WO2015016240A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2015016240A1
WO2015016240A1 PCT/JP2014/070009 JP2014070009W WO2015016240A1 WO 2015016240 A1 WO2015016240 A1 WO 2015016240A1 JP 2014070009 W JP2014070009 W JP 2014070009W WO 2015016240 A1 WO2015016240 A1 WO 2015016240A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
winding
respect
length
Prior art date
Application number
PCT/JP2014/070009
Other languages
English (en)
French (fr)
Inventor
大樹 竹田
岡田 直樹
山中 正義
智晃 梶
久彰 中根
山田 裕介
真弥 浜口
征彦 柴田
Original Assignee
株式会社フジクラ
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 日本電信電話株式会社 filed Critical 株式会社フジクラ
Publication of WO2015016240A1 publication Critical patent/WO2015016240A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element

Definitions

  • the present invention relates to an optical fiber cable in which one or more optical fiber units are twisted and press rolls are vertically attached on the optical fiber unit.
  • the center core type optical fiber cable has a structure in which an optical fiber core wire is housed in a cylindrical shape of a holding roll such as a thermoplastic tape and is not in direct contact with the jacket (Patent Documents 1 and 2). ).
  • the press winding is contracted by the heat at the time of extrusion when the cable is manufactured, and the press winding is stretched by the resistance of the resin at the time of extrusion. Mounted in the cable. As shown in FIGS. 1A and 2A, when the cable is branched at the intermediate portion, the strain of the presser winding 12 that has been stretched is released and contracts.
  • the optical fiber 13 accommodated meanders and the meandering optical fiber 13 tries to escape to the outside. Furthermore, as shown in FIG. 1C and FIG. 2C, the internal optical fiber 13 may protrude from the presser winding 12. For this reason, there is a possibility that the optical fiber jumping out during the operation is accidentally hooked and disconnected.
  • An object of the present invention is to provide an optical fiber cable that can suppress the jumping of the optical fiber core due to the shrinkage of the presser winding at the middle of the cable branch.
  • an optical fiber cable of the present invention includes an optical fiber unit in which a plurality of optical fiber cores are SZ-twisted, a presser winding vertically attached to an outer periphery of the optical fiber unit, An optical fiber cable having a sheath applied to an outer periphery, wherein a wrap ratio of the presser winding to the optical fiber unit is 1.5 to 2.0 with respect to a diameter of the optical fiber unit,
  • the relationship is 0 ⁇ (BA) ⁇ 0.60.
  • the optical fiber cable of the present invention is applied to an optical fiber unit in which a plurality of optical fiber cores are twisted in one direction, a presser winding vertically attached to the outer periphery of the optical fiber unit, and an outer periphery of the presser winding.
  • the surplus length ratio is B and the press-winding surplus length ratio with respect to the cable length is A
  • the relationship is 0.25 ⁇ (BA) ⁇ 0.70.
  • FIG. 1A is a side view illustrating a state in which a presser winding at the time of intermediate branching of a conventional optical fiber cable is contracted.
  • FIG. 1B is a side view for explaining a meandering state of an optical fiber during intermediate branching of a conventional optical fiber cable.
  • FIG. 1C is a side view for explaining a state in which an optical fiber at the time of intermediate branching of a conventional optical fiber cable pops out.
  • FIG. 2A is a cross-sectional view for explaining a state of holding winding at the time of intermediate branching of a conventional optical fiber cable.
  • FIG. 2B is a cross-sectional view illustrating a state in which the meandering optical fiber at the time of intermediate branching of the conventional optical fiber cable tends to escape to the outside.
  • FIG. 2C is a cross-sectional view illustrating a state in which the meandering optical fiber jumps out to the outside at the time of intermediate branching of the conventional optical fiber cable.
  • FIG. 3 is a cross-sectional view showing the configuration of the optical fiber cable according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the presence or absence of manufacturability of the optical fiber from the press-winding and the manufacturability at the time of intermediate branching of the unidirectionally twisted and SZ-twisted cables with respect to the optical fiber surplus ratio, the press-wrap surplus length ratio, and the wrap ratio.
  • FIG. 5 is a cross-sectional view showing the configuration of the optical fiber cable according to the second embodiment of the present invention.
  • An optical fiber cable comprising: an optical fiber unit obtained by SZ twisting a plurality of optical fiber cores; a press winding vertically attached to the outer periphery of the optical fiber unit; and a sheath applied to the outer periphery of the press winding,
  • the wrap rate of the presser winding with respect to the optical fiber unit is not less than 1.5 and not more than 2.0 with respect to the diameter of the optical fiber unit.
  • An optical fiber cable having a relationship of 0 ⁇ (B ⁇ A) ⁇ 0.60 is clarified when the holding winding excess length ratio is A. With such an optical fiber cable, the optical fiber core wire can be prevented from popping out due to the shrinkage of the presser winding at the middle of the cable branch.
  • An optical fiber cable having an optical fiber unit in which a plurality of optical fiber cores are twisted in one direction, a press winding vertically attached to the outer periphery of the optical fiber unit, and a sheath provided on the outer periphery of the press winding.
  • the wrap ratio of the presser winding with respect to the optical fiber unit is 1.5 or more and 2.0 or less with respect to the diameter of the optical fiber unit, and the excess length ratio of the optical fiber with respect to the cable length is B.
  • An optical fiber cable having a relationship of 0 ⁇ (B ⁇ A) ⁇ 0.70 is clarified when the holding winding excess length ratio with respect to the length is A. With such an optical fiber cable, the optical fiber core wire can be prevented from popping out due to the shrinkage of the presser winding at the middle of the cable branch.
  • the optical fiber extra length ratio B with respect to the cable length is 0.05% or more, and the presser winding extra length ratio A with respect to the cable length is ⁇ 0.2% or less. Thereby, an inexpensive and highly reliable cable is obtained.
  • the presser winding is preferably made of a thermoplastic resin.
  • the optical fiber unit can be covered even when there is no binding such as rough winding even when the cable is branched.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the optical fiber cable according to the first embodiment of the present invention.
  • the optical fiber cable of the first embodiment shown in FIG. 3 is a self-supporting optical fiber cable, and includes a cable main body 1, a support wire 2 in which a support wire 9 is housed, a cable main body 1 and a support wire. It is comprised with the neck part 3 which connects the part 2.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the optical fiber cable according to the first embodiment of the present invention.
  • the optical fiber cable of the first embodiment shown in FIG. 3 is a self-supporting optical fiber cable, and includes a cable main body 1, a support wire 2 in which a support wire 9 is housed, a cable main body 1 and a support wire. It is comprised with the neck part 3 which connects the part 2.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the optical fiber cable according to the first embodiment of the present invention.
  • an optical fiber unit including a plurality of optical fiber core wires 4 twisted in SZ is provided.
  • SZ twisting involves twisting a plurality of filaments in one direction, separating the distance in the length direction, then reversing the direction of twisting, and further separating the same distance in the length direction before twisting. A state where the direction is changed back and repeated.
  • an optical fiber unit composed of a plurality of first optical fiber cores 4 twisted in SZ instead of using an optical fiber unit composed of a plurality of first optical fiber cores 4 twisted in SZ, an optical fiber unit composed of a plurality of optical fiber cores 4 twisted in one direction may be used.
  • the pitch of SZ twist or unidirectional twist is, for example, 800 mm.
  • a presser winding 5 is vertically attached to the outer periphery of the plurality of optical fiber core wires 4.
  • a presser winding tape made of a nonwoven fabric or the like is wound.
  • the presser winding 5 is made of, for example, a thermoplastic resin.
  • a sheath 8 is provided on the outer periphery of the presser winding 5.
  • the sheath 8 is made of, for example, PE (polyethylene).
  • two strength members (tension members) 6 are arranged at a position of approximately 180 degrees. Further, a tear string 7 is provided in the sheath 6 in a direction substantially perpendicular to the two strength members (tension members) 6.
  • the wrap ratio of the presser winding 5 with respect to the core is high, a circumferential length for holding the bulged core that is about to jump out can be secured and the occurrence of jumping out can be prevented.
  • the wrap rate is low, the core will pop out.
  • the bulge of the core is affected by the twisting method of the optical fiber core wire 4.
  • SZ twisting the reversal part of the S twist and the Z twist is released, so that the bulge of the core becomes larger than the unidirectional twist.
  • the core is easy to jump out. That is, the jumping of the optical fiber unit from the presser winding 5 also depends on the wrap ratio of the presser winding 5 vertically attached on the optical fiber unit.
  • the inventors of the present applicant set the optical fiber extra length ratio to the cable length at the time of cable disassembly as B, and the press winding extra length ratio to the cable length at the time of cable disassembly as A, and the optical fiber unit of the presser winding 5
  • the wrap ratio is R
  • the optical fiber extra length ratio B, the presser roll extra length ratio A, and the wrap ratio R are changed, the presser winding 5 of the optical fiber core wire 4 at the time of intermediate branching of the cable twisted in one direction
  • the presence / absence of protrusion from the cable, the presence / absence of protrusion from the presser winding 5 of the optical fiber core wire 4 at the time of intermediate branching of the SZ twisted cable, and the manufacturability were confirmed.
  • the confirmation result is shown in FIG.
  • the optical fiber extra length ratio B is (optical fiber length average value ⁇ cable length) / cable length ⁇ 100 [%].
  • the presser winding excess length ratio A is (pressing winding length ⁇ cable length) / cable length ⁇ 100 [%].
  • the wrap ratio R is the pressing roll width / (optical fiber unit diameter ⁇ ⁇ ) [circumference].
  • a polyester film having a thickness of 25 ⁇ m and a Young's modulus of 4 GPa is used as a presser roll 5, and a sheath 8 is covered while being vertically attached on a twisted optical fiber unit, and a 200-core cable and a 60-core cable are prototyped.
  • an intermittently bonded four-fiber ribbon is used for the optical fiber core 4, and for the 200-fiber cable, bunching is performed for every 20 fibers, for a total of 10 optical fiber units, and the 60-fiber structure is 3
  • Each optical fiber unit was SZ twisted and unidirectional twisted.
  • the outer diameter of the cable main body was ⁇ 10.5 mm with a 200-core structure, and the outer diameter of the cable main body was ⁇ 8.5 mm with a 60-core structure.
  • the aggregate unit diameter was 5.5 mm for the 200-core structure and 3.0 mm for the 60-core structure.
  • the extra length of the optical fiber controls the back tension of the optical fiber core 4 at the time of manufacturing
  • the extra length of the presser roll controls the back tension of the presser winding 5 at the time of manufacture
  • the wrap ratio is the width of the presser roll. I changed it.
  • the confirmation as to whether or not the optical fiber 4 protrudes from the presser winding 5 at the time of intermediate branching of the cable was performed as follows. Attach the cable to the mount with 1% slack in the cable, peel off the outer sheath (sheath) of the middle part of the cable 700 mm (intermediate branch), and after 10 minutes, the optical fiber core 4 from the presser winding 5 The presence or absence of popping out was confirmed. “Yes” when the optical fiber core 4 was popped out, and “No” when the optical fiber core 4 was not popped out.
  • the presser winding 5 is made of a thermoplastic resin, so that the shape is maintained by the heat at the time of jacketing at the time of cable manufacture, and even when there is no binding such as rough winding at the time of cable branching, an optical fiber unit Can be covered.
  • the wrap ratio of the presser winding 5 with respect to the optical fiber unit is that of the optical fiber unit.
  • the optical fiber surplus ratio with respect to the cable length at the time of cable disassembly is B
  • the holding winding surplus length ratio with respect to the cable length at the time of cable disassembly is A
  • the relationship of 0.25 ⁇ (BA) ⁇ 0.60 the jumping of the optical fiber core wire 4 due to the shrinkage of the presser winding 5 at the middle branch of the cable can be suppressed.
  • the wrap ratio with respect to the optical fiber unit is not less than 1.5 and not more than 2.0 with respect to the diameter of the optical fiber unit.
  • the optical fiber surplus ratio with respect to the cable length at the time of cable disassembly is B and the holding winding surplus ratio with respect to the cable length at the time of cable disassembly is A, 0.25 ⁇ (BA) ⁇ 0.70 Since there is a relationship, jumping out of the optical fiber core wire 4 due to contraction of the presser winding 5 at the middle of the cable branch can be suppressed.
  • the optical fiber surplus ratio B with respect to the cable length at the time of cable disassembly is 0.05% or more, and the presser winding surplus length with respect to the cable length at the time of cable disassembly
  • the ratio A is desirably ⁇ 0.2% or less.
  • the lower limit of (BA) may be 0 (zero). If a high-cost optical fiber or presser winding is used, the values of A and B can each be 0%, so it is theoretically possible to set the lower limit of (BA) to 0. (Example 2)
  • FIG. 5 is a cross-sectional view showing the configuration of the optical fiber cable according to the second embodiment of the present invention.
  • the optical fiber cable of the second embodiment shown in FIG. 5 is obtained by deleting the support line portion 2 and the neck portion 3 of the optical fiber cable of the first embodiment shown in FIG.
  • optical fiber cable of the second embodiment the same effect as that of the optical fiber cable of the first embodiment can be obtained.
  • the present invention is applied to an optical fiber cable mounted with an optical fiber unit in which a plurality of optical fibers are collected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本発明は、複数の光ファイバ心線4をSZ撚りした光ファイバユニットと、光ファイバユニットの外周に縦添えされた押さえ巻き5と、押さえ巻きの外周に施されたシース8と有する光ファイバケーブルであって、押さえ巻きの光ファイバユニットに対するラップ率が光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、ケーブル長に対する押さえ巻き余長率をAとした場合に、0≦(B-A)≦0.60の関係を有する。

Description

光ファイバケーブル
 本発明は、1本以上の光ファイバユニットを撚り、この光ファイバユニット上に押さえ巻きを縦添えした光ファイバケーブルに関する。
 近年、細径化されたセンターコア型の光ファイバケーブル構造が導入され始めている。センターコア型の光ファイバケーブルでは、熱可塑性テープ等の押さえ巻きを筒状に成形した中に光ファイバ心線が収納され外被と直接接触しない構造となっている(特許文献1、特許文献2)。
特開2011-123472号公報 特開平8-271773号公報
 しかしながら、特許文献1、特許文献2に記載された光ファイバケーブルにあっては、ケーブル製造時に押さえ巻きが押出時の熱により収縮し、押出時の樹脂の抵抗により押さえ巻きが伸ばされた状態でケーブル内に実装される。このケーブルが図1A、図2Aに示されるように、中間部で分岐された際に、伸ばされていた押さえ巻き12の歪みが解放されて収縮する。
 すると、図1B、図2Bに示すように、収納されていた光ファイバ13が蛇行して蛇行した光ファイバ13が外側に逃げようとする。さらに、図1C、図2Cに示すように、押さえ巻き12から内部の光ファイバ13が飛び出してしまうことがある。このため、作業中に飛び出した光ファイバを誤って引っ掛けて断線させてしまうおそれがある。
 本発明の課題は、ケーブル中間分岐時に押さえ巻きの収縮による光ファイバ心線の飛び出しを抑制できる光ファイバケーブルを提供する。
 上記課題を解決するために、本発明の光ファイバケーブルは、複数の光ファイバ心線をSZ撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースとを有する光ファイバケーブルであって、前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、前記ケーブル長に対する押さえ巻き余長率をAとした場合に、0≦(B-A)≦0.60の関係を有する。
 また、本発明の光ファイバケーブルは、複数の光ファイバ心線を一方向撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースとを有する光ファイバケーブルであって、前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、前記ケーブル長に対する押さえ巻き余長率をAとした場合に、0.25≦(B-A)≦0.70の関係を有する。
 本発明によれば、ケーブル中間分岐時に押さえ巻きの収縮による光ファイバ心線の飛び出しを抑制できる。
図1Aは従来の光ファイバケーブルの中間分岐時の押さえ巻きが収縮した状態を説明する側面図である。 図1Bは従来の光ファイバケーブルの中間分岐時の光ファイバが蛇行した状態を説明する側面図である。 図1Cは従来の光ファイバケーブルの中間分岐時の光ファイバが飛び出す状態を説明する側面図である。 図2Aは従来の光ファイバケーブルの中間分岐時の押さえ巻きの状態を説明する断面図である。 図2Bは従来の光ファイバケーブルの中間分岐時の蛇行した光ファイバが外側に逃げようとする状態を説明する断面図である。 図2Cは従来の光ファイバケーブルの中間分岐時の蛇行した光ファイバが外側に飛び出す状態を説明する断面図である。 図3は本発明に係る実施例1の光ファイバケーブルの構成を示す断面図である。 図4は光ファイバ余長率、押さえ巻き余長率及びラップ率に対する一方向撚り及びSZ撚りしたケーブルの中間分岐時の光ファイバの押さえ巻きからの飛び出しの有無及び製造性を示す図である。 図5は本発明に係る実施例2の光ファイバケーブルの構成を示す断面図である。
 後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。
 複数の光ファイバ心線をSZ撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースとを有する光ファイバケーブルであって、前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、前記ケーブル長に対する押さえ巻き余長率をAとした場合に、0≦(B-A)≦0.60の関係を有する光ファイバケーブルが明らかとなる。このような光ファイバケーブルであれば、ケーブル中間分岐時に押さえ巻きの収縮による光ファイバ心線の飛び出しを抑制できる。
 また、複数の光ファイバ心線を一方向撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースと有する光ファイバケーブルであって、前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、前記ケーブル長に対する光ファイバ余長率をBとし、ケーブル長に対する押さえ巻き余長率をAとした場合に、0≦(B-A)≦0.70の関係を有する光ファイバケーブルが明らかとなる。このような光ファイバケーブルであれば、ケーブル中間分岐時に押さえ巻きの収縮による光ファイバ心線の飛び出しを抑制できる。
 また、前記ケーブル長に対する前記光ファイバ余長率Bが0.05%以上であり、前記ケーブル長に対する前記押さえ巻き余長率Aが-0.2%以下であることが望ましい。これにより、安価且つ高信頼性のケーブルが得られる。
 また、押さえ巻きは、熱可塑性樹脂からなることが望ましい。これにより、ケーブル分岐時においても特に粗巻き等のバインドが無くても光ファイバユニットを覆うことができる。
(実施例1)
 以下、本発明に係る実施例の光ファイバケーブルを図面に基づいて詳細に説明する。図3は、本発明に係る実施例1の光ファイバケーブルの構成を示す断面図である。図3に示す実施例1の光ファイバケーブルは、自己支持型光ファイバケーブルであり、ケーブル本体部1と、支持線9が内部に収納された支持線部2と、ケーブル本体部1及び支持線部2を繋ぐ首部3とで構成されている。
 ケーブル本体部1の中央には、SZ撚りされた複数の光ファイバ心線4からなる光ファイバユニットが設けられている。SZ撚りとは、複数本の線条を一方向に捻回し、長さ方向にある距離を隔ててから捻回の方向を逆転し、さらに長さ方向に同じある距離を隔ててから捻回の方向を元に戻し、これを繰り返す状態を言う。
 なお、SZ撚りされた複数の第1光ファイバ心線4からなる光ファイバユニットを用いる代わりに、一方向撚りされた複数の光ファイバ心線4からなる光ファイバユニットを用いても良い。SZ撚り又は一方向撚りのピッチは、例えば800mmである。
 さらに、複数の光ファイバ心線4の外周には押さえ巻き5が縦添えして施されている。押さえ巻き5としては、例えば、不織布などからなる押さえ巻きテープが巻かれている。押さえ巻き5は、例えば、熱可塑性樹脂からなる。押さえ巻き5の外周にはシース8が施されている。シース8は、例えば、PE(ポリエチレン)などからなる。
 シース8の中には2つの抗張力体(テンションメンバ)6が互いに略180度の位置に配置されている。また、シース6の中には2つの抗張力体(テンションメンバ)6と略直交する方向に引き裂き紐7が設けられている。
(実施例1の光ファイバケーブルの特徴的な構成)
 次に、実施例1の光ファイバケーブルの特徴的な構成が説明される。まず、ケーブルに対する光ファイバ余長率と、ケーブル解体時のケーブル長に対する押さえ巻き余長率との差分、即ち押さえ巻き5に対する光ファイバ心線4の相対余長が大きいほど、中間分岐時に光ファイバ心線4が飛び出し易くなる。つまり、ケーブルを解体すると、光ファイバ心線4の外被と押さえ巻き5間の密着が開放され、押さえ巻き5の歪みが解放されて押さえ巻き5が縮み、光ファイバ心線4の相対余長率が増加して飛び出す力が生じる。
 ここで、押さえ巻き5のコア(光ファイバユニット)に対するラップ率が高ければ、飛び出そうとして膨らんだコアを保持するための周長が確保されて飛び出しの発生を防ぐことができる。しかし、ラップ率が低ければ、コアが飛び出してしまう。なお、このコアの膨らみは光ファイバ心線4の撚り方に影響され、SZ撚りの場合、S撚りとZ撚りの反転部が解放されることから、一方向撚りよりもコアの膨らみが大きくなり、コアが飛び出し易くなる。即ち、押さえ巻き5からの光ファイバユニットの飛び出しは、光ファイバユニット上に縦添えした押さえ巻き5のラップ率にも依存する。
 そこで、本出願人の発明者らは、ケーブル解体時のケーブル長に対する光ファイバ余長率をBとし、ケーブル解体時のケーブル長に対する押さえ巻き余長率をAとし、押さえ巻き5の光ファイバユニットに対するラップ率をRとし、光ファイバ余長率B、押さえ巻き余長率A、ラップ率Rを変化させたときの、一方向撚りしたケーブルの中間分岐時の光ファイバ心線4の押さえ巻き5からの飛び出しの有無、SZ撚りしたケーブルの中間分岐時の光ファイバ心線4の押さえ巻き5からの飛び出しの有無、及び製造性について、確認した。この確認結果を図4に示す。
 なお、光ファイバ余長率Bは、(光ファイバ長さ平均値-ケーブル長さ)/ケーブル長さ×100〔%〕である。押さえ巻き余長率Aは、(押さえ巻き長さ-ケーブル長さ)/ケーブル長さ×100〔%〕である。ラップ率Rは、押さえ巻き幅/(光ファイバユニット直径×π)〔周〕である。
 また、この例では、厚さ25μm、ヤング率4GPaのポリエステルフィルムを押さえ巻き5とし、撚り合わせた光ファイバユニット上に縦添えしながらシース8を被覆し、200心ケーブル、及び60心ケーブルを試作した。また、光ファイバ心線4には間欠的接着型4心テープ心線を用い、200心ケーブルについては、20心毎にバンチングを施し、合計で10個の光ファイバユニットとし、60心構造は3個の光ファイバユニットとしてそれぞれSZ撚り、一方向撚りした。
 ケーブル外径について、200心構造でケーブル本体部外径をφ10.5mm、60心構造でケーブル本体部外径をφ8.5mmとした。集合ユニット径は200心構造で5.5mm、60心構造で3.0mmとした。
 また、光ファイバ余長は、製造時の光ファイバ心線4のバックテンションをコントロールし、押さえ巻き余長は、製造時の押さえ巻き5のバックテンションをコントロールし、ラップ率は、押さえ巻き幅を変えて行った。
 ケーブルの中間分岐時の光ファイバ4の押さえ巻き5からの飛び出しの有無の確認については、以下のように行った。ケーブルに1%のたるみを持たせた状態でケーブルを架台に取り付け、ケーブルの中間部700mmの外被(シース)を剥ぎ取り(中間分岐)、10分後に押さえ巻き5からの光ファイバ心線4の飛び出しの有無を確認した。光ファイバ心線4の飛び出しがあった場合には「有」、光ファイバ心線4の飛び出しがなかった場合には「無」とした。
 図4に示す確認結果に基づき、ラップ率が1.5周~2.1周において、SZ撚りでは、B-Aが0.25~0.60であり、一方向撚りでは、B-Aが0.25~0.70であるときに、ケーブル中間分岐時に押さえ巻き5の収縮による光ファイバ心線4の飛び出しの発生はなかった。
 また、押さえ巻き5のラップ率が高くなると、ラップした押さえ巻き5の内側と外側にかかる張力に差が生じ易く、長い条長での試作時に押さえ巻きが折れたり、反転したりする。この場合、6000m長の試作を行い、押さえ巻き5の折れや反転が生じ、特性異常が生じた場合に×とした。製造性については、ラップ率が2.1周では、製造時に押さえ巻き5の折れが発生し、伝送特性の劣化が確認された。
 以上のことから、SZ撚りでは、0.25≦(B-A)≦0.60、一方向撚りでは、0.25≦(B-A)≦0.70、SZ撚り及び一方向撚りでは、1.5≦R≦2.0である必要がある。また、図4に示すように、ケーブル解体時のケーブル長に対する光ファイバ余長率Aが0.05%以上であり、ケーブル解体時のケーブル長に対する押さえ巻き余長率Bが-0.2%以下である必要がある。
 また、押さえ巻き5を熱可塑性樹脂で構成することにより、ケーブル製造時の外被被覆時の熱でその形状を保持し、ケーブル分岐時においても特に粗巻き等のバインドが無くても光ファイバユニットを覆うことができる。
 このように実施例1に係る光ファイバケーブルによれば、複数の光ファイバ心線4をSZ撚りした光ファイバユニットを用いた場合に、押さえ巻き5の光ファイバユニットに対するラップ率が光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル解体時のケーブル長に対する光ファイバ余長率をBとし、ケーブル解体時のケーブル長に対する押さえ巻き余長率をAとした場合に、0.25≦(B-A)≦0.60の関係を有するので、ケーブル中間分岐時に押さえ巻き5の収縮による光ファイバ心線4の飛び出しを抑制できる。
 また、複数の光ファイバ心線4を一方向撚りした光ファイバユニットを用いた場合に、光ファイバユニットに対するラップ率が光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル解体時のケーブル長に対する光ファイバ余長率をBとし、ケーブル解体時のケーブル長に対する押さえ巻き余長率をAとした場合に、0.25≦(B-A)≦0.70の関係を有するので、ケーブル中間分岐時に押さえ巻き5の収縮による光ファイバ心線4の飛び出しを抑制できる。
 ここで、SZ撚り及び一方向撚りの場合の(B-A)の下限を0.25とした理由を説明する。長期間ドラム等にケーブルを巻いた状態にすると、光ファイバ単体に伸び歪みが加わり、断線が発生する可能性がある。このため、この状態を想定した光ファイバ余長率Bの下限は、0.05%となる。また、ポリエステルフィルムを用いた押さえ巻きは、それ単体が延伸により成形されているため、押し出し成型時の熱により少なくともA=-0.20%の収縮が発生する。このため、安価且つ高信頼性のケーブルを製造するためには、B-Aの下限は0.25となる。言い換えれば、安価且つ高信頼性のケーブルを製造するためには、ケーブル解体時のケーブル長に対する光ファイバ余長率Bが0.05%以上であり、ケーブル解体時のケーブル長に対する押さえ巻き余長率Aが-0.2%以下であることが望ましい。
 なお、(B-A)の下限は、0(ゼロ)であっても良い。コストの高い光ファイバや押さえ巻きを用いれば、A及びBの値をそれぞれ0%にすることが可能であるため、(B-A)の下限を0にすることが理論的に可能である。
(実施例2)
 図5は、本発明に係る実施例2の光ファイバケーブルの構成を示す断面図である。図5に示す実施例2の光ファイバケーブルは、図3に示す実施例1の光ファイバケーブルの支持線部2及び首部3を削除し、ケーブル本体部1のみとしたものである。
 このような実施例2の光ファイバケーブルにおいても、実施例1の光ファイバケーブルの効果と同様な効果が得られる。
(米国指定)
 本国際特許出願は米国指定に関し、2013年8月2日に出願された日本国特許出願第2013-160894について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
 本発明は、光ファイバを複数本纏めた光ファイバユニットを実装した光ファイバケーブルに適用される。

Claims (4)

  1.  複数の光ファイバ心線をSZ撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースとを有する光ファイバケーブルであって、
     前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、前記ケーブル長に対する押さえ巻き余長率をAとした場合に、0≦(B-A)≦0.60の関係を有する光ファイバケーブル。
  2.  複数の光ファイバ心線を一方向撚りした光ファイバユニットと、前記光ファイバユニットの外周に縦添えされた押さえ巻きと、前記押さえ巻きの外周に施されたシースとを有する光ファイバケーブルであって、
     前記押さえ巻きの前記光ファイバユニットに対するラップ率が前記光ファイバユニットの直径に対して1.5周以上2.0周以下であり、ケーブル長に対する光ファイバ余長率をBとし、前記ケーブル長に対する押さえ巻き余長率をAとした場合に、0.25≦(B-A)≦0.70の関係を有する光ファイバケーブル。
  3.  前記ケーブル長に対する前記光ファイバ余長率Bが0.05%以上であり、前記ケーブル長に対する前記押さえ巻き余長率Aが-0.2%以下である請求項1又は請求項2記載の光ファイバケーブル。
  4.  前記押さえ巻きは、熱可塑性樹脂からなる請求項1乃至請求項3のいずれか1項記載の光ファイバケーブル。
PCT/JP2014/070009 2013-08-02 2014-07-30 光ファイバケーブル WO2015016240A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160894 2013-08-02
JP2013160894A JP5956961B2 (ja) 2013-08-02 2013-08-02 光ファイバケーブル

Publications (1)

Publication Number Publication Date
WO2015016240A1 true WO2015016240A1 (ja) 2015-02-05

Family

ID=52431770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070009 WO2015016240A1 (ja) 2013-08-02 2014-07-30 光ファイバケーブル

Country Status (3)

Country Link
JP (1) JP5956961B2 (ja)
TW (1) TWI529439B (ja)
WO (1) WO2015016240A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6298508B1 (ja) * 2016-09-20 2018-03-20 株式会社フジクラ 光ファイバユニットおよび光ファイバケーブル
JP7025958B2 (ja) * 2018-03-06 2022-02-25 株式会社フジクラ 光ファイバケーブル及び光ファイバケーブルの製造方法
EP3633432B1 (en) * 2017-06-02 2022-02-09 Fujikura Ltd. Optical fiber cable and method for manufacturing optical fiber cable
JP7184526B2 (ja) * 2018-03-13 2022-12-06 株式会社フジクラ 光ファイバケーブル
JP7426873B2 (ja) * 2020-03-27 2024-02-02 古河電気工業株式会社 光ファイバケーブル
WO2022050116A1 (ja) 2020-09-02 2022-03-10 株式会社フジクラ 光ケーブル及び光ケーブル製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280106A (ja) * 1989-04-21 1990-11-16 Toray Ind Inc 光ファイバーケーブル
JPH08262287A (ja) * 1995-03-20 1996-10-11 Sumitomo Electric Ind Ltd 自己支持型光ケーブル
JPH09105843A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 光ケーブル
JPH09166733A (ja) * 1995-12-15 1997-06-24 Fujikura Ltd 光ファイバケーブル
JP2001343571A (ja) * 2000-05-31 2001-12-14 Hitachi Cable Ltd 自己支持型光ファイバケーブル
JP2013097285A (ja) * 2011-11-04 2013-05-20 Fujikura Ltd 光ユニット及び光ファイバケーブル
JP2013101175A (ja) * 2011-11-07 2013-05-23 Fujikura Ltd 光ファイバユニットの製造方法、光ファイバユニット及び光ファイバケーブル
JP2013122544A (ja) * 2011-12-12 2013-06-20 Fujikura Ltd 光ユニット及び光ファイバケーブル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280106A (ja) * 1989-04-21 1990-11-16 Toray Ind Inc 光ファイバーケーブル
JPH08262287A (ja) * 1995-03-20 1996-10-11 Sumitomo Electric Ind Ltd 自己支持型光ケーブル
JPH09105843A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 光ケーブル
JPH09166733A (ja) * 1995-12-15 1997-06-24 Fujikura Ltd 光ファイバケーブル
JP2001343571A (ja) * 2000-05-31 2001-12-14 Hitachi Cable Ltd 自己支持型光ファイバケーブル
JP2013097285A (ja) * 2011-11-04 2013-05-20 Fujikura Ltd 光ユニット及び光ファイバケーブル
JP2013101175A (ja) * 2011-11-07 2013-05-23 Fujikura Ltd 光ファイバユニットの製造方法、光ファイバユニット及び光ファイバケーブル
JP2013122544A (ja) * 2011-12-12 2013-06-20 Fujikura Ltd 光ユニット及び光ファイバケーブル

Also Published As

Publication number Publication date
TW201523054A (zh) 2015-06-16
JP5956961B2 (ja) 2016-07-27
TWI529439B (zh) 2016-04-11
JP2015031810A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2015016240A1 (ja) 光ファイバケーブル
US7421169B2 (en) Optical fiber cable
CN116299922A (zh) 光纤电缆
JP5568071B2 (ja) 光ファイバケーブル
TW202032191A (zh) 光纖纜線、纜線核心的製造方法
JP7516241B2 (ja) 光ファイバケーブル
JP5813529B2 (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
US11921341B2 (en) Optical cable and optical cable manufacturing method
JP3471241B2 (ja) 海底光ケーブル
WO2023100604A1 (ja) 光ケーブル、光ケーブル構造体及び光ケーブルの製造方法
JP2005037641A (ja) 光ファイバケーブル
JPS5922006A (ja) 光フアイバケ−ブルの製造方法
JP2023020683A (ja) 光ファイバケーブル
JP2023109266A (ja) 光ファイバケーブル
JP2023114328A (ja) 光ファイバケーブル
AU2015399539B2 (en) An aerial micromodule optical cable and a method of manufacturing said cable
JP2022190317A (ja) 光ファイバケーブル
JP2016004232A (ja) 光ケーブル
JP2001201675A (ja) 光ファイバケーブル
JP2988328B2 (ja) ルースチューブ型光ファイバケーブルの製造方法
JPS609761Y2 (ja) 光ケ−ブル
JPH08313770A (ja) 光ユニットおよび光ユニットの製造方法
JPS58102908A (ja) 光ケ−ブル
JPH11295570A (ja) 光ファイバケーブル
JPH11231178A (ja) 光ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831320

Country of ref document: EP

Kind code of ref document: A1