WO2015019433A1 - 希土類分離回収装置 - Google Patents

希土類分離回収装置 Download PDF

Info

Publication number
WO2015019433A1
WO2015019433A1 PCT/JP2013/071311 JP2013071311W WO2015019433A1 WO 2015019433 A1 WO2015019433 A1 WO 2015019433A1 JP 2013071311 W JP2013071311 W JP 2013071311W WO 2015019433 A1 WO2015019433 A1 WO 2015019433A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
ammonium chloride
mixing
heat treatment
separation
Prior art date
Application number
PCT/JP2013/071311
Other languages
English (en)
French (fr)
Inventor
宮田 素之
山本 浩貴
元 村上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015530598A priority Critical patent/JPWO2015019433A1/ja
Priority to PCT/JP2013/071311 priority patent/WO2015019433A1/ja
Publication of WO2015019433A1 publication Critical patent/WO2015019433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an apparatus for separating and collecting a rare earth composition.
  • Rare earth elements are used in motors for hybrid automobiles and magnetic disk devices (so-called rare earth magnets), phosphors used in displays and lighting equipment, abrasives used for polishing glass, and amplifiers in optical communication equipment. The demand is expected to increase further in the future. On the other hand, in recent years, the price of rare earth materials has risen due to the uneven distribution of rare earth resources, and as a resource risk hedge, the use of rare earths, development of alternative materials, and separation and recovery of rare earth elements from products The method to do is examined.
  • Patent Document 1 describes separation using the solubility difference of Re sulfate.
  • Patent Document 1 uses a very high concentration of strong acid or highly volatile solvent, and thus has a problem of having a significant impact on the environment.
  • the present invention is an object to reduce the influence on the environment when the rare earth component is separated and recovered.
  • the present invention is an apparatus for separating and recovering a plurality of types of rare earth elements, and mixing and crushing a mixture of a rare earth material containing a plurality of types of rare earth elements and an ammonium chloride material to produce a mixture.
  • a solid-liquid separation of the plurality of rare earth elements by mixing the mixed chloride with a solvent, and a heat treatment section for heat-treating the mixture to produce a mixed chloride of the plurality of rare-earth elements.
  • a separation unit is an apparatus for separating and recovering a plurality of types of rare earth elements, and mixing and crushing a mixture of a rare earth material containing a plurality of types of rare earth elements and an ammonium chloride material to produce a mixture.
  • the influence on the environment can be reduced during the separation and recovery of rare earth components.
  • Configuration diagram of separation device Schematic diagram of equipment in rare earth material supply section Schematic diagram of the ammonium chloride supply unit Schematic diagram of the ammonium chloride supply unit Schematic diagram of mixing and grinding unit Schematic diagram of equipment used in drying section Schematic diagram of the equipment used in the molding part
  • Fig. 1 shows the block diagram of the separation device.
  • the present embodiment is an apparatus for separating and recovering rare earth elements from a raw material containing a plurality of types of rare earth elements, and includes an apparatus for performing at least three steps of a raw material adjustment step 10, a heat treatment step 20, and a separation step 30. .
  • the raw material adjustment step 10 includes devices such as a rare earth raw material supply unit 110, an ammonium chloride supply unit 120, a solvent supply unit 130, a mixing and grinding unit 140, a drying unit 150, and a molding unit 160.
  • the heat treatment step 20 includes devices such as a gas supply unit 210, a heat treatment unit 220, an ammonium chloride recovery unit 230, a gas abatement unit 240, an ammonium chloride measurement unit 250, and an ammonium chloride recovery pipe 260.
  • the separation step 30 includes devices such as a solvent supply unit 310, a solid-liquid separation unit 320, and a solid recovery unit 330.
  • each rare earth element When a raw material containing multiple types of rare earth elements and ammonium chloride are mixed and the pulverized fine powder is heated, each rare earth element generates a chloride.
  • a solvent such as water
  • the mixture of the rare earth chlorides is stirred in a solvent such as water, it is divided into rare earth chlorides that are easily soluble in the solvent and rare earth chlorides that are not easily soluble in the solvent and are easily precipitated depending on the type of the rare earth chloride, Separate and recover multiple types of rare earth elements.
  • the raw material and ammonium chloride are mixed and pulverized in the raw material adjustment step 10, the mixed powder is heated in the heat treatment step 20, and the rare earth chloride mixture is solid-liquid separated using a solvent in the separation step 30. According to this, rare earth elements can be separated and recovered without using a solvent with a large environmental load.
  • FIG. 2 shows a schematic diagram of an apparatus of the rare earth material supply unit 110.
  • reference numeral 111 denotes a rare earth material tank
  • 112 denotes a quantitative supply machine
  • 113 denotes a transport machine.
  • an electrostatic removal device in order to prevent dust blasting due to static electricity or the like.
  • the inner wall is coated with an anti-adhesion coating, or a vibration machine such as a hammer is generally installed on the outer wall. It is preferable to prevent the powder from clogging while preventing the powder from adhering to the inner wall by ventilating air or inert gas into the tank to flow the powder.
  • the constant amount feeder 112 may be an endless belt type, a table type, a screw type, a vibration type, a rotary type, a fluid type, a rotary gravity type, or the like.
  • the transport aircraft 113 includes an endless transport type, a vibration trough transport type, a rotary transport type, a fluid transport type, and the like depending on a transport method. From these, it can select suitably according to the particle size of a rare earth raw material, a shape, fluidity
  • the rare earth material supplied by the rare earth material supply unit 110 is desirably a rare earth oxide that is stable in the air, particularly when the raw material is mixed and pulverized, dried, or molded in the air in subsequent steps.
  • a rare earth oxide that is stable in the air
  • other rare earth compounds can be used.
  • the size of the rare earth material supplied from the rare earth material supply unit 110 is a large particle or block of several mm to several cm, the mixture is pulverized to about several hundred ⁇ m in advance, This is preferable because the mixing efficiency is improved.
  • the ammonium chloride supply unit 120 supplies ammonium chloride to be mixed with the rare earth material in a predetermined mixing ratio according to the supply amount of the rare earth material.
  • ammonium chloride can be supplied in a powder state or a solution in which the powder is dissolved in a solvent such as water.
  • FIG. 3 shows a schematic diagram of an apparatus for supplying ammonium chloride when supplying powdered ammonium chloride.
  • 121 is an ammonium chloride tank
  • 122 is a metering feeder
  • 123 is a transporter.
  • the characteristics required for these apparatuses are basically the same as those of the rare earth material supply unit 110 shown in FIG.
  • these devices, particularly the tank 121 have a structure that prevents moisture absorption.
  • FIG. 4 shows a schematic diagram of an apparatus for supplying ammonium chloride when ammonium chloride is supplied in a solution state.
  • 121 is an ammonium chloride tank
  • 122 is a metering feeder
  • 124 is a tank
  • 125 is a stirring and mixing device
  • 130 is a solvent supply unit
  • 126 is a transporter.
  • Ammonium chloride is supplied from the tank 121 to the tank 124 through the quantitative feeder 122.
  • a solvent such as water is supplied from the solvent supply unit 130 to the tank 124.
  • a solution in which ammonium chloride is dissolved is prepared in the tank 124.
  • the tank 124 may be provided with a stirring and mixing device 125 in order to uniformly dissolve ammonium chloride in the solvent.
  • the prepared mixed solution is supplied to the mixing and pulverizing unit 140 using the transport device 126.
  • the ammonium chloride recovered in the ammonium chloride recovery unit 230 in the heat treatment step 20 can be reused.
  • the ammonium chloride recovered through the ammonium chloride recovery pipe 260 may be in a powder state or a solution state dissolved in a solvent such as water. For example, by dissolving ammonium chloride adhering to the ammonium chloride recovery unit 230 with a solvent such as water, it can be recovered more easily than in a powder state.
  • the ammonium chloride recovery pipe 260 is connected to the ammonium chloride supply section 120, but it is connected to a pipe on the way to the mixing and pulverizing section 140. It may be provided to adjust the usage amount.
  • the recovered powder or solution ammonium chloride can be reused by supplying it to the tank 121 or the solution tank 124 of the ammonium chloride supply unit 120.
  • an ammonium chloride measuring unit 250 may be provided between them to measure the amount, purity, etc. of the recovered ammonium chloride.
  • FIG. 5 shows a schematic diagram of an apparatus of the mixing and grinding unit 140.
  • 141 is a tank
  • 142 is a feeder
  • 143 is a mixing and grinding machine
  • 144 is a particle size measurement sensor.
  • the rare earth raw material and ammonium chloride supplied from the rare earth raw material supply unit 110 and the ammonium chloride supply unit 120 are conveyed to the tank 141 and mixed and pulverized by the mixing pulverizer 143 via the supply unit 142.
  • the mixed powder after mixing and pulverization is transported again to the tank 141 and repeatedly mixed and pulverized, variation in the particle size of the powder is improved.
  • a particle size measurement sensor 144 may be provided in the middle of the conveyance path where the mixed powder is returned to the tank 141, and the pulverization may be terminated when the particle size of the mixed powder is measured and becomes a predetermined particle size. .
  • the powder that has been mixed and crushed is supplied to the drying unit 150, the molding unit 160, and the heat treatment unit 220.
  • the mixing and pulverizing machine 143 has a reciprocating motion, a revolving motion, a low-speed rotation, a medium-speed rotation, a high-speed rotation, a roll, a self-revolution, a container rotation, a container vibration, a planetary mill, a centrifugal fluidized bed mill, a medium agitation mill, a jet, depending on the operation mechanism. Injection and the like. Furthermore, the pulverization method is roughly classified into a wet method using a solvent and a dry method using no solvent.
  • pulverization method such as a wet method or a dry method, and various pulverizers
  • a desired mixed powder can be produced by appropriately selecting a plurality of types of apparatuses.
  • the particle size of the mixed powder required by the treatment in the mixing and grinding section 140 may vary depending on the type of rare earth component, the heat treatment conditions of the heat treatment step 20, and the like, but considering the reactivity in the heat treatment section 220, it is fine. It is preferable that For example, in order to produce a fine mixed powder having an average particle size of about 1 ⁇ m, it is preferable to use a wet method apparatus using balls or beads for grinding as the mixing and grinding machine 143. In addition, the particle size measurement sensor 144 is attached to these devices, the particle size at the time of pulverization is measured in real time, and a mechanism for ending the pulverization when a predetermined particle size is reached is provided, thereby reducing the pulverization time. Efficiency can be improved.
  • the heat treatment conditions in the heat treatment section 220 can be made efficient.
  • the measuring method of the particle size measuring sensor 144 include, but are not limited to, a dynamic light scattering method, a laser diffraction / scattering method, an ultrasonic method, and an image analysis method.
  • the mixed powder obtained by the mixing and grinding unit 140 does not contain a solvent.
  • examples of the process after mixing and grinding include the following processes. Step (1): The obtained mixed powder is supplied to the heat treatment unit 220 as it is. Step (2): The mixed powder is supplied to the molding unit 160, and a molded body is produced from the mixed powder.
  • the heat treatment section 220 reacts the rare earth material with ammonium chloride to produce rare earth chloride. Is carried out at a temperature lower than the vaporization temperature of ammonium chloride, this reaction is a reaction between solids that does not involve gas, and the reaction proceeds in a shorter time as the contact area between the rare earth material and ammonium chloride is larger. That is, since the chlorination reaction is promoted more when the molded body is formed than when the rare earth material and ammonium chloride are mixed in powder form, it is preferable that the step (2) is performed.
  • a furnace for example, a rotary kiln having a mechanism for mixing powder and gas is used in the heat treatment unit 220, for example, by rotating a furnace body of a heating furnace. Therefore, the reaction can be promoted, so that the treatment can be performed in the step (1).
  • the mixture obtained in the mixing and pulverizing unit 140 contains a solvent.
  • examples of the process after mixing and grinding include the following processes.
  • the heat treatment unit 220 adds a step of removing the solvent before the reaction between the rare earth material and ammonium chloride, Alternatively, it is necessary to select a heat treatment condition for obtaining a desired product in the presence of the rare earth material, ammonium chloride, and solvent.
  • FIG. 6 shows a schematic diagram of an apparatus used in the drying section.
  • 151 is a tank
  • 152 is a metering feeder
  • 153 is a dryer
  • 154 is a classifier.
  • the mixture supplied from the mixing and pulverizing unit 140 is transported to the tank 151 and charged into the dryer 153 via the fixed amount feeder 152.
  • Examples of the drying method of the dryer 153 include hot air drying, heat transfer drying, far-infrared drying, microwave drying, and heat evaporation drying. From these, considering the properties (form, size, shape, solvent content, type of solvent, etc.) of the material to be dried and the processing amount, one or more types of optimal apparatus can be selected as appropriate.
  • drying conditions such as heating temperature and atmospheric pressure in the dryer 153 are preferably performed under conditions where ammonium chloride is not vaporized.
  • the dried powder may be aggregated and coarsened, so that the powder with a particle size of 100 ⁇ m or more among the dried powder is again mixed and pulverized through the classifier 154. It is preferable to carry to.
  • FIG. 7 shows a schematic diagram of an apparatus used in the molding unit.
  • 161 is a molding machine tank
  • 162 is a feeder
  • 163 is a molding machine.
  • the powder supplied from the mixing and pulverizing unit 140 and the drying unit 150 is conveyed to the tank 161, and a molded body is produced by the molding machine 163 via the feeder 162.
  • the produced molded body is supplied to the heat treatment section 220.
  • Examples of the molding method of the molding machine 163 include a mud casting method, a doctor blade method, an extrusion molding method, an injection molding method, a pressure molding method, an isostatic pressing method, a hot pressing method, and a hot isostatic pressing method.
  • examples of the molding conditions include room temperature molding, heat molding, and molding atmosphere such as air, inert gas, and vacuum. From these, it can select suitably according to the property, size, shape, production amount, etc. of a to-be-molded object or the molded object to produce.
  • a lubricant, a binder, or the like is added to the raw material powder as necessary.
  • ammonium chloride is mixed with the rare earth raw material. Therefore, since ammonium chloride also serves as a lubricant and a binder, it is not particularly necessary to add a lubricant or a binder.
  • molding can be performed in a heated atmosphere in addition to room temperature.
  • ammonium chloride is softened, and a denser molded body can be obtained as compared with the case at room temperature.
  • the heating temperature is preferably not higher than the vaporization temperature of ammonium chloride. This is because when heated to the vaporization temperature or higher, ammonium chloride is vaporized, and a molded product having a predetermined mixing ratio cannot be obtained.
  • Neodymium oxide (Nd 2 O 3 ) and dysprosium oxide (Dy 2 O 3 ) were used as rare earth materials.
  • a predetermined amount of mixed powder of Nd 2 O 3 and Dy 2 O 3 mixed so that Dy / Nd is 1/7 by weight ratio is supplied using a table-type auto feeder, and conveyor-type endless transport It was conveyed to the mixing and grinding part by a machine.
  • Pure water as a solvent was mixed with ammonium chloride (NH 4 Cl) to prepare an aqueous ammonium chloride solution.
  • An aqueous ammonium chloride solution was supplied so that the amount of ammonium chloride was 15 mol with respect to 1 mol of the mixed powder of the rare earth material.
  • a mixture of the rare earth raw material and the aqueous ammonium chloride solution was mixed and ground with an attritor for 3 hours to obtain a mixture having an average particle diameter (D 50 ) of the rare earth raw material of 10 ⁇ m. Subsequently, the mixture was pulverized for 2 hours each using an SC mill and an MSC mill to obtain a mixture having an average particle size of the rare earth material of 0.5 ⁇ m. Zirconium oxide ceramics were used for the inner wall, blades and grinding balls of these grinding machines. The sizes of the balls for grinding are attritor: 5 mm, SC mill: 0.5 mm, and MSC mill: 0.05 mm.
  • the mixed and pulverized mixture was dried using a spray dryer to obtain a mixed powder.
  • the drying temperature of the spray dryer is 200 ° C.
  • a molded product having a diameter of 10 mm and a height of about 5 mm was produced from the mixed powder using a tableting machine.
  • the size of the molded body is 10 mm in diameter and about 5 mm in height.
  • the molding conditions are room temperature and tableting pressure: 3 kN.
  • the mixture was separated using pure water in the separation step. Since Nd chloride easily dissolves and Dy chloride easily precipitates, the Dy separation rate is 90% and the recovery rate is 90%, and a sufficient separation rate and recovery rate are obtained even in a single step.
  • Cerium oxide (Ce 2 O 3 ) and lanthanum oxide (La 2 O 3 ) were used as rare earth materials.
  • Ammonium chloride powder was mixed so that the amount of ammonium chloride was 12 mol with respect to 1 mol of the mixed powder mixed so that Ce / La was 1/1 by weight ratio. These were conveyed to the mixing and grinding section using a table type auto feeder and a conveyor type endless transporter.
  • a mixture of the rare earth raw material and ammonium chloride was mixed and pulverized by a planetary mill for 10 hours to obtain a mixed powder having an average particle diameter (D 50 ) of the rare earth raw material of 1 ⁇ m.
  • D 50 average particle diameter of the rare earth raw material
  • the apparatus was temporarily stopped every two hours to remove the deposits, and then pulverization was resumed.
  • Zirconium oxide ceramic was used for the inner wall of the pot of the planetary mill and the balls for grinding (three types of 5 mm, 1 mm, and 0.5 mm).
  • Approx. 300 g of the above mixed powder was supplied to the heat treatment step and heat treated.
  • the heat treatment step (1) using a batch furnace, nitrogen gas flow (flow rate 1000 mL / min), 350 ° C., hold for 3 hours, (2) using rotary kiln furnace, hold at 450 ° C., 2 hours, (3) Heat treatment was performed under the conditions of a rotary kiln furnace, a dry air flow (flow rate 500 mL / min), 250 ° C., and maintained for 5 hours.
  • Neodymium oxide (Nd 2 O 3 ) and dysprosium oxide (Dy 2 O 3 ) were used as rare earth materials. 1 mol of the mixed powder mixed so that Dy / Nd was 1/1 by weight ratio was conveyed to the mixing and pulverizing section using an endless belt type belt feeder.
  • Pure water as a solvent was mixed with ammonium chloride (NH 4 Cl) to prepare an aqueous ammonium chloride solution.
  • An aqueous ammonium chloride solution was supplied so that the amount of ammonium chloride was 18 mol with respect to 1 mol of the mixed powder of the rare earth material.
  • the ammonium chloride aqueous solution recovered from the heat treatment step was used as 30% of the ammonium chloride aqueous solution.
  • a mixture of the rare earth material and ammonium chloride was mixed and pulverized in a planetary mill for 6 hours to obtain a mixture having an average particle diameter (D 50 ) of the rare earth material of 2 ⁇ m. Thereafter, the mixture was pulverized for 4 hours using a bead mill to obtain a mixture having an average particle diameter (D 50 ) of the rare earth material of 0.5 ⁇ m.
  • Zirconium oxide ceramic was used for the inner wall of the pot of the planetary mill and the balls for grinding (three types of 5 mm, 1 mm, and 0.5 mm). Further, zirconia oxide ceramic was used for the inner wall, blades and grinding balls of the bead mill. The size of the grinding balls is 0.3 mm.
  • Approx. 300 g of the above mixture was supplied to the heat treatment step to perform heat treatment.
  • For the heat treatment (1) using a rotary kiln furnace, nitrogen gas flow (flow rate 500 mL / min), 150 ° C., 2 hours hold, 300 ° C., 5 hours hold, 400 ° C., 6 hours hold, (2) rotary kiln furnace Then, heat treatment was performed under conditions of a dry air flow (flow rate 500 mL / min) and 300 ° C. for 3 hours.
  • the ammonium chloride recovered in the heat treatment step was dissolved in water in the ammonium chloride recovery section, supplied to the raw material adjustment step in a solution state, and reused.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 複数種の希土類元素を分離回収する装置において、複数種の希土類元素を含有する希土類原料と塩化アンモニウム原料とを混合し粉砕して混合物を生成する混合粉砕部と、前記混合物を熱処理して前記複数種の希土類元素の混合塩化物を生成する熱処理部と、前記混合塩化物を溶媒と混合して前記複数種の希土類元素同士を固液分離する固液分離部とを備える。

Description

希土類分離回収装置
 本発明は希土類組成物の分離回収装置に関する。
 希土類元素はハイブリット自動車や磁気デイスク装置のモータ用磁石(いわゆる希土類磁石)、ディスプレイや照明機器に用いられる蛍光体、ガラスなどを研磨する際に用いる研磨材、および光通信機器の増幅器などに用いられており、今後ますます需要の拡大が予想される。一方、近年、希土類資源の地理的な偏在に伴う希土類原料の価格高騰が発生しており、この資源リスクヘッジとして、希土類使用量の低減や代替材の開発、および製品からの希土類元素を分離回収する方法などが検討されている。
 希土類元素を分離回収する方法として、例えば、特許文献1ではReの硫酸塩の溶解度差を利用した分離が記載されている。
特開2010-285680号公報
 しかし、上記特許文献1の方法では、きわめて高濃度の強酸や揮発性の高い溶媒を使用するため、環境に与える影響が少なくないという課題がある。
 本発明では、希土類成分の分離回収の際、環境に与える影響を低減することを目的とする。
 上記目的を達成するため、本発明は、複数種の希土類元素を分離回収する装置において、複数種の希土類元素を含有する希土類原料と塩化アンモニウム原料とを混合し粉砕して混合物を生成する混合粉砕部と、前記混合物を熱処理して前記複数種の希土類元素の混合塩化物を生成する熱処理部と、前記混合塩化物を溶媒と混合して前記複数種の希土類元素同士を固液分離する固液分離部とを備えることを特徴とする。
 本発明によれば、希土類成分の分離回収の際、環境に与える影響を低減することができる。
分離装置の構成図 希土類原料供給部の装置の模式図 塩化アンモニウム供給部の装置の模式図 塩化アンモニウム供給部の装置の模式図 混合粉砕部の装置の模式図 乾燥部で用いる装置の模式図 成形部で用いる装置の模式図
 以下、本発明の実施形態について、図面を参照しながらより詳細に説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 図1に分離装置の構成図を示す。本実施形態は、複数種の希土類元素を含有する原料から希土類元素を分離回収する装置であって、少なくとも、原料調整工程10、熱処理工程20、分離工程30の3つの工程を実施する装置を備える。
 ここで、原料調整工程10は、希土類原料供給部110、塩化アンモニウム供給部120、溶媒供給部130、混合粉砕部140、乾燥部150、成形部160などの装置から構成される。熱処理工程20はガス供給部210、熱処理部220、塩化アンモニウム回収部230、ガス除害部240、塩化アンモニウム計測部250、塩化アンモニウム回収配管260などの装置から構成される。分離工程30は、溶媒供給部310、固液分離部320、固体回収部330などの装置から構成される。
 複数種の希土類元素を含有する原料と塩化アンモニウムとを混合し、粉砕した微粉末を加熱すると、各々の希土類元素は塩化物を生成する。その希土類塩化物の混合物を水等の溶媒中で撹拌すると、希土類塩化物の種類によって溶媒に溶け易い希土類塩化物と、溶媒に溶けにくく沈殿し易い希土類塩化物とに分かれることを利用して、複数種の希土類元素を分離回収する。本実施形態では、原料調整工程10で原料と塩化アンモニウムを混合、粉砕し、熱処理工程20で混合粉末を加熱し、分離工程30で溶媒を用いて希土類塩化物の混合物を固液分離する。これによると、環境負荷の大きい溶媒を利用することなく希土類元素を分離回収することができる。
 以下、図を用いて、原料調整工程10で用いられる装置について詳細を説明する。
 図2に希土類原料供給部110の装置の模式図を示す。図2にて111は希土類原料のタンク、112は定量供給機、113は輸送機である。タンク111にて粉末状の原料を保管する場合、静電気などによる粉じん爆破を防止するため、静電除去装置を設置することが好ましい。またタンク内壁への粉末の付着や、粉末の閉塞などを防止するため、内壁に付着防止のコーティングを施したり、外壁面に一般にエアーハンマと呼ばれる打振機などの加振機を設置したり、タンク内に空気や不活性ガスなどを通気して粉末を流動させたりして、内壁への粉末の付着を防止するとともに、粉末の閉塞を防止することが好ましい。
 さらに、安定的に原料を供給するため、タンク内の原料の量をモニタする計量器を設けることが好ましい。定量供給機112で所定の量を計量した希土類原料は、輸送機113を介して混合粉砕部140へ搬送される。定量供給機112は供給方法により、エンドレスベルト式、テーブル式、スクリュー式、振動式、回転式、流動式、回転重力式などが挙げられる。また、輸送機113は、輸送方法により、エンドレス輸送型、振動トラフ輸送型、回転式輸送型、流体輸送型などが挙げられる。これらより、希土類原料の粒径、形状、流動性、及び、輸送能力、輸送経路の自由度、メンテナンス性などに応じて、適宜選定することができる。
 希土類原料供給部110で供給する希土類原料としては、特に、以降の工程において大気中で原料を混合粉砕、乾燥、成形など行う場合、大気中で安定な希土類酸化物であることが望ましい。しかし、不活性雰囲気中など、雰囲気を制御した環境下で前記の処理を行う場合は、他の希土類化合物を使用することもできる。また、希土類原料供給部110から供給される希土類原料の大きさが数mm~数cmと大きな粒状や塊状である場合、あらかじめ数百μm程度まで粉砕することで、混合粉砕部140での粉砕、混合効率が向上するため好ましい。
 塩化アンモニウム供給部120では、前記の希土類原料と混合する塩化アンモニウムを、希土類原料の供給量に応じて、所定の混合割合になるように供給する。混合粉砕部140での混合粉砕条件によって、塩化アンモニウムは粉末の状態、又は粉末を水などの溶媒に溶解した溶液の状態で供給することができる。
 図3に粉末状の塩化アンモニウムを供給する場合の、塩化アンモニウム供給部の装置の模式図を示す。図3にて、121は塩化アンモニウムのタンク、122は定量供給機、123は輸送機である。これらの装置に要求される特性は基本的には図2に示した希土類原料供給部110の装置と同様である。但し、塩化アンモニウムは希土類原料に比べて、雰囲気中の水分を吸湿しやすいため、これらの装置、特にタンク121は吸湿を防止する構造にすることが好ましい。
 図4に溶液の状態で塩化アンモニウムを供給する場合の、塩化アンモニウム供給部の装置の模式図を示す。図4にて、121は塩化アンモニウムのタンク、122は定量供給機、124はタンク、125は撹拌混合装置、130は溶媒供給部、126は輸送機である。
 塩化アンモニウムはタンク121から定量供給機122を通ってタンク124に供給される。水等の溶媒は溶媒供給部130からタンク124に供給される。タンク124内で塩化アンモニウムが溶解した溶液を作製する。このタンク124には、溶媒中に塩化アンモニウムを均一に溶解するため、撹拌混合装置125を設置するとよい。作製した混合溶液は輸送機126を用いて混合粉砕部140へ供給する。
 塩化アンモニウム供給部120では、熱処理工程20の塩化アンモニウム回収部230にて回収した塩化アンモニウムを再利用することができる。塩化アンモニウム回収配管260を通って回収される塩化アンモニウムは、粉末状態でも、水等の溶媒に溶解させた溶液状態の何れでもよい。例えば、塩化アンモニウム回収部230に付着した塩化アンモニウムを水などの溶媒で溶解することにより、粉末状態に比べて、より簡便に回収することができる。図1では塩化アンモニウム回収配管260は塩化アンモニウム供給部120に接続されているが、混合粉砕部140に至る途中の配管に接続し、塩化アンモニウム供給部120とは別に定量供給機や輸送機等を設けて利用量を調節してもよい。
 回収した粉末状態、または溶液状態の塩化アンモニウムを塩化アンモニウム供給部120のタンク121や溶液のタンク124に供給することで、再利用することができる。なお、塩化アンモニウム回収部230で回収した塩化アンモニウムを塩化アンモニウム供給部120に供給する際、この間に塩化アンモニウム計測部250を設けて、回収した塩化アンモニウムの量や純度等を計測してもよい。
 混合粉砕部140では希土類原料を粉砕微細化するとともに、希土類原料と塩化アンモニウムを混合する。図5に混合粉砕部140の装置の模式図を示す。図5にて、141はタンク、142は供給機、143は混合粉砕機、144は粒径測定センサである。
 希土類原料供給部110、および塩化アンモニウム供給部120より供給された希土類原料と塩化アンモニウムはタンク141に搬送され、供給機142を介して、混合粉砕機143にて混合粉砕される。混合粉砕後の混合粉末は再びタンク141に搬送されて、繰返し混合粉砕されると、粉末の粒径のばらつきが改善される。また、混合粉末がタンク141に戻される搬送路の途中に粒径測定センサ144を設け、混合粉末の粒径を計測して所定の粒径になった時点で粉砕を終了するようにしてもよい。混合粉砕が完了した粉末は、乾燥部150、成形部160、熱処理部220に供給される。
 混合粉砕機143は、運転機構によって、往復運動、旋回運動、低速回転、中速回転、高速回転、ロール、自公転、容器回転、容器振動、遊星ミル、遠心流動層ミル、媒体撹拌ミル、ジェット噴射などが挙げられる。さらに、粉砕方法として、大きくは、溶媒を用いる湿式法と、溶媒を用いない乾式法に分けられる。
 被粉砕物の粒径や、形状、および目的とする混合粉末の粒径、形状、混合状態などの性状に応じて、湿式法や乾式法などの粉砕方法、および各種粉砕装置より、1機種、または複数機種の装置を適宜選定して、所望の混合粉末を作製することができる。
 混合粉砕部140での処理により要求される混合粉末の粒径は、希土類成分の種類や、熱処理工程20の熱処理条件などにより変わることがあるが、熱処理部220での反応性を考慮すると、微細であることが好ましい。例えば、平均粒径で1μm程度の微細な混合粉末を作製するためには、混合粉砕機143として、粉砕用のボールやビーズなどを用いた湿式法の装置を用いることが好ましい。なお、これらの装置に粒径測定センサ144を付設して、粉砕時の粒径をリアルタイムで測定して、所定の粒径になった時点で粉砕を終了する機構を設けることにより、粉砕時間を効率化することができる。均一な粒径の粒子を安定的に供給することにより、熱処理部220での熱処理条件を効率化することができる。この粒径測定センサ144の測定方法として、動的光散乱法、レーザー回折・散乱法、超音波法、画像解析法などが挙げられるが、これらに限るものではない。
 混合する塩化アンモニウムが粉末の場合、混合粉砕部140にて得られる混合粉末には溶媒が含まれていない。この場合、混合粉砕後の工程は下記の工程が挙げられる。
工程(1):得られた混合粉末をそのまま、熱処理部220へ供給する。
工程(2):混合粉末を成形部160へ供給し、混合粉末より成形体を作製する。
 いずれの工程を経るかは、希土類原料や熱処理部220の熱処理炉の構造、熱処理条件など依存するが、熱処理部220にて、希土類原料と塩化アンモニウムを反応させて、希土類塩化物を生成する反応を塩化アンモニウムの気化温度未満で行う場合、この反応は、気体を介さない固体間の反応となるため、希土類原料と塩化アンモニウム同士の接触面積が大きい程、反応は短時間で進行する。即ち、希土類原料と塩化アンモニウムが粉末状で混合している状態より、成形体を形成している方が塩化反応は促進されるため、上記の工程(2)を介したほうが好ましい。
 なお、塩化アンモニウムを気化させて反応させる場合、熱処理部220にて、例えば加熱炉の炉体が回転するなどして、粉末と気体を混合する機構を有した炉(例えばロータリーキルンなど)を用いることにより、反応を促進することが可能であるため、工程(1)で処理を行うことができる。
 混合する塩化アンモニウムが溶液の場合、混合粉砕部140にて得られる混合物には溶媒が含まれている。この場合、混合粉砕後の工程は下記の工程が挙げられる。
工程(3):得られた混合物をそのまま、熱処理部220へ供給する。
工程(4):乾燥部150にて溶媒を除去して、固体の粉末状態とする。
 いずれの工程を経るかは、希土類原料や熱処理部220の熱処理炉の構造、熱処理条件などに依存する。工程(3)にて、溶媒を含んだ状態の混合物を熱処理部220へ供給した場合、熱処理部220にて、希土類原料と塩化アンモニウムとの反応の前に溶媒を除去する工程を追加するか、または、希土類原料、塩化アンモニウム、溶媒の三者が存在する状態で、所望の生成物が得られる熱処理条件を選定することが必要である。
 これに対して、工程(4)にて、乾燥部150を介して、固体の粉末を得た場合、以降の処理は、上記工程(1)、工程(2)の場合と同様である。
 乾燥部150では粉砕部140で混合した混合物より溶媒を除去するとともに、希土類原料と塩化アンモニウムを均一に分散させることを目的とする。図6に乾燥部で用いる装置の模式図を示す。図6にて151はタンク、152は定量供給機、153は乾燥機、154は分級機である。混合粉砕部140より供給された混合物はタンク151に搬送され、定量供給機152を介して乾燥機153に投入される。
 乾燥機153の乾燥方法として、熱風乾燥、伝熱乾燥、遠赤外線乾燥、マイクロ波乾燥、加熱蒸発乾燥などが挙げられる。これらより、被乾燥物の性状(形態、サイズ、形状、含溶媒量、溶媒の種類など)や処理量などを勘案して、適宜最適な装置を1機種、または複数機種選定することができる。
 なお、乾燥機153にて、加熱温度や雰囲気圧力などの乾燥条件は、塩化アンモニウムが気化しない条件で行うことが好ましい。
 また、乾燥条件によっては、乾燥後の粉末が凝集して粗大化する場合があるため、分級機154を介して、乾燥後粉末のうち、粒径が100μm以上の粉末は再度、混合粉砕部140へ搬送することが好ましい。
 成形部160では、混合粉砕部140や乾燥部150で作製した粉末を成形して、成形体を作製する。図7に成形部で用いる装置の模式図を示す。図7にて、161は成形機用タンク、162は供給機、163は成形機である。
 混合粉砕部140、乾燥部150より供給された粉末はタンク161に搬送され、供給機162を介して、成形機163にて成形体を作製する。作製した成形体は熱処理部220に供給される。
 成形機163の成形方法として、泥しょう鋳込法、ドクターブレード法、押出成形法、射出成形法、加圧成形法、アイソスタティックプレス法、ホットプレス法、ホットアイソスタティックプレス法などが挙げられる。また、成形条件として、室温成形、加熱成形、成形雰囲気として、大気中や不活性ガス中、真空中などが挙げられる。
これらより、被成形物や作製する成形体の性状やサイズ、形状、作製量等に応じて、適宜選定することができる。
 また、通常、加圧成形法で粉末の成形体を作製する場合、必要に応じて原料粉末に潤滑剤やバインダなどを添加するが、本発明の場合、希土類原料に塩化アンモニウムが混合されているため、塩化アンモニウムが潤滑剤やバインダの役割も併せて兼ねるため、特に潤滑剤やバインダを添加する必要はない。
 前記のように、成形は室温のほか、加熱雰囲気でも行うことができる。加熱することにより塩化アンモニウムが軟化して、室温での場合に比べて、より緻密な成形体を得ることができる。加熱温度としては塩化アンモニウムの気化温度以下が好ましい。気化温度以上に加熱すると、塩化アンモニウムが気化して、所定の混合割合の成形体が得られないためである。
 以下、具体的な実施例に関して説明する。
 希土類原料として酸化ネオジウム(Nd23)と酸化ジスプロシウム(Dy23)を用いた。
 重量比でDy/Ndが1/7になるように混合したNd23とDy23の混合粉末をテーブル式のオートフィーダを用いて所定の量を定量供給し、コンベヤ式のエンドレス輸送機で混合粉砕部に搬送した。
 塩化アンモニウム(NH4Cl)に、溶媒として純水を混合して、塩化アンモニウム水溶液を作製した。希土類原料の混合粉末1molに対して、塩化アンモニウムの量が15molになるように塩化アンモニウム水溶液を供給した。
 希土類原料と塩化アンモニウム水溶液の混合物をアトライタで3時間混合粉砕して、希土類原料の平均粒径(D50)が10μmの混合物を得た。引き続き、SCミル、およびMSCミルを用いて、各々2時間混合粉砕して、希土類原料の平均粒径が0.5μmの混合物を得た。これらの粉砕機の内壁、羽根および粉砕用ボールには酸化ジルコニアセラミックを用いた。また、粉砕用ボールのサイズは、アトライタ:5mm、SCミル:0.5mm、MSCミル:0.05mmである。
 混合粉砕後の混合物はスプレードライヤを用いて乾燥して混合粉末とした。スプレードライヤの乾燥温度は200℃である。
 前記の混合粉末より、打錠機を用いて、直径10mm、高さ約5mmの成形体を作製した。成形体のサイズは直径10mm、高さ約5mmである。成形条件は、室温、打錠圧力:3kNである。
 得られた成形体約100gを熱処理工程に供給し、熱処理部では、ロータリキルン炉を用いて、(1)アルゴンガス流(流量500mL/min)、300℃、5時間保持、(2)減圧排気、400℃、4時間保持、(3)乾燥空気流(流量500mL/min)、350℃、5時間保持のそれぞれの条件で熱処理を行い、Dy塩化物とNd塩化物との混合物が生成した。
 その後、分離工程にて純水を用いて混合物の分離処理を行った。Nd塩化物は溶けやすくDy塩化物が沈殿し易いことから、Dy分離率90%、回収率90%であり、一回の工程でも十分な分離率と回収率が得られた。
 希土類原料として酸化セリウム(Ce23)と酸化ランタン(La23)を用いた。重量比でCe/Laが1/1になるように混合した混合粉末1molに対して、塩化アンモニウム量が12molになるように塩化アンモニウム粉末を混合した。これらをテーブル式のオートフィーダ、コンベヤ式のエンドレス輸送機を用いて混合粉砕部へ搬送した。
 混合粉砕部では、希土類原料と塩化アンモニウムの混合物を遊星ミルで10時間混合粉砕し、希土類原料の平均粒径(D50)が1μmの混合粉末を得た。なお、乾燥雰囲気での粉砕の場合、被粉砕粉末が粉砕ポットの内壁にこびりつきやすいので、粉砕2時間おき装置を一時止めて、付着物を剥離したのち、粉砕を再開した。遊星ミルのポットの内壁および粉砕用ボール(5mm、1mm、0.5mmの3種類)には酸化ジルコニアセラミックを用いた。
 前記の混合粉末約300gを熱処理工程に供給して、熱処理した。熱処理工程では、(1)バッチ炉を用いて、窒素ガス流(流量1000mL/min)、350℃、3時間保持、(2)ロータリーキルン炉を用いて、減圧排気中、450℃、2時間保持、(3)ロータリーキルン炉、乾燥空気流(流量500mL/min)、250℃、5時間保持、のそれぞれの条件で熱処理を行った。
 熱処理後のサンプルを、実施例1と同様に分離工程にて純水を用いて分離処理したところ、Ce分離率93%、回収率91%の結果が得られた。
 希土類原料として酸化ネオジウム(Nd23)と酸化ジスプロシウム(Dy23)を用いた。重量比でDy/Ndが1/1になるように混合した混合粉末1molをエンドレスベルト式のベルトフィーダを用いて混合粉砕部へ搬送した。
 塩化アンモニウム(NH4Cl)に、溶媒として純水を混合して、塩化アンモニウム水溶液を作製した。希土類原料の混合粉末1molに対して、塩化アンモニウムの量が18molになるように塩化アンモニウム水溶液を供給した。なお、この際、塩化アンモニウム水溶液の30%には熱処理工程より回収した塩化アンモニウム水溶液を用いた。
 混合粉砕部では、希土類原料と塩化アンモニウムの混合物を遊星ミルで6時間混合粉砕し、希土類原料の平均粒径(D50)が2μmの混合物を得た。その後、ビーズミルを用いて4時間混合粉砕し、希土類原料の平均粒径(D50)が0.5μmの混合物を得た。遊星ミルのポットの内壁および粉砕用ボール(5mm、1mm、0.5mmの3種類)には酸化ジルコニアセラミックを用いた。また、ビーズミルの内壁、羽根および粉砕用ボールには酸化ジルコニアセラミックを用いた。粉砕用ボールのサイズは0.3mmである。
 前記の混合物約300gを熱処理工程に供給して、熱処理を行った。熱処理は、(1)ロータリーキルン炉を用いて、窒素ガス流(流量500mL/min)、150℃、2時間保持、300℃、5時間保持、400℃、6時間保持、(2)ロータリーキルン炉を用いて乾燥空気流(流量500mL/min)、300℃、3時間保持、のそれぞれの条件で、熱処理を行った。
 なお、熱処理工程で回収した塩化アンモニウムは、塩化アンモニウム回収部で水に溶解して、溶液状態で原料調整工程へ供給して、再利用した。
 熱処理後のサンプルを分離工程にて純水を用いて分離処理を行ったところ、Dy分離率95%、回収率93%の結果が得られた。
10 原料調整工程
20 熱処理工程
30 分離工程
110 希土類原料供給部
111 タンク
112 定量供給機
113 輸送機
120 塩化アンモニウム供給部
121 タンク
122 定量供給機
123 輸送機
124 タンク
125 撹拌混合装置
126 輸送機
130 溶媒供給部
140 混合粉砕部
141 タンク
142 供給機
143 混合粉砕機
144 粒径測定センサ
150 乾燥部
151 タンク
152 定量供給機
153 乾燥機
154 分級機
160 成形部
161 タンク
162 供給機
163 成形機
210 ガス供給部
220 熱処理部
230 塩化アンモニウム回収部
240 ガス除害部
250 塩化アンモニウム計測部
260 塩化アンモニウム回収配管
310 溶媒供給部
320 固液分離部
330 固体回収部

Claims (7)

  1.  複数種の希土類元素を分離回収する装置において、複数種の希土類元素を含有する希土類原料と塩化アンモニウム原料とを混合し粉砕して混合物を生成する混合粉砕部と、前記混合物を熱処理して前記複数種の希土類元素の混合塩化物を生成する熱処理部と、前記混合塩化物を溶媒と混合して前記複数種の希土類元素同士を固液分離する固液分離部とを備えることを特徴とする希土類分離回収装置。
  2.  請求項1において、前記希土類原料が希土類酸化物であることを特徴とする希土類分離回収装置。
  3.  請求項1において、前記塩化アンモニウム原料に溶媒を加えて塩化アンモニウム水溶液を生成する溶液タンクを備えることを特徴とする希土類分離回収装置。
  4.  請求項3において、前記混合粉砕部と前記熱処理部との間に、前記混合物を乾燥する乾燥部を備えることを特徴とする希土類分離回収装置。
  5.  請求項4において、前記乾燥部は、前記塩化アンモニウム水溶液に含まれる前記溶媒の蒸発温度以上、塩化アンモニウムの気化温度以下の条件で運転することを特徴とする希土類分離回収装置。
  6.  請求項1において、前記混合粉砕部と前記熱処理部との間に、前記混合物を成形する成形部を備えることを特徴とする希土類分離回収装置。
  7.  請求項1において、前記塩化アンモニウム原料を供給する塩化アンモニウム供給部を備え、前記塩化アンモニウム供給部と前記熱処理部との間に、前記熱処理部で生成された塩化アンモニウムを前記塩化アンモニウム供給部に回収する塩化アンモニウム回収配管を備えることを特徴とする希土類分離回収装置。
PCT/JP2013/071311 2013-08-07 2013-08-07 希土類分離回収装置 WO2015019433A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015530598A JPWO2015019433A1 (ja) 2013-08-07 2013-08-07 希土類分離回収装置
PCT/JP2013/071311 WO2015019433A1 (ja) 2013-08-07 2013-08-07 希土類分離回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071311 WO2015019433A1 (ja) 2013-08-07 2013-08-07 希土類分離回収装置

Publications (1)

Publication Number Publication Date
WO2015019433A1 true WO2015019433A1 (ja) 2015-02-12

Family

ID=52460805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071311 WO2015019433A1 (ja) 2013-08-07 2013-08-07 希土類分離回収装置

Country Status (2)

Country Link
JP (1) JPWO2015019433A1 (ja)
WO (1) WO2015019433A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756041A (zh) * 2016-12-18 2017-05-31 南昌浩牛科技有限公司 一种稀土废料回收提炼用的酸洗设备
CN115354159A (zh) * 2022-08-24 2022-11-18 遂川和创金属新材料有限公司 一种稀土氧化物回收稀土的溶解氧化设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303149A (ja) * 2000-04-24 2001-10-31 Tetsuya Uda 希土類元素の分離方法及び希土類元素分離用組成物
WO2009119720A1 (ja) * 2008-03-26 2009-10-01 財団法人生産技術研究奨励会 希土類元素の回収方法および回収装置
WO2012137727A1 (ja) * 2011-04-08 2012-10-11 株式会社日立製作所 希土類元素の分離回収方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303149A (ja) * 2000-04-24 2001-10-31 Tetsuya Uda 希土類元素の分離方法及び希土類元素分離用組成物
WO2009119720A1 (ja) * 2008-03-26 2009-10-01 財団法人生産技術研究奨励会 希土類元素の回収方法および回収装置
WO2012137727A1 (ja) * 2011-04-08 2012-10-11 株式会社日立製作所 希土類元素の分離回収方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756041A (zh) * 2016-12-18 2017-05-31 南昌浩牛科技有限公司 一种稀土废料回收提炼用的酸洗设备
CN115354159A (zh) * 2022-08-24 2022-11-18 遂川和创金属新材料有限公司 一种稀土氧化物回收稀土的溶解氧化设备
CN115354159B (zh) * 2022-08-24 2023-09-26 遂川和创金属新材料有限公司 一种稀土氧化物回收稀土的溶解氧化设备

Also Published As

Publication number Publication date
JPWO2015019433A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
CN101528597B (zh) 硅回收装置和回收硅的方法
CN101155891B (zh) 氧化铈系研磨材料、其制造方法及用途
JP2014000574A (ja) 微粉末の製造方法および同方法で製造された微粉末
JP4657281B2 (ja) 廃石膏リサイクルプラント及び廃石膏リサイクル方法
CN103124615B (zh) 铈系研磨材料
WO2013054471A1 (ja) 焼結原料の造粒方法
KR101339554B1 (ko) 잉곳절삭용 재생슬러리 생산공정에서 발생하는 폐부산물 내의 유효성분을 재회수하기 위한 방법 및 장치
CN111971259A (zh) 飞灰的改性方法
WO2015019433A1 (ja) 希土類分離回収装置
WO2003097761A1 (fr) Procede de production d'un materiau de polissage a base de cerium et materiau de polissage a base de cerium produit par ledit procede
CN106007733A (zh) 一种陶瓷粉料的制备方法
JP7295090B2 (ja) フライアッシュの改質方法及び装置
CN104858021B (zh) 石英砂的表面处理方法
CN108178541A (zh) 一种用于固废协同互补制备硫铝酸盐水泥的生料制备方法
WO2014077028A1 (ja) 粒状物の間接加熱乾燥方法、改質石炭の製造方法、間接加熱型乾燥装置及び改質石炭製造装置
CN209438719U (zh) 一种铁钩浇注料生产用粗粉精细研磨装置
RU2008126200A (ru) Способ промышленного производства особо мелких порошков
KR102081310B1 (ko) 알루미늄 용해 및 블랙 드로스 재활용 시스템 및 방법
CN204170781U (zh) 一种玻璃纤维废丝粉磨系统
JP5683926B2 (ja) コンクリート及びコンクリートの製造方法
JP7077578B2 (ja) セメントクリンカー製造方法及び製造装置
JPH03115144A (ja) 高微粉高炉セメントの製造方法
JPH1060451A (ja) コークス炉装入炭へのタール滓の添加方法
JP4999260B2 (ja) 塩素処理方法
EP3778935A1 (en) Granulated substance, method for producing granulated article, method for producing sintered ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890959

Country of ref document: EP

Kind code of ref document: A1