WO2015016521A1 - 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법 - Google Patents

알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법 Download PDF

Info

Publication number
WO2015016521A1
WO2015016521A1 PCT/KR2014/006626 KR2014006626W WO2015016521A1 WO 2015016521 A1 WO2015016521 A1 WO 2015016521A1 KR 2014006626 W KR2014006626 W KR 2014006626W WO 2015016521 A1 WO2015016521 A1 WO 2015016521A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
group
transition metal
metal complex
Prior art date
Application number
PCT/KR2014/006626
Other languages
English (en)
French (fr)
Inventor
홍순혁
강병준
김재운
김건순
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140090156A external-priority patent/KR101614887B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2015016521A1 publication Critical patent/WO2015016521A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • C07D207/4042,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to a process for preparing amides and imides from alcohols and nitrogen-containing compounds, and more particularly, using a catalyst composition comprising a transition metal complex and N-heterocyclic carbene or using N-heterocyclic carbene.
  • the present invention relates to a process for preparing amides and imides from alcohols and nitrogen-containing compounds using transition metal complexes as catalysts.
  • the amide group is a functional group included in a number of intermediates or end targets in the pharmaceutical industry in order to produce a compound having the amide group (hereinafter referred to as an amide compound).
  • the amide compound is produced by hydration of a nitrile group in an aqueous medium.
  • To prepare an amide compound by condensing an organic carboxylic acid with an amine, activating the organic carboxylic acid with an acid chloride and then reacting with an amine or using a dip derivative to induce a direct reaction between the carboxylic acid and the amine. And the like are known.
  • the synthesis route can eliminate the drawback of having to consume a large amount of unnecessary chemicals to prepare acid chlorides according to the synthesis route, or to produce amide compounds and to produce toxic by-products such as hydrogen chloride. From the point of view of atomic economics, there is no known method for producing a more practical amide that follows a highly efficient reaction path free of by-products other than products, and there is a need for continuous research to meet them.
  • the present invention is a novel method for producing an amide compound that does not produce by-products from alcohol and nitrile through a hydrogen transfer reaction using a catalyst composition comprising a transition metal complex and N-heterocyclic carbene.
  • the present invention also provides a novel method for preparing an imide compound from an alcohol and nitrile having two hydroxy groups in one molecule by using a catalyst composition comprising the transition metal complex and N-heterocyclic carbene.
  • the present invention is a novel process for producing polyamide by polymerization of a polyhydric alcohol and nitrile having a plurality of cyano groups in one molecule using a catalyst composition comprising the transition metal complex and N-heterocyclic carbene.
  • a catalyst composition comprising the transition metal complex and N-heterocyclic carbene.
  • the present invention also provides a transition metal complex catalyst comprising N-heterocyclic carbene as a ligand for preparing an amide or imide from any one nitrogen-containing compound selected from alcohol, amine, nitrile and azide.
  • the present invention is obtained by reacting an alcohol with nitrile, reacting a base with a mixture of a transition metal complex and an N-heterocyclic carbene precursor, or reacting an N-heterocyclic carbene precursor with a mixture of a transition metal complex and a base.
  • the present invention also includes an N-heterocyclic carbene-transition metal complex obtained by the reaction of an alcohol and nitrile, the reaction of N-heterocyclic carbene and a transition metal complex obtained by reacting a base with an N-heterocyclic carbene precursor. It provides a method for producing an amide or imide by the catalyst composition.
  • the transition metal complex may include at least one of hydrogen or deuterium as a ligand.
  • the base may form N-heterocyclic carbene by deprotonation from an N-heterocyclic carbene precursor.
  • the catalyst composition may be used in the range of 0.1 to 30 mol% of the small amount of reactant in alcohol or nitrile based on the content of the transition metal complex.
  • the present invention also provides a method for preparing an imide compound by reacting nitrile with diol containing two hydroxyl groups (OH) in one molecule using a catalyst composition comprising the transition metal complex and N-heterocyclic carbene. to provide.
  • the present invention using a catalyst composition comprising the transition metal complex and N-heterocyclic carbene reacts an alcohol having two or more hydroxy groups in one molecule and a nitrile having two or more cyano groups in one molecule.
  • the present invention is obtained by reacting a base with a mixture of a transition metal complex and a N-heterocyclic carbene precursor, or by reacting an N-heterocyclic carbene precursor with a mixture of a transition metal complex and a base.
  • This provides a catalyst composition for producing an amide or imide.
  • the present invention also provides a catalyst composition for preparing an amide or imide using alcohol and nitrile as a reactant, including an N-heterocyclic carbene-transition metal complex obtained by reaction of an N-heterocyclic carbene with a transition metal complex.
  • the present invention is a transition metal complex catalyst comprising a N-heterocyclic carbene as a ligand, an amide or imide is prepared by using a alcohol and any one nitrogen-containing compound selected from nitrile, azide, amine as a reactant It provides a transition metal complex catalyst for.
  • a method of preparing an amide compound composed of only components contained in alcohol and nitrile without by-products generated from alcohols and nitriles, which are easily accessible compounds in the manufacturing process, or an imide compound generating only hydrogen as a by-product can provide a manufacturing method of.
  • a novel production method for producing an imide compound from an alcohol and nitrile having two hydroxy groups in one molecule can be provided.
  • the present invention can also provide a novel production method for producing polyamide by polymerization of a polyhydric alcohol and nitrile having a plurality of cyano groups in one molecule.
  • the present invention can provide a transition metal complex catalyst for preparing an amide or imide by using an alcohol, any one nitrogen-containing compound selected from nitrile, azide, amine as a reactant.
  • Example 1 shows nuclear magnetic resonance (NMR) spectra of amide compounds obtained according to Example 3 of the present invention.
  • Figure 2 shows the nuclear magnetic resonance (NMR) spectrum of the amide compound obtained in accordance with Example 12 of the present invention.
  • Example 3 shows nuclear magnetic resonance (NMR) spectra of amide compounds obtained in accordance with Example 17 of the present invention.
  • NMR nuclear magnetic resonance
  • the present invention is obtained by reacting an alcohol with nitrile, reacting a base with a mixture of a transition metal complex and an N-heterocyclic carbene precursor, or reacting an N-heterocyclic carbene precursor with a mixture of a transition metal complex and a base.
  • a method for preparing an amide or imide according to Scheme 1 below with a catalyst composition is provided.
  • the alcohol may be a primary alcohol having two or more hydrogen atoms bonded to a carbon atom to which a hydroxyl group (OH) is bonded.
  • the substituent Ra is hydrogen, deuterium, an alkyl group of 1 to 30 carbon atoms, an aryl group of 5 to 50 carbon atoms, an arylalkyl group of 5 to 50 carbon atoms, an alkenyl group of 2 to 30 carbon atoms, substituted or unsubstituted carbon atoms of 2 to 30 20 alkynyl groups, C3-30 cycloalkyl groups, C5-30 cycloalkenyl groups, C1-30 alkoxy groups, C6-30 aryloxy groups, heteroatoms O, N or S2 with C2 It may be any one selected from to 50 heteroaryl groups.
  • the substituent Ra may be hydrogen, deuterium, methyl, ethyl, propyl, butyl, 1-methylpropyl, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, methoxyphenyl, furyl, dimethylaminomethyl, This is not restrictive.
  • Rn substituted in the nitrile is an alkyl group having 1 to 30 carbon atoms, an aryl group having 5 to 50 carbon atoms, an arylalkyl group having 5 to 50 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 20 carbon atoms.
  • the substituent Rn may be methyl, ethyl, propyl, butyl, 1-methylpropyl, adamantyl, cyclopentyl, cyclohexyl, phenyl, methoxyphenyl, and the like, but is not limited thereto.
  • the aryl group used in the compound of the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and includes a single or fused ring system containing 5 to 7 members, preferably 5 or 6 members,
  • a substituent on the aryl group may be fused with a neighboring substituent (fused) with each other to further form a ring.
  • aryl examples include phenyl, naphthyl, biphenyl, terphenyl, anthryl, indenyl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, peryleneyl, chrysenyl, naphthaseyl, fluorane Tenyl and the like, but are not limited thereto.
  • At least one hydrogen atom of the aryl group may be a deuterium atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a silyl group, an amino group (-NH 2 , -NH (R), -N (R ') (R'') , R, R 'and R "are independently of each other an alkyl group having 1 to 10 carbon atoms), amidino group, hydrazine group, hydrazone group, carboxyl group, sulfonic acid group, phosphoric acid group, alkyl group having 1 to 24 carbon atoms, halogenation having 1 to 24 carbon atoms Alkyl group, alkenyl group having 1 to 24 carbon atoms, alkynyl group having 1 to 24 carbon atoms, heteroalkyl group having 1 to 24 carbon atoms, aryl group having 6 to 24 carbon atoms, arylalkyl group having 6 to 24 carbon atoms,
  • the heteroaryl group which is a substituent used in the compound of the present invention is a heteroaromatic organic radical having 2 to 24 carbon atoms which may include 1 to 4 heteroatoms selected from N, O, P or S in each ring in the aryl group. Meaning, the rings may be fused to form a ring. At least one hydrogen atom of the heteroaryl group may be substituted with the same substituent as in the case of the aryl group.
  • the aromatic heterocyclic compound refers to a compound in which an O, N, or S is substituted as a hetero atom instead of a carbon atom in the aromatic ring compound, and the aromatic rings may form a fused ring.
  • the aromatic heterocyclic ring may have a 5 to 7 atom ring, for example, thiophene when N is included in the aromatic heterocyclic compound, pyridine, quinoline, etc. when N is included, and O is included. Furan and the like.
  • Alkyl groups which are substituents used in the present invention represent saturated, optionally substituted linear or branched hydrocarbon chains, preferably hydrocarbon chains of 1 to 30 carbon atoms.
  • Specific examples of the alkyl group include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, and the like, and at least one hydrogen atom of the alkyl group is an atom of the aryl group. Substituents similar to the above can be substituted.
  • the arylalkyl represents an alkyl group substituted by at least one aryl group on a hydrocarbon chain, the aryl group is the same as defined above, examples of the arylalkyl include benzyl and diphenylmethyl, at least one hydrogen atom of the arylalkyl group May be substituted with the same substituent as in the case of the aryl group.
  • the cycloalkyl group is a saturated single or polycyclic hydrocarbon group having 3 to 30 carbon atoms, and may include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
  • One or more hydrogen atoms may be substituted with the same substituent as in the case of the aryl group.
  • the alkoxy group is a functional group having an oxygen atom bonded to the alkyl or cycloalkyl group, and specific examples thereof include methoxy, ethoxy, propoxy, isobutyloxy, sec-butyloxy, pentyloxy and iso-amyl. Oxy, hexyloxy, etc. are mentioned, At least one hydrogen atom of the said alkoxy group can be substituted by the same substituent as the case of the said aryl group.
  • the transition metal complex that can be used in the catalyst composition in the present invention may have a structural formula represented by M (A) m (L) n.
  • A is the same as or different from each other, and independently of each other, hydrogen, deuterium, halogen, cyano group, alkyl group of 1 to 30 carbon atoms, aryl group of 5 to 50 carbon atoms, arylalkyl group of 5 to 50 carbon atoms, 2 carbon atoms Alkenyl group having 30 to 30 carbon atoms, alkynyl group having 2 to 20 carbon atoms, cycloalkyl group having 3 to 30 carbon atoms, cycloalkenyl group having 5 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, heterogeneous reactor It is any one selected from a heteroaryl group having 2 to 50 carbon atoms having O, N or S,
  • L is the same as or different from each other as a neutral ligand, and independently from each other, L include a phosphine, a carbon monoxide, an alkyl group having 1 to 30 carbon atoms or an aryl group having 5 to 50 carbon atoms including an alkyl group having 1 to 30 carbon atoms or an aryl group having 5 to 50 carbon atoms. It is any one selected from an amine, an alkyl group having 1 to 30 carbon atoms, or a nitrile containing an allyl group having 5 to 50 carbon atoms, an aromatic heterocyclic compound having 2 to 50 carbon atoms having heteroatoms O, N, or S,
  • M is any one metal selected from ruthenium, iron, cobalt, rhodium, iridium,
  • M is an integer selected from 0 to 2
  • n is an integer selected from 2 to 6.
  • the transition metal complex used as the catalyst composition may include at least one of hydrogen or deuterium as a ligand.
  • the transition metal complex having a structural formula represented by M (A) m (L) n may include at least one of hydrogen or deuterium as an element corresponding to 'A', and the hydrogen or deuterium is a transition metal.
  • the transition metal hydride, bonded to (M) may have a better effect as a catalyst in the reaction for preparing the amide or imide compound through a hydrogen transfer reaction.
  • any compound represented by M (A) m (L) n can be used without limitation, but preferably includes one hydrogen or a deuterium ligand.
  • Ruthenium hydride or ruthenium dihydride containing two of said hydrogen or deuterium ligands can be used.
  • RuH 2 (CO) ruthenium hydride or RuH 2 (CO) (PPh 3 ) 3 (CAS: 25360-32-1), RuH 2 (PPh 3 ) 4 (CAS: 25360-32-1), as the ruthenium dihydride RuHCl (CO) (PPh 3 ) 3 (CAS: 1295649-40-9), RuHCl [P (C 6 H 5 ) 3 ] 3 OH CH 3 C 6 H 5 (CAS: 55102-19-7) can be used
  • ruthenium complexes having no hydrogen or deuterium include RuCl 2 (PPh 3) 3 (CAS: 15529-49-4), RuCl (C 10 H 15 ) [P (C 6 H 5 ) 3 ] 2 (CAS: 92364). -49-4), Ru (CO) 2 (PPh 3 ) 2 (CAS: 14564-35-3) and the like can be used.
  • the N-heterocyclic carbene precursor can be used without limitation to the type as long as it can produce N-heterocyclic carbene, a carbene derivative having a heterocyclic ring containing nitrogen through a deprotonation reaction with a base.
  • it may be a compound represented by the formula (A).
  • X 1 is any one selected from O, S, NR 2 , CR 3 , and CR 4 R 5 ,
  • the bond between X 1 and Y 1 , Y 1 and Y 2 , Y 2 and Y 3 may each have a single bond or a double bond
  • Y 1 to Y 3 may be the same as or different from each other, and each one selected from N, NR 6 , CR 7 , and CR 8 R 9 ,
  • n is an integer selected from 0 to 3, and when m is 2 or more, a plurality of Y 2 may be the same or different from each other, and in this case, a bond between each Y 2 may be a single bond or a double bond,
  • R 1 to R 9 is hydrogen, deuterium, halogen, alkyl group of 1 to 30 carbon atoms, aryl group of 5 to 50 carbon atoms, arylalkyl group of 5 to 50 carbon atoms, alkenyl group of 2 to 30 carbon atoms, substituted or unsubstituted carbon atoms Alkynyl group having 2 to 20 carbon atoms, cycloalkyl group having 3 to 30 carbon atoms, cycloalkenyl group having 5 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, heteroatoms having O, N or S Any one selected from a heteroaryl group having 2 to 50 carbon atoms, R 1 and R 2 is not hydrogen or deuterium;
  • X ⁇ is a monovalent anion that balances the charge with the cation of the N-heterocyclic carbene precursor.
  • X - is a halogen anion, sulfonic acid anion a phosphate anion, hexafluoro (PF 6 (RSO 3 - - , R is alkyl, aryl, cycloalkyl, etc.), anion tetrafluoroborate (BF 4) - ), Monovalent anion such as triflate anion (-OTf).
  • R 3 when X 1 is a carbon atom including a substituent R 3 , preferably, R 3 may be a substituent other than hydrogen or deuterium, and at least one of R 4 and R 5 may be hydrogen. And substituents other than deuterium.
  • N-heterocyclic carbene precursor represented by Formula A may be deprotonated by a base to form N-heterocyclic carbene.
  • the deprotonation reaction by the base of the N-heterocyclic carbene precursor may be represented by the following Scheme 2.
  • R 1 , X 1 , Y 1 to Y 3 , m and X are the same as previously defined, and in Scheme 2, B: is a base, which deprotonates a proton bound to carbon between X 1 and a nitrogen atom deprotonation to produce the N-heterocyclic carbene.
  • the N-heterocyclic carbene precursor may be dehydrogenated by reaction with a base to produce any one of N-heterocyclic carbene selected from the following Chemical Formulas A-1 to A-13.
  • R ' is hydrogen, deuterium, halogen, alkyl group of 1 to 30 carbon atoms, aryl group of 5 to 50 carbon atoms, arylalkyl group of 5 to 50 carbon atoms, alkenyl group of 2 to 30 carbon atoms, substituted or unsubstituted carbon of 2 to 20
  • each R ′ may be the same or different.
  • N-heterocyclic carbene precursor in the present invention may be dehydrogenated by reaction with a base to generate any one of N-heterocyclic carbene selected from Formulas A-20 to A-37. have.
  • a base for dehydrogenating the N-heterocyclic carbene precursor to generate N-heterocyclic carbene may deprotonate a proton bound to carbon between X 1 and a nitrogen atom in the N-heterocyclic carbene precursor.
  • an alkali metal hydride As long as it has a basic degree, it can be used without limitation, Preferably it is an alkali metal hydride; Hydroxides of alkali metals; Alkoxy salts of alkali metals; Alkali metal salts of primary amines or secondary amines in which hydrogen bonded to a nitrogen atom is deprotonated; Hydrogen bonded to a carbon atom may be any one selected from deprotonated alkyl anions having 1 to 30 carbon atoms, cycloalkyl anions having 3 to 40 carbon atoms or aryl anions having 6 to 30 carbon atoms.
  • the base may be NaH, KH, LiH, etc. as the alkali metal hydride, KOH, NaOH, etc. may be used as the hydroxide of the alkali metal, KOtBu may be used as the alkoxy salt of the alkali metal, and the nitrogen atom
  • an alkali metal salt of ammonia primary amine or secondary amine dehydrogenated to hydrogen, NaNH 2 , LDA (Lithium diisopropylamide) and the like can be used, and hydrogen bonded to carbon atoms is deprotonated.
  • MeLi, n-BuLi, t-BuLi, PhLi and the like can be used as the alkali metal salt of the anion or the cycloalkyl anion having 3 to 40 carbon atoms or the aryl anion having 6 to 30 carbon atoms.
  • the alcohol and any one nitrogen-containing compound selected from nitrile, azide, and amine may be used in a molar ratio of 1: 2 to 2: 1 in the case of preparing an amide compound.
  • the catalyst composition used in the present invention may be used in the range of 0.1 to 30 mol% of the small amount of reactant in alcohol or nitrile based on the content of the transition metal complex, preferably in the range of 1 to 20 mol%. Can be used.
  • the content of the transition metal complex and the N-heterocyclic carbene precursor in the catalyst composition may be used in the range of 1: 2 to 2: 1, preferably in the range of 1: 1.2 to 1.2: 1. .
  • the base used to deprotonate the N-heterocyclic carbene precursor may use 1 to 10 equivalents (equv.) As a molar ratio to the content of the N-heterocyclic carbene precursor, preferably 1 to 5 equivalents Can be used.
  • the catalyst composition used in the present invention may include a solvent.
  • the solvent dissolves at least one or more of the transition metal complex, base, N-heterocyclic carbene precursor, or homogenizes the reaction through dissolution of the N-heterocyclic carbene obtained by reaction of the base with the N-heterocyclic carbene precursor. Can help.
  • Acetate esters such as methyl acetate, ethyl acetate, and propyl acetate
  • Nitriles such as acetonitrile
  • Ethers such as tetrahydrofuran, dioxane and diethyl ether
  • Aromatic hydrocarbons such as toluene, xylene, chlorobenzene, benzene and mesitylene
  • Aliphatic hydrocarbons such as hexane and cyclohexane
  • Aprotic polar solvents such as dimethylmethyl and dimethylacetoamide
  • Halogenated aliphatic hydrocarbons such as chloroform and dichloromethane
  • Polyethylene glycols such as polyethylene glycol-400 (PEG400); Or aliphatic carboxylic acids such as glacial acetic acid, and the solvent can be used alone or as a mixed solvent mixed in an arbitrary ratio, preferably toluene can be used.
  • a solvent can also be used in reaction of the said alcohol and nitrile.
  • the solvent used may be the same kind of solvent that may be included in the catalyst composition described above, and the content thereof may be appropriately selected according to the reaction conditions or the content of the catalyst.
  • reaction temperature for preparing the amide or imide compound using the catalyst composition may vary depending on the reflux temperature of the solvent used, it may be used in the range of 0 to 250 °C, preferably room temperature (25 °C) to 150 °C can be reacted.
  • room temperature 25 °C
  • amides or imides can be prepared at 80 to 120 ° C.
  • the present invention also includes an N-heterocyclic carbene-transition metal complex obtained by the reaction of an alcohol and nitrile, the reaction of N-heterocyclic carbene and a transition metal complex obtained by reacting a base with an N-heterocyclic carbene precursor. It provides a method for producing an amide or imide by the catalyst composition.
  • the N-heterocyclic carbene precursor having the structure of Formula A generates N-heterocyclic carbene with a base, and the transition metal complex used as the catalyst composition in the present invention with the N-heterocyclic carbene.
  • the N-heterocyclic carbene-transition metal complex obtained by this reaction can act as a catalyst for producing the amide compound or the imide compound.
  • N-heterocyclic carbene transition metal complex is represented by N-heterocyclic carbene and M (A) m (L) n obtained by dehydrogenation of the N-heterocyclic carbene precursor represented by Formula A in the present invention.
  • reaction of the transition metal complex can be represented by the formula (C).
  • A is the same as or different from each other, and independently from each other, hydrogen, deuterium, halogen, cyano group, alkyl group having 1 to 30 carbon atoms, aryl group having 5 to 50 carbon atoms, arylalkyl group having 5 to 50 carbon atoms, and having 2 to 30 carbon atoms Alkenyl group, C2-C20 alkynyl group, C3-C30 cycloalkyl group, C5-C30 cycloalkenyl group, C1-C30 alkoxy group, C6-C30 aryloxy group, Heterogeneous reactor O, N Or a heteroaryl group having 2 to 50 carbon atoms having S,
  • L is the same as or different from each other as a neutral ligand, and independently from each other, L include a phosphine, a carbon monoxide, an alkyl group having 1 to 30 carbon atoms or an aryl group having 5 to 50 carbon atoms including an alkyl group having 1 to 30 carbon atoms or an aryl group having 5 to 50 carbon atoms. It is any one selected from an amine, an alkyl group having 1 to 30 carbon atoms, or a nitrile containing an allyl group having 5 to 50 carbon atoms, an aromatic heterocyclic compound having 2 to 50 carbon atoms having heteroatoms O, N, or S,
  • M is any one metal selected from ruthenium, iron, cobalt, rhodium, iridium,
  • M is an integer selected from 0 to 2
  • n is an integer selected from 2 to 6
  • the NHC is N-heterocyclic carbene represented by Formula A ', k is 1 or 2.
  • X 1 is any one selected from O, S, NR 2 , CR 3 , and CR 4 R 5 ,
  • the bond between X 1 and Y 1 , Y 1 and Y 2 , Y 2 and Y 3 may each have a single bond or a double bond
  • Y 1 to Y 3 may be the same as or different from each other, and each one selected from N, NR 6 , CR 7 , and CR 8 R 9 ,
  • n is an integer selected from 0 to 3, and when m is 2 or more, a plurality of Y 2 may be the same or different from each other, and in this case, a bond between each Y 2 may be a single bond or a double bond,
  • R 1 to R 9 are the same as or different from each other, and independently from each other, hydrogen, deuterium, halogen, an alkyl group having 1 to 30 carbon atoms, an aryl group having 5 to 50 carbon atoms, an arylalkyl group having 5 to 50 carbon atoms, and having 2 to 30 carbon atoms Alkenyl group, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, cycloalkyl group having 3 to 30 carbon atoms, cycloalkenyl group having 5 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, Any heteroaryl group having 2 to 50 carbon atoms having O, N or S as a hetero atom, and R 1 and R 2 are not hydrogen or deuterium.
  • R 3 when X 1 is a carbon atom including a substituent R 3 , preferably, R 3 may be a substituent other than hydrogen or deuterium, and at least one of R 4 and R 5 may be hydrogen. And substituents other than deuterium.
  • N-heterocyclic carbene (NHC) in the N-heterocyclic carbene transition metal complex catalyst represented by Chemical Formula C may be any one selected from the following Chemical Formulas A-1 to A-13.
  • R ' is Hydrogen, deuterium, halogen, alkyl group having 1 to 30 carbon atoms, aryl group having 5 to 50 carbon atoms, arylalkyl group having 5 to 50 carbon atoms, alkenyl group having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, C3-C30 cycloalkyl group, C5-C30 cycloalkenyl group, C1-C30 alkoxy group, C6-C30 aryloxy group, C2-C50 heteroaryl having a hetero atom O, N or S Any one selected from the group,
  • n is an integer from 1 to 8
  • each R ′ may be the same or different.
  • the N-heterocyclic carbene ligand binding to the transition metal complex may be any one selected from Formulas A-20 to A-37 as described above.
  • the transition metal complex represented by Chemical Formula C may be used as a catalyst for preparing an amide or an imide using an alcohol, any one nitrogen-containing compound selected from nitrile, azide, and amine as a reactant.
  • the ligand A in the transition metal complex represented by Formula C in the present invention may include hydrogen or deuterium.
  • A may be hydrogen or deuterium, and m may be 2.
  • the transition metal complex represented by Formula C in the present invention includes one N-heterocyclic carbene (NHC)
  • the transition metal may be ruthenium, in which case the neutral ligand is a phosphine comprising an alkyl group having 1 to 30 carbon atoms or an aryl group having 5 to 50 carbon atoms, or carbon monoxide. It may include.
  • the N-heterocyclic carbene-transition metal complex comprises N-heterocyclic carbene from the N-heterocyclic carbene precursor with a base and a reaction of the resulting N-heterocyclic carbene with a transition metal complex.
  • the product may be separated through each step and finally used as a reactant in the next step, or finally produced, or an N-heterocyclic carbene precursor, transition metal complex and base It can be produced and produced immediately in situ (in situ) without going through the step of separating the intermediate from the catalyst composition comprising a.
  • N-heterocyclic carbene-transition metal complex is nitrile from alcohol to prepare an amide compound or an imide compound from the alcohol and any one nitrogen-containing compound selected from nitrile, azide, and amine in the present invention. It is confirmed that the hydrogen transfer process through the cyano group.
  • [Ru] in Scheme 3 means a portion containing only two hydrogens in the N-heterocyclic carbene-transition metal complex in which N-heterocyclic carbene (NHC) is bonded to ruthenium as a transition metal.
  • a ruthenium complex in which a hydride (H) in a ruthenium dihydrate is bonded to a nitrogen atom and a carbon atom of a cyano group is formed (step A), and then the alcohol is ruthenium Is bonded to hydrogen in the alcohol toward ruthenium (step B), alcohol is bound to ruthenium in aldehyde form (step C), and an amide bond is formed and ruthenium is bonded to oxygen of the carbonyl group (step D)
  • the amide escapes from the catalyst cycle and the ruthenium dihydrate can be combined with fresh nitrile to produce the next amide compound.
  • the anion (X ⁇ ) in the N-heterocyclic carbene precursor which is a component of the catalyst composition of the present invention, does not significantly affect the reaction irrespective of its kind, and the structure of the corresponding transition metal complex cation and the kind of substituents, It can be predicted that the production activity of the amide or imide compound in the present invention may vary depending on the type of transition metal.
  • the present invention is to prepare an imide compound by using a diol containing two hydroxyl groups (OH) in one molecule as the alcohol and reacts with any one nitrogen-containing compound selected from nitrile, azide, amine It may provide a method.
  • the imide compound may be prepared by the following Scheme 4 from nitrile and diol.
  • the Rn of the nitrile may be the same as the Rn of the nitrile used in the preparation of the amide compound.
  • Rb in the diol is a linking group that connects carbon having a hydroxy group, each having an alkylene group having 1 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, an alkylene group having 1 to 10 carbon atoms, and an arylene group having 6 to 18 carbon atoms, respectively. It may be any one selected from a linked arylene-alkylene group, a heteroarylene group having 2 to 30 carbon atoms, and a silylene group having 1 to 30 carbon atoms.
  • ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, glycerol, (4-hydroxymethyl-phenyl) methanol, etc. may be used as the diol which may be used in the present invention.
  • the content ratio of any one nitrogen-containing compound and diol selected from nitrile, azide, amine may have a molar ratio of 1: 1 to 1: 1.4, preferably 1: 1 to 1: It may have a range of 1.2, more preferably 1: 1 to 1: 1.1.
  • hydrogen may be generated as a by-product.
  • the hydrogen is easily separated by being in a gaseous state under most conditions, and thus does not pose a significant obstacle to the practice of the present invention.
  • a polyol containing two or more hydroxyl groups (OH) in one molecule is used as the alcohol, and a polyamide is formed by polymerization by using one having two or more cyano groups in one molecule as nitrile. It can provide a method for producing.
  • the polyamide may be prepared by the following Scheme 5.
  • Rc of the nitrile is a linking group that connects carbon having a hydroxy group, an alkylene group having 1 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, an alkylene having 1 to 10 carbon atoms, and an aryl having 6 to 18 carbon atoms.
  • the arylene group may be any one selected from an arylene-alkylene group, a heteroarylene group having 2 to 30 carbon atoms, and a silylene group having 1 to 30 carbon atoms.
  • Rb of the alcohol may be the same as Rb in the diol used in the method for preparing the imide, and n may be an integer of 3 to 5,000,000.
  • the ratio of the nitrile and the polyol having a plurality of cyano groups may be used in a molar ratio of 1.2: 1 to 1: 1.2, preferably a ratio of 1.1: 1 to 1: 1.1.
  • the temperature conditions in the manufacturing method of the said imide compound or the manufacturing method of a polyimide in this invention can use the same conditions as the manufacturing method of an amide compound.
  • the present invention is obtained by reacting a base with a mixture of a transition metal complex and a N-heterocyclic carbene precursor, or by reacting an N-heterocyclic carbene precursor with a mixture of a transition metal complex and a base.
  • a catalyst composition for preparing an amide or imide is provided as a reactant.
  • the composition obtained by preparing and reacting with a transition metal complex corresponds to the catalyst in the reaction.
  • the present invention also provides a catalyst composition for preparing an amide or imide using alcohol and nitrile as a reactant, including an N-heterocyclic carbene-transition metal complex obtained by reaction of an N-heterocyclic carbene with a transition metal complex.
  • N-heterocyclic carbene-transition metal complex obtained by the reaction of the N-heterocyclic carbene and the transition metal complex obtained by the deprotonation reaction of the N-heterocyclic carbene precursor is added to a catalyst for preparing the amide or imide. It means that.
  • amide or imide preparation was performed to obtain NMR spectra, followed by 1 H NMR analysis using a Bruker DPX300, AMX400, Agilent 400-MR, JEOL ECA400, or JEOL ECA400SL instrument.
  • the amide or imide obtained in the present invention was transferred to an NMR tube in a glove box, and CDCl 3 or benzene-d 6 was used as a solvent.
  • dihydridocarbonyltristriphenylphosphine ruthenium (5 mol%), 1,3-diisopropylimidazolium bromide (5 mol%), hydrogenated in a 4 ml glass bottle 2.4 mg (20 mol%) of sodium (NaH), 0.6 ml of toluene, 65.5 ⁇ l (0.5 mmol) of 3-phenylpropionitrile, 65.8 ⁇ l (0.55 mmol) of 2-phenylethanol are added.
  • the vial is capped and completely sealed with Teflon film and removed from the glovebox. After reacting the mixture for 48 hours at 110 ° C., the lid is opened and 1 ml of dichloromethane is added to terminate the reaction.
  • the obtained amide compound was confirmed by GC to have a yield of 90%.
  • Example 1 shows the type of nitrile and the yield of the amide compound.
  • the amide compound obtained in Example 3 was identified as a novel compound by 1 H NMR, 13 C NMR (CDCl 3 ) and mass spectrometry as shown below, and FIG. 1 shows the 1 H NMR.
  • Example 2 shows the type of alcohol and the yield of the amide compound.
  • Example 12 the amide compound obtained in Example 12 and Example 17 was a novel compound was confirmed by 1 H NMR, 13 C NMR (CDCl 3 ) and mass spectrometry as shown below, in Figure 2 1 of Example 12 H NMR is shown, and FIG. 3 shows the 1 H NMR of Example 17.
  • FIG. 1 H NMR 13 C NMR (CDCl 3 )
  • the nitrile (0.5 mmol), diol (0.55 mmol) is used in the ratio, and the transition metal complex in the catalyst system used is shown in Table 5 below, and the reaction time is 48 hours. After completion of the reaction, it is confirmed that two equivalents of hydrogen are generated as the imide compound and by-products.
  • Transition metal complex preparation example 1 (Formula 100)
  • RuH 2 (CO) (PPh 3 ) 3 (0.576 g, 0.62 mmol) and 1,3-dimethylimidazolium iodide (0.5 g, 2.24 mmol) in a glovebox filled with argon gas to prepare the transition metal complex of Formula 100
  • sodium hydride (0.141 g, 5.96 mmol) were administered to a 100 mL Schlenk flask containing 20 mL of purified toluene.
  • reaction was carried out by stirring at 95 ° C. for 24 hours, and then the Schlenk flask was removed from the glove box, the temperature was lowered to room temperature, and the solvent was removed by a vacuum pump.
  • the yellow solid precipitate was filtered in an inert gas atmosphere to obtain a crude product in a yield of 20% (0.1 g).
  • the crude product is dissolved in benzene and then the insoluble solid is removed and the benzene is evaporated to obtain a purified compound.
  • a compound of Chemical Formula 101 was prepared in the same manner as in Preparation Example 1, except that 1,3-diisopropylimidazolium iodide was used as the reactant. (Yield 40%)
  • a compound of Chemical Formula 102 was prepared in the same manner as in Preparation Example 1, except that 1,3-dicyclohexylimidazolium iodide was used as the reactant. (Yield 22%)
  • Example 29 The reaction was carried out in the same manner as in Example 29, except that the amide was obtained in a yield of 90% using the transition metal complex catalyst of Formula 101 as a catalyst.
  • Example 29 In the same manner as in Example 29, an amide was prepared, using a transition metal complex catalyst of formula 102 as a catalyst, toluene as a reaction solvent, benzylamine and 2-phenylethanol as reactants, and a reaction time of 110 ° C. After stirring for 24 hours, the amide was obtained in a yield of 85%.
  • the reaction was carried out in the same manner as in Example 32, except that 4-methoxy benzylamine and 2-phenylethanol were used as reactants, and the reaction time was stirred at 110 ° C. for 24 hours to obtain an amide in a yield of 99%.
  • the reaction was carried out in the same manner as in Example 32, except that 1-hexylamine and 2-phenylethanol were used as reactants, and the reaction time was stirred at 110 ° C. for 24 hours to obtain an amide in a yield of 99%.
  • the reaction was carried out as in Example 29, using a transition metal catalyst of formula 101 as a catalyst, benzene as a reaction solvent, benzonitrile (25.8 ⁇ L, 0.25 mmol) and methanol (121.5 ⁇ L, 3.0 mmol) as reactants. And the reaction time was stirred for 3 hours at 90 °C.
  • the solvent used in the column chromatography was prepared using a mixture of diethyl ether and ethyl acetate as a yield 87% yield.
  • Example 29 The reaction was carried out as in Example 29, but a transition metal catalyst of formula 101 was used as a catalyst, toluene was used as a reaction solvent, 3-Phenylpropylazide (80.6 mg, 0.5 mmol) and 2-phenylethanol (71.9 ⁇ L, 0.6 mmol) as reactants. And the reaction time was stirred for 48 hours at 115 °C.
  • Example 29 In the same manner as in Example 29, a transition metal catalyst of formula 101 was used as a catalyst, benzene was used as a reaction solvent, 3-Phenylpropionitrile (32.8 ⁇ L, 0.25 mmol) and cis-1,2-cyclohexanedimethanol (39.7 mg) as reactants. , 0.275 mmol) and the reaction time was stirred at 90 ° C for 24 hours.
  • the solvent used in the column chromatography was prepared in the form of 67% yield using a mixture of hexane and ethyl acetate.
  • the present invention relates to a process for preparing amides and imides from alcohols and nitrogen-containing compounds, wherein the amides and imides obtained by the present invention can be used as intermediates in the pharmaceutical industry and the like, and the polyamides and polys obtained by the present invention
  • the imide can be used as a material for various fields, and thus there is industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법에 관한 것으로, 보다 구체적으로는 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시키거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는 촉매 조성물; 또는 N-헤테로고리 카벤을 포함하는 전이금속 착물 촉매를 이용하여 아미드 및 이미드를 제조하는 방법에 관한 것이다.

Description

알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법
본 발명은 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법에 관한 것으로, 보다 구체적으로는 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매조성물로 이용하거나, 또는 N-헤테로고리 카벤을 포함하는 전이금속 착물을 촉매로서 이용하여 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법에 관한 것이다.
아미드기는 제약산업에 있어서 다수의 중간체 또는 최종 타겟에서 포함되는 관능기로서 상기 아미드기를 가지는 화합물(이하 '아미드 화합물'라고 한다.)을 제조하는 방법으로는 니트릴기를 수성 매체 중에서 수화반응함으로써 대응하는 아미드 화합물을 제조하는 방법, 유기 카복실산을 아민과 축합에 의해 아미드 화합물을 제조하는 방법, 유기 카복실산을 산 염화물로 활성화 시킨 뒤 아민과 반응시키거나, 찍지음 유도체를 이용하여 카복실산과 아민간의 직접 반응을 유도하는 방법 등이 알려져 있다.
하지만, 상기와 같은 아미드 화합물의 경우 화학 및 생화학 시스템에서 중요한 역할을 수행하지만 이의 합성 합성에는 염화 티오닐(thionyl chloride)과 같은 독성 시약이 사용되거나, 부식성 산 혹은 염기 조건이 요구되며, 때에 따라 원치 않는 부산물이 생성되기도 하였다.
또한 상기 아미드의 제조와 관련되어 전이금속 촉매를 사용하여 보다 효율적으로 아미드를 제조하는 방법에 관해 연구가 진행되어 왔는데, 이와 관련한 종래 기술로서, 미국공개특허공보 2013/0096344호(2013.04.18)에서는 수용액 상태에서의 니트릴 유도체의 수화반응을 위해 음이온성 리간드 및 포스핀 리간드를 포함하는 루테늄 촉매를 사용하여 아미드 화합물을 제조하는 방법에 대해 기재되어 있고, Org. Lett., Vol. 14, No. 23, 2012에서는 아자이드와 알코올을 반응물로 사용하고 루테늄 착물을 촉매로서 사용하여 아미드 화합물을 제조하는 방법에 관해 기재되어 있다.
그러나 현재까지도 아미드를 합성하는 과정에서 합성경로에 따라 산염화물을 제조하기 위한 다량의 불필요한 화학물질이 소모되어야 하거나, 또는 아미드 화합물의 생성과 더불어 염화수소와 같은 유독한 부산물이 생성되는 단점을 제거할 수 있으며, 원자 경제적인 관점에서 보았을 때, 생성물 이외에는 부산물이 없는 고 효율적인 반응경로를 따라가는 보다 실용적인 아미드의 제조방법은 아직까지 알려지지 않은 상태이며, 이를 충족시키기 위한 지속적인 연구의 필요성이 요구되고 있다.
상기와 같은 문제점을 해결하기 위해, 본 발명은 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매 조성물을 이용한 수소전달 반응을 통해 알코올과 나이트릴로부터 부산물이 생성되지 않는 아미드 화합물의 신규한 제조방법을 제공한다.
또한, 본 발명은 상기 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매 조성물을 이용하여 하나의 분자내에 두 개의 히드록시기를 갖는 알코올과 나이트릴 로부터 이미드 화합물을 제조하는 신규한 방법을 제공한다.
또한 본 발명은 상기 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매 조성물을 이용하여 다가 알코올과, 하나의 분자내에 복수의 시아노기를 가지는 나이트릴의 중합반응에 의해 폴리아미드를 제조하는 신규한 방법을 제공한다.
또한 본 발명은 알코올과 아민, 나이트릴, 아자이드 중에서 선택되는 어느 하나의 함질소 화합물로부터 아미드 또는 이미드를 제조하기 위한, N-헤테로고리 카벤을 리간드로 포함하는 전이금속 착물 촉매를 제공한다.
본 발명은 알코올과 나이트릴을 반응물로 하며, 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시키거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는 촉매 조성물에 의해 아미드 또는 이미드를 제조하는 방법을 제공한다.
또한 본 발명은 알코올과 나이트릴을 반응물로 하며, N-헤테로고리 카벤 전구체에 염기를 반응시켜 얻어지는 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물을 포함하는 촉매 조성물에 의해 아미드 또는 이미드를 제조하는 방법을 제공한다.
일 실시예로서, 상기 전이금속 착물은 리간드로서 수소 또는 중수소를 적어도 하나이상을 포함할 수 있다.
일 실시예로서, 상기 염기는 N-헤테로고리 카벤 전구체로부터 탈양성자화 반응에 의해 N-헤테로고리 카벤을 형성할 수 있다.
일 실시예로서, 상기 촉매조성물은 전이금속 착물의 함량을 기준으로 알코올 또는 나이트릴 중 적은 함량의 반응물의 0.1 내지 30 몰%의 범위로 사용될 수 있다.
또한, 본 발명은 상기 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매 조성물을 이용하여 하나의 분자내에 수산기(OH)를 2개 포함한 디올과 나이트릴을 반응시킴으로써 이미드 화합물을 제조하는 방법을 제공한다.
또한 본 발명은 상기 전이금속 착물과 N-헤테로고리 카벤을 포함하는 촉매 조성물을 이용하여 하나의 분자내에 2개이상의 히드록시기를 가지는 알코올과, 하나의 분자내에 2개이상의 시아노기를 가지는 나이트릴을 반응시킴으로써, 중합반응에 의해 폴리아미드를 제조하는 방법을 제공한다.
또한 본 발명은 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시켜 얻어지거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물을 제공한다.
또한, 본 발명은 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물을 포함하는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물을 제공한다.
또한, 본 발명은 N-헤테로고리 카벤을 리간드로 포함하는 전이금속 착물 촉매로서, 알코올과, 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 전이금속 착물 촉매를 제공한다.
상기 본 발명에 의하면 제조공정상 접근성이 용이한 화합물들인 알코올과 나이트릴로부터 부산물이 생성되지 않고 알코올과 나이트릴에 포함된 성분만으로 구성되는 아미드 화합물의 제조방법, 또는 부산물로서 수소만을 발생되는 이미드 화합물의 제조방법을 제공할 수 있다.
또한 본 발명에 의하면, 하나의 분자내에 두 개의 히드록시기를 갖는 알코올과 나이트릴로부터 이미드 화합물을 제조하는 신규한 제조방법을 제공할 수 있다.
또한 본 발명은 다가 알코올과, 하나의 분자내에 복수의 시아노기를 가지는 나이트릴의 중합반응에 의해 폴리아미드를 제조하는 신규한 제조방법을 제공할 수 있다.
또한 본 발명은 알코올과, 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 전이금속 착물 촉매를 제공할 수 있다.
도 1을 본 발명의 실시예 3에 따라 얻어지는 아미드 화합물의 핵자기공명(NMR) 스펙트럼을 도시한 것이다.
도 2는 본 발명의 실시예 12에 따라 얻어지는 아미드 화합물의 핵자기공명(NMR) 스펙트럼을 도시한 것이다.
도 3은 본 발명의 실시예17에 따라 얻어지는 아미드 화합물의 핵자기공명(NMR) 스펙트럼을 도시한 것이다.
도 4는 본 발명의 일 실시예에 따라 얻어지는 전이금속 착물 촉매의 핵자기공명(NMR) 스펙트럼을 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시예를 포함한 발명의 구성을 상세히 설명한다. 본 발명의 각 도면에 있어서, 구조물들의 사이즈나 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나 축소하여 도시한 것이고, 특징적 구성이 드러나도록 공지의 구성들은 생략하여 도시하였으므로 도면으로 한정하지는 아니한다. 본 발명의 바람직한 실시예에 대한 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 발명은 알코올과 나이트릴을 반응물로 하며, 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시키거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는 촉매 조성물에 의해 하기 반응식 1에 따르는 아미드 또는 이미드를 제조하는 방법을 제공한다.
[반응식 1]
Figure PCTKR2014006626-appb-I000001
여기서 상기 알코올은 히도록실기(OH)가 결합된 탄소원자에 수소원자가 2개이상 결합된 일차 알코올이 사용될 수 있다.
이 경우에 상기 치환기 Ra는 수소, 중수소, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나일 수 있다.
예시적으로 상기 치환기 Ra는 수소, 중수소, 메틸, 에틸, 프로필, 부틸, 1-메틸프로필, 사이클로프로필, 사이클로펜틸, 사이클로 헥실, 페닐, 메톡시페닐, 퓨릴, 다이메틸아미노메틸 등이 가능하나, 이에 제한되지 않는다.
또한 상기 나이트릴에 치환된 Rn은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나일 수 있다.
예시적으로 상기 치환기 Rn는 메틸, 에틸, 프로필, 부틸, 1-메틸프로필, 아다만틸, 사이클로펜틸, 사이클로헥실, 페닐, 메톡시페닐 등이 가능하나, 이에 제한되지 않는다.
한편, 본 발명의 화합물에서 사용되는 아릴기는 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 5 내지 7원, 바람직하게는 5 또는 6원을 포함하는 단일 또는 융합고리계를 포함하며, 또한 상기 아릴기에 치환기가 있는 경우 이웃하는 치환기와 서로 융합 (fused)되어 고리를 추가로 형성할 수 있다.
상기 아릴의 구체적인 예로 페닐, 나프틸, 비페닐, 터페닐, 안트릴, 인데닐(indenyl), 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.
또한 상기 아릴기 중 하나 이상의 수소 원자는 중수소 원자, 할로겐 원자, 히드록시기, 니트로기, 시아노기, 실릴기, 아미노기 (-NH2, -NH(R), -N(R')(R''), R, R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기), 아미디노기, 히드라진기, 히드라존기, 카르복실기, 술폰산기, 인산기, 탄소수 1 내지 24의 알킬기, 탄소수 1 내지 24의 할로겐화된 알킬기, 탄소수 1 내지 24의 알케닐기, 탄소수 1 내지 24의 알키닐기, 탄소수 1 내지 24의 헤테로알킬기, 탄소수 6 내지 24의 아릴기, 탄소수 6 내지 24의 아릴알킬기, 탄소수 2 내지 24의 헤테로아릴기 또는 탄소수 2 내지 24의 헤테로아릴알킬기로 치환될 수 있다.
본 발명의 화합물에서 사용되는 치환기인 헤테로아릴기는 상기 아릴기에서 각각의 고리 내에 N, O, P 또는 S 중에서 선택된 1 내지 4개의 헤테로 원자를 포함할 수 있는 탄소수 2 내지 24의 헤테로방향족 유기 라디칼을 의미하며, 상기 고리들은 융합(fused)되어 고리를 형성할 수 있다. 그리고 상기 헤테로아릴기 중 하나 이상의 수소 원자는 상기 아릴기의 경우와 마찬가지의 치환기로 치환가능하다.
또한 본 발명에서 방향족 헤테로고리 화합물은 방향족 고리 화합물중에서 탄소원자대신에 이종 원자로 O, N, 또는 S가 치환된 화합물을 의미하며, 상기 방향족 고리들은 융합된 고리를 형성할 수 있다.
상기 방향족 헤테로고리는 5 내지 7원자고리를 가질 수 있으며, 예컨대 상기 방향족 헤테로고리 화합물로 S가 포함된 경우에 티오펜, N이 포함된 경우에 피리딘, 퀴놀린 등이 있고, O가 포함된 경우에 퓨란 등이 포함될 수 있다.
본 발명에서 사용되는 치환기인 알킬기는 포화, 임의 치환된 선형 또는 분지형 탄화수소 사슬, 바람직하게는 1 내지 30개 탄소 원자의 탄화수소 사슬을 나타낸다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, tert-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있고, 상기 알킬기 중 하나 이상의 수소 원자는 원자는 상기 아릴기의 경우와 마찬가지의 치환기로 치환가능하다.
또한, 상기 아릴알킬은 탄화수소 사슬 상 하나 이상의 아릴기에 의해 치환된 알킬기를 나타내며, 상기 아릴기는 앞서 정의한 바와 동일하고, 아릴알킬의 예로는 벤질 및 디페닐메틸이 있으며, 상기 아릴알킬기중 하나 이상의 수소 원자는 상기 아릴기의 경우와 마찬가지의 치환기로 치환가능하다.
또한, 시클로알킬기는 포화된 단일 또는 다고리형의 탄소수 3 내지 30개의 탄화수소기이며 예로서 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸 및 시클로옥틸 등을 포함할 수 있고, 상기 시클로알킬기 중 하나 이상의 수소 원자는 상기 아릴기의 경우와 마찬가지의 치환기로 치환가능하다.
또한, 본 발명의 화합물에서 알콕시기는 상기 알킬 또는 시클로알킬기에 산소원자가 결합된 관능기로서, 이의 구체적인 예로는 메톡시, 에톡시, 프로폭시, 이소부틸옥시, sec-부틸옥시, 펜틸옥시, iso-아밀옥시, 헥실옥시 등을 들 수 있고, 상기 알콕시기 중 하나 이상의 수소 원자는 상기 아릴기의 경우와 마찬가지의 치환기로 치환가능하다.
한편, 본 발명에서의 촉매 조성물에 사용될 수 있는 전이금속 착물은 M(A)m(L)n로 표시되는 구조식을 가질 수 있다.
이 경우에, 상기 A는 각각 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 시아노기, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
L은 중성 리간드로서 각각 동일하거나 상이하며 서로 독립적으로, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 포스핀, 일산화탄소, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 아민, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 알릴기를 포함하는 나이트릴, 이종 원자로 O, N, 또는 S를 갖는 탄소수 2 내지 50의 방향족 헤테로고리 화합물 중에서 선택되는 어느 하나이고,
상기 M은 루테늄, 철, 코발트, 로듐, 이리듐으로부터 선택되는 어느 하나의 금속이며,
상기 m은 0 내지 2 중에서 선택되는 정수이고, n은 2 내지 6 중에서 선택되는 정수이다.
이 경우에 상기 촉매조성물로서 사용되는 전이금속 착물은 리간드로서 수소 또는 중수소를 적어도 하나이상을 포함할 수 있다.
즉, 상기 M(A)m(L)n로 표시되는 구조식을 가지는 전이금속 착물은 상기 'A'에 해당하는 원소로서 수소 또는 중수소를 적어도 하나 이상 포함할 수 있고, 상기 수소 또는 중수소가 전이금속(M)에 결합된, 전이금속-수소화물(transition metal hydride)은 수소전달 반응을 통해 상기 아미드 또는 이미드 화합물의 제조 반응에 촉매로서 더욱 좋은 효과를 가질 수 있다.
본 발명에서의 촉매조성물로서 사용할 수 있는 전이금속 착물로서는 상기 M(A)m(L)n으로 표시되는 화합물이면 그 종류에 제한되지 않고 사용할 수 있으나, 바람직하게는 수소 또는 중수소 리간드를 하나 포함하는 루테늄 수소화물 또는 상기 수소 또는 중수소 리간드를 두 개 포함하는 루테늄 이수소화물을 사용할 수 있다.
예시적으로, 루테늄 수소화물 또는 상기 루테늄 이수소화물로서 RuH2(CO)(PPh3)3(CAS: 25360-32-1), RuH2(PPh3)4(CAS: 25360-32-1), RuHCl(CO)(PPh3)3 (CAS : 1295649-40-9), RuHCl[P(C6H5)3]3ㅇCH3C6H5(CAS : 55102-19-7)이 사용될 수 있고, 상기 수소 또는 중수소를 가지지 않는 루테늄 착물로서는 RuCl2(PPh3)3 (CAS : 15529-49-4), RuCl(C10H15)[P(C6H5)3]2 (CAS : 92364-49-4), Ru(CO)2(PPh3)2 (CAS : 14564-35-3) 등의 화합물이 사용될 수 있다.
한편, 본 발명에서 상기 N-헤테로고리 카벤 전구체는 염기에 의한 탈양성자화반응을 통해 질소를 포함하는 헤테로고리를 가지는 카벤 유도체인 N-헤테로고리 카벤을 생성할 수 있으면 그 종류에 제한되지 않고 사용할 수 있으며, 예시적으로 하기 화학식 A로 표시되는 화합물일 수 있다.
[화학식 A]
Figure PCTKR2014006626-appb-I000002
상기 화학식 A에서
X1은 O, S, N-R2, C-R3, C-R4R5 중에서 선택되는 어느 하나이며,
상기 X1과 Y1, Y1과 Y2, Y2와 Y3사이의 결합은 각각 단일 결합 또는 이중결합을 가질 수 있고,
Y1 내지 Y3은 서로 동일하거나 상이할 수 있으며, 각각 N, N-R6, C-R7, C-R8R9 중에서 선택되는 어느 하나이고,
m은 0 내지 3에서 선택되는 정수이고, 상기 m이 2 이상인 경우에 복수의 Y2는 서로 동일하거나 상이할 수 있으며, 이 경우 각각의 Y2간의 결합은 단일 결합 또는 이중결합이 가능하며,
상기 R1 내지 R9 은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이되, R1 및 R2는 수소 또는 중수소가 아니며,
X-는 N-헤테로고리 카벤 전구체의 양이온과 전하균형(charge balance)을 맞추어 주는 1가의 음이온이다.
예시적으로, 상기 X-는 할로겐 음이온, 설폰산 음이온(RSO3 -, R은 알킬, 아릴, 시클로알킬 등), 테트라플루오로보레이트 음이온(BF4 -), 헥사플루오로포스페이트 음이온(PF6 -), 트리플레이트 음이온(-OTf) 등의 1가의 음이온일 수 있다.
본 발명의 상기 화학식 A에서 X1이 치환기 R3를 포함하는 탄소원자인 경우에, 바람직하게는 상기 R3는 수소 또는 중수소가 아닌 치환기일 수 있고, 또한 상기 R4 및 R5 중 적어도 하나는 수소 및 중수소가 아닌 다른 치환기인 것이 바람직하다.
이때 상기 화학식 A로 표시되는 N-헤테로고리 카벤 전구체는 염기에 의해 탈양성자화 반응이 일어나 N-헤테로고리 카벤을 형성할 수 있다.
이 경우에 상기 N-헤테로고리 카벤 전구체의 염기에 의한 탈양성자화 반응은 하기 반응식 2로 표시될 수 있다.
[반응식 2]
Figure PCTKR2014006626-appb-I000003
여기서 상기 R1, X1, Y1 내지 Y3, m 및 X는 앞서 정의한 바와 동일하며, 상기 반응식 2에서 B:는 염기로서, X1과 질소원자사이의 탄소에 결합된 양성자를 탈양성자화(deprotonation)시켜 N-헤테로고리 카벤을 생성한다.
본 발명에서 상기 N-헤테로고리 카벤 전구체는 염기와의 반응에 의해 탈수소화되어 하기 화학식 A-1 내지 화학식 A-13 중에서 선택되는 어느 하나의 N-헤테로고리 카벤을 생성할 수 있다.
[화학식 A-1] [화학식 A-2] [화학식 A-3]
Figure PCTKR2014006626-appb-I000004
[화학식 A-4] [화학식 A-5] [화학식 A-6]
Figure PCTKR2014006626-appb-I000005
[화학식 A-7] [화학식 A-8] [화학식 A-9]
Figure PCTKR2014006626-appb-I000006
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2014006626-appb-I000007
[화학식 A-13]
Figure PCTKR2014006626-appb-I000008
여기서 R1 및 R2은 앞서 정의된 바와 동일하며,
R'은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고, n은 1 내지 8의 정수이며,
상기 치환기 R'이 하나의 분자내에 복수 개 존재하는 경우에 각각의 R'은 동일하거나 상이할 수 있다.
예시적으로, 본 발명에서의 상기 N-헤테로고리 카벤 전구체는 염기와의 반응에 의해 탈수소화되어 하기 화학식 A-20 내지 화학식 A-37중에서 선택되는 어느 하나의 N-헤테로고리 카벤을 생성할 수 있다.
[화학식 A-20] [화학식 A-21] [화학식 A-22]
Figure PCTKR2014006626-appb-I000009
[화학식 A-23] [화학식 A-24] [화학식 A-25]
Figure PCTKR2014006626-appb-I000010
[화학식 A-26] [화학식 A-27] [화학식 A-28]
Figure PCTKR2014006626-appb-I000011
[화학식 A-29] [화학식 A-30] [화학식 A-31]
Figure PCTKR2014006626-appb-I000012
[화학식 A-32] [화학식 A-33] [화학식 A-34]
Figure PCTKR2014006626-appb-I000013
[화학식 A-35] [화학식 A-36] [화학식 A-37]
Figure PCTKR2014006626-appb-I000014
본 발명에서 상기 N-헤테로고리 카벤 전구체를 탈수소화되어 N-헤테로고리 카벤을 생성하기 위한 염기는 상기 N-헤테로고리 카벤 전구체내의 X1과 질소원자사이의 탄소에 결합된 양성자를 탈양성자화시킬 수 있는 정도의 염기성을 가진 것이면 종류에 제한되지 않고 사용할 수 있으며, 바람직하게는 알카리 금속 하이드라이드; 알카리 금속의 수산염; 알카리 금속의 알콕시염; 질소원자에 결합한 수소가 탈양성자화된 일차 아민 또는 2차아민의 알카리 금속염; 탄소원자에 결합한 수소가 탈양성자화된 탄소수 1 내지 30의 알킬 음이온, 또는 탄소수 3 내지 40의 시클로알킬 음이온 또는 탄소수 6 내지 30의 아릴 음이온의 알카리금속염에서 선택되는 어느 하나를 사용할 수 있다.
예시적으로 상기 염기는 알카리 금속 하이드라이드로서 NaH, KH, LiH 등을 사용할 수 있고, 알카리 금속의 수산염으로서 KOH, NaOH 등을 사용할 수 있고, 알카리 금속의 알콕시염으로서 KOtBu를 사용할 수 있고, 질소원자에 결합한 수소가 탈양성자화된 암모니아, 일차 아민 또는 2차아민의 알카리 금속염으로서 NaNH2, LDA(Lithium diisopropylamide) 등을 사용할 수 있고, 탄소원자에 결합한 수소가 탈양성자화된 탄소수 1 내지 30의 알킬 음이온, 또는 탄소수 3 내지 40의 시클로알킬 음이온 또는 탄소수 6 내지 30의 아릴 음이온의 알카리금속염으로서 MeLi, n-BuLi, t-BuLi, PhLi 등이 사용가능하다.
본 발명에서 반응물인 상기 알코올과, 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물은 아미드 화합물을 제조하는 경우에 몰비로 1:2 내지 2:1의 범위로 사용할 수 있고, 바람직하게는 1:1.2 내지 1.2:1의 범위로 사용할 수 있다.
또한 본 발명에서 사용되는 촉매조성물은 전이금속 착물의 함량을 기준으로 알코올 또는 나이트릴 중 적은 함량의 반응물의 0.1 내지 30 몰%의 범위로 사용될 수 있고, 바람직하게는 1 내지 20 몰%의 범위로 사용될 수 있다.
또한 상기 촉매조성물에서 전이금속 착물과 N-헤테로고리 카벤 전구체의 함량은 몰비로 1:2 내지 2:1의 범위로 사용할 수 있고, 바람직하게는 1:1.2 내지 1.2:1의 범위로 사용할 수 있다.
또한 N-헤테로고리 카벤 전구체를 탈양성자화시키기 위해 사용되는 염기는 상기 N-헤테로고리 카벤 전구체의 함량대비 몰비로서 1 내지 10 당량(equv.)을 사용할 수 있고, 바람직하게는 1 내지 5 당량을 사용할 수 있다.
한편, 본 발명에서 사용되는 촉매조성물은 용매를 포함할 수 있다. 상기 용매는 전이금속 착물, 염기, N-헤테로고리 카벤 전구체의 적어도 하나 이상을 용해하거나 또는 상기 염기와 N-헤테로고리 카벤 전구체의 반응에 의해 얻어지는 N-헤테로고리 카벤의 용해를 통해 반응의 균일화를 도울 수 있다.
이때 사용되는 용매로서는 초산메틸, 초산에틸, 초산프로필 등의 초산에스테르류; 아세토니트릴 등의 니트릴류; 테트라히드로푸란, 디옥산, 디에틸에테르 등의 에테르류; 톨루엔, 크실렌, 클로로벤젠, 벤젠, 메시틸렌 등의 방향족탄화수소류; 헥산, 시클로헥산 등의 지방족 탄화수소류; 티메틸포름아미드, 디메틸아세토아미드 등의 비프로톤성 극성용매; 클로로포름, 디클로로메탄 등의 할로겐화지방족 탄화수소류; 폴리에틸렌글리콜-400(PEG400)등의 폴리에틸렌글리콜류; 또는 빙초산 등의 지방족카르복실산류를 들 수 있고, 용매는 단독으로, 또는 임의의 비율로 혼합된 혼합용매로서 사용할 수 있고, 바람직하게는 톨루엔을 사용할 수 있다.
또한 상기 알코올과 나이트릴의 반응에 있어서도 용매를 사용할 수 있다. 이때 사용되는 용매는 앞서 살펴본 촉매 조성물에 포함될 수 있는 용매와 같은 종류를 사용할 수 있고, 그 함량도 반응조건 또는 촉매의 함량에 따라 적절히 선택할 수 있다.
또한, 상기 촉매조성물을 이용하여 아미드 또는 이미드 화합물을 제조하기 위한 반응온도는 상기 사용되는 용매의 환류 온도에 따라 달라질 수 있으나, 0 내지 250 ℃의 범위를 사용할 수 있고, 바람직하게는 상온(25 ℃) 내지 150 ℃에서 반응시킬 수 있다. 예컨대 톨루엔을 사용하는 경우 80 내지 120 ℃에서 아미드 또는 이미드를 제조할 수 있다.
또한 본 발명은 알코올과 나이트릴을 반응물로 하며, N-헤테로고리 카벤 전구체에 염기를 반응시켜 얻어지는 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물을 포함하는 촉매 조성물에 의해 아미드 또는 이미드를 제조하는 방법을 제공한다.
즉, 본 발명에서 상기 화학식 A의 구조와 같은 N-헤테로고리 카벤 전구체는 염기에 의해 N-헤테로고리 카벤을 생성하고, 상기 N-헤테로고리 카벤과 본 발명에서의 촉매조성물로서 사용되는 전이금속 착물이 반응함으로써 얻어지는 N-헤테로고리 카벤-전이금속 착물이 상기 아미드 화합물 또는 이미드 화합물을 제조하는 촉매로서 작용할 수 있다.
상기 N-헤테로고리 카벤 전이금속 착물은 본 발명에서의 상기 화학식 A로 표시되는 N-헤테로고리 카벤 전구체의 탈수소화에 의해 얻어지는 N-헤테로고리 카벤과 M(A)m(L)n로 표시되는 전이금속 착물의 반응에 의해 하기 화학식 C로 표시될 수 있다.
[화학식 C]
M(A)m(L)n-k(NHC)k
여기서 상기 A는 각각 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 시아노기, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
L은 중성 리간드로서 각각 동일하거나 상이하며 서로 독립적으로, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 포스핀, 일산화탄소, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 아민, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 알릴기를 포함하는 나이트릴, 이종 원자로 O, N, 또는 S를 갖는 탄소수 2 내지 50의 방향족 헤테로고리 화합물 중에서 선택되는 어느 하나이고,
M은 루테늄, 철, 코발트, 로듐, 이리듐으로부터 선택되는 어느 하나의 금속이며,
상기 m은 0 내지 2 중에서 선택되는 정수이고, n은 2 내지 6 중에서 선택되는 정수이고,
상기 NHC는 상기 화학식 A'로 표시되는 N-헤테로고리 카벤이고, k는 1 또는 2이다.
[화학식 A']
Figure PCTKR2014006626-appb-I000015
상기 화학식 A'에서
X1은 O, S, N-R2, C-R3, C-R4R5 중에서 선택되는 어느 하나이며,
상기 X1과 Y1, Y1과 Y2, Y2와 Y3사이의 결합은 각각 단일 결합 또는 이중결합을 가질 수 있고,
Y1 내지 Y3은 서로 동일하거나 상이할 수 있으며, 각각 N, N-R6, C-R7, C-R8R9 중에서 선택되는 어느 하나이고,
m은 0 내지 3에서 선택되는 정수이고, 상기 m이 2 이상인 경우에 복수의 Y2는 서로 동일하거나 상이할 수 있으며, 이 경우 각각의 Y2간의 결합은 단일 결합 또는 이중결합이 가능하며,
상기 R1 내지 R9 은 서로 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이되, R1 및 R2는 수소 또는 중수소가 아니다.
본 발명의 상기 화학식 A'에서 X1이 치환기 R3를 포함하는 탄소원자인 경우에, 바람직하게는 상기 R3는 수소 또는 중수소가 아닌 치환기일 수 있고, 또한 상기 R4 및 R5 중 적어도 하나는 수소 및 중수소가 아닌 다른 치환기인 것이 바람직하다.
일 실시예로서, 상기 화학식 C로 표시되는 N-헤테로고리 카벤 전이금속 착물 촉매에서의 N-헤테로고리 카벤(NHC)은 하기 화학식 A-1 내지 화학식 A-13 중에서 선택되는 어느 하나일수 있다.
[화학식 A-1] [화학식 A-2] [화학식 A-3]
Figure PCTKR2014006626-appb-I000016
[화학식 A-4] [화학식 A-5] [화학식 A-6]
Figure PCTKR2014006626-appb-I000017
[화학식 A-7] [화학식 A-8] [화학식 A-9]
Figure PCTKR2014006626-appb-I000018
[화학식 A-10] [화학식 A-11] [화학식 A-12]
Figure PCTKR2014006626-appb-I000019
[화학식 A-13]
Figure PCTKR2014006626-appb-I000020
여기서 R1 및 R2은 앞서 정의된 바와 동일하며,
R'은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
n은 1 내지 8의 정수이며,
상기 치환기 R'이 하나의 분자내에 복수 개 존재하는 경우에 각각의 R'은 동일하거나 상이할 수 있다.
일 실시예로서, 상기 전이금속 착물에 결합하는 N-헤테로고리 카벤 리간드는 앞서 기재된 바와 마찬가지로 상기 화학식 A-20 내지 화학식 A-37중에서 선택되는 어느 하나일 수 있다.
본 발명에서 상기 화학식 C로 표시되는 전이금속 착물은 알코올과, 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매로서 사용될 수 있다.
일 실시예로서, 본 발명에서 상기 화학식 C로 표시되는 전이금속 착물에서 상기 리간드 A는 수소 또는 중수소를 포함할 수 있다.
예컨대, 상기 A는 수소, 또는 중수소이며, 상기 m은 2일 수 있다.
이 경우에, 본 발명에서 상기 화학식 C로 표시되는 전이금속 착물이 상기 N-헤테로고리 카벤(NHC)을 하나 포함하게 되면, 상기 중성 리간드 L은 3개가 전이금속에 배위될 수 있다. 즉, 상기 화학식 C에서의 중성리간드의 개수는 3개(n-k=3)일 수 있다.
바람직하게는, 상기 화학식 C로 표시되는 착물 촉매에서 상기 전이금속은 루테늄일 수 있고, 이 경우에 상기 중성 리간드는 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 포스핀, 또는 일산화탄소를 포함할 수 있다.
상기 N-헤테로고리 카벤-전이금속 착물은 N-헤테로고리 카벤 전구체로부터 염기에 의해 N-헤테로고리 카벤을 생성하는 단계 및 상기 생성된 N-헤테로고리 카벤과 전이금속 착물과의 반응에 의해 N-헤테로고리 카벤-전이금속 착물을 제조하는 단계와 같이, 각각의 단계를 통하여 생성물이 분리되어 다음 단계에서 반응물로서 사용되어 최종적으로 제조될 수 있거나, 또는 N-헤테로고리 카벤 전구체, 전이금속 착물 및 염기를 포함하는 촉매 조성물로부터 중간생성물을 분리하는 단계를 거치지 않고 제자리(in situ)에서 즉각적으로 생성되어 제조될 수 있다.
최종적으로 얻어지는 N-헤테로고리 카벤-전이금속 착물은 본 발명에서의 알코올 과 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물로부터 아미드 화합물 또는 이미드 화합물을 제조하기 위해 알코올로부터 나이트릴의 시아노기 등으로 수소 전달과정을 거치는 것으로 확인된다.
예컨대 상기 N-헤테로고리 카벤-전이금속 착물로서 루테늄 이수소화물이 사용되고, 함질소 화합물로서 나이트릴이 사용되는 경우에 아미드 화합물의 형성은 하기 반응식 3에 따른 과정을 거치는 것으로 판단된다.
[반응식 3]
Figure PCTKR2014006626-appb-I000021
상기 반응식 3에서 [Ru]는 전이금속으로서 루테늄에 N-헤테로고리 카벤(NHC)이 결합된 N-헤테로고리 카벤-전이금속 착물에서 두 개의 수소만을 포함하지 않은 부분을 의미한다.
반응식 3의 과정을 상세히 설명하면, 우선 루테늄 이수소화물에서의 하이드라이드(H)가 시아노기의 질소원자와 탄소원자에 각각 결합된 형태의 루테늄 착물이 형성되는 단계(A 단계), 이어서 알코올이 루테늄에 결합되어 알코올내 수소가 루테늄쪽으로 결합되는 단계(B 단계), 알코올이 알데히드 형태로 루테늄에 결합되는 단계(C 단계) 및 아미드 결합이 형성되며 카르보닐기의 산소에 루테늄이 결합되는 단계(D 단계)를 거쳐 아미드는 촉매 사이클에서 빠져나옴과 동시에 루테늄 이수소화물은 새로운 나이트릴과 결합하여 다음 아미드 화합물을 제조할 수 있다.
따라서 본 발명의 촉매조성물의 구성요소인 N-헤테로고리 카벤 전구체내의 음이온(X-)은 그 종류에 관계없이 반응에 큰 영향을 미치지 않으며, 이에 대응되는 전이금속 착물 양이온의 구조 및 치환기의 종류, 전이금속의 종류 등에 따라 본 발명에서의 아미드 또는 이미드 화합물의 제조활성이 차이가 날 수 있음을 예측할 수 있다.
한편, 본 발명은 상기 알코올로서 하나의 분자내에 수산기(OH)를 2개 포함한 디올이 사용되어 이와 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물과 반응함으로써 이미드 화합물을 제조하는 방법을 제공할 수 있다.
예시적으로 상기 이미드 화합물은 나이트릴과 디올로부터 하기 반응식 4에 의해 제조될 수 있다.
[반응식 4]
Figure PCTKR2014006626-appb-I000022
이 경우에 상기 나이트릴의 Rn은 앞서 아미드 화합물제조에서 사용된 나이트릴의 Rn과 동일할 수 있다.
또한 디올내 Rb는 히드록시기를 가지는 탄소를 연결시켜주는 연결기로서, 탄소수 1 내지 30의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, 탄소수 1 내지 10의 알킬렌기와, 탄소수 6 내지 18의 아릴렌기가 각각 연결된 아릴렌-알킬렌기, 탄소수 2 내지 30의 헤테로아릴렌기, 탄소수 1 내지 30의 실릴렌기 중에서 선택되는 어느 하나일 수 있다.
예시적으로 본 발명에서 사용될 수 있는 디올로서는 에틸렌글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 펜틸렌 글리콜, 글리세롤, (4-히드록시메틸-페닐)메탄올 등이 사용될 수 있다.
한편, 상기 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물과 디올의 함량비율은 몰비로 1: 1 내지 1: 1.4의 범위를 가질 수 있고, 바람직하게는 1:1 내지 1: 1.2의 범위를 가질 수 있으며, 더욱 바람직하게는 1:1 내지 1: 1.1 의 범위를 가질 수 있다.
한편, 상기 이미드 화합물의 제조방법은 아미드 화합물의 제조방법과는 달리 부산물로서 수소가 발생될 수 있다. 그러나 상기 수소는 대부분의 조건하에서 기체상태로 존재함으로써 용이하게 분리가 가능하여 본 발명을 실시하는데 큰 장애가 되지 않는다.
또한 본 발명은 상기 알코올로서 하나의 분자내에 수산기(OH)를 2개이상 포함한 폴리올이 사용되며, 또한 나이트릴로서 하나의 분자내에 2개이상의 시아노기를 가진 것을 사용함으로써 중합반응에 의해 폴리아미드를 제조하는 방법을 제공할 수 있다.
예시적으로 상기 폴리아미드는 하기 반응식 5에 의해 제조될 수 있다.
[반응식 5]
Figure PCTKR2014006626-appb-I000023
이 경우에 상기 나이트릴의 Rc는 히드록시기를 가지는 탄소를 연결시켜주는 연결기로서, 탄소수 1 내지 30의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, 탄소수 1 내지 10의 알킬렌와, 탄소수 6 내지 18의 아릴렌기가 각각 연결된 아릴렌-알킬렌기, 탄소수 2 내지 30의 헤테로아릴렌기, 탄소수 1 내지 30의 실릴렌기 중에서 선택되는 어느 하나일 수 있다.
또한 상기 알코올의 Rb는 상기 이미드의 제조방법에서 사용된 디올내 Rb와 동일할 수 있고, 상기 n은 3 내지 5,000,000의 정수일 수 있다.
한편, 상기 복수의 시아노기를 갖는 나이트릴과 폴리올의 비율은 1.2: 1 내지 1: 1.2의 몰비를 사용할 수 있고, 바람직하게는 1.1: 1 내지 1: 1.1의 비율을 사용할 수 있다.
본 발명에서의 상기 이미드 화합물의 제조방법 또는 폴리이미드의 제조방법상의 온도조건은 아미드 화합물의 제조방법과 동일한 조건을 사용할 수 있다.
또한, 본 발명은 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시켜 얻어지거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물을 제공한다.
이는 상기 촉매조성물을 사용하여 아미드 또는 이미드 화합물을 제조함에 있어, 염기와 N-헤테로고리 카벤 전구체의 반응시 중간생성물을 분리하는 단계를 거치지 않고 제자리(in situ)에서 즉각적으로 N-헤테로고리 카벤을 제조하며 이를 전이금속 착물과 반응시킴으로써 얻어지는 조성물이 상기 반응에서의 촉매에 해당하는 것을 의미한다.
또한, 본 발명은 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물을 포함하는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물을 제공한다.
이는 상기 N-헤테로고리 카벤 전구체의 탈양성자 반응에 의해 얻어지는 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물이 상기 아미드 또는 이미드를 제조하기 위한 촉매에 해당하는 것을 의미한다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
<실시예>
이하, 본 발명의 일 실시예에 따른 나이트릴과 알코올로부터 아미드를 제조하는 방법을 상세히 설명한다.
본 발명의 제조방법에 의해 얻어지는 아미드 또는 이미드 화합물의 분석을 위해서 GC 및 NMR 스펙트럼을 이용하였다. 본 발명의 아미드 또는 이미드 제조시 수율(yield(%))은 GC분석을 통해 측정되었으며, 이때 사용된 GC는 7980A GC(Agilent Technologies)를 사용하여 분석하였으며, 이때 HP-5 컬럼과 Ar 가스를 사용하였으며 상온부터 320 ℃까지 승온하면서 분석한다.
또한 NMR 스펙트럼을 얻기 위해 아미드 또는 이미드 제조 후, Bruker DPX300, AMX400, Agilent 400-MR, JEOL ECA400, 또는 JEOL ECA400SL 기기를 사용하여 1H NMR 분석을 하였다. 이때 본 발명에서 얻어지는 아미드 또는 이미드는 글러브박스에서 적정량을 NMR 튜브에 옮긴 후, CDCl3 또는 benzene-d6을 용매로 사용하였다.
실시예 1. 아미드 제조
<반응식>
Figure PCTKR2014006626-appb-I000024
산소와 수분이 배제된 글러브박스 안에서, 4 ml 유리병에 디하이드리도카보닐트리스트라이페닐포스핀 루테늄(5 mol%), 1,3-디이소프로필이미다졸륨 브로마이드(5 mol%), 수소화나트륨(NaH) 2.4 mg(20 mol%), 톨루엔 0.6 ml, 3-페닐프로피오나이트릴 65.5 ㎕(0.5 mmol), 2-페닐에탄올 65.8 ㎕(0.55 mmol)이 첨가된다. 유리병은 뚜껑을 닫은 뒤 테플론 필름으로 완벽하게 밀봉 한 뒤 글러브박스에서 꺼낸다. 이를 110 ℃ 하에서 48 시간 동안 교반하여 반응시킨 후, 뚜껑을 열고 다이클로로메테인을 1 ml 넣어 반응을 종결시킨다. 얻어진 아미드 화합물은 수율이 90 %인 것으로 GC로 확인되었다.
실시예 2 내지 실시예 10.(니트릴의 종류에 따른 실시예)
본 발명의 실시예 1과 동일한 방법으로 진행하되, 사용되는 나이트릴을 하기 표 1에 표기된 화합물로 하여 실험을 진행였으며, 표 1에 나이트릴의 종류와 아미드 화합물의 수율을 표시하였다. 또한 실시예 3에 의해 얻어지는 아미드 화합물은 신규한 화합물로서 아래와 같이 1H NMR, 13C NMR(CDCl3) 및 질량분석을 통한 확인작업을 진행하였으며, 도 1에서는 상기 1H NMR를 도시하였다.
(실시예 3)
1H NMR (CDCl3 = 0.78 (t, J=6.4Hz,3H),0.84(d,J=7.2Hz,3H),1.02-1.11 (m, 1H), 1.22-1.31 (m, 1H), 1.42-1.50 (m, 1H), 2.98-3.05 (m, 1H), 3.12-3.18 (m, 1H), 3.58 (s, 2H), 5.34 (bs, 1H), 7.25-7.32 (m, 3H), 7.35-7.39 (m, 2H);
13C NMR(CDCl3) δ= 170.9, 135.1, 129.5, 129.1, 127.4, 45.2, 44.0, 34.8, 26.9, 17.0, 11.2; HRMS(ESI) calcd forC13H19NO:205.1467.Found:205.1471[MH+].
표 1
Figure PCTKR2014006626-appb-T000001
실시예 11 내지 18
본 발명의 실시예 1과 동일한 방법으로 진행하되, 사용되는 알코올을 하기 표 2에 표기된 화합물로 하여 실험을 진행였으며, 표 2에 알코올의 종류와 아미드 화합물의 수율을 표시하였다.
또한 실시예 12 및 실시예 17에 의해 얻어지는 아미드 화합물은 신규한 화합물로서 아래와 같이 1H NMR, 13C NMR(CDCl3) 및 질량분석을 통한 확인작업을 진행하였으며, 도 2에서는 실시예 12의 1H NMR를 도시하였고, 도 3에서는 실시예 17의 1H NMR를 도시하였다.
(실시예 12)
1H NMR (CDCl3) δ = 0.98 (t, J=7.3Hz,3H),1.40 (m, 2H), 1.65 (m, 2H), 1.91 (m, 2H), 2.20 (t, J=7.73Hz,2H),2.72(t,J=7.8Hz,2H),3.36(q,J=6.8Hz,2H), 5.60(bs,1H),7.24(m,3H),7.33(m,2H);13C NMR(CDCl3) δ = 173.3, 141.5, 128.4, 128.3, 126.0, 39.2, 36.5, 33.3, 31.2, 27.9, 22.4, 13.8; HRMS(ESI) calcd forC14H21NO:219.1623.Found:219.1620[MH+].
(실시예 17)
1H NMR (CDCl3) δ = 1.90-1.98 (m, 2H), 2.71 (t, J=7.6Hz,2H), 3.46(q,J=7.2Hz,2H),6.36(bs,1H),6.48(d,J=1.6Hz,1H),7.08(q,J=0.4Hz,1H),7.17-7.21 (m, 3H), 7.26-7.30 (m, 2H), 7.41 (d, J=0.8Hz,1H);13C NMR(CDCl3) δ = 158.4, 148.1, 143.7, 141.3, 128.5, 128.4, 126.0, 114.0, 112.0, 38.8, 33.3, 31.3; HRMS(ESI) calcd forC14H15NO2:229.1103.Found:229.1105[MH+].
표 2
Figure PCTKR2014006626-appb-T000002
실시예 19 내지 실시예 23.(이미드 화합물 제조)
<반응식>
Figure PCTKR2014006626-appb-I000025
본 발명의 실시예 1과 동일한 방법으로 진행하되, 촉매 조성물로 RuH2(PPh3)4 (5 mol%), 용매로 벤젠 (0.6 ml)을 사용하고 상기 사용되는 반응물을 표 3에 표기된 반응물로 하여 실험을 진행한다. 이때 사용되는 나이트릴(0.5 mmol), 다이올(0.55 mmol)의 비율로 사용하며, 총 반응시간은 18시간으로 한다. 반응 종료 후 이미드 화합물과 부산물로 2당량의 수소가 발생되는 것을 확인하였고, 얻어진 이미드의 수율을 표 3에 도시하였다.
표 3
Figure PCTKR2014006626-appb-T000003
실시예 24 내지 실시예 28(촉매 종류에 따른 이미드 합성)
<반응식>
Figure PCTKR2014006626-appb-I000026
본 발명의 실시예 1과 동일한 방법으로 진행하되, 사용되는 반응물을 상기 반응식에 표시된 바와 같이 알코올로서 1,4-부탄디올을 사용하였으며, 나이트릴로서 벤즈나이트릴을 사용하였다.
이때 사용되는 나이트릴(0.5 mmol), 다이올(0.55 mmol)의 비율로 사용하며, 사용되는 촉매계 중의 전이금속 착물을 하기 표 5에 표시된 것을 사용하였으며, 반응시간은 48시간으로 한다. 반응 종료 후 이미드 화합물과 부산물로 2당량의 수소가 발생되는 것을 확인한다.
표 4
Entry 루테늄 촉매 GC yield(%)
실시예 24 Ru H2(CO)(PPh3)3 58
실시예 25 Ru(H2)H2(PPh3)3 57
실시예 26 RuH2(PPh3)4 64
실시예 27 RuHCl(CO)(PPh3)3 17
실시예 28 RuCl2(PPh3)3 12
비교예 1.
상기 실시예 1과 동일한 방법으로 실험하되, N-헤테로고리 카벤 전구체인 1,3-디이소프로필이미다졸륨 브로마이드를 사용하지 않고 실험하였으며, 이를 통해 아미드 합성 반응이 진행되지 않는 것을 확인하였다.
비교예 2
상기 실시예 1과 동일한 방법으로 실험하되, 염기인 수소화나트륨(NaH)을 사용하지 않고 실험하였으며, 이를 통해 아미드 합성 반응이 진행되지 않는 것을 확인하였다.
전이금속 착물 제조예 1(화학식 100)
<반응식>
Figure PCTKR2014006626-appb-I000027
상기 화학식 100의 전이금속 착물을 제조하기 위해 아르곤 가스로 충진된 글러브박스에서 RuH2(CO)(PPh3)3 (0.576 g, 0.62 mmol)과 1,3-dimethylimidazolium iodide (0.5 g, 2.24 mmol), 및 sodium hydride (0.141g, 5.96 mmol) 이 정제된 톨루엔 20 mL를 포함하는 100 mL 쉬렌크 플라스크에 투여되었다.
이후 95 ℃에서 24 시간 교반하여 반응을 진행한 후에 쉬렌크 플라스크를 글러브박스로부터 꺼내어 상온으로 온도를 낮춘후 용매를 진공펌프로 제거하였다.
이후 에탄올 30 ml 를 첨가하고 하루동안 추가적으로 교반후에 노란색 고체 침전물을 불활성 가스 분위기에서 필터하면 20%의 수율(0.1 g)로 조생성물이 얻어진다. 이후의 추가적 정제과정으로서 벤젠에 상기 조생성물을 녹인 후에 녹지 않는 고체를 제거하고 벤젠을 증발시키면 정제된 화합물이 얻어진다.
도 4에 상기 화학식 100의 정제된 화합물의 양성자 핵자기 공명 스펙트럼을 도시하였다.
전이금속 착물 제조예 2(화학식 101)
Figure PCTKR2014006626-appb-I000028
(화학식 101)
반응물로서 1,3-디이소프로필이미다졸리움 아요다이드를 사용한 것을 제외하고는 전이금속 착물 제조예 1과 동일한 과정을 거쳐 화학식 101의 화합물을 제조하였다. (수율 40 % )
전이금속 착물 제조예 3(화학식 102)
Figure PCTKR2014006626-appb-I000029
(화학식 102)
반응물로서 1,3-디시클로헥실이미다졸리움 아요다이드를 사용한 것을 제외하고는 전이금속 착물 제조예 1과 동일한 과정을 거쳐 화학식 102의 화합물을 제조하였다. (수율 22 % )
실시예 29 내지 실시예 31 (전이금속 착물 촉매 종류에 따른 아미드 합성)
실시예 29 알코올과 아민으로부터 아미드 제조(화학식 100 촉매사용)
<반응식>
Figure PCTKR2014006626-appb-I000030
아르곤 충진된 글러브박스내에서 오븐에서 방금 건조된 25 ml 쉬렌크 튜브에 상기 화학식 100으로 표시되는 착물촉매 0.025 mmol과 톨루엔 0.6ml를 넣고 Hamilton 주사기를 이용하여 아르곤 분위기하에서 3-Phenylpropylamine (71.1 μL, 0.5 mmol) 과 2-phenylethanol (71.9 μL, 0.6 mmol)을 추가하여 글러브 박스내에서 110 ℃ 에서 24 시간동안 반응시켰다. 반응후 실온으로 냉각하고 진공펌프로 휘발성 용매를 제거한후에 조 생성물(crude product)을 헥산과 에틸아세테이트의 혼합물을 사용한 실리카겔 컬럼크로마토그래피를 이용하여 정제함으로써 90 %의 반응 수율을 얻었다.
실시예 30 알코올과 아민으로부터 아미드 제조(화학식 101 촉매사용)
실시예 29와 마찬가지로 반응시켜 아미드를 제조하되, 촉매로서 화학식 101의 전이금속 착물 촉매를 사용하여, 90 %의 수율로 아미드를 얻을 수 있었다.
실시예 31 알코올과 아민으로부터 아미드 제조(화학식 102 촉매사용)
실시예 29와 마찬가지로 반응시켜 아미드를 제조하되, 촉매로서 화학식 102의 전이금속 착물 촉매를 사용하여, 42%의 수율로 아미드를 얻을 수 있었다.
실시예 32 알코올과 아민으로부터 아미드 제조(화학식 102 촉매사용)
Figure PCTKR2014006626-appb-I000031
실시예 29와 마찬가지로 반응시켜 아미드를 제조하되, 촉매로서 화학식 102의 전이금속 착물 촉매를 사용하여, 반응용매로서 톨루엔을 사용하며, 반응물로서 벤질아민과 2-페닐에탄올을 사용하고 반응시간을 110 ℃에서 24시간 교반하여 85%의 수율로 아미드를 얻을 수 있었다.
실시예 33 알코올과 아민으로부터 아미드 제조(화학식 102 촉매사용)
Figure PCTKR2014006626-appb-I000032
실시예 32와 마찬가지로 반응시켜 아미드를 제조하되, 반응물로서 4-메톡시 벤질아민과 2-페닐에탄올을 사용하고 반응시간을 110 ℃에서 24시간 교반하여 99%의 수율로 아미드를 얻을 수 있었다.
실시예 34
Figure PCTKR2014006626-appb-I000033
실시예 32와 마찬가지로 반응시켜 아미드를 제조하되, 반응물로서 1-헥실아민과 2-페닐에탄올을 사용하고 반응시간을 110 ℃에서 24시간 교반하여 99%의 수율로 아미드를 얻을 수 있었다.
실시예 35 (전이금속 착물 촉매에 의한 나이트릴과 메탄올로부터 포름아미드 합성)
<반응식>
Figure PCTKR2014006626-appb-I000034
실시예 29와 마찬가지로 반응시키되 촉매로서 화학식 101의 전이금속 촉매를 사용하였고, 반응용매로서 벤젠을 사용하며, 반응물로서 벤조나이트릴 (25.8 μL, 0.25 mmol) 와 메탄올 (121.5 μL, 3.0 mmol)을 사용하고 반응시간을 90 ℃에서 3시간 교반하였다.
또한 컬럼크로마토그래피에 사용된 용매는 디에틸에테르와 에틸아세테이트의 혼합액을 사용하여 수율 87%로서 포름아미드를 제조하였다.
실시예 36 (전이금속 착물 촉매에 의한 아자이드와 알코올로부터 아미드 합성)
<반응식>
Figure PCTKR2014006626-appb-I000035
실시예 29와 마찬가지로 반응시키되 촉매로서 화학식 101의 전이금속 촉매를 사용하였고, 반응용매로서 톨루엔을 사용하며, 반응물로서 3-Phenylpropylazide (80.6 mg, 0.5 mmol) 와 2-phenylethanol (71.9 μL, 0.6 mmol) 을 사용하고 반응시간을 115 ℃에서 48시간 동안 교반하였다.
또한 GC에 의해 아미드의 수율이 78 %을 확인 할 수 있었다.
실시예 37 (전이금속 착물 촉매에 의한 니트릴과 디올로부터 이미드 합성
실시예 29와 마찬가지로 반응시키되 촉매로서 화학식 101의 전이금속 촉매를 사용하였고, 반응용매로서 벤젠을 사용하며, 반응물로서 3-Phenylpropionitrile (32.8 μL, 0.25 mmol) 과 cis-1,2-cyclohexanedimethanol (39.7 mg, 0.275 mmol) 을 사용하고 반응시간을 90 ℃에서 24시간 교반하였다.
또한 컬럼크로마토그래피에 사용된 용매는 헥산과 에틸아세테이트의 혼합액을 사용하여 수율 67%로서 포름아미드를 제조하였다.
본 발명은 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법에 관한 것으로,본 발명에 의해 얻어지는 아미드 및 이미드는 제약산업 등의 중간체로 사용가능하며, 또한 본 발명에 의해 얻어지는 폴리아미드 및 폴리이미드는 다양한 분야의 응용소재로 가능하여 산업상 이용 가능성이 있다.

Claims (20)

  1. 알코올과 나이트릴을 반응물로 하며, 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시키거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는 촉매 조성물에 의해 아미드 또는 이미드를 제조하는 방법
  2. 알코올과 나이트릴을 반응물로 하며, N-헤테로고리 카벤 전구체에 염기를 반응시켜 얻어지는 N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는N-헤테로고리 카벤-전이금속 착물을 포함하는 촉매 조성물에 의해 아미드 또는 이미드를 제조하는 방법
  3. 제1항 또는 제2항에 있어서,
    상기 전이금속 착물은 M(A)m(L)n로 표시되되,
    상기 A는 각각 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 시아노기, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
    L은 중성 리간드로서 각각 동일하거나 상이하며 서로 독립적으로, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 포스핀, 일산화탄소, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 아민, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 알릴기를 포함하는 나이트릴, 이종 원자로 O, N, 또는 S를 갖는 탄소수 2 내지 50의 방향족 헤테로고리 화합물 중에서 선택되는 어느 하나이고,
    상기 M은 루테늄, 철, 코발트, 로듐, 이리듐으로부터 선택되는 어느 하나의 금속이며,
    상기 m은 0 내지 2 중에서 선택되는 정수이고, n은 2 내지 6 중에서 선택되는 정수인 것을 특징으로 하는, 아미드 또는 이미드를 제조하는 방법
  4. 제1항 또는 제2항에 있어서,
    상기 N-헤테로고리 카벤 전구체는 화학식 A로 표시되는 화합물인 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
    [화학식 A ]
    Figure PCTKR2014006626-appb-I000036
    상기 화학식 A에서
    X1은 O, S, N-R2, C-R3, C-R4R5 중에서 선택되는 어느 하나이며,
    상기 X1과 Y1, Y1과 Y2, Y2와 Y3사이의 결합은 각각 단일 결합 또는 이중결합을 가질 수 있고,
    Y1 내지 Y3은 서로 동일하거나 상이할 수 있으며, 각각 N, N-R6, C-R7, C-R8R9 중에서 선택되는 어느 하나이고,
    m은 0 내지 3에서 선택되는 정수이고, 상기 m이 2 이상인 경우에 복수의 Y2는 서로 동일하거나 상이할 수 있으며, 이 경우 각각의 Y2간의 결합은 단일 결합 또는 이중결합이 가능하며,
    상기 R1 내지 R9 은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이되,
    R1 및 R2는 수소 또는 중수소가 아니며,
    X는 N-헤테로고리 카벤 전구체의 양이온과 전하균형(charge balance)을 맞추어 주는 1가의 음이온이다.
  5. 제1항 또는 제2항에 있어서,
    상기 염기는 N-헤테로고리 카벤 전구체로부터 탈양성자화 반응에 의해 N-헤테로고리 카벤을 형성하는 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  6. 제4항에 있어서,
    상기 N-헤테로고리 카벤 전구체는 염기와의 반응에 의해 탈수소화되어 하기 화학식 A-1 내지 화학식 A-13중에서 선택되는 어느 하나의 N-헤테로고리 카벤을 생성할 수 있는 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
    [화학식 A-1] [화학식 A-2] [화학식 A-3]
    Figure PCTKR2014006626-appb-I000037
    [화학식 A-4] [화학식 A-5] [화학식 A-6]
    Figure PCTKR2014006626-appb-I000038
    [화학식 A-7] [화학식 A-8] [화학식 A-9]
    Figure PCTKR2014006626-appb-I000039
    [화학식 A-10] [화학식 A-11] [화학식 A-12]
    Figure PCTKR2014006626-appb-I000040
    [화학식 A-13]
    Figure PCTKR2014006626-appb-I000041
    여기서 R1 및 R2은 상기 제4항에서 정의된 바와 동일하며,
    R'은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
    n은 1 내지 8의 정수이며,
    상기 치환기 R'이 하나의 분자내에 복수 개 존재하는 경우에 각각의 R'은 동일하거나 상이할 수 있다.
  7. 제 6 항에 있어서,
    상기 N-헤테로고리 카벤 전구체는 염기와의 반응에 의해 탈수소화되어 하기 화학식 A-20 내지 화학식 A-37중에서 선택되는 어느 하나의 N-헤테로고리 카벤을 생성할 수 있는 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
    [화학식 A-20] [화학식 A-21] [화학식 A-22]
    Figure PCTKR2014006626-appb-I000042
    [화학식 A-23] [화학식 A-24] [화학식 A-25]
    Figure PCTKR2014006626-appb-I000043
    [화학식 A-26] [화학식 A-27] [화학식 A-28]
    Figure PCTKR2014006626-appb-I000044
    [화학식 A-29] [화학식 A-30] [화학식 A-31]
    Figure PCTKR2014006626-appb-I000045
    [화학식 A-32] [화학식 A-33] [화학식 A-34]
    Figure PCTKR2014006626-appb-I000046
    [화학식 A-35] [화학식 A-36] [화학식 A-37]
    Figure PCTKR2014006626-appb-I000047
  8. 제 3 항에 있어서,
    상기 전이금속 착물은 리간드로서 수소 또는 중수소를 적어도 하나이상을 포함하는 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  9. 제 8 항에 있어서,
    상기 전이금속 착물은 수소 또는 중수소 리간드를 하나 포함하는 루테늄 수소화물 또는 상기 수소 또는 중수소 리간드를 두 개 포함하는 루테늄 이수소화물인 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  10. 제 5 항에 있어서,
    상기 염기는 알카리 금속 하이드라이드; 알카리 금속의 수산염; 알카리 금속의 알콕시염; 질소원자에 결합한 수소가 탈양성자화된 암모니아, 일차 아민 또는 2차아민의 알카리 금속염; 탄소원자에 결합한 수소가 탈양성자화된 탄소수 1 내지 30의 알킬 음이온, 또는 탄소수 3 내지 40의 시클로알킬 음이온 또는 탄소수 6 내지 30의 아릴 음이온의 알카리금속염에서 선택되는 어느 하나인 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  11. 제 10 항에 있어서,
    상기 염기는 NaH, KH, LiH, KOH, NaOH, KOtBu, NaNH2, MeLi, n-BuLi, t-BuLi, PhLi에서 선택되는 어느 하나인 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  12. 제 1 항에 있어서,
    상기 촉매조성물은 전이금속 착물의 함량을 기준으로 알코올 또는 나이트릴 중 적은 함량의 반응물의 0.1 내지 30 몰%의 범위로 사용되는 것을 특징으로 하는 아미드 또는 이미드를 제조하는 방법
  13. 제1항 또는 제2항에 있어서,
    상기 알코올은 하나의 분자내에 수산기(OH)를 2개 포함한 디올이 사용되어 이와 나이트릴과 반응함으로써 이미드가 제조되는 것을 특징으로 하는, 이미드를 제조하는 방법
  14. 제1항 또는 제2항에 있어서,
    상기 알코올은 하나의 분자내에 2개이상의 히드록시기를 가지며, 또한 상기 나이트릴은 하나의 분자내에 2개이상의 시아노기를 가짐으로써, 중합반응에 의해 폴리아미드가 제조되는 것을 특징으로 하는 폴리아미드의 제조방법
  15. 전이금속 착물과 N-헤테로고리 카벤 전구체의 혼합물에 염기를 반응시켜 얻어지거나, 또는 전이금속 착물과 염기의 혼합물에 N-헤테로고리 카벤 전구체를 반응시켜 얻어지는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물
  16. N-헤테로고리 카벤과 전이금속 착물의 반응에 의해 얻어지는 N-헤테로고리 카벤-전이금속 착물을 포함하는, 알코올과 나이트릴을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 촉매 조성물
  17. 하기 화학식 C로 표시되며 알코올과, 나이트릴, 아자이드, 아민 중에서 선택되는 어느 하나의 함질소 화합물을 반응물로 하여 아미드 또는 이미드를 제조하기 위한 전이금속 착물 촉매.
    [화학식 C]
    M(A)m(L)n-k(NHC)k
    여기서 상기 A는 각각 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 시아노기, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
    L은 중성 리간드로서 각각 동일하거나 상이하며 서로 독립적으로, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 포스핀, 일산화탄소, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 아릴기를 포함하는 아민, 탄소수 1 내지 30의 알킬기 또는 탄소수 5 내지 50의 알릴기를 포함하는 나이트릴, 이종 원자로 O, N, 또는 S를 갖는 탄소수 2 내지 50의 방향족 헤테로고리 화합물 중에서 선택되는 어느 하나이고,
    M은 루테늄, 철, 코발트, 로듐, 이리듐으로부터 선택되는 어느 하나의 금속이며,
    상기 m은 0 내지 2 중에서 선택되는 정수이고, n은 2 내지 6 중에서 선택되는 정수이고,
    상기 NHC는 상기 화학식 A'로 표시되는 N-헤테로고리 카벤이고, k는 1 또는 2이다.
    [화학식 A']
    Figure PCTKR2014006626-appb-I000048
    상기 화학식 A'에서
    X1은 O, S, N-R2, C-R3, C-R4R5 중에서 선택되는 어느 하나이며,
    상기 X1과 Y1, Y1과 Y2, Y2와 Y3사이의 결합은 각각 단일 결합 또는 이중결합을 가질 수 있고,
    Y1 내지 Y3은 서로 동일하거나 상이할 수 있으며, 각각 N, N-R6, C-R7, C-R8R9 중에서 선택되는 어느 하나이고,
    m은 0 내지 3에서 선택되는 정수이고, 상기 m이 2 이상인 경우에 복수의 Y2는 서로 동일하거나 상이할 수 있으며, 이 경우 각각의 Y2간의 결합은 단일 결합 또는 이중결합이 가능하며,
    상기 R1 내지 R9 은 서로 동일하거나 상이하며 서로 독립적으로, 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이되, R1 및 R2는 수소 또는 중수소가 아니다.
  18. 제 17 항에 있어서,
    상기 N-헤테로고리 카벤(NHC)은 하기 화학식 A-1 내지 화학식 A-13 중에서 선택되는 어느 하나 인 것을 특징으로 하는 전이금속 착물 촉매.
    [화학식 A-1] [화학식 A-2] [화학식 A-3]
    Figure PCTKR2014006626-appb-I000049
    [화학식 A-4] [화학식 A-5] [화학식 A-6]
    Figure PCTKR2014006626-appb-I000050
    [화학식 A-7] [화학식 A-8] [화학식 A-9]
    Figure PCTKR2014006626-appb-I000051
    [화학식 A-10] [화학식 A-11] [화학식 A-12]
    Figure PCTKR2014006626-appb-I000052
    [화학식 A-13]
    Figure PCTKR2014006626-appb-I000053
    여기서 R1 및 R2은 제17항에서 정의된 바와 동일하며,
    R'은 수소, 중수소, 할로겐, 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 50의 아릴기, 탄소수 5 내지 50의 아릴알킬기, 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 30의 시클로알킬기, 탄소수 5 내지 30의 시클로알케닐기, 탄소수 1 내지 30의 알콕시기, 탄소수 6 내지 30의 아릴옥시기, 이종 원자로 O, N 또는 S를 갖는 탄소수 2 내지 50의 헤테로아릴기 중에서 선택되는 어느 하나이고,
    n은 1 내지 8의 정수이며,
    상기 치환기 R'이 하나의 분자내에 복수 개 존재하는 경우에 각각의 R'은 동일하거나 상이할 수 있다.
  19. 제 18 항에 있어서,
    상기 A는 수소 또는 중수소이며,
    m은 2 인 것을 특징으로 하는 전이금속 착물 촉매.
  20. 제 17 항에 있어서,
    상기 전이금속은 루테늄인 것을 특징으로 하는 전이금속 착물 촉매.
PCT/KR2014/006626 2013-07-29 2014-07-22 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법 WO2015016521A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0089868 2013-07-29
KR20130089868 2013-07-29
KR10-2014-0090156 2014-07-17
KR1020140090156A KR101614887B1 (ko) 2013-07-29 2014-07-17 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2015016521A1 true WO2015016521A1 (ko) 2015-02-05

Family

ID=52432002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006626 WO2015016521A1 (ko) 2013-07-29 2014-07-22 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2015016521A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002913A1 (en) * 2010-07-02 2012-01-05 Nanyang Technological University Process of forming a cyclic imide
US20120220768A1 (en) * 2009-09-18 2012-08-30 Nanyang Technological University Process of forming an amide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120220768A1 (en) * 2009-09-18 2012-08-30 Nanyang Technological University Process of forming an amide
WO2012002913A1 (en) * 2010-07-02 2012-01-05 Nanyang Technological University Process of forming a cyclic imide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARYAM-SADAT SHAKERI ET AL.: "Preparation of different amides via Ritter reaction from alcohols and nitriles in the presence of silica-bonded N-propyl sulphamic acid (SBNPSA) under solvent-free conditions", JOURNAL OF CHEMICAL SICIENCES, vol. 124, no. 5, September 2012 (2012-09-01), pages 1025 - 1032 *
SENTHILKUMAR MUTHAIAH ET AL.: "Direct amide synthesis from either alcohols or aldehydes with amines: Activity of Ru(II) hydride and Ru(0) complexes", JOURNAL OF ORGANIC CHEMISTY, vol. 75, 7 May 2010 (2010-05-07), pages 3002 - 3006, XP055102483, DOI: doi:10.1021/jo100254g *
YAO ZHANG ET AL.: "Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines", ORGANOMETALLICS, vol. 29, no. 6, 22 March 2010 (2010-03-22), pages 1374 - 1378 *

Similar Documents

Publication Publication Date Title
WO2021107741A1 (ko) 유기 발광 소자
WO2018066831A1 (ko) 장수명, 저전압 및 고효율 특성을 갖는 유기 발광 소자
WO2016126022A1 (ko) 저전압구동이 가능하며 장수명을 갖는 유기 발광 소자
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2016108419A1 (ko) 고효율과 장수명을 갖는 유기 발광 소자
WO2015174682A1 (ko) 방향족아민기를 포함하는 헤테로고리 화합물및 이를 포함하는 유기 발광 소자
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016140549A9 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2016167505A1 (ko) 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017146397A1 (ko) 신규한 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2022045837A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2019088377A1 (ko) 두 고리 구조를 갖는 포스포라미다이트 유도체, 이의 제조방법 및 그 용도
WO2015016521A1 (ko) 알코올과 함질소 화합물로부터 아미드 및 이미드를 제조하는 방법
WO2022169218A1 (ko) 중수소화 안트라센 화합물의 제조방법, 반응 조성물, 중수소화 안트라센 화합물 및 조성물
WO2018236191A1 (ko) 루테늄 착물 형성을 위한 리간드, 루테늄 착물 촉매 및 이의 제조방법과 용도
WO2022158903A1 (ko) 중수소화 안트라센 화합물의 제조방법, 반응 조성물, 중수소화 안트라센 화합물 및 조성물
WO2012157900A2 (ko) 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
WO2017048025A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021145649A1 (ko) 신규한 n-헤테로고리 카벤, 이의 전이금속 착물 및 이의 제조방법
WO2024034746A1 (ko) 유기 키랄 촉매 화합물을 이용한 고리형 무수물의 비대칭 고리열림반응 생성물의 제조방법
WO2017135638A1 (ko) 설폰아미드기 또는 아미드기를 포함하는 올레핀 복분해 반응용 전이금속 착물 및 이의 응용
WO2014112688A1 (ko) 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용
WO2021210800A1 (ko) 중수소화 화합물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832227

Country of ref document: EP

Kind code of ref document: A1