WO2015018282A1 - 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶 - Google Patents

橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶 Download PDF

Info

Publication number
WO2015018282A1
WO2015018282A1 PCT/CN2014/082715 CN2014082715W WO2015018282A1 WO 2015018282 A1 WO2015018282 A1 WO 2015018282A1 CN 2014082715 W CN2014082715 W CN 2014082715W WO 2015018282 A1 WO2015018282 A1 WO 2015018282A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mixture
filler
drying
solvent
Prior art date
Application number
PCT/CN2014/082715
Other languages
English (en)
French (fr)
Inventor
王梦蛟
宋建军
戴德盈
Original Assignee
怡维怡橡胶研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 怡维怡橡胶研究院有限公司 filed Critical 怡维怡橡胶研究院有限公司
Priority to US14/909,936 priority Critical patent/US9758627B2/en
Priority to EP14834505.1A priority patent/EP3031591B1/en
Priority to JP2016532220A priority patent/JP6397022B2/ja
Priority to ES14834505T priority patent/ES2727515T3/es
Priority to KR1020157034586A priority patent/KR101793358B1/ko
Publication of WO2015018282A1 publication Critical patent/WO2015018282A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the invention relates to the field of rubber, in particular to a continuous manufacturing method of rubber masterbatch and a rubber masterbatch prepared by the method.
  • rubber fillers/additives/lanthanides rubber fillers/additives from yttrium are rubber
  • the present invention relates to several high-speed mixing/aggregators in which a medium is condensed, including a gas, especially a high-temperature gas and a liquid and an aluminum filler/additive mixture, which are instantaneously mixed in a high-energy turbulent state, and the high temperature effect of the body And the difference between the liquid medium and the mobility, the rubber/filler/additive in the rubber JK/filler/additive mixture will agglomerate in the solvent and agglomerate. Due to the high-speed turbulence effect, the mixing of the mixture and the condensed medium, that is, the 1J medium, can be completed in a few milliseconds to hundreds of milliseconds.
  • the interface between the 1J medium and the rubber/filler/additive/solvent is greatly increased, so the rubber/filler/additive is very fast in the solvent.
  • the temperature of the 1J medium is high, the solvent will volatilize during the agglomeration process, and this ⁇ « accelerates due to the pressure drop caused by the high-speed flow of the fluid in the mixing/aggregator. Therefore, the agglomerator designed by the present application has the characteristics of high efficiency, energy saving, and mixing and coagulation continuous operation as compared with the prior art methods.
  • Another object of the present invention is to provide a rubber article prepared by the rubber masterbatch of the present invention.
  • the method of the present invention has a wide range of applications for the rubber and filler and additive species.
  • a continuous manufacturing method of a rubber masterbatch includes the following steps:
  • Step 1) adding the filler to the rubber solution, leg-mixing the flattening/turning mixture;
  • Step 3) The mixture obtained in the step 2) is directly introduced into a heating medium higher than the boiling point of the solvent, the pole of the heating medium is very different from the solvent used, the mixture is condensed and swelled, and the solvent is rapidly evaporated. Forming an aluminum filler composite and a ruthenium mixture containing the heating medium;
  • Step 4) removing the remaining mixture to obtain an rubber filler masterbatch; wherein the solvent volatilized in the step 4) and the unreacted monomer in the rubber synthesis enter the condenser and the fractionation column Recycling, separating the heating medium, and separating the mixture separated from the heating medium into a heated conveyor belt dryer, drying in a vacuum, inert gas or air; or the solvent evaporating in step 4)
  • the unreacted monomer in the rubber synthesis is recovered in a condenser and a fractionation column, and then the remaining mixture is subjected to extrusion heating and drying.
  • the solvent that is removed by optional recovery step 4) is recycled.
  • step 1) and/or step 2) one or more selected from the group consisting of oils, antioxidants, coupling agents, active agents, antioxidants, flame retardants, heat stabilizers, Additives for light stabilizers, dyes, pigments, vulcanizing agents and accelerators.
  • step 3 can be implemented in any container.
  • step 3 is carried out in a can container, preferably a cylindrical can container.
  • the heating medium described in the step 3) is water
  • the 1" is a hydrocarbon solvent having a boiling point of less than 100 ° C, optionally subjected to vacuum drying, heat drying or extrusion drying to remove water to obtain an oak. Filler masterbatch.
  • heat drying is drying or air drying.
  • the extrusion heating and drying is performed by first removing the heating medium and then drying it. More preferably, wherein the further drying is air drying, drying or mechanical drying.
  • the mechanical drying is performed by using an open mill, a kneader, an internal mixer, a continuous internal mixer, a single-screw extruder, and twin-screw extrusion.
  • the present invention also provides a rubber masterbatch prepared by the ⁇ 3 ⁇ 4 method.
  • the present invention also provides an adhesive article prepared by using a rubber masterbatch.
  • the continuous manufacturing method of the rubber master batch of the present invention comprises the following steps:
  • Step 1) adding the filler to the rubber solution, leg-mixing the flattening material/turning the mixture; step 2): feeding the rubber filler/extension 1J mixture obtained in the step 1) into the agglomerator, and Optionally, in the agglomerator, one or more fluid phases of nitrogen, 7 vapor, water, filler water slurry and oil are mixed and agglomerated to obtain a mixture of rubber JK/filler composite;
  • Step 3) The mixture obtained in the step 2) is directly introduced into a heating medium higher than the boiling point of the solvent, the polarity of the medium is very different from the solvent used, the mixture agglomerates and swells, and the solvent rapidly volatilizes, thereby forming a mixture of rubber JK/filler composites containing the heating medium; Step 4): removing and turning over the remaining mixture to obtain an rubber filler masterbatch; wherein the solvent volatilized in the step 4) and the unreacted monomer in the rubber synthesis enter the condenser and the fractionation column Recycling, separating the heating medium, and separating the mixture separated from the heating medium into a heated conveyor belt dryer, drying in a vacuum, inert gas or air; or the solvent evaporating in step 4) The unreacted monomer in the rubber synthesis is recovered in a condenser and a fractionation column, and then the remaining mixture is subjected to extrusion heating and drying.
  • the continuous process for the manufacture of the rubber masterbatch of the present invention optionally further comprises the step of recovering the solvent removed in step 3) for recycling. Further, in step 1) and/or step 2), one or more selected from the group consisting of oils, antioxidants, coupling agents, active agents, antioxidants, dyes, light stabilizers, flame retardants, Additives for heat stabilizers, pigments, vulcanizing agents and accelerators.
  • Step 1) can be accomplished using methods well known in the art.
  • the agitation described in step 1) can be accomplished using a conventional agitator including, but not limited to, a blade mixer, a tank mixer, a planetary mixer, a sigma mixer, and the like.
  • the step 1) may further include a fine dispersion step, and the fine dispersion may be carried out by: spraying the mixture obtained by the above stirring, a nozzle, under high pressure and high shear to improve the filler and / or dispersion of the additive; passing the above-mentioned effluent through a multi-bend tube to cause the mixture to collide with the tube wall in the tube to increase the dispersibility of the filler and / or additive; or to allow the effluent to be retracted through the inner diameter of one tube Varying tubing to shift shear stress increases dispersion of fillers and/or additives.
  • the pressure used ranges from 0. : LMPa to 60 MPa, preferably 10 MPa to 40 MPa.
  • the mixture formed after the fine dispersion can also be used to improve the dispersion of the filler and/or the additive in the rubber solution by the following fine dispersion:
  • the finely dispersed mixture is continuously added to a ball mill and/or a colloid mill for dispersion to uniformly disperse the filler and/or the additive in the rubber solution;
  • Iii continuously adding the finely dispersed mixture to a grinding machine, the grinding machine having two blades rotating in opposite directions, the blades having fine pore flow grooves, and the blades capable of rotating under high pressure to increase the filler And/or the degree of dispersion of the additive in the rubber solution.
  • the pressure used ranges from 0. IMPa to 60 MPa, preferably 10 MPa to 40 MPa.
  • Iv. continuously adding the finely dispersed mixture to a multi-layer high-pressure slit disperser, and extruding the mixture from the slit between the two layers under high pressure, and the strong shear force generated at this time can increase the filler And/or the degree of dispersion of the additive in the rubber solution.
  • the pressure used ranges from 0. IMPa to 60 MPa, preferably 10 MPa to 40 MPa.
  • Two or more of the ⁇ 3 ⁇ 4 five fine dispersion methods can be used in series with each other.
  • the rubber solution can be directly obtained from the preparation of a solution rubber production line, and any type of dry rubber can be dissolved in a solvent of the glue.
  • the dry glue may be any kind of rubber used in the art, such as a natural polymer or a synthetic polymer.
  • the natural polymer includes, but is not limited to, natural gum, gutta percha, silver inulin, etc.
  • the synthetic polymer includes, but is not limited to, polymerization obtained in a single #3 ⁇ 4 solution (ie, a solution rubber), and polymerization in a single #3 ⁇ 4 emulsion. (ie, latex rubber), the monomer body is obtained by polymerization.
  • the solution rubber is a diene using ethylene, propylene, butene, pentene, hexene, heptene, 4-7 carbon atoms or a homo- or copolymer of a triene of 6 to 7 carbon atoms or an ethylenic monomer having other atoms or functional groups, the other atom or functional group being a silicon atom, a fluorine atom, a chlorine atom, a nitrogen atom, an oxygen atom , sulfur atom, ester group, amino ester group, cyano group, also includes homopolymers and copolymers containing monomers, including but not limited to polybutadiene, polyisoprene, styrene butadiene rubber, Ethylene-propylene rubber, butyl rubber, nitrile rubber, neoprene, silicone rubber, fluorine rubber, urethane rubber,
  • 1J in the rubber solution is good for various rubbers.
  • 1J may specifically be an aliphatic hydrocarbon solvent, an aromatic hydrocarbon #3 ⁇ 4, a chlorinated hydrocarbon solvent, a ketone solvent, an ether, and an ester #3 ⁇ 4, and the aliphatic hydrocarbons include but are not limited to various kinds of bile oils and hydrocarbons.
  • Replacing a ring hydrocarbon, a positive hydrocarbon, including but not limited to benzene, toluene, xylene, styrene, and the chlorinated hydrocarbon solvent includes, but is not limited to, methylene chloride, trichloromethane, tetra Carbon chloride, dichloroacetic acid, chlorobenzene, tetrachloroethylene, chlorotoluene.
  • the concentration of the rubber in the solution ranges from 1% by weight to 60% by weight, it& 5% by weight to 40% by weight, and more preferably 10% by weight to 30% by weight.
  • the fillers include, but are not limited to, various solid powdered reinforcing agents and fillers used in rubber, such as various types of carbon black, silica, metal oxides, salts, different resins, and nanoscale materials of the above fillers.
  • the metal oxides include, but are not limited to, aluminum oxide, magnesium oxide, zinc oxide, etc.
  • the salts include, but are not limited to, carbon nano, ceramics, and nano-scale materials of the above fillers.
  • the specific surface area of the filler is from 0.1 to 800 m g, preferably from 1 to 500 m 2 /g, more preferably from 5 to 300 mg.
  • the oil absorption value is from 20 to 250 ml / 100 g, preferably from 25 to 200 ml / 100 g, more preferably from 30 to 150 m 1 / 100 g, wherein the filler comprises a mixture thereof , such as multiphase fillers, including but not limited to carbon black, silica, alumina, magnesia, zinc oxide, titanium oxide, boron oxide, etc., two-phase or multi-phase fillers, for two-phase or multi-phase
  • the oil absorption value is from 20 to 250 ml/100 g, preferably from 25 to 200 ml/100 g, more preferably from 30 to 150 ml/100 g.
  • the filler is used in an amount of 5 to 300 parts by weight (based on 100 parts by weight of the rubber), preferably 10 to 200 parts by weight, more preferably 30 to 150 parts by weight.
  • the filler also includes a combination of two or more of the above fillers.
  • the fillers also include their surface modifying fillers.
  • the surface modification described therein may be an il chemical reaction A certain functional group is attached to the surface of the filler or the modifier is physically bonded to the surface of the filler by mixing or adsorption.
  • the modifier may be dissolved in a solvent and mixed with a filler to perform liquid phase modification, as described in Wang W, Nanse G, Vidal A, et al. KG K [J], 1994, 47:493. It is also possible to mix and modify the biocide with the filler to perform solid phase modification, as described in Wang MJ, Wolff. SRC T [J], 1992, 65: 715.
  • the surface modification can also be carried out before the filler is added to the rubber solution, or the modifier can be added to the mixture of the rubber solution and the filler for surface modification.
  • the modifier is a conventional modification in the art, such as an organic 33 ⁇ 4 coupling agent represented by the following formula:
  • R and R' are branched or straight-chained or phenolic groups having from 1 to 4 carbon atoms, and R and R' may be the same or different;
  • n 0, 1 or 2;
  • Alk is a linear or branched hydrocarbon group having 1 to 6 carbon atoms
  • Alk eny l is a linear or branched alkenyl group having 1 to 6 carbon atoms
  • n 0 or 1
  • Ar is an aryl group having 6 to 12 carbon atoms
  • p is 0 or 1, p and n cannot be 0 at the same time;
  • X is 2 to 8;
  • the most commonly used ones are bis(triethoxypropyl silicon) tetrasulfide and disulfide, 3-thiocyanopropane triethoxylate, ⁇ -lanthanum trimethoxy 3 ⁇ 43 ⁇ 4, zirconate a crosslinking agent, a phthalate coupling agent, a nitro coupling agent, an alcohol compound, and the alcohol compound includes, but not limited to, a unit alcohol, a glycol, a polyol, and the alcohol compound includes, but not limited to, propanol , butanol, ethylene glycol, polyethylene glycol and its derivatives.
  • the present invention can be directly added to the rubber solution by adding the filler and/or the additive, or the filler and/or the additive can be added to the same or different solvent as the rubber solution to form a uniform suspension, and then added. Mix into the rubber solution by stirring.
  • the additive may optionally include one or more of an oil, an antioxidant, a coupling agent, an active agent, an antioxidant, a heat stabilizer, a light stabilizer, a flame retardant, a dye, a pigment, a vulcanizing agent, or an additive for an accelerator. .
  • the amount of the additive used is a conventional amount, or it may be 3 ⁇ 4 fiH depending on the actual situation.
  • step 2) the rubber filler/mix 1 mixture in step 1) is fed into the agglomerator and optionally in the agglomerator with nitrogen, 7 vapor, water, filler slurry and oil. Or a plurality of fluid phases 3 ⁇ 41 insects and mixed and agglomerated To the mixture of rubber JK/filler compound.
  • the agglomerator used in step 2) may be a tubular agglomerator having one or more feed ports, wherein the feed port may be fed in a direction parallel to the axial direction of the tubular agglomerator tube, the outlet At the end of the tube, it can also be at an angle of 1-180° from the axial direction of the tube agglomerator tube, ttte 20-120° angle, more angles of 70-100°, and most angles of 85-95°.
  • the feed direction of the partial feed port is parallel to the axial direction of the tube agglomerator tube; the feed direction of the remaining feed ports is opposite to the axial direction of the tube of the tube agglomerator
  • the projection is in any direction between the radial direction of the cross section and the tangential direction of the cross section, in the radial direction, or in a tangential direction.
  • the feed ports are all in the same plane that is perpendicular to the axial direction of the tube or the feed ports are on different planes.
  • the agglomerator of the iffl in step 2) may also be an agglomerator composed of two or more mutually concentric tubes, wherein each tube has one or more inlets, and the inlet of the inlet
  • the feed direction is parallel to the axial direction of the tube or the tangential direction of the tube, and the outlet is at the end of the tube.
  • the fluid can be passed directly or through the tangential direction of the tube wall.
  • the ends of the feed ports of each tube may be in the same plane, or may be lengthened from the ends of the feed ports of each tube from the inside to the outside or from the ends of the feed ports of each tube from the inside to the outside.
  • the agglomerator used in the step 2) may also be a cylindrical agglomerator having only one inlet, the inlet being located at the upper end of the cartridge or the wall of the cylinder, and the outlet being at the lower end of the cylinder .
  • the fluid can be injected directly into the agglomerator or injected into the agglomerator in a tangential direction along the wall of the barrel.
  • the agglomerator used in the step 2) may also have a cylindrical shape at the upper portion and a conical tubular structure at the lower portion, and have one or more feed ports.
  • the feed direction of the feed port may be the tangential direction of the barrel wall; each feed port may be in the same plane or in a different plane.
  • the feed direction of the feed port may also be perpendicular to the axial direction of the barrel or at an angle of 1-180° to the axial direction of the barrel, preferably 20-110°, more preferably 70-100°, most preferably 85-95.
  • the projection of the feed direction of each feed port in a cross section perpendicular to the axis of the cylinder is any direction between the radial direction of the cross section to the tangential direction of the cross section, preferably the tangential direction of the cross section .
  • One or more of the nitrogen, 7 vapor, 7, filler slurry and oil described in step 2) and the rubber JK/filler/solvent mixture obtained in step 1) are passed through one or more feeds 3 ⁇ 4 ⁇ , where nitrogen is 3–40 °C, water vapor is 100-300 °C, liquid water is 20-100 °C, oil temperature is 20-300 °C, filler water The temperature of the slurry is 20-100 °C.
  • the oil is a commonly used oil for the manufacture of oil-filled rubber in the rubber field.
  • the oil optionally used in step 1) may be the same as or different from the oil used in step 2).
  • the packing used in step 1) may be the same as or different from the packing used in step 2).
  • step 3 the mixture obtained in step 2) is passed directly into a heating medium above the boiling point of the solvent.
  • the mixture condenses and swells, and
  • the temperature of the heat medium is higher than the boiling point of the solvent, the solvent rapidly evaporates to form a masterbatch containing a heating medium.
  • the masterbatch is heated to remove the heating medium to form a masterbatch product.
  • the solvent and the unreacted monomer in the rubber synthesis are recovered into the condenser and the fractionation column for recovery, and the obtained agglomerated mixture is obtained.
  • the filter is separated from the heating medium and dried to form a masterbatch product.
  • Heating media include, but are not limited to, water.
  • the 1J is a solvent having a boiling point of less than 100 °C.
  • the solvent and the unreacted monomer in the rubber synthesis and the water vapor are then introduced into the condenser and the retention column for recovery.
  • the agglomeration of step 3) can be carried out using any container; the agitation is carried out without any specially designed agglomerator; the agglomeration of step 3) can be carried out in a can container.
  • a , Step 3) Use a tank-shaped container of any position, and replace the cylindrical tank-shaped container.
  • the drying in the step 4) means that the unreacted monomer which is volatilized in the step 4) and the rubber synthesis is recovered in the condenser and the column, and the heating medium is separated and the mixture separated from the heating medium is separated.
  • Transfer to a heated conveyor belt dryer dry in a vacuum, a gas (such as nitrogen) or air; or the solvent and the unreacted monomer in the rubber synthesis that is volatilized in step 4) enter the condenser and The fractionation column is recovered, and then the remaining mixture is subjected to extrusion heating and drying. .
  • the dried solid mixture will contain water, and then vacuum dried, hot-dipped or extruded to obtain the rubber JK/filler masterbatch.
  • the vacuum drying includes vacuum drying at room temperature, freeze vacuum drying, and heating under vacuum.
  • the heat drying can be a general drying method such as drying or air drying.
  • the extrusion heating and drying is performed by first removing and removing the heating medium, and then drying, wherein the drying is air drying, drying or mechanical drying, and the mechanical drying is using an open mill, a kneader, an internal mixer. , Continuous mixer, single screw extruder, twin screw extrusion! a3 ⁇ 4 line drying.
  • the method of recovering the solvent can be recovered by any method known in the art, such as by vaporizing the solvent by surface condensation or direct condensation.
  • the coolant can be used with water when using the direct condensation contact method.
  • a technical feature of the invention is the use of a specially designed agglomerator, which is a device consisting of one or more inlets and an outlet.
  • a specially designed agglomerator which is a device consisting of one or more inlets and an outlet.
  • This separation process can also be carried out by ejecting a droplet containing a large amount of solvent vapor through a narrow outlet from the agglomerator, and the pressure is greatly lowered due to an increase in the flow rate, so that the vaporization rate and degree of the solvent are greatly enhanced.
  • this mixed fluid is sprayed into a drying apparatus having a high-temperature gas such as nitrogen, the rise causes the solvent to diffuse from the mixture to the hot atmosphere to greatly improve the drying efficiency.
  • the above-described method of coagulating desolvation of the present invention is one or two of the plurality of inlets of the agglomerator injecting the rubber/filler/additive/solvent mixture, and the other one or more inlets are purged with nitrogen.
  • both the incoming mixture and the gas are in a high energy, high velocity turbulent state
  • the mixing of the two can be completed in a few milliseconds to tens of milliseconds and the mixture becomes a droplet during this time.
  • the droplets in the droplets rapidly puff at low pressures of the turbulent flow, causing the rubber/filler/additive components in the mixture to abruptly coalesce to form a dispersed solid/gas/gas three-phase mixture.
  • the nitrogen gas injected into the agglomerator is high, the expansion rate of 1J, gasification and solidification rate of the solid will be greatly improved, and the liquid phase composition is greatly reduced. In extreme cases, it becomes only solid agglomerates and solid and gas phases formed by nitrogen and solvent vapors.
  • the degree of vaporization and the velocity are greatly increased due to the increase in the flow rate due to the increase in the flow rate, the liquid phase.
  • a high-temperature gas such as a nitrogen atmosphere
  • the solvent remaining in the rubber JK/filler/additive condensate is volatilized and expanded in the hot gas phase due to the increase in temperature, thereby greatly improving the drying efficiency.
  • One of the above methods of coagulation and desorption of the present invention is to inject rubber/filler/additive (without or only) at high pressure and high speed through one or both of the plurality of inlets of the agglomerator if the oil is included in the additive.
  • the amount of oil is the difference between the amount required for the masterbatch formulation and the amount of oil used in the rubber/filler/additive/solvent mixture.
  • the mixture and oil mix and agglomerate in the presence of high energy turbulence, while the low pressure of the high velocity turbulent fluid vaporizes the solvent and separates it from the rubber/filler/additive complex.
  • the gasification process will accelerate due to the large heat capacity of the oil.
  • the formed solid, liquid, and gas mist mixture is sprayed into the drying device containing the high temperature gas through the narrow outlet at a high speed, the misty solid-liquid phase dispersion state is increased and the gas phase is increased due to the decrease of the fluid pressure at the time of discharge.
  • the contact area so that the gasification rate of the solvent is accelerated, and the high temperature atmosphere will greatly improve the dislocation efficiency.
  • One way of the above-described coagulation and desolvation of the present invention is to inject a rubber/filler/additive/solvent mixture at a high pressure and high speed through one or both inlets of a plurality of inlets of the agglomerator, and to inject from one or more other inlets.
  • High pressure water vapor Under the action of water retreat and high temperature, ⁇ JK/filler/additive is agglomerated in a solvent in a few milliseconds to tens of milliseconds, and is aerosolized at a low pressure, and the solvent is largely volatilized. Due to the latent heat of vapor liquefaction, the rate of deuteration is much faster than that of hot nitrogen. However, the formation of a smoke-like solid, liquid, and gas three-phase mixture has also increased.
  • One way of the above coagulation and solvent removal of the present invention is to inject the rubber/filler/additive/solvent mixture into the mixing/aggregator through one or both of the multiple inlets of the agglomerator under high pressure and high speed conditions. Water, especially high temperature water, is simultaneously injected into the agglomerator from the remaining inlets under conditions of high pressure and high speed. In the state of high energy turbulence, combined with the desolvation effect of 7 pairs of rubber solution, the rubber/filler/additive completes condensation in a few milliseconds to tens of milliseconds. Gather.
  • the solvent volatilizes at its boiling point and the water is partially vaporized.
  • the solid, liquid, and gas three-phase mixture in the agglomerator is ejected under a high pressure through a small-capacity outlet to a drying device containing high-temperature air or nitrogen, the low-pressure flow formed by high-speed is dispersed in a high temperature heat in a mist. Air or hot nitrogen.
  • the large specific surface area and low pressure of the solid/liquid phase of the rubber filler/additive condensed in the smoke will cause the water and i?3 ⁇ 4t to volatilize, increasing the moisture and drying effect of the solid composite.
  • the agglomerated composite of the rubber filler/additive may be mixed in the water.
  • a general separation method such as filtration, centrifugation or the like separates the moisture-containing composite from water and then performs drying.
  • One way for the invention to condense and desorb is to inject the rubber JK/filler/additive mixture into the agglomerator through one or more of the multiple inlets of the agglomerator at high pressure and high speed.
  • the high-temperature filler water slurry is injected into the agglomerator simultaneously from the mouth of the high-pressure high-speed cattle.
  • add water to the rubber solution the rubber/filler/additive/solvent and the filler water slurry are evenly mixed, and the rubber/filler/additive agglomeration is completed in a few milliseconds to several tens of milliseconds. .
  • the solvent quickly reaches its boiling point and volatilizes, and the water is partially vaporized.
  • the low-pressure stream # is formed in a mist-like manner in high-temperature air or nitrogen.
  • the contact surface between the solid, liquid phase and gas is greatly increased, so that the water in the sputum is expanded into the phase.
  • the il-like separation method such as filtration.
  • the aqueous component is separated from the water by centrifugation, etc., and then dried.
  • Synthetic polyisoprene rubber I-70, Qingdao Ikesi New Materials Co., Ltd.;
  • Zinc oxide Dalian zinc oxide plant
  • Antioxidant 4020 Jiangsu Shengao Chemical Co., Ltd.;
  • nitrogen gas having a temperature of about 180 ° C was continuously injected from the other two inlets, and the resulting mixture was continuously sprayed directly from the outlet of the agglomerator into water at about 95 °C.
  • the resulting mixture is then continuously sprayed into a desiccator filled with nitrogen at about 150 ° C, 1" and water volatilized to form detached colloidal particles, nitrogen, steam and mixture of powdery colloidal particles passed through a cyclone.
  • the masterbatch 1, ⁇ 1" is separated and water is condensed and recovered.
  • the masterbatch 1-3 obtained above is added to 2 parts of stearic acid and 2 parts of the antioxidant 4020 in an internal mixer, and then kneaded for 4 minutes, and discharged from the internal mixer, and the rubber compound is opened and il ⁇ rolled. Next film. After mixing and parking for 8 hours, 2 parts of medullary agent CZ, 1 part of accelerator D and 1.8 parts of sulfur were mixed in the internal mixer, and then mixed with 1. 5 from the internal mixer. After being placed in the open mill for 8 hours, it was vulcanized to a positive vulcanization in a 150 ° C plate vulcanizer to prepare a vulcanized vulcanizate 3 separately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶,制造方法包括:1):将填料加入到橡胶溶液中,通过搅拌形成橡胶/填料/溶剂混合物;2):将步骤1)中得到的橡胶/填料/溶剂混合物送入凝聚器中,并在凝聚器中任选与氮气、水蒸气、水、填料水浆和油中的一种或多种流体相接触并混合后凝聚,得到橡胶/填料复合物与溶剂的混合物;3):将步骤2)中得到的混合物直接通入温度高于溶剂沸点的加热介质中,该介质的极性与所用溶剂的极性不同,混合物凝聚并退溶胀,并且溶剂迅速挥发,从而形成含有该加热介质的橡胶/填料复合物与溶剂的混合物;4):脱除溶剂并对剩余的混合物进行干燥,得到橡胶/填料母炼胶。

Description

觀職翻職 造万法及该万法制細觀職胶
^ l^领域
本发明涉及橡胶领域,特别涉及橡胶母炼胶的连续式制造方法及该方法制备的橡胶 母炼胶。
背景¾^
在橡 填料 /添加剂 / 咻系中, 橡 填料 /添加剂从 忡的凝聚是制造橡胶
/填料 /添加剂母胶中很重要的歩骤。 W098/58985 中所述的这一过程为大型带有叶片的 蜗轮干燥机在每 中 400/1200转的装置中进行, 这种方法的凝聚速度较慢, 工艺过程 长, 耗能高。本发明涉及几种高速混合 /凝聚器, 在该混合 /凝聚器内凝聚介质, 包括气 体, 尤其是高温气体和液体与橡 填料 /添加剂混合物在高能湍流的状态下瞬间混合, 由 体的高温效应及液体介质与 1搬性方面的差异, 橡 JK/填料 /添加剂 混合 物中的橡胶 /填料 /添加剂将在溶剂中产生退溶剂现象而凝聚。由于高速湍流效应,混合 物和凝聚介质即通豁 1J介质的混合在几毫秒至数百毫秒内即可完成。因而,退 1J介质 和橡胶 /填料 /添加剂 /溶剂的界面大大增加, 因此橡胶 /填料 /添加剂在溶剂中的凝聚速 度非常快。如果通豁 1J介质的温度较高,溶剂将在凝聚过程中产生挥发, 此种 ί«在混 合 /凝聚器内因流体的高速流动而导致压力降低的作用进一歩加速。 因此, 与现有方法 相比, 本申请所设计的凝聚器具有高效、 节能而且混合及凝聚连续操作的特点。
发明内容
针对现有技术的问题, 本发明的目的是提供一种橡胶母炼胶的连续式制造方法及 该方法制备的橡胶母炼胶。本发明的另一个目的是提供一种棚本发明的橡胶母炼胶制 备的橡胶制品。
本发明所述的橡胶母炼胶的连续式制造方法的优点为:
1 )连续高效;
2)混合和凝聚均匀且速率快;
3 )显著提敲化胶的物理机械性能和橡胶制品的质量;
4)本发明所述方法对橡胶和填料及添加剂的种¾¾含量的适用范围广。
本发明进一歩涉及如下实施方案:
一种橡胶母炼胶的连续式制造方法, 包括如下歩骤:
歩骤 1 ): 将填料加入到橡胶溶液中, 腿觉拌形扁姆料 /翻混合物; 歩骤 2): 将歩骤 1) 中得到的橡 填料 /豁 1J混合物送入凝聚器中, 并在凝聚器中 任选与氮气、 7蒸气、水、填料水浆和油中的一种或多种流体相¾1虫并混合后凝聚, 得 到橡 JK/填料复合物与 的混合物;
歩骤 3): 将歩骤 2) 中得到的混合物直接通入 高于溶剂沸点的加热介质中, 该 加热介质的极 与所用溶剂的极 不同,混合物进一歩凝聚并退溶胀,并且溶剂迅速挥 发, 从而形成含有该加热介质的橡 填料复合物与 啲混合物;
歩骤 4): 脱除 拼对剩余的混合物进行干燥, 得到橡 填料母炼胶; 其中, 在歩骤 4)中所挥发出的溶剂和橡胶合成中未反应的单体进入冷凝器和分馏 塔中回收,分离加热介质,从加热介质中分离出来的混合物再转入加热运输带式干燥机 内, 在真空、 惰性气体或空气中进行干燥; 或在歩骤 4) 中所挥发出的溶剂和橡胶合成 中未反应的单体进入冷凝器和分馏塔中回收, 然后对剩余的混合物进行挤压加热干燥。
的是, 其中任选回收歩骤 4)所脱除的溶剂, 循环利用。
的是, 其中在歩骤 1)和 /或歩骤 2) 中任选添加一种或多种选自油、 防老剂、 偶联剂、 活性剂、 抗氧化剂、 阻燃剂、 热稳定剂、 光稳定剂、染料、颜料、硫化剂和促 进剂的添加剂。
的是, 其中歩骤 3)可以棚任何容器来实施。
更为优选的是, 其中歩骤 3)在罐状容器中实施, 优选圆柱形罐状容器。
的是, 其中歩骤 3)所述的加热介质为水, 所述 1」为沸点低于 100°C烃类溶 剂, 任选再经过真空干燥、 加热干燥或挤压加热干燥除去水后得到橡 填料母炼胶。
更为优选的是, 其中所述加热干燥为烘干或风干。
更为 的是, 其中所述挤压加热干燥为先挤压脱除加热介质后再进一歩干燥。 更为优选的是, 其中所述进一歩干燥为风干、 烘干或机械干燥。
更为 的是, 其中所述机械干燥为使用开炼机、 捏炼机、 密炼机、 连续密炼机、 单螺杆挤出机, 双螺杆挤出 Mi行干燥。
本发明还提供了由±¾方法制备的橡胶母炼胶。
进一歩地, 本发明还提供了采用 橡胶母炼胶制备得到的一种 ^象胶制品。
本发明的橡胶母炼胶的连续式制造方法包括如下歩骤:
歩骤 1): 将填料加入到橡胶溶液中, 腿觉拌形扁姆料 /翻混合物; 歩骤 2): 将歩骤 1) 中得到的橡 填料 /豁 1J混合物送入凝聚器中, 并在凝聚器中 任选与氮气、 7蒸气、水、填料水浆和油中的一种或多种流体相¾1虫并混合后凝聚, 得 到橡 JK/填料复合物与 的混合物;
歩骤 3): 将歩骤 2) 中得到的混合物直接通入 高于溶剂沸点的加热介质中, 该 介质的极 与所用溶剂的极 不同, 混合物凝聚并退溶胀, 并且溶剂迅速挥发,从而形 成含有该加热介质的橡 JK/填料复合物与 的混合物; 歩骤 4): 脱除翻并对剩余混合物进行干燥, 得到橡 填料母炼胶; 其中, 在歩骤 4)中所挥发出的溶剂和橡胶合成中未反应的单体进入冷凝器和分馏 塔中回收,分离加热介质,从加热介质中分离出来的混合物再转入加热运输带式干燥机 内, 在真空、 惰性气体或空气中进行干燥; 或在歩骤 4) 中所挥发出的溶剂和橡胶合成 中未反应的单体进入冷凝器和分馏塔中回收, 然后对剩余的混合物进行挤压加热干燥。
本发明的橡胶母炼胶的连续式制造方法还任选包括回收歩骤 3)所脱除的溶剂以循 环利用的歩骤。 此外, 在歩骤 1)和 /或歩骤 2) 中任选添加一种或多种选自油、 防老剂 、 偶联剂、 活性剂、 抗氧化剂、 染料、 光稳定剂、 阻燃剂、 热稳定剂、 颜料、硫化剂和 促进剂的添加剂。
歩骤 1)可以使用本领域公知的方法实现。 歩骤 1) 中所述的搅拌可以使用一般搅 拌机完成,包括但不限于叶片式搅拌机,槽式搅拌机,行星式搅拌机, 曲拐式搅拌机等。
歩骤 1)还可以进一歩包括细分散歩骤, 所述的细分散可以通过如下方式实施: 将 上述搅拌所得的混合物 il—个喷嘴在高压高剪切的情况下喷出, 以改善填料和 /或添 加剂的分散; 使上述喷出物通过一个多弯头管使混合液在管中与管壁撞击增加填料和 / 或添加剂的分散性;或使喷出物通过一个管内径多次收放变化的管路来变换剪切应力而 增加填料和 /或添加剂的分散。所用压力范围从 0. :LMPa至 60MPa,优选 lOMPa至 40MPa。
所述的细分散后所形成的混合物还可以通过下述精分散进一歩改善填料和 /或添加 剂在橡胶溶液中的分散:
i.将所述细分散之后的混合物连续加入球磨机和 /或胶体磨中进行分散,使填料和 /或添加剂均匀的分散在橡胶溶液中;
ii. 将所述细分散之后的混合物连续加入到研磨机中进行研磨以使填料和 /或添加 剂充分分散在橡胶溶液中,该研磨机具有一组或多组高速转动的平面磨盘和固定在研磨 机套筒上并与平面磨盘相间的固定销钉或定盘。
iii. 将所述细分散之后的混合物连续加入到研磨机中进行研磨, 该研磨机具有转 动方向相反的两个叶片,所述叶片具有细孔流槽,在高压下可以 il旋转的叶片提高填 料和 /或添加剂在橡胶溶液中的分散程度。所用压力范围从 0. IMPa至 60MPa,优选 lOMPa 至 40MPa。
iv.将所述细分散之后的混合物连续地加入到多层高压狭缝分散机中,使混合物在 高压下从两层之间狭缝中挤出, 此时产生的强剪切力可提高填料和 /或添加剂在橡胶溶 液中的分散程度。 所用压力范围从 0. IMPa至 60MPa, 优选 lOMPa至 40MPa。
v. 将所述细分散之后的混合物连续地加入到动力分散器中进行分散, 所述动力分 散器的高速旋转的转子上有许多径向分布的狭缝或孔,混合物以高速撞击在定子表面上 以使填料和 /或添加剂均匀地分散在橡胶溶液中。
±¾五种细分散方法中的两种或两种以上可以相互串联使用。
所述的橡胶溶液可以直接从制备溶聚橡胶生产线中直接获得,亦可将任何类型的干 胶在该胶的溶剂中溶解制备。当用干胶制备橡胶溶液时,所述干胶可以是本领域中使用 的任何种类的橡胶,如天然聚合物或合成聚合物。所述天然聚合物包括但不限于天然胶、 杜仲胶、银菊胶等;所述合成聚合物包括但不限于单#¾溶液中聚合所得 (即溶聚橡胶)、 单#¾乳液中聚合所得(即乳聚橡胶)、 单体本体进行聚合所得。 当所述橡胶溶 ffi接 从制备溶聚橡胶生产线中获得时, 所述溶聚橡胶为用乙烯、 丙烯、 丁烯、 戊烯、 已烯、 庚烯、 4-7个碳原子的双烯或 6-7个碳原子的三烯、或含其它原子或官能团的烯类单体 的均聚或共聚聚合物, 所述其他原子或官能团为硅原子、氟原子、氯原子、氮原子、氧 原子、 硫原子、 酯基团, 氨基酯基团, 氰基, 也包括含有 单体的均聚物和共聚物, 其中包括但并不限于聚丁二烯、聚异戊二烯、丁苯胶、 乙丙胶、 丁基胶、丁腈胶、氯丁 胶、硅橡胶、氟橡胶、聚氨酯橡胶、氯磺化聚乙烯橡胶、丙烯酸酯橡胶等。橡胶的肝 量为 1千至 4000万, 优选 5千至 3000万, 更优选 1万至 800万。
所述橡胶溶液中的 1J均为各种橡胶的良 1」。 1J具体可以是脂肪烃溶剂、芳香 烃#¾、氯化烃溶剂、酮类溶剂、醚类 和酯类#¾, 所述脂肪烃 ^抱括但并不限 于各种膽气油、环院烃、取代环院烃、正院烃, 所述芳雜翻包括但不限于苯、 甲 苯、 二甲苯、 苯乙烯, 所述氯化烃溶剂包括但不限于二氯甲垸、 三氯甲垸、 四氯化碳、 二氯乙垸、 氯苯、 四氯乙烯、 氯甲苯。 橡胶在溶液中的浓度范围为 1%重量至 60%重量, it& 5%重量至 40%重量, 更雌 10%重量至 30%重量。
所述填料包括但不限于橡胶中所用的各种固体粉末状补强剂和填充剂, 如各类炭 黑、二氧化硅、金属氧化物、盐类、不同树脂及上述填料的纳米级材料。其中所述金属 氧化物包括但并不限于氧化铝、 氧化镁、 氧化锌等, 所述盐类包括但并不限于碳鹏、 陶土及上述填料的纳米级材料。 填料的比表面积为 0. 1至 800m g, 优选 1至 500 m2/g, 更优选 5至 300 m g。对于炭黑、二氧化硅(白炭黑)来说,其吸油值为 20至 250ml/100g, 优选 25至 200ml/100g,更优选 30至 150m 1/100g,其中所述的填料包括它们的混合物, 如多相填料,其中包括但并不限于炭黑、二氧化硅、氧化铝、氧化镁、氧化锌、 , 氧化钛、 氧化硼等组成的双相或多相填料, 对于双相或多相填料来讲, 其吸油值为 20 至 250ml/100g, 优选 25至 200ml/100g, 更优选 30至 150ml/100g。 填料的用量为 5至 300重量份 (以橡胶为 100重量份计), 优选 10至 200重量份, 更优选 30至 150重量 份。 所述填料也包括上述填料中两种或多种的并用物。
所述的填料也包括它们的表面改 填料。其中所述的表面改 可以是 il化学反应 将一定的官能团接在填料表面或通过混合或吸附而将改性剂通过物理方式结合在填料 表面上。所述改†生来讲,可以将改 剂溶于溶剂后与填料混合进行液相改 ,如 Wang W, Nanse G, Vidal A, et al. K. G. K [J] , 1994, 47 :493中所述, 也可以将改生剂与 填料混合加热进行固相改 [·生, 如 Wang MJ, Wolff . S. R. C. T [J] , 1992, 65 : 715中所 述。表面改 也可以在将填料加入橡胶溶液中之前进行,或将改 剂加入到橡胶溶液和 填料的混合物中进行表面改 。所述改性剂为本领域常规的改 剂,诸如用以下通式表 示的有机 ί¾Κ偶联剂:
( Rn- ( R0 )3 nSi- ( Alk )m- ( Ar)P) q ( A ) (I ) Rn' ( R0 )3 nSi- ( Alk ) (II ) 或 Rn' ( R0 )3 nSi- ( Alkenyl ) (III ) 式中, 当 q=l时, A为 -SCN, -SH, -CI, -丽2
当 q=2时, A为 -Sx-;
R和 R' 为碳原子从 1至 4的支化或直链的院基或酚基, R和 R' 可以相同,也可以 不同;
n为 0, 1或 2;
Alk是含有 1至 6个碳原子的直链或支链烃基;
Alkenyl是含有 1至 6个碳原子的直链或支链烯基;
m为 0或 1;
Ar是含有 6至 12个碳原子的芳基;
p为 0或 1, p和 n不能同时为 0;
X为 2至 8;
其中最常用的为双(三乙氧基丙基硅院) 四硫化物和二硫化物、 3-硫氰基丙 ^三 乙氧基硅院、 γ -巯 三甲氧基石 ¾¾、锆酸酯偶联剂、酞酸酯偶联剂、硝基偶联剂、醇 类化合物, 所述醇类化合物包括但不限于单元醇、二元醇、 多元醇, 所述醇类化合物包 括但不限于丙醇、 丁醇、 乙二醇、 聚乙二醇及其衍生物。
本发明歩骤 1 )可以直接将填料和 /或添加剂加入到橡胶溶液中, 也可以先将填料 和 /或添加剂加入到与橡胶溶液相同或不同的溶剂中混合形成均匀的悬浮液后再加入并 通过搅拌混入橡胶溶液中。添加剂可任选包括油、防老剂、偶联剂、活性剂、抗氧化剂、 热稳定剂、光稳定剂、阻燃剂、染料、颜料、硫化剂或促进剂的添加剂中的一种或多种。 所用添加剂的用量均为常规用量, 或根据实际情况的要 ¾fiH周整。
在歩骤 2) 中将歩骤 1 ) 中的橡 填料 /豁 1」混合物送入凝聚器中, 并在凝聚器中 任选与氮气、 7蒸气、水、填料水浆和油中的一种或多种流体相¾1虫并混合后凝聚, 得 到橡 JK/填料复合物与 的混合物。
歩骤 2)中使用的凝聚器可以为具有一个或两个以上进料口的管式凝聚器,其中所 述进料口的进料方向可以与管式凝聚器管的轴向方向平行, 出口处于管的末端,也可以 与管式凝聚器管的轴向方向呈 1-180° 角, ttte 20-120° 角, 更^ 70-100° 角, 最^ 85-95° 角。 当进料口为多个时, 部分进料口的进料方向与管式凝聚器管的轴 向方向平行; 其余的进料口的进料方向与管式凝聚器的筒的轴向方向呈 1-180° 角, 优 选呈 20-120° 角, 更优选呈 70-100° 角, 最优选呈 85-95° 角, 各进料口的进料方向 在与管轴心垂直的横截面上的投影为该横截面的半径方向至该横截面的切线方向之间 的任何方向, 为半径方向,或者为切线方向。所述的进料口均处于与管的轴向相垂 直的同一平面上或者所述的进料口处于不同的平面上。
歩骤 2 ) 中 iffl的凝聚器也可以为由两个或三个以上相互同心的管组成的凝聚器, 其中每个管具有一个或两个以上的进料口,所述进料口的进料方向为平行于管的轴向方 向或为管的切线方向, 出口处于管的末端。流体可以直接通入, 也可以从管壁的切线方 向通入。每个管的进料口的末端可以在同一平面内,也可以由内向外每个管的进料口的 末端依次变长或由内向外每个管的进料口的末端依次变短。
歩骤 2)中使用的凝聚器也可以为筒式凝聚器, 该筒式凝聚器只有一个进料口, 该 进料口位于筒式疑聚器的上端或筒壁上, 出口处于筒的下端。流体可以《ί¾料口直接 注入凝聚器, 也可以沿筒壁以切线的方向注入凝聚器。
歩骤 2)中使用的凝聚器也可以为上部是筒状, 下部是圆锥状的筒锥式结构, 并具 有一个或两个以上进料口。进料口的进料方向可以为筒壁的切线方向;各进料口可以处 于同一平面,也可以处于不同平面。进料口的进料方向也可以与筒的轴向方向垂直或与 筒的轴向方向呈 1-180° 角, 优选 20-110° 角, 更优选 70-100° 角, 最优选 85-95° 角,各进料口的进料方向在与筒轴心垂直的横截面的投影为该横截面的半径方向至该横 截面的切线方向之间的任何方向, 优选为该横截面的切线方向。
歩骤 2)中所述的氮气、 7蒸气、 7 、填料水浆和油中的一种或多种流体和歩骤 1 ) 中得到的橡 JK/填料 /溶剂混合物通过一个或多个进料口 ¾Λ 聚器,其中氮气的 ¾¾为 20-300 °C , 水蒸气的温度为 100-300 °C, 液体水的温度为 20-100 °C, 油的温度为 20-300 °C , 填料水浆的温度为 20-100°C。 所述油为橡胶领域制造充油橡胶常用的油。 歩骤 1 ) 中任选使用的油可以与歩骤 2) 中使用的油相同或不同。 歩骤 1) 中使用的填 料可以与歩骤 2) 中使用的填料相同或不同。
在歩骤 3)中,将歩骤 2)中得到的混合物直接通入 高于溶剂沸点的加热介质中 。当加热介质的†«与所用 尤其是极性不同时, 混合物即凝聚并退溶胀,而加 热介质温度高于溶剂沸点时,溶剂即迅速挥发而成含有加热介质的母炼胶。该母炼胶经 加热除去加热介质后即成母炼胶产品,在此过程中所挥发出的溶剂和橡胶合成中未反应 的单体进入冷凝器和分馏塔中进行回收,所得的凝聚混合物经过滤与加热介质分离并干 燥后即成母胶产品。 加热介质包括但不限于水。当用水做加热介质时,所述 1J为 沸点低于 100°C溶剂。 然后所挥发出的溶剂和橡胶合成中未反应的单体以及水蒸汽进入 冷凝器和 留塔中进行回收。
歩骤 3)的凝聚可以使用任何容器来实施; 航 不使用任何特殊设计的凝聚器来 实施; 歩骤 3) 的凝聚可以在罐状容器中实施。 a , 歩骤 3)使用任意職的罐状容 器, 更删吏用圆柱形的罐状容器。
歩骤 4) 中的干燥是指在歩骤 4)中所挥发出的 和橡胶合成中未反应的单体进 入冷凝器和 留塔中回收,分离加热介质,从加热介质中分离出来的混合物再转入加热 运输带式干燥机内, 在真空、 情 气体(例如氮气)或空气中进行干燥; 或在歩骤 4) 中所挥发出的溶剂和橡胶合成中未反应的单体进入冷凝器和分馏塔中回收,然后对剩余 的混合物进行挤压加热干燥。。 其中当棚 7JC蒸汽为加热介质时, 干燥后的固体混合物 中会含有水, 再经过真空干燥、 力口热干燥或挤压加热干燥后得到橡 JK/填料母炼胶。 所 述真空干燥包括常温真空干燥、冷冻真空干燥及加热真空干燥。所述加热干燥可以为一 般的干燥方式,例如烘干或风干。所述挤压加热干燥为先挤压脱除加热介质后再进一歩 干燥, 其中所 一歩干燥为风干、烘干或机械干燥, 所述机械干燥为使用开炼机、捏 炼机、 密炼机、 连续密炼机、 单螺杆挤出机, 双螺杆挤出! a¾行干燥。
所述的回收溶剂的方法可以使用本领域中任何已知的方法, 如将汽化的溶剂通过 表面冷凝或直接¾|虫冷凝的方法加以回收。当使用直接冷凝接触的方法时冷却剂可以采 用水。
本发明的技术特点有如下六点:
i. 本发明的技术特点是采用特殊设计的凝聚器, 它是一个由一个或多个进口和一 个出口组成的装置。 当经过精分散的橡胶 /填料 /添加剂 混合物在高速高湍流的状 态下注入凝聚器时, 由于速度十分高,根据流体力学及湍流流体力学原理, 混合物内部 压力急骤下降。在高剪切作用下混合物流将形成细小液滴,加之在低压下液体混合物中 的低沸点 可能达到其沸点, 加速挥发, 而使 与混合物分离。这一分离过程 也可以通过将含大量溶剂蒸汽的混合物液滴通过一狭小的出口从凝聚器中喷出来实现, 由于流速的增加而使压力大大下降, 因而溶剂的气化速度和程度大大增强。当这一混合 流体喷入有高温气体诸如氮气的干燥装置中时, 的升高使溶剂由混合物職扩散到 热气氛中而使干燥效率大大提高。 ii . 本发明的上述凝聚脱溶剂的方式是凝聚器的多个进口中的一个或两个注入橡 胶 /填料 /添加剂 /溶剂混合物, 而由另外的一个或多个进口通入氮气。 当进入的混合物 和气体均呈高能高速湍流状态时,两者的混合可以在几毫秒至数十毫秒的时间内完成而 混合物在此时间内变为液滴。液滴内的 在湍流的低压下迅速膨 化,而使混合物 中的橡胶 /填料 /添加剂组分急骤凝聚而形成分散的固 /¾/气三相混合物。 在此过程中, 当注入凝聚器内的氮气 较高时, 1J的膨胀、 气化及固体的凝聚速度将大大提高, 液相成份大大下降。在极端情况下,变成只有固体凝聚物和由氮气与溶剂蒸汽形成的固、 气两相。当三相或两相混合物通过凝聚器狭小的出口时, 由于流速的增加而使流体压力 进一歩降低致使 的气化程度和速度大大增加,液相 «。当混合流体喷入有高 温气体诸如氮气气氛的干燥装置后,由于温度的升高使残留在橡 JK/填料 /添加剂凝聚物 中的溶剂进一歩 挥发扩 ¾热气相中, 而使干燥效率大大提高。
iii . 本发明的上述凝聚和脱 啲一个方式是如果添加剂中包括油时, 通由凝 聚器的多个进口中的一个或两个在高压高速下注入橡胶 /填料 /添加剂 (其中不含或只含 部分胶料中所需的油) /溶剂混合物, 而由另外的一个或多个进口注入油。 油的量为母 胶配方所需量与橡胶 /填料 /添加剂 /溶剂混合物中已用油量之差。 混合物和油在高能湍 流的情况下 混合而凝聚,而高速湍流流体的低压将使溶剂 气化而与橡胶 /填料 / 添加剂复合物分离。如提高油的 , 由于油的热容量大, 啲气化过程将加速。 当 所形成的固、 液、 气烟雾状混合物通过狭小的出口高速喷入含高温气体的干燥装置后, 烟雾状固液相分散状态由于喷出时流体压力的降低而使其进一歩增加与气相的接触面 积, 从而使溶剂的气化速度加快, 同时高温气氛也将大大提高脱 啲效率。
iv. 本发明上述凝聚和脱溶剂的一个方式是通过凝聚器多个进口中的一个或两个 进口在高压高速下注入橡胶 /填料 /添加剂 /溶剂混合物, 而由另外的一个或多个入口注 入高压水蒸汽。在水的退 乍用和高温作用下,† JK/填料 /添加剂在几毫秒至数十毫 秒内在溶剂中完成凝聚, 并在低压下呈烟雾状, 溶剂大量挥发。 由于蒸汽液化的潜热, 使 忾化的速度较热氮气快的多。但形成的烟雾状固、液、气三相混合物中亦增加了
7分。该混合物在高压下謝凝聚器的狭小出口高速喷入高温气体时, 由于压力的降低 和温度的进一歩升高, 水和溶剂气化而与固相橡胶 /填料 /添加剂复合物分离而进入气 相, 使复合物的干燥效率提高。
v. 本发明上述凝聚和脱溶剂的一种方式是将橡胶 /填料 /添加剂 /溶剂混合物在高 压高速的条件下经过凝聚器多个进口中的一个或两个注入混合 /凝聚器中, 而将水尤其 是高温水在高压高速的条件从其余进口同时注入凝聚器中。在高能湍流的状态下,加之 7对橡胶溶液的退溶剂作用, 橡胶 /填料 /添加剂在几毫秒至数十毫秒的时间内完成凝 聚。由于高能湍流液体的低压特性,尤其是当使用高温水时,溶剂迅 ¾¾其沸点而挥发, 水也部分气化。当在凝聚器内的固、液、气三相混合物在高压下通过期夹小的出口喷出 至含有高温空气或氮气的干燥装置后,由于高速形成的低压流# 以雾状分散在高温热 空气或热氮气中。 在烟雾中凝聚的橡 填料 /添加剂固 /液相的巨大的比表面积和低压 将使其中的水分和 i」¾t一歩挥发,使固体复合物水分及 扦燥效果增加。如在凝 聚器内注入的水过多,橡 填料 /添加剂凝聚后的复合体可能混合在水中。此时, 一般 的分离方法诸如过滤、 离心等将含水分的复合物与水分离, 然后进行干燥。
vi . 本发明 ±¾凝聚和脱 的一种方式是将橡 JK/填料 /添加剂 混合物在高 压高速的情况下经过凝聚器多个进口中的一个或几个注入凝聚器中,而将填料水浆,优 选高温填料水浆,在高压高速的 牛下,亦从其 «口同时注入凝聚器中。在高能湍流 的状态下, 加之水对橡胶溶液的退##ί乍用, 橡胶 /填料 /添加剂 /溶剂与填料水浆均匀 混合,橡胶 /填料 /添加剂的凝聚在几毫秒至数十毫秒内完成。由于高能湍流的低压特性, 尤其是用高温填料水浆时, 溶剂即迅速达其沸点而挥发, 水也部分气化。 当在混合 /凝 聚器内的固、液、气三相混合物在高压下 ¾¾夹小的出口而 ¾Λ收集装置后, 由于高 速形成的低压流# 以雾状分散在高温空气或氮气中。一方面由于压力很低,另一方面 由于固、液相与气体的接触面大大增加,使 脷其中的水分 扩膨忾相中。如注 入凝聚器中的填料水浆中的水过多而喷出之后的水不能完全挥发,橡胶 /填料 /添加剂凝 聚后的复合体可能混合在水中, 此时 il—般的分离方法,诸如过滤、离心等将含水分 的复合物与水分离, 然后进行干燥。
具^
下面用实施例进一歩描述本发明, 但是本发明的范围不受这些实施例的限制。 (一)实施例中实验数据用以下仪器设备及测定方法测定:
表 1橡胶样品制备的仪器设备
序号 设备名称 规格型号 厂家
1 密舰 XSM-1/10-120 上爾斗创橡塑机械设 限公司
2 开舰 152. 5*320 广东省湛江机械厂
3 平板硫化机 XLB- D600*600 浙江湖少 H东方机械有限公司 表 2硫化胶物理性能的测试方法及仪器
Figure imgf000011_0001
(二)实施例 比例
原料:
合成聚异戊二烯橡胶, I -70, 青岛伊科思新材料有限公司;
白炭黑, NEWSIL1165-MP, 无锡确成石^ Ik有限公司;
氧化锌, 大连氧化锌厂;
硬脂酸, PF1808, 马来西亚立成有限公司;
防老剂 4020, 江苏圣奥化学有限公司;
硅院偶联剂 Si69, 南京曙光化工集团有限公司;
促进剂 CZ, 山东尚舜化工有限公司;
促进剂 DPG, 山东单县化工有限公司;
硫黄, 无棣金盛化工有限公司。
对比例 1
在密炼机内将 56份白炭黑、 5. 6份硅 禺联剂 Si69加入到 100份合成顺式聚异戊 二烯中进行混炼,当填料混入橡胶后,加入 3. 5份氧化锌、 2份硬脂酸、 2份防老剂 4020 后再混炼 4分钟从密炼机中卸料, 然后在开炼机上过辊下片得预混胶。 停放 8小时后, 将 2 i m cz、 l i m DPG和 i. s份硫黄在开炼 ±加入预混胶中制得混炼胶。 经开炼机下片, 停放 8小时后, 在 15CTC平板硫化机中硫化至正硫化, 制得干法硫化 胶 1。
实删 1
将 56份白炭黑、 5. 6份硅院偶联剂 Si69、 3. 5份氧化锌加入到 100份 12°/。顺式聚 异戊二烯的正已院溶液中, 象胶 /白炭黑 /Si69/正已院混合物用叶片式搅拌机初混后, 将混合物 il—个喷嘴喷入一个多弯头管使混合液在管中与管壁撞击增加填料的分散。 后将混合物连续加入到研磨机中进行精分散,即得精分散混合物,然后将混合物在 30MPa 的压力下经过有四个入口的筒雜式凝聚器中的两个入口连 主入凝聚器内,同时从另外 两个入口连续注入温度约为 180°C的氮气, 所得混合物连续从凝聚器的出口直接喷入约 95°C的水中。 然后将所得混合物连续喷入充有约 150°C的氮气的干燥器内, 1」和水挥 发, 形成脱翻的胶粒,含有粉状胶粒的氮气、水蒸汽和翻混合物经旋风分离器分离 得母胶 1, ^1」和水进行冷凝回收。
实删 2
将 56份白炭黑、 5. 6份硅院偶联剂 Si69、 3. 5份氧化锌加入到 100份 12°/。顺式聚 异戊二烯的正已院溶液中, 象胶 /白炭黑 /Si69/正已院混合物用叶片式搅拌机初混后, 将混合物 il—个喷嘴喷入一个多弯头管使混合液在管中与管壁撞击增加填料的分散。 后将混合物连续加入到研磨机中进行精分散,即得精分散混合物,然后将混合物在 30MPa 的压力下经过有四个入口的筒雜式凝聚器中的两个入口连 主入凝聚器内,同时从另外 两个入口连续注入温度约为 95°C的水, 所得混合物连续从凝聚器的出口直接喷入约 95°C的水中。 然后将凝聚并脱溶剂的胶粒经过滤与水分离后在真空度为 -0. 08MPa下的 真空干燥机内干燥 20min后经收集得母胶 2。
实删 3
将 56份白炭黑、 5. 6份硅院偶联剂 Si69、 3. 5份氧化锌加入到 100份 12°/。顺式聚 异戊二烯的正已院溶液中, 象胶 /白炭黑 /Si69/正已院混合物用叶片式搅拌机初混后, 将混合物 il—个喷嘴喷入一个多弯头管使混合液在管中与管壁撞击增加填料的分散。 后将混合物连续加入到研磨机中进行精分散,即得精分散混合物,然后将混合物在 30MPa 的压力下经过有四个入口的筒雜式凝聚器中的两个入口连 主入凝聚器内,同时从另外 两个入口连续注入 0. 5MPa的水蒸汽, 所得混合物连续从疑聚器的出口直接喷入约 95°C 的水中。 然后将凝聚并脱溶剂的胶粒经过滤与水分离后在单螺杆挤出机内干燥 3min后 得母胶 3。
将上述所得的母胶 1-3在密炼机内加入 2份硬脂酸、 2份防老剂 4020后再混炼 4 分钟从密炼机中卸料, 胶料在开炼il±过辊,下片。混炼停放 8小时后再在密炼机内加 入 2份髓剂 CZ、 1份促进剂 D和 1. 8份硫黄后再混炼 1. 5 中从密炼机中卸料。经开 炼机下片, 停放 8小时后, 在 150°C平板硫化机中硫化至正硫化, 分别制 ί羅法硫化 胶 3。 湿法 湿法 湿法
硫搬 1 硫化胶 2 硫化胶 3
白炭黑的分散,级 4.0 7.7 8.2 8.2
硬度, RT, 邵 A 70.0 64.0 63.0 62.8 拉伸强度, MPa 28.0 28.1 28.8 29.0 扯断伸长率, % 480 505 460 448 回弹性 23°C, %, 53.1 54.0 56.0 57.1 回弹性,60°C, %, 63.4 65.2 66.1 68.2 底部温升, °c 21.7 19.4 17.8 15.8
DIN磨耗指数, % 100 105 105 108
从表 3可知, 在相同配方下, 由于湿法混炼胶所采用的凝聚方法不同而制备的硫 化胶性能亦有不同,与干法母炼胶相比,湿法母炼胶中填料在橡胶中的分散程度大大改 进, 硫化胶的拉伸强度、 回弹† ¾耐磨性明显提高, 压缩疲劳生热有所降低。

Claims

1、 一种橡胶母炼胶的连续式制造方法, 包括如下歩骤:
歩骤 1 ): 将填料加入到橡胶溶液中, 腿觉拌形扁漏斗翻混合物; 歩骤 2): 将歩骤 1 ) 中得到的橡胶 /填料 /溶剂混合物送入凝聚器中, 并在凝聚器中 任选与氮气、 7蒸气、水、填料水浆和油中的一种或多种流体相接触并混合后凝聚, 得 到橡 /填料复合物与 的混合物;
歩骤 3): 将歩骤 2) 中得到的混合物直接通入 高于 (J沸点的加热介质中, 该 加热介质的极 与所用溶剂的极 不同,混合物进一歩凝聚并退溶胀,并且溶剂迅速挥 发, 从而形成含有该加热介质的橡臉填料复合物与 啲混合物;
^m>. 脱除 拼对剩余的混合物进行干燥, 得到橡臉填料母炼胶;
其中, 在歩骤 4)中所挥发出的 1J和橡胶合成中未反应的单体 冷凝器和 留 塔中回收,分离加热介质,从加热介质中分离出来的混合物再转入加热运输带式干燥机 内, 在真空、 惰性气体或空气中进行干燥; 或在歩難) 中所挥发出的溶剂和橡胶合成 中未反应的单体翅入冷凝器和 留塔中回收, 然后对剩余的混合物进行挤压加热干燥。
2、 根据权利要求 1所述的方法, 其中任选回收歩難)所脱除的溶剂, 循环利用。
3、 根据权利要求 1所述的方法, 其中在歩骤 1 )和 /或歩骤 2) 中任选添加一种或多 种选自油、 防老剂、 偶联剂、 活性剂、 抗氧化剂、 阻燃剂、 热稳定剂、 光稳定剂、 染料 、 颜料、 硫化剂和 剂的添加剂。
4、 根据权利要求 1所述的方法, 其中歩骤 3)可以使用任何容器来实施。
5、 根据权利要求 4所述的方法, 其中歩骤 3)在罐状容器中实施, 优选圆柱形罐 状容器。
6、 根据权利要求 1-5任一所述的方法, 其中歩骤 3)所述的加热介质为水, 所述 溶剂为沸点低于 10TC烃类#¾, 任选再经过真空干燥、加热干燥或挤压加热干燥除去 水后得到橡鹏料母炼胶。
7、 根据权利要求 6所述的方法, 其中所述加热干燥为烘干或风干。
8、 根据权利要求 6所述的方法, 其中所述挤压加热干燥为先挤压脱除加热介质后 再进一歩干燥。
9、 根据权利要求 8所述的方法, 其中所述进一歩干燥为风干、 烘干或机械干燥。
10、 根据权利要求 9所述的方法, 其中所述机械千燥为使用开炼机、 捏炼机、 密 炼机、 连续密炼机、 单螺杆挤出机, 双螺杆挤出 Mi行干燥。
11、 一种根据权利要求 1-10所述的方法制备的橡胶母炼胶。
12、 一种†象胶制品, 其 根据权利要求 11所述的橡胶母炼胶制备得到。
PCT/CN2014/082715 2013-08-05 2014-07-22 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶 WO2015018282A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/909,936 US9758627B2 (en) 2013-08-05 2014-07-22 Continuous manufacturing process for rubber masterbatch and rubber masterbatch prepared therefrom
EP14834505.1A EP3031591B1 (en) 2013-08-05 2014-07-22 Process for continuous manufacturing of a rubber masterbatch
JP2016532220A JP6397022B2 (ja) 2013-08-05 2014-07-22 ゴムマスターバッチの連続的製造方法
ES14834505T ES2727515T3 (es) 2013-08-05 2014-07-22 Proceso para la fabricación continua de una mezcla madre de caucho
KR1020157034586A KR101793358B1 (ko) 2013-08-05 2014-07-22 고무 마스터배치 연속식 제조 방법 및 그 방법으로 제조된 고무 마스터배치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310338268.1 2013-08-05
CN201310338268.1A CN103600435B (zh) 2013-08-05 2013-08-05 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Publications (1)

Publication Number Publication Date
WO2015018282A1 true WO2015018282A1 (zh) 2015-02-12

Family

ID=50118731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082715 WO2015018282A1 (zh) 2013-08-05 2014-07-22 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Country Status (7)

Country Link
US (1) US9758627B2 (zh)
EP (1) EP3031591B1 (zh)
JP (1) JP6397022B2 (zh)
KR (1) KR101793358B1 (zh)
CN (1) CN103600435B (zh)
ES (1) ES2727515T3 (zh)
WO (1) WO2015018282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041753A1 (zh) * 2015-09-11 2017-03-16 怡维怡橡胶研究院有限公司 一种橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103600435B (zh) * 2013-08-05 2016-04-27 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN103419293B (zh) * 2013-08-05 2016-04-27 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN104341686A (zh) * 2014-11-03 2015-02-11 怡维怡橡胶研究院有限公司 一种连续式制备的橡胶母炼胶在轿车胎气密层胶中的应用
CN104311929A (zh) * 2014-11-03 2015-01-28 怡维怡橡胶研究院有限公司 一种连续式制备的橡胶母炼胶在轿车胎胎面胶中的应用
CN104356443A (zh) * 2014-11-28 2015-02-18 山东阳谷华泰化工股份有限公司 一种用于轮胎胎面高耐磨补强材料及其制备方法
CN104742268B (zh) * 2015-04-01 2017-06-09 苏州第一元素纳米技术有限公司 一种母炼胶的制备方法
BR112018000833B1 (pt) 2015-07-15 2022-12-13 Cabot Corporation Métodos de produção de compósito de elastômero reforçado com sílica e artigo contendo o mesmo
JP6744394B2 (ja) 2015-07-15 2020-08-19 キャボット コーポレイションCabot Corporation シリカで補強されたエラストマー複合材およびそれを含む製品
CN105602047A (zh) * 2015-09-11 2016-05-25 怡维怡橡胶研究院有限公司 一种橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN105273253A (zh) * 2015-11-13 2016-01-27 怡维怡橡胶研究院有限公司 利用双相炭黑母胶并用炭黑制备胎面胶的方法及其应用
CN105273248A (zh) * 2015-11-13 2016-01-27 怡维怡橡胶研究院有限公司 双相炭黑和炭黑湿法母胶并用的橡胶组合物及其制备方法
ES2784531B2 (es) 2017-11-10 2023-09-29 Cabot Corp Metodos para producir un compuesto de elastomero y compuestos de elastomero
US20240026128A1 (en) 2020-12-09 2024-01-25 Beyond Lotus Llc Methods of preparing a composite having elastomer, filler, and linking agents
JP2023554610A (ja) 2020-12-09 2023-12-28 ビヨンド ロータス リミテッド ライアビリティ カンパニー エラストマーと充填剤を含む配合物の調製方法
WO2022125675A1 (en) 2020-12-09 2022-06-16 Beyond Lotus Llc Methods of preparing a composite having elastomer and filler
US20240026094A1 (en) 2020-12-09 2024-01-25 Beyond Lotus Llc Methods of preparing a composite comprising never-dried natural rubber and filler
WO2023107991A1 (en) 2021-12-08 2023-06-15 Beyond Lotus Llc Methods of preparing a composite having resins

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058985A1 (en) 1997-06-23 1998-12-30 Vomm Impianti E Processi S.R.L. A method of producing synthetic rubbers
CN103113597A (zh) * 2013-01-30 2013-05-22 怡维怡材料研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN103600435A (zh) * 2013-08-05 2014-02-26 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769795A (en) * 1956-02-01 1956-11-06 Columbian Carbon Method of compounding carbon black and rubber
US3048559A (en) 1958-12-10 1962-08-07 Columbian Carbon Method of compounding carbon black and rubber
US3079360A (en) * 1958-12-30 1963-02-26 Copolymer Rubber & Chem Corp Process for multi-step coagulation of rubber latices
US3767605A (en) * 1969-08-13 1973-10-23 Copolymer Rubber & Chem Corp Method for preparation of rubber crumb
TW360585B (en) * 1996-04-01 1999-06-11 Cabot Corp Elastomeric compositions and methods and apparatus for producing same
CA2254559A1 (en) * 1998-11-20 2000-05-20 Ahti August Koski Process for hydrophobicizing particles, and their use in dispersions
US6372822B1 (en) 1999-04-16 2002-04-16 Cabot Corporation Methods and apparatus for producing and treating novel elastomer composites
CN101463149B (zh) * 2007-12-19 2011-11-09 北京化工大学 一种耐磨橡胶复合材料的制备方法
JP5651062B2 (ja) * 2011-03-31 2015-01-07 東洋ゴム工業株式会社 ゴム組成物およびその製造方法、ならびに空気入りタイヤ
CN103159990B (zh) * 2011-12-08 2014-12-31 中国石油化工股份有限公司 一种母炼胶及其制备方法和硫化橡胶及其应用
CN103113579B (zh) * 2013-02-21 2014-08-20 华东理工大学 聚谷氨酸衍生物及其水凝胶和制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058985A1 (en) 1997-06-23 1998-12-30 Vomm Impianti E Processi S.R.L. A method of producing synthetic rubbers
CN103113597A (zh) * 2013-01-30 2013-05-22 怡维怡材料研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN103600435A (zh) * 2013-08-05 2014-02-26 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3031591A4
WANG MJ; WOLFF. S, R.C.T [J, vol. 65, 1992, pages 715
WANG W; NANSE G; VIDAL, A ET AL., K. G. K. [J, vol. 47, 1994, pages 493

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041753A1 (zh) * 2015-09-11 2017-03-16 怡维怡橡胶研究院有限公司 一种橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Also Published As

Publication number Publication date
CN103600435A (zh) 2014-02-26
US20160168341A1 (en) 2016-06-16
KR101793358B1 (ko) 2017-11-02
ES2727515T3 (es) 2019-10-16
EP3031591A1 (en) 2016-06-15
CN103600435B (zh) 2016-04-27
US9758627B2 (en) 2017-09-12
EP3031591A4 (en) 2017-04-12
KR20160009587A (ko) 2016-01-26
JP2016527369A (ja) 2016-09-08
JP6397022B2 (ja) 2018-09-26
EP3031591B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2015018282A1 (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
WO2015018278A1 (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
JP6397021B2 (ja) ゴムマスターバッチの連続的製造方法
CN103113597B (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
WO2015018279A1 (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
US9096735B2 (en) Elastomer composite with silica-containing filler and methods to produce same
CA2792799C (en) Process for the production of rubber ionomers and polymer nanocomposites
WO2017041754A1 (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
WO2015018281A1 (zh) 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
WO2017041753A1 (zh) 一种橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
JP2019112586A (ja) ゴムウエットマスターバッチの製造方法、およびゴム組成物の製造方法
WO2019130803A1 (ja) ゴム組成物および空気入りタイヤ、ならびにゴムウエットマスターバッチの製造方法およびゴム組成物の製造方法
AU2013202321A1 (en) Elastomer composite with silica-containing filler and methods to produce same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157034586

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016532220

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014834505

Country of ref document: EP