WO2015016121A1 - 液晶表示装置の製造方法 - Google Patents

液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2015016121A1
WO2015016121A1 PCT/JP2014/069518 JP2014069518W WO2015016121A1 WO 2015016121 A1 WO2015016121 A1 WO 2015016121A1 JP 2014069518 W JP2014069518 W JP 2014069518W WO 2015016121 A1 WO2015016121 A1 WO 2015016121A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
photo
manufacturing
Prior art date
Application number
PCT/JP2014/069518
Other languages
English (en)
French (fr)
Inventor
敢 三宅
宮地 弘一
大明 淺木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480043065.2A priority Critical patent/CN105452948B/zh
Priority to US14/907,870 priority patent/US9977290B2/en
Priority to JP2015529536A priority patent/JP5997385B2/ja
Publication of WO2015016121A1 publication Critical patent/WO2015016121A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal display device. More specifically, the present invention relates to a method for manufacturing a liquid crystal display device related to the conditions for forming an alignment film.
  • liquid crystal display devices are rapidly spreading, and not only for television applications, but also electronic books, photo frames, IA (Industrial Appliances), PCs (Personal Computers), tablet PCs. Widely used in smartphone applications. In these applications, various performances are required, and various liquid crystal display modes have been developed.
  • in-plane switching In-Plane switching
  • IPS switching
  • FFS fringe field switching
  • an alignment treatment method for an alignment film for aligning liquid crystal molecules include a rubbing method and a photo alignment method.
  • the rubbing method of rubbing the surface of the alignment film with a cloth has been widely adopted.
  • foreign matter defects and display unevenness due to dust generation on the cloth, and destruction of the thin film transistor element due to static electricity when rubbing with the cloth have become problems.
  • a photo-alignment method that gives anisotropy to the alignment film by irradiating light such as ultraviolet rays and generates an alignment regulating force has been recently studied instead of the rubbing method. Yes.
  • Non-Patent Documents 2 to 4 there is known a document disclosing that the alignment order of the polymer is improved by sequentially performing preheating, irradiation with polarized ultraviolet rays, and main heating (for example, see Non-Patent Documents 2 to 4).
  • the said nonpatent literature 4 is related with formation of a photo-alignment film.
  • JP-A-8-179328 Japanese Patent No. 4459417 International Publication No. 2012/093682
  • a photo alignment film As described above, alignment processing of an alignment film (hereinafter also referred to as a photo alignment film) by a photo alignment method has been studied.
  • the photo-alignment method (1) the voltage holding ratio of the liquid crystal display device is lowered and the display quality is lowered when used for a long period of time, and (2) a sufficient alignment regulating force cannot be obtained. High contrast cannot be obtained, or the burn-in characteristic is deteriorated, and (3) the exposure sensitivity of the photo-alignment film is poor, and a large amount of energy (irradiation amount) is required for light irradiation (for example, ultraviolet irradiation).
  • irradiation amount for example, ultraviolet irradiation
  • the present inventors have found that the above-mentioned defect (1) occurs remarkably when used for a long time in a state of being energized at a high temperature.
  • the present inventors have found that the above-mentioned problem (2) is that even when the photo-alignment treatment is performed, the alignment order of the polymer contained in the photo-alignment film is not sufficiently increased and the alignment disorder of the liquid crystal molecules is caused.
  • the alignment order indicates, for example, the degree of anisotropy of a polymer that has been photo-aligned so as to be aligned in a predetermined direction.
  • the degree of anisotropy can be measured, for example, by refractive index anisotropy or absorptance anisotropy.
  • the present inventors have found that the above-mentioned defect (3) occurs remarkably particularly in a photolytic photo-alignment film.
  • Patent Document 1 discloses a method for manufacturing a liquid crystal alignment film, which can achieve uniform alignment by high pretilt uniformly and prevent liquid crystal display defects when aligning chiral smectic liquid crystal using an alignment film, and liquid crystal An element manufacturing method is provided.
  • the invention described in Patent Document 1 aligns chiral smectic liquid crystal by a rubbing method, and there is room for contrivance to solve the above problems.
  • the invention described in Patent Document 1 is aimed at achieving a high pretilt angle.
  • the viewing angle characteristics are varied depending on the high pretilt angle. Etc. deteriorates and the display quality deteriorates.
  • Patent Document 2 provides a liquid crystal alignment processing method and a liquid crystal display element capable of expressing a liquid crystal pretilt angle necessary for the liquid crystal alignment element without performing oblique irradiation.
  • the invention described in Patent Document 2 does not disclose any IPS mode or FFS mode liquid crystal display device that is the subject of the present invention, and there is room for contrivance to solve the above problems.
  • the invention described in Patent Document 2 is intended to develop a pretilt angle by vertical irradiation.
  • the viewing angle is varied depending on the pretilt angle. The characteristics and the like are deteriorated, and the display quality is lowered.
  • the said patent document 3 is providing the composition for photo-alignment films containing the photoreactive compound with a high freedom degree of material selection.
  • the invention described in Patent Document 3 does not disclose in detail the firing process of the alignment film, and optimizes the conditions for this heating and further improves the alignment order of the polymer and the electrical characteristics. There was room for contrivance to solve the above problems.
  • Non-Patent Document 1 when the alignment order of a polyimide alignment film containing azobenzene in the main chain is measured, the alignment order after the main heating is higher than the alignment order before the main heating.
  • the non-patent document 1 only discloses 250 ° C. for 1 hour as to the condition of the main heating, and is a device for solving the above problem in that the condition of the main heating is optimized. There was room.
  • the said nonpatent literature 1 is not disclosing at all about preheating. When preheating is not performed, the film thickness unevenness of the photo-alignment film is generated, and the display quality is deteriorated.
  • Non-Patent Documents 2 to 4 describe that preheating, irradiation with polarized ultraviolet rays, and main heating are effective in order to increase the orientation order of the polymer.
  • Non-Patent Documents 2 to 4 do not disclose any case where the photo-alignment film material contains two or more types of polymers, so that the electrical characteristics are poor and alignment defects such as alignment blots and uneven alignment occur. In this respect, there is room for improvement.
  • the said nonpatent literatures 2 and 3 are not disclosed regarding formation of alignment film.
  • Non-Patent Document 5 discloses that in an acrylic polymer having a liquid crystal structure, a high degree of orientation is born by liquid crystallinity (self-organization) and hydrogen bonding resulting from an amide group. It shows that it is effective to heat-treat. However, Non-Patent Document 5 discloses only a single treatment at a specific temperature for the main heating condition, and does not disclose any preheating. When preheating is not performed, the film thickness unevenness of the photo-alignment film is generated, and the display quality is deteriorated.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method of manufacturing a liquid crystal display device that includes a photo-alignment film and can sufficiently improve display quality.
  • the inventors of the present invention have studied various causes for the problem (1) that occur remarkably when used for a long time in a state of being energized at a high temperature. And the impurities contained in the sealing material and the like are eluted into the liquid crystal and behave as mobile ions, so that the voltage holding ratio is lowered.
  • the present inventors have made various studies on methods for producing a liquid crystal display device that can solve the above problem (1), have a photo-alignment film, and can sufficiently improve display quality, and have a polyamic acid skeleton.
  • a photo-alignment film material containing a polymer having a polyamic acid skeleton —NH groups and —COOH groups are present on the surface of the photo-alignment film, as described above.
  • the present inventors have found that it is possible to adsorb various impurities (movable ions), and thus it is possible to sufficiently prevent a decrease in voltage holding ratio, and as a result, it is possible to sufficiently improve display quality.
  • the present inventors have made various studies on the reason why the orientation order of the polymer is not sufficiently increased with respect to the problem (2). As a result, light irradiation is performed after the thermochemical reaction of the polymer proceeds by this heating. It has been found that the orientation order of the polymer does not increase sufficiently even if it is performed. This is considered to be because the polymer cannot be completely oriented only by light irradiation. Further, the present inventors have found that even when light irradiation is performed before the main heating, the orientation order of the polymer is not sufficiently increased if the temperature of the main heating is too low.
  • the polymer immediately after the light irradiation includes those deviated from the predetermined orientation direction, and the orientation order of the polymer is not sufficiently increased. State. Therefore, if the temperature of the main heating is too low, the molecular motion of the polymer immediately after light irradiation in which the alignment order is not sufficiently increased does not become active, and the polymer deviated from the predetermined orientation direction as described above is This is considered to be because it becomes difficult to re-orientate in the orientation direction.
  • the present inventors have studied various methods for manufacturing a liquid crystal display device that can solve the above-mentioned problem (2), have a photo-alignment film, and can sufficiently improve display quality.
  • the solvent remains to some extent in the state before the main heating, and the preheating is performed to such an extent that the film quality and display quality of the photo-alignment film are not affected. It has been found that the orientation order of the polymer by self-organization can be sufficiently improved by lowering the temperature. From the above, it has been found that the display quality can be sufficiently improved.
  • the present inventors have made various studies on the cause of the remarkable occurrence in the photodecomposition type photo-alignment film with respect to the problem (3).
  • a low molecular weight decomposition product is generated by light irradiation, and a liquid crystal display
  • the degradation product is agglomerated after being eluted in the liquid crystal, thereby causing deterioration in display quality (for example, poor bright spot).
  • the present inventors have studied various methods for manufacturing a liquid crystal display device that can solve the above-mentioned problem (3), have a photo-alignment film, and can sufficiently improve display quality. Attention has been focused on using a photo-alignment film that has at least one chemical reaction selected from the group consisting of photonic transition and optical fleece transition as a main mechanism for forming the alignment anisotropy. If a photo-alignment film material containing a polymer having a photofunctional group capable of at least one chemical reaction selected from the group consisting of photodimerization, photoisomerization, and photofleece transition is used, It has been found that the display quality can be sufficiently improved because no low molecular weight decomposition products are produced.
  • a method for manufacturing a liquid crystal display device including a photo-alignment film the method for manufacturing the liquid crystal display device comprising a group consisting of photodimerization, photoisomerization, and optical fleece transition.
  • a photo-alignment film material comprising a polymer having a photofunctional group capable of at least one chemical reaction selected from the above, a polymer having a polyamic acid skeleton and not having the photofunctional group, and a solvent
  • the liquid crystal display device includes a step (4) of performing main heating on the polarized film and the liquid crystal display device has an in-plane switching mode or fringe field switching in which the pretilt angle is substantially 0 °.
  • Mo It is de may be a method of manufacturing a liquid crystal display device.
  • the manufacturing method of the liquid crystal display device according to one embodiment of the present invention is not particularly limited by other steps.
  • a method for manufacturing a liquid crystal display device that includes a photo-alignment film and can sufficiently improve display quality can be provided.
  • the photo-alignment film material has a polymer having a photofunctional group capable of at least one chemical reaction selected from the group consisting of photodimerization, photoisomerization, and photofleece transition, and a polyamic acid skeleton,
  • the polymer contains a polymer having no photofunctional group and a solvent, and constitutes a photo-alignment film after the steps (1) to (4). That is, the photo-alignment film generates at least one chemical reaction selected from the group consisting of photo-dimerization, photo-isomerization, and photo-fleece transition when irradiated with light. It is a film that expresses orientation regulating power.
  • the photo-alignment film material may contain a different type of polymer from the two types of polymers.
  • the two types of polymers have a photofunctional group capable of at least one chemical reaction selected from the group consisting of photodimerization, photoisomerization, and photofleece transition, and a polyamic acid skeleton.
  • a photofunctional group capable of at least one chemical reaction selected from the group consisting of photodimerization, photoisomerization, and photofleece transition
  • a polyamic acid skeleton it does not specifically limit if it does not have the said photofunctional group, It is preferable that it has a sufficient characteristic calculated
  • the photo-alignment film material contains a polyamic acid, from the viewpoint of solubility in the solvent and affinity with the substrate, the coating property when forming the film on the substrate is improved. Can do. From the viewpoint of electrical characteristics, burn-in due to residual DC (direct current) can be reduced by taking into account the dielectric constant and specific resistance of the liquid crystal layer. From this viewpoint, it is also effective to cause a part of the poly
  • the solvent is not particularly limited as long as it is a liquid (at room temperature) that can dissolve or disperse the two types of polymers, and is removed from the photo-alignment film material by the steps (2) and (4). .
  • the solvent is not only a component suitable for dissolving the two types of polymers (good solvent) but also a component suitable for spreading the photo-alignment film material on the substrate with a uniform thickness (poor solvent). ) And the like, and a mixture thereof is preferable.
  • step (1) (hereinafter also referred to as a step of forming a film made of a photo-alignment film material), for example, a method of applying by an ink jet method or a spin coating method, or a method of printing (transferring) by a flexo method. Etc. are used. Then, by using these methods, the film may be formed on the substrate using the photo-alignment film material so that it can function as a photo-alignment film in the subsequent steps.
  • the film formation conditions may be appropriately set according to the film formation method and the like. Further, the film thickness and the like of the film may be the same as the film thickness and the like of the photo-alignment film that is normally set.
  • the substrate on which the film is formed may be a substrate on which a process for forming a photo-alignment film is performed, and may be a substrate on which various processes have been performed.
  • the film is heated / dried to evaporate the solvent.
  • the solvent may be partially removed or substantially completely removed by the preheating step.
  • the preheating step is performed by a heating device such as a hot plate or a baking furnace set to a predetermined temperature, for example.
  • the preheated film is subjected to photo-alignment treatment with, for example, ultraviolet rays, visible rays, or both, and polarized light.
  • UV rays are preferably used.
  • the light irradiation conditions in a light irradiation process can be made into the conditions set when forming a normal photo-alignment film.
  • step (4) for example, self-assembly is advanced, the thermochemical reaction of the polymer is advanced, or the remaining solvent is volatilized. Moreover, this heating process is performed by heating apparatuses, such as a hot plate and a baking furnace, which were set to predetermined temperature, for example.
  • the liquid crystal display device is in an in-plane switching (IPS) mode or a fringe field switching (FFS) mode in which the pretilt angle is substantially 0 °.
  • the photo-alignment film constituting such a liquid crystal display device may be one that aligns liquid crystal molecules in a direction horizontal to the main surface of the substrate (hereinafter also referred to as a horizontal photo-alignment film).
  • the horizontal photo-alignment film may be any film as long as at least adjacent liquid crystal molecules are aligned substantially horizontally with respect to the film surface of the horizontal photo-alignment film.
  • the pretilt angle being substantially 0 ° means, for example, that the pretilt angle of the liquid crystal molecules is 1 ° or less with respect to the film surface of the horizontal photo-alignment film.
  • Example 1 is a case where a photo-alignment film material containing two types of polymers is used. The manufacturing method of the liquid crystal display device according to the first embodiment will be sequentially described below.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • the cinnamate group is a photofunctional group capable of photodimerization and photoisomerization.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the preheating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 5 mJ / cm 2 in the wavelength range of 280 to 330 nm.
  • the main heating was performed at 140 ° C. for 10 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the two substrates after the main heating step were bonded to each other through a sealing material so that the polarization directions of the irradiated polarized ultraviolet rays were parallel to each other.
  • An FFS mode liquid crystal display device was obtained by pasting the two substrates and then passing through a seal thermosetting process.
  • the liquid crystal material for forming the liquid crystal layer is dropped in advance on one of the two substrates, but may be sealed after the substrates are bonded together.
  • the liquid crystal material a material containing liquid crystal molecules having positive dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • the sealing material, the liquid crystal layer, and the like may be formed in the same manner as in the process of manufacturing a normal liquid crystal display device, for example.
  • the liquid crystal display device according to Example 1 was obtained by appropriately arranging members such as a polarizing plate and a backlight on the liquid crystal display panel.
  • the comparative example 1 is a case where the photo-alignment film material which does not contain the polyamic acid which does not have a photofunctional group and a side chain in Example 1 is used. Since the manufacturing method of the liquid crystal display device according to Comparative Example 1 is the same as that of Example 1 except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a polymer having a methacrylic skeleton and a photoreactive cinnamate group in a side chain was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 1 and Comparative Example 1 The voltage holding ratio of the liquid crystal display devices manufactured by the method for manufacturing the liquid crystal display device according to Example 1 and Comparative Example 1 was evaluated.
  • the voltage holding ratio of Example 1 was 97% or more, which was higher than that of Comparative Example 1 of less than 95%.
  • the voltage holding ratio is a ratio at which charges charged during one frame period are held.
  • the thermochemical reaction by the main heating is insufficient, the voltage holding ratio may be lowered.
  • a decrease in voltage holding ratio may cause display unevenness in the liquid crystal display device. Therefore, according to the method of manufacturing the liquid crystal display device according to the first embodiment, the voltage holding ratio can be sufficiently improved, and as a result, the display quality can be sufficiently improved.
  • Example 1 The reason why the voltage holding ratio of Example 1 is higher than that of Comparative Example 1 will be described. If it is used for a long time in a state of being energized at a high temperature, impurities contained in the photo-alignment film and the sealing material are eluted into the liquid crystal and behave as mobile ions, which may cause a decrease in voltage holding ratio.
  • the photo-alignment film material used in Example 1 when a polyamic acid having no photofunctional group and side chain is contained, the surface of the photo-alignment film has —NH groups, and — It is thought that a COOH group is present.
  • the —NH group and —COOH group can serve as the adsorption sites for impurities (mobile ions) as described above, the mobile ions are fixed, and as a result, a decrease in voltage holding ratio can be sufficiently prevented. it is conceivable that. Therefore, according to the manufacturing method of the liquid crystal display device according to the first embodiment, the voltage holding ratio can be sufficiently improved.
  • Example 2-1 the preheating temperature in Example 1 was set to 60 ° C. Since the manufacturing method of the liquid crystal display device according to Example 2-1 is the same as that of Example 1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 60 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Example 2-2 is a case where the preheating temperature is set to 70 ° C. in Example 2-1, and is the same as Example 1. Since the manufacturing method of the liquid crystal display device according to Example 2-2 is the same as that of Example 1, the description of overlapping points is omitted.
  • Example 2-3 is a case where the preheating temperature in Example 2-1 was set to 80 ° C. Since the manufacturing method of the liquid crystal display device according to Example 2-3 is the same as that of Example 2-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 80 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Example 2-4 is a case where the preheating temperature in Example 2-1 was 90 ° C. Since the manufacturing method of the liquid crystal display device according to Example 2-4 is the same as that of Example 2-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 90 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • Example 2-5 is a case where the preheating temperature in Example 2-1 was 100 ° C. Since the manufacturing method of the liquid crystal display device according to Example 2-5 is the same as that of Example 2-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 100 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Example 2-6 is a case where the preheating temperature was 110 ° C. in Example 2-1. Since the manufacturing method of the liquid crystal display device according to Example 2-6 is the same as that of Example 2-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 110 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Table 1 summarizes the preheating temperature and the display quality evaluation results of the liquid crystal display devices manufactured by the liquid crystal display device manufacturing methods according to Examples 2-1 to 2-6.
  • Level 1 Contrast is 1200 or more
  • Level 2 Contrast is 1000 or more, less than 1200
  • Level 3 Contrast is 500 or more, less than 1000
  • Level 4 Contrast is less than 500, or alignment failure is visually recognized. Evaluation was made in four stages. Here, when the evaluation result is level 1 to 3, it is determined that the level is suitable for the product, and when the evaluation result is level 4, it is determined that the level suitable for the product is not reached.
  • Example 2-1 The evaluation result of the display quality was level 1, which was very good as compared with those of Examples 2-3 to 2-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 2-1, the display quality can be sufficiently improved.
  • Example 2-2 The evaluation result of the display quality was level 1, which was very good as compared with those of Examples 2-3 to 2-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 2-2, the display quality can be sufficiently improved.
  • Example 2-3 The evaluation result of the display quality was level 2, which was better than those of Example 2-5 and Example 2-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the method for manufacturing the liquid crystal display device according to Example 2-3, the display quality can be sufficiently improved.
  • Example 2-4 The evaluation result of the display quality was level 2, which was better than those of Example 2-5 and Example 2-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 2-4, the display quality can be sufficiently improved.
  • Example 2-5 The evaluation result of the display quality was level 3, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 2-5, the display quality can be sufficiently improved.
  • Example 2-6 The evaluation result of the display quality was level 3, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 2-6, the display quality can be sufficiently improved.
  • Examples 2-1 to 2-6 by performing the main heating after the irradiation with the polarized ultraviolet rays, the molecular motion of the polymer by the heating is facilitated by using the anisotropy formed by the irradiation with the polarized ultraviolet rays as a trigger. Therefore, it is considered that the orientation order of the polymer by self-organization can be sufficiently improved. In addition, the improvement of the orientational order of the polymer by self-organization is caused not only by the polymer having a photofunctional group but also by the interaction with the polyamic acid. Thus, the ease of molecular motion of the polymer is important.
  • Example 2-1 and Example 2-2 The reason why the display quality of Example 2-1 and Example 2-2 was very good compared to that of Examples 2-3 to 2-6 will be described. This is because the preheating temperature in Example 2-1 and Example 2-2 is lower than that in Examples 2-3 to 2-6, and as a result, the residual amount of solvent is relatively large. This is considered to be because the molecular motion of the polymer accompanying this heating became relatively active, and the orientation order of the polymer due to self-organization was sufficiently improved. Therefore, in order to advance the self-assembly, it is advantageous that the solvent remains to some extent in the state before performing the main heating, and if the preheating temperature is too high, the self-assembly may be inhibited. it is conceivable that.
  • the preheating may be performed so that the liquid fluidity of the film made of the photo-alignment film material is eliminated, and it is preferable to lower the temperature of the preheating so as to achieve the effect of one embodiment of the present invention.
  • the reason why the display quality of Example 2-3 and Example 2-4 was better than that of Example 2-5 and Example 2-6 was the same as the reason described above. It is. From the above, it was found that the preheating temperature is preferably 90 ° C. or lower, and more preferably 70 ° C. or lower.
  • the preheating temperature is more preferably 40 ° C. or higher and 70 ° C. or lower.
  • Example 3-1 is a case where the main heating temperature is 80 ° C. in Example 2-2. Since the manufacturing method of the liquid crystal display device according to Example 3-1 is the same as that of Example 2-2 except for the main heating step, description of overlapping points is omitted.
  • the main heating was performed at 80 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-2 is a case where the main heating temperature is 90 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-2 is the same as that of Example 3-1 except for this heating step, description of overlapping points is omitted.
  • the main heating was performed at 90 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-3 is a case where the main heating temperature is 100 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-3 is the same as that of Example 3-1 except for this heating step, description of overlapping points is omitted.
  • the main heating was performed at 100 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-4 is a case where the main heating temperature is 110 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-4 is the same as that of Example 3-1 except for this heating step, the description of overlapping points is omitted.
  • the main heating was performed at 110 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-5 is a case where the main heating temperature was 120 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-5 is the same as that of Example 3-1 except for this heating step, the description of overlapping points is omitted.
  • the main heating was performed at 120 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-6 is a case where the main heating temperature is 130 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-6 is the same as that of Example 3-1 except for this heating step, the description of the overlapping points is omitted.
  • Main heating was performed at 130 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 3-7 is the case where the main heating temperature was 140 ° C. in Example 3-1, and was the same as Example 2-2. Since the manufacturing method of the liquid crystal display device according to Example 3-7 is the same as that of Example 2-2, description of overlapping points is omitted.
  • Example 3-8 In Example 3-8, the main heating temperature was set to 150 ° C. in Example 3-1. Since the manufacturing method of the liquid crystal display device according to Example 3-8 is the same as that of Example 3-1 except for this heating step, the description of overlapping points is omitted.
  • the main heating was performed at 150 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Table 2 summarizes the main heating temperature and the display quality evaluation results of the liquid crystal display devices manufactured by the liquid crystal display device manufacturing methods according to Examples 3-1 to 3-8.
  • Display quality was evaluated in the same manner as in Examples 2-1 to 2-6.
  • the evaluation result is level 1 to 3
  • the evaluation result is level 4
  • Example 3-1 The evaluation result of the display quality was level 3, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the method of manufacturing the liquid crystal display device according to Example 3-1, the display quality can be sufficiently improved.
  • Example 3-2 The evaluation result of display quality was level 2, which was better than that of Example 3-1. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-2, the display quality can be sufficiently improved.
  • Example 3-3 The evaluation result of display quality was level 2, which was better than that of Example 3-1. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-3, the display quality can be sufficiently improved.
  • Example 3-4 The evaluation result of display quality was level 2, which was better than that of Example 3-1. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-4, the display quality can be sufficiently improved.
  • Example 3-5 The evaluation result of display quality was level 2, which was better than that of Example 3-1. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-5, the display quality can be sufficiently improved.
  • Example 3-6 The evaluation result of display quality was level 2, which was better than that of Example 3-1. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-6, the display quality can be sufficiently improved.
  • Example 3-7 The evaluation result of the display quality was level 1, which was very good as compared with those of Examples 3-1 to 3-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-7, the display quality can be sufficiently improved.
  • Example 3-8 The evaluation result of the display quality was level 1, which was very good as compared with those of Examples 3-1 to 3-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 3-8, the display quality can be sufficiently improved.
  • Examples 3-1 to 3-8 by performing the main heating after the irradiation with the polarized ultraviolet rays, the molecular motion of the polymer due to the heating is facilitated by using the anisotropy formed by the irradiation with the polarized ultraviolet rays as a trigger. Therefore, it is considered that the orientation order of the polymer by self-organization can be sufficiently improved. In addition, the improvement of the orientational order of the polymer by self-organization is caused not only by the polymer having a photofunctional group but also by the interaction with the polyamic acid. Thus, the ease of molecular motion of the polymer is important.
  • Example 3-7 and Example 3-8 were very good compared to that of Examples 3-1 to 3-6.
  • the molecular motion of the polymer is easy (active). Therefore, since the main heating temperature in Example 3-7 and Example 3-8 is higher than that in Examples 3-1 to 3-6, the molecular motion of the polymer is relatively active. It is conceivable that. Here, it is considered that the molecular motion of the polymer does not become relatively active if the temperature during self-assembly is too low. Further, the reason why the display quality of Examples 3-2 to 3-6 is better than that of Example 3-1 is the same as the reason described above.
  • the main heating temperature is preferably 90 ° C. or higher, and more preferably 140 ° C. or higher.
  • the heating temperature is more preferably 140 ° C. or higher and 250 ° C. or lower.
  • Example 4 is a case where the liquid crystal material including liquid crystal molecules having negative dielectric anisotropy in Example 1 is used. Since the manufacturing method of the liquid crystal display device according to Example 4 is the same as that of Example 1 except that the dielectric anisotropy of the liquid crystal molecules is different, the description of overlapping points is omitted.
  • Comparative Example 2 is a case where the light irradiation process was performed after the main heating process using a decomposition type photo-alignment film. A method for manufacturing a liquid crystal display device according to Comparative Example 2 will be sequentially described below.
  • Photo-alignment film material As a solid content, a polyamic acid polymer having a cyclobutane skeleton was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • the photo-alignment film used in Comparative Example 2 causes photodecomposition of the polymer chain near the center wavelength of 254 nm.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 90 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • Main heating was performed at 230 ° C. for 30 minutes on the film after the preliminary heating step on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film after the main heating process on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 1 J / cm 2 near the center wavelength of 254 nm.
  • the liquid crystal display device according to Comparative Example 2 was obtained.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Example 4 and Comparative Example 2 The liquid crystal display device manufactured by the liquid crystal display device manufacturing method according to Example 4 and Comparative Example 2 was evaluated for contrast, image sticking characteristics, and voltage holding ratio.
  • the contrast was measured by the same method as in Examples 2-1 to 2-6, and the voltage holding ratio was measured by the same method as in Example 1.
  • Example 4 (Contrast measurement result) The contrasts in Example 4 and Comparative Example 2 were both equal to about 1200, which was a level suitable for a product.
  • the image sticking property was evaluated by the image sticking rate.
  • the voltage at the time of showing the maximum luminance was Vmax
  • the voltage at the time of showing 1% of the maximum luminance was the observation voltage V1 (V1 ⁇ Vmax)
  • the luminance (L1) when the observation voltage V1 was applied was first measured.
  • the luminance (L1 ′) when the observation voltage V1 was applied was measured.
  • the change rate of L1 'with respect to L1 was made into the burn-in rate.
  • a Canon digital camera (trade name: EOS Kiss Digital NEF-S18-55IIU) was used.
  • Example 4 (Evaluation results of seizure characteristics) The burn-in rates in Example 4 and Comparative Example 2 were both equal to about 3%, which was a level suitable for products.
  • the bright spot generated in Comparative Example 2 includes liquid crystal molecules having positive dielectric anisotropy when a liquid crystal material including liquid crystal molecules having negative dielectric anisotropy is used. Compared with the case where a liquid crystal material was used, there was a tendency to occur remarkably.
  • the transmittance and viewing angle characteristics can be further improved. Therefore, in the method for manufacturing a liquid crystal display device according to one embodiment of the present invention, when a liquid crystal material including a liquid crystal molecule having negative dielectric anisotropy is used, the effect of one embodiment of the present invention is achieved. The transmittance and viewing angle characteristics can be further improved.
  • Example 5 is a case where a photo-alignment film material containing two types of polymers is used. A method for manufacturing the liquid crystal display device according to the fifth embodiment will be sequentially described below.
  • a solid content a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer containing a photoreactive azobenzene structure, and the other is 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and biphenyl. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting a diamine containing a structure.
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • the azobenzene group is a photofunctional group capable of photoisomerization.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the preheating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 3 J / cm 2 near the center wavelength of 365 nm.
  • the main heating was performed at 140 ° C. for 10 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the liquid crystal display device according to Example 5 was obtained.
  • the liquid crystal material a material containing liquid crystal molecules having positive dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • the comparative example 3 is a case where the photo-alignment film material which does not contain the polyamic acid which does not have a photofunctional group and a side chain in Example 5 is used. Since the manufacturing method of the liquid crystal display device according to Comparative Example 3 is the same as that of Example 5 except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a polymer containing a photoreactive azobenzene structure was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 5 and Comparative Example 3 When a voltage of 5 V was continuously applied to the liquid crystal display device manufactured by the method for manufacturing the liquid crystal display device according to Example 5 and Comparative Example 3 in an environment of 60 ° C., 500 hours later was confirmed.
  • the voltage holding ratio of Example 5 was about 95 to 97%, which was higher than that of Comparative Example 3 of less than 90%. Since the decrease in the voltage holding ratio may cause display unevenness in the liquid crystal display device, the method for manufacturing the liquid crystal display device according to Example 5 can sufficiently improve the voltage holding ratio, and as a result, The display quality can be sufficiently improved.
  • Example 5 The reason why the voltage holding ratio of Example 5 is higher than that of Comparative Example 3 will be described. If it is used for a long time in a state of being energized at a high temperature, impurities contained in the photo-alignment film and the sealing material are eluted into the liquid crystal and behave as mobile ions, which may cause a decrease in voltage holding ratio.
  • the photo-alignment film material used in Example 5 when a polyamic acid having no photofunctional group and side chain is contained, the surface of the photo-alignment film has —NH groups, and — It is thought that a COOH group is present.
  • the —NH group and —COOH group can serve as the adsorption sites for impurities (mobile ions) as described above, the mobile ions are fixed, and as a result, a decrease in voltage holding ratio can be sufficiently prevented. it is conceivable that. Therefore, according to the method for manufacturing the liquid crystal display device according to Example 5, the voltage holding ratio can be sufficiently improved.
  • Example 6 is a case where the liquid crystal material including liquid crystal molecules having negative dielectric anisotropy in Example 5 is used. Since the manufacturing method of the liquid crystal display device according to Example 6 is the same as that of Example 5 except that the dielectric anisotropy of liquid crystal molecules is different, the description of overlapping points is omitted.
  • Comparative Example 4 is a case where the light irradiation process was performed after the main heating process using a decomposition type photo-alignment film. A method for manufacturing the liquid crystal display device according to Comparative Example 4 will be sequentially described below.
  • Photo-alignment film material As a solid content, a polyamic acid polymer having a cyclobutane skeleton was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • the photo-alignment film used in Comparative Example 4 causes photodecomposition of the polymer chain near the center wavelength of 254 nm.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 90 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • Main heating was performed at 230 ° C. for 30 minutes on the film after the preliminary heating step on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film after the main heating process on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 1 J / cm 2 near the center wavelength of 254 nm.
  • the liquid crystal display device according to Comparative Example 4 was obtained.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Example 6 and Comparative Example 4 The liquid crystal display device manufactured by the liquid crystal display device manufacturing method according to Example 6 and Comparative Example 4 was evaluated for contrast, image sticking characteristics, and voltage holding ratio.
  • the contrast was measured by the same method as in Examples 2-1 to 2-6, the burn-in characteristics were evaluated by the same method as in Example 4, and the voltage holding ratio was measured by the same method as in Example 1.
  • Example 6 (Contrast measurement result) The contrasts in Example 6 and Comparative Example 4 were both equal to about 1200, which was a level suitable for a product.
  • Example 6 (Evaluation results of seizure characteristics) The burn-in rates in Example 6 and Comparative Example 4 were both about 3%, which was the same level and suitable for the product.
  • the bright spots generated in Comparative Example 4 include liquid crystal molecules having positive dielectric anisotropy when a liquid crystal material including liquid crystal molecules having negative dielectric anisotropy is used. Compared with the case where a liquid crystal material was used, there was a tendency to occur remarkably.
  • the transmittance and viewing angle characteristics can be further improved. Therefore, in the method for manufacturing a liquid crystal display device according to one embodiment of the present invention, when a liquid crystal material including a liquid crystal molecule having negative dielectric anisotropy is used, the effect of one embodiment of the present invention is achieved. The transmittance and viewing angle characteristics can be further improved.
  • Example 7-1 is a case where the main heating was performed twice at different temperatures in the above step (4). A method for manufacturing the liquid crystal display device according to Example 7-1 will be sequentially described below.
  • a solid content a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer containing a photoreactive azobenzene structure, and the other is 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and biphenyl. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting a diamine containing a structure.
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 60 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the preheating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 1 J / cm 2 near the center wavelength of 365 nm.
  • the main heating was performed at 110 ° C. for 10 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the main heating was performed at 200 ° C. for 30 minutes on the film after the first main heating step on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • a liquid crystal display device according to Example 7-1 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Example 7-2 is a case where the preheating temperature in Example 7-1 was set to 70 ° C. Since the manufacturing method of the liquid crystal display device according to Example 7-2 is the same as that of Example 7-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • Example 7-3 is a case where the preheating temperature in Example 7-1 was set to 80 ° C. Since the manufacturing method of the liquid crystal display device according to Example 7-3 is the same as that of Example 7-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 80 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Example 7-4 is a case where the preheating temperature in Example 7-1 was 90 ° C. Since the manufacturing method of the liquid crystal display device according to Example 7-4 is the same as that of Example 7-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 90 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • Example 7-5 is a case where the preheating temperature in Example 7-1 was 100 ° C. Since the manufacturing method of the liquid crystal display device according to Example 7-5 is the same as that of Example 7-1 except for the preheating step, the description of overlapping points is omitted.
  • Preheating was performed at 100 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Example 7-6 is a case where the preheating temperature is 110 ° C. in Example 7-1. Since the manufacturing method of the liquid crystal display device according to Example 7-6 is the same as that of Example 7-1 except for the preheating step, description of overlapping points is omitted.
  • Preheating was performed at 110 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • Table 3 summarizes the preheating temperature and the display quality evaluation results of the liquid crystal display devices manufactured by the liquid crystal display device manufacturing methods according to Examples 7-1 to 7-6.
  • Display quality was evaluated in the same manner as in Examples 2-1 to 2-6.
  • the evaluation result is level 1 to 3
  • the evaluation result is level 4
  • Example 7-1 The evaluation result of the display quality was level 1, which was very good compared with those of Examples 7-3 to 7-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 7-1, the display quality can be sufficiently improved.
  • Example 7-2 The evaluation result of the display quality was level 1, which was very good compared with those of Examples 7-3 to 7-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 7-2, the display quality can be sufficiently improved.
  • Example 7-3 The evaluation result of the display quality was level 2, which was better than those of Example 7-5 and Example 7-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the method of manufacturing the liquid crystal display device according to Example 7-3, the display quality can be sufficiently improved.
  • Example 7-4 The evaluation result of the display quality was level 2, which was better than those of Example 7-5 and Example 7-6. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the method of manufacturing the liquid crystal display device according to Example 7-4, the display quality can be sufficiently improved.
  • Example 7-5 The evaluation result of the display quality was level 3, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 7-5, the display quality can be sufficiently improved.
  • Example 7-6 The evaluation result of the display quality was level 3, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 7-6, the display quality can be sufficiently improved.
  • Example 7-1 and Example 7-2 The reason why the display quality of Example 7-1 and Example 7-2 was very good compared to that of Examples 7-3 to 7-6 will be described. This is because the preheating temperature in Example 7-1 and Example 7-2 is lower than that in Examples 7-3 to 7-6, and as a result, the residual amount of solvent is relatively large. This is considered to be because the molecular motion of the polymer accompanying this heating became relatively active, and the orientation order of the polymer due to self-organization was sufficiently improved. Therefore, in order to advance the self-assembly, it is advantageous that the solvent remains to some extent in the state before performing the main heating, and if the preheating temperature is too high, the self-assembly may be inhibited. it is conceivable that.
  • the preheating may be performed so that the liquid fluidity of the film made of the photo-alignment film material is eliminated, and it is preferable to lower the temperature of the preheating so as to achieve the effect of one embodiment of the present invention.
  • the reason why the display quality of Example 7-3 and Example 7-4 was better than that of Example 7-5 and Example 7-6 is the same as the reason described above. It is. From the above, it was found that the preheating temperature is preferably 90 ° C. or lower, and more preferably 70 ° C. or lower.
  • the preheating temperature is more preferably 40 ° C. or higher and 70 ° C. or lower.
  • Example 8-1 In Example 8-1, the temperature of the first main heating in Example 7-1 was set to 70 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-1 is the same as that of Example 7-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 70 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-2 is a case where the temperature of the first main heating in Example 8-1 was 80 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-2 is the same as that of Example 8-1 except for the first main heating step, the description of overlapping points is omitted.
  • the main heating was performed at 80 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-3 is a case where the temperature of the first main heating in Example 8-1 was 90 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-3 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 90 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-4 is a case where the temperature of the first main heating in Example 8-1 was 100 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-4 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 100 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-5 is the case where the temperature of the first main heating in Example 8-1 was 110 ° C., and is the same as Example 7-1. Since the manufacturing method of the liquid crystal display device according to Example 8-5 is the same as that of Example 7-1, description of overlapping points is omitted.
  • Example 8-6 is a case where the temperature of the first main heating in Example 8-1 was 120 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-6 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 120 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-7 In Example 8-7, the temperature of the first main heating in Example 8-1 was set to 130 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-7 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • Example 8-8 is a case where the temperature of the first main heating in Example 8-1 was 140 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-8 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 140 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-9 is a case where the temperature of the first main heating in Example 8-1 was 150 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-9 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 150 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Example 8-10 is a case where the temperature of the first main heating in Example 8-1 was 160 ° C. Since the manufacturing method of the liquid crystal display device according to Example 8-10 is the same as that of Example 8-1 except for the first main heating step, description of overlapping points is omitted.
  • the main heating was performed at 160 ° C. for 10 minutes on the film after the light irradiation process on the two substrates.
  • Table 4 summarizes the temperature of the first main heating and the evaluation results of the display quality of the liquid crystal display devices manufactured by the manufacturing method of the liquid crystal display device according to Examples 8-1 to 8-10.
  • Display quality was evaluated in the same manner as in Examples 2-1 to 2-6.
  • Example 8-1 The evaluation result of display quality was level 2, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-1, the display quality can be sufficiently improved.
  • Example 8-2 The evaluation result of display quality was level 2, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-2, the display quality can be sufficiently improved.
  • Example 8-3 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-3, the display quality can be sufficiently improved.
  • Example 8-4 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-4, the display quality can be sufficiently improved.
  • Example 8-5 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-5, the display quality can be sufficiently improved.
  • Example 8-6 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-6, the display quality can be sufficiently improved.
  • Example 8-7 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-7, the display quality can be sufficiently improved.
  • Example 8-8 The evaluation result of the display quality was level 1, which was very good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-8, the display quality can be sufficiently improved.
  • Example 8-9 The evaluation result of display quality was level 2, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-9, the display quality can be sufficiently improved.
  • Example 8-10 The evaluation result of display quality was level 2, which was good. This is considered to be because the orientation order of the polymer by self-organization has been sufficiently improved. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 8-10, the display quality can be sufficiently improved.
  • Examples 8-3 to 8-8 The reason why the display quality of Examples 8-3 to 8-8 was very good as compared with those of other Examples will be described.
  • the temperature at the time of self-assembly for example, the temperature of the first main heating
  • the temperature at the time of self-assembly is too low, it is considered that the molecular motion of the polymer does not become relatively active.
  • the temperature during self-assembly is too high, anisotropy is formed due to self-assembly, and the thermochemical reaction of the polymer and the volatilization of the remaining solvent also occur simultaneously. Does not progress sufficiently. Therefore, the temperature of the first main heating (about 90 to 140 ° C.) in Examples 8-3 to 8-8 is considered to be a temperature at which self-organization occurs predominantly.
  • the display quality of 3-8-8 was very good compared with that of the other examples.
  • the temperature of the first main heating is preferably 90 ° C. or higher and 140 ° C. or lower.
  • the temperature of the first main heating is less than 90 ° C.
  • the molecular motion of the polymer may not be active.
  • the temperature of the first main heating exceeds 140 ° C.
  • the thermochemical reaction of the polymer and the volatilization of the remaining solvent may be remarkably started, which may hinder self-organization.
  • the time of the first main heating is preferably 1 minute or longer, and more preferably 10 minutes or longer. If the time of the first main heating is less than 1 minute, the self-assembly may not proceed sufficiently.
  • Example 5 since no additional main heating is performed, it is considered that a large amount of solvent remains, and in the process of using the liquid crystal display device for a long time, it elutes into the liquid crystal and behaves as an impurity. This is considered to cause a decrease in voltage holding ratio. Therefore, according to the method for manufacturing a liquid crystal display device according to Examples 7-1 to 7-6 and Examples 8-1 to 8-10, compared with the method for manufacturing a liquid crystal display device according to Example 5, The voltage holding ratio can be further improved.
  • the second main heating step is performed after the light irradiation step, that is, the film after the preheating step is applied.
  • the thermochemical reaction thermal imidation
  • the polyamic acid and the remaining solvent volatilize at the same time. Will occur.
  • the polymer chain in which the thermochemical reaction has sufficiently progressed has rigidity compared to polyamic acid, it has low thermal mobility and may inhibit self-assembly.
  • the main heating is performed at a temperature at which self-organization occurs predominantly. It is preferable to cause the remaining solvent to volatilize after it has progressed sufficiently.
  • the main heating was performed using two hot plates set at different temperatures.
  • the second main heating step can be performed by changing the temperature to the temperature of the second main heating step after the first main heating step.
  • the main heating is substantially performed even at a temperature between the temperature of the first main heating step and the temperature of the second main heating step, but the display quality can be sufficiently improved. This is presumably because self-organization and volatilization of the remaining solvent proceeded simultaneously during the hot plate temperature rising process.
  • the installation area of the heating device increases. However, as in the case where one hot plate is used, the temperature of the hot plate is changed after the second main heating step.
  • the production efficiency can be further improved.
  • the substrate temperature may drop momentarily when the substrate is transferred between the hot plates, but this does not give a problem to the solution of the problem of the present invention. Absent.
  • the installation area of the heating device can be further reduced, and the degree of freedom of device layout can be improved.
  • Example 9-1 In Example 9-1, the main heating is performed twice at different temperatures in the step (4), and the first main heating (first main heating step) and the second main heating (second main heating). In this case, light irradiation (second light irradiation step) is performed on the film that has been subjected to the first main heating.
  • first main heating step first main heating step
  • second main heating second main heating
  • a method for manufacturing the liquid crystal display device according to Example 9-1 will be sequentially described below.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • UV irradiation step The film after the first main heating step on the two substrates was irradiated with ultraviolet rays.
  • the amount of UV irradiation was 1 J / cm 2 near the center wavelength of 313 nm.
  • the main heating was performed at 180 ° C. for 5 minutes on the film after the second light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • a liquid crystal display device according to Example 9-1 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having positive dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Example 9-2 is a case where the second light irradiation step was not performed in Example 9-1. Since the manufacturing method of the liquid crystal display device according to Example 9-2 is the same as that of Example 9-1 except that the second light irradiation step does not exist, description of overlapping points is omitted.
  • Example 9-1 and Example 9-2 A voltage of 5 V was continuously applied to the liquid crystal display device manufactured by the method for manufacturing the liquid crystal display device according to Example 9-1 and Example 9-2 in an environment of 60 ° C., and confirmed after 500 hours. As a result, in both cases, the voltage holding ratio was 97% or more. Table 5 summarizes the evaluation results of the display quality of the liquid crystal display devices manufactured by the liquid crystal display device manufacturing method according to Example 9-1 and Example 9-2.
  • Display quality was evaluated in the same manner as in Examples 2-1 to 2-6.
  • the evaluation result is level 1 to 3
  • the evaluation result is level 4
  • Example 9-1 The evaluation result of the display quality was level 1, which was very good. This is considered to be because after the self-organization has sufficiently progressed, the remaining solvent has sufficiently volatilized, and the orientational order of the polymer improved by the self-organization has been sufficiently fixed. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 9-1, the display quality can be sufficiently improved.
  • Example 9-2 The evaluation result of the display quality was level 3, which was good. This is considered to be because after the self-organization has sufficiently progressed, the remaining solvent has sufficiently volatilized, and the orientational order of the polymer improved by the self-organization has been sufficiently fixed. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 9-2, the display quality can be sufficiently improved.
  • Example 9-1 the dimerization of the cinnamate group further proceeds by performing the second light irradiation step, and then the alignment order of the polymer is sufficiently fixed by performing the second main heating step. It is thought.
  • Example 9-2 since the second light irradiation step does not exist, it is considered that the alignment order of the polymer is not relatively improved as compared with Example 9-1. Therefore, the display quality of Example 9-1 was better than that of Example 9-2.
  • Example 10-1 is a case in which one of the two substrates is a thin film transistor array substrate having thin film transistor elements and the other is a color filter substrate in Example 1.
  • a semiconductor layer included in the thin film transistor element an oxide semiconductor (In—Ga—Zn—O) including indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used.
  • oxide semiconductor In—Ga—Zn—O
  • Example 10-1 Since the manufacturing method of the liquid crystal display device according to Example 10-1 is the same as that of Example 1 except for the configuration of the liquid crystal display device, description of overlapping points is omitted.
  • the semiconductor layer included in the thin film transistor element an oxide semiconductor (In—Ga—Zn—O) was used.
  • the screen size is 10 inches (2048 ⁇ 1560 pixels).
  • Example 10-2 is a case in which one of the two substrates is a thin film transistor array substrate having thin film transistor elements and the other is a color filter substrate in Example 1. Here, amorphous silicon was used as a semiconductor layer included in the thin film transistor element. Since the manufacturing method of the liquid crystal display device according to Example 10-2 is the same as that of Example 1 except for the configuration of the liquid crystal display device, description of overlapping points is omitted.
  • the semiconductor layer included in the thin film transistor element amorphous silicon was used.
  • the screen size is 10 inches (2048 ⁇ 1560 pixels).
  • Example 10-1 and Example 10-2 For the liquid crystal display devices manufactured by the liquid crystal display device manufacturing method according to Example 10-1 and Example 10-2, the image sticking characteristics and the voltage holding ratio characteristics were evaluated by display quality. Regarding burn-in characteristics, white (255 gradation) and black (0 gradation) checker patterns were displayed, and the burn-in level was evaluated in a state where the entire surface was turned on with 32 gradations after 1 hour. Regarding the voltage holding ratio characteristics, white and black checker patterns were displayed, and the level of blotches and unevenness was evaluated in a state where the entire surface was turned on with 32 gradations after 500 hours.
  • burn-in characteristics white (255 gradation) and black (0 gradation) checker patterns were displayed, and the burn-in level was evaluated in a state where the entire surface was turned on with 32 gradations after 1 hour.
  • the voltage holding ratio characteristics white and black checker patterns were displayed, and the level of blotches and unevenness was evaluated in a state where the entire surface was turned on with 32 gradations after 500 hours
  • the liquid crystal display device is turned on in the dark room, and the display quality is visually evaluated through the naked eye and a neutral density (ND) filter. Evaluation was made in four stages: level C: non-uniformity is not visible over ND filter 20%, level D: orientation non-uniformity is visible over 20% ND filter.
  • level C non-uniformity is not visible over ND filter 20%
  • level D orientation non-uniformity is visible over 20% ND filter.
  • Example 10-1 and Example 10-2 were both level B.
  • Example 10-1 and Example 10-2 were both level B.
  • Example 10-1 the aperture ratio of the liquid crystal display panel in Example 10-1 was 50%, which was higher than 40% in Example 10-2.
  • the contrast and transmittance of Example 10-1 were both improved by 20% compared to those of Example 10-2. Therefore, according to the method for manufacturing the liquid crystal display device according to Example 10-1, the display quality can be further improved as compared with the method for manufacturing the liquid crystal display device according to Example 10-2.
  • Example 10-1 The reason why the aperture ratio of Example 10-1 is higher than that of Example 10-2 will be described.
  • An oxide semiconductor has a feature of higher mobility than amorphous silicon. Therefore, the ratio of the thin film transistor element including an oxide semiconductor to one pixel can be reduced as compared with the thin film transistor element including amorphous silicon. Therefore, according to the method for manufacturing the liquid crystal display device according to Example 10-1, the aperture ratio can be further improved as compared with the method for manufacturing the liquid crystal display device according to Example 10-2. The quality can be further improved.
  • Example 11-1 is a case where a solvent in which the photo-alignment film material contains a mixture of N-methyl-pyrrolidone (good solvent) and butyl cellosolve (poor solvent) at a weight ratio of 50:50. The same as in the first embodiment. Since the manufacturing method of the liquid crystal display device according to Example 11-1 is the same as that of Example 1, description of overlapping points is omitted.
  • Example 11-2 N-ethyl-pyrrolidone (good solvent) and butyl cellosolve (poor solvent) were mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case when a thing is used. Since the manufacturing method of the liquid crystal display device according to Example 11-2 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-ethyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-3 is a mixture of ⁇ -butyllactone (good solvent) and butyl cellosolve (poor solvent) in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-3 is the same as that of Example 11-1, except for the photo-alignment film material, description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • solvent a mixture of ⁇ -butyl lactone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 11-4 uses a mixture of acetone (good solvent) and butyl cellosolve (poor solvent) in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. Is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-4 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of acetone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-5 used a mixture of chloroform (good solvent) and butyl cellosolve (poor solvent) in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. Is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-5 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of chloroform and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-6 is a mixture of cyclopentanone (good solvent) and butyl cellosolve (poor solvent) mixed in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-6 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • solvent a mixture of cyclopentanone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 11-7 N-methyl-pyrrolidone (good solvent) and diethylene glycol diethyl ether (poor solvent) were mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is a case where a mixture is used. Since the manufacturing method of the liquid crystal display device according to Example 11-7 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and diethylene glycol diethyl ether at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-8 N-methyl-pyrrolidone (good solvent) and diisobutyl ketone (poor solvent) were mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case of using. Since the manufacturing method of the liquid crystal display device according to Example 11-8 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • diamine containing a biphenyl structure As the solvent, a mixture of N-methyl-pyrrolidone and diisobutyl ketone at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 11-9 N-methyl-pyrrolidone (good solvent) and propylene glycol monobutyl ether (poor solvent) are used in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. It is a case where what was mixed with is used. Since the manufacturing method of the liquid crystal display device according to Example 11-9 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • solvent a mixture of N-methyl-pyrrolidone and propylene glycol monobutyl ether in a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 11-10 N-methyl-pyrrolidone (good solvent) and diacetone alcohol (poor solvent) are mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is a case where a mixture is used. Since the manufacturing method of the liquid crystal display device according to Example 11-10 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • diamine containing a biphenyl structure As a solvent, a mixture of N-methyl-pyrrolidone and diacetone alcohol at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-11 N-methyl-pyrrolidone (good solvent) and hexane (poor solvent) as a solvent contained in the photo-alignment film material in Example 11-1 were mixed at a weight ratio of 50:50. This is the case when a thing is used. Since the manufacturing method of the liquid crystal display device according to Example 11-11 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and hexane at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-12 N-methyl-pyrrolidone (good solvent) and methanol (poor solvent) were mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case when a thing is used. Since the manufacturing method of the liquid crystal display device according to Example 11-12 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and methanol at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-13 In Example 11-13, N-methyl-pyrrolidone (good solvent) and isopropyl alcohol (poor solvent) were mixed at a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. This is the case of using. Since the manufacturing method of the liquid crystal display device according to Example 11-13 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent in which N-methyl-pyrrolidone and isopropyl alcohol were mixed at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 11-14 In Example 11-14, a mixture of acetone (good solvent) and hexane (poor solvent) at a weight ratio of 50:50 was used as the solvent contained in the photo-alignment film material in Example 11-1. Is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-14 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • diamine containing a biphenyl structure As the solvent, a mixture of acetone and hexane at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-15 In Example 11-15, a mixture of chloroform (good solvent) and methanol (poor solvent) at a weight ratio of 50:50 was used as the solvent contained in the photo-alignment film material in Example 11-1. Is the case. Since the manufacturing method of the liquid crystal display device according to Example 11-15 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of chloroform and methanol at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • Example 11-16 is a mixture of cyclopentanone (good solvent) and isopropyl alcohol (poor solvent) in a weight ratio of 50:50 as the solvent contained in the photo-alignment film material in Example 11-1. Is used. Since the manufacturing method of the liquid crystal display device according to Example 11-16 is the same as that of Example 11-1, except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • solvent a mixture of cyclopentanone and isopropyl alcohol at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Table 6 summarizes the evaluation results of the solvent components (good solvent and poor solvent) and display quality of the liquid crystal display devices manufactured by the method of manufacturing liquid crystal display devices according to Examples 11-1 to 11-16.
  • the liquid crystal display device is turned on in the dark room, and the display quality is visually evaluated through the naked eye and a neutral density (ND) filter. Evaluation was made in four stages: level C: non-uniformity is not visible over ND filter 20%, level D: orientation non-uniformity is visible over 20% ND filter.
  • level C non-uniformity is not visible over ND filter 20%
  • level D orientation non-uniformity is visible over 20% ND filter.
  • Example 11-1 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-1, the display quality can be sufficiently improved.
  • Example 11-2 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the method of manufacturing the liquid crystal display device according to Example 11-2, the display quality can be sufficiently improved.
  • Example 11-3 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-3, the display quality can be sufficiently improved.
  • Example 11-4 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-4, the display quality can be sufficiently improved.
  • Example 11-5 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-5, the display quality can be sufficiently improved.
  • Example 11-6 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-6, the display quality can be sufficiently improved.
  • Example 11-7 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-7, the display quality can be sufficiently improved.
  • Example 11-8 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-8, the display quality can be sufficiently improved.
  • Example 11-9 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-9, the display quality can be sufficiently improved.
  • Example 11-10 The evaluation result of the display quality was level A, which was very good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-10, the display quality can be sufficiently improved.
  • Example 11-11 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-11, it is possible to sufficiently improve the display quality.
  • Example 11-12 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-12, the display quality can be sufficiently improved.
  • Example 11-13 The evaluation result of the display quality was level B, which was good. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-13, the display quality can be sufficiently improved.
  • Example 11-14 The evaluation result of the display quality was level C. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-14, the display quality can be sufficiently improved.
  • Example 11-15 The evaluation result of the display quality was level C. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-15, the display quality can be sufficiently improved.
  • Example 11-16 The evaluation result of the display quality was level C. This is presumably because the occurrence of film thickness unevenness was sufficiently prevented after the preheating step. Therefore, according to the manufacturing method of the liquid crystal display device according to Example 11-16, the display quality can be sufficiently improved.
  • the solvent contained in the photo-alignment film material is preferably a mixture of a good solvent with high solubility and a poor solvent with low surface tension and high coatability from the viewpoint of further improving display quality.
  • at least one compound selected from the group consisting of acetone, chloroform, and cyclopentanone as the good solvent is used, and at least one compound selected from the group consisting of hexane, methanol, and isopropyl alcohol is used as the poor solvent.
  • the solvent contained in the photo-alignment film material is preferably a mixture of a good solvent and a poor solvent, and the good solvent is selected from N-methyl-pyrrolidone, N-ethyl-pyrrolidone, and ⁇ -butyllactone.
  • the good solvent is selected from N-methyl-pyrrolidone, N-ethyl-pyrrolidone, and ⁇ -butyllactone.
  • One compound was found to be preferred.
  • Comparative Example 5 is a case where the light irradiation process is performed after the main heating process using a decomposition type photo-alignment film and a liquid crystal material including liquid crystal molecules having positive dielectric anisotropy. A method for manufacturing a liquid crystal display device according to Comparative Example 5 will be sequentially described below.
  • Photo-alignment film material As a solid content, a polyamic acid polymer having a cyclobutane skeleton was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the first main heating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 1 J / cm 2 in the wavelength range of 220 to 260 nm.
  • the main heating was performed at 230 ° C. for 30 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • a liquid crystal display device according to Comparative Example 5 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having positive dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Comparative Example 6 is a case where the liquid crystal material including liquid crystal molecules having negative dielectric anisotropy is used in Comparative Example 5. Since the manufacturing method of the liquid crystal display device according to Comparative Example 6 is the same as that of Comparative Example 5 except that the dielectric anisotropy of the liquid crystal molecules is different, the description of overlapping points is omitted.
  • the comparative example 6 produced more noticeable bright spots in the screen than the comparative example 5.
  • the conditions of the thermal cycle test were set to 1 hour for one cycle in a temperature range of ⁇ 10 ° C. to 70 ° C. Further, when one month later was confirmed after standing at room temperature, in Comparative Example 6, a fine bright spot was generated more remarkably in the screen than in Comparative Example 5.
  • Comparative Example 5 and Comparative Example 6 it is considered that a low molecular weight decomposition product was generated by irradiation with polarized ultraviolet rays, and the decomposition product aggregated after eluting into the liquid crystal, thereby becoming a bright spot.
  • the case where the liquid crystal material containing liquid crystal molecules having negative dielectric anisotropy is used is compared with the case where the liquid crystal material containing liquid crystal molecules having positive dielectric anisotropy is used. It is considered that the bright spot was generated more remarkably because the decomposition product was dissolved into the liquid crystal. Therefore, from the viewpoint of improving the display quality, it has been found that it is more difficult to use a liquid crystal material including liquid crystal molecules having negative dielectric anisotropy.
  • Example 4 etc. According to the method for manufacturing a liquid crystal display device according to one embodiment of the present invention, even when a liquid crystal material containing liquid crystal molecules having negative dielectric anisotropy is used, display quality is sufficient. Can be improved.
  • Comparative Example 7 In Comparative Example 7, the same photo-alignment film material as in Example 1 was used, and the light irradiation process was performed after the main heating process. A method for manufacturing a liquid crystal display device according to Comparative Example 7 will be sequentially described below.
  • Photo-alignment film material As a solid content, a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer having a methacryl skeleton and a photoreactive cinnamate group in the side chain, and the other is a 1,2,3,4-cyclobutanetetracarboxylic acid dicarboxylic acid. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting an anhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA anhydride
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 70 ° C. for 150 seconds on the film after the step of forming the film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the main heating was performed at 200 ° C. for 30 minutes on the film after the first light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film after the second main heating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 5 mJ / cm 2 in the wavelength range of 280 to 330 nm.
  • the two substrates after the second light irradiation step were bonded to the FFS mode liquid crystal display panel obtained in the same manner as in the liquid crystal display device manufacturing method according to Example 1, and a polarizing plate, a backlight, etc.
  • a liquid crystal display device according to Comparative Example 7 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having positive dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Comparative Example 8 is a case where the same photo-alignment film material as in Example 5 was used and the light irradiation process was performed after this heating process. A method for manufacturing a liquid crystal display device according to Comparative Example 8 will be sequentially described below.
  • a solid content a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polymer containing a photoreactive azobenzene structure, and the other is 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and biphenyl. It is a polyamic acid having no photofunctional group and side chain, obtained by reacting a diamine containing a structure.
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 60 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the main heating was performed at 200 ° C. for 30 minutes on the film after the first main heating step on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film after the second main heating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 3 J / cm 2 near the center wavelength of 365 nm.
  • the liquid crystal display device according to Comparative Example 8 was obtained.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • Example 12 is a case where the main heating was performed twice at different temperatures in the step (4). A manufacturing method of the liquid crystal display device according to Example 12 will be sequentially described below.
  • a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polyamic acid obtained by reacting an acid anhydride (TCA) represented by the following chemical formula (1) and a diamine containing a phenyl ester group having photoreactivity.
  • TCA acid anhydride
  • the other of the two types of polymers is a photofunctional group and a side chain obtained by reacting 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and a diamine containing a biphenyl structure.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • the phenyl ester group is a photofunctional group capable of photo-fleece transition.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 60 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the preheating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 1 J / cm 2 near the center wavelength of 254 nm.
  • the main heating was performed at 120 ° C. for 20 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the main heating was performed at 220 ° C. for 30 minutes on the film after the first main heating process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • a liquid crystal display device according to Example 12 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • the comparative example 9 is a case where the photo-alignment film material which does not contain the polyamic acid which does not have a photofunctional group and a side chain in Example 12 is used. Since the manufacturing method of the liquid crystal display device according to Comparative Example 9 is the same as that of Example 12 except for the photo-alignment film material, the description of overlapping points is omitted.
  • a polyamic acid obtained by reacting an acid anhydride (TCA) represented by the chemical formula (1) and a diamine containing a phenyl ester group having photoreactivity was used as the solid content.
  • TCA acid anhydride
  • a diamine containing a phenyl ester group having photoreactivity was used as the solid content.
  • a solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 12 and Comparative Example 9 The liquid crystal display device manufactured by the liquid crystal display device manufacturing method according to Example 12 was evaluated for contrast and image sticking characteristics.
  • the case where the contrast was 500 or more and the burn-in characteristic (burn-in rate) was within 5% was judged to be a level suitable for the product.
  • the contrast was measured by the same method as in Examples 2-1 to 2-6, and the burn-in characteristics were evaluated by the same method as in Example 4.
  • Example 12 (Contrast measurement result) The contrast in Example 12 was 1200, which was a level suitable for a product.
  • Example 12 (Evaluation results of seizure characteristics) The burn-in rate in Example 12 was 3%, which was a level suitable for the product.
  • Example 13 is a case where the main heating was performed twice at different temperatures in the step (4). A method for manufacturing the liquid crystal display device according to Example 13 will be described in turn below.
  • a mixture of two kinds of polymers at a weight ratio of 50:50 was used.
  • One of the two types of polymers is a polyamic obtained by reacting an acid anhydride (TCA) represented by the chemical formula (1) and a diamine containing a phenyl ester group and a cinnamate group having photoreactivity. It is an acid.
  • the other of the two types of polymers is a photofunctional group and a side chain obtained by reacting 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and a diamine containing a biphenyl structure.
  • TCA acid anhydride
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • This photo-alignment film material contains a photofunctional group capable of photodimerization, photoisomerization, and photofleece transition.
  • a film made of a photo-alignment film material was formed on two substrates by spin coating.
  • Preheating was performed at 60 ° C. for 150 seconds on the film after the step of forming a film made of the photo-alignment film material on the two substrates.
  • the preheating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the film thickness of the photo-alignment film material after the preheating step was about 100 nm.
  • the film after the preheating step on the two substrates was irradiated with polarized ultraviolet rays.
  • the irradiation amount of polarized ultraviolet rays was 500 mJ / cm 2 near the center wavelength of 313 nm, and further 100 mJ / cm 2 near the center wavelength of 254 nm.
  • the main heating was performed at 120 ° C. for 20 minutes on the film after the light irradiation process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the main heating was performed at 220 ° C. for 30 minutes on the film after the first main heating process on the two substrates. This heating was performed using a hot plate (trade name: EC-1200N) manufactured by ASONE.
  • the two substrates after the second main heating step were bonded to the FFS mode liquid crystal display panel obtained in the same manner as in the liquid crystal display device manufacturing method according to Example 1, and a polarizing plate, a backlight, etc.
  • a liquid crystal display device according to Example 13 was obtained by appropriately arranging the members.
  • the liquid crystal material a material containing liquid crystal molecules having negative dielectric anisotropy was used, and the thickness of the liquid crystal layer was 3.5 ⁇ m.
  • the comparative example 10 is a case where the photo-alignment film material which does not contain the polyamic acid which does not have a photofunctional group and a side chain in Example 13 is used. Since the manufacturing method of the liquid crystal display device according to Comparative Example 10 is the same as that of Example 13 except for the photo-alignment film material, the description of overlapping points is omitted.
  • Photo-alignment film material As a solid content, a polyamic acid obtained by reacting an acid anhydride (TCA) represented by the chemical formula (1) and a diamine containing a phenyl ester group and a cinnamate group having photoreactivity was used. As a solvent, a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used. The solid content concentration was 4% by weight.
  • TCA acid anhydride
  • solvent a mixture of N-methyl-pyrrolidone and butyl cellosolve at a weight ratio of 50:50 was used.
  • the solid content concentration was 4% by weight.
  • Example 13 and Comparative Example 10 The liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device according to Example 13 was evaluated for contrast and image sticking characteristics.
  • the contrast was measured by the same method as in Examples 2-1 to 2-6, and the burn-in characteristics were evaluated by the same method as in Example 4.
  • Example 13 (Contrast measurement result) The contrast in Example 13 was 1200, which was a level suitable for a product.
  • Example 13 (Evaluation results of seizure characteristics) The burn-in rate in Example 13 was 3%, which was a level suitable for the product.
  • the main heating in the step (4) may be performed at a temperature of 90 ° C. or higher.
  • the molecular motion of the polymer accompanying the main heating becomes easier, and the alignment order of the polymer by self-organization can be further improved.
  • the temperature of the main heating is less than 90 ° C., the molecular motion of the polymer accompanying the main heating may not become active.
  • “performing main heating at a temperature of 90 ° C. or higher” means performing the main heating so that the temperature has a constant temperature period of 90 ° C. or higher.
  • the constant temperature period of 90 ° C. or higher may mean a period of a heating state maintained for 1 minute or longer within a temperature range of ⁇ 5 ° C., for example.
  • the main heating temperature in the step (4) is more preferably 140 ° C. or higher.
  • the molecular motion of the polymer accompanying the main heating becomes more active, and the alignment order of the polymer due to self-organization can be further improved.
  • the temperature of the main heating is less than 140 ° C.
  • the molecular motion of the polymer accompanying the main heating does not become active, and the orientation order of the polymer due to self-organization may not be sufficiently improved.
  • the temperature of this heating exceeds 250 degreeC, discoloration of a color filter layer etc. generate
  • it is still more preferable that the temperature of the main heating of the said process (4) is 140 degreeC or more and 250 degrees C or less.
  • the preheating in the step (2) may be performed at a temperature of 90 ° C. or lower, and more preferably performed at a temperature of 70 ° C. or lower.
  • the preheating temperature exceeds 90 ° C., the residual amount of the solvent decreases, so that the molecular motion of the polymer accompanying the main heating does not become active, and the orientation order of the polymer due to self-organization is reduced. There is a possibility that it cannot be improved sufficiently. “Preheating at a temperature of 90 ° C.
  • the constant temperature period of 90 ° C. or lower may mean, for example, a period of a heating state maintained for 30 seconds or more within a temperature range of ⁇ 5 ° C.
  • the preheating temperature in step (2) is more preferably 40 ° C. or higher and 70 ° C. or lower. Thereby, the molecular motion of the polymer accompanying the subsequent main heating becomes more active, and the alignment order of the polymer by self-organization can be further improved.
  • the preheating temperature is lower than 40 ° C., it takes time for the solvent to volatilize, so that the film thickness unevenness due to the convection of the solution is remarkably generated. As a result, the alignment unevenness is visually recognized when the liquid crystal display device is turned on. There is a possibility that.
  • the preheating temperature exceeds 70 ° C.
  • the residual amount of the solvent decreases, so that the molecular motion of the polymer accompanying the main heating does not become active, and the orientation order of the polymer due to self-organization is reduced. There is a possibility that it cannot be improved sufficiently.
  • the preheating temperature in the step (2) is particularly preferably 50 ° C. or higher and 70 ° C. or lower.
  • the liquid crystal display device may align liquid crystal molecules having negative dielectric anisotropy with the photo-alignment film. Thereby, the transmittance and viewing angle characteristics can be further improved.
  • the main heating in the step (4) may include an operation performed so as to have a plurality of constant temperature periods with different temperatures from a low temperature to a high temperature. Thereby, the main heating can be performed step by step at a plurality of different temperatures, and the display quality can be sufficiently improved.
  • the constant temperature period may mean, for example, a period of a heating state maintained for 1 minute or more within a temperature range of ⁇ 5 ° C.
  • the main heating in the above step (4) is performed twice at different temperatures, the first main heating is performed at a temperature of 90 ° C. or higher and 140 ° C. or lower, and the second main heating is performed at 180 ° C. or higher. It may be performed at the temperature. Thereby, the molecular motion of the polymer becomes more active, and the alignment order of the polymer due to self-organization can be sufficiently improved.
  • the temperature of the first main heating exceeds 140 ° C., the thermochemical reaction of the polymer and the volatilization of the remaining solvent may be remarkably started, which may hinder self-organization.
  • the temperature of the first main heating is more preferably 110 ° C. or higher and lower than 120 ° C.
  • the temperature of the second main heating is less than 180 ° C., the remaining amount of the solvent cannot be sufficiently reduced, and the display quality may be deteriorated. Further, from the viewpoint of further improving display quality, the temperature of the second main heating is more preferably 180 ° C. or higher and 250 ° C. or lower. When the temperature of the second main heating exceeds 250 ° C., the color filter layer may be discolored and the like, and the display quality of the liquid crystal display device may be deteriorated. Further, from the viewpoint of sufficiently proceeding the thermochemical reaction of the polymer, the temperature of the second main heating is more preferably 200 ° C. or more and 250 ° C. or less.
  • the main heating in the above step (4) may be performed using a plurality of heating devices set to different temperatures. Thereby, the operation of main heating the film irradiated with polarized light so as to have a plurality of constant temperature periods with different temperatures from low temperature to high temperature can be suitably performed. Moreover, compared with the case where one heating apparatus is used, manufacturing efficiency can be improved more.
  • the main heating in the step (4) may be performed while sequentially changing to different temperatures using a single heating device.
  • the operation of main heating the film irradiated with polarized light so as to have a plurality of constant temperature periods with different temperatures from low temperature to high temperature can be suitably performed.
  • the installation area of the heating device can be further reduced, and the degree of freedom of device layout can be improved.
  • the main heating in the step (4) may be performed while moving the substrate in the heating device using a heating device having a region with a temperature gradient. Thereby, the operation of main heating the film irradiated with polarized light so as to have a plurality of constant temperature periods with different temperatures from low temperature to high temperature can be suitably performed.
  • the photofunctional group may be at least one functional group selected from the group consisting of a cinnamate group, a chalcone group, a coumarin group, a stilbene group, a phenyl ester group, and an azobenzene group.
  • the polymer skeleton having the photofunctional group may have at least one structure selected from the group consisting of polyamic acid, polyimide, acrylic, methacrylic, maleimide, and polysiloxane.
  • a part of the polyamic acid may be subjected to a thermochemical reaction (thermal imidization), thereby adjusting the electrical characteristics such as the specific resistance and dielectric constant of the photo-alignment film.
  • thermochemical reaction thermal imidization
  • a skeleton combining acrylic or methacryl and maleimide that is, a copolymer structure
  • another structure having no photoreactivity can be introduced into the photo-alignment film material.
  • transduce a photofunctional group into the polyamic acid or the diamine which forms a polyimide it can also introduce suitably by making another diamine which does not have photoreactivity into a copolymer structure.
  • employing the copolymer structure as described above is an effective technique for adjusting the photoreactive sensitivity, electrical characteristics, and orientation characteristics in a well-balanced manner.
  • a monomer having a plurality of functional groups such as epoxy, carboxylic acid, amine, acrylate, or methacrylate may be added in advance to the photo-alignment film material. Thereby, long-term reliability can be improved.
  • This monomer functions as a crosslinking agent for the polymer contained in the photo-alignment film material, and forms a network structure in the photo-alignment film.
  • impurities contained in the photo-alignment film and the substrate are prevented from eluting into the liquid crystal, and the voltage holding ratio is lowered in the process of using the liquid crystal display device for a long period of time. Can be sufficiently suppressed.
  • the photofunctional group can be at least photodimerized, and the step (4) performs two main heating at different temperatures, and further between the first main heating and the second main heating. It may include a step (4a) of performing light irradiation on the film that has been subjected to the first main heating.
  • the polymer material contained in the photo-alignment film material includes a structure represented by the following chemical formulas (2) to (4) in the main chain or side chain. Is preferred.
  • X is not present, and is O, COO, OCO, CO, or C ⁇ C.
  • a benzene ring in each chemical formula and any hydrogen atom of cyclohexane may be independently substituted with a fluorine atom (F) or a chlorine atom (Cl).
  • the benzene ring and cyclohexane in each chemical formula are heterocyclic rings in which any carbon atom (C) is substituted with an oxygen atom (O), a nitrogen atom (N), or a sulfur atom (S). It may be.
  • the polymer material contained in the photo-alignment film material preferably has a carboxyl group and / or an amide group in the main chain or side chain.
  • self-organization can be activated by hydrogen bonds acting between C ⁇ O and OH or between NH and C ⁇ O.
  • the ability to self-assemble can be improved by introducing a carboxyl group and / or an amide group into the main chain or side chain separately from the portion forming polyamic acid or polyimide.
  • the polymer having the polyamic acid skeleton and not having the photofunctional group also includes a structure that activates self-organization as described above.
  • the solvent includes at least one compound selected from the group consisting of N-methyl-pyrrolidone, N-ethyl-pyrrolidone, and ⁇ -butyllactone, butyl cellosolve, diethylene glycol diethyl ether, diisobutyl ketone and structural isomers thereof, propylene glycol It may be a mixture with monobutyl ether and at least one compound selected from the group consisting of diacetone alcohol.
  • the substrate may include a thin film transistor array substrate including a thin film transistor element, and the thin film transistor element may include a semiconductor layer including an oxide semiconductor.
  • An oxide semiconductor is characterized by higher mobility and less characteristic variation than amorphous silicon. For this reason, a thin film transistor element including an oxide semiconductor can be driven at a higher speed than a thin film transistor element including amorphous silicon, has a high driving frequency, and can reduce a ratio of one pixel. This is suitable for driving a next-generation display device.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, it has an advantage that it can be applied to a device that requires a large area.
  • the substrate includes a thin film transistor array substrate including a thin film transistor element
  • the thin film transistor element includes a semiconductor layer including an oxide semiconductor
  • a liquid crystal capable of achieving the effect of one embodiment of the present invention and achieving high-speed driving.
  • a display device can be manufactured.
  • a compound (In—Ga—Zn—O), indium (In), indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used.
  • In tin (Tin), zinc (Zn), and a compound composed of oxygen (O) (In—Tin—Zn—O), or indium (In), aluminum (Al), zinc (Zn) And a compound composed of oxygen (O) (In—Al—Zn—O) or the like.
  • the hygroscopic property of the photo-alignment film material is preferably low.
  • a polymer having a polyimide skeleton is preferably used.
  • polymers having acrylic, methacrylic, maleimide, and polysiloxane skeletons are preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法を提供する。本発明の液晶表示装置の製造方法は、光配向膜を備える液晶表示装置の製造方法であって、上記液晶表示装置の製造方法は、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有する高分子と、ポリアミック酸骨格を有し、上記光官能基を有さない高分子と、溶媒とを含有する光配向膜材料による膜を基板上に形成する工程(1)、上記膜に対して上記溶媒を蒸発させる予備加熱を行う工程(2)、予備加熱された上記膜に対して偏光照射を行う工程(3)、及び、偏光照射された上記膜に対して本加熱を行う工程(4)を順に含み、上記液晶表示装置は、プレチルト角が実質的に0°であるイン・プレーン・スイッチングモード又はフリンジ・フィールド・スイッチングモードであるものである。

Description

液晶表示装置の製造方法
本発明は、液晶表示装置の製造方法に関する。より詳しくは、配向膜の形成条件に関わる液晶表示装置の製造方法に関するものである。
近年、液晶表示装置等の薄型表示装置が急速に普及しており、テレビ用途のみならず、電子ブック、フォトフレーム、IA(Industrial Appliance:産業機器)、PC(Personal Computer:パーソナルコンピュータ)、タブレットPC、スマートフォン用途等に幅広く採用されている。これらの用途において、種々の性能が要求され、様々な液晶表示モードが開発されている。
近年よく用いられている液晶表示モードとしては、基板の主面に対して水平な方向に、正又は負の誘電率異方性を有する液晶分子を配向させる、イン・プレーン・スイッチング(In-Plane Switching:IPS)モード、及び、フリンジ・フィールド・スイッチング(Fringe Field Switching:FFS)モード等が挙げられる。
液晶表示装置においては、液晶分子を一様に配向させることが求められており、液晶分子を配向させるための配向膜の配向処理方法としては、例えば、ラビング法や光配向法が挙げられ、従来は、配向膜の表面を布で擦るラビング法が広く採用されていた。しかしながら、ラビング法を用いる場合、布の発塵による異物不良及び表示むら、並びに、布で擦る際の静電気による薄膜トランジスタ素子の破壊等が問題になっていた。また、タブレットPC、スマートフォン等の高精細化が進むにつれて、布の毛の密度で配向処理精度が制約されるラビング法では、液晶分子を一様に配向させることが困難になりつつあった。そこで、これらの問題を解決するために、ラビング法の代わりに、紫外線等の光を照射することによって配向膜に異方性を付与し、配向規制力を生じさせる光配向法が近年検討されている。
ここで、上述したような配向処理によって液晶分子を一様に配向させ、表示不良を防止する配向処理方法を開示した文献が知られている(例えば、特許文献1及び2参照)。また、材料選択の自由度を高める光反応性化合物を含む光配向膜用組成物を開示した文献が知られている(例えば、特許文献3参照)。また、配向膜を形成する過程で本加熱を行うことによって、高分子(ポリマー)の配向秩序を高めることを開示した文献が知られている。(例えば、非特許文献1及び5参照)。また、予備加熱、偏光紫外線照射、及び、本加熱を順に行うことによって、高分子の配向秩序を高めることを開示した文献が知られている(例えば、非特許文献2~4参照)。ここで、上記非特許文献4は、光配向膜の形成に関するものである。
特開平8-179328号公報 特許第4459417号明細書 国際公開第2012/093682号
サカモト等(K.Sakamoto,et al)、「光配向したポリアミック酸フィルムの面内分子秩序:熱イミド化時の向上(In-plane Molecular Order of a Photo-oriented Polyamic Acid Film:Enhancement upon Thermal Imidization)」、Molecular Crystals and Liquid Crystals、2004、Vol.412、p.293-299 カワツキ等(N.Kawatsuki,et al)、「光架橋性高分子液晶及び非液晶棒状モノマーとアモルファス複合フィルムの熱誘起再配向の光制御(Photocontrol of Thermally Induced Reorientation of Amorphous Composite Film with Photo-Crosslinkable Polymer Liquid Crystal and Non-Liquid Crystalline Rodlike Monomer)」、Jpn.J.Appl.Phys.Vol.41(2002)pp.L198-L200 カワツキ等(N.Kawatsuki,et al)、「光架橋共重合液晶の熱的に向上された光誘起再配向方向の制御、及び、直線偏光紫外線を用いた偏光回折格子への応用(Control of Thermally Enhanced Photoinduced Reorientation Direction of Photocrosslinkable Copolymer Liquid Crystals and Application to Polarization Gratings Using Linearly Polarized Ultraviolet Light)」、Jpn.J.Appl.Phys.Vol.43、No.8A、2004、pp.5447-5450 カワツキ等(N.Kawatsuki,et al)、「液晶用の分子配向した光配向膜(Molecular-Oriented Photoalignment Layer for Liquid Crystals)」、Jpn.J.Appl.Phys.Vol.46、No.1、2007、pp.339-341 ドウゾノ等(Y.Dozono,et al)、「アミド基を有する水素結合型光反応性高分子液晶の高分子反応を用いた合成及び光反応(Synthesis and photoresponsive behavior of hydrogen-bonded photoreactive liquid-crystalline polymers containing amide groups based on post polymer reaction)」、Polymer Preprints、Japan、Vol.60、No.2、2011、pp.3878(1Pf066)
上述した通り、光配向法による配向膜(以下、光配向膜とも言う。)の配向処理が検討されている。しかしながら、光配向法には、(1)長期間の使用において、液晶表示装置の電圧保持率が低下し、表示品位が低下すること、(2)充分な配向規制力が得られず、充分に高いコントラストが得られなかったり、焼き付き特性が悪化したりすること、及び、(3)光配向膜の露光感度が悪く、光照射(例えば、紫外線照射)において大きなエネルギー(照射量)を要するため、光配向膜の分解物が生じ、表示品位が低下すること等の不具合が発生することがあった。これらの不具合をすべて解決する手段が見出されていないため、IPSモード及びFFSモードの液晶表示装置に対する量産性の高い光配向法を未だ開発することができていない。
本発明者らは、これらの原因について検討した結果、上記不具合(1)は、特に、高温で通電した状態で長期間使用すると顕著に発生することを見出した。
また、本発明者らは、上記不具合(2)は、光配向処理を行っても、光配向膜に含まれる高分子の配向秩序が充分に高まらず、液晶分子の配向乱れを引き起こすためであることを見出した。ここで、配向秩序とは、例えば、所定の方向に配向するように光配向処理された高分子の異方性の程度を示すものである。異方性の程度は、例えば、屈折率異方性や吸収率異方性等で測定することができる。
また、本発明者らは、上記不具合(3)は、特に、光分解型の光配向膜において顕著に発生することを見出した。
上記特許文献1は、配向膜を用いてカイラルスメクチック液晶を配向させる際に、均一にむらなくハイプレチルトによるユニフォーム配向を達成し、液晶の表示不良を防止できる液晶配向膜の製造方法、及び、液晶素子の製造方法を提供する、としている。しかしながら、上記特許文献1に記載の発明は、ラビング法によって、カイラルスメクチック液晶を配向させるものであり、上記課題を解決するための工夫の余地があった。また、上記特許文献1に記載の発明は、ハイプレチルト角を達成することを目的としているが、本発明の対象であるIPSモード又はFFSモードの液晶表示装置においては、ハイプレチルト角によって視野角特性等が悪化し、表示品位が低下してしまう。
上記特許文献2は、斜め照射を行わずに、液晶配向素子に必要な液晶プレチルト角を発現させることができる液晶配向処理方法、及び、液晶表示素子を提供する、としている。しかしながら、上記特許文献2に記載の発明は、本発明の対象であるIPSモード又はFFSモードの液晶表示装置については何ら開示しておらず、上記課題を解決するための工夫の余地があった。また、上記特許文献2に記載の発明は、垂直照射によりプレチルト角を発現させることを目的としているが、本発明の対象であるIPSモード又はFFSモードの液晶表示装置においては、プレチルト角によって視野角特性等が悪化し、表示品位が低下してしまう。
上記特許文献3は、材料選択の自由度が高い光反応性化合物を含む光配向膜用組成物を提供する、としている。しかしながら、上記特許文献3に記載の発明は、配向膜の焼成プロセスについて詳細に開示しておらず、本加熱の条件を最適化し、高分子の配向秩序、及び、電気特性を更に高めるという点で、上記課題を解決するための工夫の余地があった。
上記非特許文献1は、アゾベンゼンを主鎖に含むポリイミド配向膜の配向秩序を測定したところ、本加熱前の配向秩序よりも、本加熱後の配向秩序の方が高くなる、としている。しかしながら、上記非特許文献1は、本加熱の条件については250℃、1時間を開示しているのみであり、本加熱の条件を最適化するという点で、上記課題を解決するための工夫の余地があった。また、上記非特許文献1は、予備加熱についても何ら開示していない。予備加熱を行わない場合は、光配向膜の膜厚むらが発生し、表示品位が低下してしまう。また、上記非特許文献1は、光配向膜材料が2種類以上の高分子を含有する場合について何ら開示していないため、電気特性が悪く、配向しみや配向むら等の配向不良が発生する可能性がある。よって、これらの点で上記課題を解決するための工夫の余地があった。
上記非特許文献2~4は、予備加熱、偏光紫外線照射、及び、本加熱を順に行うことが、高分子の配向秩序を高めるのに有効である、としている。しかしながら、上記非特許文献2~4は、光配向膜材料が2種類以上の高分子を含有する場合について何ら開示していないため、電気特性が悪く、配向しみや配向むら等の配向不良が発生する可能性があり、この点で上記課題を解決するための工夫の余地があった。また、上記非特許文献2及び3は、配向膜の形成に関して開示したものではない。
上記非特許文献5は、液晶構造を有するアクリルポリマーにおいて、液晶性(自己組織化)及びアミド基に起因する水素結合により、高度な配向性が生まれることを開示しており、更に、液晶温度領域において熱処理することが効果的である事を示している。しかしながら、上記非特許文献5は、本加熱の条件について、特定温度での1回処理のみを開示しているのみであり、予備加熱について何ら開示していない。予備加熱を行わない場合は、光配向膜の膜厚むらが発生し、表示品位が低下してしまう。また、上記非特許文献5は、光配向膜材料が2種類以上の高分子を含有する場合について何ら開示していないため、電気特性が悪く、配向しみや配向むら等の配向不良が発生する可能性がある。よって、これらの点で上記課題を解決するための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法を提供することを目的とするものである。
本発明者らは、上記不具合(1)に対して、高温で通電した状態で長期間使用すると顕著に発生する原因について種々検討したところ、高温で通電した状態で長期間使用すると、光配向膜やシール材等に含まれる不純物が液晶中へ溶出し、可動イオンとして振る舞うため、電圧保持率の低下を引き起こすことを見出した。
そこで、本発明者らは、上記不具合(1)を解決し、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法について種々検討したところ、ポリアミック酸骨格を有する高分子を含有する光配向膜材料を用いることに着目した。そして、ポリアミック酸骨格を有する高分子を含有する光配向膜材料を用いて光配向膜を形成することによって、光配向膜の表面に-NH基、及び、-COOH基が存在し、上述したような不純物(可動イオン)を吸着させることができると考えられたため、電圧保持率の低下を充分に防止することができ、その結果、表示品位を充分に向上することができることを見出した。
また、本発明者らは、上記不具合(2)に対して、高分子の配向秩序が充分に高まらない原因について種々検討したところ、本加熱によって高分子の熱化学反応が進行した後に光照射を行っても、高分子の配向秩序が充分に高まらないことを見出した。これは、光照射のみによって高分子を完全に配向させることはできないためであると考えられる。また、本発明者らは、光照射を本加熱の前に行う場合であっても、本加熱の温度が低過ぎると、高分子の配向秩序が充分に高まらないことを見出した。ここで、光照射によって高分子を完全に配向させることはできないため、光照射直後の高分子は、所定の配向方向からずれたものも含んでおり、高分子の配向秩序が充分に高まっていない状態である。よって、本加熱の温度が低過ぎると、配向秩序が充分に高まっていない光照射直後の高分子の分子運動が活発にならず、上述したような所定の配向方向からずれた高分子が、所定の配向方向に配向し直すことが難しくなるためであると考えられる。
そこで、本発明者らは、上記不具合(2)を解決し、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法について種々検討したところ、光照射を本加熱の前に行い、加熱による高分子の分子運動が活発になる程度の温度で本加熱を行うことに着目した。そして、光照射を本加熱の前に行い、加熱による高分子の分子運動が活発になる程度の温度で本加熱を行うことによって、光照射によって形成された異方性をきっかけとして、加熱による高分子の分子運動が容易になり、高分子が所定の配向方向に配向し直す(以下、自己組織化とも言う。)ため、高分子の配向秩序を充分に向上することができることを見出した。また、自己組織化を進行させるためには、本加熱を行う前の状態で溶媒がある程度残存していた方が有利であり、光配向膜の膜質や表示品位に影響を与えない程度で予備加熱の温度を低くすることで、自己組織化による高分子の配向秩序を充分に向上することができることを見出した。以上より、表示品位を充分に向上することができることを見出した。
また、本発明者らは、上記不具合(3)に対して、光分解型の光配向膜において顕著に発生する原因について種々検討したところ、光照射によって低分子量の分解物が生成され、液晶表示装置を長期間使用する過程において、その分解物が液晶中に溶出した後に凝集することで表示品位の低下(例えば、輝点不良)を引き起こすことを見出した。
そこで、本発明者らは、上記不具合(3)を解決し、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法について種々検討したところ、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応を配向異方性形成のための主たるメカニズムとする光配向膜を用いることに着目した。そして、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有する高分子を含有する光配向膜材料を用いれば、光照射によって低分子量の分解物は生成されないため、表示品位を充分に向上することができることを見出した。
以上より、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様によれば、光配向膜を備える液晶表示装置の製造方法であって、上記液晶表示装置の製造方法は、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有する高分子と、ポリアミック酸骨格を有し、上記光官能基を有さない高分子と、溶媒とを含有する光配向膜材料による膜を基板上に形成する工程(1)、上記膜に対して上記溶媒を蒸発させる予備加熱を行う工程(2)、予備加熱された上記膜に対して偏光照射を行う工程(3)、及び、偏光照射された上記膜に対して本加熱を行う工程(4)を順に含み、上記液晶表示装置は、プレチルト角が実質的に0°であるイン・プレーン・スイッチングモード又はフリンジ・フィールド・スイッチングモードである液晶表示装置の製造方法であってもよい。
本発明の一態様に係る液晶表示装置の製造方法としては、その他の工程により特に限定されるものではない。
本発明の一態様によれば、光配向膜を備え、表示品位を充分に向上することができる液晶表示装置の製造方法を提供することができる。
上記光配向膜材料は、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有する高分子と、ポリアミック酸骨格を有し、上記光官能基を有さない高分子と、溶媒とを含有するものであり、上記工程(1)~(4)を経た後に、光配向膜を構成するものである。すなわち、上記光配向膜は、光が照射されることによって上記光官能基が光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応を生じ、液晶分子に対する配向規制力を発現した膜である。上記光配向膜材料は、上記2種類の高分子とは異なる種類の高分子を含んでいてもよい。
上記2種類の高分子は、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有するもの、及び、ポリアミック酸骨格を有し、上記光官能基を有さないものであれば特に限定されないが、本加熱が適切に行われたときに、配向膜に求められる充分な特性を有するものであることが好ましい。また、上記光配向膜材料がポリアミック酸を含有することで、上記溶媒への溶解性、及び、基板との親和性の観点から、上記膜を基板上に形成する際の塗布性を向上させることができる。電気特性の観点からは、液晶層の誘電率や比抵抗等との兼ね合いにより、残留DC(Direct Current:直流)による焼き付きを軽減することができる。この観点から、ポリアミック酸の一部を予め熱化学反応(熱イミド化)させることも効果的である。
上記溶媒は、上記2種類の高分子を溶解又は分散させることができる液体(室温時)であれば特に限定されず、上記工程(2)及び(4)によって光配向膜材料中から除去される。なお、上記溶媒は、上記2種類の高分子を溶解させるのに適した成分(良溶媒)だけでなく、上記光配向膜材料を基板上に均一な厚みで拡げるのに適した成分(貧溶媒)等を含んでいてもよく、それらの混合物であることが好ましい。
上記工程(1)(以下、光配向膜材料による膜を形成する工程とも言う。)については、例えば、インクジェット方式、又は、スピンコート法により塗布する方法や、フレキソ方式により印刷(転写)する方法等が用いられる。そして、これらの方法により、以降の工程によって光配向膜として機能し得るように、上記光配向膜材料を用いて基板上に上記膜が形成されるようにすればよい。上記膜の形成条件は、上記膜の形成方法等に応じて適宜設定すればよい。また、上記膜の膜厚等も、通常設定される光配向膜の膜厚等と同様になるようにすればよい。また、上記膜が形成される基板についても、光配向膜形成のための処理が施される基板であればよく、種々の処理がなされた基板であってもよい。
上記工程(2)(以下、予備加熱工程とも言う。)については、例えば、上記膜を加熱/乾燥し、上記溶媒を蒸発させるものである。ここで、予備加熱工程によって、上記溶媒は部分的に除去されてもよいし、実質的に完全に除去されてもよい。また、予備加熱工程は、例えば、所定の温度に設定された、ホットプレートやベーク炉等の加熱装置により行われる。
上記工程(3)(以下、光照射工程とも言う。)については、予備加熱された上記膜に対して、例えば、紫外線、可視光線、又は、これらの両方によって光配向処理するものであり、偏光紫外線が好適に用いられる。また、光照射工程における光照射条件は、通常の光配向膜を形成するときに設定される条件とすることができる。
上記工程(4)(以下、本加熱工程とも言う。)によれば、例えば、自己組織化を進行させたり、高分子の熱化学反応を進行させたり、残存した溶媒を揮発させたりする。また、本加熱工程は、例えば、所定の温度に設定された、ホットプレートやベーク炉等の加熱装置により行われる。
上記液晶表示装置は、プレチルト角が実質的に0°であるイン・プレーン・スイッチング(IPS)モード又はフリンジ・フィールド・スイッチング(FFS)モードである。このような液晶表示装置を構成する上記光配向膜は、基板の主面に対して水平な方向に液晶分子を配向させるもの(以下、水平光配向膜とも言う。)であってもよい。水平光配向膜は、少なくとも近接する液晶分子を、水平光配向膜の膜面に対して実質的に水平に配向させるものであればよい。プレチルト角が実質的に0°であるとは、例えば、液晶分子のプレチルト角が、水平光配向膜の膜面に対して1°以下であることを言う。
以下に実施例を掲げ、本発明について更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。また、以下の実施例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
[実施例1]
実施例1は、2種類の高分子を含有する光配向膜材料を用いた場合である。実施例1に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。ここで、シンナメート基は、光二量化及び光異性化が可能な光官能基である。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、280~330nmの波長範囲で5mJ/cmとした。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を140℃で10分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、本加熱工程後の2枚の基板を、シール材を介して、照射された偏光紫外線の偏光方向が互いに平行になるように貼り合わせた。そして、2枚の基板を貼り合わせた後にシール熱硬化工程等を経ることによって、FFSモードの液晶表示装置が得られた。ここで、液晶層を形成する液晶材は、2枚の基板のうちの一方に予め滴下しておいたが、各々の基板を貼り合わせた後に封入してもよい。液晶材としては、正の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。また、シール材、及び、液晶層等は、例えば、通常の液晶表示装置を製造する工程と同様に形成されるものであってもよい。
上記の各工程は、イエロー蛍光灯の下で行われ、蛍光灯からの紫外線に曝されないようにした。その後、液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例1に係る液晶表示装置が得られた。
[比較例1]
比較例1は、実施例1において光官能基及び側鎖を有さないポリアミック酸を含有しない光配向膜材料を用いた場合である。比較例1に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[評価結果:実施例1、及び、比較例1]
実施例1、及び、比較例1に係る液晶表示装置の製造方法により製造された液晶表示装置について、電圧保持率を評価した。
(電圧保持率の測定方法)
電圧保持率の測定には、東陽テクニカ社製の液晶物性評価システム(商品名:6254型)を用いた。印加電圧は5V、保持時間は16.67ms、測定温度は60℃とした。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例1の電圧保持率は97%以上であり、比較例1の95%未満と比べて高かった。ここで、電圧保持率とは、1フレーム期間中に充電された電荷が保持される割合である。通常、本加熱による熱化学反応が不足すると、電圧保持率が低下してしまうことがある。また、電圧保持率の低下は、液晶表示装置における表示むらを引き起こすことがある。よって、実施例1に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができ、その結果、表示品位を充分に向上することができる。
実施例1の電圧保持率が、比較例1のそれと比べて高くなった理由について説明する。高温で通電した状態で長期間使用すると、光配向膜やシール材等に含まれる不純物が液晶中へ溶出し、可動イオンとして振る舞うため、電圧保持率の低下を引き起こすと考えられる。ここで、実施例1で用いた光配向膜材料のように、光官能基及び側鎖を有さないポリアミック酸が含有されている場合は、光配向膜の表面に-NH基、及び、-COOH基が存在すると考えられる。-NH基、及び、-COOH基は、上述したような不純物(可動イオン)の吸着サイトとなり得るため、その可動イオンは固定され、その結果、電圧保持率の低下を充分に防止することができると考えられる。よって、実施例1に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができる。
[実施例2-1]
実施例2-1は、実施例1において予備加熱の温度を60℃とした場合である。実施例2-1に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を60℃で150秒間行った。
[実施例2-2]
実施例2-2は、実施例2-1において予備加熱の温度を70℃とした場合であり、実施例1と同様である。実施例2-2に係る液晶表示装置の製造方法は、実施例1のそれと同様であるため、重複する点については説明を省略する。
[実施例2-3]
実施例2-3は、実施例2-1において予備加熱の温度を80℃とした場合である。実施例2-3に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例2-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を80℃で150秒間行った。
[実施例2-4]
実施例2-4は、実施例2-1において予備加熱の温度を90℃とした場合である。実施例2-4に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例2-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を90℃で150秒間行った。
[実施例2-5]
実施例2-5は、実施例2-1において予備加熱の温度を100℃とした場合である。実施例2-5に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例2-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を100℃で150秒間行った。
[実施例2-6]
実施例2-6は、実施例2-1において予備加熱の温度を110℃とした場合である。実施例2-6に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例2-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を110℃で150秒間行った。
[評価結果:実施例2-1~2-6]
実施例2-1~2-6に係る液晶表示装置の製造方法により製造された液晶表示装置について、予備加熱の温度、及び、表示品位の評価結果を表1にまとめた。
(表示品位の評価方法)
表示品位を評価し、レベル1:コントラストが1200以上、レベル2:コントラストが1000以上、1200未満、レベル3:コントラストが500以上、1000未満、レベル4:コントラストが500未満又は配向不良が視認される、の4段階で評価した。ここで、評価結果がレベル1~3である場合を製品に適したレベルであると判断し、評価結果がレベル4である場合を製品に適したレベルに達していないと判断した。
(コントラストの測定方法)
コントラストは、(コントラスト)=(白表示時の輝度)/(黒表示時の輝度)で測定された。白表示時は最大輝度となる電圧印加状態、黒表示時は電圧無印加状態とした。輝度(白表示時及び黒表示時の輝度)の測定には、トプコン社製の分光放射計(商品名:SR-UL2)を用いた。
Figure JPOXMLDOC01-appb-T000002
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例2-1)
表示品位の評価結果はレベル1であり、実施例2-3~2-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例2-2)
表示品位の評価結果はレベル1であり、実施例2-3~2-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例2-3)
表示品位の評価結果はレベル2であり、実施例2-5、及び、実施例2-6のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-3に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例2-4)
表示品位の評価結果はレベル2であり、実施例2-5、及び、実施例2-6のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-4に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例2-5)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-5に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例2-6)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例2-6に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例2-1~2-6においては、偏光紫外線の照射の後に本加熱を行うことによって、偏光紫外線の照射によって形成された異方性をきっかけとして、加熱による高分子の分子運動が容易になり、自己組織化による高分子の配向秩序を充分に向上させることができると考えられる。また、自己組織化による高分子の配向秩序の向上は、光官能基を有する高分子のみならず、ポリアミック酸との相互作用のもとに生じるものであり、この配向秩序の向上を実現する上で、高分子の分子運動の容易さが重要となる。
実施例2-1、及び、実施例2-2の表示品位が、実施例2-3~2-6のそれと比べて非常に良好であった理由について説明する。これは、実施例2-1、及び、実施例2-2における予備加熱の温度が、実施例2-3~2-6におけるそれと比べて低く、その結果、溶媒の残存量が相対的に多くなったことによって、本加熱に伴う高分子の分子運動が相対的に活発になり、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、自己組織化を進行させるためには、本加熱を行う前の状態で溶媒がある程度残存していた方が有利であり、予備加熱の温度が高過ぎると自己組織化を阻害することがあると考えられる。予備加熱は、光配向膜材料による膜の液体流動性が無くなるように行われればよく、本発明の一態様による効果を奏するように、予備加熱の温度を低くすることが好ましい。また、実施例2-3、及び、実施例2-4の表示品位が、実施例2-5、及び、実施例2-6のそれと比べて良好であった理由についても、上述した理由と同様である。以上より、予備加熱の温度は90℃以下であることが好ましく、70℃以下であることがより好ましいことが分かった。ここで、予備加熱の温度が40℃未満である場合は、溶媒の揮発に時間を要するため、溶液の対流に伴う膜厚むらが顕著に発生し、その結果、液晶表示装置の点灯時に配向むらが視認される可能性がある。よって、予備加熱の温度は、40℃以上、70℃以下であることが更に好ましい。
[実施例3-1]
実施例3-1は、実施例2-2において本加熱の温度を80℃とした場合である。実施例3-1に係る液晶表示装置の製造方法は、本加熱工程以外、実施例2-2のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を80℃で10分間行った。
[実施例3-2]
実施例3-2は、実施例3-1において本加熱の温度を90℃とした場合である。実施例3-2に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を90℃で10分間行った。
[実施例3-3]
実施例3-3は、実施例3-1において本加熱の温度を100℃とした場合である。実施例3-3に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を100℃で10分間行った。
[実施例3-4]
実施例3-4は、実施例3-1において本加熱の温度を110℃とした場合である。実施例3-4に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を110℃で10分間行った。
[実施例3-5]
実施例3-5は、実施例3-1において本加熱の温度を120℃とした場合である。実施例3-5に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を120℃で10分間行った。
[実施例3-6]
実施例3-6は、実施例3-1において本加熱の温度を130℃とした場合である。実施例3-6に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を130℃で10分間行った。
[実施例3-7]
実施例3-7は、実施例3-1において本加熱の温度を140℃とした場合であり、実施例2-2と同様である。実施例3-7に係る液晶表示装置の製造方法は、実施例2-2のそれと同様であるため、重複する点については説明を省略する。
[実施例3-8]
実施例3-8は、実施例3-1において本加熱の温度を150℃とした場合である。実施例3-8に係る液晶表示装置の製造方法は、本加熱工程以外、実施例3-1のそれと同様であるため、重複する点については説明を省略する。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を150℃で10分間行った。
[評価結果:実施例3-1~3-8]
実施例3-1~3-8に係る液晶表示装置の製造方法により製造された液晶表示装置について、本加熱の温度、及び、表示品位の評価結果を表2にまとめた。
(表示品位の評価方法)
実施例2-1~2-6と同様な方法で表示品位を評価し、レベル1:コントラストが1200以上、レベル2:コントラストが1000以上、1200未満、レベル3:コントラストが500以上、1000未満、レベル4:コントラストが500未満又は配向不良が視認される、の4段階で評価した。ここで、評価結果がレベル1~3である場合を製品に適したレベルであると判断し、評価結果がレベル4である場合を製品に適したレベルに達していないと判断した。
Figure JPOXMLDOC01-appb-T000003
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例3-1)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-2)
表示品位の評価結果はレベル2であり、実施例3-1のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-3)
表示品位の評価結果はレベル2であり、実施例3-1のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-3に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-4)
表示品位の評価結果はレベル2であり、実施例3-1のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-4に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-5)
表示品位の評価結果はレベル2であり、実施例3-1のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-5に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-6)
表示品位の評価結果はレベル2であり、実施例3-1のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-6に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-7)
表示品位の評価結果はレベル1であり、実施例3-1~3-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-7に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例3-8)
表示品位の評価結果はレベル1であり、実施例3-1~3-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例3-8に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例3-1~3-8においては、偏光紫外線の照射の後に本加熱を行うことによって、偏光紫外線の照射によって形成された異方性をきっかけとして、加熱による高分子の分子運動が容易になり、自己組織化による高分子の配向秩序を充分に向上させることができると考えられる。また、自己組織化による高分子の配向秩序の向上は、光官能基を有する高分子のみならず、ポリアミック酸との相互作用のもとに生じるものであり、この配向秩序の向上を実現する上で、高分子の分子運動の容易さが重要となる。
実施例3-7、及び、実施例3-8の表示品位が、実施例3-1~3-6のそれと比べて非常に良好であった理由について説明する。上述したように、自己組織化による高分子の配向秩序を向上させるためには、高分子の分子運動が容易(活発)であることが重要である。よって、実施例3-7、及び、実施例3-8における本加熱の温度が、実施例3-1~3-6におけるそれと比べて高いため、高分子の分子運動が相対的に活発であると考えられる。ここで、自己組織化の際の温度が低過ぎると、高分子の分子運動は相対的に活発にならないと考えられる。また、実施例3-2~3-6の表示品位が、実施例3-1のそれと比べて良好であった理由についても、上述した理由と同様である。以上より、本加熱の温度は90℃以上であることが好ましく、140℃以上であることがより好ましいことが分かった。ここで、本加熱の温度が250℃を超える場合は、カラーフィルタ層の退色等が発生し、液晶表示装置の表示品位が低下する可能性がある。よって、本加熱の温度は、140℃以上、250℃以下であることが更に好ましい。
[実施例4]
実施例4は、実施例1において負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合である。実施例4に係る液晶表示装置の製造方法は、液晶分子の誘電率異方性が異なること以外、実施例1のそれと同様であるため、重複する点については説明を省略する。
[比較例2]
比較例2は、分解型の光配向膜を用いて、光照射工程を本加熱工程の後に行った場合である。比較例2に係る液晶表示装置の製造方法について、以下に順次説明する。
(光配向膜材料)
固形分として、シクロブタン骨格を有するポリアミド酸高分子を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。ここで、比較例2で用いられた光配向膜は、中心波長254nm付近で高分子鎖の光分解を生じるものである。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を90℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(本加熱工程)
2枚の基板上の予備加熱工程後の膜に対して、本加熱を230℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(光照射工程)
2枚の基板上の本加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長254nm付近で1J/cmとした。
その後、光照射工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、比較例2に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[評価結果:実施例4、及び、比較例2]
実施例4、及び、比較例2に係る液晶表示装置の製造方法により製造された液晶表示装置について、コントラスト、焼き付き特性、及び、電圧保持率を評価した。ここで、コントラストが500以上、焼き付き特性(焼き付き率)が5%以内、電圧保持率が97%以上である場合を製品に適したレベルであると判断した。なお、コントラストは実施例2-1~2-6と同様な方法で測定し、電圧保持率は実施例1と同様な方法で測定した。
(コントラストの測定結果)
実施例4、及び、比較例2におけるコントラストは、ともに1200程度で同等であり、製品に適したレベルであった。
(焼き付き特性の評価方法)
焼き付き特性は、焼き付き率で評価した。最大輝度を示す際の電圧をVmax、最大輝度の1%を示す際の電圧を観察電圧V1とし(V1<Vmax)、まず、観察電圧V1印加時の輝度(L1)を測定した。次に、Vmaxを6時間印加し続けた後に、観察電圧V1印加時の輝度(L1’)を測定した。そして、L1に対するL1’の変化率を焼き付き率とした。輝度の測定には、キヤノン社製のデジタルカメラ(商品名:EOS Kiss Digital NEF-S18-55IIU)を用いた。
(焼き付き特性の評価結果)
実施例4、及び、比較例2における焼き付き率は、ともに3%程度で同等であり、製品に適したレベルであった。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例4、及び、比較例2における電圧保持率は、ともに98%以上で同等であり、製品に適したレベルであった。
しかしながら、60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、比較例2では微小な輝点が画素内に発生し、その結果、表示不良が発生した。
これは、比較例2において、高分子鎖の光分解を配向異方性形成のための主たるメカニズムとしているためである。比較例2においては、偏光紫外線の照射によって低分子量の分解物が生成され、初期は光配向膜の表面に付着しているが、長期試験においてその分解物が液晶中に溶出した後に凝集することで輝点になったと考えられる。よって、実施例4に係る液晶表示装置の製造方法のように、光分解ではなく、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応を配向異方性形成のための主たるメカニズムとする光配向膜を用いることで、表示品位を充分に向上することができる。
また、比較例2において発生したような輝点は、負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合の方が、正の誘電率異方性を有する液晶分子を含む液晶材を用いた場合と比べて、顕著に発生する傾向があった。負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合は、透過率及び視野角特性をより向上することができる。よって、上記本発明の一態様に係る液晶表示装置の製造方法において、負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合は、本発明の一態様による効果を奏するとともに、透過率及び視野角特性をより向上することができる。
[実施例5]
実施例5は、2種類の高分子を含有する光配向膜材料を用いた場合である。実施例5に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、光反応性を有するアゾベンゼン構造を含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。ここで、アゾベンゼン基は、光異性化が可能な光官能基である。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長365nm付近で3J/cmとした。
(本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を140℃で10分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例5に係る液晶表示装置が得られた。液晶材としては、正の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[比較例3]
比較例3は、実施例5において光官能基及び側鎖を有さないポリアミック酸を含有しない光配向膜材料を用いた場合である。比較例3に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例5のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、光反応性を有するアゾベンゼン構造を含む高分子を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[評価結果:実施例5、及び、比較例3]
実施例5、及び、比較例3に係る液晶表示装置の製造方法により製造された液晶表示装置に対して60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例5の電圧保持率は95~97%程度であり、比較例3の90%未満と比べて高かった。電圧保持率の低下は、液晶表示装置における表示むらを引き起こすことがあるため、実施例5に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができ、その結果、表示品位を充分に向上することができる。
実施例5の電圧保持率が、比較例3のそれと比べて高くなった理由について説明する。高温で通電した状態で長期間使用すると、光配向膜やシール材等に含まれる不純物が液晶中へ溶出し、可動イオンとして振る舞うため、電圧保持率の低下を引き起こすと考えられる。ここで、実施例5で用いた光配向膜材料のように、光官能基及び側鎖を有さないポリアミック酸が含有されている場合は、光配向膜の表面に-NH基、及び、-COOH基が存在すると考えられる。-NH基、及び、-COOH基は、上述したような不純物(可動イオン)の吸着サイトとなり得るため、その可動イオンは固定され、その結果、電圧保持率の低下を充分に防止することができると考えられる。よって、実施例5に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができる。
[実施例6]
実施例6は、実施例5において負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合である。実施例6に係る液晶表示装置の製造方法は、液晶分子の誘電率異方性が異なること以外、実施例5のそれと同様であるため、重複する点については説明を省略する。
[比較例4]
比較例4は、分解型の光配向膜を用いて、光照射工程を本加熱工程の後に行った場合である。比較例4に係る液晶表示装置の製造方法について、以下に順次説明する。
(光配向膜材料)
固形分として、シクロブタン骨格を有するポリアミド酸高分子を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。ここで、比較例4で用いられた光配向膜は、中心波長254nm付近で高分子鎖の光分解を生じるものである。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を90℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(本加熱工程)
2枚の基板上の予備加熱工程後の膜に対して、本加熱を230℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(光照射工程)
2枚の基板上の本加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長254nm付近で1J/cmとした。
その後、光照射工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、比較例4に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[評価結果:実施例6、及び、比較例4]
実施例6、及び、比較例4に係る液晶表示装置の製造方法により製造された液晶表示装置について、コントラスト、焼き付き特性、及び、電圧保持率を評価した。ここで、コントラストが500以上、焼き付き特性(焼き付き率)が5%以内、電圧保持率が97%以上である場合を製品に適したレベルであると判断した。なお、コントラストは実施例2-1~2-6と同様な方法で測定し、焼き付き特性は実施例4と同様な方法で評価し、電圧保持率は実施例1と同様な方法で測定した。
(コントラストの測定結果)
実施例6、及び、比較例4におけるコントラストは、ともに1200程度で同等であり、製品に適したレベルであった。
(焼き付き特性の評価結果)
実施例6、及び、比較例4における焼き付き率は、ともに3%程度で同等であり、製品に適したレベルであった。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例6、及び、比較例4における電圧保持率は、ともに98%以上で同等であり、製品に適したレベルであった。
しかしながら、60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、比較例4では微小な輝点が画素内に発生し、その結果、表示不良が発生した。
これは、比較例4において、高分子鎖の光分解を配向異方性形成のための主たるメカニズムとしているためである。比較例4においては、偏光紫外線の照射によって低分子量の分解物が生成され、初期は光配向膜の表面に付着しているが、長期試験においてその分解物が液晶中に溶出した後に凝集することで輝点になったと考えられる。よって、実施例6に係る液晶表示装置の製造方法のように、光分解ではなく、光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応を配向異方性形成のための主たるメカニズムとする光配向膜を用いることで、表示品位を充分に向上することができる。
また、比較例4において発生したような輝点は、負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合の方が、正の誘電率異方性を有する液晶分子を含む液晶材を用いた場合と比べて、顕著に発生する傾向があった。負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合は、透過率及び視野角特性をより向上することができる。よって、上記本発明の一態様に係る液晶表示装置の製造方法において、負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合は、本発明の一態様による効果を奏するとともに、透過率及び視野角特性をより向上することができる。
[実施例7-1]
実施例7-1は、上記工程(4)で異なる温度での2回の本加熱を行った場合である。実施例7-1に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、光反応性を有するアゾベンゼン構造を含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を60℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長365nm付近で1J/cmとした。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を110℃で10分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の本加熱工程)
2枚の基板上の第1の本加熱工程後の膜に対して、本加熱を200℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、第2の本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例7-1に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[実施例7-2]
実施例7-2は、実施例7-1において予備加熱の温度を70℃とした場合である。実施例7-2に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。
[実施例7-3]
実施例7-3は、実施例7-1において予備加熱の温度を80℃とした場合である。実施例7-3に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を80℃で150秒間行った。
[実施例7-4]
実施例7-4は、実施例7-1において予備加熱の温度を90℃とした場合である。実施例7-4に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を90℃で150秒間行った。
[実施例7-5]
実施例7-5は、実施例7-1において予備加熱の温度を100℃とした場合である。実施例7-5に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を100℃で150秒間行った。
[実施例7-6]
実施例7-6は、実施例7-1において予備加熱の温度を110℃とした場合である。実施例7-6に係る液晶表示装置の製造方法は、予備加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を110℃で150秒間行った。
[評価結果:実施例7-1~7-6]
実施例7-1~7-6に係る液晶表示装置の製造方法により製造された液晶表示装置について、予備加熱の温度、及び、表示品位の評価結果を表3にまとめた。
(表示品位の評価方法)
実施例2-1~2-6と同様な方法で表示品位を評価し、レベル1:コントラストが1200以上、レベル2:コントラストが1000以上、1200未満、レベル3:コントラストが500以上、1000未満、レベル4:コントラストが500未満又は配向不良が視認される、の4段階で評価した。ここで、評価結果がレベル1~3である場合を製品に適したレベルであると判断し、評価結果がレベル4である場合を製品に適したレベルに達していないと判断した。
Figure JPOXMLDOC01-appb-T000004
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例7-1)
表示品位の評価結果はレベル1であり、実施例7-3~7-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例7-2)
表示品位の評価結果はレベル1であり、実施例7-3~7-6のそれと比べて非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例7-3)
表示品位の評価結果はレベル2であり、実施例7-5、及び、実施例7-6のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-3に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例7-4)
表示品位の評価結果はレベル2であり、実施例7-5、及び、実施例7-6のそれと比べて良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-4に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例7-5)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-5に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例7-6)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例7-6に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例7-1、及び、実施例7-2の表示品位が、実施例7-3~7-6のそれと比べて非常に良好であった理由について説明する。これは、実施例7-1、及び、実施例7-2における予備加熱の温度が、実施例7-3~7-6におけるそれと比べて低く、その結果、溶媒の残存量が相対的に多くなったことによって、本加熱に伴う高分子の分子運動が相対的に活発になり、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、自己組織化を進行させるためには、本加熱を行う前の状態で溶媒がある程度残存していた方が有利であり、予備加熱の温度が高過ぎると自己組織化を阻害することがあると考えられる。予備加熱は、光配向膜材料による膜の液体流動性が無くなるように行われればよく、本発明の一態様による効果を奏するように、予備加熱の温度を低くすることが好ましい。また、実施例7-3、及び、実施例7-4の表示品位が、実施例7-5、及び、実施例7-6のそれと比べて良好であった理由についても、上述した理由と同様である。以上より、予備加熱の温度は90℃以下であることが好ましく、70℃以下であることがより好ましいことが分かった。ここで、予備加熱の温度が40℃未満である場合は、溶媒の揮発に時間を要するため、溶液の対流に伴う膜厚むらが顕著に発生し、その結果、液晶表示装置の点灯時に配向むらが視認される可能性がある。よって、予備加熱の温度は、40℃以上、70℃以下であることが更に好ましい。
[実施例8-1]
実施例8-1は、実施例7-1において1回目の本加熱の温度を70℃とした場合である。実施例8-1に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を70℃で10分間行った。
[実施例8-2]
実施例8-2は、実施例8-1において1回目の本加熱の温度を80℃とした場合である。実施例8-2に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を80℃で10分間行った。
[実施例8-3]
実施例8-3は、実施例8-1において1回目の本加熱の温度を90℃とした場合である。実施例8-3に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を90℃で10分間行った。
[実施例8-4]
実施例8-4は、実施例8-1において1回目の本加熱の温度を100℃とした場合である。実施例8-4に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を100℃で10分間行った。
[実施例8-5]
実施例8-5は、実施例8-1において1回目の本加熱の温度を110℃とした場合であり、実施例7-1と同様である。実施例8-5に係る液晶表示装置の製造方法は、実施例7-1のそれと同様であるため、重複する点については説明を省略する。
[実施例8-6]
実施例8-6は、実施例8-1において1回目の本加熱の温度を120℃とした場合である。実施例8-6に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を120℃で10分間行った。
[実施例8-7]
実施例8-7は、実施例8-1において1回目の本加熱の温度を130℃とした場合である。実施例8-7に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を130℃で10分間行った。
[実施例8-8]
実施例8-8は、実施例8-1において1回目の本加熱の温度を140℃とした場合である。実施例8-8に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を140℃で10分間行った。
[実施例8-9]
実施例8-9は、実施例8-1において1回目の本加熱の温度を150℃とした場合である。実施例8-9に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を150℃で10分間行った。
[実施例8-10]
実施例8-10は、実施例8-1において1回目の本加熱の温度を160℃とした場合である。実施例8-10に係る液晶表示装置の製造方法は、第1の本加熱工程以外、実施例8-1のそれと同様であるため、重複する点については説明を省略する。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を160℃で10分間行った。
[評価結果:実施例8-1~8-10]
実施例8-1~8-10に係る液晶表示装置の製造方法により製造された液晶表示装置について、1回目の本加熱の温度、及び、表示品位の評価結果を表4にまとめた。
(表示品位の評価方法)
実施例2-1~2-6と同様な方法で表示品位を評価し、レベル1:コントラストが1200以上、レベル2:コントラストが500以上、1200未満、レベル3:コントラストが500未満又は配向不良が視認される、の3段階で評価した。ここで、評価結果がレベル1又は2である場合を製品に適したレベルであると判断し、評価結果がレベル3である場合を製品に適したレベルに達していないと判断した。
Figure JPOXMLDOC01-appb-T000005
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例8-1)
表示品位の評価結果はレベル2であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-2)
表示品位の評価結果はレベル2であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-3)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-3に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-4)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-4に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-5)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-5に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-6)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-6に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-7)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-7に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-8)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-8に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-9)
表示品位の評価結果はレベル2であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-9に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例8-10)
表示品位の評価結果はレベル2であり、良好であった。これは、自己組織化による高分子の配向秩序が充分に向上したためであると考えられる。よって、実施例8-10に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例8-3~8-8の表示品位が、他の実施例のそれと比べて非常に良好であった理由について説明する。上述したように、自己組織化による高分子の配向秩序を向上させるためには、高分子の分子運動が容易(活発)であることが重要である。ここで、自己組織化の際の温度(例えば、1回目の本加熱の温度)が低過ぎると、高分子の分子運動は相対的に活発にならないと考えられる。また、自己組織化の際の温度が高過ぎると、自己組織化による異方性の形成が生じるとともに、高分子の熱化学反応、及び、残存した溶媒の揮発も同時に生じることになり、自己組織化が充分に進行しない。よって、実施例8-3~8-8の1回目の本加熱の温度(90~140℃程度)は、自己組織化が支配的に生じる温度であると考えられ、これにより、実施例8-3~8-8の表示品位が、他の実施例のそれと比べて非常に良好であった。
以上より、1回目の本加熱の温度は、90℃以上、140℃以下であることが好ましいことが分かった。ここで、1回目の本加熱の温度が90℃未満である場合は、高分子の分子運動が活発にならない可能性がある。1回目の本加熱の温度が140℃を超える場合は、高分子の熱化学反応、及び、残存した溶媒の揮発が顕著に開始する可能性があり、自己組織化を阻害する可能性がある。また、1回目の本加熱は10分間行うものとしたが、この本加熱は自己組織化を進行させる工程であることから、これ以上の時間で行っても同様の効果が得られるのは明らかである。1回目の本加熱の時間は、1分以上であることが好ましく、10分以上であることが更に好ましい。1回目の本加熱の時間が1分未満である場合は、自己組織化が充分に進行しない可能性がある。
[評価結果:実施例7-1~7-6、実施例8-1~8-10、及び、実施例5]
実施例7-1~7-6、実施例8-1~8-10、及び、実施例5に係る液晶表示装置の製造方法により製造された液晶表示装置に対して60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例7-1~7-6、及び、実施例8-1~8-10の電圧保持率は98%以上であり、実施例5の95~97%程度と比べて高かった。電圧保持率の低下は、液晶表示装置における表示むらを引き起こすことがあるため、実施例7-1~7-6、及び、実施例8-1~8-10に係る液晶表示装置の製造方法によれば、実施例5に係る液晶表示装置の製造方法と比べて、電圧保持率をより向上することができ、その結果、表示品位をより向上することができる。
これは、第2の本加熱工程のような追加の本加熱を行うことによって、残存した溶媒を揮発させることで、溶媒の残存量を充分に低減することができたためであると考えられる。実施例5においては、追加の本加熱を行っていないため、溶媒が多く残存していると考えられ、液晶表示装置を長期間使用する過程において、これが液晶中へ溶出し、不純物として振る舞うため、電圧保持率の低下を引き起こすと考えられる。よって、実施例7-1~7-6、及び、実施例8-1~8-10に係る液晶表示装置の製造方法によれば、実施例5に係る液晶表示装置の製造方法と比べて、電圧保持率をより向上することができる。
ここで、実施例7-1~7-6、及び、実施例8-1~8-10において、光照射工程後に第2の本加熱工程を行う、つまり、予備加熱工程後の膜に対して、偏光紫外線の照射後直ちに200℃で本加熱した場合は、自己組織化による異方性の形成が生じるとともに、ポリアミック酸の熱化学反応(熱イミド化)、及び、残存した溶媒の揮発も同時に生じることになる。しかしながら、熱化学反応が充分に進行した高分子鎖は、ポリアミック酸と比べて剛直性を有するために熱運動性が低く、自己組織化を阻害する可能性がある。また、上述したように、本加熱を行う前の状態で溶媒がある程度残存していた方が高分子の分子運動をより容易にさせ、自己組織化は進行しやすくなる。以上より、自己組織化による高分子の配向秩序を充分に向上させ、表示品位を充分に向上させるためには、まず、自己組織化が支配的に生じる温度で本加熱を行い、自己組織化が充分に進行した後に、残存した溶媒の揮発を生じさせることが好ましい。
また、実施例7-1~7-6、及び、実施例8-1~8-10においては、異なる温度に設定された2台のホットプレートを用いて本加熱を行ったが、1台のホットプレートを用いて、第1の本加熱工程後に第2の本加熱工程の温度まで変化させて第2の本加熱工程を行うこともできる。この場合、第1の本加熱工程の温度と第2の本加熱工程の温度との間の温度でも実質的に本加熱が行われることになるが、表示品位を充分に向上することができる。これは、ホットプレートの昇温過程において、自己組織化、及び、残存した溶媒の揮発が同時に進行したためであると考えられる。また、2台のホットプレートを用いた場合は、加熱装置の設置面積は増えてしまうが、1台のホットプレートを用いた場合のように、第2の本加熱工程後にホットプレートの温度を第1の本加熱工程の温度まで下げる時間を要しないため、製造効率をより向上することができる。なお、2台のホットプレートを用いた場合は、ホットプレート間で基板を搬送する際に基板温度が一瞬低下することがあるが、これは本発明の課題の解決に対して問題を与えるものではない。1台のホットプレートを用いた場合は、加熱装置の設置面積をより縮小することができ、装置レイアウトの自由度を向上することができる。
[実施例9-1]
実施例9-1は、上記工程(4)で異なる温度での2回の本加熱を行い、1回目の本加熱(第1の本加熱工程)と2回目の本加熱(第2の本加熱工程)との間で、更に、1回目の本加熱が行われた上記膜に対して光照射(第2の光照射工程)を行った場合である。実施例9-1に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(第1の光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長313nm付近で5mJ/cmとした。
(第1の本加熱工程)
2枚の基板上の第1の光照射工程後の膜に対して、本加熱を140℃で10分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の光照射工程)
2枚の基板上の第1の本加熱工程後の膜に対して、紫外線を照射した。紫外線の照射量は、中心波長313nm付近で1J/cmとした。
(第2の本加熱工程)
2枚の基板上の第2の光照射工程後の膜に対して、本加熱を180℃で5分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、第2の本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例9-1に係る液晶表示装置が得られた。液晶材としては、正の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[実施例9-2]
実施例9-2は、実施例9-1において第2の光照射工程を行わなかった場合である。実施例9-2に係る液晶表示装置の製造方法は、第2の光照射工程が存在しないこと以外、実施例9-1のそれと同様であるため、重複する点については説明を省略する。
[評価結果:実施例9-1、及び、実施例9-2]
実施例9-1、及び、実施例9-2に係る液晶表示装置の製造方法により製造された液晶表示装置に対して60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、両者とも、電圧保持率は97%以上であった。また、実施例9-1、及び、実施例9-2に係る液晶表示装置の製造方法により製造された液晶表示装置について、表示品位の評価結果を表5にまとめた。
(表示品位の評価方法)
実施例2-1~2-6と同様な方法で表示品位を評価し、レベル1:コントラストが1200以上、レベル2:コントラストが1000以上、1200未満、レベル3:コントラストが500以上、1000未満、レベル4:コントラストが500未満又は配向不良が視認される、の4段階で評価した。ここで、評価結果がレベル1~3である場合を製品に適したレベルであると判断し、評価結果がレベル4である場合を製品に適したレベルに達していないと判断した。
Figure JPOXMLDOC01-appb-T000006
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例9-1)
表示品位の評価結果はレベル1であり、非常に良好であった。これは、自己組織化が充分に進行した後に、残存した溶媒の揮発が充分に進行し、自己組織化により向上した高分子の配向秩序が充分に固定化されたためであると考えられる。よって、実施例9-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例9-2)
表示品位の評価結果はレベル3であり、良好であった。これは、自己組織化が充分に進行した後に、残存した溶媒の揮発が充分に進行し、自己組織化により向上した高分子の配向秩序が充分に固定化されたためであると考えられる。よって、実施例9-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例9-1の表示品位が、実施例9-2のそれと比べて良好であった理由について説明する。実施例9-1においては、第2の光照射工程を行うことでシンナメート基の二量化が更に進み、その後、第2の本加熱工程を行うことで高分子の配向秩序が充分に固定化されると考えられる。一方、実施例9-2においては、第2の光照射工程が存在しないため、実施例9-1と比べて、高分子の配向秩序が相対的に向上していないと考えられる。よって、実施例9-1の表示品位が、実施例9-2のそれと比べて良好であった。
[実施例10-1]
実施例10-1は、実施例1において、2枚の基板のうちの一方を、薄膜トランジスタ素子を備える薄膜トランジスタアレイ基板とし、他方をカラーフィルタ基板とした場合である。ここで、薄膜トランジスタ素子が有する半導体層としては、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び、酸素(O)から構成される酸化物半導体(In-Ga-Zn-O)を用いた。実施例10-1に係る液晶表示装置の製造方法は、液晶表示装置の構成以外、実施例1のそれと同様であるため、重複する点については説明を省略する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。薄膜トランジスタ素子が有する半導体層としては、酸化物半導体(In-Ga-Zn-O)を用いた。画面サイズは10インチ(2048×1560画素)である。
[実施例10-2]
実施例10-2は、実施例1において、2枚の基板のうちの一方を、薄膜トランジスタ素子を備える薄膜トランジスタアレイ基板とし、他方をカラーフィルタ基板とした場合である。ここで、薄膜トランジスタ素子が有する半導体層としては、アモルファスシリコンを用いた。実施例10-2に係る液晶表示装置の製造方法は、液晶表示装置の構成以外、実施例1のそれと同様であるため、重複する点については説明を省略する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。薄膜トランジスタ素子が有する半導体層としては、アモルファスシリコンを用いた。画面サイズは10インチ(2048×1560画素)である。
[評価結果:実施例10-1、及び、実施例10-2]
実施例10-1、及び、実施例10-2に係る液晶表示装置の製造方法により製造された液晶表示装置について、焼き付き特性、及び、電圧保持率特性を、表示品位で評価した。焼き付き特性については、白(255階調)及び黒(0階調)のチェッカーパターンを表示させ、1時間後に32階調で全面点灯させた状態で焼き付きレベルを評価した。電圧保持率特性については、白及び黒のチェッカーパターンを表示させ、500時間後に32階調で全面点灯させた状態で、しみやむらのレベルを評価した。
(表示品位の評価方法)
暗室にて液晶表示装置を点灯させて、裸眼及びニュートラルデンシティ(ND)フィルター越しにて表示品位を視認評価し、レベルA:配向むらが裸眼で視認されない、レベルB:配向むらがNDフィルター50%越しで視認されない、レベルC:配向むらがNDフィルター20%越しで視認されない、レベルD:配向むらがNDフィルター20%越しで視認される、の4段階で評価した。ここで、評価結果がレベルA、B又はCである場合を製品に適したレベルであると判断し、評価結果がレベルDである場合を製品に適したレベルに達していないと判断した。
(焼き付き特性の評価結果)
実施例10-1、及び、実施例10-2における焼き付き特性は、ともにレベルBであった。
(電圧保持率特性の評価結果)
実施例10-1、及び、実施例10-2における電圧保持率特性は、ともにレベルBであった。
しかしながら、実施例10-1における液晶表示パネルの開口率は50%であり、実施例10-2の40%と比べて高かった。その結果、実施例10-1のコントラスト及び透過率は、実施例10-2のそれらと比べて、ともに20%向上した。よって、実施例10-1に係る液晶表示装置の製造方法によれば、実施例10-2に係る液晶表示装置の製造方法と比べて、表示品位をより向上することができる。
実施例10-1の開口率が、実施例10-2のそれと比べて高くなった理由について説明する。酸化物半導体は、アモルファスシリコンよりも移動度が高いという特徴を有している。このため、酸化物半導体を含む薄膜トランジスタ素子は、アモルファスシリコンを含む薄膜トランジスタ素子と比べて、1画素に占める割合を小さくすることができる。よって、実施例10-1に係る液晶表示装置の製造方法によれば、実施例10-2に係る液晶表示装置の製造方法と比べて、開口率をより向上することができ、その結果、表示品位をより向上することができる。
[実施例11-1]
実施例11-1は、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合であり、実施例1と同様である。実施例11-1に係る液晶表示装置の製造方法は、実施例1のそれと同様であるため、重複する点については説明を省略する。
[実施例11-2]
実施例11-2は、実施例11-1において、光配向膜材料が含有する溶媒として、N-エチル-ピロリドン(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-2に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-エチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-3]
実施例11-3は、実施例11-1において、光配向膜材料が含有する溶媒として、γブチルラクトン(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-3に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、γブチルラクトン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-4]
実施例11-4は、実施例11-1において、光配向膜材料が含有する溶媒として、アセトン(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-4に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、アセトン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-5]
実施例11-5は、実施例11-1において、光配向膜材料が含有する溶媒として、クロロホルム(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-5に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、クロロホルム、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-6]
実施例11-6は、実施例11-1において、光配向膜材料が含有する溶媒として、シクロペンタノン(良溶媒)、及び、ブチルセロソルブ(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-6に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、シクロペンタノン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-7]
実施例11-7は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、ジエチレングリコールジエチルエーテル(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-7に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ジエチレングリコールジエチルエーテルを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-8]
実施例11-8は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、ジイソブチルケトン(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-8に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ジイソブチルケトンを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-9]
実施例11-9は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、プロピレングリコールモノブチルエーテル(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-9に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、プロピレングリコールモノブチルエーテルを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-10]
実施例11-10は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、ジアセトンアルコール(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-10に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ジアセトンアルコールを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-11]
実施例11-11は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、ヘキサン(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-11に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ヘキサンを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-12]
実施例11-12は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、メタノール(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-12に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、メタノールを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-13]
実施例11-13は、実施例11-1において、光配向膜材料が含有する溶媒として、N-メチル-ピロリドン(良溶媒)、及び、イソプロピルアルコール(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-13に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、イソプロピルアルコールを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-14]
実施例11-14は、実施例11-1において、光配向膜材料が含有する溶媒として、アセトン(良溶媒)、及び、ヘキサン(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-14に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、アセトン、及び、ヘキサンを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-15]
実施例11-15は、実施例11-1において、光配向膜材料が含有する溶媒として、クロロホルム(良溶媒)、及び、メタノール(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-15に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、クロロホルム、及び、メタノールを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[実施例11-16]
実施例11-16は、実施例11-1において、光配向膜材料が含有する溶媒として、シクロペンタノン(良溶媒)、及び、イソプロピルアルコール(貧溶媒)を重量比50:50で混合したものを用いた場合である。実施例11-16に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例11-1のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、シクロペンタノン、及び、イソプロピルアルコールを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[評価結果:実施例11-1~11-16]
実施例11-1~11-16に係る液晶表示装置の製造方法により製造された液晶表示装置について、溶媒成分(良溶媒及び貧溶媒)、及び、表示品位の評価結果を表6にまとめた。
(表示品位の評価方法)
暗室にて液晶表示装置を点灯させて、裸眼及びニュートラルデンシティ(ND)フィルター越しにて表示品位を視認評価し、レベルA:配向むらが裸眼で視認されない、レベルB:配向むらがNDフィルター50%越しで視認されない、レベルC:配向むらがNDフィルター20%越しで視認されない、レベルD:配向むらがNDフィルター20%越しで視認される、の4段階で評価した。ここで、評価結果がレベルA、B又はCである場合を製品に適したレベルであると判断し、評価結果がレベルDである場合を製品に適したレベルに達していないと判断した。
Figure JPOXMLDOC01-appb-T000007
(表示品位の評価結果)
各例の表示品位の評価結果について、以下に説明する。
(実施例11-1)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-1に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-2)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-2に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-3)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-3に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-4)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-4に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-5)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-5に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-6)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-6に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-7)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-7に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-8)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-8に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-9)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-9に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-10)
表示品位の評価結果はレベルAであり、非常に良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-10に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-11)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-11に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-12)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-12に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-13)
表示品位の評価結果はレベルBであり、良好であった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-13に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-14)
表示品位の評価結果はレベルCであった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-14に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-15)
表示品位の評価結果はレベルCであった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-15に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
(実施例11-16)
表示品位の評価結果はレベルCであった。これは、予備加熱工程後の状態で膜厚むらの発生を充分に防止できたためであると考えられる。よって、実施例11-16に係る液晶表示装置の製造方法によれば、表示品位を充分に向上することができる。
実施例11-1~11-3、及び、実施例11-7~11-10の表示品位が、他の実施例のそれと比べて非常に良好であった理由について説明する。光配向膜材料が含有する溶媒としては、表示品位をより向上する観点から、溶解性の高い良溶媒と、表面張力が低く、かつ、塗布性の高い貧溶媒との混合物であることが好ましい。ただし、良溶媒としてアセトン、クロロホルム、及び、シクロペンタノンからなる群より選択される少なくとも1つの化合物を用いて、貧溶媒としてヘキサン、メタノール、及び、イソプロピルアルコールからなる群より選択される少なくとも1つの化合物を用いた場合は、光配向膜材料による膜を基板上に形成する際の広がり具合が相対的に悪化し、その結果、予備加熱工程後の状態で膜厚むらがより顕著に発生し、配向むらが視認されると考えられる。よって、実施例11-1~11-3、及び、実施例11-7~11-10の表示品位が、他の実施例のそれと比べて非常に良好であった。
以上より、光配向膜材料が含有する溶媒としては、良溶媒と貧溶媒との混合物であることが好ましく、良溶媒は、N-メチル-ピロリドン、N-エチル-ピロリドン、及び、γブチルラクトンからなる群より選択される少なくとも1つの化合物であり、貧溶媒は、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジイソブチルケトン及びその構造異性体、プロピレングリコールモノブチルエーテル、並びに、ジアセトンアルコールからなる群より選択される少なくとも1つの化合物であることが好ましいことが分かった。
[比較例5]
比較例5は、分解型の光配向膜、及び、正の誘電率異方性を有する液晶分子を含む液晶材を用いて、光照射工程を本加熱工程の後に行った場合である。比較例5に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、シクロブタン骨格を有するポリアミド酸高分子を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(第1の本加熱工程)
2枚の基板上の予備加熱工程後の膜に対して、本加熱を230℃で60分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(光照射工程)
2枚の基板上の第1の本加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、220~260nmの波長範囲で1J/cmとした。
(第2の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を230℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、第2の本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、比較例5に係る液晶表示装置が得られた。液晶材としては、正の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[比較例6]
比較例6は、比較例5において負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合である。比較例6に係る液晶表示装置の製造方法は、液晶分子の誘電率異方性が異なること以外、比較例5のそれと同様であるため、重複する点については説明を省略する。
[評価結果:比較例5、及び、比較例6]
比較例5、及び、比較例6に係る液晶表示装置の製造方法により製造された液晶表示装置について、コントラスト、焼き付き特性、及び、電圧保持率を評価した。ここで、コントラストが500以上、焼き付き特性(焼き付き率)が5%以内、電圧保持率が97%以上である場合を製品に適したレベルであると判断した。なお、コントラストは実施例2-1~2-6と同様な方法で測定し、焼き付き特性は実施例4と同様な方法で評価し、電圧保持率は実施例1と同様な方法で測定した。
(コントラストの測定結果)
比較例5、及び、比較例6におけるコントラストは、ともに1200程度で同等であり、製品に適したレベルであった。
(焼き付き特性の評価結果)
比較例5、及び、比較例6における焼き付き率は、ともに3%程度で同等であり、製品に適したレベルであった。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、比較例5、及び、比較例6における電圧保持率は、ともに98%以上で同等であり、製品に適したレベルであった。
しかしながら、冷熱サイクル試験において1週間後を確認したところ、比較例6の方が、比較例5と比べて、微小な輝点が画面内により顕著に発生した。ここで、冷熱サイクル試験の条件は、-10℃以上、70℃以下の温度範囲で、1サイクルに要する時間を1時間とした。また、室温で放置して1ヶ月後を確認したところ、比較例6では、比較例5と比べて、微小な輝点が画面内により顕著に発生した。
比較例5、及び、比較例6において、偏光紫外線の照射によって低分子量の分解物が生成され、その分解物が液晶中に溶出した後に凝集することで輝点になったと考えられる。ここで、負の誘電率異方性を有する液晶分子を含む液晶材を用いた場合の方が、正の誘電率異方性を有する液晶分子を含む液晶材を用いた場合と比べて、その分解物の液晶中への溶出具合が大きいため、輝点がより顕著に発生したと考えられる。よって、表示品位を向上する観点からは、負の誘電率異方性を有する液晶分子を含む液晶材を用いる場合の方がより困難であることが分かったが、上述したように(例えば、実施例4等)、上記本発明の一態様に係る液晶表示装置の製造方法によれば、負の誘電率異方性を有する液晶分子を含む液晶材を用いる場合であっても、表示品位を充分に向上することができる。
[比較例7]
比較例7は、実施例1と同じ光配向膜材料を用いて、光照射工程を本加熱工程の後に行った場合である。比較例7に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、メタクリル骨格を有し、光反応性を有するシンナメート基を側鎖に含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を70℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(第1の本加熱工程)
2枚の基板上の予備加熱工程後の膜に対して、本加熱を110℃で20分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第1の光照射工程)
2枚の基板上の第1の本加熱工程後の膜に対して、紫外線を照射した。紫外線の照射量は、中心波長313nm付近で200mJ/cmとした。
(第2の本加熱工程)
2枚の基板上の第1の光照射工程後の膜に対して、本加熱を200℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の光照射工程)
2枚の基板上の第2の本加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、280~330nmの波長範囲で5mJ/cmとした。
その後、第2の光照射工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、比較例7に係る液晶表示装置が得られた。液晶材としては、正の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[比較例8]
比較例8は、実施例5と同じ光配向膜材料を用いて、光照射工程を本加熱工程の後に行った場合である。比較例8に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、光反応性を有するアゾベンゼン構造を含む高分子であり、他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を60℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(第1の本加熱工程)
2枚の基板上の予備加熱工程後の膜に対して、本加熱を110℃で20分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の本加熱工程)
2枚の基板上の第1の本加熱工程後の膜に対して、本加熱を200℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(光照射工程)
2枚の基板上の第2の本加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長365nm付近で3J/cmとした。
その後、光照射工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、比較例8に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[評価結果:比較例7、及び、比較例8]
比較例7、及び、比較例8に係る液晶表示装置の製造方法により製造された液晶表示装置について評価した結果、両者ともコントラストが50以下であり、非常に低かった。これは、本加熱工程にて高分子の熱化学反応が進行した後に光照射工程を行ったことで、高分子の配向秩序が高まらなかったためであると考えられる。よって、上述したように、高分子の配向秩序を充分に向上するためには自己組織化を進行させることが重要であり、光照射工程によって形成される異方性を、本加熱工程前にきっかけとして付与することが重要であることが分かった。
[実施例12]
実施例12は、上記工程(4)で異なる温度での2回の本加熱を行った場合である。実施例12に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、下記化学式(1)で表される酸無水物(TCA)、及び、光反応性を有するフェニルエステル基を含むジアミンを反応させて得られるポリアミック酸である。2種類の高分子のうちの他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。ここで、フェニルエステル基は、光フリース転移が可能な光官能基である。
Figure JPOXMLDOC01-appb-C000008
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を60℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長254nm付近で1J/cmとした。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を120℃で20分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の本加熱工程)
2枚の基板上の第1の本加熱工程後の膜に対して、本加熱を220℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、第2の本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例12に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[比較例9]
比較例9は、実施例12において光官能基及び側鎖を有さないポリアミック酸を含有しない光配向膜材料を用いた場合である。比較例9に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例12のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、上記化学式(1)で表される酸無水物(TCA)、及び、光反応性を有するフェニルエステル基を含むジアミンを反応させて得られるポリアミック酸を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[評価結果:実施例12、及び、比較例9]
実施例12に係る液晶表示装置の製造方法により製造された液晶表示装置について、コントラスト、及び、焼き付き特性を評価した。ここで、コントラストが500以上、焼き付き特性(焼き付き率)が5%以内である場合を製品に適したレベルであると判断した。なお、コントラストは実施例2-1~2-6と同様な方法で測定し、焼き付き特性は実施例4と同様な方法で評価した。
(コントラストの測定結果)
実施例12におけるコントラストは1200であり、製品に適したレベルであった。
(焼き付き特性の評価結果)
実施例12における焼き付き率は3%であり、製品に適したレベルであった。
次に、実施例12、及び、比較例9に係る液晶表示装置の製造方法により製造された液晶表示装置について、電圧保持率を実施例1と同様な方法で測定した。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例12の電圧保持率は97%以上であり、比較例9の95%未満と比べて高かった。電圧保持率の低下は、液晶表示装置における表示むらを引き起こすことがあるため、実施例12に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができ、その結果、表示品位を充分に向上することができる。
[実施例13]
実施例13は、上記工程(4)で異なる温度での2回の本加熱を行った場合である。実施例13に係る液晶表示装置の製造方法について、以下に順次説明する。
(液晶表示装置の構成)
FFSモード用の電極構造を有する液晶表示装置であり、プレチルト角は0°である。
(光配向膜材料)
固形分として、2種類の高分子を重量比50:50で混合したものを用いた。2種類の高分子のうちの一方は、上記化学式(1)で表される酸無水物(TCA)、及び、光反応性を有するフェニルエステル基及びシンナメート基を含むジアミンを反応させて得られるポリアミック酸である。2種類の高分子のうちの他方は、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、及び、ビフェニル構造を含むジアミンを反応させて得られる、光官能基及び側鎖を有さないポリアミック酸である。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。この光配向膜材料は、光二量化、光異性化、及び、光フリース転移が可能な光官能基を含むものである。
(光配向膜材料による膜を形成する工程)
2枚の基板上に、光配向膜材料による膜をスピンコート法により形成した。
(予備加熱工程)
2枚の基板上の光配向膜材料による膜を形成する工程後の膜に対して、予備加熱を60℃で150秒間行った。予備加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。また、予備加熱工程後の光配向膜材料による膜の膜厚は、100nm程度であった。
(光照射工程)
2枚の基板上の予備加熱工程後の膜に対して、偏光紫外線を照射した。偏光紫外線の照射量は、中心波長313nm付近で500mJ/cmとし、更に、中心波長254nm付近で100mJ/cmとした。
(第1の本加熱工程)
2枚の基板上の光照射工程後の膜に対して、本加熱を120℃で20分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
(第2の本加熱工程)
2枚の基板上の第1の本加熱工程後の膜に対して、本加熱を220℃で30分間行った。本加熱は、アズワン社製のホットプレート(商品名:EC-1200N)を用いて行った。
その後、第2の本加熱工程後の2枚の基板を実施例1に係る液晶表示装置の製造方法と同様に貼り合わせて得られたFFSモードの液晶表示パネルに、偏光板、バックライト等の部材を適宜配置させることによって、実施例13に係る液晶表示装置が得られた。液晶材としては、負の誘電率異方性を有する液晶分子を含むものを用いて、液晶層の厚みは3.5μmとした。
[比較例10]
比較例10は、実施例13において光官能基及び側鎖を有さないポリアミック酸を含有しない光配向膜材料を用いた場合である。比較例10に係る液晶表示装置の製造方法は、光配向膜材料以外、実施例13のそれと同様であるため、重複する点については説明を省略する。
(光配向膜材料)
固形分として、上記化学式(1)で表される酸無水物(TCA)、及び、光反応性を有するフェニルエステル基及びシンナメート基を含むジアミンを反応させて得られるポリアミック酸を用いた。溶媒として、N-メチル-ピロリドン、及び、ブチルセロソルブを重量比50:50で混合したものを用いた。また、固形分濃度は4重量%とした。
[評価結果:実施例13、及び、比較例10]
実施例13に係る液晶表示装置の製造方法により製造された液晶表示装置について、コントラスト、及び、焼き付き特性を評価した。ここで、コントラストが500以上、焼き付き特性(焼き付き率)が5%以内である場合を製品に適したレベルであると判断した。なお、コントラストは実施例2-1~2-6と同様な方法で測定し、焼き付き特性は実施例4と同様な方法で評価した。
(コントラストの測定結果)
実施例13におけるコントラストは1200であり、製品に適したレベルであった。
(焼き付き特性の評価結果)
実施例13における焼き付き率は3%であり、製品に適したレベルであった。
次に、実施例13、及び、比較例10に係る液晶表示装置の製造方法により製造された液晶表示装置について、電圧保持率を実施例1と同様な方法で測定した。
(電圧保持率の測定結果)
60℃の環境下で5Vの電圧を印加し続け、500時間後を確認したところ、実施例13の電圧保持率は97%以上であり、比較例10の95%未満と比べて高かった。電圧保持率の低下は、液晶表示装置における表示むらを引き起こすことがあるため、実施例13に係る液晶表示装置の製造方法によれば、電圧保持率を充分に向上することができ、その結果、表示品位を充分に向上することができる。
上述した各実施例は、FFSモードの液晶表示装置の製造方法についての場合であるが、IPSモードの液晶表示装置の製造方法についての場合であっても、本発明の一態様による効果を奏することは明らかである。
(その他の好適な実施例)
比較例2、4等の分解型の光配向膜を用いる場合であっても、上述した他の実施例と同様に、光照射工程を本加熱工程の前に行って自己組織化を進行させる場合は、偏光紫外線の照射量を大幅に下げられる可能性があり、上述した微小な輝点の発生や、電気特性の低下を防止できる可能性がある。
[付記]
以下に、上記本発明の一態様に係る液晶表示装置の製造方法における好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
上記工程(4)の本加熱は、90℃以上の温度で行われるものであってもよい。これにより、本加熱に伴う高分子の分子運動がより容易になり、自己組織化による高分子の配向秩序をより向上することができる。本加熱の温度が90℃未満である場合は、本加熱に伴う高分子の分子運動が活発にならない可能性がある。また、「90℃以上の温度で本加熱を行う」とは、例えば、温度が90℃以上の定温期間を有するように本加熱を行うことである。90℃以上の定温期間は、例えば、±5℃の温度範囲内で1分以上保たれた加熱状態の期間を意味するものであってもよい。
また、コントラストをより向上する観点から、上記工程(4)の本加熱の温度は、140℃以上であることがより好ましい。これにより、本加熱に伴う高分子の分子運動がより活発になり、自己組織化による高分子の配向秩序をより向上することができる。本加熱の温度が140℃未満である場合は、本加熱に伴う高分子の分子運動が活発にならず、自己組織化による高分子の配向秩序が充分に向上しない可能性がある。また、本加熱の温度が250℃を超える場合は、カラーフィルタ層の退色等が発生し、液晶表示装置の表示品位が低下する可能性がある。以上より、上記工程(4)の本加熱の温度は、140℃以上、250℃以下であることが更に好ましい。
上記工程(2)の予備加熱は、90℃以下の温度で行われるものであってもよく、70℃以下の温度で行われるものであることがより好ましい。これにより、以降の本加熱に伴う高分子の分子運動がより活発になり、自己組織化による高分子の配向秩序をより向上することができる。予備加熱の温度が90℃を超える場合は、上記溶媒の残存量が少なくなってしまうことによって、本加熱に伴う高分子の分子運動が活発にならず、自己組織化による高分子の配向秩序を充分に向上することができない可能性がある。「90℃以下の温度で予備加熱を行う」とは、例えば、温度が90℃以下の定温期間を有するように予備加熱を行うことである。90℃以下の定温期間は、例えば、±5℃の温度範囲内で30秒以上保たれた加熱状態の期間を意味するものであってもよい。
上記工程(2)の予備加熱の温度は、40℃以上、70℃以下であることが更に好ましい。これにより、以降の本加熱に伴う高分子の分子運動がより活発になり、自己組織化による高分子の配向秩序をより向上することができる。予備加熱の温度が40℃未満である場合は、上記溶媒の揮発に時間を要するため、溶液の対流に伴う膜厚むらが顕著に発生し、その結果、液晶表示装置の点灯時に配向むらが視認される可能性がある。予備加熱の温度が70℃を超える場合は、上記溶媒の残存量が少なくなってしまうことによって、本加熱に伴う高分子の分子運動が活発にならず、自己組織化による高分子の配向秩序を充分に向上することができない可能性がある。
また、上記溶媒の揮発を効率的に行う観点から、上記工程(2)の予備加熱の温度は、50℃以上、70℃以下であることが特に好ましい。
上記液晶表示装置は、上記光配向膜により負の誘電率異方性を有する液晶分子を配向させるものであってもよい。これにより、透過率及び視野角特性をより向上することができる。
上記工程(4)の本加熱は、低温から高温へ異なる温度の定温期間を複数有するように行う操作を含むものであってもよい。これにより、本加熱を異なる複数の温度で段階的に行うことができ、表示品位を充分に向上することができる。ここで、定温期間は、例えば、±5℃の温度範囲内で1分以上保たれた加熱状態の期間を意味するものであってもよい。
上記工程(4)の本加熱は、異なる温度での2回の本加熱を行い、1回目の本加熱は90℃以上、140℃以下の温度で行われ、2回目の本加熱は180℃以上の温度で行われるものであってもよい。これにより、高分子の分子運動がより活発になり、自己組織化による高分子の配向秩序を充分に向上することができる。1回目の本加熱の温度が140℃を超える場合は、高分子の熱化学反応、及び、残存した溶媒の揮発が顕著に開始する可能性があり、自己組織化を阻害する可能性がある。また、自己組織化を顕著に進行させる観点から、1回目の本加熱の温度は110℃以上、120℃未満であることが更に好ましい。
2回目の本加熱の温度が180℃未満である場合は、溶媒の残存量を充分に低減することができず、表示品位が悪化する可能性がある。また、表示品位をより向上する観点から、2回目の本加熱の温度は180℃以上、250℃以下であることがより好ましい。2回目の本加熱の温度が250℃を超える場合は、カラーフィルタ層の退色等が発生し、液晶表示装置の表示品位が低下する可能性がある。また、高分子の熱化学反応を充分に進行させる観点から、2回目の本加熱の温度は200℃以上、250℃以下であることが更に好ましい。
上記工程(4)の本加熱は、異なる温度に設定された複数の加熱装置を用いて行われるものであってもよい。これにより、偏光照射された上記膜を、低温から高温へ異なる温度の定温期間を複数有するように本加熱する操作を好適に行うことができる。また、1台の加熱装置を用いる場合と比べて、製造効率をより向上することができる。
上記工程(4)の本加熱は、1台の加熱装置を用いて異なる温度に順次変化させながら行うものであってもよい。これにより、偏光照射された上記膜を、低温から高温へ異なる温度の定温期間を複数有するように本加熱する操作を好適に行うことができる。また、複数の加熱装置を用いる場合と比べて、加熱装置の設置面積をより縮小することができ、装置レイアウトの自由度を向上することができる。
上記工程(4)の本加熱は、温度勾配のある領域を有する加熱装置を用いて上記加熱装置内で上記基板を移動させながら行うものであってもよい。これにより、偏光照射された上記膜を、低温から高温へ異なる温度の定温期間を複数有するように本加熱する操作を好適に行うことができる。
上記光官能基は、シンナメート基、カルコン基、クマリン基、スチルベン基、フェニルエステル基、及び、アゾベンゼン基からなる群より選択される少なくとも1つの官能基であってもよい。
上記光官能基を有する高分子の骨格は、ポリアミック酸、ポリイミド、アクリル、メタクリル、マレイミド、及び、ポリシロキサンからなる群より選択される少なくとも1つの構造を有するものであってもよい。
ここで、ポリアミック酸の一部を熱化学反応(熱イミド化)させてもよく、これにより、光配向膜の比抵抗や誘電率等の電気特性の調整を行うことができる。また、アクリル、又は、メタクリルとマレイミドとを組み合わせる骨格、つまり、コポリマー構造を採用することにより、光反応性を有さない別の構造を光配向膜材料に導入することができる。また、ポリアミック酸、又は、ポリイミドを形成するジアミンに光官能基を導入することが考えられるが、光反応性を有さない別のジアミンをコポリマー構造とすることによって、適宜導入することもできる。上述したようなコポリマー構造を採用することは、光反応性の感度、電気特性、及び、配向特性をバランスよく調整するために有効な手法である。
エポキシ、カルボン酸、アミン、アクリレート、又は、メタクリレート等の官能基を複数有するモノマーを上記光配向膜材料に予め添加しておいてもよい。これにより、長期信頼性を向上することができる。このモノマーは、上記光配向膜材料が含有する高分子に対して架橋剤として機能し、光配向膜中に網目構造を形成する。これにより、光配向膜中や基板(例えば、カラーフィルタ基板)等に含まれていた不純物が液晶中に溶出することを抑制し、液晶表示装置を長期間使用する過程において、電圧保持率の低下を充分に抑制することができる。
上記光官能基は、少なくとも光二量化が可能であり、上記工程(4)は、異なる温度での2回の本加熱を行い、1回目の本加熱と2回目の本加熱との間に、更に、1回目の本加熱が行われた上記膜に対して光照射を行う工程(4a)を含むものであってもよい。これにより、光二量化が可能な光官能基を有する高分子を含有する光配向膜材料を用いた場合に、表示品位を好適に向上することができる。
自己組織化能力を向上させるためには、上記光配向膜材料に含有される高分子材料が、主鎖又は側鎖に下記化学式(2)~(4)で表される構造を含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000009
上記化学式(2)~(4)において、Xは存在しない、O、COO、OCO、CO、又は、C≡Cである。各化学式中のベンゼン環、及び、シクロヘキサンの任意の水素原子は独立して、フッ素原子(F)又は塩素原子(Cl)に置換されてもよい。また、各化学式中のベンゼン環、及び、シクロヘキサンは、それらの任意の炭素原子(C)が酸素原子(O)、窒素原子(N)、又は、硫黄原子(S)に置換されている複素環であってもよい。
上記化学式(2)~(4)で表される構造は、液晶性分子のコア構造に類似しているため、液晶性に類似する分子間相互作用が働き、自己組織化を活発化させることができる。特に、フェニルエステル構造が含まれる場合は、光フリース転移が生じる部位と重ね合わせることができる。一方、シンナメート基、カルコン基、クマリン基、スチルベン基のような光感応部位と、これらの構造を一部重ね合わせて分子設計することもできる。
自己組織化能力を向上させるためには、上記光配向膜材料に含有される高分子材料が、主鎖又は側鎖にカルボキシル基及び/又はアミド基を有していることが好ましい。この場合、C=OとO-Hとの間や、N-HとC=Oとの間に働く水素結合により、自己組織化を活発化させることができる。特に、ポリアミック酸やポリイミドを形成する部分とは別に、更にカルボキシル基及び/又はアミド基を、主鎖又は側鎖に導入することで自己組織化能力を向上させることができる。
また、上記ポリアミック酸骨格を有し、上記光官能基を有さない高分子にも、上述したような自己組織化を活発化させる構造を含んでいることが好ましい。
上記溶媒は、N-メチル-ピロリドン、N-エチル-ピロリドン、及び、γブチルラクトンからなる群より選択される少なくとも1つの化合物と、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジイソブチルケトン及びその構造異性体、プロピレングリコールモノブチルエーテル、並びに、ジアセトンアルコールからなる群より選択される少なくとも1つの化合物との混合物であるものであってもよい。
上記基板は、薄膜トランジスタ素子を備える薄膜トランジスタアレイ基板を含み、上記薄膜トランジスタ素子は、酸化物半導体を含む半導体層を有するものであってもよい。
酸化物半導体は、アモルファスシリコンよりも移動度が高く、特性ばらつきも小さいという特徴を有している。このため、酸化物半導体を含む薄膜トランジスタ素子は、アモルファスシリコンを含む薄膜トランジスタ素子よりも高速で駆動することができ、駆動周波数が高く、1画素に占める割合を小さくすることができるため、より高精細である次世代表示装置の駆動に好適である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できるという利点を有している。よって、上記基板が薄膜トランジスタ素子を備える薄膜トランジスタアレイ基板を含み、薄膜トランジスタ素子が酸化物半導体を含む半導体層を有する場合、本発明の一態様による効果を奏するとともに、高速駆動化を実現することができる液晶表示装置を製造することができる。
また、酸化物半導体の構成としては、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び、酸素(O)から構成される化合物(In-Ga-Zn-O)、インジウム(In)、スズ(Tin)、亜鉛(Zn)、及び、酸素(O)から構成される化合物(In-Tin-Zn-O)、又は、インジウム(In)、アルミニウム(Al)、亜鉛(Zn)、及び、酸素(O)から構成される化合物(In-Al-Zn-O)等であってもよい。
また、酸化物半導体が水分を含んでしまった場合は、その酸素比率が低下し、特性が変化してしまうという問題が生じることがある。よって、上記光配向膜材料の吸湿性は低いことが好ましい。相対的に吸湿性が高い高分子としては、ポリイミド骨格を有する高分子が好適に用いられる。また、光反応性を有する高分子としては、アクリル、メタクリル、マレイミド、及び、ポリシロキサン骨格を有する高分子が好適に用いられる。
 

Claims (15)

  1. 光配向膜を備える液晶表示装置の製造方法であって、
    前記液晶表示装置の製造方法は、
    光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応が可能な光官能基を有する高分子と、ポリアミック酸骨格を有し、前記光官能基を有さない高分子と、溶媒とを含有する光配向膜材料による膜を基板上に形成する工程(1)、
    前記膜に対して前記溶媒を蒸発させる予備加熱を行う工程(2)、
    予備加熱された前記膜に対して偏光照射を行う工程(3)、及び、
    偏光照射された前記膜に対して本加熱を行う工程(4)
    を順に含み、
    前記液晶表示装置は、プレチルト角が実質的に0°であるイン・プレーン・スイッチングモード又はフリンジ・フィールド・スイッチングモードであることを特徴とする液晶表示装置の製造方法。
  2. 前記工程(4)の本加熱は、90℃以上の温度で行われることを特徴とする請求項1に記載の液晶表示装置の製造方法。
  3. 前記工程(2)の予備加熱は、90℃以下の温度で行われることを特徴とする請求項1に記載の液晶表示装置の製造方法。
  4. 前記液晶表示装置は、前記光配向膜により負の誘電率異方性を有する液晶分子を配向させることを特徴とする請求項1~3のいずれかに記載の液晶表示装置の製造方法。
  5. 前記工程(4)の本加熱は、低温から高温へ異なる温度の定温期間を複数有するように行う操作を含むことを特徴とする請求項1~4のいずれかに記載の液晶表示装置の製造方法。
  6. 前記工程(4)の本加熱は、異なる温度での2回の本加熱を行い、1回目の本加熱は90℃以上、140℃以下の温度で行われ、2回目の本加熱は180℃以上の温度で行われることを特徴とする請求項5に記載の液晶表示装置の製造方法。
  7. 前記工程(4)の本加熱は、異なる温度に設定された複数の加熱装置を用いて行われることを特徴とする請求項1~6のいずれかに記載の液晶表示装置の製造方法。
  8. 前記工程(4)の本加熱は、1台の加熱装置を用いて異なる温度に順次変化させながら行われることを特徴とする請求項1~6のいずれかに記載の液晶表示装置の製造方法。
  9. 前記工程(4)の本加熱は、温度勾配のある領域を有する加熱装置を用いて前記加熱装置内で前記基板を移動させながら行われることを特徴とする請求項1~6のいずれかに記載の液晶表示装置の製造方法。
  10. 前記光官能基は、シンナメート基、カルコン基、クマリン基、スチルベン基、フェニルエステル基、及び、アゾベンゼン基からなる群より選択される少なくとも1つの官能基であることを特徴とする請求項1~9のいずれかに記載の液晶表示装置の製造方法。
  11. 前記光官能基を有する高分子の骨格は、ポリアミック酸、ポリイミド、アクリル、メタクリル、マレイミド、及び、ポリシロキサンからなる群より選択される少なくとも1つの構造を有することを特徴とする請求項1~10のいずれかに記載の液晶表示装置の製造方法。
  12. 前記光官能基は、少なくとも光二量化が可能であり、
    前記工程(4)は、異なる温度での2回の本加熱を行い、1回目の本加熱と2回目の本加熱との間に、更に、1回目の本加熱が行われた前記膜に対して光照射を行う工程(4a)を含むことを特徴とする請求項1~11のいずれかに記載の液晶表示装置の製造方法。
  13. 前記光配向膜材料に含有される高分子材料は、主鎖又は側鎖に下記化学式(A)~(C)で表される構造を含むことを特徴とする請求項1~12のいずれかに記載の液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    上記化学式(A)~(C)中、Xは、存在しない、O、COO、OCO、CO、又は、C≡Cを表す。
  14. 前記光配向膜材料に含有される高分子材料は、主鎖又は側鎖にカルボキシル基及び/又はアミド基を有することを特徴とする請求項1~13のいずれかに記載の液晶表示装置の製造方法。
  15. 前記溶媒は、N-メチル-ピロリドン、N-エチル-ピロリドン、及び、γブチルラクトンからなる群より選択される少なくとも1つの化合物と、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジイソブチルケトン及びその構造異性体、プロピレングリコールモノブチルエーテル、並びに、ジアセトンアルコールからなる群より選択される少なくとも1つの化合物との混合物であることを特徴とする請求項1~14のいずれかに記載の液晶表示装置の製造方法。
     
PCT/JP2014/069518 2013-07-30 2014-07-24 液晶表示装置の製造方法 WO2015016121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480043065.2A CN105452948B (zh) 2013-07-30 2014-07-24 液晶显示装置的制造方法
US14/907,870 US9977290B2 (en) 2013-07-30 2014-07-24 Method for manufacturing liquid crystal display device
JP2015529536A JP5997385B2 (ja) 2013-07-30 2014-07-24 液晶表示装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013158117 2013-07-30
JP2013-158117 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016121A1 true WO2015016121A1 (ja) 2015-02-05

Family

ID=52431657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069518 WO2015016121A1 (ja) 2013-07-30 2014-07-24 液晶表示装置の製造方法

Country Status (4)

Country Link
US (1) US9977290B2 (ja)
JP (1) JP5997385B2 (ja)
CN (1) CN105452948B (ja)
WO (1) WO2015016121A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143860A1 (ja) * 2015-03-11 2016-09-15 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2017068962A1 (ja) * 2015-10-23 2017-04-27 株式会社ブイ・テクノロジー 光照射装置
JP2019512719A (ja) * 2016-08-19 2019-05-16 エルジー・ケム・リミテッド 液晶配向膜の製造方法
JP2020129059A (ja) * 2019-02-08 2020-08-27 Jnc株式会社 光配向用液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子、並びに、ジアミン、(メタ)アクリレート、およびポリマー
KR20200102195A (ko) * 2019-02-21 2020-08-31 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
JP2021521488A (ja) * 2018-11-08 2021-08-26 エルジー・ケム・リミテッド 液晶配向剤組成物、これを用いた液晶配向膜の製造方法およびこれを用いた液晶配向膜、ならびに液晶表示素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200041849A1 (en) * 2016-10-07 2020-02-06 Sharp Kabushiki Kaisha Liquid crystal aligning agent for tft substrate and method for fabricating liquid crystal display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085901A (ja) * 2009-09-15 2011-04-28 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2014069550A1 (ja) * 2012-10-31 2014-05-08 Jnc株式会社 液晶表示素子およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179328A (ja) 1994-12-27 1996-07-12 Canon Inc 液晶配向膜の製造方法およびそれを用いた液晶素子の製造方法
JP2000214467A (ja) * 1999-01-26 2000-08-04 Hitachi Chem Co Ltd 低電圧駆動液晶パネル用液晶配向膜用組成物、低電圧駆動液晶パネル用液晶配向膜、液晶挟持基板及び液晶表示素子
JP2001089426A (ja) * 1999-09-14 2001-04-03 Fuji Photo Film Co Ltd 新規アセチレン化合物
JP4459417B2 (ja) 2000-09-08 2010-04-28 Jsr株式会社 液晶配向処理方法および液晶表示素子
CN1762978B (zh) * 2004-10-05 2010-12-15 Jsr株式会社 新型二胺化合物、聚合物以及液晶取向剂
WO2007052979A1 (en) 2005-11-07 2007-05-10 Lg Chem. Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
JP4775796B2 (ja) * 2006-03-14 2011-09-21 独立行政法人物質・材料研究機構 液晶配向膜、液晶配向剤、及び液晶表示素子
JP4985609B2 (ja) * 2007-12-26 2012-07-25 Jnc株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP5898404B2 (ja) 2011-01-07 2016-04-06 大阪有機化学工業株式会社 光配向膜用及び光学異方性フィルム用組成物
CN102981314B (zh) * 2012-12-18 2016-09-07 福建华映显示科技有限公司 配向膜的制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085901A (ja) * 2009-09-15 2011-04-28 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2014069550A1 (ja) * 2012-10-31 2014-05-08 Jnc株式会社 液晶表示素子およびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KOHEI GOTO ET AL.: "Mennai Haiko LCD no Tameno Bunshi Haikosei Hikari Haikozai", DAI 62 KAI ABSTRACTS, ANNUAL MEETING OF THE SOCIETY OF POLYMER SCIENCE, vol. 62, no. 1, 14 May 2013 (2013-05-14), JAPAN, pages 1667 *
NOBUHIRO KAWATSUKI ET AL.: "Molecular-Oriented Photoalignment Layer for Liquid Crystals", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 1, 10 January 2007 (2007-01-10), pages 339 - 341 *
NOBUHIRO KAWATSUKI ET AL.: "Photoinduced Molecular Orientation in Polymeric Films Based on Photo-Fries Rearrangement", EKISHO, vol. 17, no. 3, 25 July 2013 (2013-07-25), pages 152 - 156 *
NOBUHIRO KAWATSUKI: "Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials", CHEMISTRY LETTERS, vol. 40, no. 6, 11 May 2011 (2011-05-11), pages 548 - 554 *
TETSUTAKA DOZONO ET AL.: "Amide-ki o Yusuru Suiso Ketsugogata Hikari Hannosei Kobunshi Ekisho no Kobunshi Hanno o Mochiita Gosei Oyobi Hikari Hanno", DAI 60 KAI SYMPOSIUM ON MACROMOLECULES, vol. 60, no. 2, 13 September 2011 (2011-09-13), YOKOSHU, pages 3878 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143860A1 (ja) * 2015-03-11 2016-09-15 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
JPWO2016143860A1 (ja) * 2015-03-11 2017-12-28 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2017068962A1 (ja) * 2015-10-23 2017-04-27 株式会社ブイ・テクノロジー 光照射装置
JP2019512719A (ja) * 2016-08-19 2019-05-16 エルジー・ケム・リミテッド 液晶配向膜の製造方法
JP2021521488A (ja) * 2018-11-08 2021-08-26 エルジー・ケム・リミテッド 液晶配向剤組成物、これを用いた液晶配向膜の製造方法およびこれを用いた液晶配向膜、ならびに液晶表示素子
US11352564B2 (en) 2018-11-08 2022-06-07 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
JP7193051B2 (ja) 2018-11-08 2022-12-20 エルジー・ケム・リミテッド 液晶配向剤組成物、これを用いた液晶配向膜の製造方法およびこれを用いた液晶配向膜、ならびに液晶表示素子
JP2020129059A (ja) * 2019-02-08 2020-08-27 Jnc株式会社 光配向用液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子、並びに、ジアミン、(メタ)アクリレート、およびポリマー
JP7234673B2 (ja) 2019-02-08 2023-03-08 Jnc株式会社 光配向用液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子、並びに、ジアミン、(メタ)アクリレート、およびポリマー
KR20200102195A (ko) * 2019-02-21 2020-08-31 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
JP2021521487A (ja) * 2019-02-21 2021-08-26 エルジー・ケム・リミテッド 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
US11332672B2 (en) 2019-02-21 2022-05-17 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
JP7092442B2 (ja) 2019-02-21 2022-06-28 エルジー・ケム・リミテッド 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
KR102461121B1 (ko) 2019-02-21 2022-10-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자

Also Published As

Publication number Publication date
JPWO2015016121A1 (ja) 2017-03-02
CN105452948B (zh) 2018-11-13
US9977290B2 (en) 2018-05-22
JP5997385B2 (ja) 2016-09-28
CN105452948A (zh) 2016-03-30
US20160178968A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5997385B2 (ja) 液晶表示装置の製造方法
JP6114393B2 (ja) 液晶表示装置の製造方法
JP5894567B2 (ja) 液晶表示装置の製造方法
JP5407394B2 (ja) 光配向剤、配向膜およびこれを用いた液晶表示素子
KR101445234B1 (ko) 광 배향막 및 액정 표시 소자
JP5481771B2 (ja) 光配向膜及び液晶表示素子
TWI574994B (zh) Liquid crystal display device
JP5034977B2 (ja) 配向膜用組成物
WO2014185412A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
JP5502455B2 (ja) 液晶光配向剤用エポキシ化合物、液晶光配向剤、及び液晶光配向膜
JP2010197999A (ja) 配向剤およびこれに用いられる液晶性ポリイミド
WO2016063834A1 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
KR102025168B1 (ko) 액정 디스플레이 장치 및 그의 제조 방법
JP6458484B2 (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子並びに位相差フィルム及びその製造方法
TWI635341B (zh) Method of manufacturing liquid crystal display device
WO2018117239A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6897791B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2010101999A (ja) 液晶配向膜、液晶配向剤および液晶表示素子
CN108292065B (zh) 液晶取向剂、液晶取向膜和液晶表示元件
KR101333710B1 (ko) 액정 배향제, 이를 이용하여 제조한 액정 배향막 및 상기 액정 배향막을 포함하는 액정표시소자
WO2018155355A1 (ja) 液晶配向剤、配向膜及び液晶表示装置
JP2022173076A (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、液晶表示装置、並びに重合体
TW201829544A (zh) 液晶配向劑、液晶配向膜及液晶顯示元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043065.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529536

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14907870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831807

Country of ref document: EP

Kind code of ref document: A1