WO2020196279A1 - 通信装置、基地局装置、通信方法、及び基地局装置の制御方法 - Google Patents

通信装置、基地局装置、通信方法、及び基地局装置の制御方法 Download PDF

Info

Publication number
WO2020196279A1
WO2020196279A1 PCT/JP2020/012333 JP2020012333W WO2020196279A1 WO 2020196279 A1 WO2020196279 A1 WO 2020196279A1 JP 2020012333 W JP2020012333 W JP 2020012333W WO 2020196279 A1 WO2020196279 A1 WO 2020196279A1
Authority
WO
WIPO (PCT)
Prior art keywords
time offset
offset value
base station
antenna panel
control information
Prior art date
Application number
PCT/JP2020/012333
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP20779044.5A priority Critical patent/EP3952393A4/en
Priority to JP2021509317A priority patent/JP7521525B2/ja
Priority to CN202080022480.5A priority patent/CN113615232B/zh
Priority to US17/436,080 priority patent/US12069658B2/en
Publication of WO2020196279A1 publication Critical patent/WO2020196279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to a communication device, a base station device, a communication method, and a control method of the base station device.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Pro LTE-Advanced Pro
  • 5G No. 5th generation
  • NR New Radio
  • NRAT New Radio Access Technology
  • EUTRA Evolved Universal Terrestrial Radio Access
  • FEUTRA Frether EUTRA
  • the base station device (base station) is also referred to as evolved NodeB (eNodeB) in LTE and gNodeB in NR
  • the terminal device (mobile station, mobile station device, terminal) is also referred to as UE (User Equipment).
  • LTE and NR are cellular communication systems in which a plurality of areas covered by a base station are arranged in a cell shape. A single base station may manage multiple cells.
  • the base station may be able to specify the combination of the receiving antenna panel of the terminal device and the receiving beam in the control information.
  • the terminal cannot make the settings for the combination of the receiving antenna panel and the receiving beam by the time the user data is received, the default combination may be set.
  • the time offset value will be used to determine whether or not the setting is in time between the time when the terminal device receives the control information and the time when the user data is received.
  • the time for whether or not the setting is in time may differ depending on the combination of the receiving antenna panel, the receiving beam, and the like specified by the control information.
  • this disclosure proposes a communication device, a base station device, a communication method, and a control method of the base station device, which can set an appropriate time offset value according to the situation.
  • one form of communication device includes a determination unit and a selection unit.
  • the determination unit determines a plurality of time offset values for determining the combination of the receiving antenna panel and the receiving beam of the user data scheduled by the control information transmitted from the base station.
  • the selection unit selects the time offset value for determining the combination of the receiving antenna panel and the receiving beam of the user data from the plurality of time offset values based on the control information received from the base station. To do.
  • a plurality of components having substantially the same functional configuration may be distinguished by adding different numbers after the same reference numerals. However, if it is not necessary to distinguish each of the plurality of components having substantially the same functional configuration, only the same reference numerals are given.
  • FIG. 1 is a diagram showing an example of the overall configuration of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a base station 100 (100A and 100B), a terminal device 200 (200A and 200B), a core network (Core Network) 20, and a PDN (Packet Data Network) 30 (or simply). Includes DN (Data Network).
  • the base station 100 is a base station device installed in a base station, and is a communication device that operates cells 11 (11A and 11B) and provides wireless services to one or more terminal devices located inside the cell 11. is there.
  • the base station 100A provides a wireless service to the terminal device 200A
  • the base station 100B provides a wireless service to the terminal device 200B.
  • the cell 11 can be operated according to any wireless communication method such as LTE or NR (New Radio).
  • the base station 100 may be any of eNodeB, ng-eNodeB, gNodeB and en-gNodeB.
  • EUTRAN when the base station 100 is either an eNodeB or an en-gNodeB
  • the base station 100 may be referred to as EUTRAN.
  • the base station 100 may be referred to as NGRAN.
  • the base station 100 is connected to the core network 20.
  • the core network 20 is connected to the PDN 30.
  • MME Mobility Management Entity
  • S-GW Serving gateway
  • P-GW Packet Data Network gateway
  • PCRF Policy and Charging Rule Function
  • HSS Home Subscriber Server
  • MME Mobility Management Entity
  • S-GW Serving gateway
  • P-GW Packet Data Network gateway
  • PCRF Policy and Charging Rule Function
  • HSS Home Subscriber Server
  • PCRF is a control node that controls policies such as QoS (Quality of Service) and billing for bearers.
  • the HSS is a control node that handles subscriber data and controls services.
  • AMF Access and mobility Management Function
  • SMF Session Management Function
  • UPF User-Plane Function
  • PCF Policy Control Function
  • UDM Unified Data Management
  • the AMF is a control node that handles signals on the control plane and manages the moving state of the terminal device.
  • the SMF is a control node that handles signals on the control plane and manages data transfer paths.
  • the UPF is a control node that handles signals on the user plane, and manages a transfer path for user information.
  • the PCF is a control node that controls policies.
  • the UDM is a control node that handles subscriber data.
  • the terminal device 200 is a communication device that wirelessly communicates with the base station 100 based on the control by the base station 100.
  • the terminal device 200 may be a so-called user terminal (User Equipment: UE).
  • UE User Equipment
  • the terminal device 200 transmits an uplink signal to the base station 100 and receives a downlink signal from the base station 100.
  • FIG. 2 is a diagram for explaining BWP.
  • CC Component Carrier
  • CC # 1 includes a plurality of BWPs (# 1 and # 2)
  • CC # 2 includes a plurality of BWPs (# 1 and # 2).
  • the number after # shall indicate an index (or an identifier).
  • BWPs contained in different CCs show different BWPs even if they have the same index.
  • the BWP is a CC divided into a plurality of frequency bandwidths, which is one operation band width. In each BWP, different Subcarrier spacings (ig Numerology) can be set.
  • one CC may include a Downlink Component Carrier and an Uplink Component Carrier, or may be either a Downlink Component Carrier or an Uplink Component Carrier. Further, one CC may correspond to one Cell. That is, a plurality of BWPs may be contained in one Cell.
  • This BWP was standardized in the NR of 3GPP Rel15.
  • BWP can be said to be a subset of the total cell bandwidth of one cell.
  • the subcarrier interval was fixed at 15 kHz.
  • the subcarrier interval can be set to 15 kHz, 30 kHz, 60 kHz, 120 kHz or 240 kHz. The longer the subcarrier interval, the shorter the OFDM symbol length. For example, in LTE, since the subcarrier interval is 15 kHz, it is possible to transmit 2 slots per 1 ms (millisecond) (i.e.
  • BWP with different subcarrier intervals can be set to the terminal at the same time. Therefore, NR can simultaneously provide a plurality of BWPs corresponding to different use cases.
  • active BWPs are also referred to as active BWPs.
  • active BWP is also defined as the bandwidth operated by the UE within the bandwidth operated by the cell.
  • the number of BWPs that the base station 100 can transmit and receive at the same time is also referred to as the number of active BWPs.
  • the number of active BWPs of the base station 100 may be plural.
  • the number of active BWPs in the terminal device 200 is 3GPP Rel. It is one in the case of 15 UEs. However, in the present specification, the number of active BWPs of the terminal device 200 may be plural. In the technique according to the present disclosure, it is assumed that the number of active BWPs of the terminal device 200 is one.
  • each cell serving cell
  • Cell-defining SSB the BWP associated with the Cell-defining SSB
  • the UE may use a Dedicated BWP composed of one or a plurality of frequency spans in the same Carrier as the Initial BWP in addition to the Initial BWP. From the perspective of the UE (terminal device 200), these Initial BWPs and additional Dedicated BWPs are associated with one cell.
  • the present embodiment may include a case where the terminal device 200 uses a plurality of BWPs at the same time.
  • the base station 100 can improve the communication quality, for example, by performing beamforming and communicating with the terminal device 200.
  • a beamforming method there are a method of generating a beam that follows the terminal device 200 and a method of selecting a beam that follows the terminal device 200 from the candidate beams.
  • the former method may not be adopted in a cellular wireless communication system (for example, 5G) because it requires a computational cost each time a beam is generated.
  • the latter method is also adopted in FD-MIMO (Full Dimension Multiple Input Multiple Output) of Release 13 of 3GPP (Third Generation Partnership Project).
  • the latter method is also referred to as codebook based beam forming.
  • base station 100 prepares (that is, generates) beams in all directions in advance, and is suitable for the target terminal device 200 from among the prepared beams.
  • a beam is selected and the selected beam is used to communicate with the terminal device 200.
  • the base station 100 is capable of communicating at 360 degrees in the horizontal direction, for example, 360 types of beams are prepared in increments of 1 degree.
  • the base station 100 prepares 720 types of beams. In the vertical direction, base station 100 prepares a beam for 180 degrees, for example, from ⁇ 90 degrees to +90 degrees.
  • the terminal device 200 Since the terminal device 200 only monitors the beam, it is not necessary to know the existence of the codebook on the base station 100 side.
  • the plurality of beams prepared in advance by the base station 100 are also referred to as beam groups below.
  • the beam group can be defined for each frequency band, for example. Also, the beam group can be defined for each Rx / Tx beam and for each downlink / uplink.
  • a plurality of beams prepared or operated by the base station 100 may be associated with one cell (i.e., one cell may be composed of a plurality of beams). Instead, the plurality of beams prepared or operated by the base station 100 may be associated with a plurality of cells (i.e., a plurality of cells may be composed of a plurality of beams).
  • a beam for transmitting or receiving a measurement signal (known signal) using each of a plurality of beams belonging to a beam group. Sweeping is being considered.
  • the measurement signal may also be referred to as a reference signal.
  • the measurement signal may include an SSB (Synchronization Signal / PBCH (Physical Broadcast Channel) block) or CSI-RS (Channel State Information-Reference Signal).
  • SSB Synchrom Signal/ Physical Broadcast Channel
  • CSI-RS Channel State Information-Reference Signal
  • FIG. 3 is a diagram for explaining beam sweeping.
  • the base station 100 transmits the measurement signal while beam sweeping (that is, switching the transmission beam) using the beam group 40.
  • transmission while beam sweeping is also referred to as beam sweeping transmission below.
  • the terminal device 200 measures the measurement signal transmitted by beam sweeping and determines which transmitted beam is most likely to be received. In this way, the optimum transmission beam of the base station 100 for the terminal device 200 is selected.
  • the base station 100 can select the optimum transmission beam of the terminal device 200.
  • the optimum reception beam (hereinafter, also referred to as a reception beam or a beam) can be selected based on the measurement result obtained by receiving the measurement signal while beam-sweeping.
  • the terminal device 200 transmits a measurement signal by uplink.
  • the base station 100 receives the measurement signal while beam-sweeping (that is, switching the received beam), and determines which received beam is most likely to be received. In this way, the optimum reception beam of the base station 100 is selected.
  • the terminal device 200 can select the optimum reception beam of the terminal device 200.
  • receiving while beam sweeping is also referred to as beam sweeping reception below.
  • the side that receives and measures the measurement signal transmitted by beam sweeping reports the measurement result to the transmission side of the measurement signal.
  • the measurement result may include information (e.g. beam identifier, time, preamble, etc.) indicating which transmission beam is optimal.
  • the optimum transmission beam is, for example, the transmission beam having the highest received power.
  • the measurement result may include information indicating one transmission beam having the largest received power, or may include information indicating the top K transmission beams having the largest received power.
  • the measurement result includes, for example, identification information of the transmission beam (for example, the index of the beam) and information indicating the magnitude of the received power of the transmission beam (for example, RSRP (Reference Signal Received Power)) in association with each other.
  • RSRP Reference Signal Received Power
  • the beam for beam sweeping is transmitted by giving directivity to a reference signal which is a known signal. Therefore, the terminal device 200 can discriminate the beam with a resource called a reference signal.
  • the base station 100 can provide one beam by using the resource of one reference signal. That is, if 10 resources are prepared, the base station 100 can perform beam sweeping corresponding to 10 different directions.
  • the 10 resources can be collectively called a resource set.
  • One resource set composed of 10 resources can provide beam sweeping corresponding to 10 directions.
  • the CSI acquisition procedure is executed after the optimum beam is selected by the beam selection procedure accompanied by the beam sweeping described above.
  • the CSI acquisition procedure acquires the channel quality in communication using the selected beam. For example, in the CSI acquisition procedure, CQI (Channel Quality Indicator) is acquired.
  • Channel quality is used to determine communication parameters such as modulation schemes. If a modulation method that can send only a small number of bits even though the channel quality is good, for example, QPSK (Quadrature Phase Shift Keying) is adopted, the throughput will be low. On the other hand, if a modulation method that can send many bits even though the channel quality is poor, for example, 256QAM (Quadrature Amplitude Modulation), data reception (ie decoding) fails on the receiving side, resulting in failure. The throughput will be low. In this way, it is important to acquire channel quality correctly in order to improve throughput.
  • QPSK Quadrature Phase Shift Keying
  • FIG. 4 is a sequence diagram showing an example of the flow of a typical beam selection procedure and CSI acquisition procedure executed by the base station and the terminal device.
  • the base station transmits a measurement signal (e.g. SSB) for beam selection by beam sweeping (step S11).
  • the terminal device measures the measurement signal for beam selection and reports the beam measurement result (beam report) to the base station (step S12).
  • a measurement result includes, for example, information indicating the selection result of the optimum transmission beam of the base station (e.g. index associated with the optimum beam).
  • the base station transmits a measurement signal (e.g. CSI-RS) for acquiring channel quality using the selected optimum beam (step S13).
  • CSI-RS e.g. CSI-RS
  • the terminal device reports the channel quality acquired based on the measurement result of the measurement signal to the base station (step S14). Then, the base station transmits the user information to the terminal device using the communication parameters based on the reported channel quality (step S15). From the above, in the beam report, the measurement result of the measurement signal for beam selection received by the base station or the terminal is transmitted to the terminal or the base station.
  • the downlink channel quality is measured based on the measurement signal transmitted on the downlink.
  • downlink channel quality can also be measured based on the measurement signal transmitted on the uplink. This is because the uplink channel and the downlink channel have reversibility, and the quality of these channels is basically the same. Such reversibility is also referred to as channel recession.
  • the measurement result of the measurement signal for channel quality acquisition is reported. Reporting this measurement result can be a significant overhead.
  • the channel can be represented by a matrix of N ⁇ M.
  • FIG. 5 is a sequence diagram showing another example of the flow of a typical beam selection procedure and CSI acquisition procedure executed by the base station and the terminal device.
  • the terminal device transmits the measurement signal for beam selection by beam sweeping, and the base station receives the measurement signal while beam sweeping (step S21).
  • the base station selects the optimum transmission beam of the terminal device and the optimum reception beam of the base station based on the measurement result.
  • the base station reports the beam measurement result (beam report) to the terminal device (step S22).
  • Such a measurement result includes information indicating the selection result of the optimum transmission beam of the terminal device.
  • the terminal device transmits a measurement signal for channel quality acquisition using the selected transmission beam (step S23). ).
  • the base station acquires the uplink channel quality based on the measurement result, and acquires the downlink channel quality based on the uplink channel quality. Then, the base station transmits the user information to the terminal device using the communication parameters based on the acquired downlink channel quality (step S24). From the above, in the beam report, the measurement result of the measurement signal for beam selection received by the base station or the terminal is transmitted to the terminal or the base station.
  • Analog-digital hybrid antenna architecture In order to control the directivity of the antenna, an architecture in which all processing is performed by an analog circuit can be considered. Such an architecture is also referred to as a fully digital architecture.
  • a fully digital architecture as many antenna weights as an antenna (ie, an antenna element) are applied in the digital domain (ie, by a digital circuit) to control the directivity of the antenna.
  • the antenna weight is a weight for controlling the amplitude and phase.
  • the full digital architecture has the disadvantage that the digital circuit becomes large.
  • an analog-digital hybrid antenna architecture there is an analog-digital hybrid antenna architecture.
  • FIG. 6A is a diagram for explaining an example of an analog-digital hybrid antenna architecture.
  • the architecture shown in FIG. 6A includes a digital circuit 50, an analog circuit 60 (60A and 60B) and an antenna panel 70 (70A and 70B).
  • the digital circuit can apply a plurality of antenna weights 51 (51A and 51B).
  • the analog circuit 60 and the antenna panel 70 are provided in the same number as the number of antenna weights 51 applicable to the digital circuit 50.
  • the antenna panel 70 is provided with a plurality of antennas 72 (72A to 72F) and phase shifters 71 (71A to 71F) as many as the number of antennas 72.
  • the phase shifter 71 is a device that applies an antenna weight that can control only the phase in the analog region.
  • the characteristics of the antenna weight in the digital domain and the antenna weight in the analog domain are shown in Table 1 below.
  • the antenna weight in the digital domain is applied in the frequency domain when the OFDM modulation method is used.
  • the antenna weight in the digital domain is applied before IFFT (Inverse Fast Fourier Transform) at the time of transmission and after FFT (Fast Fourier Transform) at the time of reception.
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • the antenna weight in the digital domain is applied in the frequency domain. Therefore, by applying the antenna weights in the digital region, it is possible to transmit a beam in different directions using different frequency resources even if the time resources are the same.
  • the antenna weights in the analog domain are applied in the time domain. Therefore, even if the antenna weight in the analog region is applied, the beam can be directed only in the same direction over all frequency resources with the same time resource.
  • a beam can be transmitted in different directions using different frequency resources even if the time resources are the same.
  • one antenna panel 70 can direct the beam in only one direction using the same time and frequency resources. Therefore, in the analog-digital hybrid antenna architecture, the direction of the beam that can be transmitted and received in the same time resource corresponds to the number of antenna panels 70. Furthermore, in an analog-digital hybrid antenna architecture, the number of beam groups capable of beam-sweeping transmission or beam-sweeping reception in the same time resource corresponds to the number of antenna panels 70.
  • Such an analog-digital hybrid antenna architecture can be adopted in both the base station 100 and the terminal device 200.
  • FIG. 6A shows an example in which an antenna panel is composed of three antenna elements and there are two antenna panels. As described in Table 1, it is usually not possible for one panel to produce beams in different directions at the same time using different frequencies. However, two panels can be used to create beams in different directions, even at the same time. This antenna panel configuration is used on both the base station side and the terminal side.
  • FIG. 6B is an explanatory diagram showing an example in which eight antenna panels are arranged in the terminal device 200.
  • FIG. 6B shows an example in which a total of eight antenna panels, four on each of the front and back surfaces of the terminal device 200, are arranged.
  • the number of antenna elements mounted on one antenna panel is not limited to a specific one, but for example, four antenna elements are mounted on one antenna panel. Since the four antenna panels arranged on the front surface and the four antenna panels arranged on the back surface are arranged so as to face the same direction, they are referred to as coherent antenna panels. On the other hand, the antenna panel on the front surface and the antenna panel on the back surface are referred to as non-coherent antenna panels.
  • (9) Resources for reference signal and user information In order to carry out beam sweeping and CSI acquisition procedures, it is necessary to send and receive a reference signal between the base station device 100 and the terminal device 200. Further, when the user information is transmitted and received between the base station device 100 and the terminal device 200, it is necessary to send and receive a reference signal.
  • These reference signals are basically specified by frequency and time resources, and include some cases where resources are specified by using orthogonal sequences.
  • the scheduling information included in the control signal specifies the frequency and time resources of the user information. In the case of user information, orthogonal sequences are not assigned as resources. Only frequency and time resources.
  • the antenna panel and the desired beam can be determined.
  • the combination of the receiving antenna panel and the receiving beam used by the terminal for reception is also referred to as a receiving environment.
  • the CSI procedure stage the quality of the channel is confirmed in more detail after using precoding (finer antenna control) for transmission at the base station 100. It is a stage.
  • the antenna panel of the terminal device 200 identified in the previous beam management stage and the beam determined to be the most desirable among the antenna panels receive the reference signal (CSI-RS) for the CSI procedure. Do.
  • CSI-RS reference signal
  • the terminal device 200 uses the antenna panel and reception beam determined at the time of beam management as in the CSI procedure stage to provide user information. Should be received. However, when there are two beams using such an antenna panel, the terminal device 200 does not know how to select the antenna panel and the beam.
  • FIG. 7 is a diagram showing two beam sets.
  • the terminal device 200 performs the beam management process twice and determines the antenna panel and the beam of the terminal device 200 suitable for each of the beams transmitted from the two different antenna panels of the base station 100, FIG. As shown in 7, there are two beam sets. That is, the first beam set "Beam set (0): transmit beam (i) in transmit antenna panel (0) + receive beam (j)) in receive antenna panel (0)" and the second beam set. There is "Beam set (1): transmit beam (m) in transmit antenna panel (1) + receive beam (n) in receive antenna panel (1)".
  • the beam set refers to a beam link composed of a combination of antenna panels and beams on the transmitting side and the receiving side.
  • control information (eg scheduling information), which is a control signal for designating the resource of the user information, is transmitted using a beam
  • the terminal device 200 does not know which beam set to receive the control information. is important.
  • the control information is, for example, PDCCH (PHY Downlink Control Channel) or Downlink Control Information (DCI) transmitted by PDCCH.
  • the base station 100 can receive PDCCH (0) by the receiving beam (j) of the receiving antenna panel (0). It may be communicated to the terminal device 200 explicitly or implicitly. As an example, a method of directly designating the receiving antenna panel and the receiving beam of the terminal device 200 can be considered.
  • the terminal device 200 transmits the "Reference Signal A” to the "reception beam”. (J)) It is assumed that reception is performed using the receiving antenna panel (0). Further, when the base station 100 transmits the "Reference Signal B” using the “transmission beam (m) in the transmission antenna panel (1)", the terminal device 200 sets the "Reference Signal B” to the "reception beam (n)”. ) In receiving antenna panel (1) ”. Then, before sending the PDCCH (0), the base station 100 instructs that when receiving the PDCCH (0), use the receiving antenna panel and the receiving beam used when receiving the "Reference Signal A”. Can be done. In other words, it is possible to implicitly specify an instruction equivalent to the instruction to use the receiving beam (j) in the receiving antenna panel (0).
  • the base station 100 should use the same receiving antenna panel and receiving beam as when receiving "Reference Signal A".
  • a clear instruction was given to the device 200.
  • the receiving antenna panel and the receiving beam used when the terminal device 200 synchronizes with the base station 100 are used as defaults.
  • FIG. 8 is a diagram showing an example of a synchronization signal.
  • the synchronization signal is a signal that periodically transmits an SSB burst.
  • the SSB burst includes a plurality of beamformed SSBs.
  • the SSB contains a sequence of synchronization signals PSS and SSS and system information to be broadcast called PBCH. PSS and SSS are supposed to be used in the same way as LTE.
  • Base station 100 transmits each SSB using beams in different directions. Therefore, the terminal device 200 receives the SSB facing the direction of the terminal device 200 and synchronizes.
  • FIG. 9 is a diagram showing an example of a synchronization signal when a different transmitting antenna panel is used for each SSB burst.
  • the base station 100 transmits the SSB contained in the SSB burst by using a different transmitting antenna panel for each SSB burst.
  • the terminal device 200 can synchronize with the SSB transmitted from the plurality of transmitting antenna panels, and at the same time, the optimum receiving antenna panel and reception required when receiving the SSB from the plurality of transmitting antenna panels. You can know one or more beams. In this case, for example, as illustrated in FIG. 7, the terminal device 200 knows two sets of the receiving antenna panel and the receiving beam.
  • the terminal Even if there is a rule that the device 200 uses the set when the SSB is received as the default, the terminal device 200 cannot determine which antenna panel and beam should be used because there are a plurality of sets. ..
  • the terminal device 200 operates by switching a plurality of time offset values by executing the communication method according to the embodiment. Specifically, the terminal device 200 according to the embodiment first acquires a plurality of time offset values for determining the reception environment of user data specified by the control information transmitted from the base station 100. A plurality of time offset values may be received from the base station 100, or may be predetermined by a standard or the like. Subsequently, the terminal device 200 according to the embodiment determines a user data reception environment (combination of the reception antenna panel and the reception beam) from a plurality of time offset values based on the control information received from the base station 100. Select the time offset value for. Then, the terminal device 200 according to the embodiment sets a reception environment for receiving the user data based on the magnitude relationship between the selected time offset value and the time interval of the control information and the user data.
  • the terminal device 200 sets a time offset value according to whether or not the receiving antenna panel is switched when receiving control information and user data, and whether or not a plurality of user data overlap. Set the time offset value according to it.
  • an appropriate time offset value can be set according to the situation by switching a plurality of time offset values according to the reception situation of the user data.
  • FIG. 10 is a block diagram showing an example of the configuration of the base station apparatus 100 according to the embodiment.
  • the base station device 100 includes an antenna unit 110, a communication unit 120, a storage unit 130, and a control unit 140.
  • the antenna unit 110 radiates the signal output by the communication unit 120 into space as radio waves. Further, the antenna unit 110 converts a radio wave in space into a signal and outputs the signal to the communication unit 120. Specifically, the antenna unit 110 has a plurality of antenna elements and can form a beam.
  • the communication unit 120 wirelessly transmits and receives signals. For example, the communication unit 120 receives the downlink signal from the terminal device 200 and transmits the uplink signal to the terminal device 200.
  • the antenna unit 110 and the communication unit 120 include a plurality of antenna panels 70 of the analog-digital hybrid antenna architecture described above.
  • the antenna unit 110 corresponds to the antenna 72.
  • the communication unit 120 corresponds to the digital circuit 50, the analog circuit 60, and the phase shifter 71.
  • the storage unit 130 temporarily or permanently stores various programs and various data for the operation of the base station device 100.
  • the control unit 140 controls the operation of the entire base station device 100 to provide various functions of the base station device 100. As shown in FIG. 10, the control unit 140 includes a notification unit 141 and a designation unit 142.
  • the notification unit 141 notifies the terminal device 200 of a plurality of time offset values for determining the reception environment (combination of the reception antenna panel and the reception beam) of the user data scheduled by the control information transmitted to the terminal device 200.
  • This notification may be performed by, for example, RRC signaling (e.g. RRC Setup message, RRC Reconfiguration message).
  • the time offset value can also be expressed as a time during which the terminal device 200 can switch the receiving antenna panel or the receiving beam. That is, it can be paraphrased as one of the capabilities of the terminal device 200.
  • the operation of the notification unit 141 is not essential.
  • the designation unit 142 When transmitting the control information (e.g. PDCCH), the designation unit 142 specifies a time offset value for determining the user data reception environment from a plurality of time offset values.
  • the specification of this time offset value may be performed by Downlink Control Information transmitted by PDCCH. Further, or instead, this designation may be made explicitly or implicitly for the designation of the time offset value.
  • the time offset value may be specified by the index corresponding to the time offset value.
  • FIG. 11 is a block diagram showing an example of the configuration of the terminal device 200 according to the embodiment.
  • the terminal device 200 includes an antenna unit 210, a communication unit 220, a storage unit 230, and a control unit 240.
  • the antenna unit 210 radiates the signal output by the communication unit 220 into space as radio waves. Further, the antenna unit 210 converts a radio wave in space into a signal and outputs the signal to the communication unit 220. Specifically, the antenna unit 210 has a plurality of antenna elements and can form a beam.
  • the communication unit 220 wirelessly transmits and receives signals.
  • the communication unit 220 receives the downlink signal from the base station 100 and transmits the uplink signal to the base station 100.
  • the antenna unit 210 and the communication unit 220 include a plurality of antenna panels 70 of the analog-digital hybrid antenna architecture described above.
  • the antenna unit 210 corresponds to the antenna 72.
  • the communication unit 220 corresponds to the digital circuit 50, the analog circuit 60, and the phase shifter 71.
  • the storage unit 230 temporarily or permanently stores various programs and various data for the operation of the terminal device 200.
  • the control unit 240 controls the operation of the entire terminal device 200 to provide various functions of the terminal device 200. As shown in FIG. 11, the control unit 240 includes an acquisition unit 241, a selection unit 242, and a setting unit 243.
  • the acquisition unit 241 acquires (determines) various information from the base station 100.
  • the acquisition unit 241 has a plurality of time offset values (or indexes thereof) for determining the reception environment (combination of the reception antenna panel and the reception beam) of the user data specified by the control information transmitted from the base station 100.
  • the acquisition unit 241 includes a plurality of first time offset values when the reception environment of control information and user data is the same, and a second time offset value when the reception environment of control information and user data is different. Get the time offset value.
  • the first time offset value is acquired when the receiving antenna panel used for receiving the PDSCH is the same as the receiving antenna panel used for receiving the PDCCH scheduled for the PDSCH. Further, a second time offset value is acquired when the receiving antenna panel used for receiving the PDSCH is different from the receiving antenna panel used for receiving the PDCCH scheduled for the PDSCH. Further, the acquisition unit 241 acquires control information including environment information indicating whether or not the reception environment of user data (combination of the reception antenna panel and the reception beam) is the same as that of the control information.
  • the acquisition unit 241 has a first time offset value when the reception environments (combination of the reception antenna panel and the reception beam) of a plurality of user data scheduled for each of the plurality of control information do not overlap, and a first time offset value when they overlap. Get the time offset value of 2. Further, the acquisition unit 241 acquires control information including overlap information indicating whether or not the reception environments (combination of the reception antenna panel and the reception beam) of a plurality of user data overlap. For example, the acquisition unit 241 acquires a second time offset value that is longer than the first time offset value.
  • the control unit 240 of the terminal device 200 may have a reporting unit (an example of a determination unit) in addition to or in place of the acquisition unit 241.
  • the reporting unit reports to the base station apparatus 100 a plurality of times required for switching the reception environment (combination of the receiving antenna panel and the receiving beam) of the user data scheduled by the control information transmitted from the base station 100 as a time offset value. You may. For example, multiple time offset values are reported, including a first time offset value when the control information and user data reception environment is the same, and a second time offset value when the control information and user data reception environment are different. Will be done.
  • the selection unit 242 selects a time offset value for determining a user data reception environment (combination of a reception antenna panel and a reception beam) from a plurality of time offset values based on the control information received from the base station 100. To do. For example, the selection unit 242 selects one of the first time offset value and the second time offset value based on the control information. Further, the selection unit 242 selects either one of the first time offset value and the second time offset value based on the environment information in the control information. Further, the selection unit 242 selects a third time offset value other than the first time offset value and the second time offset value when the control information is received in the preset reception environment. Further, the selection unit 242 selects either one of the first time offset value and the second time offset value based on the overlap information in the control information.
  • the setting unit 243 sets the user data reception environment (combination of the reception antenna panel and the reception beam) based on the time offset value selected by the selection unit 242. Specifically, when the time interval between the control information and the user data is less than the time offset value, the setting unit 243 sets the user data reception environment to a preset reception environment, that is, a default reception environment (reception antenna). Set to (combination of panel and receive beam). When the time interval between the control information and the user data is equal to or greater than the time offset value, the setting unit 243 sets the reception environment (combination of the receiving antenna panel and the receiving beam) specified by the control information to the user data reception environment (reception). Set as a combination of antenna panel and reception beam). Further, the setting unit 243 sets the reception environment when the control information is received as the preset reception environment (default reception environment).
  • Embodiment >> 12 to 14 are diagrams showing resource areas in which PDCCH and PDSCH are set.
  • the base station 100 uses the QCL specified by the PDCCH on the terminal device 200 side if the time between the PDCCH and the PDSCH is within a certain time.
  • I decided to use the default QCL (for example, the beam used in the SSB) because I didn't have time to set it up. That is, as shown in FIG. 9, when the time interval between the PDCCH and the PDSCH ⁇ the time offset value, the PDSCH was received in the default reception environment.
  • the QCL is information indicating which reference signal and the same reception environment (reception antenna panel / reception beam) should be used.
  • the slot allocated for the PCSCH is represented by the following equation (1).
  • n is the DCI (included in the PDCCH) that schedules the PDSCH.
  • K 0 is based on PDSCH numerology (eg subcarrier spacing).
  • u PDSCH and u PDCCH are subcarrier spacing configurations for PDSCH and PDCCH, respectively. That is, when the UE receives the DCI in the slot n, the PDSCH slot scheduled by the DCI is assigned to the slot represented by the equation (1).
  • the UE is designated by the RRC layer.
  • the reference signal eg SSB, CSI-RS
  • TCI state regarding the QCL type given by the TCI state (TCI-State) and the DMRS (Dedicated Modulation Reference Signal) of the PDSCH of the serving cell (eg PCell, SCell) are It can be assumed to be quasi-colocate (quasi-identical).
  • the active BWP of the serving cell monitored by the UE Reference for the QCL parameter used for the PDCCH quasi co-location indication of the CORESET associated with the search space monitored with the lowest CORESET ID in the last slot of one or more CORESET (Control Resource Set). It can be assumed that the signal and the DMRS of the PDSCH of the serving cell (eg PCell, SCell) are quasi-colocate (quasi-identical).
  • the default combination of the receiving antenna panel and the receiving beam for receiving the PDSCH is, for example, when a beam such as SSB is provided from a plurality of transmitting antenna panels on the base station 100 side, the PDCCH is received. You may use the reception environment you used.
  • FIGS. 13 and 14 show a case where the receiving antenna panel is different between PDCCH and PDCSH (FIG. 13) and a case where the receiving antenna panel is the same (FIG. 14).
  • FIGS. 13 and 14 there are cases where the receiving antenna panel used when receiving the PDSCH is changed, and cases where the receiving antenna panel is not changed and only the receiving beam is changed.
  • the time offset values are different. That is, it is considered that more time is required to change the received beam across different receiving antenna panels than to change only the received beam in the same receiving antenna panel.
  • the base station 100 has a plurality of time offset values between the PDCCH and the PDSCH when designating the reception environment (combination of the reception antenna panel and the reception beam) to be used in the PDSCH scheduled by the PDCCH.
  • the first time offset value is when the same receiving antenna panel is used for PDCCH and PDSCH and the same or different receiving beams are used.
  • the second time offset value is a case where PDCCH and PDSCH use different receiving antenna panels and use the same or different receiving beams.
  • each time offset value is set so that the second time offset value ⁇ the first time offset value.
  • the plurality of time offset values are set in advance from the base station 100 to the terminal 200. That is, the notification unit 141 of the base station 100 notifies the terminal device 200 of a plurality of time offset values. Alternatively, the terminal device 200 may report to the base station device 100 as the capacity of the terminal device 200.
  • the designation unit 142 of the base station 100 specifies which of the plurality of time offset values to use in the PDCCH. For example, the designation unit 142 uses one bit in the PDCCH to specify which of the plurality of time offset values to use. Since the terminal device 200 specifies whether to use the first time offset value or the second time offset value in the received PDCCH, the terminal device 200 is between the PDCCH and the PDSCH rather than the specified time offset value. If the time is short, the preset default reception environment (combination of receive antenna panel and receive beam) is used. That is, when the time between the PDCCH and the PDSCH is shorter than the specified time offset value, the terminal device 200 uses the default reception environment because the reception environment specified by the PDCCH cannot be set in time. When the time between PDCCH and PDSCH is longer than the specified time offset value, the terminal device 200 uses the reception environment specified by PDCCH.
  • FIG. 15 is a sequence diagram showing an example of the flow of the PDSCH reception procedure executed by the base station 100 and the terminal device 200. As shown in FIG. 15, the base station 100 sets a first time offset value in the terminal device 200 when the receiving antenna panel does not change between the PDCCH and the PDSCH (step S101).
  • the base station 100 sets the second time offset value when the receiving antenna panel changes between the PDCCH and the PDSCH in the terminal device 200 (step S102). Subsequently, the base station 100 sets the receiving antenna panel and the receiving beam for receiving the PDCCH in the terminal device 200 (step S103).
  • the base station 100 specifies the receiving antenna panel and the receiving beam to be used in the PDCCH in the PDCCH to be transmitted, further specifies the time offset value, and transmits the PDCCH (step S104).
  • the base station 100 transmits the PDSCH in the resource area specified by the PDCCH (step S105).
  • the terminal device 200 receives the PDSCH using the receiving antenna panel and the receiving beam specified by the PDCCH (step S106). .. Alternatively, the terminal device 200 receives the PDSCH using the default receiving antenna panel and receiving beam when the time interval between the PDCCH and the PDSCH is shorter than the set time offset value (step S106).
  • the terminal device 200 notifies the base station 100 whether or not the PDSCH can be received (step S107).
  • the reception environment used when receiving the PDSCH can be set as possible as DCI (Downlink Control Information). ) Can be used to increase the number of situations in which the reception environment specified in) can be used.
  • DCI Downlink Control Information
  • the process when the base station 100 determines whether or not the receiving antenna panels used in the PDCCH and the PDSCH are the same is shown, but this is because the receiving antenna panels of the PDCCH and the PDSCH are the same in the base station 100. It is assumed that you know whether or not. As a result, the base station 100 has already set the receiving antenna panel to be used in the PDCCH, and the PDSCH can be scheduled in the PDCCH, and the receiving antenna panel and the receiving beam to be used can be specified.
  • the base station 100 does not know whether or not the receiving antenna panels of the PDCCH and the PDSCH are the same. For example, when the receiving antenna panel and the receiving beam to be used for receiving the PDCCH are not set, the terminal device 200 is informed which is used as the default of the receiving antenna panel and the receiving beam to be used for receiving the PDCCH. There is no means. Specifically, when the terminal device 200 receives the PDCCH by using the default of the PDCCH, but the base station 100 does not grasp the contents of the default and only the terminal device 200 grasps the contents. , Base station 100 cannot know which receiving antenna panel was used for PDCCH. In that case, it is not possible to specify from the base station 100 whether to use the first time offset value or the second time offset value.
  • the terminal device 200 determines by itself whether or not the receiving antenna panels are the same.
  • the terminal device 200 determines whether or not the reception environment of the PDSCH specified in the PDCCH and the reception environment actually used in the PDCCH are the same, and if it is determined that they are the same. , The first time offset value described above is used.
  • the terminal device 200 uses the above-mentioned second time offset value when the PDCCH reception environment and the PDSCH reception environment are different.
  • the acquisition unit 241 of the terminal device 200 acquires environment information indicating whether or not the reception environments of the PDCCH and the PDSCH are the same.
  • the acquisition unit 241 acquires 1-bit environment information in the PDCCH indicating whether or not the PDCCH reception environment and the PDSCH reception environment are the same.
  • the time offset value is a value that is set in advance from the base station 100 to the terminal device 200, or is reported as the capacity of the terminal device 200 from the terminal device 200 to the base station device 100.
  • 3GPP Rel If it is 15 NR, it may be timeDurationForQCL.
  • timeDurationForQCL the candidate values that the UE can set are different for each Subcarrier Spacing. When Subcarrier Spacing is 60 kHz, one of 7 OFDM symbols, 14 OFDM symbols, and 28 OFDM symbols is set. On the other hand, when Subcarrier Spacing is 120 kHz, one of 14 OFDM symbols and 28 OFDM symbols is set.
  • the time required for 10 OFDM symbols can be set as an integer such as N as a unit time.
  • the time between PDCCH and PDSCH is, for example, 3GPP Rel. If it is 15 NR, it is represented by the above formula (1).
  • it may be calculated as follows. It may be written in the information (predicted arrival time and frequency of PDSCH, etc.) regarding the scheduling of PDSCH in the contents of PDCCH which can be seen by decoding the PDCCH received by the terminal device 200. That is, the terminal device 200 may be able to acquire the relative time difference between the PDCCH and the PDSCH at the time of decoding and viewing the information regarding scheduling.
  • the terminal device 200 determines the reception environment (combination of the reception antenna panel and the reception beam to be used for reception) by comparing the size of the acquired relative arrival time difference with the preset time offset value. To do. In each of the above processes, it is not necessary to measure the actual processing time of the terminal device 200, and the relative time difference between the PDCCH and the PDSCH is calculated by looking at the scheduling information of the PDCCH.
  • the relative arrival time difference may be grasped by the number of OFDM symbols in one slot, or may be grasped as the time difference corresponding to the number of OFDM symbols spanning a plurality of slots.
  • the time offset value is determined in advance according to the actual processing capacity of the terminal device 200, but since the processing speed of the terminal device 200 varies, it is preferable that the time offset value can be changed.
  • FIG. 16 is a sequence diagram showing an example of the flow of the PDSCH reception procedure executed by the base station 100 and the terminal device 200.
  • the notification unit 141 of the base station 100 sets a first time offset value in the terminal device 200 when the receiving antenna panel does not change between the PDCCH and the PDSCH (step S201).
  • the notification unit 141 of the base station 100 sets the second time offset value when the receiving antenna panel changes between the PDCCH and the PDSCH in the terminal device 200 (step S202).
  • the designated unit 142 of the base station 100 sets the receiving antenna panel and the receiving beam for receiving the PDCCH in the terminal device 200 (step S203).
  • the designation unit 142 of the base station 100 designates the receiving antenna panel and the receiving beam to be used in the PDSCH in the PDCCH to be transmitted, and transmits the PDCCH (step S204).
  • the selection unit 242 of the terminal device 200 selects a time offset value based on the determination result of whether or not the reception environment of the PDCCH and the reception environment of the PDCCH specified by the PDCCH are the same, and the setting unit 243 sets the selected time offset value (step S205).
  • the base station 100 transmits the PDSCH in the resource area specified by the PDCCH (step S206).
  • the setting unit 243 of the terminal device 200 receives the PDSCH using the receiving antenna panel and the receiving beam specified by the PDCCH when the time interval between the PDCCH and the PDSCH is longer than the set time offset value (Ste S207).
  • the setting unit 243 of the terminal device 200 receives the PDSCH using the default receiving antenna panel and the receiving beam when the time interval between the PDCCH and the PDSCH is shorter than the set time offset value (step S207).
  • the terminal device 200 notifies the base station 100 whether or not the PDSCH can be received (step S208).
  • an appropriate time offset value can be set, so that the base station 100 has designated it.
  • the possibility that the receiving antenna panel can be used for receiving the PDSCH can be increased.
  • the terminal device 20 receives the PDCCH in the reception environment specified by the base station 100.
  • the default reception environment for receiving the PDCCH (combination of the reception antenna panel and the reception beam).
  • the selection unit 242 of the terminal device 200 uses the third time offset value regardless of whether or not the receiving antenna panel used for the PDSCH is the same.
  • the third time offset value may be set in advance by the base station 100, or may be predetermined by a standard or the like. .. Further, the third time offset value is preferably, for example, equal to or larger than the first time offset value and the second time offset value.
  • the terminal device 200 does not need to perform a determination process of whether or not the reception environments of the PDCCH and the PDSCH are the same, so that the operation of the terminal device 200 can be simplified and the processing load can be reduced.
  • the setting unit 243 of the terminal device 200 receives the PDSCH in the default reception environment when it is less than the set time offset value, but the default reception environment (combination of the reception antenna panel and the reception beam) is set in advance. Use what was done. Therefore, it is assumed that the default reception environment and the reception environment (combination of the reception antenna panel and the reception beam) that should be actually used for the PDSCH are different.
  • the setting unit 243 of the terminal device 200 defaults to the reception environment (combination of the reception antenna panel and the reception beam) used for the actual reception of the PDCCH scheduled for PDSCH.
  • a plurality of time offset values are switched depending on whether or not the receiving antenna panel is switched. For example, whether or not the resource areas of PDCSH overlap (whether they overlap). You may switch a plurality of time offset values by (whether or not). This point will be described with reference to FIG.
  • FIG. 17 is a diagram showing a case where resource areas of a plurality of PDSCHs overlap.
  • the terminal device 200 sets the receiving antenna panel and the receiving beam specified by PDCCH1. It will be used not only for receiving PDSCH1 but also for receiving PDSCH2. Therefore, the processing load required for switching the receiving antenna panel and the receiving beam of the terminal device 200 differs depending on whether PDSCH1 and PDSCH2 overlap. Therefore, it is preferable to change the time offset value depending on whether or not the resource areas of the plurality of PDSCHs overlap.
  • a new time offset value is set when multiple PDSCHs overlap.
  • the selection unit 242 of the terminal device 200 sets the time offset according to the bit information indicating whether or not the PDSCHs in the PDCCH overlap.
  • the designation unit 142 of the base station 100 sets 1 bit (overlap information) in the PDCCH (eg DCI) indicating whether or not the scheduled PDSCH overlaps with another PDSCH. Equivalent to) Prepare.
  • the selection unit 242 of the terminal device 200 sets the time offset value based on the content of such 1 bit.
  • the setting unit 243 of the terminal device 200 compares the set time offset value with the time interval of the PDCCH and the PDSCH, and if it is less than the time offset, the PDSCH is set to the preset default reception environment.
  • the default may be the reception environment used for receiving PDCCH. This has the advantage that the load on the terminal device 200 is reduced rather than the terminal device 200 recognizing that the scheduling information (e.g. DCI) in the PDDCH overlaps.
  • FIG. 18 is a sequence diagram showing an example of the flow of the PDSCH reception procedure executed by the base station 100 and the terminal device 200.
  • the notification unit 141 of the base station 100 sets a time offset value (second time offset value) when a plurality of PDSCHs overlap in the terminal device 200 (step S301).
  • the notification unit 141 of the base station 100 sets the time offset value (first time offset value) when the plurality of PDSCHs do not overlap in the terminal device 200 (step S302).
  • the designated unit 142 of the base station 100 sets the receiving antenna panel and the receiving beam for receiving the PDCCH in the terminal device 200 (step S303).
  • the designation unit 142 of the base station 100 specifies the receiving antenna panel and the receiving beam to be used in the PDSCH in the PDCCH to be transmitted, and further determines whether or not they overlap with other PDSCHs in 1 bit. Specify and transmit PDCCH (step S304).
  • the base station 100 transmits the PDSCH in the resource area specified by the PDCCH (step S305).
  • the selection unit 242 of the terminal device 200 determines the time offset value in advance based on one bit of whether or not there is overlap in the PDCCH, and the setting unit 243 determines the time offset value.
  • the PDSCH is received in the reception environment determined based on the comparison result between the PDCCH and the PDSCH time interval (step S306).
  • the terminal device 200 notifies the base station 100 whether or not the PDSCH can be received (step S307).
  • the time offset value can be changed depending on whether or not a plurality of PDSCHs overlap, the load associated with the switching of the reception environment on the terminal device 200 side can be correctly estimated, and whether or not the switching is in time. Can be judged accurately.
  • UE Capability Information includes FeatureSetDownlink IE as part of UE capability. Rel.
  • FeatureSetDownlink includes the timeDurationForQCL described above. However, timeDurationForQCL does not consider the receiving antenna panel used by the UE to receive the PDSCH.
  • timeDurationType1ForQCL IE may contain the same value as the timeDurationForQCL IE described above, or may have the same information (timeDurationForQCL may be referred to as ie timeDurationType1ForQCL). That is, when Subcarrier Spacing is 60 kHz, one of 7 OFDM symbols, 14 OFDM symbols, and 28 OFDM symbols is set, and when Subcarrier Spacing is 120 kHz, one of 14 OFDM symbols and 28 OFDM symbols is set. May be done.
  • timeDurationType2ForQCL IE corresponds to the above-mentioned second time offset value. Therefore, it is desirable to be able to set a longer time than timeDurationType1ForQCL.
  • timeDurationType2ForQCL IE is set to one of 14 OFDM symbols, 28 OFDM symbols, and 42 OFDM symbols when Subcarrier Spacing is 60 kHz, and 28 OFDM symbols and 42 OFDM symbols when Subcarrier Spacing is 120 kHz. One of them may be set.
  • the UE sends timeDurationType1ForQCL IE and timeDurationType2ForQCL IE in the UE Capability Information.
  • the UE receives the PDCCH in the time slot n with the Active BWP with a certain serving cell.
  • a DCI for scheduling a PDSCH in the PDCCH is included. Further, in this application example, the DCI includes information (e.g. index) indicating which of timeDurationType1ForQCL and timeDurationType2ForQCL should be used. Then, the UE identifies the slot to which the PDSCH is assigned based on the above equation (1).
  • the UE operates as follows. If the DCI contained in the PDCCH indicates whether timeDurationType1ForQCL or timeDurationType2ForQCL should be used, and the time between the reception of the DCI contained in the PDCCH and the corresponding PDSCH (the time obtained by the ie equation (1)) is If it is equal to or greater than the threshold timeDurationType1ForQCL or timeDurationType2ForQCL indicated by DCI, the UE will see a reference signal (eg SSB) in the TCI state for the QCL type given by the TCI state (TCI-State) specified by the RRC layer.
  • a reference signal eg SSB
  • CSI-RS CSI-RS
  • DMRS Dedicated demodulation Reference Signal
  • PDSCH of serving cell eg PCell, SCell
  • the reference signal for the QCL parameters used for the CORESET PDCCH quasi co-location indication associated with the monitored search space and the DMRS for the serving cell (eg PCell, SCell) PDSCH are quasi-colocate (quasi-identical). ) Can be assumed.
  • the UE receives the PDSCH using the combination of the receiving antenna panel and the receiving beam assumed to be quasi co-location (combination of one or a plurality of Antenna ports and the received reference signal).
  • the base station 100 may be any of eNodeB, ng-eNodeB, gNodeB, and en-gNodeB as described above. Further or instead, when the base station 100 is either eNodeB or en-gNodeB, the base station 100 may be referred to as EUTRAN. Further or instead, when the base station 100 is either gNodeB or ng-eNodeB, the base station 100 may be referred to as NGRAN. Further, the base station 100 may be a Master Node (MN) in Dual Connectivity or a Secondary Node (SN). That is, the base station 100 may be a Secondary gNodeB in the case of EUTRA-NR Dual Connectivity or in the case of NR-NR Dual Connectivity.
  • MN Master Node
  • SN Secondary Node
  • a part or all of the above-mentioned RRC signaling may be transmitted to and received from the UE (terminal device 200) via the MN, or the UE (terminal device 200) and Secondary via the SRB (Signalling Radio Bearer) 3. It may be transmitted and received directly to and from gNodeB (base station 100).
  • the above-mentioned PDCCH and PDSCH may be transmitted in the SCG (Secondary Cell Group) between the UE (terminal device 200) and the Secondary gNodeB (base station 100).
  • the base station 100 may be Master gNodeB in the case of NR-EUTRA Dual Connectivity or in the case of NR-NR Dual Connectivity.
  • the above-mentioned RRC signaling may be transmitted and received between the UE (terminal device 200) and the Master gNodeB (base station 100) via any of SRB0 and SRB0.
  • the above-mentioned PDCCH and PDSCH may be transmitted in the MCG (master Cell Group) between the UE (terminal device 200) and the Master gNodeB (base station 100).
  • the above-mentioned base station 100 may be a gNB-CU (Central Unit) or a gNB-DU (Distributed Unit) or a combination of gNB-CU and gNB-DU (i.e. gNB).
  • the gNB-CU hosts the RRC layer, SDAP layer, and PDCP layer for a UE.
  • the gNB-DU hosts the RLC layer, the MAC layer, and the PHY layer for a UE. That is, a part or all of the above-mentioned RRC signaling may be terminated between the UE and the gNB-CU via the gNB-DU. Part or all of the downlink RRC signaling may be generated by gNB-CU.
  • the above-mentioned PDCCH and PDSCH may be generated by gNB-DU and transmitted to the UE.
  • the base station 100 may be realized as a macro eNB, a small eNB, or the like.
  • the small eNB may be an eNB that covers cells smaller than the macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as NodeB or BTS (Base Transceiver Station).
  • the base station 100 may include a main body (also referred to as a base station device) that controls wireless communication, and one or more RRHs (Remote Radio Heads) arranged at a location different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals which will be described later, may operate as the base station 100 by temporarily or semi-permanently executing the base station function.
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Further, the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Further, the terminal device 200 may be a wireless communication module (for example, an integrated circuit module composed of one die) mounted on these terminals.
  • MTC Machine Type Communication
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques according to the present disclosure can be applied.
  • the gNB 800 has one or more antennas 810 and a base station device 820. Each antenna 810 and base station device 820 may be connected to each other via an RF cable.
  • the technique of this disclosure may be applied to eNB instead of gNB.
  • Each of the antennas 810 has a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmitting and receiving a radio signal by the base station apparatus 820.
  • the gNB 800 has a plurality of antennas 810, and the plurality of antennas 810 may correspond to, for example, a plurality of frequency bands used by the gNB 800.
  • FIG. 19 shows an example in which the gNB 800 has a plurality of antennas 810, the gNB 800 may have a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors and transfer the generated bundled packet. Further, the controller 821 is a logic that executes control such as radio resource management (Radio Resource Control), radio bearer control (Radio Bearer Control), mobility management (Mobility Management), inflow control (Admission Control), or scheduling (Scheduling). Function may be provided.
  • Radio Resource Control Radio Resource Control
  • Radio Bearer Control Radio Bearer Control
  • Mobility Management Mobility Management
  • Admission Control Inflow control
  • scheduling scheduling
  • the control may be executed in cooperation with the surrounding gNB or the core network node.
  • the memory 822 includes a RAM and a ROM, and stores a program executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, etc.).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. Controller 821 may communicate with a core network node or other gNB via network interface 823. In that case, the gNB 800 and the core network node or other gNB may be connected to each other by a logical interface (for example, S1 interface or X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for a wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication method such as NR, LTE or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the gNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, coding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP. (Packet Data Convergence Protocol)) Performs various signal processing.
  • L1, MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 826 may have some or all of the above-mentioned logical functions instead of the controller 821.
  • the BB processor 826 may be a module including a memory for storing a communication control program, a processor for executing the program, and related circuits, and the function of the BB processor 826 may be changed by updating the above program. Good.
  • the module may be a card or a blade inserted into the slot of the base station apparatus 820, or may be a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 19, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by, for example, the gNB 800. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 19, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements. Although FIG. 19 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. It may be.
  • the gNB 800 may include a module including a part (for example, a BB processor 826) or all of the wireless communication interface 825 and / or a controller 821, and the module may be equipped with one or more of the above components. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
  • the eNB 800, the base station device 820, or the module may be provided as a device including the one or more components, and a program for making the processor function as the one or more components is provided. You may. Further, a readable recording medium on which the above program is recorded may be provided.
  • the communication unit 120 described with reference to FIG. 10 may be mounted on the wireless communication interface 825 (for example, RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. Further, the storage unit 130 may be mounted in the memory 822.
  • FIG. 20 is a block diagram showing a second example of a schematic configuration of a gNB to which the techniques according to the present disclosure can be applied.
  • the gNB 830 has one or more antennas 840, a base station device 850, and a gNB-DU 860.
  • Each antenna 840 and gNB-DU860 may be connected to each other via an RF cable.
  • the base station device 850 and the gNB-DU860 can be connected to each other by a high-speed line such as an optical fiber cable.
  • gNB-DU860 is replaced with RRH.
  • Each of the antennas 840 has a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna) and is used for transmitting and receiving a radio signal by the gNB-DU860.
  • the gNB 830 has a plurality of antennas 840 as shown in FIG. 20, and the plurality of antennas 840 may correspond to a plurality of frequency bands used by the gNB 830, for example.
  • FIG. 20 shows an example in which the gNB 830 has a plurality of antennas 840, the gNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, memory 852, and network interface 853 are similar to the controller 821, memory 822, and network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication method such as NR, LTE or LTE-Advanced, and wirelessly connects to a terminal located in the sector corresponding to the gNB-DU860 via the gNB-DU860 and the antenna 840. I will provide a.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is similar to the BB processor 826 described with reference to FIG. 19 except that it is connected to the RF circuit 864 of the gNB-DU860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as shown in FIG.
  • the plurality of BB processors 856 may correspond to a plurality of frequency bands used by, for example, the gNB 830.
  • FIG. 20 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the gNB-DU860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the gNB-DU 860.
  • the gNB-DU860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the gNB-DU860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include RF circuits 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements.
  • FIG. 20 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the gNB 830 includes a module including a part (for example, a BB processor 856) or all of the wireless communication interface 855 and / or a controller 851, and even if one or more of the above components are implemented in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
  • the gNB 830, the base station device 850, or the module may be provided as a device including the one or more components, and a program for making the processor function as the one or more components is provided. You may. Further, a readable recording medium on which the above program is recorded may be provided.
  • the communication unit 120 described with reference to FIG. 10 may be mounted on the wireless communication interface 863 (for example, RF circuit 864). Further, the antenna unit 110 may be mounted on the antenna 840. Further, the storage unit 130 may be mounted in the memory 852.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, and one or more antenna switches 915. It comprises one or more interfaces 916, bus 917, battery 918 and auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • Memory 902 includes RAM and ROM and stores programs and data executed by processor 901.
  • the storage 903 may include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 has an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) and generates an image.
  • the sensor 907 may include, for example, a group of sensors such as a positioning sensor, a gyro sensor, a geomagnetic sensor and an acceleration sensor.
  • the microphone 908 converts the voice input to the smartphone 900 into a voice signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch for detecting a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the voice signal output from the smartphone 900 into voice.
  • the wireless communication interface 912 supports any of the cellular communication methods such as NR, LTE or LTE-Advanced, and executes wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, coding / decoding, modulation / demodulation, multiplexing / demultiplexing, and the like, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which a BB processor 913 and an RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. Although FIG. 19 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. It may be.
  • the wireless communication interface 912 may support other types of wireless communication systems such as a short-range wireless communication system, a near field wireless communication system, or a wireless LAN (Local Area Network) system in addition to the cellular communication system.
  • a short-range wireless communication system such as a Bluetooth Special Interest Group (SIG) system
  • a near field wireless communication system such as a Wi-Fi Protected Access
  • a wireless LAN Local Area Network
  • the BB processor 913 and the RF circuit 914 for each wireless communication system may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits (for example, circuits for different wireless communication methods) included in the wireless communication interface 912.
  • Each of the antennas 916 has a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmitting and receiving a radio signal by the wireless communication interface 912.
  • the smartphone 900 may have a plurality of antennas 916 as shown in FIG. Although FIG. 21 shows an example in which the smartphone 900 has a plurality of antennas 916, the smartphone 900 may have a single antenna 916.
  • the smartphone 900 may be provided with an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. ..
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 21 via a power supply line partially shown by a broken line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, for example, in the sleep mode.
  • the smartphone 900 includes a module including a part (for example, BB processor 913), a processor 901, and / or an auxiliary controller 919 of the wireless communication interface 912, and one or more of the above-mentioned components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
  • a program for making the processor function as one or more of the above components is installed in the smartphone 900, with the wireless communication interface 912 (eg, BB processor 913), processor 901, and / or auxiliary controller 919. You may run the program.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for making the processor function as the one or more components may be provided. Further, a readable recording medium on which the above program is recorded may be provided.
  • the communication unit 220 described with reference to FIG. 11 may be mounted on the wireless communication interface 912 (for example, RF circuit 914). Further, the antenna unit 210 may be mounted on the antenna 916. Further, the storage unit 230 may be mounted in the memory 902.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technique according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. It comprises an interface 933, one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • GPS Global Positioning System
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 920.
  • Memory 922 includes RAM and ROM and stores programs and data executed by processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position (eg, latitude, longitude and altitude) of the car navigation device 920.
  • the sensor 925 may include, for example, a group of sensors such as a gyro sensor, a geomagnetic sensor and a barometric pressure sensor.
  • the data interface 926 is connected to the vehicle-mounted network 941 via a terminal (not shown), and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces the content stored in the storage medium (for example, CD or DVD) inserted in the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and accepts an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays an image of a navigation function or a content to be reproduced.
  • the speaker 931 outputs the sound of the navigation function or the content to be played.
  • the wireless communication interface 933 supports any of the cellular communication methods such as NR, LTE or LTE-Advanced, and executes wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, coding / decoding, modulation / demodulation, multiplexing / demultiplexing, and the like, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which a BB processor 934 and an RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. Although FIG. 22 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. It may be.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a proximity wireless communication system, or a wireless LAN system in addition to the cellular communication system, in which case wireless.
  • a BB processor 934 and an RF circuit 935 for each communication method may be included.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits (for example, circuits for different wireless communication methods) included in the wireless communication interface 933.
  • Each of the antennas 937 has a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna) and is used for transmitting and receiving a radio signal by the wireless communication interface 933.
  • the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. Although FIG. 22 shows an example in which the car navigation device 920 has a plurality of antennas 937, the car navigation device 920 may have a single antenna 937.
  • the car navigation device 920 may be provided with an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies electric power to each block of the car navigation device 920 shown in FIG. 20 via a power supply line partially shown by a broken line in the figure. In addition, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation device 920 includes a module including a part (for example, BB processor 934) or all and / or a processor 921 of the wireless communication interface 933, and one or more of the above components are mounted on the module. You may.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
  • a program for making the processor function as one or more of the above components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, BB processor 934) and / or the processor 921 executes the program.
  • the car navigation device 920 or the module may be provided as a device including the one or more components, or a program for making the processor function as the one or more components may be provided. Good. Further, a readable recording medium on which the above program is recorded may be provided.
  • the communication unit 220 described with reference to FIG. 11 may be mounted on the wireless communication interface 933 (for example, RF circuit 935). Further, the antenna unit 210 may be mounted on the antenna 937. Further, the storage unit 230 may be mounted in the memory 922.
  • the technique according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle-side module 942.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the vehicle-mounted network 941.
  • the control device for controlling the base station device 100 or the terminal device 200 of the present embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above operation (for example, transmission / reception processing) is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk.
  • the control device is configured by installing the program on a computer and executing the above-mentioned processing.
  • the control device may be a base station device or a device external to the terminal device (for example, a personal computer). Further, the control device may be a base station device or a device inside the terminal device.
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer or the like.
  • the above-mentioned functions may be realized by cooperation between the OS (Operating System) and the application software.
  • the part other than the OS may be stored in a medium and distributed, or the part other than the OS may be stored in the server device so that it can be downloaded to a computer or the like.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. It can be integrated and configured.
  • the default of the combination (reception environment) of the reception antenna panel and the reception beam to be used by the terminal device 200 has been described, but there is an aspect (Aspect).
  • the "receiver antenna panel” does not have to be explicitly considered.
  • it may be recognized (consider) as a plurality of different received beams from the viewpoint (UE perspective) of the UE (terminal device 200).
  • the antenna panel in the above embodiment may correspond to a combination of one or a plurality of antenna ports.
  • the antenna panel in the above embodiments may correspond to a group of antenna ports consisting of one or more antenna ports.
  • the antenna panel in the above embodiments may correspond to a combination of one or more antenna ports (or a group of antenna ports) and Quasi-co-location parameters.
  • the association of the resource area of the control information (eg PDCCH) and the identification information (egSSB-Index) (or the combination of the receiving antenna panel and the receiving beam) described above is the terminal device 200. It may be set for each (UE), for each MAC entity in the UE, for each cell, for each CC, or for each BWP.
  • the resource area may be, for example, one or more of a Resource Element Group (REG) consisting of one Resource Block and one OFDM symbol. Instead of this, the resource area may be a Control Channel Element (CCE) composed of a plurality of (e.g. 6) REGs. Instead of this, the resource area may be a Control-resource set (CORESET) composed of a plurality of Resource Blocks and 1 to 3 OFDM symbols. At least one of the parameters and L values shown in Table 2 below that constitute CORESET may be transmitted from NGRAN (base station 100) to UE (terminal device 200) by RRC signaling (eg RRC Reconfiguration message). .. The RRC Reconfiguration message here may also include MeasConfig (measurement setting) for measuring the reference signal (e.g. SSB) described above.
  • RRC signaling eg RRC Reconfiguration message
  • the communication device for example, the terminal device 200
  • the communication device includes an acquisition unit 241 and a selection unit 242, and includes an acquisition unit 241 (determination unit).
  • Acquires determines) a plurality of time offset values for determining the reception environment of user data scheduled by the control information transmitted from the base station 100.
  • the selection unit 242 selects a time offset value for determining a user data reception environment from a plurality of time offset values based on the control information received from the base station 100.
  • the acquisition unit 241 (determination unit) of the communication device has a first time offset value when the reception environment of the control information and the user data is the same, and a first time offset value when the reception environment of the control information and the user data is different. Acquire (determine) a plurality of time offset values including the time offset value of 2.
  • the selection unit 242 selects either one of the first time offset value and the second time offset value based on the control information.
  • an appropriate time offset value can be set depending on whether or not the receiving antenna panel is switched, so that the possibility of receiving PDSCH in the reception environment specified by PDCCH is increased. be able to.
  • the acquisition unit 241 (determination unit) of the communication device according to the embodiment acquires (determines) control information including environment information indicating whether or not the reception environment of user data is the same as the control information.
  • the selection unit 242 selects either one of the first time offset value and the second time offset value based on the environment information in the control information.
  • the selection unit 242 of the communication device has a third time offset value other than the first time offset value and the second time offset value. Select.
  • the terminal device 200 does not need to perform a determination process of whether or not the reception environments of the PDCCH and the PDSCH are the same, so that the operation of the terminal device 200 can be simplified and the processing load can be reduced.
  • the acquisition unit 241 (determination unit) of the communication device overlaps with the first time offset value when the reception environments of the plurality of user data specified by each of the plurality of control information do not overlap. Acquire (determine) the second time offset value.
  • the selection unit 242 selects either one of the first time offset value and the second time offset value based on the control information.
  • the time offset value can be changed depending on whether or not a plurality of PDSCHs overlap, so that the load associated with the switching of the reception environment on the terminal device 200 side can be estimated correctly, and whether or not the switching is in time can be estimated. It can be judged accurately.
  • the acquisition unit 241 (determination unit) of the communication device according to the embodiment acquires (determines) control information including overlap information indicating whether or not the reception environments of a plurality of user data overlap.
  • the selection unit 242 selects one of the first time offset value and the second time offset value based on the overlap information in the control information.
  • the acquisition unit 241 of the communication device acquires a second time offset value longer than the first time offset value.
  • the receiving antenna panel is switched to receive the PDSCH, since the second time offset value is set long, the possibility of receiving the PDSCH in the receiving environment specified by the PDCCH is increased. be able to. Further, even when a plurality of PDSCHs overlap, since the second time offset value is set long, the possibility that the PDSCH can be received in the reception environment specified by the PDCCH can be increased.
  • the communication device includes a setting unit 243 that sets a user data reception environment based on a time offset value selected by the selection unit 242.
  • the terminal device 200 can increase the possibility of receiving the PDSCH in the reception environment specified by the PDCCH.
  • the setting unit 243 of the communication device sets the reception environment of the user data to the preset reception environment when the time interval of the control information and the user data is less than the time offset value.
  • the PDSCH can be received in the default reception environment even when the reception environment setting specified by the PDCCH is not in time on the terminal device 200 side.
  • the setting unit 243 of the communication device sets the reception environment when the control information is received as the reception environment set in advance.
  • the setting unit 243 of the communication device sets the reception environment of the user data to the reception environment specified by the control information.
  • the PDSCH can be received in the reception environment specified by the PDCCH, so that the PDSCH can be received with high accuracy.
  • the base station apparatus 100 includes a notification unit 141 and a designation unit 142.
  • the notification unit 141 notifies the terminal device 200 of a plurality of time offset values for determining the reception environment of the user data specified by the control information transmitted to the terminal device 200.
  • the designation unit 142 specifies a time offset value for determining a user data reception environment from a plurality of time offset values when transmitting control information.
  • the terminal device 200 can switch a plurality of time offset values, so that an appropriate time offset value can be set according to the situation.
  • the present technology can also have the following configurations.
  • a decision unit that determines multiple time offset values for determining the combination of the receive antenna panel and receive beam of user data scheduled by the control information transmitted from the base station. Based on the control information received from the base station, a selection unit for selecting the time offset value for determining the combination of the receiving antenna panel and the receiving beam of the user data from the plurality of time offset values is selected. Communication device to be equipped.
  • the decision unit The first time offset value when the combination of the receiving antenna panel and the receiving beam of the control information and the user data is the same, and the first when the combination of the receiving antenna panel and the receiving beam of the control information and the user data are different. Determine the plurality of time offset values including the time offset value of 2.
  • the selection unit The communication device according to (1), wherein one of the first time offset value and the second time offset value is selected based on the control information. (3)
  • the decision unit The control information including the environment information indicating whether or not the combination of the reception antenna panel and the reception beam of the user data is the same as the control information is determined.
  • the selection unit The communication device according to (2), wherein any one of the first time offset value and the second time offset value is selected based on the environmental information in the control information.
  • the selection unit When the control information is received by the combination of the receiving antenna panel and the receiving beam set in advance, the third time offset value other than the first time offset value and the second time offset value is selected.
  • the communication device according to (2) When the control information is received by the combination of the receiving antenna panel and the receiving beam set in advance, the third time offset value other than the first time offset value and the second time offset value is selected. The communication device according to (2).
  • the decision unit The first time offset value when the combinations of the receiving antenna panel and the receiving beam of the plurality of user data scheduled for each of the plurality of control information do not overlap, and the second time offset value when they overlap.
  • Decide and The selection unit The communication device according to any one of (1) to (3), wherein any one of the first time offset value and the second time offset value is selected based on the control information.
  • the decision unit The control information including the overlap information indicating whether or not the combination of the receiving antenna panel and the receiving beam of the plurality of user data overlaps is determined.
  • the selection unit The communication device according to (5), wherein one of the first time offset value and the second time offset value is selected based on the overlap information in the control information.
  • the decision unit The communication device according to any one of (2) to (4) above, which determines the second time offset value longer than the first time offset value.
  • the setting unit When the time interval between the control information and the user data is less than the time offset value, the combination of the receiving antenna panel and the receiving beam of the user data is set to the preset combination of the receiving antenna panel and the receiving beam.
  • the setting unit The communication device according to (9), wherein the combination of the receiving antenna panel and the receiving beam when the control information is received is set as the preset combination of the receiving antenna panel and the receiving beam.
  • the setting unit When the time interval between the control information and the user data is equal to or greater than the time offset value, the combination of the receiving antenna panel and the receiving beam of the user data is changed to the combination of the receiving antenna panel and the receiving beam specified in the control information.
  • a notification unit that notifies the communication device of a plurality of time offset values for determining a combination of a reception antenna panel and a reception beam of user data scheduled by control information transmitted to the communication device.
  • a base station apparatus including a designated unit for designating the time offset value for determining the combination of the receiving antenna panel of the user data and the receiving beam from the plurality of time offset values when transmitting the control information. .. (13) A determination process that determines multiple time offset values for determining the combination of the receive antenna panel and receive beam of user data scheduled by the control information transmitted from the base station. A selection step of selecting the time offset value for determining the combination of the receiving antenna panel and the receiving beam of the user data from the plurality of time offset values based on the control information received from the base station. Communication method including. (14) A notification process for notifying the communication device of a plurality of time offset values for determining a combination of a reception antenna panel and a reception beam of user data scheduled by control information transmitted to the communication device. A base station apparatus including a designated step of designating the time offset value for determining the combination of the receiving antenna panel and the receiving beam of the user data from the plurality of time offset values when transmitting the control information. Control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置(200)は、取得部(241)と、選択部(242)とを備える。取得部(241)は、基地局(100)から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する。選択部(242)は、基地局(100)から受信した制御情報に基づいて、複数のタイムオフセット値の中からユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するためのタイムオフセット値を選択する。

Description

通信装置、基地局装置、通信方法、及び基地局装置の制御方法
 本開示は、通信装置、基地局装置、通信方法、及び基地局装置の制御方法に関する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE)」、「LTE-Advanced(LTE-A)」、「LTE-Advanced Pro(LTE-A Pro)」、「5G(第5世代)」「New Radio(NR)」、「New Radio Access Technology(NRAT)」、「Evolved Universal Terrestrial Radio Access(EUTRA)」、または「Further EUTRA(FEUTRA)」とも称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において検討されている。なお、以下の説明において、LTEは、LTE-A、LTE-A Pro、およびEUTRAを含み、NRは、NRAT、およびFEUTRAを含む。LTEおよびNRでは、基地局装置(基地局)はLTEにおいてevolved NodeB(eNodeB)およびNRにおいてgNodeBとも称され、端末装置(移動局、移動局装置、端末)はUE(User Equipment)とも称される。LTEおよびNRは、基地局がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局は複数のセルを管理してもよい。
"3GPP TS 38.214 version 15.2.0 Release 15"、[online]、[平成31年3月26日検索]、インターネット(https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/15.02.00_60/ts_138214v150200p.pdf)
 ところで、基地局から端末装置へユーザデータが送信される場合、そのユーザデータは制御情報によってスケジューリングされる。この場合、基地局は、制御情報の中で端末装置の受信アンテナパネルと受信ビームの組み合わせを指定できるかもしれない。しかし、ユーザデータが受信されるまでに、端末側で受信アンテナパネルと受信ビームの組み合わせに関する設定が間に合わない場合には、デフォルトの組み合わせを設定することとなるかもしれない。
 端末装置が制御情報を受信してからユーザデータを受信するまでに当該設定が間に合うか否かを判定するためにタイムオフセット値の使用が想定される。しかしながら、端末に受信アンテナパネルが複数ある場合、制御情報により指定された受信アンテナパネルや受信ビーム等の組み合わせによって、当該設定が間に合うか否かの時間が異なるかもしれない。
 そこで、本開示では、状況に応じて適切なタイムオフセット値を設定することができる通信装置、基地局装置、通信方法、及び基地局装置の制御方法を提案する。
 上記の課題を解決するために、本開示に係る一形態の通信装置は、決定部と、選択部とを備える。前記決定部は、基地局から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する。前記選択部は、前記基地局から受信した前記制御情報に基づいて、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を選択する。
本開示の一実施形態に係る通信システムの全体構成の一例を示す図である。 BWPについて説明するための図である。 ビームスィーピングについて説明するための図である。 基地局と端末装置とにより実行される典型的なビーム選択手続き及びCSI取得手続きの流れの一例を示すシーケンス図である。 基地局と端末装置とにより実行される典型的なビーム選択手続き及びCSI取得手続きの流れの他の一例を示すシーケンス図である。 アナログ-デジタルハイブリットアンテナアーキテクチャの一例を説明するための図である。 端末装置に8つのアンテナパネルが配置されている例を示す説明図である。 2つのビームセットを示す図である。 同期信号を示す図である。 同期信号を示す図である。 実施形態に係る基地局装置の構成の一例を示すブロック図である。 実施形態に係る端末装置の構成の一例を示すブロック図である。 PDCCHおよびPDSCHが設定されるリソース領域を示す図である。 PDCCHおよびPDSCHが設定されるリソース領域を示す図である。 PDCCHおよびPDSCHが設定されるリソース領域を示す図である。 基地局と端末装置とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。 基地局と端末装置とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。 複数のPDSCHのリソース領域がオーバーラップする場合を示す図である。 基地局と端末装置とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。 本開示に係る技術が適用され得るgNBの概略的な構成の第1の例を示すブロック図である。 本開示に係る技術が適用され得るgNBの概略的な構成の第2の例を示すブロック図である。 本開示に係る技術が適用され得るスマートフォンの概略的な構成の一例を示すブロック図である。 本開示に係る技術が適用され得るカーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
 また、以下に示す項目順序に従って本開示を説明する。
  1.はじめに
   1.1.システム構成
   1.2.関連技術
   1.3.提案技術の概要
  2.構成例
   2.1.基地局の構成例
   2.2.端末装置の構成例
  3.実施形態
  4.応用例
   4.1.3GPP標準規格NRへの適用例
   4.2.基地局に関する応用例
   4.3.端末装置に関する応用例
  5.変形例
  6.まとめ
<<1.はじめに>>
<1.1.システム構成>
 図1は、本開示の一実施形態に係る通信システム1の全体構成の一例を示す図である。図1に示したように、通信システム1は、基地局100(100A及び100B)、端末装置200(200A及び200B)、コアネットワーク(Core Network)20、及びPDN(Packet Data Network)30(又は単にDN(Data Network))を含む。
 基地局100は、基地局に設置された基地局装置であり、セル11(11A及び11B)を運用し、セル11の内部に位置する1つ以上の端末装置へ無線サービスを提供する通信装置である。例えば、基地局100Aは、端末装置200Aに無線サービスを提供し、基地局100Bは端末装置200Bに無線サービスを提供する。セル11は、例えばLTE又はNR(New Radio)等の任意の無線通信方式に従って運用され得る。基地局100はeNodeB、ng-eNodeB、gNodeBおよびen-gNodeBのいずれかであってもよい。さらに又はこれに代えて、基地局100がeNodeB、及びen-gNodeBのいずれかである場合、基地局100はEUTRANと称されてもよい。さらに又はこれに代えて、基地局100がgNodeB、及びng-eNodeBのいずれかである場合、基地局100はNGRANと称されてもよい。基地局100は、コアネットワーク20に接続される。コアネットワーク20は、PDN30に接続される。
 コアネットワーク20は、LTEにおけるEPCである場合、例えばMME(Mobility Management Entity)、S-GW(Serving gateway)、P-GW(PDN gateway)、PCRF(Policy and Charging Rule Function)及びHSS(Home Subscriber Server)を含み得る。MMEは、制御プレーンの信号を取り扱う制御ノードであり、端末装置の移動状態を管理する。S-GWは、ユーザプレーンの信号を取り扱う制御ノードであり、ユーザ情報の転送経路を切り替えるゲートウェイ装置である。P-GWは、ユーザプレーンの信号を取り扱う制御ノードであり、コアネットワーク20とPDN30との接続点となるゲートウェイ装置である。PCRFは、ベアラに対するQoS(Quality of Service)等のポリシー及び課金に関する制御を行う制御ノードである。HSSは、加入者データを取り扱い、サービス制御を行う制御ノードである。一方、コアネットワーク20がNRにおける5GCである場合、AMF(Access and mobility Management Function)、SMF(Session Management Function)、UPF(User-Plane Function)、PCF(Policy Control Function)及びUDM(Unified Data Management)を含みうる。AMFは、制御プレーンの信号を取り扱う制御ノードであり、端末装置の移動状態を管理する。SMFは、制御プレーンの信号を取り扱う制御ノードであり、データの転送経路を管理する。UPFは、ユーザプレーンの信号を取り扱う制御ノードであり、ユーザ情報の転送経路を管理する。PCFは、ポリシーに関する制御を行う制御ノードである。UDMは、加入者データを取り扱う制御ノードである。
 端末装置200は、基地局100による制御に基づいて基地局100と無線通信する通信装置である。端末装置200は、いわゆるユーザ端末(User Equipment:UE)であってもよい。例えば、端末装置200は、基地局100にアップリンク信号を送信して、基地局100からダウンリンク信号を受信する。
 <1.2.関連技術>
(1)BWP(Bandwidth Part)
 図2は、BWPについて説明するための図である。図2の例では、CC(Component Carrier)#1は、複数のBWP(#1及び#2)を含み、CC#2は、複数のBWP(#1及び#2)を含む。なお、本明細書において、#の後の数字は、インデックス(又は識別子(identifier))を示すものとする。異なるCCに含まれるBWPは、インデックスが同一であっても、異なるBWPを示している。BWPは、ひとつのオペレーション周波数帯域幅(operation band width)であるCCを複数の周波数帯域幅に分けたものである。各々のBWPにおいては、異なるサブキャリア間隔(Subcarrier spacing)(i.g. Numerology)が設定され得る。なお、1つのCCはDownlink Component CarrierとUplink Component Carrierとを含んでいてもよいし、Downlink Component CarrierとUplink Component Carrierのいずれかであってもよい。また、1つのCCは1つのCellと対応していてもよい。すなわち、1つのCellの中に複数のBWPが含まれていてもよい。
 3GPP Rel15のNRでは、このBWPが規格化された。BWPは1つのセルのトータルセル帯域幅(total cell bandwidth)のサブセットともいえる。LTEについてRel8で規格化されたOFDM(Orthogonal Frequency Division Multiplexing)変調方式では、サブキャリア間隔は15kHzに固定されていた。他方、Rel15のNRでは、サブキャリア間隔を15kHz、30kHz、60kHz、120kHz又は240kHzにすることが可能である。サブキャリア間隔が長くなると、その分OFDMシンボル長が短くなる。例えば、LTEでは、サブキャリア間隔が15kHzであるから、1ms(ミリ秒)(i.e. 1サブフレーム)あたりに2スロット送信可能であり、換言すると、14OFDMシンボルを送信可能であった。他方、NRでは、例えばサブキャリア間隔が60kHzである場合には1msあたりに4スロット、120kHzである場合には1msあたりに8スロット、240kHzである場合には1msあたりに16スロットを送信可能である。このように、サブキャリアを長くすることで、OFDMシンボル長が短くなる。その分、低遅延通信に適したフレーム構成を提供することが可能となる。
 NRでは、異なるサブキャリア間隔が設定されたBWPを同時に端末へ設定することができる。そのため、NRでは、異なるユースケースに対応する、複数のBWPを同時に提供することができる。
(2)アクティブBWPの数
 送受信を行うことが可能なBWPは、アクティブBWPとも称される。3GPPにおいてアクティブBWPは、セルがオペレートする帯域幅の中でUEがオペレートする帯域幅とも定義される。そして、基地局100が同時に送受信を行うことが可能なBWPの数は、アクティブBWPの数とも称される。基地局100のアクティブBWPの数は複数であってもよい。他方、端末装置200のアクティブBWPの数は3GPP Rel.15のUEの場合1つである。しかし本明細書において、端末装置200のアクティブBWPの数は複数であってもよい。本開示にかかる技術では、端末装置200のアクティブBWPの数が1つである場合が想定される。
(3)セル(又はCC)、キャリア及びBWPとの関係
 本開示では、1つのCarrier内で複数のセルが周波数方向にて重なることを許容してもよい。例えば、複数のSSB(Synchronization Signal/PBCH block)が1つのCarrier内の複数のfrequency span毎で送信されてもよい。ただし、UE(端末装置200)の観点では、各セル(サービングセル)が最大で1つのSSB(Cell-defining SSB)と関連付けられる。UE(端末装置200)はCell-defining SSBに関連付けられたBWPをInitial BWPとして使用する。さらにUE(端末装置200)は、Initial BWPと同一Carrier内の1又は複数のfrequency spanで構成されるDedicated BWPをInitial BWPに加えて使用してもよい。UE(端末装置200)の観点では、これらのInitial BWPと追加的なDedicated BWPが1つのセルと関連付けられる。なお、本実施形態は、端末装置200が複数のBWPを同時刻に使用する場合を含んでもよい。
(4)コードブックベースビームフォーミング
 基地局100は、ビームフォーミングを行って端末装置200と通信することで、例えば通信品質を向上させることができる。ビームフォーミングの手法としては、端末装置200に追従するようなビームを生成する手法と、候補のビームの中から端末装置200に追従するようなビームを選択する手法とがある。前者の手法は、ビームを生成する度に計算コストがかかることから、セルラー無線通信システム(例えば、5G)において採用されないかもしれない。一方で、後者の手法は、3GPP(Third Generation Partnership Project)のリリース13のFD-MIMO(Full Dimension Multiple Input Multiple Output)でも採用されている。後者の手法は、コードブックベースビームフォーミング(codebook based beam forming)とも称される。
 コードブックベースビームフォーミングでは、基地局100は、あらゆる方向に向けたビームを事前に準備(即ち、生成)しておき、その事前に準備しておいたビームの中から対象の端末装置200に適するビームを選択して、選択したビームを用いて端末装置200と通信する。例えば、基地局100は、水平方向の360度での通信が可能である場合、例えば1度刻みで360種類のビームを準備する。ビーム同士が半分重なるようにする場合、基地局100は、720種類のビームを準備する。垂直方向に関しては、基地局100は、例えば-90度から+90度までの180度分のビームを準備する。
 なお、端末装置200は、ビームを観測(monitor)するだけなので、基地局100側のコードブックの存在を知っておく必要性は低い。
 基地局100が事前に準備しておいた複数のビームを、以下ではビーム群とも称する。ビーム群は、例えば、周波数帯域毎に定義され得る。また、ビーム群は、Rx/Txビームごとに、またダウンリンク/アップリンクごとに定義され得る。なお、基地局100によって準備又は運用される複数のビームは1つのセルと対応付けられてもよい(i.e. 複数のビームで1つのセルが構成されてもよい)。これに代えて、基地局100によって準備又は運用される複数のビームは複数のセルと対応付けられてもよい(i.e. 複数のビームで複数のセルが構成されてもよい)。
(5)ビームスィーピング
 NRでは、通信に用いるべき最適なビームを選択するために、ビーム群に属する複数のビームの各々を用いて、測定用信号(既知信号)を送信する又は受信する、ビームスィーピングについて検討されている。測定用信号は、参照信号(Reference Signal)とも称される場合がある。測定用信号が下り信号の場合、測定用信号はSSB(Synchronization Signal/PBCH(Physical Broadcast Channel) block)又はCSI-RS(Channel State Information-Reference Signal)を含んでもよい。ビームスィーピングしながら基地局から送信された測定用信号(i.e. 各ビームの測定用信号)の測定結果に基づいて、端末は最適な送信用ビーム(以下、送信ビームとも称する)を選択することができる。その一例を、図3を参照して説明する。
 図3は、ビームスィーピングについて説明するための図である。図3に示した例では、基地局100が、ビーム群40を用いてビームスィーピングしながら(即ち、送信ビームを切り替えながら)測定用信号を送信する。なお、ビームスィーピングしながら送信することを、以下ではビームスィーピング送信とも称する。そして、端末装置200は、ビームスィーピング送信された測定用信号を測定し、どの送信ビームが最も受信しやすいかを決定する。このようにして、端末装置200にとっての基地局100の最適な送信ビームが選択される。なお、基地局100と端末装置200とを入れ替えて同様の手続きを実行することで、基地局100は、端末装置200の最適な送信ビームを選択することができる。
 他方、測定用信号をビームスィーピングしながら受信することで得た測定結果に基づいて、最適な受信用ビーム(以下、受信ビーム、あるいはビームとも称される)を選択することもできる。例えば、端末装置200が、測定用信号をアップリンクで送信する。そして、基地局100は、ビームスィーピングしながら(即ち、受信ビームを切り替えながら)測定用信号を受信し、どの受信ビームが最も受信しやすいかを決定する。このようにして、基地局100の最適な受信ビームが選択される。なお、基地局100と端末装置200とを入れ替えて同様の手続きを実行することで、端末装置200は、端末装置200の最適な受信ビームを選択することができる。また、ビームスィーピングしながら受信することを、以下ではビームスィーピング受信とも称する。
 ビームスィーピング送信された測定用信号を受信及び測定する側は、測定結果を測定用信号の送信側に報告する。測定結果は、どの送信ビームが最適かを示す情報(e.g. ビーム識別子、時間、プリアンブル等)を含んでもよい。最適な送信ビームとは、例えば、受信電力が最も大きい送信ビームである。測定結果は、受信電力が最も大きい1つの送信ビームを示す情報を含んでいてもよいし、受信電力が大きい上位K個の送信ビームを示す情報を含んでいてもよい。測定結果は、例えば、送信ビームの識別情報(例えば、ビームのインデックス)、及び送信ビームの受信電力の大きさを示す情報(例えば、RSRP(Reference Signal Received Power))を、対応付けて含む。
 ビームスィーピングのためのビームは、既知信号である参照信号に指向性を持たせて送信するものである。従って端末装置200は参照信号というリソースでビームを判別することができる。
 基地局100は、一つの参照信号のリソースを使って、一つのビームを提供できる。すなわち、リソースを10個用意すれば、基地局100は異なる10方向に対応したビームスィーピングを行うことができる。10個のリソースをまとめてリソースセットと呼ぶことができる。10個のリソースで構成された1つのリソースセットは、10方向に対応したビームスィーピングを提供することができる。
(6)CSI取得(Acquisition)手続き
 CSI(Channel State Information)取得手続きは、上述したビームスィーピングを伴うビーム選択手続きにより、最適なビームが選択された後に実行される。CSI取得手続きにより、選択されたビームを用いた通信におけるチャネル品質が取得される。例えば、CSI取得手続きにおいて、CQI(Channel Quality Indicator)が取得される。
 チャネル品質は、変調方式等の通信パラメータを決定するために用いられる。チャネルの品質が良いのに、少ないビットしか送ることができない変調方式、例えばQPSK(Quadrature Phase Shift Keying)が採用されると、低スループットになってしまう。一方、チャネルの品質が悪いのに、多くのビットを送ることができる変調方式、例えば256QAM(Quadrature Amplitude Modulation)が採用されると、受信側でデータの受信(i.e.デコード)に失敗し、結果として低スループットになってしまう。このように、チャネル品質を正しく取得することが、スループット向上のために重要である。
 図4は、基地局と端末装置とにより実行される典型的なビーム選択手続き及びCSI取得手続きの流れの一例を示すシーケンス図である。図4に示すように、基地局は、ビーム選択のための測定用信号(e.g. SSB)をビームスィーピング送信する(ステップS11)。次いで、端末装置は、ビーム選択のための測定用信号の測定を行い、ビームの測定結果(ビームレポート)を基地局に報告する(ステップS12)。かかる測定結果は、例えば、基地局の最適な送信ビームの選択結果を示す情報(e.g. 最適なビーム(best beam)に関連付けられたインデックス)を含む。次に、基地局は、選択された最適なビームを用いてチャネル品質取得のための測定用信号(e.g. CSI-RS)を送信する(ステップS13)。次いで、端末装置は、測定用信号の測定結果に基づいて取得されたチャネル品質を基地局に報告する(ステップS14)。そして、基地局は、報告されたチャネル品質に基づく通信パラメータを用いて、ユーザ情報を端末装置に送信する(ステップS15)。以上から、ビームレポートは、基地局または端末が受信した、ビーム選択のための測定用信号の測定結果が、端末または基地局に対して送信される。
 ダウンリンクのチャネル品質は、ダウンリンクで送信される測定用信号に基づいて測定される。一方、ダウンリンクのチャネル品質は、アップリンクで送信される測定用信号に基づいて測定することもできる。これは、アップリンクのチャネルとダウンリンクのチャネルとが可逆性を有しており、これらのチャネルの品質は基本的に同一なためである。このような可逆性は、チャネルレセプロシティとも称される。
 ダウンリンクの測定用信号に基づいてダウンリンクのチャネル品質を測定する場合、図4のステップS14に示したように、チャネル品質取得のための測定用信号の測定結果の報告が行われる。この測定結果の報告は、大きなオーバーヘッドになり得る。チャネルは、送信アンテナ数がMであり、受信アンテナ数がNである場合には、N×Mの行列で表すことができる。行列の各要素は、IQに対応した複素数となる。例えば、各I/Qが10bitで表され、送信アンテナ数が100本であり、受信アンテナ数が8本である場合、チャネル品質の測定結果の報告には、8×100×2×10=16000ビットが費やされ、大きなオーバーヘッドになる。
 これに対し、アップリンクの測定用信号に基づいてダウンリンクのチャネル品質を測定する場合、測定主体が基地局であるから、測定結果の報告は不要である。そのため、アップリンクの測定用信号に基づいてダウンリンクのチャネル品質を測定することで、測定結果の報告に関するオーバーヘッドを削減し、スループットを向上させることが可能である。アップリンクの測定用信号に基づいてダウンリンクのチャネル品質を測定する場合の処理の流れを、図5を参照して説明する。
 図5は、基地局と端末装置とにより実行される典型的なビーム選択手続き及びCSI取得手続きの流れの他の一例を示すシーケンス図である。図5に示すように、端末装置は、ビーム選択のための測定用信号をビームスィーピング送信し、基地局はビームスィーピングしながら測定用信号を受信する(ステップS21)。その際、基地局は、測定結果に基づいて、端末装置の最適な送信ビーム、及び基地局の最適な受信ビームを選択する。次いで、基地局は、ビームの測定結果(ビームレポート)を端末装置に報告する(ステップS22)。かかる測定結果は、端末装置の最適な送信ビームの選択結果を示す情報を含む次に、端末装置は、選択された送信ビームを用いてチャネル品質取得のための測定用信号を送信する(ステップS23)。基地局は、測定結果に基づいて、アップリンクのチャネル品質を取得し、アップリンクのチャネル品質に基づいてダウンリンクのチャネル品質を
取得する。そして、基地局は、取得したダウンリンクのチャネル品質に基づく通信パラメータを用いて、ユーザ情報を端末装置に送信する(ステップS24)。以上から、ビームレポートは、基地局または端末が受信した、ビーム選択のための測定用信号の測定結果が、端末または基地局に対して送信される。
(7)アナログ-デジタルハイブリットアンテナアーキテクチャ
 アンテナの指向性を制御するために、アナログ回路ですべての処理を行うアーキテクチャが考えられる。そのようなアーキテクチャは、フルデジタルアーキテクチャとも称される。フルデジタルアーキテクチャでは、アンテナの指向性を制御するために、アンテナ(即ち、アンテナ素子)と同じ数だけのアンテナ重みがデジタル領域で(即ち、デジタル回路により)適用される。アンテナ重みとは、振幅及び位相を制御するための重みである。しかし、フルデジタルアーキテクチャでは、デジタル回路が大きくなってしまうという短所があった。このような、フルデジタルアーキテクチャの欠点を解消するアーキテクチャとして、アナログ-デジタルハイブリットアンテナアーキテクチャがある。
 図6Aは、アナログ-デジタルハイブリットアンテナアーキテクチャの一例を説明するための図である。図6Aに示すアーキテクチャは、デジタル回路50、アナログ回路60(60A及び60B)及びアンテナパネル70(70A及び70B)を含む。デジタル回路は、複数のアンテナ重み51(51A及び51B)を適用可能である。そして、アナログ回路60及びアンテナパネル70は、デジタル回路50で適用可能なアンテナ重み51の数と同数、設けられる。アンテナパネル70には、複数のアンテナ72(72A~72F)、及びアンテナ72の数と同数のフェイズシフター71(71A~71F)が設けられる。フェイズシフター71は、アナログ領域で、位相のみ制御可能なアンテナ重みを適用する装置である。
 デジタル領域のアンテナ重みとアナログ領域のアンテナ重みとの特性を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 デジタル領域におけるアンテナ重みは、OFDM変調方式が利用される場合、周波数領域において適用される。例えば、デジタル領域におけるアンテナ重みは、送信時にはIFFT(Inverse Fast Fourier Transform)の前に適用され、受信時にはFFT(Fast Fourier Transform)後に適用される。
 デジタル領域のアンテナ重みは、周波数領域において適用される。そのため、デジタル領域のアンテナ重みを適用することで、同一の時間リソースであっても、異なる周波数リソースを用いて異なる方向へビームを送信することができる。一方で、アナログ領域のアンテナ重みは、時間領域において適用される。そのため、アナログ領域のアンテナ重みを適用しても、同一時間リソースでは、全ての周波数リソースに渡って同じ方向にしかビームを向けることができない。
 つまり、アンテナパネル70ごとに、同一の時間リソースであっても、異なる周波数リソースを用いて異なる方向へビームを送信することができる。一方で、ひとつのアンテナパネル70は、同一の時間リソース及び周波数リソースを用いて、ひとつの方向にしかビームを向けることができない。よって、アナログ-デジタルハイブリットアンテナアーキテクチャでは、同一の時間リソースにおいて送受信することができるビームの方向は、アンテナパネル70の数に対応する。さらに言えば、アナログ-デジタルハイブリットアンテナアーキテクチャでは、同一の時間リソースにおいてビームスィーピング送信又はビームスィーピング受信することが可能なビーム群の数は、アンテナパネル70の数に対応する。
 このようなアナログ-デジタルハイブリットアンテナアーキテクチャは、基地局100及び端末装置200の双方において採用され得る。
(8)アンテナパネル
 図6Aでは、一つのデジタル領域の重みに3つのアナログ領域のフェイズシフターが接続されている。この一つのデジタル領域の重みと、3つのアナログ領域のフェイズシフターとの組をアンテナパネルとして纏めて配置することができる。図6Aに示したのは、アンテナ素子3つでアンテナパネルを構成し、このアンテナパネルが2つある場合の例になっている。表1で説明したが、通常は、一つのパネルでは、同じ時間に別の周波数を使って別の方向のビームを作ることができない。しかし、2つのパネルを使えば、同一時間であっても、別の方向のビームを作ることができる。このアンテナパネルの構成は、基地局側と端末側の両方で使用される。
 図6Bは、端末装置200に8つのアンテナパネルが配置されている例を示す説明図である。図6Bには、端末装置200の表面と裏面にそれぞれ4個、計8個のアンテナパネルが配置されている例が示されている。一つのアンテナパネルに搭載されるアンテナ素子の数は特定のものに限定されないが、例えば一つのアンテナパネルには4本のアンテナ素子が搭載されている。表面に配置された4個のアンテナパネル同士、または裏面に配置された4個のアンテナパネル同士は、同じ向きを向いて配置されるため、コヒーレントアンテナパネルと呼ぶことにする。一方、表面のアンテナパネルと、裏面のアンテナパネルとは、ノンコヒーレントアンテナパネルと呼ぶことにする。
(9)参照信号とユーザ情報のリソース
 ビームスィーピングやCSI取得手続きを実施するためには、基地局装置100と端末装置200との間で参照信号の送受信が必要となる。また、基地局装置100と端末装置200との間でユーザ情報を送受信する場合にも、参照信号の送受信が必要となる。これらの参照信号は、基本的は、周波数と時間のリソースで指定され、一部、直交するシーケンスを使用してリソースを指定する場合も含まれる。一方、ユーザ情報は、制御信号に含まるスケジューリング情報がユーザ情報の周波数と時間リソースを指定する。ユーザ情報の場合は、直交するシーケンスをリソースとして割り当てることはない。周波数と時間リソースのみである。
(10)受信側のアンテナパネルとビームの選択
(10-1)ビームマネジメント段階でのアンテナパネルとビームの選択
 ビームマネジメント中は、基地局100から到来するビームを端末装置200側で、試行錯誤(e.g.ビームとアンテナパネルの組み合わせを1つずつ試行)しながら、どのアンテナパネルのどのビームで受信すべきかの組み合わせを決定する。異なるアンテナパネルは、基本的に同時に動作することが可能であるので、例えばリソースブロックにおける4つのリソース領域がダウンリンクビーム用の同一のビームに対する参照信号のリソースとして設定されている場合には、端末装置200は、アンテナパネル毎に、異なる4つの受信ビームを使用し、どれが端末装置200にとって望ましい受信ビームであるかを決定することができる。このような動作を基地局100側の異なる方向に対応するダウンリンクビームの本数分行う。ダウンリンクビームの本数が10本の場合には、10×4=40個のリソースを使って、端末装置200が受信ビームを観測することにより、基地局100からの望ましいビームと端末装置200側のアンテナパネルと望ましいビームとを決定することができる。なお本明細書では説明の便宜上、端末が受信に用いる受信アンテナパネル及び受信ビームの組み合わせは、受信環境とも称される。
(10-2)CSI手続き段階でのアンテナパネルとビームの選択
 CSI手続き段階は、基地局100で送信用のプリコーディング(より細かいアンテナ制御)を使った上で、チャネルの品質をより詳しく確認する段階である。CSI手続き段階では、先のビームマネジメント段階で同定した端末装置200のアンテナパネルと、そのアンテナパネルの中で一番望ましいと判断したビームで、CSI手続き用の参照信号(CSI-RS)の受信を行う。
(10-3)ユーザ情報受信段階でのアンテナパネルとビームの選択
 端末装置200は、ユーザ情報受信段階では、CSI手続き段階と同様にビームマネジメント時に決定したアンテナパネルと受信ビームとを使ってユーザ情報を受信すれば良い。ただし、このようなアンテナパネルを使ったビームが2つある場合には、端末装置200は、どのようにアンテナパネル及びビームを選択すべきかが分からない。
 図7は、2つのビームセットを示す図である。端末装置200は、ビームマネジメントの処理を2回行い、基地局100が有する異なる2つのアンテナパネルから送信したビームのそれぞれに適した端末装置200のアンテナパネルとビームとを決定した場合には、図7に示したように、2つのビームセットがある。すなわち、第1ビームセットである「Beam set (0):送信ビーム(i) in 送信アンテナパネル(0) +受信ビーム(j)) in 受信アンテナパネル(0)」と、第2ビームセットである「Beam set (1):送信ビーム(m) in 送信アンテナパネル(1) +受信ビーム(n) in 受信アンテナパネル (1)」とがある。なお、ビームセットとは、送信側と受信側のアンテナパネル、ビームの組み合わせで構成されるビームのリンクのことをいう。
 また、ユーザ情報のリソースを指定する制御信号である制御情報(e.g. スケジューリング情報)は、ビームを使って送信されるため、端末装置200は、制御情報をどのビームセットで受信するかを知ることは重要である。なお、制御情報は、例えば、PDCCH(PHY Downlink Control Channel)又はPDCCHで送信されるDownlink Control Information(DCI)である。
(10-4)端末が使用するアンテナパネルおよびビームを指定する方法
 図7において、基地局100は、受信アンテナパネル(0)の受信ビーム(j)によってPDCCH(0)を受信できるということを明示的(explicitly)に又は暗示的に(implicitly)に端末装置200に伝えられるかもしれない。一例として、直接、端末装置200の受信アンテナパネルと受信ビームを指定する方法が考えられる。
 他方、例えば、基地局100が「送信ビーム(i) in 送信アンテナパネル(0)」を用いて「Reference Signal A」を送信した場合に、端末装置200は、「Reference Signal A」を「受信ビーム(j)) in 受信アンテナパネル(0)」を用いて受信したとする。さらに、基地局100が「送信ビーム(m) in 送信アンテナパネル(1)」を用いて「Reference Signal B」を送信した場合に、端末装置200は、「Reference Signal B」を「受信ビーム(n) in 受信アンテナパネル (1)」によって受信したとする。その上で、基地局100は、PDCCH(0)を送る前に、PDCCH(0)を受信する時には、「Reference Signal A」を受信した時に使った受信アンテナパネルと受信ビームを使ってくださいと指示をすることができる。つまり、「受信ビーム(j) in 受信アンテナパネル(0)を使ってくださいと指示したのと等価の指示を陰(implicitly)に指定することができる。
(10-5)アンテナパネルおよびビームの指定を行わなかった時の処理
 上記では、基地局100は、「Reference Signal A」を受信した時と同じ受信アンテナパネルと受信ビームを使ってくださいと、端末装置200に対して明確に指示をした。しかしながら、基地局100から指示がない、または、基地局100による指示の設定が間に合わなかった場合があるため、かかる場合の処理が必要となる。例えば、端末装置200が基地局100との間で同期を行った時に用いた受信アンテナパネルと受信ビームをデフォルトとして使用するということが考えられる。
 しかしながら、基地局100の異なるアンテナパネルから同期信号(参照信号)が提供されている場合には、いずれの同期信号を受信した際のアンテナパネルおよびビームをデフォルトとして使用すればいいかを判断することが困難となる。
(10-6)同期信号
 ここで、同期信号について説明する。図8は、同期信号の一例を示す図である。図8に示すように、同期信号は、SSBバーストを周期的に送信するような信号である。SSBバーストとは、複数のビームフォーミングされたSSBを含む。SSBの中には、同期信号のPSSとSSSというシーケンスとPBCHというブロードキャストするシステム情報が含まれる。PSSおよびSSSは、LTEと同じような使い方を想定している。基地局100は、各SSBを、異なる方向へのビームを使って送信する。したがって、端末装置200は、端末装置200の方向に向いているSSBを受信して同期を行うことになる。
 また、図9は、SSBバーストごとに異なる送信アンテナパネルを使用した場合の同期信号の一例を示す図である。図9に示すように、基地局100は、SSBバースト毎に異なる送信アンテナパネルを使って、SSBバーストの中に含まれるSSBを送信する。端末装置200は、複数の送信アンテナパネルから送信されるSSBに対してそれぞれ同期を行うことができ、同時に、かかる複数の送信アンテナパネルからのSSBを受信する時に必要な最適な受信アンテナパネルと受信ビームを1または複数個知ることができる。この場合、例えば、図7に例示したように、端末装置200は、受信アンテナパネルおよび受信ビームのセットを2セット分知ることになる。
 このように、同期信号を受信する最適な受信アンテナパネルと受信ビームのセットが複数ある場合において、制御信号やユーザ情報の受信に必要な受信アンテナパネルおよび受信ビームの設定が間に合わなかった時には、端末装置200は、SSBを受信した時のセットをデフォルトとして使用するというルールがあったとしても、複数セットあるため、端末装置200は、どのアンテナパネルとビームを使ったらよいかを判断することができない。
<1.3.提案技術の概要>
 従来は、端末装置200が使用すべき受信アンテナパネルおよび受信ビームの指定をしたとしても、端末装置200側の処理が間に合わない場合には、デフォルトの受信環境を使用するが、その間に合うか否かのタイムオフセット値が1種類であった。そのため、マルチTRP/マルチアンテナパネルの環境下では、タイムオフセット値が1種類では、様々な状況において、受信環境を適切に設定できないおそれがあった。
 そこで、実施形態に係る端末装置200は、実施形態に係る通信方法を実行することで、複数のタイムオフセット値を切り替えて動作する。具体的には、実施形態に係る端末装置200は、まず、基地局100から送信される制御情報によって指定されるユーザデータの受信環境を決定するための複数のタイムオフセット値を取得する。複数のタイムオフセット値は基地局100から受信してもよいし、標準規格等で予め定められていてもよい。つづいて、実施形態に係る端末装置200は、基地局100から受信した制御情報に基づいて、複数のタイムオフセット値の中からユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を決定するためのタイムオフセット値を選択する。そして、実施形態に係る端末装置200は、選択したタイムオフセット値と、制御情報およびユーザデータの時間間隔との大小関係に基づいてユーザデータを受信するための受信環境を設定する。
 例えば、実施形態に係る端末装置200は、制御情報およびユーザデータの受信時に、受信アンテナパネルの切り替えの有無に応じたタイムオフセット値を設定したり、複数のユーザデータがオーバーラップするか否かに応じたタイムオフセット値を設定したりする。
 つまり、実施形態に係る通信方法では、ユーザデータの受信の状況に合わせて複数のタイムオフセット値を切り替えることで、状況に応じて適切なタイムオフセット値を設定することができる。
<<2.構成例>>
 以下、本実施形態に係る基地局100(基地局装置100)および端末装置200の構成について詳細に説明する。
<2.1.基地局の構成例>
 図10は、実施形態に係る基地局装置100の構成の一例を示すブロック図である。図10に示すように、基地局装置100は、アンテナ部110と、通信部120と、記憶部130と、制御部140とを備える。
 アンテナ部110は、通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を通信部120へ出力する。具体的には、アンテナ部110は、複数のアンテナ素子を有し、ビームを形成することができる。
 通信部120は、信号を無線により送受信する。例えば、通信部120は、端末装置200からのダウンリンク信号を受信し、端末装置200へアップリンク信号を送信する。
 なお、アンテナ部110および通信部120は、上記した、アナログ-デジタルハイブリットアンテナアーキテクチャのアンテナパネル70を複数含んで構成される。例えば、アンテナ部110は、アンテナ72に相当する。また、例えば、通信部120は、デジタル回路50、アナログ回路60、及びフェイズシフター71に相当する。
 記憶部130は、基地局装置100の動作のための各種プログラム及び様々なデータを一時的に又は恒久的に記憶する。
 制御部140は、基地局装置100全体の動作を制御して、基地局装置100の様々な機能を提供する。図10に示すように、制御部140は、通知部141と、指定部142とを備える。
 通知部141は、端末装置200へ送信する制御情報によってスケジューリングされるユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を決定するための複数のタイムオフセット値を端末装置200へ通知する。この通知は、例えばRRC signalling(e.g. RRC Setup message、RRC Reconfiguration message)で行われてもよい。なお、タイムオフセット値は、端末装置200が受信アンテナパネル又は受信ビームを切り替えることが可能な時間と表現することもできる。すなわち、端末装置200の能力の1種とも換言できる。端末装置200が、自身の能力として複数のタイムオフセット値を基地局装置100へ報告する場合、通知部141の動作は必須ではなくなる。
 指定部142は、制御情報(e.g. PDCCH)を送信する際に、複数のタイムオフセット値の中からユーザデータの受信環境を決定するためのタイムオフセット値を指定する。このタイムオフセット値の指定は、PDCCHで送信されるDownlink Control Informationで行われてもよい。さらに又は、これに代えて、この指定は、タイムオフセット値の指定は、明示的(explicitly)又は暗示的(implicitly)に行われてもよい。例えば、タイムオフセット値に対応するインデックスによりタイムオフセット値が指定されてもよい。
 なお、基地局装置100の制御部140における各構成の詳細な動作については後述する。
<2.2.端末装置の構成例>
 図11は、実施形態に係る端末装置200の構成の一例を示すブロック図である。図11に示すように、端末装置200は、アンテナ部210と、通信部220と、記憶部230と、制御部240とを備える。
 アンテナ部210は、通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を通信部220へ出力する。具体的には、アンテナ部210は、複数のアンテナ素子を有し、ビームを形成することができる。
 通信部220は、信号を無線により送受信する。例えば、通信部220は、基地局100からのダウンリンク信号を受信し、基地局100へアップリンク信号を送信する。
 なお、アンテナ部210および通信部220は、上記した、アナログ-デジタルハイブリットアンテナアーキテクチャのアンテナパネル70を複数含んで構成される。例えば、アンテナ部210は、アンテナ72に相当する。また、例えば、通信部220は、デジタル回路50、アナログ回路60、及びフェイズシフター71に相当する。
 記憶部230は、端末装置200の動作のための各種プログラム及び様々なデータを一時的に又は恒久的に記憶する。
 制御部240は、端末装置200全体の動作を制御して、端末装置200の様々な機能を提供する。図11に示すように、制御部240は、取得部241と、選択部242と、設定部243とを備える。
 取得部241(決定部の一例)は、基地局100から各種情報を取得(決定)する。例えば、取得部241は、基地局100から送信される制御情報によって指定されるユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を決定するための複数のタイムオフセット値(又はそのインデックス)を取得する。例えば、取得部241は、制御情報およびユーザデータの受信環境が同じ場合の第1のタイムオフセット値と、制御情報およびユーザデータの受信環境が異なる場合の第2のタイムオフセット値とを含む複数のタイムオフセット値を取得する。より具体的には、PDSCHの受信に用いる受信アンテナパネルが、当該PDSCHをスケジュールしたPDCCHの受信に用いた受信アンテナパネルと同じ場合の第1のタイムオフセット値が取得される。さらに、PDSCHの受信に用いる受信アンテナパネルが、当該PDSCHをスケジュールしたPDCCHの受信に用いた受信アンテナパネルと異なる場合の第2のタイムオフセット値が取得される。また、取得部241は、ユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)が制御情報のそれと同じか否かを示す環境情報を含む制御情報を取得する。また、取得部241は、複数の制御情報それぞれでスケジュールされる複数のユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)が重ならない場合の第1のタイムオフセット値と、重なる場合の第2のタイムオフセット値とを取得する。また、取得部241は、複数のユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)が重なるか否かを示すオーバーラップ情報を含む制御情報を取得する。例えば、取得部241は、第1のタイムオフセット値よりも長い第2のタイムオフセット値を取得する。
 端末装置200の制御部240は、取得部241に加えて又はこれに代えて、報告部(決定部の一例)を有していてもよい。報告部は、基地局100から送信される制御情報によってスケジュールされるユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)の切り替えに要する時間の複数をタイムオフセット値として基地局装置100へ報告してもよい。例えば、制御情報およびユーザデータの受信環境が同じ場合の第1のタイムオフセット値と、制御情報およびユーザデータの受信環境が異なる場合の第2のタイムオフセット値とを含む複数のタイムオフセット値が報告される。より具体的には、PDSCHの受信に用いる受信アンテナパネルが、当該PDSCHをスケジュールしたPDCCHの受信に用いた受信アンテナパネルと同じ場合(i.e.切り替え不要の場合)の処理時間を示す第1のタイムオフセット値が報告される。さらに、PDSCHの受信に用いる受信アンテナパネルが、当該PDSCHをスケジュールしたPDCCHの受信に用いた受信アンテナパネルと異なる場合(i.e.切り替え必要の場合)の処理時間を示す第2のタイムオフセット値が報告される。例えば、報告部は、第1のタイムオフセット値よりも長い第2のタイムオフセット値を報告する。当該報告は、RRC signalling(UECapbilityInformation message)により行われてもよい。
 選択部242は、基地局100から受信した制御情報に基づいて、複数のタイムオフセット値の中からユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を決定するためのタイムオフセット値を選択する。例えば、選択部242は、制御情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。また、選択部242は、制御情報における環境情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。また、選択部242は、制御情報が予め設定された受信環境で受信された場合、第1のタイムオフセット値および第2のタイムオフセット値以外の第3のタイムオフセット値を選択する。また、選択部242は、制御情報におけるオーバーラップ情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。
 設定部243は、選択部242によって選択されたタイムオフセット値に基づいてユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を設定する。具体的には、設定部243は、制御情報およびユーザデータの時間間隔がタイムオフセット値未満である場合、ユーザデータの受信環境を、予め設定された受信環境、すなわち、デフォルトの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)に設定する。また、設定部243は、制御情報およびユーザデータの時間間隔がタイムオフセット値以上である場合、制御情報によって指定された受信環境(受信アンテナパネル及び受信ビームの組み合わせ)をユーザデータの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)として設定する。また、設定部243は、予め設定された受信環境(デフォルトの受信環境)として、制御情報を受信した際の受信環境を設定する。
 以下では、図12~図18を用いて、基地局装置100の制御部140における各構成および端末装置200の制御部240における各構成の詳細な動作について説明する。
<<3.実施形態>>
 図12~図14は、PDCCHおよびPDSCHが設定されるリソース領域を示す図である。基地局100は、PDCCHでPDSCHのQCL(Quasi Co Location)を設定した時に、PDCCHとPDSCHの間の時間が一定時間以内の場合には、PDCCHで指定したQCLを使用する時間が端末装置200側で整う時間がないため、デフォルトのQCL(例えば、SSBで使用したビーム)を用いることにしていた。つまり、図9に示すように、PDCCHおよびPDSCHの間の時間間隔≦タイムオフセット値の場合には、デフォルトの受信環境でPDSCHを受信していた。なお、QCLとは、どの参照信号と同じ受信環境(受信アンテナパネル/受信ビーム)を使えばよいかを示す情報である。
 より具体的な例を3GPP Rel.15 NRの例を用いて説明する。PCSCHのために割り当てられたスロットは、以下の式(1)であらわされる。
Figure JPOXMLDOC01-appb-M000002
 ここで、nはそのPDSCHをスケジュールするDCI(PDCCHに含まれる)である。KはPDSCHのnumerology(e.g. subcarrier spacing)に基づく。uPDSCHとuPDCCHはそれぞれPDSCH及びPDCCHのためのsubcarrier spacing configurationである。すなわち、UEがあるスロットnにおいて、DCIを受信した場合、そのDCIがスケジュールするPDSCHのスロットは、式(1)で示されるスロットに割り当てられる。
 もし、PDCCHに含まれるDCIの受信と対応するPDSCHとの間の時間(i.e.式(1)で求められる時間)が、閾値timeDurationForQCLと同じ又はそれよりも大きい場合、UEは、RRCレイヤにより指定されたTCI状態(TCI-State)により与えられるQCL typeに関するTCI状態での参照信号(e.g. SSB、CSI-RS)と、サービングセル(e.g. PCell, SCell)のPDSCHのDMRS(Dedicated Modulation Reference Signal)とが、quasi-colocate(準同一)であると仮定(assume)できる。一方、PDCCHに含まれるDCIの受信と対応するPDSCHとの間の時間(i.e.式(1)で求められる時間)が、閾値timeDurationForQCLよりも小さい場合、UEによってモニタされるサービングセルのアクティブBWPの中の1又は複数のCORESET(Control Resource Set)の最後のスロットにおいて、最も低いCORESET IDを伴ってモニタされたサーチスペースに関連づけられたCORESETのPDCCH quasi co-locationインディケーションのために使われるQCLパラメータに関するReference signalと、サービングセル(e.g. PCell, SCell)のPDSCHのDMRSとが、quasi-colocate(準同一)であると仮定(assume)できる。
 また、PDSCHを受信するための受信アンテナパネル及び受信ビームの組み合わせのデフォルトは、例えば、基地局100側の複数の送信アンテナパネルからSSB等のビームが提供されている場合には、PDCCHの受信に使用した受信環境を使ってもよい。
 ここで、図13および図14には、PDCCHとPDCSHとで受信アンテナパネルが異なる場合(図13)と、受信アンテナパネルが同じ場合(図14)とを示している。図13および図14に示すように、PDSCHを受信する際に使用する受信アンテナパネルの変更を伴う場合と、受信アンテナパネルの変更はなくて、受信ビームの変更のみの対応で済む場合とでは、タイムオフセット値が異なることが好ましい。つまり、同一の受信アンテナパネル中で受信ビームのみを変更する時間よりも、異なる受信アンテナパネルにまたがって受信ビームを変更する時間の方がより多くの時間が必要になると考えられる。
 そこで、基地局100は、PDCCHでスケジューリングされたPDSCHで使用すべき受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を指定する時に、PDCCHおよびPDSCHの間のタイムオフセット値を複数持つ。
 具体的には、第1のタイムオフセット値は、PDCCHおよびPDSCHを同じ受信アンテナパネルを使用し、同じまたは異なる受信ビームを使用する場合である。
 また、第2のタイムオフセット値は、PDCCHおよびPDSCHを異なる受信アンテナパネルを使用し、同じまたは異なる受信ビームを使用する場合である。
 そして、例えば、第2のタイムオフセット値≧第1のタイムオフセット値となるように各タイムオフセット値を設定する。なお、複数のタイムオフセット値は、事前に基地局100から端末200に設定しておく。つまり、基地局100の通知部141は、複数のタイムオフセット値を端末装置200に通知する。又は端末装置200から基地局装置100へ端末装置200の能力として報告しておいてもよい。
 そして、基地局100の指定部142は、PDCCHの中で、複数のタイムオフセット値のうち、いずれのタイムオフセット値を使用するかを指定する。例えば、指定部142は、PDCCHの中の1ビットを用いて、複数のタイムオフセット値のうち、いずれのタイムオフセット値を使用するかを指定する。端末装置200は、受信したPDCCHの中で、第1のタイムオフセット値および第2のタイムオフセット値のいずれを使うかが指定されるため、指定されたタイムオフセット値よりもPDCCHとPDSCHの間の時間が短い場合には、予め設定されているデフォルトの受信環境(受信アンテナパネル及び受信ビームの組み合わせ)を使用する。つまり、端末装置200は、指定されたタイムオフセット値よりもPDCCHとPDSCHの間の時間が短い場合には、PDCCHで指定された受信環境の設定が間に合わないため、デフォルトの受信環境を使用する。なお、端末装置200は、指定されたタイムオフセット値よりもPDCCHとPDSCHの間の時間が長い場合には、PDCCHで指定された受信環境を使用する。
 図15は、基地局100と端末装置200とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。図15に示すように、基地局100は、PDCCHとPDSCHとで受信アンテナパネルが変わらない時の第1のタイムオフセット値を端末装置200に設定する(ステップS101)。
 つづいて、基地局100は、PDCCHとPDSCHとで受信アンテナパネルが変わる時の第2のタイムオフセット値を端末装置200に設定する(ステップS102)。つづいて、基地局100は、PDCCHを受信するための受信アンテナパネルおよび受信ビームを端末装置200に設定する(ステップS103)。
 つづいて、基地局100は、送信するPDCCHの中で、PDSCHで使用する受信アンテナパネルおよび受信ビームを指定し、さらに、タイムオフセット値を指定し、PDCCHを送信する(ステップS104)。
 つづいて、基地局100は、PDCCHで指定したリソース領域で、PDSCHを送信する(ステップS105)。
 つづいて、端末装置200は、PDCCHおよびPDSCHの時間間隔が、設定されたタイムオフセット値より長い場合は、PDCCHで指定された受信アンテナパネルおよび受信ビームを使用してPDSCHを受信する(ステップS106)。または、端末装置200は、PDCCHおよびPDSCHの時間間隔が、設定されたタイムオフセット値より短い場合は、デフォルトの受信アンテナパネルおよび受信ビームを使用してPDSCHを受信する(ステップS106)。
 つづいて、端末装置200は、PDSCHを受信できたかどうかを基地局100に対して通知する(ステップS107)。
 このように、受信アンテナパネルの切り替えを伴う場合と伴わない場合とのそれぞれに対応したタイムオフセット値を設定することができるため、PDSCHを受信する時に使用する受信環境を、なるべくDCI(Downlink Control Information)で指定された受信環境を使用できる状況を増やすことができる。
 なお、上述では、PDCCHおよびPDSCHで使用する受信アンテナパネルが同一か否を、基地局100が判断する場合の処理を示したが、これは、基地局100がPDCCHおよびPDSCHの受信アンテナパネルが同一であるかどうかを知っていることを前提としている。これにより、基地局100がPDCCHで使用すべき受信アンテナパネルを設定済みであり、PDCCHの中で、PDSCHのスケジューリングを行うとともに、使用する受信アンテナパネルおよび受信ビームを指定することができる。
 ここで、基地局100がPDCCHおよびPDSCHの受信アンテナパネルが同一であるかどうかを知らない場合も想定される。例えば、PDCCHの受信に使用すべき受信アンテナパネルおよび受信ビームが設定されていない場合には、PDSCHの受信に使用すべき受信アンテナパネルおよび受信ビームのデフォルトとして、どちらを使うか端末装置200に知らせる手段がない。具体的には、PDCCHのデフォルトを使って、端末装置200は、PDCCHを受信するが、そのデフォルトの内容を基地局100が把握していなくて、端末装置200だけが把握している場合には、基地局100は、PDCCHにどの受信アンテナパネルが使われたか知ることができない。その場合には、第1のタイムオフセット値および第2のタイムオフセット値のいずれを使うべきか基地局100から指定することはできない。
 そこで、受信アンテナパネルが同一か否かを基地局100で判断できない場合には、端末装置200は、受信アンテナパネルが同一か否かを自らで判断する。
 具体的には、端末装置200は、PDCCHの中で指定されるPDSCHの受信環境と、PDCCHで実際に使用した受信環境とが同一であるか否かを判定し、同一と判定した場合には、上記した第1のタイムオフセット値を使用する。一方、端末装置200は、PDCCHの受信環境と、PDSCHの受信環境とが異なる場合には、上記した第2のタイムオフセット値を使用する。例えば、端末装置200の取得部241は、PDCCHおよびPDSCHの受信環境が同じか否かを示す環境情報を取得する。具体的には、取得部241は、PDCCHの中の、PDCCHの受信環境およびPDSCHの受信環境が同じでる否かを示す1ビットの環境情報を取得する。
 ここで、端末装置200で受信処理に必要な時間について説明する。タイムオフセット値は、事前に基地局100から端末装置200に設定される、又は端末装置200から基地局装置100へ端末装置200の能力として報告される値である。例えば3GPP Rel.15 NRであれば、timeDurationForQCLであってもよい。timeDurationForQCLは、Subcarrier Spacing毎にUEがセットできる値の候補が異なる。Subcarrier Spacingが60 kHzの場合は7 OFDM symbols, 14 OFDM symbols, 28 OFDM symbolsのうちいずれかがセットされる。一方、Subcarrier Spacingが120 kHzの場合は14 OFDM symbols, 28 OFDM symbolsのうちいずれかがセットされる。タイムオフセット値の他の例としては、10 OFDM symbolsに必要な時間を単位時間として、N等の整数で設定することができる。それに対して、PDCCHおよびPDSCHの間の時間は、例えば3GPP Rel.15 NRであれば、上述式(1)で表される。他の例としては、以下のように算出されてもよい。端末装置200が受信したPDCCHをデコードすることで見ることができるPDCCHの中身のPDSCHのスケジューリングに関する情報(PDSCHの到達予測時間および周波数等)に書かれていてもよい。つまり、端末装置200は、デコードしてスケジューリングに関する情報を見た時点で、PDCCHおよびPDSCHの間の相対的な時間差を取得することができてもよい。そして、端末装置200は、取得した相対的な到来時間差と、事前に設定したタイムオフセット値との大きさを比べることで受信環境(受信に使用すべき受信アンテナパネルおよび受信ビームの組み合わせ)を決定する。上記の各処理では、端末装置200の実際にかかる処理時間を測定する必要はなく、PDCCHおよびPDSCHの間の相対的な時間差をPDCCHのスケジューリング情報を見ることにより計算する。相対的な到来時間差は、1スロット内のOFDM symbol数で把握できる場合もあれば、複数スロットにまたがったOFDM symbol数に対応した時間差として把握できる場合もある。なお、タイムオフセット値は、端末装置200の実際の処理能力に応じて事前に決定するが、端末装置200の処理速度は様々であるため、タイムオフセット値は、変更可能であることが好ましい。
 図16は、基地局100と端末装置200とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。図16に示すように、基地局100の通知部141は、PDCCHとPDSCHで受信アンテナパネルが変わらない時の第1のタイムオフセット値を端末装置200に設定する(ステップS201)。
 つづいて、基地局100の通知部141は、PDCCHとPDSCHとで受信アンテナパネルが変わる時の第2のタイムオフセット値を端末装置200に設定する(ステップS202)。つづいて、基地局100の指定部142は、PDCCHを受信するための受信アンテナパネルおよび受信ビームを端末装置200に設定する(ステップS203)。
 つづいて、基地局100の指定部142は、送信するPDCCHの中で、PDSCHで使用する受信アンテナパネルおよび受信ビームを指定し、PDCCHを送信する(ステップS204)。
 つづいて、端末装置200の選択部242は、PDCCHの受信環境と、PDCCHで指定されたPDSCHの受信環境とが同じであるか否かの判定結果に基づいてタイムオフセット値を選択し、設定部243は、選択されたタイムオフセット値を設定する(ステップS205)。
 つづいて、基地局100は、PDCCHで指定したリソース領域で、PDSCHを送信する(ステップS206)。
 つづいて、端末装置200の設定部243は、PDCCHおよびPDSCHの時間間隔が、設定したタイムオフセット値より長い場合は、PDCCHで指定された受信アンテナパネルおよび受信ビームを使用してPDSCHを受信する(ステップS207)。または、端末装置200の設定部243は、PDCCHおよびPDSCHの時間間隔が、設定したタイムオフセット値より短い場合は、デフォルトの受信アンテナパネルおよび受信ビームを使用してPDSCHを受信する(ステップS207)。
 つづいて、端末装置200は、PDSCHを受信できたかどうかを基地局100に対して通知する(ステップS208)。
 これにより、PDCCHおよびPDSCHで使用される受信アンテナパネルが同一か否かを端末装置200のみが把握している場合であっても、適切なタイムオフセット値を設定できるため、基地局100が指定した受信アンテナパネルをPDSCHの受信に使用できる可能性を高めることができる。
 なお、上述では、端末装置20が基地局100で指定された受信環境でPDCCHを受信した場合を前提としたが、例えば、PDCCHの受信にデフォルトの受信環境(受信アンテナパネルと受信ビームの組み合わせ)を使用した場合に、端末装置200の選択部242は、PDSCHに使用する受信アンテナパネルが同一であるか否かに関わらず、第3のタイムオフセット値を使用する。なお、第3のタイムオフセット値は、例えば、事前に基地局100によって設定されてもよいし、標準規格等で予め定められていてもよい。。また、第3のタイムオフセット値は、例えば、第1のタイムオフセット値および第2のタイムオフセット値以上であることが好ましい。
 これにより、端末装置200は、PDCCHおよびPDSCHの受信環境が同一であるか否かの判定処理を行う必要がないため、端末装置200の動作を簡素化できるとともに、処理負荷を軽減できる。
 なお、端末装置200の設定部243は、設定したタイムオフセット値未満の場合に、デフォルトの受信環境でPDSCHを受信するが、かかるデフォルトの受信環境(受信アンテナパネルと受信ビームの組み合わせ)は予め設定されたものを使用する。このため、デフォルトの受信環境と、PDSCHに実際に使用すべき受信環境(受信アンテナパネルと受信ビームの組み合わせ)とが異なる場合も想定される。
 そこで、端末装置200の設定部243は、PDSCHをスケジューリングしたPDCCHの実際の受信に使用した受信環境(受信アンテナパネルと受信ビームの組み合わせ)をデフォルトとする。
 これにより、事前に設定された受信環境をデフォルトとして用いる場合に比べて、処理が破綻する状況を減らすことができる。すなわち、PDSCHを受信できる可能性を高めることができる。
 なお、上述では、PDCCHおよびPDSCHを受信する際に、受信アンテナパネルの切り替えの有無に応じて複数のタイムオフセット値を切り替えたが、例えば、PDCSHのリソース領域がオーバーラップするか否か(重なるか否か)で複数のタイムオフセット値を切り替えてもよい。かかる点について、図17を用いて説明する。
 図17は、複数のPDSCHのリソース領域がオーバーラップする場合を示す図である。図17に示すように、PDCCH1およびPDCCH2により、同時にオーバーラップした周波数領域と時間領域にPDSCH1およびPDSCH2がスケジューリングされる場合には、端末装置200は、PDCCH1により指定された受信アンテナパネルと受信ビームをPDSCH1の受信に使うともに、PDSCH2の受信にも使うこととなる。このため、PDSCH1およびPDSCH2がオーバーラップしているか否かで、端末装置200の受信アンテナパネルおよび受信ビームの切り替えに必要な処理負荷が異なる。したがって、複数のPDSCHのリソース領域がオーバーラップするか否かでタイムオフセット値を変えることが好ましい。
 そこで、複数のPDSCHがオーバーラップしている場合のタイムオフセット値を新たに設ける。例えば、端末装置200の選択部242は、PDCCHの中のPDSCHがオーバーラップしている否かを示すビット情報に応じてタイムオフセットを設定する。具体的には、基地局100の指定部142は、PDCCH(e.g. DCI)の中で、スケジューリングしているPDSCHが他のPDSCHとオーバーラップしているか否かを示すビットを1ビット(オーバーラップ情報に相当)用意する。端末装置200の選択部242は、かかる1ビットの内容に基づいてタイムオフセット値を設定する。そして、端末装置200の設定部243は、設定したタイムオフセット値と、PDCCHおよびPDSCHの時間間隔とを比較し、タイムオフセット未満の場合には、予め設定されたデフォルトの受信環境をしてPDSCHを受信する。なお、デフォルトは、PDCCHの受信に使用した受信環境であってもよい。これにより、PDDCHの中のスケジューリング情報(e.g. DCI)からオーバーラップしていることを端末装置200が認識するよりも、端末装置200の負荷が下がるというメリットがある。
 図18は、基地局100と端末装置200とにより実行されるPDSCH受信手続きの流れの一例を示すシーケンス図である。図18に示すように、基地局100の通知部141は、複数のPDSCHがオーバーラップしている時のタイムオフセット値(第2のタイムオフセット値)を端末装置200に設定する(ステップS301)。
 つづいて、基地局100の通知部141は、複数のPDSCHがオーバーラップしていない時のタイムオフセット値(第1のタイムオフセット値)を端末装置200に設定する(ステップS302)。つづいて、基地局100の指定部142は、PDCCHを受信するための受信アンテナパネルおよび受信ビームを端末装置200に設定する(ステップS303)。
 つづいて、基地局100の指定部142は、送信するPDCCHの中で、PDSCHで使用する受信アンテナパネルおよび受信ビームを指定し、さらに、他のPDSCHとオーバーラップしているか否かを1ビットで指定し、PDCCHを送信する(ステップS304)。
 つづいて、基地局100は、PDCCHで指定したリソース領域で、PDSCHを送信する(ステップS305)。
 つづいて、端末装置200の選択部242は、PDCCHの中の、オーバーラップしているか否かの1ビットに基づいてタイムオフセット値を事前に決定しておき、設定部243は、かかるタイムオフセット値と、PDCCHおよびPDSCHの時間間隔との比較結果に基づき決定した受信環境でPDSCHを受信する(ステップS306)。
 つづいて、端末装置200は、PDSCHを受信できたかどうかを基地局100に対して通知する(ステップS307)。
 このように、複数のPDSCHがオーバーラップしているか否かでタイムオフセット値を変えることができるため、端末装置200側の受信環境の切り替えに伴う負荷を正しく見積もることができ、切り替えが間に合うかどうかを正確に判断することができる。
<<4.応用例>>
<4.1 3GPP標準規格NRへの適用例>
 続いて、上述した実施形態を3GPP標準規格NRへ適用した場合の一例を説明する。UE(端末装置200)はNGRAN(基地局100)からUE Capability Enquiryを受信した場合、NGRANへUE Capability Informationを送信する。UE Capability Informationには、UE capabilityの一部としてFeatureSetDownlink IEが含まれる。Rel.15 NRの場合、FeatureSetDownlinkには、上述のtimeDurationForQCLが含まれる。しかし、timeDurationForQCLはUEがPDSCHの受信に用いる受信アンテナパネルが考慮されていない。そこで本適用例では、上述の第1のタイムオフセット値、及び第2のタイムオフセット値に対応する複数のIEを新たに定義する。例えば、timeDurationType1ForQCL IEとtimeDurationType2ForQCL IEである。timeDurationType1ForQCL IEは、上述のtimeDurationForQCL IEと同じ値を含んでいてもよいし、同じ情報であってもよい(i.e. timeDurationType1ForQCLとして、timeDurationForQCLが参照されてもよい)。すなわち、Subcarrier Spacingが60 kHzの場合は7 OFDM symbols, 14 OFDM symbols, 28 OFDM symbolsのうちいずれかがセットされ、Subcarrier Spacingが120 kHzの場合は14 OFDM symbols, 28 OFDM symbolsのうちいずれかがセットされてもよい。一方、timeDurationType2ForQCL IEは上述の第2のタイムオフセット値に対応する。従って、timeDurationType1ForQCLよりも長い時間をセットできることが望ましい。例えば、timeDurationType2ForQCL IEには、Subcarrier Spacingが60 kHzの場合は14 OFDM symbols, 28 OFDM symbols、42 OFDM symbolsのうちいずれかがセットされ、Subcarrier Spacingが120 kHzの場合は28 OFDM symbols, 42 OFDM symbolsのうちいずれかがセットされてもよい。本適用例においてUEはUE Capability Informationの中に、timeDurationType1ForQCL IEとtimeDurationType2ForQCL IEを含めて送信する。
 そして、UEはあるサービングセルのあるActive BWPのあるタイムスロットnでPDCCHを受信する。当該PDCCHにおいてPDSCHをスケジュールするためのDCIが含まれる。さらに、本適用例においては当該DCIの中に、timeDurationType1ForQCLとtimeDurationType2ForQCLのいずれを使用すべきかを示す情報(e.g. インデックス)が含まれる。そして、UEは上述の式(1)に基づき、PDSCHが割り当てられているスロットを特定する。
 ここで、UEは次のように動作する。もし、PDCCHに含まれるDCIがtimeDurationType1ForQCL又はtimeDurationType2ForQCLのいずれを使用すべきかを示し、且つ、PDCCHに含まれるDCIの受信と対応するPDSCHとの間の時間(i.e.式(1)で求められる時間)が、DCIによって示された閾値timeDurationType1ForQCL又はtimeDurationType2ForQCLと同じ又はそれよりも大きい場合、UEは、RRCレイヤにより指定されたTCI状態(TCI-State)により与えられるQCL typeに関するTCI状態での参照信号(e.g. SSB、CSI-RS)と、サービングセル(e.g. PCell, SCell)のPDSCHのDMRS(Dedicated demodulation Reference Signal)とが、quasi-colocate(準同一)であると仮定(assume)できる。一方、PDCCHに含まれるDCIがtimeDurationType1ForQCL又はtimeDurationType2ForQCLのいずれを使用すべきかを示し、且つ、PDCCHに含まれるDCIの受信と対応するPDSCHとの間の時間(i.e.式(1)で求められる時間)が、DCIによって示された閾値timeDurationType1ForQCL又はtimeDurationType2ForQCLよりも小さい場合、UEによってモニタされるサービングセルのアクティブBWPの中の1又は複数のCORESET (Control Resource Set)の最後のスロットにおいて、最も低いCORESET IDを伴ってモニタされたサーチスペースに関連づけられたCORESETのPDCCH quasi co-locationインディケーションのために使われるQCLパラメータに関するReference signalと、サービングセル(e.g. PCell, SCell)のPDSCHのDMRSとが、quasi-colocate(準同一)であると仮定(assume)できる。
 その後、UEは、quasi co-locationと仮定した受信アンテナパネルと受信ビームの組み合わせ(1又は複数のAntenna portと受信した参照信号の組み合わせ)を用いて、PDSCHを受信する。
 また、本開示に係る技術は、様々な製品へ応用可能である。
 例えば、基地局100は、前述の通り、eNodeB、ng-eNodeB、gNodeB及びen-gNodeBのいずれかであってもよい。さらに又はこれに代えて、基地局100がeNodeB、及びen-gNodeBのいずれかである場合、基地局100はEUTRANと称されてもよい。さらに又はこれに代えて、基地局100がgNodeB、及びng-eNodeBのいずれかである場合、基地局100はNGRANと称されてもよい。また、基地局100は、Dual ConnectivityにおけるMaster Node(MN)であってもよいし、Secondary Node(SN)であってもよい。すなわち、基地局100は、EUTRA-NR Dual Connectivityの場合又はNR-NR Dual Connectivityの場合、Secondary gNodeBであってもよい。この場合、上述したRRC signalingの一部又は全部は、MNを介してUE(端末装置200)と送受信されてもよいし、SRB(Signalling Radio Bearer)3を介してUE(端末装置200)とSecondary gNodeB(基地局100)との間で直接送受信されてもよい。上述のPDCCH及びPDSCHは、UE(端末装置200)とSecondary gNodeB(基地局100)との間のSCG(Secondary Cell Group)において送信されてもよい。さらに又はこれに代えて、基地局100は、NR-EUTRA Dual Connectivityの場合又はNR-NR Dual Connectivityの場合、Master gNodeBであってもよい。この場合、上述したRRC signalingはUE(端末装置200)とMaster gNodeB(基地局100)との間のSRB0~2のいずれかを介して送受信されてもよい。上述のPDCCH及びPDSCHは、UE(端末装置200)とMaster gNodeB(基地局100)との間のMCG(master Cell Group)において送信されてもよい。さらに又はこれに代えて、上述の基地局100は、gNB-CU(Central Unit)もしくはgNB-DU(Distributed Unit)又はgNB-CUとgNB-DUの組み合わせ(i.e. gNB)であってもよい。gNB-CUはあるUEに対して、RRCレイヤ、SDAPレイヤ、及びPDCPレイヤをホストする。一方、gNB-DUはあるUEに対してRLCレイヤ、MACレイヤ、及びPHYレイヤをホストする。すなわち、上述のRRC signalingの一部又は全部は、gNB-DUを介して、UEとgNB-CUとの間で終端されてもよい。下りリンクのRRC signalingの一部又は全部はgNB-CUで生成されてもよい。一方、上述のPDCCH及びPDSCHはgNB-DUによって生成されUEへ送信されてもよい。さらにまたはこれに代えて、基地局100はマクロeNB又はスモールeNBなどとして実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。さらに又はこれに代えて、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
<4.2.基地局に関する応用例>
 (第1の応用例)
 図19は、本開示に係る技術が適用され得るgNBの概略的な構成の第1の例を示すブロック図である。gNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。なお、gNBに代えて、eNBに本開示の技術が適用されてもよい。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。gNB800は、図19に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばgNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図19にはgNB800が複数のアンテナ810を有する例を示したが、gNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のgNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のgNBと通信してもよい。その場合に、gNB800と、コアネットワークノード又は他のgNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、NR、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、gNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図19に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばgNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図19に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図19には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図19に示したgNB800において、図10を参照して説明した制御部140に含まれる1つ以上の構成要素は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、gNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがgNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図19に示したgNB800において、図10を参照して説明した通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、記憶部130は、メモリ822において実装されてもよい。
(第2の応用例)
 図20は、本開示に係る技術が適用され得るgNBの概略的な構成の第2の例を示すブロック図である。gNB830は、1つ以上のアンテナ840、基地局装置850、及びgNB-DU860を有する。各アンテナ840及びgNB-DU860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びgNB-DU860は、光ファイバケーブルなどの高速回線で互いに接続され得る。なお、gNBに代えてeNBに本開示の技術が適用される場合、gNB-DU860がRRHに置き換えられる。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、gNB-DU860による無線信号の送受信のために使用される。gNB830は、図20に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばgNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20にはgNB830が複数のアンテナ840を有する例を示したが、gNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図20を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、NR、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、gNB-DU860及びアンテナ840を介して、gNB-DU860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してgNB-DU860のRF回路864と接続されることを除き、図19を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図20に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばgNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をgNB-DU860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とgNB-DU860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、gNB-DU860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、gNB-DU860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図20に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図20には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図20に示したgNB830において、図10を参照して説明した制御部140に含まれる1つ以上の構成要素は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、gNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがgNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてgNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図20に示したgNB830において、例えば、図10を参照して説明した通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、記憶部130は、メモリ852において実装されてもよい。
<4.3.端末装置に関する応用例>
(第1の応用例)
 図21は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、NR、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図19に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図19には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図21に示したように複数のアンテナ916を有してもよい。なお、図21にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図21に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図21に示したスマートフォン900において、図11を参照して説明した制御部240に含まれる1つ以上の構成要素は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図21に示したスマートフォン900において、例えば、図11を参照して説明した通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
(第2の応用例)
 図22は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、NR、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図22に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図22には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図22に示したように複数のアンテナ937を有してもよい。なお、図22にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図20に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図22に示したカーナビゲーション装置920において、図11を参照して説明した制御部240に含まれる1つ以上の構成要素は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図22に示したカーナビゲーション装置920において、例えば、図11を参照して説明した通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
<<5.変形例>>
 本実施形態の基地局装置100、または端末装置200を制御する制御装置は、専用のコンピュータシステム、又は汎用のコンピュータシステムによって実現してもよい。
 例えば、上述の動作(例えば、送受信処理)を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、基地局装置、又は端末装置の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、基地局装置、又は端末装置の内部の装置であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態(変形例・応用例・適用例を含む)において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 また、上述の実施形態(変形例・応用例・適用例を含む)は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャート及びシーケンス図に示された各ステップは、適宜順序を変更することが可能である。
 上述の実施形態(変形例・応用例・適用例を含む)では、端末装置200が使用すべき受信アンテナパネルと受信ビームとの組み合わせ(受信環境)のデフォルトについて記載したが、ある側面(Aspect)においては「受信アンテナパネル」は明示的(explicitly)に考慮されなくてもよい。一例として1つの受信ビームについて異なる複数の受信アンテナパネルで受信・測定された場合、UE(端末装置200)の観点(UE perspective)では、異なる複数の受信ビームとして認識(consider)されてもよい。この場合、上述の「端末装置200が使用すべき受信アンテナパネルと受信ビームとの組み合わせ(受信環境)のデフォルト」は「端末装置200が使用すべき受信ビームのデフォルト」として置き換えられてもよい。また、上記の実施形態(変形例・応用例・適用例を含む)におけるアンテナパネルは1又は複数のアンテナポートの組み合わせと対応してもよい。さらに又はこれに代えて、上記の実施形態(変形例・応用例・適用例を含む)におけるアンテナパネルは1又は複数のアンテナポートからなるアンテナポートのグループと対応していてもよい。さらに又はこれに代えて、上記の実施形態におけるアンテナパネルは1又は複数のアンテナポート(又はアンテナポートのグループ)及びQuasi-co-locationパラメータの組み合わせと対応してもよい。
 さらに、又はこれに代えて、上述した制御情報(e.g. PDCCH)のリソース領域と識別情報(e.g.SSB-Index)(又は受信アンテナパネルと受信ビームの組み合わせ)の紐づけ(Association)は、端末装置200(UE)毎、UE内のMACエンティティ毎、セル毎、CC毎、又はBWP毎、に設定されてもよい。
 リソース領域とは例えば1つのResource Blockと1つのOFDM symbolからなるResource Element Group(REG)の1又は複数であってもよい。これに代えて、リソース領域とは、複数(e.g.6個)のREGからなるControl Channel Element(CCE)であってもよい。これに代えて、リソース領域とは複数のResource Blockと1~3のOFDM symbolからなるControl-resource set (CORESET)であってもよい。CORESETを構成する下記表2に記載のパラメータ及びLの値のうち、少なくとも1つはRRC signalling(e.g. RRC Reconfiguration message)でNGRAN(基地局100)からUE(端末装置200)へ送信されてもよい。なお、ここでのRRC Reconfiguration messageは、上述した参照信号(e.g. SSB)の測定のためのMeasConfig(測定設定)も含んでもよい。
Figure JPOXMLDOC01-appb-T000003
<<6.まとめ>>
 以上説明したように、本開示の一実施形態によれば、本実施形態に係る通信装置(例えば、端末装置200)は、取得部241と、選択部242とを備える、取得部241(決定部)は、基地局100から送信される制御情報によってスケジュールされるユーザデータの受信環境を決定するための複数のタイムオフセット値を取得(決定)する。選択部242は、基地局100から受信した制御情報に基づいて、複数のタイムオフセット値の中からユーザデータの受信環境を決定するためのタイムオフセット値を選択する。
 これにより、複数のタイムオフセット値を切り替えることで、状況に応じて適切なタイムオフセット値を設定することができる。
 また、実施形態に係る通信装置の取得部241(決定部)は制御情報およびユーザデータの受信環境が同じ場合の第1のタイムオフセット値と、制御情報およびユーザデータの受信環境が異なる場合の第2のタイムオフセット値とを含む複数のタイムオフセット値を取得(決定)する。選択部242は、制御情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。
 これにより、例えば、PDCCHおよびPDSCHを受信する際に、受信アンテナパネルの切り替えの有無に応じて適切なタイムオフセット値を設定できるため、PDCCHで指定された受信環境でPDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置の取得部241(決定部)は、ユーザデータの受信環境が制御情報と同じか否を示す環境情報を含む制御情報を取得(決定)する。選択部242は、制御情報における環境情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。
 これにより、端末装置200側でいずれのタイムオフセット値を用いるかを判断できるため、基地局100が指定した受信環境でPDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置の選択部242は、制御情報が予め設定された受信環境で受信された場合、第1のタイムオフセット値および第2のタイムオフセット値以外の第3のタイムオフセット値を選択する。
 これにより、端末装置200は、例えば、PDCCHおよびPDSCHの受信環境が同一であるか否かの判定処理を行う必要がないため、端末装置200の動作を簡素化できるとともに、処理負荷を軽減できる。
 また、実施形態に係る通信装置の取得部241(決定部)は、複数の制御情報それぞれで指定される複数のユーザデータの受信環境が重ならない場合の第1のタイムオフセット値と、重なる場合の第2のタイムオフセット値とを取得(決定)する。選択部242は、制御情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。
 これにより、複数のPDSCHがオーバーラップしているか否かでタイムオフセット値を変えることができるため、端末装置200側の受信環境の切り替えに伴う負荷を正しく見積もることができ、切り替えが間に合うかどうかを正確に判断することができる。
 また、実施形態に係る通信装置の取得部241(決定部)は、複数のユーザデータの受信環境が重なるか否かを示すオーバーラップ情報を含む制御情報を取得(決定)する。選択部242は、制御情報におけるオーバーラップ情報に基づいて、第1のタイムオフセット値および第2のタイムオフセット値のいずれか1つを選択する。
 これにより、端末装置200側でいずれのタイムオフセット値を用いるかを判断できるため、基地局100が指定した受信環境でPDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置の取得部241は、第1のタイムオフセット値よりも長い第2のタイムオフセット値を取得する。
 これにより、PDSCHを受信するために受信アンテナパネルを切り替える場合であっても、第2のタイムオフセット値が長く設定されているため、PDCCHで指定された受信環境でPDSCHを受信できる可能性を高めることができる。また、複数のPDSCHがオーバーラップする場合であっても、第2のタイムオフセット値が長く設定されているため、PDCCHで指定された受信環境でPDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置は、選択部242によって選択されたタイムオフセット値に基づいてユーザデータの受信環境を設定する設定部243を備える。
 これにより、端末装置200は、PDCCHで指定された受信環境でPDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置の設定部243は、制御情報およびユーザデータの時間間隔がタイムオフセット値未満である場合、ユーザデータの受信環境を、予め設定された受信環境に設定する。
 これにより、PDCCHで指定された受信環境の設定が端末装置200側で間に合わない場合であって、デフォルトの受信環境でPDSCHを受信することができる。
 また、実施形態に係る通信装置の設定部243は、予め設定された受信環境として、制御情報を受信した際の受信環境を設定する。
 これにより、事前に設定された受信環境のデフォルトを用いる場合に比べて、処理が破綻する状況を減らすことができる。すなわち、PDSCHを受信できる可能性を高めることができる。
 また、実施形態に係る通信装置の設定部243は、制御情報およびユーザデータの時間間隔がタイムオフセット値以上である場合、ユーザデータの受信環境を、制御情報で指定された受信環境に設定する。
 これにより、PDCCHで指定された受信環境でPDSCHを受信できるため、PDSCHを精度良く受信することができる。
 また、実施形態に係る基地局装置100は、通知部141と、指定部142と備える。通知部141は、端末装置200へ送信する制御情報によって指定されるユーザデータの受信環境を決定するための複数のタイムオフセット値を端末装置200に通知する。指定部142は、制御情報を送信する際に、複数のタイムオフセット値の中からユーザデータの受信環境を決定するためのタイムオフセット値を指定する。
 これにより、端末装置200が複数のタイムオフセット値を切り替えることで、状況に応じて適切なタイムオフセット値を設定することができる。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 基地局から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する決定部と、
 前記基地局から受信した前記制御情報に基づいて、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を選択する選択部と
 を備える通信装置。
(2)
 前記決定部は、
 前記制御情報および前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが同じ場合の第1の前記タイムオフセット値と、前記制御情報および前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが異なる場合の第2の前記タイムオフセット値とを含む前記複数のタイムオフセット値を決定し、
 前記選択部は、
 前記制御情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
 前記(1)に記載の通信装置。
(3)
 前記決定部は、
 前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが前記制御情報と同じか否かを示す環境情報を含む前記制御情報を決定し、
 前記選択部は、
 前記制御情報における前記環境情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
 前記(2)に記載の通信装置。
(4)
 前記選択部は、
 前記制御情報が予め設定された受信アンテナパネルおよび受信ビームの組み合わせで受信された場合、前記第1のタイムオフセット値および前記第2のタイムオフセット値以外の第3の前記タイムオフセット値を選択する
 前記(2)に記載の通信装置。
(5)
 前記決定部は、
 複数の前記制御情報それぞれでスケジュールされる複数の前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが重ならない場合の第1の前記タイムオフセット値と、重なる場合の第2の前記タイムオフセット値とを決定し、
 前記選択部は、
 前記制御情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
 前記(1)~(3)のいずれかに記載の通信装置。
(6)
 前記決定部は、
 前記複数のユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが重なるか否かを示すオーバーラップ情報を含む前記制御情報を決定し、
 前記選択部は、
 前記制御情報における前記オーバーラップ情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
 前記(5)に記載の通信装置。
(7)
 前記決定部は、
 前記第1のタイムオフセット値よりも長い前記第2のタイムオフセット値を決定する
 前記(2)~(4)のいずれかに記載の通信装置。
(8)
 前記選択部によって選択された前記タイムオフセット値に基づいて前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを設定する設定部
 を備える前記(1)~(7)のいずれかに記載の通信装置。
(9)
 前記設定部は、
 前記制御情報および前記ユーザデータの時間間隔が前記タイムオフセット値未満である場合、前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを、予め設定された前記受信アンテナパネルおよび受信ビームの組み合わせに設定する
 前記(8)に記載の通信装置。
(10)
 前記設定部は、
 前記予め設定された前記受信アンテナパネルおよび受信ビームの組み合わせとして、前記制御情報を受信した際の受信アンテナパネルおよび受信ビームの組み合わせを設定する
 前記(9)に記載の通信装置。
(11)
 前記設定部は、
 前記制御情報および前記ユーザデータの時間間隔が前記タイムオフセット値以上である場合、前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを、前記制御情報で指定された受信アンテナパネルおよび受信ビームの組み合わせに設定する
 前記(9)に記載の通信装置。
(12)
 通信装置へ送信する制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を前記通信装置に通知する通知部と、
 前記制御情報を送信する際に、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を指定する指定部と
 を備える基地局装置。
(13)
 基地局から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する決定工程と、
 前記基地局から受信した前記制御情報に基づいて、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を選択する選択工程と
 を含む通信方法。
(14)
 通信装置へ送信する制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を前記通信装置に通知する通知工程と、
 前記制御情報を送信する際に、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を指定する指定工程と
 を含む基地局装置の制御方法。
 1 通信システム
 100 基地局装置(基地局)
 200 端末装置

Claims (14)

  1.  基地局から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する決定部と、
     前記基地局から受信した前記制御情報に基づいて、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を選択する選択部と
     を備える通信装置。
  2.  前記決定部は、
     前記制御情報および前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが同じ場合の第1の前記タイムオフセット値と、前記制御情報および前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが異なる場合の第2の前記タイムオフセット値とを含む前記複数のタイムオフセット値を決定し、
     前記選択部は、
     前記制御情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
     請求項1に記載の通信装置。
  3.  前記決定部は、
     前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが前記制御情報と同じか否かを示す環境情報を含む前記制御情報を決定し、
     前記選択部は、
     前記制御情報における前記環境情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
     請求項2に記載の通信装置。
  4.  前記選択部は、
     前記制御情報が予め設定された受信アンテナパネルおよび受信ビームの組み合わせで受信された場合、前記第1のタイムオフセット値および前記第2のタイムオフセット値以外の第3の前記タイムオフセット値を選択する
     請求項2に記載の通信装置。
  5.  前記決定部は、
     複数の前記制御情報それぞれでスケジュールされる複数の前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが重ならない場合の第1の前記タイムオフセット値と、重なる場合の第2の前記タイムオフセット値とを決定し、
     前記選択部は、
     前記制御情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
     請求項1に記載の通信装置。
  6.  前記決定部は、
     前記複数のユーザデータの受信アンテナパネルおよび受信ビームの組み合わせが重なるか否かを示すオーバーラップ情報を含む前記制御情報を決定し、
     前記選択部は、
     前記制御情報における前記オーバーラップ情報に基づいて、前記第1のタイムオフセット値および前記第2のタイムオフセット値のいずれか1つを選択する
     請求項5に記載の通信装置。
  7.  前記決定部は、
     前記第1のタイムオフセット値よりも長い前記第2のタイムオフセット値を決定する
     請求項2に記載の通信装置。
  8.  前記選択部によって選択された前記タイムオフセット値に基づいて前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを設定する設定部
     を備える請求項1に記載の通信装置。
  9.  前記設定部は、
     前記制御情報および前記ユーザデータの時間間隔が前記タイムオフセット値未満である場合、前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを、予め設定された前記受信アンテナパネルおよび受信ビームの組み合わせに設定する
     請求項8に記載の通信装置。
  10.  前記設定部は、
     前記予め設定された前記受信アンテナパネルおよび受信ビームの組み合わせとして、前記制御情報を受信した際の受信アンテナパネルおよび受信ビームの組み合わせを設定する
     請求項9に記載の通信装置。
  11.  前記設定部は、
     前記制御情報および前記ユーザデータの時間間隔が前記タイムオフセット値以上である場合、前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを、前記制御情報で指定された受信アンテナパネルおよび受信ビームの組み合わせに設定する
     請求項9に記載の通信装置。
  12.  通信装置へ送信する制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を前記通信装置に通知する通知部と、
     前記制御情報を送信する際に、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を指定する指定部と
     を備える基地局装置。
  13.  基地局から送信される制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を決定する決定工程と、
     前記基地局から受信した前記制御情報に基づいて、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を選択する選択工程と
     を含む通信方法。
  14.  通信装置へ送信する制御情報によってスケジュールされるユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための複数のタイムオフセット値を前記通信装置に通知する通知工程と、
     前記制御情報を送信する際に、前記複数のタイムオフセット値の中から前記ユーザデータの受信アンテナパネルおよび受信ビームの組み合わせを決定するための前記タイムオフセット値を指定する指定工程と
     を含む基地局装置の制御方法。
PCT/JP2020/012333 2019-03-28 2020-03-19 通信装置、基地局装置、通信方法、及び基地局装置の制御方法 WO2020196279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20779044.5A EP3952393A4 (en) 2019-03-28 2020-03-19 COMMUNICATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD AND CONTROL METHOD FOR BASE STATION DEVICE
JP2021509317A JP7521525B2 (ja) 2019-03-28 2020-03-19 通信装置、基地局装置、通信方法、及び基地局装置の制御方法
CN202080022480.5A CN113615232B (zh) 2019-03-28 2020-03-19 通信设备、基站设备、通信方法和基站设备的控制方法
US17/436,080 US12069658B2 (en) 2019-03-28 2020-03-19 Communication device, base station device, communication method, and base station device control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065151 2019-03-28
JP2019-065151 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196279A1 true WO2020196279A1 (ja) 2020-10-01

Family

ID=72611989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012333 WO2020196279A1 (ja) 2019-03-28 2020-03-19 通信装置、基地局装置、通信方法、及び基地局装置の制御方法

Country Status (5)

Country Link
US (1) US12069658B2 (ja)
EP (1) EP3952393A4 (ja)
JP (1) JP7521525B2 (ja)
CN (1) CN113615232B (ja)
WO (1) WO2020196279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314918A (zh) * 2021-05-06 2022-11-08 诺基亚技术有限公司 用于波束扫描的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210258065A1 (en) * 2020-05-04 2021-08-19 Intel Corporation Enhanced beam management for 5g systems
US11683815B2 (en) * 2020-05-15 2023-06-20 Qualcomm Incorporated Piggyback downlink control information (DCI) scheduling limit
US11996958B2 (en) * 2021-03-01 2024-05-28 At&T Intellectual Property I, L.P. Method and system for determining multiple- input-multiple-output (MIMO) modes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099304A (ja) 1995-06-24 1997-01-10 Matsushita Electric Ind Co Ltd ビーム位置シミュレーション調整装置
US8981996B2 (en) * 2005-09-27 2015-03-17 Qualcomm Incorporated Position location using transmitters with timing offset and phase adjustment
TR201904294T4 (tr) 2014-05-29 2019-05-21 Sony Corp Cihaz ve yöntem.
EP3379747A4 (en) 2015-11-17 2018-11-14 Sony Corporation Terminal device, radio communication device and communication method
WO2017192889A1 (en) 2016-05-04 2017-11-09 Intel Corporation Antenna panel switching and beam indication
JP6961938B2 (ja) 2016-12-26 2021-11-05 ソニーグループ株式会社 基地局、方法及び記録媒体
CN108400853B (zh) 2017-02-06 2020-01-10 中兴通讯股份有限公司 参考信号的配置方法、配置装置及通信节点
CN108112074B (zh) * 2017-05-05 2023-07-18 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
CN109151969B (zh) * 2017-06-16 2022-04-05 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN114845413A (zh) * 2018-05-25 2022-08-02 成都华为技术有限公司 通信方法、终端设备和网络设备
CN111867094B (zh) * 2019-04-30 2024-03-05 华为技术有限公司 数据接收和发送方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.214 VERSION 15.2.0 RELEASE 15, 26 March 2019 (2019-03-26)
See also references of EP3952393A4
SONY: "Considerations on Multi-TRP/Panel Transmission", 3GPP TSG RAN WG1 #96 R1-1902183, 16 February 2019 (2019-02-16), XP051599878 *
SONY: "Considerations on Multi-TRP/Panel Transmission", 3GPP TSG RAN WG1 #98B R1-1910749, 4 October 2019 (2019-10-04), XP051789538 *
ZTE: "Enhancements on multi-TRP/Panel transmission", 3GPP TSG RAN WG1 #96 R1-1901634, 16 February 2019 (2019-02-16), XP051599331 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314918A (zh) * 2021-05-06 2022-11-08 诺基亚技术有限公司 用于波束扫描的方法
EP4087150A1 (en) * 2021-05-06 2022-11-09 Nokia Technologies Oy Method for beam scanning

Also Published As

Publication number Publication date
EP3952393A1 (en) 2022-02-09
CN113615232A (zh) 2021-11-05
US20220174704A1 (en) 2022-06-02
US12069658B2 (en) 2024-08-20
JPWO2020196279A1 (ja) 2020-10-01
CN113615232B (zh) 2024-09-10
JP7521525B2 (ja) 2024-07-24
EP3952393A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2020196279A1 (ja) 通信装置、基地局装置、通信方法、及び基地局装置の制御方法
JP7314945B2 (ja) 通信装置、通信方法及び記録媒体
US11387874B2 (en) Communication device, communication control method and recording medium
WO2021205921A1 (ja) 通信装置、通信制御方法及び通信システム
WO2018230246A1 (ja) 通信装置、通信制御方法及びコンピュータプログラム
US20240259075A1 (en) Terminal device, base station device, communication method, and base station device control method
WO2020031645A1 (ja) 通信装置、通信方法及び記録媒体
WO2019097929A1 (ja) 端末装置、基地局、方法及び記録媒体
JP2024012672A (ja) 通信装置、及び通信制御装置
WO2020196280A1 (ja) 通信装置、基地局装置、通信方法、及び基地局装置の制御方法
CN113615234B (zh) 终端设备、基站设备、通信方法和基站设备控制方法
JP7468364B2 (ja) 通信装置、通信制御装置、通信方法及び通信制御方法
WO2020145007A1 (ja) 通信装置、通信制御装置、通信方法、通信制御方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779044

Country of ref document: EP

Effective date: 20211028