の例を説明するための説明図である。図5を参照すると、図5と同様に、3つのセル10A、10B及び10Cが示されている。また、各セルについて、セルの中心部で使用される周波数帯域(及びその電力)と、セルエッジ付近で使用される周波数帯域(及びその電力)とが、示されている。例えば、この例のように、使用可能な周波数帯域が3つ帯域に分割され、当該3つの帯域の各々は、対応するセル10で大きい電力を伴い、その結果、対応するセル10全域で使用される。即ち、上記3つの帯域の各々は、対応するセル10のセルエッジでも使用される。当該3つの帯域の各々は、対応しないセル10で小さい電力を伴い、その結果、対応しないセル10の中心部で使用される。即ち、上記3つの帯域の各々は、対応しないセル10のセルエッジでは使用されない。これにより、セル10の中でもとりわけ干渉が起こりやすいセルエッジでの干渉が抑制される。このようなICICは、SFR(Soft Frequency Reuse)、PFR(Partial Frequency Reuse)又はFFR(Fractional Frequency Reuse)と呼ばれることもある。
 なお、以上のような干渉制御技術では、各セルで使用される周波数リソースが動的に変更されない限り、バックホール回線における遅延(即ち、制御に関する情報の送受信の遅延)による影響は極めて軽微であると考えられる。
 -時間ドメインICIC
 時間ドメインICICは、通信ノード間(又はセル間)で異なる時間リソースが使用される干渉制御方式である。時間リソースは、例えばLTEでは、スロット、サブフレーム、又は無線フレーム等のシステムの時間単位に該当し得る。LTEでは、時間ドメインICICは、とりわけヘテロジニアスネットワーク(HetNet)に関連して注目されている。以下、図6及び図7を参照して、時間ドメインICICの具体例を説明する。
 図6は、時間ドメインICICの第1の例を説明するための説明図である。図6を参照すると、マクロセルであるセル10Dと、スモールセルであるセル10Eとが示されている。また、各セル10における時間と送信電力との関係が示されている。換言すると、各セルにおいて通信が行われる時間が示されている。例えば、この例のように、セル10Dでの通信が行われる時間には、セル10Eでの通信が停止され、セル10Dでの通信が停止される時間に、セル10Eでの通信が行われる。これにより、セル10間での干渉が抑制される。このようにマクロセル(即ち、セル10D)での通信が停止される時間は、LTEではABS(Almost Blank Subframe)とも呼ばれる。なお、マクロセルでの通信が停止される時間の単位は、サブフレーム単位に限られず、別の時間の単位であってもよい。
 図7は、時間ドメインICICの第2の例を説明するための説明図である。図7を参照すると、図6と同様に、マクロセルであるセル10Dと、スモールセルであるセル10Eとが示されている。また、各セル10における時間と送信電力との関係が示されている。例えば、この例のように、セル10Dでの通信に大きい電力が使用される時間には、セル10Eでの通信が停止され、セル10Dでの通信に小さい電力が使用される時間に、セル10Eでの通信が行われる。これにより、セル10間での干渉が抑制されつつ、セル10D(即ち、マクロセル)での通信容量の無駄が抑えられる。このようなABSは、Reduced Power ABSと呼ばれる。
 以上のように、LTEでは、時間ドメインICICを実現するために、ABSというコンセプトが導入されている。簡単に言うと、ABSを実現する手法として、主に2つの手法がある。当該2つの手法のうちの第1の手法は、ABSをいずれのUEにも割り当てない手法である。上記2つの手法のうちの第2の手法は、MBSFNサブフレームという特殊なサブフレームを利用する手法である。以下、図8及び図9を参照して、上記第1の手法及び第2の手法の各々が採用される場合に利用可能になる無線リソースを説明する。
 図8は、ABSで利用可能な無線リソースの第1の例を説明するための説明図である。図8を参照すると、1サブフレーム内の2つのRBが示されている。この例は、上記第1の手法が採用される場合の例である。上記第1の手法が採用される場合には、サブフレーム内のPDSCHでの信号の送信は停止されるが、PDCCHでの信号とCRSは送信される。即ち、ABSでは、PDSCHの期間内の無線リソースのうち、CRSが送信されない無線リソースが、利用可能になる。
 図9は、ABSで利用可能な無線リソースの第2の例を説明するための説明図である。図9を参照すると、1サブフレーム内の2つのRBが示されている。この例は、上記第2の手法が採用される場合の例である。上記第2の手法が採用される場合には、PMCH(Physical MBMS Channel)での信号と、PMCHの期間内のCRSとが停止されるが、PDCCHでの信号と、PDCCHの期間内のCRSとは、送信される。即ち、PDSCHの期間内のいずれの無線リソースも利用可能になる。
 なお、時間ドメインICICは、ABSのタイミングをセル間で共有する必要がある。よって、上述した周波数ドメインICICと比べると、バックホール回線における遅延(即ち、制御に関する情報の送受信の遅延)による影響はより大きいと考えられる。ただし、ある程度連続するサブフレームをABSとして利用することにより、切替りのタイミング以外での影響を軽減することも可能である。
 -ビームフォーミング(BF)
 ビームフォーミング(BF)は、複数のアンテナ素子を有する通信ノードにおいて各アンテナ素子の位相を調整することにより電波の指向性を制御する技術である。上記通信ノードは、電波の指向性を動的に変えることもできる。BFのタイプとして、いくつかのタイプが存在する。
 例えば、第1のタイプのBFでは、電波の指向性が固定される。即ち、通信ノードにより形成されるビームは固定される。このタイプのBFにより、例えば、通信ノード(例えば、基地局)の通信エリア(例えば、セル)を所望のエリアにすることができる。
 また、例えば、第2のタイプのBFでは、通信ノード(例えば、基地局)の通信相手(例えば、端末装置)に向けたビームが形成される。このタイプのBFにより、例えば、通信品質を向上させることができる。このタイプのBFでは、時間リソース及び/又は時間リソースごとに、ビームの方向が制御され得る。
 また、例えば、第3のタイプのBFでは、他の通信ノード(例えば、隣接する基地局)の通信への干渉を軽減するためのビームが形成される。即ち、上記他の通信ノード及び/又は当該他の通信ノードの通信相手の方向がヌル(null)点となるように、ビームが形成される。このタイプのBFは、ヌルステアリングとも呼ばれる。このようなBFにより、他の通信ノードの通信への干渉を抑制される。その結果、他のセルにおける通信品質が向上する。このタイプのBFでも、時間リソース及び/又は時間リソースごとに、ビームの方向が制御され得る。
 なお、BFのタイプによって、バックホール回線における遅延(即ち、制御に関する情報の送受信の遅延)による影響が異なると考えられる。例えば、上記第1のタイプ及び上記第2のタイプのBFについては、バックホール回線における遅延の影響は大きくないと考えられる。一方、上記第3のタイプのBFについては、ビームの方向が、他のセルのスケジューリング結果、他のセルにおける端末装置の位置等に依存するので、バックホール回線における遅延の影響は大きくなり得ると考えられる。
 (多地点協調(CoMP)送受信)
 通信品質の向上のための技術として、多地点協調(Coordinated Multi-Point)送受信が存在する。CoMP送受信は、協調する複数の通信ノード(例えば、基地局)が1つの通信ノード(例えば、端末装置)へ信号を送信する技術である。
 CoMP送受信は、JT(Joint Transmission)、DPS(Dynamic Point Selection)等の個別の技術を含む。JTでは、複数の通信ノードが、1つの通信ノードへ同一の信号を同時に送信する。また、DPSでは、複数の通信ノードのうちの動的に選択される一方が、1つの通信ノードへ信号を送信する。
 CoMP送受信では、通信品質(例えば、通信レート、SINR(Signal-to-Noise Ratio)、等)が向上するように、通信制御が行われる。例えば、JTが行われる場合に、送信ダイバーシチを得るための複数の通信ノードにわたる時空間符号化(Space-Time Coding)、複数の通信ノードの各々でチャネル状態に応じた送信重みの使用、空間多重(Spatial Multiplexing)等が行われ得る。また、DPSが行われる場合に、複数の通信ノードのCSIに基づいて、送信を行う通信ノードが選択され得る。これらの動作は、MIMOのアンテナが複数の通信ノードに分かれて存在する場合における、送受信ダイバーシチ、空間多重、及びアンテナ選択であるとも言える。なお、複数の通信ノードは、同一の周波数リソース及び時間リソースを使用する。
 例えば、CoMP送受信のための通信システムの動作には、いくつかの例が存在する。以下、図10及び図11を参照して、CoMP送受信のための通信システムの動作の例を説明する。
 図10は、CoMP送受信のための通信システムの動作の第1の例を説明するための説明図である。図10を参照すると、2つのeNB(evolved Node B)21A、21B、UE(User Equipment)31、及び、MME(Mobility Management Entity)41が示されている。MME41は、コアネットワークであるEPC(Evolved Packet Core)40に位置する。この例では、eNB21AとeNB21Bとが、UE31に対するCoMP送受信を行い、当該CoMP送受信は、eNB21A及び/又はeNB21Bにより制御される。まず、eNB21Aは、EPC40からデータを受信し(S81)、CoMPを行うことを決定し(S83)、X2インターフェースを介して、CoMP送受信に関する情報(制御情報及びデータ)をeNB21Bへ送信する(S85)。そして、eNB21A及びeNB21Bは、UE31に対するCoMP送受信を行う(S87)。
 図11は、CoMP送受信のための通信システムの動作の第2の例を説明するための説明図である。図11を参照すると、図10と同様に、2つのeNB21A、21B、UE31、及び、MME41が示されている。この例では、eNB21AとeNB21Bとが、UE31に対するCoMP送受信を行い、当該CoMP送受信の制御は、MMEにより制御される。まず、MME41が、CoMP送受信を行うこと(及び、CoMP送受信を行う無線リソース)を決定し(S91)、S1インターフェースを介して、CoMP送受信に関する情報(制御情報及びデータ)をeNB21A及びeNB21Bへ送信する(S93)。そして、eNB21A及びeNB21Bは、UE31に対するCoMP送受信を行う(S95)。
 CoMP送受信は、複数の基地局(例えば、eNB)に限らず、別の種類の通信ノードにより行われ得る。例えば、基地局(マクロセルの基地局、スモールセルの基地局を含む)、RRH(Remote Radio Head)、リレー局、局所ネットワーク(Localized Network:LN)のマスタ端末のうちの2つ以上により、CoMP送受信が行われてもよい。
 なお、CoMP送受信では、複数の通信ノード間で、送信データ及び制御情報(CSI、送信重み、無線リソースの情報、等)が、バックホール回線を通じて共有される。そして、CoMP送受信では、バックホール回線における遅延(即ち、制御に関する情報(送信データ及び制御情報)の送受信の遅延)による影響は、上記干渉制御技術と比べて大きいと考えられる。
 (バックホール回線)
 通信システムの通信ノード(例えば、基地局)は、バックホール回線を通じて他の通信ノードと通信する。バックホール回線は、論理パスとして、通信ノード間を直接的に接続するように見える場合であっても、物理パスとしては、別の通信ノードを介して通信ノード間を接続し得る。また、バックホール回線は、利用形態及び物理メディアの観点から、様々な形で実装され得る。以下、これらの点について、図12を参照してLTEにおける具体例を説明する。
 図12は、LTEにおけるバックホール回線の具体例を説明するための説明図である。図12を参照すると、eNB21A、21B及びMME41が示されている。また、eNB21とコアネットワークノード(例えば、MME41)との間のバックホール回線51、及び、eNB21AとeNB21Bの間のバックホール回線53示されている。バックホール回線51は、コアネットワークノードとeNBと間の論理パスとしてS1インターフェースと呼ばれ、バックホール回線53は、eNB間の論理パスとしてX2インターフェースと呼ばれる。
 第1に、バックホール回線51及びバックホール回線53は、論理パスとしては、通信ノードを直接的に接続する回線であるようにも見えるが、物理パスとしては、別の通信ノードを介した回線であり得る。例えば、当該別の通信ノードとして、ルータ、スイッチ等が存在し得る。このように、物理パスでは、どのように通信ノードを経由するかによって、通信品質(例えば、通信での遅延)は変わり得る。
 第2に、バックホール回線51及びバックホール回線53は、利用形態の観点から、専用回線であってもよく、又は共用の回線(公衆回線)であってもよい。例えば、マクロセルのeNB、ピコセルのeNB等のために、通信システムのオペレータにより専用回線が用意される。一方、例えば、家庭、オフィス等に設置されるフェムトセルのeNBのためには、公衆回線(例えば、ADSL回線、CATV回線、光回線、等)が利用される。また、マクロセルのeNB、ピコセルのeNB等についても、例えばコスト削減のために、公衆回線が利用され得る。一般的に、専用回線では、通信品質の安定性は高いが、共用の回線(公衆回線)では、通信品質の安定性は低い。
 第3に、バックホール回線51及びバックホール回線53は、物理メディアの観点から、有線回線であってもよく、又は無線回線を含んでもよい。例えば、有線回線を確保できないような場所にeNBを設置する、有線回線の設置のコストを削減する等の目的のために、有線回線の代わりに無線回線が物理パスに含まれる。また、局所ネットワーク(LN)のマスタ端末は、バックホール回線として無線回線を利用し得る。一般的に、有線回線では、通信品質の安定性は高いが、無線回線では、通信品質の安定性は低い。
 なお、図13及び図14を用いて、バックホール回線の技術及び品質の例を説明する。図13及び図14は、バックホール技術の種類及び品質の第1の例及び第2の例をそれぞれ説明するため説明図である。図13に示される例は、3GPPのTR36.932 Table 6.1-1に記載されている例である。一方、図14に示される例は、3GPPのTR36.932 Table 6.1-2に記載されている例である。このように、バックホール回線の技術に応じて、レイテンシ及びスループットが異なる。
 (技術的課題)
 上述したように、複数の通信ノード(例えば、複数の基地局)に関する制御(干渉制御、CoMP送受信、等)では、バックホール回線を通じて制御に関する情報(制御情報、制御に従って送信されるデータ、等)が送受信される。しかし、従来の技術では、バックホール回線での送受信の遅延(又は、バックホール回線間での遅延のばらつき)が考慮されていない。そのため、制御に関する情報を取得するタイミングが、複数の通信ノードのうちの一方と他方との間で大きくずれてしまう可能性がある。その結果、これらの通信ノードによる制御が適切なタイミングで行われなくなることが懸念される。
 さらに、今後の通信システムでは、通信容量の向上のためにHetNetの運用形態が導入される可能性が高い。即ち、ピコセル、フェムトセル等のためのeNBの導入が増加する可能性が高い。そのため、通信システムには、様々な通信品質を伴うバックホール回線が混在することが考えられる。このような状況下では、従来のように専用線がバックホール回線として使用される状況下とは異なり、複数の通信ノードに関する制御(干渉制御、CoMP送受信、等)が行われると、バックホール回線の品質に起因して、上記制御が適切なタイミングで行われなくなることは、十分に考えられる。
 そこで、本開示の実施形態は、複数の通信ノードに関する制御をより適切に行うことを可能にする。
 <<2.本実施形態に係る通信システムの概略的な構成>>
 続いて、図15を参照して、本開示の実施形態に係る通信システム1の概略的な構成を説明する。図15は、本実施形態に係る通信システム1の概略的な構成の一例を示す説明図である。図15を参照すると、通信システム1は、無線アクセスネットワークであるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)、及び、コアネットワークであるEPC40を含む。そして、通信システム1は、無線アクセスネットワークノードとして、マクロeNB(MeNB)21、ピコeNB(PeNB)23、RRH25、リレーノード(RN)27、ホームeNB(HeNB)29及びUE31を含む。また、通信システム1は、コアネットワークノードとして、MME41、サービングゲートウェイ(S-GW)43、HeNBゲートウェイ(HeNB-GW)45及びパケットデータネットワークゲートウェイ(PDN-GW)47を含む。この例では、通信システム1は、LTE、LTE-Advanced、又はこれらに準ずる通信方式に従ったシステムである。
 MeNB21は、マクロセル内に位置するUE31との無線通信を行う。PeNB23は、ピコセル内に位置するUE31との無線通信を行う。例えば、当該ピコセルは、マクロセルと一部又は全体で重なる。また、MeNB21及びPeNB23は、バックホール回線を介してコアネットワークノード(MME41又はS-GW43)と通信する。当該バックホール回線は、論理パスとしてS1インターフェースと呼ばれる。また、2つのMeNB21、2つのPeNB23、又は、MeNB21及びPeNB23は、バックホール回線を介して互いに通信する。当該バックホール回線は、論理パスとしてX2インターフェースと呼ばれる。これらのバックホール回線の各々は、物理パスとして、1つ以上の物理的な回線を含む。また、当該1つ以上の物理的な回線は、有線回線のみであってもよく、又は無線回線を含んでもよい。
 RRH25は、eNBのうちの無線部分(例えば、アンテナ及びRF(Radio Frequency)回路)を含み、セル内に位置するUE31との無線通信を行う。RRH25は、eNBのその他の部分と分離して設置される。一例として、RRH25は、ピコeNBの無線部分であり、ピコeNBのその他の部分はマクロeNB21Aの装置の中で実装される。この場合に、RRH25は、バックホール回線でマクロeNB21Aと通信する。当該バックホール回線は、いずれかの物理的な有線回線(例えば、光ファイバケーブル)である。
 RN27は、eNBとUE31との間の中継を行う。即ち、RN27は、RN27の通信可能範囲内に位置するUE31との無線通信を行う。また、RN27は、バックホール回線を介してeNBと通信する。この例では、当該eNBは、MeNB21Aである。また、上記バックホール回線は、論理パスとしてUnインターフェースと呼ばれ、物理的には無線回線である。
 HeNB29は、家庭、オフィス等に設置される小型のeNBである。HeNB29は、フェムトセルeNBとも呼ばれる。HeNB29は、ホームセル(又はフェムトセル)内に位置するUE31との無線通信を行う。HeNB29は、バックホール回線を介して、コアネットワークノード(HeNB-GW45)と通信する。また、例えば、HeNB29は、バックホール回線を介して、MeNB21、PeNB23、又は他のHeNB29と通信する。これらのバックホール回線は、物理パスとして、1つ以上の物理的な回線を含む。また、当該1つ以上の物理的な回線は、有線回線のみであってもよく、又は無線回線を含んでもよい。
 UE31は、MeNB21、PeNB23、RRH25、RN27及びHeNB29等の通信ノードとの無線通信を行う。例えば、UE31は、複数の通信ノードと同時に通信し得る。また、例えば、複数のUE31により、D2D(Device-to-Device)通信の局所ネットワーク(LN)が形成される。この場合に、LNのマスタ端末(即ち、上記複数のUE31のうちのいずれか)は、LNでの無線通信の制御を行う。そして、マスタ端末は、LNにとってのバックホール回線を介して、MeNB21、PeNB23、RRH25、RN27又はHeNB29と通信する。当該バックホール回線は、論理パスとしてUuインターフェースと呼ばれ、物理的には無線回線であってもよく、有線回線であってもよい。
 なお、PDN-GW47は、外部ネットワーク60(例えば、インターネット)との接続を可能にする。
 -本実施形態に係るエンティティ
 とりわけ本実施形態では、通信システム1は、制御エンティティ100を含む。制御エンティティ100は、通信ノードへの制御方式の適用を制御する。また、例えば、通信システム1は、制御エンティティ100に加えて、実行エンティティ200を含む。実行エンティティ200は、適用される上記制御方式での制御を実行し、及び/又は、バックホール回線の品質に関する品質関連情報を取得し、提供する。
 制御エンティティ100は、通信システム1に含まれる上述した通信ノードのうちのいずれかにおいて実装されてもよく、又は、上述した通信ノードとは独立した装置に実装されてもよい。例えば、制御エンティティ100は、いずれかのコアネットワークノード(例えば、MME41)内に実装される。
 実行エンティティ200は、通信システム1に含まれる各通信ノードにおいて実装されてもよく、又は一部の通信ノードに実装されてもよい。一例として、実行エンティティ200は、無線アクセスネットワークノード(MeNB21、PeNB23、RRH25、RN27及びHeNB29)に実装され得る。
 <<3.各エンティティの構成>>
 続いて、図16及び図17を参照して、本実施形態に係る制御エンティティ100及び実行エンティティ200の構成を説明する。
 <3.1.制御エンティティの構成>
 まず、図16及を参照して、本実施形態に係る制御エンティティ100の構成の一例を説明する。図16は、本実施形態に係る制御エンティティ100の構成の一例を示すブロック図である。図16を参照すると、制御エンティティ100は、通信部110、記憶部120及び処理部130を備える。一例として、制御エンティティ100は、コアネットワークノード(例えば、MME41)内に実装される。
 (通信部110)
 通信部110は、他の通信ノードと通信する。例えば、通信部110は、バックホール回線を通じて他の通信ノードと通信する。例えば、当該他の通信ノードは、MeNB21、PeNB23、RRH25、RN27、HeNB29及び/又はコアネットワークノードを含む。
 (記憶部120)
 記憶部120は、制御エンティティ100の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。例えば、記憶部120は、バックホール回線の品質に関する品質関連情報を記憶する。
 (処理部130)
 処理部130は、制御エンティティ100の様々な機能を提供する。処理部130は、品質測定部131、情報収集部133、情報取得部135及び適用制御部137を含む。
 (品質測定部131)
 品質測定部131は、バックホール回線の品質を測定する。
 例えば、品質測定部131は、バックホール回線の品質についての測定手続きを通じて、バックホール回線の品質を測定し、バックホール回線の品質に関する品質関連情報(以下、「バックホール品質情報」)を生成する。上記測定手続きについては後述する。
 また、例えば、品質測定部131は、生成されるバックホール品質情報を記憶部120に記憶させる。
 (情報収集部133)
 情報収集部133は、他の装置からバックホール品質情報を収集する。
 例えば、情報収集部133は、バックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)についての収集手続きを通じて、当該バックホール品質情報を取得する。当該収集手続きについては後述する。
 また、例えば、情報収集部133は、収集されるバックホール品質情報を記憶部120に記憶させる。
 (情報取得部135)
 情報取得部135は、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)を取得する。
 -取得されるバックホール品質情報
 例えば、上記バックホール品質情報は、上記バックホール回線の上記品質についての測定手続きを通じて生成される。そして、情報取得部135は、生成される上記バックホール品質情報を取得する。
 また、例えば、上記バックホール品質情報は、当該バックホール品質情報についての収集手続きを通じて、他の装置から収集される。そして、情報取得部135は、収集される上記バックホール品質情報を取得する。
 具体的には、例えば、品質測定部131が、上記測定手続きを通じて上記バックホール品質情報を生成し、記憶部120に記憶させ、又は、情報収集部133が、上記測定手続きを通じて別の通信ノードにより生成された上記バックホール品質情報を収集し、記憶部120に記憶させる。そして、情報取得部135は、上記バックホール品質情報を取得する。
 なお、上記収集手続きを通じた収集により、制御エンティティ100は、バックホール品質情報を有しない場合でも、他の装置が有するバックホール品質情報を利用することが可能になる。
 -制御方式
 上記制御方式は、上記通信ノードを含む通信システムの通信容量を向上させるための方式である。
 第1の例として、上記制御方式は、2つ以上の通信ノードがそれぞれ関与する無線通信の間での干渉を抑制するための方式(以下、「干渉制御方式」と呼ぶ)を含む。例えば、当該干渉制御方式は、周波数ドメインICIC、時間ドメインICIC、BF(ヌルステアリング)等を含む。
 第2の例として、上記制御方式は、CoMP送受信を含む。
 -制御方式が適用される通信ノード
 上記制御方式が適用される上記通信ノードは、例えば、基地局、リレー局、又は、複数の端末装置により形成される局所ネットワークでの無線通信を制御する端末装置である。
 本実施形態では、上記通信ノードは、上記制御方式での制御を実行する実行エンティティ200(又は実行エンティティ200が実装される通信ノード)である。より具体的には、例えば、上記通信ノードは、MeNB21、PeNB23、RRH25、RN27、HeNB29及び/又はコアネットワークノードのいずれかである。
 -制御関連情報及びバックホール回線
 上記制御方式での制御に関する上記制御関連情報は、例えば、当該制御方式での制御のための制御情報、及び/又は、当該制御に従って送信されるデータを含む。
 --干渉制御の場合
 具体例には、例えば、上記制御方式が、干渉制御方式である場合に、上記制御関連情報は、干渉制御のための制御情報(例えば、制御コマンド)を含む。
 一例として、上記制御関連情報(制御情報)は、制御エンティティ100(例えば、MME41)により実行エンティティ200(例えば、MeNB21)に提供される。この場合に、例えば、上記制御関連情報(制御情報)を提供するために用いられるバックホール回線は、制御エンティティ100と実行エンティティ200との間のバックホール回線(例えば、S1インターフェース)である。
 --CoMP送受信の場合
 また、例えば、上記制御方式が、CoMP送受信である場合に、上記制御関連情報は、CoMP送受信で送信されるデータを含む。
 一例として、CoMP送受信で送信されるデータは、共有のために、CoMP送受信に関わる2つの実行エンティティ200(例えば、MeNB21)のうちの一方により他方に提供される。この場合に、上記制御関連情報を提供するための用いられるバックホール回線は、上記2つの実行エンティティ200間のバックホール回線(例えば、X2インターフェース)である。
 別の例として、CoMP送受信で送信されるデータは、制御エンティティ100(例えば、MME41)により、CoMP送受信に関わる実行エンティティ200(例えば、MeNB21)に提供されてもよい。この場合に、例えば、上記制御関連情報を提供するために用いられるバックホール回線は、制御エンティティ100と実行エンティティ200との間のバックホール回線(例えば、S1インターフェース)であってもよい。
 なお、上記制御関連情報は、CoMP送受信で送信されるデータの代わりに(又は、CoMP送受信で送信されるデータに加えて)、CoMP送受信のための制御情報(例えば、制御コマンド)を含んでもよい。この場合に、上記制御関連情報を提供するための用いられるバックホール回線は、制御エンティティ100と実行エンティティ200との間のバックホール回線(例えば、S1インターフェース)であってもよい。
 -バックホール回線の品質
 また、例えば、上記バックホールの上記品質は、上記バックホール回線での遅延時間である。この場合に、上記バックホール品質情報は、バックホール回線での遅延時間に関する情報である。
 なお、上記バックホール回線の上記品質は、遅延時間に限られない。例えば、上記バックホール回線の上記品質は、遅延時間に加えて、又は遅延時間の代わりに、スループット等の、品質に関する別の情報を含んでもよい。
 (適用制御部137)
 適用制御部137は、上記制御関連情報を提供するために用いられる上記バックホール回線の品質に関する上記バックホール品質情報に基づいて、上記通信ノードへの上記制御方式の適用を制御する。
 例えば、適用制御部137は、上記バックホール品質情報に基づいて、上記通信ノードを含む2つ以上の通信ノードへの上記制御方式の適用を制御する。この場合に、例えば、当該2つ以上の通信ノードについて、上記バックホール品質情報が取得される。
 -制御方式
 また、上述したように、上記制御方式は、上記通信ノードを含む通信システムの通信容量を向上させるための方式である。
 例えば、上記制御方式は、干渉制御方式を含む。より具体的には、例えば、当該干渉制御方式は、周波数ドメインICIC、時間ドメインICIC、BF(ヌルステアリング)等を含む。
 バックホール品質情報に基づいて干渉制御方式の適用を制御することにより、例えば、バックホール回線の制約の中でより適切な干渉制御方式を選択して適用することが可能になる。これにより、干渉をより適切に抑制することが可能になる。その結果、通信品質が向上し、通信システム1の通信容量が向上し得る。
 また、例えば、上記制御方式は、CoMP送受信を含む。
 バックホール品質情報に基づいてCoMP送受信の適用を制御することにより、例えば、バックホール回線の制約の中で可能な場合に限りCoMP送受信を適用することが可能になる。これにより、CoMP送受信により通信品質を向上させつつ、CoMP送受信の失敗による通信品質の低下を抑えることが可能になる。その結果、通信品質が向上し、通信システム1の通信容量が向上し得る。
以上のように、バックホール品質情報に基づいて、通信システムの通信容量を向上させるための制御方式の適用を制御することにより、例えば、通信品質が向上し、通信容量が向上し得る。
 -具体的な手法
 まず第1のステップとして、例えば、適用制御部137は、上記バックホール品質情報に基づいて、2つ以上の制御エンティティ200(又は実行エンティティ200が実装される2つ以上の通信ノード)への上記制御方式の適用を決定する。
 一例として、上記制御方式が、干渉制御方式である場合に、適用制御部137は、上記バックホール品質情報に基づいて、周波数ドメインICIC、時間ドメインICIC、及びBF(ヌルステアリング)のうちの1つを選択し、選択された干渉制御方式の適用を決定する。また、別の例として、上記制御方式が、CoMP送受信である場合に、適用制御部137は、上記バックホール品質情報に基づいて、CoMP送受信を適用するかを決定する。
 次に第2のステップとして、例えば、適用制御部137は、上記2つ以上の実行エンティティ200(又は実行エンティティ200が実装される上記2つ以上の通信ノード)に、当該制御方式を適用する。即ち、適用制御部137は、上記2つ以上の実行エンティティ200に、上記制御方式での制御を実行させる。
 一例として、適用制御部137は、制御エンティティ200に、上記制御方式での制御のための制御コマンドを送信する。その結果、制御エンティティ200が、上記制御方式での制御を実行する。
 -グループ単位での制御の適用
 上記制御方式が適用される複数の通信ノードは、当該複数の通信ノードに関する情報に基づいて、1つ以上のグループに分類される。そして、適用制御部137は、上記1つ以上のグループに含まれるグループごとに、グループに含まれる1つ以上の通信ノードについての上記品質関連情報に基づいて、上記1つ以上の通信ノードへの上記制御方式の適用を制御する。
 具体的には、例えば、通信システム1に含まれる通信ノードのうちの、上記制御方式が適用される複数の通信ノードが、1つ以上のグループに分類される。そして、適用制御部137は、グループごとに、上記制御方式の適用を制御する。
 このようなグループ単位での上記制御方式の適用の制御により、グループごとに最適な制御を行うことが可能になる。
 第1の例として、上記複数の通信ノードに関する上記情報は、上記複数の通信ノードの位置の情報を含む。即ち、上記複数の通信ノードは、上記複数の通信ノードの位置の情報に基づいて、1つ以上のグループに分類される。
 これにより、例えば、位置が近い通信ノードを同一のグループに分類し、位置が近い通信ノードごとに上記制御方式の適用を制御することが可能になる。即ち、上記制御方式の適用が必要な通信ノードごとに、最適な制御を行うことが可能になる。
 第2の例として、上記複数の通信ノードに関する上記情報は、上記複数の通信ノードにより使用される無線リソースの情報を含む。即ち、上記複数の通信ノードは、上記複数の通信ノードにより使用される無線リソースの情報に基づいて、1つ以上のグループに分類される。当該無線リソースは、例えば、コンポーネントキャリア(CC)、サブバンド、リソースブロック(RB)等のいずれかの粒度の無線リソースである。
 これにより、例えば、同一の無線リソースを使用する通信ノードを同一のグループに分類し、同一の無線リソースを使用する通信ノードごとに上記制御方式の適用を制御することが可能になる。即ち、上記制御方式の適用が必要な通信ノードごとに、最適な制御を行うことが可能になる。
 第3の例として、上記複数の通信ノードに関する上記情報は、上記複数の通信ノードへ上記制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)を含んでもよい。即ち、上記複数の通信ノードは、上記複数の通信ノードに対応するバックホール品質情報に基づいて、1つ以上のグループに分類されてもよい。
 これにより、例えば、バックホール回線の品質(例えば、バックホール回線での遅延時間、バックホール回線の種類(有線/無線))が近い通信ノードを同一のグループに分類し、バックホール回線の品質が近い通信ノードごとに上記制御方式の適用を制御することが可能になる。そのため、例えば、バックホール回線の品質が良好な通信ノードについては、複数の制御方式(例えば、複数の干渉制御方式)のうちの、より高い効果を伴う制御方式(例えば、時間ドメインICIC、BF(ヌルステアリング)、等)を選択して適用することが可能になる。あるいは、例えば、バックホール回線の品質が良好な通信ノードについては、制御方式(例えば、CoMP送受信)をより高い頻度で適用することが可能になる。なお、バックホール品質情報に基づく分類により、グループ間での干渉が発生し得るので、発生し得る干渉が許容可能である場合に、バックホール品質情報に基づく分類が行われることが望ましい。
 例えば以上のように、グループごとに制御方式の適用の制御が行われる。これにより、より適切な制御を行うことが可能になる。
 -動作タイミングの調整を考慮した決定
 なお、制御方式の適用の決定の際には、通信ノードでの動作タイミングの調整が行われることが考慮されてもよい。当該調整は、バックホール回線での遅延時間の差異が通信ノード間で小さくなるように行われる。このような調整により、通信ノード間で動作タイミングが異なることになり得る。よって、例えば、制御方式の適用の決定の際に、通信ノードでの動作タイミングの調整が行われることを考慮することにより(即ち、通信ノードでの調整後の動作タイミングを考慮することにより)、制御方式の適用の決定をより適切に行うことが可能になる。動作タイミングの調整については、後に詳細に説明する。
 以上のように、適用制御部137は、バックホール品質情報に基づいて、制御方式の適用を制御する。
 これにより、バックホール回線での遅延(又は遅延のばらつき)により制御方式を適切に適用できない場合には、当該制御方式の適用を回避することが可能になる。一例として、2つのeNBへの制御方式(例えば、BF(ヌルステアリング))の適用において、制御関連情報は、一方のeNBへほとんど遅延なく送信され、他方のeNBには長い遅延を伴い送信される。この場合に、制御方式を適用すると、一方のeNBへの適用は間に合っても、他方のeNBへの適用は間に合わない可能性がある。このような場合に、上記制御方式の適用を回避することが可能になる。なお、バックホール回線の遅延(又は遅延のばらつき)を考慮して、制御方式の適用に問題が生じない場合に、当該制御方式を適用することができる。このように複数の通信ノードに関する制御(例えば、干渉制御、CoMP送受信)をより適切に行うことが可能になる。
 なお、制御方式の適用の制御については、より具体的な内容を後述する。
 <3.2.実行エンティティの構成>
 次に、図17を参照して、本実施形態に係る実行エンティティ200の構成の一例を説明する。図17は、本実施形態に係る実行エンティティ200の構成の一例を示すブロック図である。図17を参照すると、実行エンティティ200は、アンテナ部210、無線通信部220、記憶部230、記憶部240及び処理部250を備える。例えば、実行エンティティ200は、MeNB21、PeNB23、RRH25、RN27及びHeNB29に実装される。
 (アンテナ部210)
 アンテナ部210は、無線信号を受信し、受信された無線信号を無線通信部220へ出力する。また、アンテナ部210は、無線通信部220により出力された送信信号を送信する。
 (無線通信部220)
 無線通信部220は、実行エンティティ200の通信可能範囲(例えば、セル)内に位置するUE31との無線通信を行う。
 (ネットワーク通信部230)
 通信部230は、他の通信ノードと通信する。例えば、通信部230は、バックホール回線を通じて他の通信ノードと通信する。例えば、当該他の通信ノードは、MeNB21、PeNB23、RRH25、RN27、HeNB29及び/又はコアネットワークノードを含む。
 (記憶部240)
 記憶部240は、実行エンティティ200の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 また、例えば、記憶部240は、バックホール回線の品質に関する品質関連情報を記憶する。
 (処理部250)
 処理部250は、実行エンティティ200の様々な機能を提供する。処理部250は、品質測定部251、情報収集部253、情報取得部255、情報提供部257及び通信制御部259を含む。
 (品質測定部251)
 品質測定部251は、バックホール回線の品質を測定する。
 例えば、品質測定部251は、バックホール回線の品質についての測定手続きを通じて、バックホール回線の品質を測定し、バックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)を生成する。上記測定手続きについては後述する。
 (情報収集部253)
 情報収集部253は、他の装置からバックホール品質情報を収集する。
 例えば、情報収集部253は、バックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)についての収集手続きを通じて、当該バックホール品質情報を取得する。当該収集手続きについては後述する。
 また、例えば、情報収集部253は、収集されるバックホール品質情報を記憶部240に記憶させる。
 (情報取得部255)
 情報取得部255は、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報(即ち、バックホール品質情報)の少なくとも一部を取得する。
 -取得されるバックホール品質情報
 例えば、上記バックホール品質情報の上記少なくとも一部は、上記バックホール回線の上記品質についての測定手続きを通じて生成される。そして、情報取得部255は、生成される上記バックホール品質情報を取得する。
 また、例えば、上記バックホール品質情報の上記少なくとも一部は、当該バックホール品質情報についての収集手続きを通じて、他の装置から収集される。そして、情報取得部255は、収集される上記バックホール品質情報の上記少なくとも一部を取得する。
 具体的には、例えば、品質測定部251が、上記測定手続きを通じて上記バックホール品質情報を生成し、記憶部240に記憶させ、又は、情報収集部253が、上記測定手続きを通じて別の通信ノードにより生成された上記バックホール品質情報を収集し、記憶部240に記憶させる。そして、情報取得部255は、上記バックホール品質情報を取得する。
 なお、上記収集手続きを通じた収集により、実行エンティティ200は、バックホール品質情報を有しない場合でも、他の装置が有するバックホール品質情報を利用することが可能になる。
 -バックホール回線の構成
 例えば、上記バックホール回線は、複数の個別のバックホール回線の組合せである。そして、上記バックホール品質情報の上記少なくとも一部は、上記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報(以下、「個別バックホール品質情報」と呼ぶ)である。
 このような個別のバックホール回線の品質に関する情報の取得により、例えば、バックホール回線全体の品質に関する情報だけではなく、個別のバックホール回線の品質に関する情報を提供することが可能になる。これにより、例えば、バックホール回線に含まれる個別のバックホール回線の品質を考慮して、制御方式の適用をより適切に制御することが可能になる。また、例えば、バックホール回線の部分的な情報を組合せて、バックホール回線全体の品質に関する情報を生成し、又は収集することが可能になる。そのため、バックホール回線の品質の測定、又はバックホール品質情報の収集に要する手間が少なくなり得る。
 (情報提供部257)
 情報提供部257は、上記品質関連情報(即ち、バックホール品質情報)の上記少なくとも一部を提供する。そして、上記バックホール品質情報は、上記制御方式が適用される通信ノードへの上記制御方式の適用の制御に用いられる情報である。
 例えば、情報提供部257は、上記バックホール品質情報の上記少なくとも一部を制御エンティティ100に提供する。
 これにより、制御エンティティ100が自らバックホールの品質を測定する手間を減らすことが可能になる。
 (通信制御部259)
 通信制御部259は、制御エンティティ100による制御に応じて、上記制御方式を適用する。即ち、通信制御部259は、制御エンティティ100による制御に応じて、上記制御方式での制御を実行する。
 例えば、制御エンティティ100は、上記制御方式での制御のための制御コマンドを送信する。すると、通信制御部259は、当該制御コマンドに基づいて、上記制御方式での制御を実行する。
 なお、上記制御方式の適用及び実行については、より具体的な内容を後述する。
 <<4.バックホール品質情報の蓄積>>
 続いて、図18~図44を参照して、バックホール品質情報の蓄積について説明する。具体的には、バックホール回線の品質についての測定手続き、及びバックホール品質情報についての収集手続きを説明する。
 <4.1.測定手続き>
 まず、図18~図34を参照して、バックホール回線の品質についての測定手続きの第1~第7の例を説明する。
 (第1の例)
 まず、図18~図20を参照して、上記測定手続きの第1の例を説明する。
 -測定手続きの流れ
 図18は、バックホール回線の品質についての測定手続きの第1の例の概略的な流れの例を示すシーケンス図である。ここで、例えば、エンティティXは、制御エンティティ100又は実行エンティティ200であり、エンティティYは、実行エンティティ200である。
 まず、エンティティXは、バックホール回線の品質の測定に関する要求メッセージを送信し、エンティティYは、上記要求メッセージを受信する(S401)。当該要求メッセージは、エンティティXとエンティティYとの間のバックホール回線の品質を測定するための情報を含む。
 すると、エンティティYは、上記要求メッセージに含まれる情報(及び上記要求メッセージの受信時間)に基づいて、バックホール回線の品質を測定する(S403)。
 その後、エンティティYは、バックホール回線の品質の測定に関する応答メッセージを送信し、エンティティXは、上記要求メッセージを受信する(S405)。当該応答メッセージは、バックホール回線の品質の測定結果を含む。また、上記応答メッセージは、エンティティXとエンティティYとの間のバックホール回線の品質を測定するための情報を含む。
 すると、エンティティXは、上記応答メッセージに含まれる情報(及び上記応答メッセージの受信時間)に基づいて、バックホール回線の品質を測定する(S407)。
 そして、エンティティXは、バックホール回線の品質の測定結果に基づいて、バックホール品質情報を生成する(S409)。
 -要求メッセージの内容
 図19は、測定手続きの第1の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。
 図19を参照すると、上記要求メッセージは、当該要求メッセージの送信元(エンティティX)、当該要求メッセージの宛先(エンティティY)を含む。
 また、上記要求メッセージは、バックホール回線の品質の測定についての要求フラグを含む。当該要求フラグは、測定すべきバックホール回線の品質の種類(例えば、遅延時間、スループット等)を示す。上記要求メッセージは、複数の要求フラグを含んでもよい。これにより、1つの要求メッセージにより複数の品質の測定を要求することが可能になる。その結果、オーバーヘッドを抑えられる。
 また、上記要求メッセージは、当該要求メッセージの送信時間を示すタイムスタンプを含む。これにより、バックホール回線での遅延時間を測定することが可能になる。
 また、上記要求メッセージは、当該要求メッセージのデータサイズを含む。これにより、バックホール回線でのスループットを容易に測定することが可能になる。
 -応答メッセージの内容
 図20は、測定手続きの第1の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。
 図20を参照すると、上記応答メッセージは、当該応答メッセージの送信元(エンティティY)、当該要求メッセージの宛先(エンティティX)を含む。
 また、上記応答メッセージは、バックホール回線の品質の測定についての応答フラグを含む。当該応答フラグは、測定されたバックホール回線の品質の種類(例えば、遅延時間、スループット等)を示す。上記応答メッセージは、複数の応答フラグを含んでもよい。これにより、1つの応答メッセージにより複数の品質の測定結果を提供することが可能になる。その結果、オーバーヘッドを抑えられる。
 また、上記応答メッセージは、バックホール回線の品質の測定結果を含む。上記応答メッセージは、1つの種類の品質の測定結果を含んでもよく、2つ以上の種類の品質の測定結果を含んでもよい。
 また、上記応答メッセージは、上記要求メッセージと同様に、上記応答メッセージの送信時間を示すタイムスタンプ、及び、当該応答メッセージのデータサイズを含む。これにより、バックホール回線での遅延時間及びスループットを測定することが可能になる。
 -まとめ
 上記第1の例では、上記測定手続きは、送信時間を含む1つ以上のメッセージを送受信することを含む。これにより、バックホール回線を通じてメッセージの送信に要した時間を知ることが可能になる。そのため、例えば、バックホール回線での遅延時間を知ることも可能になる。
 また、上記第1の例では、上記測定手続きは、双方向でバックホール回線の品質を測定することを含む。これにより、一方向と他方向との間で品質の相違が大きい場合に、双方向についての品質の情報を得ることが可能になる。また、一方向と他方向との間で品質の相違が小さい場合であっても、より正確な品質の情報を得ることが可能になる。
 (第2の例)
 次に、図21~図23を参照して、上記測定手続きの第2の例を説明する。
 -測定手続きの流れ
 図21は、バックホール回線の品質についての測定手続きの第2の例の概略的な流れの例を示すシーケンス図である。
 図21を参照すると、要求メッセージの送受信(S411)、及び当該要求メッセージに基づく測定(S413)と、応答メッセージの送受信(S415)、及び当該応答メッセージに基づく測定(S417)とが、複数回繰り返される。
 そして、エンティティXは、バックホール回線の品質の測定結果に基づいて、バックホール品質情報を生成する(S419)。
 -要求メッセージの内容
 図22は、測定手続きの第2の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。図22を参照すると、図19を参照して説明した第1の例に係る要求メッセージに含まれる情報要素に加えて、第2の例では、要求メッセージは、要求メッセージの総数と、現在の要求インデックスとをさらに含む。現在の要求インデックスは、要求メッセージが全ての要求メッセージの中の何番目のメッセージであるかを示す。要求メッセージの総数により、全ての要求メッセージが受信されたか、又は要求メッセージのロスが生じたかを知ることが可能になる。
 -応答メッセージの内容
 図23は、測定手続きの第2の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。図23を参照すると、図20を参照して説明した第1の例に係る応答メッセージに含まれる情報要素に加えて、第2の例では、応答メッセージは、上記要求メッセージと同様に、応答メッセージの総数と、現在の応答インデックスとをさらに含む。
 -まとめ
 上記第2の例では、上記測定手続きは、バックホール回線の品質を複数回測定することを含む。これにより、より正確な品質を測定することが可能になる。
 (第3の例)
 次に、図24~図26を参照して、上記測定手続きの第3の例を説明する。
 -測定手続きの流れ
 図24は、バックホール回線の品質についての測定手続きの第3の例の概略的な流れの例を示すシーケンス図である。
 図24を参照すると、要求メッセージの送受信(S421)、及び当該要求メッセージに基づく測定(S423)が、複数回繰り返し行われる。
 その後、応答メッセージの送受信(S425)、当該当該応答メッセージに基づく測定(S427)、及び、バックホール品質情報の生成(S429)が、行われる。
 -要求メッセージの内容
 図25は、測定手続きの第3の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。図25を参照すると、図22を参照して説明した第2の例に係る要求メッセージと同様に、第3の例では、要求メッセージは、要求メッセージの総数と、現在の要求インデックスとをさらに含む。
 -応答メッセージの内容
 図26は、測定手続きの第3の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。図26を参照すると、応答メッセージは、バックホール回線の品質の測定結果を含む。ここで、第3の例に係る応答メッセージは、バックホール回線の品質の測定結果として、複数の個別の測定結果を含んでもよく、又は、複数の個別の測定結果から得られた1つの測定結果(例えば、平均値(及び分散値))を含んでもよい。また、図20を参照して説明した第1の例に係る応答メッセージに含まれる情報要素に加えて、第3の例では、応答メッセージは、測定の総数をさらに含む。これにより、パケットロスが生じているかを知ることも可能になる。
 -まとめ
 上記第3の例では、上記測定手続きは、バックホール回線の品質を複数回測定することを含む。これにより、より正確な品質を測定することが可能になる。
 (第4の例)
 次に、図27及び図28を参照して、上記測定手続きの第4の例を説明する。
 -測定手続きの流れ
 図27は、バックホール回線の品質についての測定手続きの第4の例の概略的な流れの例を示すシーケンス図である。
 図27を参照すると、図18を参照して説明した測定手続きの第1の例と同様に、要求メッセージの送受信(S431)、当該要求メッセージに基づく測定(S433)、応答メッセージの送受信(S435)、当該当該応答メッセージに基づく測定(S437)、及び、バックホール品質情報の生成(S438)が、行われる。
 そして、さらに、測定手続きの第4の例では、エンティティXは、バックホール回線の品質の測定に関する完了メッセージを送信し、エンティティYは、当該完了メッセージを受信する(SXD439)。
 -完了メッセージの内容
 図28は、測定手続きの第4の例に係る完了メッセージに含まれる情報要素(IE)を説明するための説明図である。
 図28を参照すると、上記完了メッセージは、当該完了メッセージの送信元(エンティティX)、当該完了メッセージの宛先(エンティティY)を含む。
 また、上記完了メッセージは、バックホール回線の品質の測定についての完了フラグを含む。当該完了フラグは、測定されたバックホール回線の品質の種類(例えば、遅延時間、スループット等)を示す。上記完了メッセージは、複数の完了フラグを含んでもよい。
 また、上記完了メッセージは、バックホール回線の品質の測定結果を含む。例えば、当該測定結果は、バックホール品質情報である。上記応答メッセージは、複数の種類の品質の測定結果を含んでもよい。
 -まとめ
 上記第4の例では、上記測定手続きは、バックホール回線の品質の測定を共有することを含む。これにより、測定に関わった複数の通信ノードが測定結果を得ることが可能になる。
 (第5の例)
 次に、図29及び図30を参照して、上記測定手続きの第5の例を説明する。
 -測定手続きの流れ
 --第1の例
 図29は、バックホール回線の品質についての測定手続きの第5の例の概略的な流れの第1の例を示すシーケンス図である。
 図29を参照すると、要求メッセージの送受信(S441)、及び当該要求メッセージに基づく測定(S443)が行われる。そして、エンティティYが、バックホール回線の品質の測定結果に基づいて、バックホール品質情報を生成する(S445)。
 --第2の例
 図30は、バックホール回線の品質についての測定手続きの第5の例の概略的な流れの第2の例を示すシーケンス図である。
 図30を参照すると、要求メッセージの送受信(S441)、及び当該要求メッセージに基づく測定(S443)が、複数回繰り返される。そして、エンティティYが、バックホール回線の品質の測定結果に基づいて、バックホール品質情報を生成する(S445)。
 -要求メッセージの内容
 測定手続きの第5の例に係る要求メッセージは、図19を参照して説明した測定手続きの第1の例に係る要求メッセージの内容と同様である。
 -まとめ
 上記第5の例では、上記測定手続きは、一方向でのバックホール回線の品質を測定することを含む。これにより、オーバーヘッドが抑えられる。
 (第6の例)
 次に、図31を参照して、上記測定手続きの第6の例を説明する。
 -測定手続きの流れ
 図31は、バックホール回線の品質についての測定手続きの第6の例の概略的な流れの例を示すシーケンス図である。
 エンティティXは、運用での必要に応じて、タイムスタンプを含むいずれかのメッセージを送信し、エンティティYは、当該メッセージを受信する(S451)。
 すると、エンティティYは、上記メッセージに含まれる情報(及び上記要求メッセージの受信時間)に基づいて、バックホール回線の品質を測定する(S453)。
 その後、応答メッセージの送受信(S455)、当該当該応答メッセージに基づく測定(S457)、及び、バックホール品質情報の生成(S459)が、行われる。
 -応答メッセージの内容
 測定手続きの第6の例に係る要求メッセージは、図20を参照して説明した測定手続きの第1の例に係る応答メッセージの内容と同様である。
 -まとめ
 上記第6の例では、上記測定手続きは、バックホール回線の品質の測定を目的としないメッセージを送受信することを含む。これにより、要求メッセージによるオーバーヘッドを削減することが可能になる。
 -その他
 さらに別の例として、例えば、IEEE1588(PTP(Precision Time Protocol))、ping(ICMP(Internet Control Message Protocol)のecho request/reply)等のプロトコル機能を利用して、測定が行われてもよい。ただし、とりわけpingの場合に測定される遅延時間は、RTT(Round Trip Time)であることに留意する。この場合に、RTTの1/2の値が一方向での遅延時間とみなされてもよい。
 (第7の例)
 次に、図32~図34を参照して、上記測定手続きの第7の例を説明する。
 -測定手続きの流れ
 --第1の例
 図32は、バックホール回線の品質についての測定手続きの第7の例の概略的な流れの第1の例を示すシーケンス図である。ここで、例えば、エンティティXは、制御エンティティ100又は実行エンティティ200であり、エンティティY及びエンティティZは、実行エンティティ200である。この例では、エンティティXとエンティティYとの間のバックホール回線の品質が測定される。
 まず、エンティティXは、バックホール回線の品質の測定に関する要求メッセージを送信し、エンティティZは、上記要求メッセージを受信する(S451)。当該要求メッセージは、エンティティXとエンティティYとの間のバックホール回線の品質の測定を要求するメッセージである。
 そして、エンティティZは、エンティティXとエンティティZとの間のバックホール回線の品質を測定する(S463)。
 ここで、エンティティZは、エンティティZとエンティティYとの間のバックホール回線の品質の測定結果を保有し、当該バックホール品質情報を取得する(S464)。
 その後、エンティティZは、バックホール回線の品質の測定に関する応答メッセージを送信し、エンティティXは、上記要求メッセージを受信する(S465)。当該応答メッセージは、エンティティXとエンティティZとの間のバックホール回線の品質の測定結果と、エンティティZとエンティティYとの間のバックホール回線の品質の測定結果とを含む。
 そして、エンティティXは、エンティティXとエンティティZとの間のバックホール回線の品質を測定する(S467)。
 その後、エンティティXは、バックホール回線の品質の測定結果に基づいて、エンティティXとエンティティYとの間のバックホール回線の品質に関するバックホール品質情報を生成する(S469)。
 なお、一例として、エンティティXとエンティティZとの間のバックホール回線は有線回線であり、及びエンティティZとエンティティYとの間のバックホール回線は無線回線である。この場合に、例えば、エンティティZはいずれかのeNBであり、エンティティYはRN27又はLNのマスタ端末(UE31F)である。
 なお、エンティティZとエンティティYとの間のバックホール回線の品質の測定結果は、エンティティZとエンティティYとの間のバックホール回線の品質に関するバックホール品質情報の形で保有されてもよい。
 --第2の例
 図33は、バックホール回線の品質についての測定手続きの第7の例の概略的な流れの第2の例を示すシーケンス図である。この例でも、エンティティXとエンティティYとの間のバックホール回線の品質が測定される。
 まず、図32を参照して説明した第1の例と同様に、要求メッセージの送受信(S461)、及び当該要求メッセージに基づく測定(S463)が行われる。
 ここで、エンティティZは、エンティティZとエンティティYとの間のバックホール回線の品質の測定結果を保有していないので、当該バックホール回線の品質の測定を行う(S471~S479)。当該測定は、図18を参照して説明した測定手続きの第1の例と同様に行われる。
 その後、図32を参照して説明した第1の例と同様に、応答メッセージの送受信(S465)、当該当該応答メッセージに基づく測定(S467)、及び、バックホール品質情報の生成(S469)が、行われる。
 -要求メッセージの内容
 測定手続きの第5の例に係る要求メッセージは、例えば、図19を参照して説明した測定手続きの第1の例に係る要求メッセージの内容と同様である。
 -応答メッセージの内容
 図34は、測定手続きの第7の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。図34を参照すると、応答メッセージは、個別のバックホール回線の品質の測定結果を含む。例えば、応答メッセージは、エンティティXとエンティティZとの間のバックホール回線の品質の測定結果と、エンティティZとエンティティYとの間のバックホール回線の品質の測定結果とを含む。
 -まとめ
 上記第7の例では、上記バックホール回線は、複数の個別のバックホール回線の組合せである。そして、上記測定手続きは、上記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質を測定することを含む。
 これにより、例えば、バックホール回線に含まれる個別のバックホール回線の品質を考慮して、制御方式の適用をより適切に制御することが可能になる。また、例えば、バックホール回線全体を構成する個別のバックホール回線の品質に関する情報を組合せて、バックホール回線全体の品質に関する情報を生成することが可能になる。そのため、バックホール回線の品質の測定に要する手間が少なくなり得る。
 <4.2.収集手続き>
 次に、図35~図44を参照して、バックホール品質情報についての収集手続きの第1~第6の例を説明する。
 (第1の例)
 まず、図35~図37を参照して、上記収集手続きの第1の例を説明する。
 -収集手続きの流れ
 図35は、バックホール品質情報についての収集手続きの第1の例の概略的な流れの例を示すシーケンス図である。ここで、例えば、エンティティXは、制御エンティティ100又は実行エンティティ200であり、エンティティYは、実行エンティティ200である。
 まず、エンティティXは、バックホール回線の情報の収集に関する要求メッセージを送信し、エンティティYは、上記要求メッセージを受信する(S501)。一例として、当該要求メッセージは、エンティティYとエンティティZ(図示せず)との間のバックホール回線の品質に関するバックホール品質情報の提供を要求するメッセージである。
 ここで、エンティティYは、収集対象であるバックホール品質情報を保有する。よって、エンティティYは、当該バックホール品質情報を取得する(S503)。
 そして、エンティティYは、バックホール回線の情報の収集に関する応答メッセージを送信し、エンティティXは、上記応答メッセージを受信する(S505)。当該応答メッセージは、上記バックホール品質情報を含む。
 -要求メッセージの内容
 図36は、収集手続きの第1の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。
 図36を参照すると、上記要求メッセージは、当該要求メッセージの送信元(エンティティX)、当該要求メッセージの宛先(エンティティY)を含む。
 また、上記要求メッセージは、バックホール回線の情報の収集についての要求フラグを含む。当該要求フラグは、収集すべきバックホール品質情報の種類(例えば、遅延時間、スループット、パケットロス率、等)を示す。これにより、1つの要求メッセージにより複数の種類のバックホール品質情報を収集することが可能になる。その結果、オーバーヘッドを抑えられる。
 また、上記要求メッセージは、上記バックホール品質情報に対応するバックホール回線の送信元と送信先を示す情報を含む。
 -応答メッセージの内容
 図37は、収集手続きの第1の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。
 図37を参照すると、上記応答メッセージは、当該要求メッセージの送信元(エンティティY)、当該要求メッセージの宛先(エンティティX)を含む。
 また、上記応答メッセージは、バックホール情報を含む。当該バックホール情報は、バックホール品質情報を含む。また、上記要求メッセージは、1つの種類のバックホール品質情報を含んでもよく、2つ以上の種類のバックホール品質情報を含んでもよい。また、バックホール情報は、バックホールの種類を示す情報を含んでもよい。なお、エンティティYが収集対象のバックホール品質情報を有しない場合には、上記要求メッセージは、バックホール品質情報を有していないことを示す情報を、バックホール情報として含んでもよい。
 また、上記要求メッセージは、上記バックホール品質情報に対応するバックホール回線の送信元と送信先を示す情報を含む。
 -まとめ
 上記第1の例では、上記収集手続きは、バックホール品質情報の提供を要求することと、要求に応じてバックホール品質情報を提供することとを含む。これにより、バックホール品質情報を能動的に収集することが可能になる。
 (第2の例)
 次に、図38及び図39を参照して、上記収集手続きの第2の例を説明する。
 -収集手続きの流れ
 図38は、バックホール品質情報についての収集手続きの第2の例の概略的な流れの例を示すシーケンス図である。
 まず、エンティティXは、バックホール回線の情報の収集に関する要求メッセージを送信し、エンティティYは、上記要求メッセージを受信する(S511)。
 ここで、エンティティYは、収集対象であるバックホール回線の品質に関するバックホール品質情報を保有しない。しかし、エンティティYは、当該バックホール品質情報を保有するエンティティ(例えば、エンティティZ)を知っている。そこで、エンティティYは、上記要求メッセージをエンティティZへ転送する(S513)。
 ここで、エンティティZは、収集対象であるバックホール回線の品質に関するバックホール品質情報を保有する。よって、エンティティYは、当該バックホール品質情報を取得する(S515)。
 そして、エンティティZは、バックホール回線の情報の収集に関する応答メッセージを送信し、エンティティXは、上記応答メッセージを受信する(S505)。当該応答メッセージは、上記バックホール品質情報を含む。
 -要求メッセージの内容
 図39は、収集手続きの第2の例に係る要求メッセージに含まれる情報要素(IE)を説明するための説明図である。当該要求メッセージは、エンティティYによりエンティティZへ転送される要求メッセージである。
 図39を参照すると、転送される上記要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージに含まれる情報要素を含む。ただし、情報要素のうちの、要求メッセージの宛先は、転送元のエンティティ(エンティティY)によって、転送元のエンティティ(エンティティY)から転送先のエンティティ(エンティティZ)へ変更される。
 なお、例えば、転送される上記要求メッセージには、さらに転送元(エンティティY)が追加さえる。
 -応答メッセージの内容
 収集手続きの第2の例に係る要求メッセージは、例えば、図37を参照して説明した収集手続きの第1の例に係る応答メッセージの内容と同様である。
 -まとめ
 上記第2の例では、上記収集手続きは、バックホール品質情報の提供の要求を、当該バックホール品質情報を有する通信ノードへ転送することを含む。これにより、バックホール品質情報を保有する通信ノードを探し出す手間を減らすことが可能になる。
 (第3の例)
 次に、図40及び図41を参照して、上記収集手続きの第3の例を説明する。
 -収集手続きの流れ
 図40は、バックホール品質情報についての収集手続きの第3の例の概略的な流れの例を示すシーケンス図である。
 まず、エンティティXは、バックホール回線の情報の収集に関する要求メッセージを送信し、エンティティYは、上記要求メッセージを受信する(S521)。
 ここで、エンティティYは、収集対象であるバックホール回線の品質に関するバックホール品質情報を保有しない。しかし、エンティティYは、当該バックホール品質情報を保有するエンティティ(例えば、エンティティZ)を知っている。そこで、エンティティYは、上記バックホール品質情報を保有するエンティティ(例えば、エンティティZ)の情報を含む応答メッセージを送信し、エンティティXは、当該応答メッセージを受信する(S523)。
 その後、エンティティX及びエンティティZとの間で、要求メッセージの送受信(S525)、バックホール品質情報の取得(S527)、及び応答メッセージの送受信(S529)が行われる。
 -要求メッセージの内容
 収集手続きの第3の例に係る要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージの内容と同様である。
 -応答メッセージの内容
 図41は、収集手続きの第3の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。当該応答メッセージは、バックホール品質情報を保有しないエンティティ(エンティティY)によって、要求元のエンティティ(エンティティX)へ送信される応答メッセージである。
 図41を参照すると、上記要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージに含まれる情報要素を含む。例えば、バックホール情報には、バックホール品質情報を有していないことを示す情報が含まれる。そして、上記要求メッセージは、さらに、バックホール品質の提供を要求されるべき宛先(エンティティZ)の情報を含む。
 なお、例えば、エンティティZによりエンティティXへ送信される要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る応答メッセージの内容と同様である。
 -まとめ
 上記第3の例では、上記収集手続きは、バックホール品質情報の提供を要求することと、要求に応じて、当該バックホール品質情報を有する通信ノードを通知することとを含む。これにより、バックホール品質情報を保有する通信ノードを探し出す手間を減らすことが可能になる。
 また、上記第3の例では、上記第2の例と比べると、要求メッセージの送信から応答メッセージの受信までの時間が短くすることができる。また、上記第3の例では、転送が含まれないので、収集手続きがシンプルになる。
 (第4の例)
 次に、図42を参照して、上記収集手続きの第4の例を説明する。
 -収集手続きの流れ
 図42は、バックホール品質情報についての収集手続きの第4の例の概略的な流れの例を示すシーケンス図である。
 図42を参照すると、収集手続きの第3の例と同様に、エンティティX及びエンティティYとの間で、要求メッセージの送受信(S531)及び応答メッセージの送受信(S533)が行われる。また、エンティティYは、収集対象のバックホール品質情報をエンティティZが保有することを知っている。
 ただし、その後、エンティティX及びエンティティZとの間ではなく、エンティティY及びエンティティZとの間で、要求メッセージの送受信(S535)、バックホール品質情報の取得(S536)、及び応答メッセージの送受信(S537)が行われる。
 そして、エンティティYは、バックホール回線の情報の収集に関する応答メッセージを送信し、エンティティXは、上記応答メッセージを受信する(S539)。当該応答メッセージは、上記バックホール品質情報を含む。
 -要求メッセージの内容
 収集手続きの第4の例に係る要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージの内容と同様である。
 -応答メッセージの内容
 収集手続きの第4の例に係る応答メッセージのうちの、最初の応答メッセージ(即ち、図42のS533で送信される応答メッセージ)は、図41を参照して説明した収集手続きの第3の例に係る要求メッセージの内容と同様である。ただし、バックホール情報には、バックホール品質情報を有していないことを示す情報が含まれず、例えば、いずれの情報も含まれない。
 また、収集手続きの第4の例に係る応答メッセージのうちの、2番目の応答メッセージ(即ち、図42のS539で送信される応答メッセージ)は、図36を参照して説明した収集手続きの第1の例に係る要求メッセージの内容と同様である。
 -まとめ
 上記第4の例では、上記収集手続きは、バックホール品質情報の提供を要求することと、要求に応じて、当該バックホール品質情報を有する通信ノードにバックホール品質情報の提供をさらに要求することとを含む。これにより、バックホール品質情報の収集手続きにおける要求元(エンティティX)にとっての手間を減らすことができる。また、オーバーヘッドを減らすことが可能になる。
 (第5の例)
 次に、図43を参照して、上記収集手続きの第5の例を説明する。
 -収集手続きの流れ
 図43は、バックホール品質情報についての収集手続きの第5の例の概略的な流れの例を示すシーケンス図である。
 図43を参照すると、エンティティXは、バックホール回線の情報の収集に関する要求メッセージを送信し、エンティティYは、上記要求メッセージを受信する(S541)。
 ここで、エンティティYは、収集対象であるバックホール品質情報を保有しないが、測定手続きを通じて当該バックホール品質情報を生成可能である。そこで、エンティティY及びエンティティZとの間で、バックホール品質の測定手続きが行われ、収集対象のバックホール品質情報が得られる(S543)。
 そして、エンティティYは、バックホール回線の情報の収集に関する応答メッセージを送信し、エンティティXは、上記応答メッセージを受信する(S539)。当該応答メッセージは、上記バックホール品質情報を含む。
 -要求メッセージの内容
 収集手続きの第5の例に係る要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージの内容と同様である。
 -応答メッセージの内容
 収集手続きの第5の例に係る応答メッセージは、図37を参照して説明した収集手続きの第1の例に係る応答メッセージの内容と同様である。
 -まとめ
 上記第5の例では、上記収集手続きは、バックホール回線の品質の測定手続きを通じて、バックホール回線の品質に関するバックホール品質情報を生成することを含む。これにより、バックホール品質情報の収集手続きにおける要求元(エンティティX)にとっての手間を減らすことができる。また、オーバーヘッドを減らすことが可能になる。
 (第6の例)
 次に、図44を参照して、上記収集手続きの第6の例を説明する。
 なお、上記収集手続きの第6の例では、収集対象のバックホール回線情報は、複数の個別のバックホール回線の組合せである。具体的には、例えば、収集対象のバックホール品質情報は、エンティティYとエンティティZとの間のバックホール回線の品質に関するバックホール品質情報である。そして、当該バックホール回線は、エンティティYとエンティティWとの間の個別のバックホール回線と、エンティティWとエンティティZとの間の個別のバックホール回線とを含む。
 -収集手続きの流れ
 収集手続きの第6の例に係る概略的な流れの例は、図35を参照して説明した収集手続きの第1の例に係る概略的な流れの例と同様である。
 -要求メッセージの内容
 収集手続きの第6の例に係る要求メッセージは、図36を参照して説明した収集手続きの第1の例に係る要求メッセージの内容と同様である。
 -応答メッセージの内容
 図44は、収集手続きの第6の例に係る応答メッセージに含まれる情報要素(IE)を説明するための説明図である。図44を参照すると、応答メッセージは、個別のバックホール回線についてのバックホール情報(バックホール品質情報、等)を含む。例えば、応答メッセージは、エンティティYとエンティティWとの間のバックホール回線についてのバックホール情報と、エンティティWとエンティティZとの間のバックホール回線についてのバックホール情報とを含む。
 -まとめ
 上記第6の例では、上記バックホール回線は、複数の個別のバックホール回線の組合せである。そして、上記収集手続きは、上記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報を収集することを含む。
 これにより、例えば、バックホール回線に含まれる個別のバックホール回線の品質を考慮して、制御方式の適用をより適切に制御することが可能になる。また、例えば、個別のバックホール回線の品質に関する情報の収集し、これらの情報を組み合わせることにより、バックホール回線全体の品質に関する情報を収集することが可能になる。そのため、バックホール回線の品質に関する情報の収集に要する手間が少なくなり得る。
 (その他)
 なお、バックホール品質情報を収集する手法として、要求メッセージを個別のエンティティに送信する代わりに、要求メッセージをブロードキャストしてもよい。これにより、例えば、所望のバックホール品質情報をより素早く収集することが可能になる。
 また、要求メッセージの送信元のエンティティは、要求メッセージの送信後に、バックホール品質情報の収集のためのタイマを開始させてもよい。当該タイマには、所定の期限が設定される。当該期限内にいずれかの応答メッセージが受信されない場合には、例えば、上記エンティティは、バックホール品質情報の収集が失敗したと判定する。また、例えば、応答メッセージの送信元のエンティティがバックホール品質情報の収集を代行する場合には、要求メッセージの送信元のエンティティは、応答メッセージの内容から、上記タイマの期限の変更(例えば、延長)を行なってもよい。
 また、バックホール回線の品質の測定に関する要求メッセージ、及び/又は、バックホール回線の品質の測定に関する応答メッセージは、送信時刻を示す情報(タイムスタンプ)を含んでもよい。これにより、収集手続きにおいてもバックホール回線の品質を測定することが可能になる。
 <<5.制御方式の適用の制御>>
 続いて、図45~図57を参照して、制御方式の適用の制御について説明する。具体的には、制御方式の適用の決定、並びに、制御方式の適用及び実行について説明する。
 <5.1.制御方式の適用の決定>
 まず、図45を参照して、制御方式の適用の決定の具体例を説明する。上述したように、当該決定は、制御エンティティ100により行われる。
 (制御方式の適用の単位)
 上述したように、例えば、制御方式が適用される複数の通信ノードが、1つ以上のグループに分類され、当該1つ以上のグループごとに、上記制御方式の適用が制御される。
 上述したように、一例として、上記複数の通信ノードは、当該複数の通信ノードの位置の情報、及び、当該複数の通信ノードにより使用される無線リソースの情報に基づいて、1つ以上のグループに分類される。なお、上記複数の通信ノードは、当該複数の通信ノードに対応するバックホール品質情報にさらに基づいて、1つ以上のグループに分類されてもよい。
 なお、以降に説明する処理(指標の算出、制御方式の適用の決定)は、グループごとに行われる。
 (制御方式の適用の決定に用いる指標の算出)
 まず、制御方式の適用の対象となる2つ以上の通信ノード(即ち、グループ内の含まれる2つ以上の通信ノード)について、制御方式の適用の決定に用いる指標Tを算出する。一例として、バックホール回線の品質は、遅延時間であり、上記指標は、遅延時間に関する指標である。
 -指標の第1の例
 第1の例として、指標Tは、上記2つ以上の通信ノードに制御関連情報を提供するために用いられるバックホール回線の品質の中の最悪値と最良値との差分である。
 例えば、対象のバックホール回線のうちのバックホール回線iの品質をT、対象のバックホール回線のうちのバックホール回線jの品質をTとすると、指標Tは以下のように表される。
Figure JPOXMLDOC01-appb-M000001
 例えば、制御エンティティ100(例えば、MME41)から3つの実行エンティティ200(例えば、MeNB21)への3つのバックホール回線が対象のバックホール回線である場合に、これらのバックホール回線の品質をT、T、Tとする。この場合に、Tは、|T-T|、|T-T|及び|T-T|のうちの最大のものになる。
 このような指標Tを用いることにより、想定し得る最悪のケースに合わせて制御方式の適用を制御することになる。
 なお、上記指標は、必ずしも最悪値と最良値との差分でなくてもよい。例えば、統計上、最良値及び最悪値を除外することが望ましい場合もあるので、そのような場合には、例えば、m番目に悪い値とn番目に良好な値との差分であってもよい。当該m、nについては、指標Tを算出する通信ノード(例えば、制御エンティティ100)により予め決められてもよく、又は、通信システム1内の他の通信ノードにより指定されてもよい。
 また、上記指標は、最悪値と最良値との差分ではなく、最悪値であってもよい。この場合にも、想定し得る最悪のケースに合わせて制御方式の適用を制御することになる。
 -指標の第2の例
 第2の例として、指標Tは、上記2つ以上の通信ノードに制御関連情報を提供するために用いられるバックホール回線の品質と基準値(reference value)との差分の平均(又はばらつき(例えば、標準偏差))であってもよい。
 あるいは、指標Tは、バックホール回線の品質の統計情報(例えば、平均値、標準偏差、等)であってもよい。
 一例として、指標Tが、バックホール回線の品質の平均値である場合に、対象のバックホール回線の数をN、対象のバックホール回線のうちのバックホール回線iの品質をTとすると、指標Tは、例えば以下のように表される。
Figure JPOXMLDOC01-appb-M000002
 別の例として、指標Tが、バックホール回線の品質の標準偏差である場合には、対象のバックホール回線の数をN、対象のバックホール回線のうちのバックホール回線iの品質をTとすると、指標Tは、例えば以下のように表される。
Figure JPOXMLDOC01-appb-M000003
 (制御方式の適用の決定の具体例)
 -干渉制御方式
 例えば、上記制御方式は、干渉制御方式を含む。より具体的には、例えば、上記制御方式は、複数の干渉制御方式(例えば、周波数ドメインICIC、時間ドメインICIC、BF(ヌルステアリング)、等)を含む。この場合の制御方式の適用の決定を以下に説明する。
 例えば、制御エンティティ100(適用制御部137)は、上記バックホール品質情報に基づいて、複数の干渉制御方式のうちの1つの干渉制御方式を選択する。より具体的には、例えば、制御エンティティ100(適用制御部137)は、上記バックホール品質情報から算出される指標Tに基づいて、複数の干渉制御方式のうちの1つの干渉制御方式を選択する。以下、この点について、図45を参照して具体例を説明する。
 図45は、干渉制御方式の適用の決定の具体例を説明するための説明図である。図45を参照すると、各干渉制御方式とその適用条件が示されている。例えば、指標T(例えば、遅延時間又は遅延時間のばらつき)が閾値TD1を超える場合には、バックホール回線での遅延の影響を受けにくい周波数ドメインICICの適用が決定される。また、例えば、指標Tが閾値TD4以下であれば、バックホール回線での遅延の影響を受けやすいが無線リソースの高い利用効率を伴うBF(ヌルステアリング)の適用が決定される。このように、例えば、指標Tに対応する干渉制御方式が選択され、選択された干渉制御方式の適用が決定される。
 その後、第2のステップとして、制御エンティティ100(適用制御部137)は、各バックホール回線を介して、干渉制御方式が適用される各通信ノード(実行エンティティ200)に、当該干渉制御方式での制御に関する情報(例えば、制御コマンド)を提供する。
 以上のように、干渉制御方式が選択され、選択される干渉制御方式が適用される。これにより、バックホール回線の品質に適した干渉制御を行うことが可能になる。
 -多地点協調(CoMP)送受信
 例えば、上記制御方式は、CoMP送受信を含む。この場合の制御方式の適用の決定を以下に説明する。
 例えば、制御エンティティ100(適用制御部137)は、上記バックホール品質情報に基づいて、CoMP送受信を適用するかを決定する。例えば、指標Tが、ある閾値を超える場合(即ち、バックホール回線間での遅延時間(又は遅延時間のバラつき)が大きい場合)に、CoMP送受信を適用しないことが決定される。また、指標Tが、ある閾値を超えない場合(即ち、バックホール回線間での遅延時間(又は遅延時間のバラつき)が大きくない場合)に、CoMP送受信を適用することが決定される。
 以上のように、CoMP送受信を適用するかが決定される。これにより、例えば、バックホール回線の品質から、CoMP送受信が可能な場合に限り、CoMP送受信が行われる。
 <5.2.制御方式の適用及び実行>
 次に、図46~図57を参照して、制御方式の適用及び実行の具体例を説明する。上述したように、当該適用は、制御エンティティ100により行われ、当該実行は、実行エンティティ200により行われる。
 (制御方式間の共通事項)
 まず、制御方式の適用及び実行について、制御方式(例えば、周波数ドメインICIC、時間ドメインICIC、BF、CoMP送受信)間で共通の事項を説明する。
 -処理の流れ
 --ダウンリンク(DL)での制御方式の適用
 図46は、ダウンリンクでの制御方式の適用及び実行の処理の流れを説明するための説明図である。
 まず、制御エンティティ100は、実行エンティティ200に制御コマンドを送信する(S601)。当該制御コマンドは、制御方式の種類を示す情報、制御方式での制御に必要なパラメータ等を含む。制御方式ごとの制御コマンドの内容については後に詳細に説明する。すると、実行エンティティ200は、コマンド応答メッセージを送信する(S603)。当該コマンド応答メッセージにより、制御エンティティ100は、制御コマンドの受信状況を確認できる。
 そして、実行エンティティ200は、制御コマンドに基づいて、当該制御コマンドにより示される制御方式での制御のための動作パラメータを変更する(S605)。これにより、制御方式での制御が行われる。そして、実行エンティティ200は、ダウンリンクで制御情報(スケジューリング情報、MCS(Modulation and Coding Set)、プリコーダ情報、等)及びデータを送信する(S607)。例えば、上記制御情報は、PDCCHにおいて送信され、上記データは、PDSCHにおいて送信される。その後、UE31は、実行エンティティ200にACK/NACKを送信する(S609)。
 なお、制御方式がCoMP送受信である場合には、少なくとも実行エンティティ200による制御情報及びデータの送信(S607)より前に、CoMP送受信を行う実行エンティティ200へのデータの送信がさらに行われ得る。
 --アップリンク(UL)での制御方式の適用
 図47は、アップリンクでの制御方式の適用及び実行の処理の流れを説明するための説明図である。
 まず、制御エンティティ100は、実行エンティティ200に制御コマンドを送信する(S621)。すると、実行エンティティ200は、コマンド応答メッセージを送信する(S623)。
 そして、実行エンティティ200は、制御コマンドに基づいて、当該制御コマンドにより示される制御方式での制御のための動作パラメータを変更する(S625)。これにより、制御方式での制御が行われる。そして、実行エンティティ200は、ダウンリンクで制御情報(スケジューリング情報、MCS(Modulation and Coding Set)、プリコーダ情報、等)を送信する(S627)。例えば、当該制御情報は、PDCCHにおいて送信される。その後、UE31は、アップリンクのスケジューリング情報に従って、アップリンクでデータを送信する(S629)。例えば、当該データは、PUSCHにおいて送信される。その後、実行エンティティ200は、UE31にACK/NACKを送信する(S631)。
 なお、実行エンティティ200での動作パラメータの変更の代わりに、又は当該変更と共に、UE31での動作パラメータの変更が行われてもよい。この場合に、制御エンティティ200は、動作パラメータをUE31へ送信し、UE31は、当該動作パラメータを受信し、設定してもよい。一例として、UE31によるBF(ヌルステアリング)が行われる場合に、当該BFのためのパラメータ(例えば、アンテナ重み係数、送信電力、等)がUE31へ送信され、UE31により設定されてもよい。
 -コマンド応答メッセージの内容
 図48は、制御コマンドに対するコマンド応答メッセージの内容の例を説明するための説明図である。図48を参照すると、コマンド応答メッセージは、当該コマンド応答メッセージの送信元(実行エンティティ200)、当該コマンド実行メッセージの宛先(制御エンティティ100)を含む。また、コマンド応答メッセージは、ACK又はNACKを含む。また、コマンド応答メッセージは、NACKを含む場合に、NACKの理由を含む。制御エンティティ100は、当該理由をその後の対応に役立てることが可能になる。
 -理由のカテゴリ
 図49は、コマンド応答メッセージに含まれるNACKの理由のカテゴリの例を説明するための説明図である。図49を参照すると、NACKの理由のカテゴリとして、例えば、通信誤りによるエラー検出(インデックス0)、制御方式への未対応(インデックス1)、制御パラメータの量が範囲外(インデックス2)及び制御開始時間が範囲外(インデックス3)、その他(インデックス4)がある。
 (周波数ドメインICICに関する事項)
 次に、周波数ドメインICICに関する事項を説明する。
 -コマンド応答メッセージの内容
 図50は、周波数ドメインICICの制御コマンドの内容の例を説明するための説明図である。
 図50を参照すると、まず、制御コマンドは、当該制御コマンドの送信元(制御エンティティ100)、当該制御コマンドの宛先(実行エンティティ200)を含む。
 また、制御コマンドは、制御方式を識別するための制御方式クラスIDを含む。この場合には、制御方式クラスIDは、周波数ドメインICICのクラスIDである。
 また、制御コマンドは、いつ制御コマンドを適用するか(例えば、制御方式での制御の実行を開始するタイミング)を示す情報を含む。また、制御コマンドは、周波数ドメインICICで使用すべき周波数リソース(RB、RBグループ、CC、又はそれらのセット、等)の情報を含む。実行エンティティ200は、制御コマンドにより示されるタイミング以降に、制御コマンドにより示される周波数リソースの範囲でのリソース割当て(スケジューリング)を行うように、動作パラメータを変更する。その結果、周波数ドメインICICが実現される。
 なお、FFRが用いられる場合には、実行エンティティ200は、制御コマンドにより示される周波数リソース以外の周波数リソースのリソース割当て(スケジューリング)を行ってもよい。また、制御コマンドは、周波数ドメインICICで使用すべき周波数リソースを示す情報の代わりに、周波数ドメインICICで使用すべきでない周波数リソースを示す情報を含んでもよい。この場合には、実行エンティティ200は、制御コマンドにより示されるタイミング以降に、制御コマンドにより示される周波数リソース以外の周波数リソースの範囲でのリソース割当て(スケジューリング)を行うように、動作パラメータを変更してもよい。
 また、FFRが用いられる場合には、制御コマンドは、電力量を示す情報を含む。
 -実行エンティティの処理の流れ
 図51A及び図51Bは、周波数ドメインICICが適用される場合の実行エンティティ200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、制御エンティティ100からの制御コマンドの受信後に実行される。
 実行エンティティ200は、FFRに対応しているか否かをチェックする(S701)。また、実行エンティティ200は、ICICのために使用する周波数リソースをチェックする(S703)。その後、実行エンティティ200は、ICICを考慮したスケジューリングを行う(S705)。また、実行エンティティ200は、送信電力、MCS、データサイズ等の設定を行う(S707)そして、実行エンティティ200は、通信相手(UE31)に提供する制御情報を生成する(S709)。
 そして、ダウンリンクでICICが実行される場合(S711:Yes)、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信しつつ(S713)、データをデータチャネル(例えば、PDSCH)で送信する(S715)。その後、実行エンティティ200は、データ送信に対するACK/NACKを待つ(S717)。
 一方、アップリンクでICICが実行される場合(S711:No)、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信し(S719)、アップリンクで送信されるデータをデータチャネル(PDSCH)で待つ(S721)。そして、実行エンティティ200は、データが受信されると(S723:Yes)データを復号する(S725)。さらに、実行エンティティ200は、復号に成功すると(S727:Yes)ACKを送信し(S729)、復号に失敗すると(S727:No)NACKを送信する(S731)。なお、実行エンティティ200は、データが受信されない場合(S723:No)も、NACKを送信する(S731)。
 (時間ドメインICICに関する事項)
 次に、時間ドメインICICに関する事項を説明する。
 -コマンド応答メッセージの内容
 図52は、時間ドメインICICの制御コマンドの内容の例を説明するための説明図である。
 図52を参照すると、図50を参照して説明した周波数ドメインICICの制御コマンドと同様に、制御コマンドの送信元、制御コマンドの宛先、制御方式クラスID、及び、いつ制御コマンドを適用するかを示す情報を含む。この例では、制御方式クラスIDは、時間ドメインICICのクラスIDである。
 とりわけ時間ドメインICICでは、制御コマンドは、時間ドメインICICで使用すべき時間リソース(サブフレーム、サブフレームグループ、無線フレーム、又はそれらのセット、等)の情報を含む。実行エンティティ200は、制御コマンドにより示されるタイミング以降に、制御コマンドにより示される時間リソースの範囲でのリソース割当て(スケジューリング)を行うように、動作パラメータを変更する。その結果、時間ドメインICICが実現される。
 なお、Reduced Power ABSが用いられる場合には、実行エンティティ200は、制御コマンドにより示される時間リソース以外の時間リソースのリソース割当て(スケジューリング)を行ってもよい。また、制御コマンドは、時間ドメインICICで使用すべき時間リソースを示す情報の代わりに、時間ドメインICICで使用すべきでない時間リソースを示す情報を含んでもよい。この場合には、実行エンティティ200は、制御コマンドにより示されるタイミング以降に、制御コマンドにより示される時間リソース以外の時間リソースの範囲でのリソース割当て(スケジューリング)を行うように、動作パラメータを変更してもよい。
 また、Reduced Power ABSが用いられる場合には、制御コマンドは、電力量を示す情報を含む。
 -実行エンティティの処理の流れ
 図53A及び図53Bは、時間ドメインICICが適用される場合の実行エンティティ200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、制御エンティティ100からの制御コマンドの受信後に実行される。
 実行エンティティ200は、Reduced Power ABSに対応しているか否かをチェックする(S751)。また、実行エンティティ200は、ICICのために使用する時間リソースをチェックする(S753)。その後、実行エンティティ200は、ICICを考慮したスケジューリングを行う(S755)。また、実行エンティティ200は、送信電力、MCS、データサイズ等の設定を行う(S757)。そして、実行エンティティ200は、通信相手(UE31)に提供する制御情報を生成する(S759)。
 そして、ダウンリンクでICICが実行される場合(S761:Yes)、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信しつつ(S763)、データをデータチャネル(例えば、PDSCH)で送信する(S765)。その後、実行エンティティ200は、データ送信に対するACK/NACKを待つ(S767)。
 一方、アップリンクでICICが実行される場合(S761:No)、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信し(S769)、アップリンクで送信されるデータをデータチャネル(PDSCH)で待つ(S771)。そして、実行エンティティ200は、データが受信されると(S773:Yes)データを復号する(S775)。さらに、実行エンティティ200は、復号に成功すると(S777:Yes)ACKを送信し(S779)、復号に失敗すると(S777:No)NACKを送信する(S781)。なお、実行エンティティ200は、データが受信されない場合(S773:No)も、NACKを送信する(S781)。
 (ビームフォーミング(ヌルステアリング)に関する事項)
 次に、BF(ヌルステアリング)に関する事項を説明する。
 -コマンド応答メッセージの内容
 図54は、時間ドメインICICの制御コマンドの内容の例を説明するための説明図である。
 図52を参照すると、図50を参照して説明した周波数ドメインICICの制御コマンドと同様に、制御コマンドの送信元、制御コマンドの宛先、制御方式クラスID、及び、いつ制御コマンドを適用するかを示す情報を含む。この例では、制御方式クラスIDは、BFのクラスIDである。
 とりわけBFでは、制御コマンドは、使用すべき重み係数(又はそのセット)を示す情報を含む。実行エンティティ200は、制御コマンドにより示されるタイミング以降に、制御コマンドにより示される重み係数でのBFを行うように、動作パラメータを変更する。その結果、BF(ヌルステアリング)が実現される。
 なお、制御コマンドは、アンテナの重み係数の代わりに、又は、当該重み係数とともに、BFによりカバーすべき角度範囲を示す情報を含んでもよい。
 -実行エンティティの処理の流れ
 図55は、BF(ヌルステアリング)が適用される場合の実行エンティティ200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、制御エンティティ100からの制御コマンドの受信後に実行される。
 実行エンティティ200は、制御コマンドからアンテナの重み係数をチェックし(S801)、アンテナ重みを設定する(S803)。また、実行エンティティ200は、スケジューリングを行い(S805)、送信電力、MCS、データサイズ等の設定を行う(S807)。そして、実行エンティティ200は、通信相手(UE31)に提供する制御情報を生成する(S809)。
 そして、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信しつつ(S811)、データをデータチャネル(例えば、PDSCH)で送信する(S813)。その後、実行エンティティ200は、データ送信に対するACK/NACKを待つ(S815)。
 なお、図55を参照して、ダウンリンクで実行エンティティ200によるBF(ヌルステアリング)が行われる例を説明したが、アップリンクでUE31によるBF(ヌルステアリング)が行われてもよい。この場合に、実行エンティティ200は、各種パラメータ(例えば、アンテナの重み係数、送信電力、等)をUE31へ送信し、UE31は、当該各種パラメータを受信し、設定してもよい。そして、UE31は、制御情報に従って、データをデータチャネルで送信してもよい。これにより、UE31は、BF(ヌルステアリング)を行いつつ、データを送信することができる。
 (CoMP送受信に関する事項)
 次に、CoMP送受信に関する事項を説明する。
 -コマンド応答メッセージの内容
 図56は、CoMP送受信の制御コマンドの内容の例を説明するための説明図である。
 図56を参照すると、図50を参照して説明した周波数ドメインICICの制御コマンドと同様に、制御コマンドの送信元、制御コマンドの宛先、制御方式クラスID、及び、いつ制御コマンドを適用するかを示す情報を含む。この例では、制御方式クラスIDは、CoMP送受信のクラスIDである。
 とりわけCoMP送受信では、制御コマンドは、CoMP送受信に関わる実行エンティティ200のID、及び、CoMP送受信が適用されるUEのIDを含む。
 また、とりわけCoMP送受信では、制御コマンドは、使用すべき周波数リソース(RB、RBのセット、又はそれらのセット、等)及び使用すべき時間リソース(サブフレーム、サブフレームグループ、又はそれらのセット、等)の情報を含む。なお、周波数リソース及び時間リソースについては、制御エンティティ100が決定するのではなく、実行エンティティ200が後で決定してもよい。
 また、制御コマンドは、使用すべきプリコーダのIDを含む。
 -実行エンティティの処理の流れ
 図57A及び図57Bは、CoMP送受信が適用される場合の実行エンティティ200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、制御エンティティ100からの制御コマンドの受信後に実行される。
 実行エンティティ200は、CoMP送受信に関わる他のエンティティをチェックする(S851)。そして、実行エンティティ200は、CoMP送受信を適用すべきUEが指定されていない場合(S853:No)、CoMP送受信を適用すべきUEを選択する(S855)。
 また、実行エンティティ200は、CoMP送受信を適用すべきUEへのリソースが指定されている場合(S857:Yes)、リソースの指示に従ってスケジューリングを行う(S859)。一方、実行エンティティ200は、CoMP送受信を適用すべきUEへのリソースが指定されていない場合(S857:No)、通常通りスケジューリングを行う(S861)。また、実行エンティティ200は、送信電力、MCS、データサイズ等の設定を行う(S863)。
 また、必要に応じて、実行エンティティ200は、CoMP送受信に関連する制御情報(CoMP送受信を適用すべきUE、スケジューリング情報、MCS、データサイズ、等)を、CoMP送受信に関わる他のエンティティと共有する(S865)。
 また、実行エンティティ200は、通信相手(UE31)に提供する制御情報を生成する(S867)。
 また、実行エンティティ200は、CoMP送受信に関わる他のエンティティと送信データを共有する(S869)。
 その後、実行エンティティ200は、制御情報を制御チャネル(例えば、PDCCH)で送信しつつ(S871)、データをデータチャネル(例えば、PDSCH)で送信する(S873)。その後、実行エンティティ200は、データ送信に対するACK/NACKを待つ(S875)。
 なお、図57A及び図57Bを参照して、ダウンリンクでのCoMP送受信が行われる例を説明したが、アップリンクでのCoMP送受信が行われてもよい。即ち、UE31により送信されるデータが、実行エンティティ200及び他のエンティティの両方により受信され、合成されてもよい。この場合に、実行エンティティ200及び他の実行エンティティは、送信データを共有し、協調して送信する代わりに、UE31により送信されるデータを共に受信し、受信されたデータを実行エンティティ200及び他の実行エンティティの一方で合成してもよい。これにより、アップリンクでのCoMP送受信を行うことが可能になる。
 <<6.その他>>
 続いて、図58~図65を参照して、動作タイミングの調整、バックホール品質情報のフィルタリング、及び制御コマンドの適用時刻の設定を説明する。
 <6.1.動作タイミングの調整>
 まず、図58~図65を参照して、動作タイミングの調整を説明する。
 上述したように、バックホール回線の品質は、非常に重要な事項であり、制御方式の適用の決定にも大きな影響を与える。そのため、実行エンティティ200における動作タイミングを調整することは、バックホール回線の品質による影響の軽減、及び、制御方式の適用における優位性の向上のために有効である。
 例えば、eNBのような基地局での動作タイミングは、例えば、GPS(Global Positioning System)の時刻等を利用して調整されることがある。しかし、バックホール回線の品質に応じて動作タイミングが調整されることはなかった。上述したように、通信システムのオペレータがバックホール回線を容易する場合にはそれほど問題が生じなかったためである。
 -動作タイミングの調整手続き
 図58は、実行エンティティ200の動作タイミングの調整手続きの概略的な流れの一例を示すシーケンス図である。
 制御エンティティ100は、動作タイミングの調整のための制御コマンドを送信し、実行エンティティ200は、当該制御コマンドを受信する(S901)。そして、実行エンティティ200は、上記制御コマンドに対する応答メッセージを送信する(S903)。
 そして、実行エンティティ200は、システム情報変更の通知を行い(S905)、その後、変更されたシステム情報を通知する(S907)。
 その後、実行エンティティ200は、所定のタイミングで動作タイミングを調整し(S909)、UE31は、調整後の動作タイミングに同期する(S911)。
 -制御コマンドの内容
 図59は、動作タイミングの調整のための制御コマンドに含まれる情報要素(IE)を説明するための説明図である。図59を参照すると、制御コマンドは、制御コマンドの送信元及び宛先の情報を含む。そして、制御コマンドは、動作タイミングの調整量の情報と、いつ調整を開始するか(調整開始のタイミング)の情報とを含む。
 -応答コマンドの内容
 図60は、動作タイミングの調整のための制御コマンドに対する応答メッセージに含まれる情報要素(IE)を説明するための説明図である。図60を参照すると、応答メッセージは、応答メッセージの送信元及び宛先の情報を含む。そして、応答メッセージは、ACK/NACKを含む。さらに、応答メッセージは、NACKを含む場合に、NACKの理由を含む。このような理由の情報により、制御エンティティ100は、動作タイミングの調整が可能になるタイミング、動作タイミングの調整可能量等の情報を知得し、再度調整を試みることが可能になり得る。以下、上記理由のカテゴリについて、図61を参照して具体例を説明する。
 図61は、動作タイミングの調整のための制御コマンドに対する応答メッセージに含まれるNACKの理由のカテゴリの例を説明するための説明図である。図61を参照すると、NACKの理由のカテゴリとして、例えば、通信誤りによるエラー検出(インデックス0)、動作タイミングの調整への未対応(インデックス1)、動作タイミングの調整量が範囲外(インデックス2)及び動作タイミングの調整開始時間が範囲外(インデックス3)、その他(インデックス4)がある。
 -システム情報変更の通知の内容
 図62は、システム情報変更の通知に含まれる動作タイミングの調整に関する情報要素(IE)を説明するための説明図である。図62を参照すると、システム情報変更の通知は、動作タイミングが調整されることを示すためのフラグと、当該調整に関する情報を含むシステム情報のスケジューリング情報とを含む。これにより、UE31は、動作タイミングが調整されたか否か、及び、調整された場合に動作タイミングの調整に関する情報がいつ送信されるかを知得することができる。
 -システム情報の内容
 図63は、システム情報に含まれる動作タイミングの調整に関する情報要素(IE)を説明するための説明図である。図63を参照すると、システム情報は、制御メッセージの送信元の情報、調整される動作タイミングの量の情報、及び、いつ動作タイミングが調整されるか(動作タイミングの調整のタイミング)の情報を含む。
 -動作タイミングの調整手続きにおける実行エンティティの処理
 図64は、動作タイミングの調整手続きにおける実行エンティティ200の処理の概略的な流れの一例を示すシーケンス図である。
 実行エンティティ200は、動作タイミングの調整のための制御コマンドを受信するまで通常に動作し(S921)、制御コマンドを受信すると(S923:Yes)、制御コマンドをチェックし(S925)、当該制御コマンドに対する応答メッセージを送信する(S927)。
 そして、実行エンティティ200は、システム情報変更の通知を行い(S929)、その後、動作タイミングの調整に関する情報要素を含むシステム情報を通知する(S931)。また、実行エンティティ200は、所定のタイミングまで既存の動作タイミングを維持し(S933)、所定のタイミングで動作タイミングを調整する(S935)。そして、処理は終了する。
 -動作タイミングの調整手続きにおけるUEの動作
 図65は、動作タイミングの調整手続きにおけるUE31の処理の概略的な流れの一例を示すシーケンス図である。
 UE31は、システム情報変更の通知を受信すると、当該通知をチェックし(S961)、動作タイミングの調整があるかを判定する(S963)。動作タイミングの調整がなければ処理は終了する。
 動作タイミングの調整がある場合には、UE31は、システム情報のスケジューリング情報をチェックし(S965)、その後システム情報が通知されると、当該システム情報を取得する(S967)。そして、UE31は、所定のタイミングで調整後の動作タイミングに同期する(S969)。そして、処理は終了する。
 <6.2.バックホール品質情報のフィルタリング>
 次に、バックホール品質情報のフィルタリングを説明する。
 時間の経過により、あるエンティティ(例えば、制御エンティティ100、実行エンティティ200、等)には、同一のバックホール回線についてのバックホール品質情報について複数のサンプルが蓄積される可能性がある。そのため、当該複数のサンプルの処理により、バックホール回線についてのバックホール品質情報を平滑化することも可能である。
 例えば、バックホール品質情報はバックホール回線の品質(例えば、遅延時間)の情報を含む。そして、バックホール回線iの品質のk番目のサンプルをTi,kとし、サンプル数をNsampleとすると、平滑化後のバックホール品質Tは、以下のように平均値で表され得る。
Figure JPOXMLDOC01-appb-M000004
 なお、サンプル数Nsampleは、サンプルを有するエンティティにより決定されてもよく、又は、いずれかのエンティティ(例えば、制御エンティティ100)により指定されてもよい。
 平均値とは別の例として、フィルタリング係数を利用することも可能である。例えば、バックホール回線iの品質のk番目のサンプルをTi,kとし、フィルタリング係数をaとすると、サンプル数nの場合のバックホール品質T(n)は、以下のように表され得る。
Figure JPOXMLDOC01-appb-M000005
 なお、フィルタリング係数をaも、サンプルを有するエンティティにより決定されてもよく、又は、いずれかのエンティティ(例えば、制御エンティティ100)により指定されてもよい。また、フィルタリング係数aは、以下のように定義され、変数kが、決定され又は指定されてもよい。
Figure JPOXMLDOC01-appb-M000006
 さらに別の例として、複数のサンプルを用いて処理を行わずに、以下のように、最新のサンプルをバックホール回線の品質として用いてもよい。
Figure JPOXMLDOC01-appb-M000007
 なお、これは、平均値の例でサンプル数Nsampleが1であるケース、及び、フィルタリング係数をaを用いる例でフィルタリング係数aが1であるケースに相当する。
 例えば、以上のようなバックホール回線の品質の情報が、バックホール品質情報に含まれる。
 <6.3.制御コマンドの適用タイミングの設定>
 次に、制御コマンドの適用時刻の設定を説明する。
 上述したように、例えば、制御コマンドには、情報要素として、いつ制御コマンドを適用するか(例えば、制御方式での制御の実行を開始するタイミング)を示す情報が含まれる。この情報は、例えば、制御エンティティ100により設定される。
 一例として、上記情報は、制御対象となる実行エンティティ200(例えば、同一のグループに分類された実行エンティティ200)と、制御コマンドを送信する制御エンティティ100との間のバックホール回線の品質(例えば、遅延時間)に基づいて、設定され得る。
 例えば、制御方式での制御の実行を開始するタイミングは、制御対象となる実行エンティティ200と制御エンティティ100との間の複数のバックホール回線の品質(例えば、遅延時間)のうちの最悪の品質(最大の遅延時間)に基づいて、設定される。一例として、制御方式での制御の実行を開始するタイミングは、制御コマンドの送信予定時刻に上記最大の遅延時間を加算した結果として得られる時刻である。
 このように、バックホール回線の品質に応じて、制御コマンドの適用のタイミングが設定することにより、制御対象となる実行エンティティ200の全てに制御方式での制御を実行させることが可能になる。
 <<8.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、エンティティ(制御エンティティ100又は実行エンティティ200)は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、エンティティ(制御エンティティ100又は実行エンティティ200)の少なくとも一部の構成要素は、サーバに搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)において実現されてもよい。
 また、例えば、エンティティ(制御エンティティ100又は実行エンティティ200)は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、エンティティ(制御エンティティ100又は実行エンティティ200)は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。エンティティ(制御エンティティ100又は実行エンティティ200)は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、実行エンティティ200は、RRHであってもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、実行エンティティ200として動作してもよい。さらに、上記エンティティの少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、実行エンティティ200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、実行エンティティ200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、実行エンティティ200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 (第1の応用例)
 図66は、本開示に係る技術が適用され得るサーバ1100の概略的な構成の一例を示すブロック図である。サーバ1100は、プロセッサ1101、メモリ1102、ストレージ1103、ネットワークインタフェース1104及びバス1106を備える。
 プロセッサ1101は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、サーバ1100の各種機能を制御する。メモリ1102は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ1101により実行されるプログラム及びデータを記憶する。ストレージ1103は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。
 ネットワークインタフェース1104は、サーバ1100を有線通信ネットワーク1105に接続するための有線通信インタフェースである。有線通信ネットワーク1105は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。
 バス1106は、プロセッサ1101、メモリ1102、ストレージ1103及びネットワークインタフェース1104を互いに接続する。バス1106は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。
 図66に示したサーバ1100において、図16を参照して説明した処理部130に含まれる1つ以上の構成要素(品質測定部131、情報収集部133、情報取得部135及び/又は適用制御部137)は、プロセッサ1101において実装されてもよい。一例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)がサーバ1100にインストールされ、プロセッサ1101が当該プログラムを実行してもよい。別の例として、サーバ1100は、プロセッサ1101及びメモリ1102を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムをメモリ1102に記憶し、当該プログラムをプロセッサ1101により実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてサーバ1100又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるための上記プログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図17を参照して説明した処理部250に含まれる1つ以上の構成要素(品質測定部251、情報収集部253、情報取得部255、情報提供部257、及び/又は通信制御部259)も、処理部130に含まれる上記1つ以上の構成要素と同様である。
 (第2の応用例)
 図67は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB1200は、1つ以上のアンテナ1210、及び基地局装置1220を有する。各アンテナ1210及び基地局装置1220は、RFケーブルを介して互いに接続され得る。
 アンテナ1210の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置1220による無線信号の送受信のために使用される。eNB1200は、図67に示したように複数のアンテナ1210を有し、複数のアンテナ1210は、例えばeNB1200が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図67にはeNB1200が複数のアンテナ1210を有する例を示したが、eNB1200は単一のアンテナ1210を有してもよい。
 基地局装置1220は、コントローラ1221、メモリ1222、ネットワークインタフェース1223及び無線通信インタフェース1225を備える。
 コントローラ1221は、例えばCPU又はDSPであってよく、基地局装置1220の上位レイヤの様々な機能を動作させる。例えば、コントローラ1221は、無線通信インタフェース1225により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース1223を介して転送する。コントローラ1221は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ1221は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ1222は、RAM及びROMを含み、コントローラ1221により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース1223は、基地局装置1220をコアネットワーク1224に接続するための通信インタフェースである。コントローラ1221は、ネットワークインタフェース1223を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB1200と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース1223は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース1223が無線通信インタフェースである場合、ネットワークインタフェース1223は、無線通信インタフェース1225により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース1225は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ1210を介して、eNB1200のセル内に位置する端末に無線接続を提供する。無線通信インタフェース1225は、典型的には、ベースバンド(BB)プロセッサ1226及びRF回路1227などを含み得る。BBプロセッサ1226は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ1226は、コントローラ1221の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ1226は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ1226の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置1220のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路1227は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ1210を介して無線信号を送受信する。
 無線通信インタフェース1225は、図67に示したように複数のBBプロセッサ1226を含み、複数のBBプロセッサ1226は、例えばeNB1200が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース1225は、図67に示したように複数のRF回路1227を含み、複数のRF回路1227は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図67には無線通信インタフェース1225が複数のBBプロセッサ1226及び複数のRF回路1227を含む例を示したが、無線通信インタフェース1225は単一のBBプロセッサ1226又は単一のRF回路1227を含んでもよい。
 図67に示したeNB1200において、図17を参照して説明した処理部250に含まれる1つ以上の構成要素(品質測定部251、情報収集部253、情報取得部255、情報提供部257、及び/又は通信制御部259)は、無線通信インタフェース1225において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ1221において実装されてもよい。一例として、eNB1200は、無線通信インタフェース1225の一部(例えば、BBプロセッサ1226)若しくは全部、及び/又コントローラ1221を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB1200にインストールされ、無線通信インタフェース1225(例えば、BBプロセッサ1226)及び/又コントローラ1221が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB1200、基地局装置1220又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図16を参照して説明した処理部130に含まれる1つ以上の構成要素(品質測定部131、情報収集部133、情報取得部135及び/又は適用制御部137)も、処理部250に含まれる上記1つ以上の構成要素と同様である。
 (第3の応用例)
 図68は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB1230は、1つ以上のアンテナ1240、基地局装置1250、及びRRH1260を有する。各アンテナ1240及びRRH1260は、RFケーブルを介して互いに接続され得る。また、基地局装置1250及びRRH1260は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ1240の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH1260による無線信号の送受信のために使用される。eNB1230は、図68に示したように複数のアンテナ1240を有し、複数のアンテナ1240は、例えばeNB1230が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図68にはeNB1230が複数のアンテナ1240を有する例を示したが、eNB1230は単一のアンテナ1240を有してもよい。
 基地局装置1250は、コントローラ1251、メモリ1252、ネットワークインタフェース1253、無線通信インタフェース1255及び接続インタフェース1257を備える。コントローラ1251、メモリ1252及びネットワークインタフェース1253は、図67を参照して説明したコントローラ1221、メモリ1222及びネットワークインタフェース1223と同様のものである。
 無線通信インタフェース1255は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH1260及びアンテナ1240を介して、RRH1260に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース1255は、典型的には、BBプロセッサ1256などを含み得る。BBプロセッサ1256は、接続インタフェース1257を介してRRH1260のRF回路1264と接続されることを除き、図67を参照して説明したBBプロセッサ1226と同様のものである。無線通信インタフェース1255は、図68に示したように複数のBBプロセッサ1256を含み、複数のBBプロセッサ1256は、例えばeNB1230が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図68には無線通信インタフェース1255が複数のBBプロセッサ1256を含む例を示したが、無線通信インタフェース1255は単一のBBプロセッサ1256を含んでもよい。
 接続インタフェース1257は、基地局装置1250(無線通信インタフェース1255)をRRH1260と接続するためのインタフェースである。接続インタフェース1257は、基地局装置1250(無線通信インタフェース1255)とRRH1260とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH1260は、接続インタフェース1261及び無線通信インタフェース1263を備える。
 接続インタフェース1261は、RRH1260(無線通信インタフェース1263)を基地局装置1250と接続するためのインタフェースである。接続インタフェース1261は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース1263は、アンテナ1240を介して無線信号を送受信する。無線通信インタフェース1263は、典型的には、RF回路1264などを含み得る。RF回路1264は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ1240を介して無線信号を送受信する。無線通信インタフェース1263は、図68に示したように複数のRF回路1264を含み、複数のRF回路1264は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図68には無線通信インタフェース1263が複数のRF回路1264を含む例を示したが、無線通信インタフェース1263は単一のRF回路1264を含んでもよい。
 図68に示したeNB1230において、図17を参照して説明した処理部250に含まれる1つ以上の構成要素(品質測定部251、情報収集部253、情報取得部255、情報提供部257、及び/又は通信制御部259)は、無線通信インタフェース1255及び/又は無線通信インタフェース1263において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ1251において実装されてもよい。一例として、eNB1230は、無線通信インタフェース1255の一部(例えば、BBプロセッサ1256)若しくは全部、及び/又コントローラ1251を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB1230にインストールされ、無線通信インタフェース1255(例えば、BBプロセッサ1256)及び/又コントローラ1251が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB1230、基地局装置1250又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図16を参照して説明した処理部130に含まれる1つ以上の構成要素(品質測定部131、情報収集部133、情報取得部135及び/又は適用制御部137)も、処理部250に含まれる上記1つ以上の構成要素と同様である。
 (第4の応用例)
 図69は、本開示に係る技術が適用され得るスマートフォン1300の概略的な構成の一例を示すブロック図である。スマートフォン1300は、プロセッサ1301、メモリ1302、ストレージ1303、外部接続インタフェース1304、カメラ1306、センサ1307、マイクロフォン1308、入力デバイス1309、表示デバイス1310、スピーカ1311、無線通信インタフェース1312、1つ以上のアンテナスイッチ1315、1つ以上のアンテナ1316、バス1317、バッテリー1318及び補助コントローラ1319を備える。
 プロセッサ1301は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン1300のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ1302は、RAM及びROMを含み、プロセッサ1301により実行されるプログラム及びデータを記憶する。ストレージ1303は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース1304は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン1300へ接続するためのインタフェースである。
 カメラ1306は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ1307は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン1308は、スマートフォン1300へ入力される音声を音声信号へ変換する。入力デバイス1309は、例えば、表示デバイス1310の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス1310は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン1300の出力画像を表示する。スピーカ1311は、スマートフォン1300から出力される音声信号を音声に変換する。
 無線通信インタフェース1312は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース1312は、典型的には、BBプロセッサ1313及びRF回路1314などを含み得る。BBプロセッサ1313は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路1314は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ1316を介して無線信号を送受信する。無線通信インタフェース1312は、BBプロセッサ1313及びRF回路1314を集積したワンチップのモジュールであってもよい。無線通信インタフェース1312は、図69に示したように複数のBBプロセッサ1313及び複数のRF回路1314を含んでもよい。なお、図69には無線通信インタフェース1312が複数のBBプロセッサ1313及び複数のRF回路1314を含む例を示したが、無線通信インタフェース1312は単一のBBプロセッサ1313又は単一のRF回路1314を含んでもよい。
 さらに、無線通信インタフェース1312は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ1313及びRF回路1314を含んでもよい。
 アンテナスイッチ1315の各々は、無線通信インタフェース1312に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ1316の接続先を切り替える。
 アンテナ1316の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース1312による無線信号の送受信のために使用される。スマートフォン1300は、図69に示したように複数のアンテナ1316を有してもよい。なお、図69にはスマートフォン1300が複数のアンテナ1316を有する例を示したが、スマートフォン1300は単一のアンテナ1316を有してもよい。
 さらに、スマートフォン1300は、無線通信方式ごとにアンテナ1316を備えてもよい。その場合に、アンテナスイッチ1315は、スマートフォン1300の構成から省略されてもよい。
 バス1317は、プロセッサ1301、メモリ1302、ストレージ1303、外部接続インタフェース1304、カメラ1306、センサ1307、マイクロフォン1308、入力デバイス1309、表示デバイス1310、スピーカ1311、無線通信インタフェース1312及び補助コントローラ1319を互いに接続する。バッテリー1318は、図中に破線で部分的に示した給電ラインを介して、図69に示したスマートフォン1300の各ブロックへ電力を供給する。補助コントローラ1319は、例えば、スリープモードにおいて、スマートフォン1300の必要最低限の機能を動作させる。
 図69に示したスマートフォン1300において、図17を参照して説明した処理部250に含まれる1つ以上の構成要素(品質測定部251、情報収集部253、情報取得部255、情報提供部257、及び/又は通信制御部259)は、無線通信インタフェース1312において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ1301又は補助コントローラ1319において実装されてもよい。一例として、スマートフォン1300は、無線通信インタフェース1312の一部(例えば、BBプロセッサ1313)若しくは全部、プロセッサ1301、及び/又は補助コントローラ1319を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン1300にインストールされ、無線通信インタフェース1312(例えば、BBプロセッサ1313)、プロセッサ1301、及び/又は補助コントローラ1319が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン1300又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 (第5の応用例)
 図70は、本開示に係る技術が適用され得るカーナビゲーション装置1320の概略的な構成の一例を示すブロック図である。カーナビゲーション装置1320は、プロセッサ1321、メモリ1322、GPS(Global Positioning System)モジュール1324、センサ1325、データインタフェース1326、コンテンツプレーヤ1327、記憶媒体インタフェース1328、入力デバイス1329、表示デバイス1330、スピーカ1331、無線通信インタフェース1333、1つ以上のアンテナスイッチ1336、1つ以上のアンテナ1337及びバッテリー1338を備える。
 プロセッサ1321は、例えばCPU又はSoCであってよく、カーナビゲーション装置1320のナビゲーション機能及びその他の機能を制御する。メモリ1322は、RAM及びROMを含み、プロセッサ1321により実行されるプログラム及びデータを記憶する。
 GPSモジュール1324は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置1320の位置(例えば、緯度、経度及び高度)を測定する。センサ1325は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース1326は、例えば、図示しない端子を介して車載ネットワーク1341に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ1327は、記憶媒体インタフェース1328に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス1329は、例えば、表示デバイス1330の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス1330は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ1331は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース1333は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース1333は、典型的には、BBプロセッサ1334及びRF回路1335などを含み得る。BBプロセッサ1334は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路1335は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ1337を介して無線信号を送受信する。無線通信インタフェース1333は、BBプロセッサ1334及びRF回路1335を集積したワンチップのモジュールであってもよい。無線通信インタフェース1333は、図70に示したように複数のBBプロセッサ1334及び複数のRF回路1335を含んでもよい。なお、図70には無線通信インタフェース1333が複数のBBプロセッサ1334及び複数のRF回路1335を含む例を示したが、無線通信インタフェース1333は単一のBBプロセッサ1334又は単一のRF回路1335を含んでもよい。
 さらに、無線通信インタフェース1333は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ1334及びRF回路1335を含んでもよい。
 アンテナスイッチ1336の各々は、無線通信インタフェース1333に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ1337の接続先を切り替える。
 アンテナ1337の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース1333による無線信号の送受信のために使用される。カーナビゲーション装置1320は、図70に示したように複数のアンテナ1337を有してもよい。なお、図70にはカーナビゲーション装置1320が複数のアンテナ1337を有する例を示したが、カーナビゲーション装置1320は単一のアンテナ1337を有してもよい。
 さらに、カーナビゲーション装置1320は、無線通信方式ごとにアンテナ1337を備えてもよい。その場合に、アンテナスイッチ1336は、カーナビゲーション装置1320の構成から省略されてもよい。
 バッテリー1338は、図中に破線で部分的に示した給電ラインを介して、図70に示したカーナビゲーション装置1320の各ブロックへ電力を供給する。また、バッテリー1338は、車両側から給電される電力を蓄積する。
 図70に示したカーナビゲーション装置1320において、図17を参照して説明した処理部250に含まれる1つ以上の構成要素(品質測定部251、情報収集部253、情報取得部255、情報提供部257、及び/又は通信制御部259)は、無線通信インタフェース1333において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ1321において実装されてもよい。一例として、カーナビゲーション装置1320は、無線通信インタフェース1333の一部(例えば、BBプロセッサ1334)若しくは全部及び/又はプロセッサ1321を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置1320にインストールされ、無線通信インタフェース1333(例えば、BBプロセッサ1334)及び/又はプロセッサ1321が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置1320又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置1320の1つ以上のブロックと、車載ネットワーク1341と、車両側モジュール1342とを含む車載システム(又は車両)1340として実現されてもよい。即ち、処理部250に含まれる上記1つ以上の構成要素を備える装置として車載システム(又は車両)1340が提供されてもよい。車両側モジュール1342は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク1341へ出力する。
 <<8.まとめ>>
 ここまで、図1~図67を用いて、本開示の実施形態に係る装置及び各処理を説明した。本開示に係る実施形態によれば、制御エンティティ100(情報取得部135)は、無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報(バックホール品質情報)を取得する。そして、制御エンティティ100(適用制御部137)は、上記品質関連情報(バックホール品質情報)に基づいて、上記通信ノードへの上記制御方式の適用を制御する。
 これにより、バックホール回線での遅延(又は遅延のばらつき)により制御方式を適切に適用できない場合には、当該制御方式の適用を回避することが可能になる。一例として、2つのeNBへの制御方式(例えば、BF(ヌルステアリング))の適用において、制御関連情報は、一方のeNBへほとんど遅延なく送信され、他方のeNBには長い遅延を伴い送信される。この場合に、制御方式を適用すると、一方のeNBへの適用は間に合っても、他方のeNBへの適用は間に合わない可能性がある。このような場合に、上記制御方式の適用を回避することが可能になる。なお、バックホール回線の遅延(又は遅延のばらつき)を考慮して、制御方式の適用に問題が生じない場合に、当該制御方式を適用することができる。このように複数の通信ノードに関する制御(例えば、干渉制御、CoMP送受信)をより適切に行うことが可能になる。
 -制御方式
 また、上記制御方式は、上記通信ノードを含む通信システムの通信容量を向上させるための方式である。
 バックホール品質情報に基づいて、通信システムの通信容量を向上させるための制御方式の適用を制御することにより、例えば、通信品質が向上し、通信容量が向上し得る。
 一例として、上記制御方式は、2つ以上の通信ノードがそれぞれ関与する無線通信の間での干渉を抑制するための方式(干渉制御方式)を含む。
 バックホール品質情報に基づいて干渉制御方式の適用を制御することにより、例えば、バックホール回線の制約の中でより適切な干渉制御方式を選択して適用することが可能になる。これにより、干渉をより適切に抑制することが可能になる。その結果、通信品質が向上し、通信システム1の通信容量が向上し得る。
 別の例として、上記制御方式は、多地点協調(CoMP)送受信を含む。
 バックホール品質情報に基づいてCoMP送受信の適用を制御することにより、例えば、バックホール回線の制約の中で可能な場合に限りCoMP送受信を適用することが可能になる。これにより、CoMP送受信により通信品質を向上させつつ、CoMP送受信の失敗による通信品質の低下を抑えることが可能になる。その結果、通信品質が向上し、通信システム1の通信容量が向上し得る。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、制御方式が、干渉制御方式又はCoMP送受信である例を説明したが、本開示は係る例に限定されない。制御方式は、複数の通信ノードに関する任意の制御の方式であってもよい。
 また、バックホール品質情報(品質関連情報)が、制御エンティティに蓄積される例を説明したが、本開示は係る例に限定されない。例えば、バックホール品質情報(品質関連情報)は、制御エンティティの代わりに、別の装置(データベース)に蓄積されてもよい。そして、制御エンティティは、当該別の装置に蓄積されているバックホール品質情報を取得してもよい。
 また、制御エンティティは、既存のコアネットワークノード(例えば、MME)に実装される例を主として説明したが、本開示は係る例に限定されない。例えば、制御エンティティは、新たなコアネットワークノードとして実装されてもよく、又は無線アクセスネットワークノード(例えば、eNB)に実装されてもよい。
 また、無線アクセスネットワークノード(例えば、eNB)が無線リソースの割当て(即ち、スケジューリング)を行う例を主として説明したが、本開示は係る例に限定されない。例えば、コアネットワークノードである制御エンティティが、無線リソースの割当ての一部又は全部を行ってもよい。
 また、通信システムがLTE、LTE-Advanced、又はこれらに準ずる通信方式に準拠する例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、別の通信規格に準拠したシステムであってもよい。また、この場合に、通信システムは、MME、S-GW等の代わりに別のコアネットワークノードを含み、各種eNBの代わりにいずれかの基地局又はアクセスポイントを含み、UEの代わりにいずれかの端末装置を含んでもよい。
 また、本明細書の通信制御装置(制御エンティティ、実行エンティティ)における処理ステップは、必ずしもフローチャートに記載された順序に沿って時系列に実行されなくてよい。例えば、通信制御処理における処理ステップは、フローチャートとして記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、制御エンティティ若しくはそのモジュール、又は、実行エンティティ若しくはそのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の1つ以上の構成要素として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、完成品、又は完成品のためのモジュール(部品、処理回路若しくはチップなど))も提供されてもよい。また、上記装置の1つ以上の構成要素の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得する取得部と、
 前記品質関連情報に基づいて、前記通信ノードへの前記制御方式の適用を制御する制御部と、
を備える通信制御装置。
(2)
 前記制御部は、前記品質関連情報に基づいて、前記通信ノードを含む2つ以上の通信ノードへの前記制御方式の適用を制御する、前記(1)に記載の通信制御装置。
(3)
 前記制御方式は、前記通信ノードを含む通信システムの通信容量を向上させるための方式である、前記(1)又は(2)のいずれか1項に記載の通信制御装置。
(4)
 前記制御方式は、2つ以上の通信ノードがそれぞれ関与する無線通信の間での干渉を抑制するための方式を含む、前記(3)に記載の通信制御装置。
(5)
 前記制御方式は、多地点協調送受信を含む、前記(3)又は(4)に記載の通信制御装置。
(6)
 前記制御方式が適用される複数の通信ノードは、当該複数の通信ノードに関する情報に基づいて、1つ以上のグループに分類され、
 前記制御部は、前記1つ以上のグループに含まれるグループごとに、グループに含まれる1つ以上の通信ノードについての前記品質関連情報に基づいて、前記1つ以上の通信ノードへの前記制御方式の適用を制御する、
前記(2)に記載の通信制御装置。
(7)
 前記複数の通信ノードに関する前記情報は、前記複数の通信ノードの位置の情報、前記複数の通信ノードにより使用される無線リソースの情報、及び、前記複数の通信ノードへ前記制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報のうちの、少なくとも1つを含む、前記(6)に記載の通信制御装置。
(8)
 前記品質関連情報は、前記バックホール回線の前記品質についての測定手続きを通じて生成され、
 前記取得部は、生成される前記品質関連情報を取得する、
前記(1)~(7)のいずれか1項に記載の通信制御装置。
(9)
 前記測定手続きは、双方向で前記バックホール回線の前記品質を測定することを含む、前記(8)に記載の通信制御装置。
(10)
 前記測定手続きは、送信時間を含む1つ以上のメッセージを送受信することを含む、前記(8)又は(9)に記載の通信制御装置。
(11)
 前記測定手続きは、前記バックホール回線の前記品質を複数回測定することを含む、前記(8)~(10)のいずれか1項に記載の通信制御装置。
(12)
 前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
 前記測定手続きは、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質を測定することを含む、
前記(8)~(11)のいずれか1項に記載の通信制御装置。
(13)
 前記品質関連情報は、当該品質関連情報についての収集手続きを通じて、他の装置から収集され、
 前記取得部は、収集される前記品質関連情報を取得する、
前記(1)~(12)のいずれか1項に記載の通信制御装置。
(14)
 前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
 前記収集手続きは、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報を収集することを含む、
前記(13)に記載の通信制御装置。
(15)
 前記バックホール回線の前記品質は、前記バックホール回線での遅延時間である、前記(1)~(14)のいずれか1項に記載の通信制御装置。
(16)
 前記通信ノードは、基地局、リレー局、又は、複数の端末装置により形成される局所ネットワークでの無線通信を制御する端末装置である、前記(1)~(15)のいずれか1項に記載の通信制御装置。
(17)
 無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得することと、
 前記品質関連情報に基づいて、前記通信ノードへの前記制御方式の適用を制御することと、
を含む、通信制御装置により実行される通信制御方法。
(18)
 無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報の少なくとも一部を取得する取得部と、
 前記品質関連情報の前記少なくとも一部を提供する提供部と、
を備え、
 前記品質関連情報は、前記通信ノードへの前記制御方式の適用の制御に用いられる情報である、
通信装置。
(19)
 前記品質関連情報の前記少なくとも一部は、前記バックホール回線の前記品質についての測定手続きを通じて生成され、
 前記取得部は、生成される前記品質関連情報の前記少なくとも一部を取得する、
前記(18)に記載の通信装置。
(20)
 前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
 前記品質関連情報の前記少なくとも一部は、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報である、
前記(18)又は(19)に記載の通信装置。
 1    通信システム
 21   マクロeNB(evolved Node B)/MeNB
 23   ピコPeNB/PeNB
 25   RRH(Remote Radio Head)
 27   リレーノード(RN)
 29   ホームeNB/HeNB
 31   UE(User Equipment)
 41   MME(Mobility Management Entity)
 43   サービングゲートウェイ/S-GW
 45   HeNBゲートウェイ/HeNB-GW
 47   パケットデータネットワークゲートウェイ/PDN-GW
 100  制御エンティティ
 135  情報取得部
 137  適用制御部
 200  実行エンティティ
 255  情報取得部
 257  情報提供部
 259  通信制御部
 

Claims (20)

  1.  無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得する取得部と、
     前記品質関連情報に基づいて、前記通信ノードへの前記制御方式の適用を制御する制御部と、
    を備える通信制御装置。
  2.  前記制御部は、前記品質関連情報に基づいて、前記通信ノードを含む2つ以上の通信ノードへの前記制御方式の適用を制御する、請求項1に記載の通信制御装置。
  3.  前記制御方式は、前記通信ノードを含む通信システムの通信容量を向上させるための方式である、請求項1に記載の通信制御装置。
  4.  前記制御方式は、2つ以上の通信ノードがそれぞれ関与する無線通信の間での干渉を抑制するための方式を含む、請求項3に記載の通信制御装置。
  5.  前記制御方式は、多地点協調送受信を含む、請求項3に記載の通信制御装置。
  6.  前記制御方式が適用される複数の通信ノードは、当該複数の通信ノードに関する情報に基づいて、1つ以上のグループに分類され、
     前記制御部は、前記1つ以上のグループに含まれるグループごとに、グループに含まれる1つ以上の通信ノードについての前記品質関連情報に基づいて、前記1つ以上の通信ノードへの前記制御方式の適用を制御する、
    請求項2に記載の通信制御装置。
  7.  前記複数の通信ノードに関する前記情報は、前記複数の通信ノードの位置の情報、前記複数の通信ノードにより使用される無線リソースの情報、及び、前記複数の通信ノードへ前記制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報のうちの、少なくとも1つを含む、請求項6に記載の通信制御装置。
  8.  前記品質関連情報は、前記バックホール回線の前記品質についての測定手続きを通じて生成され、
     前記取得部は、生成される前記品質関連情報を取得する、
    請求項1に記載の通信制御装置。
  9.  前記測定手続きは、双方向で前記バックホール回線の前記品質を測定することを含む、請求項8に記載の通信制御装置。
  10.  前記測定手続きは、送信時間を含む1つ以上のメッセージを送受信することを含む、請求項8に記載の通信制御装置。
  11.  前記測定手続きは、前記バックホール回線の前記品質を複数回測定することを含む、請求項8に記載の通信制御装置。
  12.  前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
     前記測定手続きは、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質を測定することを含む、
    請求項8に記載の通信制御装置。
  13.  前記品質関連情報は、当該品質関連情報についての収集手続きを通じて、他の装置から収集され、
     前記取得部は、収集される前記品質関連情報を取得する、
    請求項1に記載の通信制御装置。
  14.  前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
     前記収集手続きは、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報を収集することを含む、
    請求項13に記載の通信制御装置。
  15.  前記バックホール回線の前記品質は、前記バックホール回線での遅延時間である、請求項1に記載の通信制御装置。
  16.  前記通信ノードは、基地局、リレー局、又は、複数の端末装置により形成される局所ネットワークでの無線通信を制御する端末装置である、請求項1に記載の通信制御装置。
  17.  無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報を取得することと、
     前記品質関連情報に基づいて、前記通信ノードへの前記制御方式の適用を制御することと、
    を含む、通信制御装置により実行される通信制御方法。
  18.  無線通信の制御方式が適用される通信ノードへ当該制御方式での制御に関する制御関連情報を提供するために用いられるバックホール回線の品質に関する品質関連情報の少なくとも一部を取得する取得部と、
     前記品質関連情報の前記少なくとも一部を提供する提供部と、
    を備え、
     前記品質関連情報は、前記通信ノードへの前記制御方式の適用の制御に用いられる情報である、
    通信装置。
  19.  前記品質関連情報の前記少なくとも一部は、前記バックホール回線の前記品質についての測定手続きを通じて生成され、
     前記取得部は、生成される前記品質関連情報の前記少なくとも一部を取得する、
    請求項18に記載の通信装置。
  20.  前記バックホール回線は、複数の個別のバックホール回線の組合せであり、
     前記品質関連情報の前記少なくとも一部は、前記複数の個別のバックホール回線のうちの少なくとも1つの個別のバックホール回線の品質に関する情報である、
    請求項18に記載の通信装置。
     
PCT/JP2014/066745 2013-08-07 2014-06-24 通信制御装置、通信制御方法及び通信装置 WO2015019728A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14835443.4A EP3032874B1 (en) 2013-08-07 2014-06-24 Communication control device, communication control method, and communication device
CN201480042845.5A CN105409283B (zh) 2013-08-07 2014-06-24 通信控制设备,通信控制方法和通信设备
US14/909,125 US10149309B2 (en) 2013-08-07 2014-06-24 Communication control device, communication control method, and communication device
AU2014303807A AU2014303807B2 (en) 2013-08-07 2014-06-24 Communication control device, communication control method, and communication device
BR112016001868A BR112016001868A2 (pt) 2013-08-07 2014-06-24 dispositivo e método de controle de comunicação, e, dispositivo de comunicação
JP2015530746A JP6398976B2 (ja) 2013-08-07 2014-06-24 通信制御装置、通信制御方法及び通信装置
US16/196,319 US10750517B2 (en) 2013-08-07 2018-11-20 Communication control device, communication control method, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164333 2013-08-07
JP2013-164333 2013-08-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/909,125 A-371-Of-International US10149309B2 (en) 2013-08-07 2014-06-24 Communication control device, communication control method, and communication device
US16/196,319 Continuation US10750517B2 (en) 2013-08-07 2018-11-20 Communication control device, communication control method, and communication device

Publications (1)

Publication Number Publication Date
WO2015019728A1 true WO2015019728A1 (ja) 2015-02-12

Family

ID=52461068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066745 WO2015019728A1 (ja) 2013-08-07 2014-06-24 通信制御装置、通信制御方法及び通信装置

Country Status (7)

Country Link
US (2) US10149309B2 (ja)
EP (1) EP3032874B1 (ja)
JP (1) JP6398976B2 (ja)
CN (1) CN105409283B (ja)
AU (1) AU2014303807B2 (ja)
BR (1) BR112016001868A2 (ja)
WO (1) WO2015019728A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151967A1 (ja) * 2015-03-23 2016-09-29 ソフトバンク株式会社 移動体通信システムおよび移動体通信方法
JP2017079414A (ja) * 2015-10-21 2017-04-27 京セラ株式会社 基地局および無線通信方法
JP2021532641A (ja) * 2018-08-13 2021-11-25 華為技術有限公司Huawei Technologies Co., Ltd. サービス品質監視方法およびシステムならびにデバイス
JP2021533664A (ja) * 2018-08-08 2021-12-02 ソニーグループ株式会社 複数の送信パネル及び非理想的なバックホールリンク

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012906A (ja) 2014-06-04 2016-01-21 ソニー株式会社 装置
US11184100B2 (en) * 2019-08-07 2021-11-23 Hughes Network Systems Narrow band internet of things communications over a satellite communication system
US11063629B1 (en) * 2020-10-14 2021-07-13 Nvidia Corporation Techniques for detecting wireless communications interference from a wired communications channel
CN115865991B (zh) * 2023-03-02 2023-05-09 成都工业职业技术学院 石油钻机的远程控制系统及其控制方法、可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120095A (ja) 2009-12-04 2011-06-16 Mitsubishi Electric Corp 干渉制御方法、制御装置および基地局装置
JP2012507203A (ja) * 2008-10-24 2012-03-22 クゥアルコム・インコーポレイテッド ワイヤレス通信システムにおける分離可能なチャネル状態フィードバックのための方法および装置
JP2012124887A (ja) * 2010-10-22 2012-06-28 Ntt Docomo Inc 無線通信システムのコアネットワーク構成を決定するための装置及び方法
JP2012199944A (ja) 2005-03-15 2012-10-18 Qualcomm Inc 無線通信システムにおける干渉制御
JP2012209679A (ja) 2011-03-29 2012-10-25 Softbank Mobile Corp 無線通信制御方法、無線通信制御装置及び無線通信システム
JP2013502182A (ja) * 2009-08-14 2013-01-17 リサーチ イン モーション リミテッド ダウンリンク多地点協調(CoMP)伝送のためのフレーム構造および制御信号伝達
JP2013527724A (ja) * 2010-06-03 2013-06-27 ゼットティーイー コーポレイション セル間干渉コーディネーション情報の処理方法及び装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551562B2 (en) * 2000-12-29 2009-06-23 Tropos Networks Determining bidirectional path quality within a wireless mesh network
US8804584B2 (en) * 2008-10-01 2014-08-12 Digi International Inc. Periodic synchronization link quality in a mesh network
US8582513B2 (en) * 2008-12-12 2013-11-12 Electronics And Telecommunications Research Institute Apparatus and method for controlling inter-cell interference
EP2246992B1 (en) * 2009-04-27 2015-03-18 Alcatel Lucent A method for uplink transmission of data from a user terminal, a base station, a coordination device, and a communication network therefor
KR20110010443A (ko) * 2009-07-24 2011-02-01 뉴브로드테크놀러지(주) 인터넷 전화의 원격 품질측정을 위한 자동응답과 루프백 방법
US8488514B2 (en) * 2009-10-02 2013-07-16 Research In Motion Limited Relay backhaul link quality considerations for mobility procedures
US8254949B2 (en) * 2009-12-23 2012-08-28 At&T Intellectual Property I, L.P. Active set modification to release backhaul capacity
KR101861661B1 (ko) * 2010-03-15 2018-05-28 엘지전자 주식회사 무선통신 시스템에서 제어정보를 송신 및 수신하기 위한 장치 및 그 방법
US9332510B2 (en) * 2010-08-17 2016-05-03 Qualcomm Incorporated Apparatus and method for controlling inter-cell interference between femtocells and macrocells
EP2608433B1 (en) * 2010-08-20 2019-03-27 LG Electronics Inc. Method and apparatus for transmitting a signal related to a change in transmission format
US8743772B2 (en) * 2010-10-01 2014-06-03 Qualcomm Incorporated Mobility load balancing and resource status report for scenarios with relay nodes
US9055514B2 (en) * 2010-11-12 2015-06-09 Qualcomm Incorporated Method and apparatus for requesting and sharing network performance information (NPI)
US8654687B2 (en) * 2011-05-17 2014-02-18 Telefonaktiebolaget L M Ericsson (Publ) Dual channel time division duplex (TDD) communication
KR101119662B1 (ko) * 2011-08-17 2012-03-16 보라시스(주) 멀티미디어 서비스 품질측정 시스템 및 그 동작 방법
US8502733B1 (en) * 2012-02-10 2013-08-06 CBF Networks, Inc. Transmit co-channel spectrum sharing
CN104205659A (zh) * 2011-10-21 2014-12-10 奥普蒂斯蜂窝技术有限责任公司 阵列天线系统中的天线设备校准方法、处理装置、计算机程序、计算机程序产品和天线设备
US20130194948A1 (en) * 2012-01-27 2013-08-01 Qualcomm Incorporated Methods for indicating backhaul relay geometry
US9577740B2 (en) * 2012-02-24 2017-02-21 Nec Corporation Radio communication system and communication method
US20130279350A1 (en) * 2012-04-24 2013-10-24 Nokia Siemens Networks Oy Methods and Apparatus for Interference Management
US10306653B2 (en) * 2013-01-30 2019-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Protection system for wireless NLOS backhaul
US9859959B2 (en) * 2013-02-01 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method for alignment of multi-beam antennas in a non line-of-sight scenario
EP2974490B1 (en) * 2013-03-15 2017-12-06 Nokia Solutions and Networks Oy Coordinated multipoint joint transmission with relaxed backhaul requirements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199944A (ja) 2005-03-15 2012-10-18 Qualcomm Inc 無線通信システムにおける干渉制御
JP2012507203A (ja) * 2008-10-24 2012-03-22 クゥアルコム・インコーポレイテッド ワイヤレス通信システムにおける分離可能なチャネル状態フィードバックのための方法および装置
JP2013502182A (ja) * 2009-08-14 2013-01-17 リサーチ イン モーション リミテッド ダウンリンク多地点協調(CoMP)伝送のためのフレーム構造および制御信号伝達
JP2011120095A (ja) 2009-12-04 2011-06-16 Mitsubishi Electric Corp 干渉制御方法、制御装置および基地局装置
JP2013527724A (ja) * 2010-06-03 2013-06-27 ゼットティーイー コーポレイション セル間干渉コーディネーション情報の処理方法及び装置
JP2012124887A (ja) * 2010-10-22 2012-06-28 Ntt Docomo Inc 無線通信システムのコアネットワーク構成を決定するための装置及び方法
JP2012209679A (ja) 2011-03-29 2012-10-25 Softbank Mobile Corp 無線通信制御方法、無線通信制御装置及び無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3032874A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151967A1 (ja) * 2015-03-23 2016-09-29 ソフトバンク株式会社 移動体通信システムおよび移動体通信方法
JP2016181763A (ja) * 2015-03-23 2016-10-13 ソフトバンク株式会社 移動体通信システムおよび移動体通信方法
JP2017079414A (ja) * 2015-10-21 2017-04-27 京セラ株式会社 基地局および無線通信方法
JP2021533664A (ja) * 2018-08-08 2021-12-02 ソニーグループ株式会社 複数の送信パネル及び非理想的なバックホールリンク
JP7193616B2 (ja) 2018-08-08 2022-12-20 ソニーグループ株式会社 複数の送信パネル及び非理想的なバックホールリンク
US11581920B2 (en) 2018-08-08 2023-02-14 Sony Mobile Communications Inc. Multiple transmission panels and non-ideal backhaul links
JP2021532641A (ja) * 2018-08-13 2021-11-25 華為技術有限公司Huawei Technologies Co., Ltd. サービス品質監視方法およびシステムならびにデバイス
JP2022191337A (ja) * 2018-08-13 2022-12-27 華為技術有限公司 サービス品質監視方法およびシステムならびにデバイス

Also Published As

Publication number Publication date
CN105409283A (zh) 2016-03-16
US20190090254A1 (en) 2019-03-21
US20160198482A1 (en) 2016-07-07
JP6398976B2 (ja) 2018-10-03
AU2014303807B2 (en) 2017-05-18
BR112016001868A2 (pt) 2017-08-01
US10149309B2 (en) 2018-12-04
US10750517B2 (en) 2020-08-18
EP3032874A1 (en) 2016-06-15
JPWO2015019728A1 (ja) 2017-03-02
EP3032874A4 (en) 2017-04-05
EP3032874B1 (en) 2023-03-08
CN105409283B (zh) 2020-03-20
AU2014303807A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP6398976B2 (ja) 通信制御装置、通信制御方法及び通信装置
JP6680384B2 (ja) 通信装置、方法、及びプログラム
JP6020570B2 (ja) 無線通信方法、無線通信システム、無線基地局および無線端末
US9408097B2 (en) Interference measurement resource (IMR) signaling and use to support interference coordination between cells
WO2011124015A1 (en) Method and apparatus for managing inter-cell interference for device-to-device communications
JP6204100B2 (ja) 無線基地局及び無線通信方法
JP6194895B2 (ja) 通信制御装置、通信制御方法及び端末装置
JP6468286B2 (ja) 装置及び方法
WO2015012103A1 (ja) 無線基地局、ユーザ端末および無線通信方法
US20190158166A1 (en) Terminal apparatus, base station, method and recording medium
WO2020196279A1 (ja) 通信装置、基地局装置、通信方法、及び基地局装置の制御方法
WO2020031704A1 (ja) 通信装置、通信制御方法及び記録媒体
WO2020164836A1 (en) Methods providing resource coordination information between ran nodes for sidelink communications and related network nodes
JP2019071694A (ja) 装置
CN118019106A (zh) 用于处理冲突的方法和装置
CN114071680A (zh) 一种通信方法及装置
JP6206571B2 (ja) 無線通信方法
WO2016121200A1 (ja) 装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042845.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600628

Country of ref document: ID

Ref document number: 2014835443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14909125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001868

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014303807

Country of ref document: AU

Date of ref document: 20140624

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016001868

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160128