WO2015016078A1 - Ldモジュール - Google Patents
Ldモジュール Download PDFInfo
- Publication number
- WO2015016078A1 WO2015016078A1 PCT/JP2014/069047 JP2014069047W WO2015016078A1 WO 2015016078 A1 WO2015016078 A1 WO 2015016078A1 JP 2014069047 W JP2014069047 W JP 2014069047W WO 2015016078 A1 WO2015016078 A1 WO 2015016078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- laser
- laser beam
- laser beams
- module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0905—Dividing and/or superposing multiple light beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0916—Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2817—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0071—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02325—Mechanically integrated components on mount members or optical micro-benches
- H01S5/02326—Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
Definitions
- the present invention relates to an LD module that emits and combines a plurality of laser beams.
- Patent Document 1 discloses a micro optical device that converts a propagation direction by reflecting a plurality of parallel laser beams by a prism, then focuses the light by a focusing lens and enters an optical fiber.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2004-252428 (Publication Date: September 9, 2004)”
- the focal length of the fast axis focusing lens can be shortened by reducing the radius of curvature of the fast axis focusing lens. This is because the incident end face of the optical fiber can be brought close to the fast axis focusing lens.
- the radius of curvature of the fast axis focusing lens is reduced, the incident angle of the laser beam transmitted through the fast axis focusing lens to the optical fiber is increased. As a result, there arises a problem that the coupling efficiency of the laser beam is lowered. This is because, of the laser beam transmitted through the fast axis focusing lens, the laser beam whose incident angle exceeds the light receiving angle of the optical fiber is lost without being confined in the core of the optical fiber.
- the present invention has been made in view of such a problem, and an object thereof is to realize miniaturization of the LD module without reducing the coupling efficiency of the laser beam.
- an LD module includes a plurality of laser diodes forming a laser diode array and a plurality of laser beams emitted from the plurality of laser diodes.
- a plurality of mirrors that reflect in the direction and a focusing lens that focuses the plurality of laser beams reflected by the plurality of mirrors, wherein the plurality of laser diodes gradually increase the spacing between adjacent laser beams.
- the plurality of laser beams are emitted toward the plurality of mirrors so as to spread, and the plurality of mirrors emit the plurality of laser beams to the focusing lens so that the interval between adjacent laser beams is gradually narrowed.
- Each of the plurality of mirrors reflects the laser beam incident on the mirror in the fast axis direction.
- the fast axis of the laser beam incident on the first mirror and the slow axis of the laser beam emitted from the second mirror are parallel to each other. Therefore, the laser beam can be emitted from the second mirror without causing the laser beam to be twisted to be described later. That is, according to the LD module, the plurality of laser beams emitted from the plurality of mirrors are aligned with their slow axes parallel to each other without any twisting. Therefore, according to the LD module, a plurality of laser beams can be prevented while preventing problems such as interference between laser beams, a part of the laser beams being blocked by an adjacent mirror, and a part of the laser beams not being focused. A plurality of mirrors can be densely arranged so that the intervals of the laser beams are close. Therefore, according to the LD module, it is possible to reduce the size of the LD module while suppressing a decrease in the coupling efficiency of the laser beam.
- a configuration other than the above configuration that is, a configuration in which the fast axis of the laser beam incident on the first mirror and the slow axis of the laser beam emitted from the second mirror are not parallel to each other
- the beam width of the laser beam emitted from the second mirror is expressed as [the beam width in the fast axis direction incident on the first mirror ⁇ sin ⁇ ( ⁇ is the second (Correction angle of the emission direction by the mirror)]].
- the intervals between the plurality of laser beams are made close, the above-described problems may occur.
- the beam width of the laser beam emitted from the second mirror can be made substantially the same as the beam width in the fast axis direction incident on the first mirror. For this reason, even when the intervals between the plurality of laser beams are made close, there is no possibility that the above-described problems occur.
- the LD module a configuration in which a plurality of laser beams are propagated to the focusing lens in a focused manner is adopted, so that the plurality of laser beams are parallel to each other without reducing the radius of curvature of the fast axis focusing lens.
- the focal points of a plurality of laser beams can be formed at positions close to the focusing lens. Therefore, according to the LD module, the incident end face of the optical fiber can be positioned closer to the focusing lens without reducing the radius of curvature of the fast axis focusing lens. Therefore, it is possible to reduce the size of the LD module without reducing the coupling efficiency of the laser beam.
- the LD module can be downsized without reducing the coupling efficiency of the laser beam.
- the schematic structure of the LD module in the Example of this embodiment is shown.
- the schematic structure of the LD module in the comparative example of this embodiment is shown.
- FIG. 1 is a top view showing the configuration of the LD module 1 according to the present embodiment.
- the LD module 1 shown in FIG. 1 emits a plurality of laser beams from a plurality of semiconductor laser diodes, and couples the plurality of laser beams to an optical fiber with higher coupling efficiency.
- FIG. 1 illustrates a configuration in which ten laser beams are coupled to an optical fiber.
- the LD module 1 includes semiconductor laser diodes LD1 to LD10, fast axis collimating lenses FAC1 to FAC10, slow axis collimating lenses SAC1 to SAC10, mirrors M1 to M10, a fast axis focusing lens FL, and A slow axis condensing lens SL is provided.
- Each of the semiconductor laser diodes LD1 to LD10 is formed on an independent chip.
- the semiconductor laser diodes LD1 to LD10 are arranged on the surface of the submount B in a state of being arranged at substantially equal intervals along the x-axis direction in the drawing. That is, the semiconductor laser diodes LD1 to LD10 form a semiconductor laser diode array on the surface of the submount B.
- Each of the semiconductor laser diodes LD1 to LD10 is disposed on the surface of the submount B so that the active layer is parallel to the xz plane and the emission end face is generally directed in the positive z-axis direction.
- each of the plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 is parallel to the xz plane in the space on the surface of the submount B and substantially in the positive z-axis direction. Will propagate.
- the semiconductor laser diodes LD1 to LD10 are arranged along the x-axis, the plurality of laser beams are in a state of forming laser beam trains that are generally equidistant and parallel to each other.
- the propagation direction of the laser beam is “substantially z-axis positive direction” because, as will be described later, the emission direction of each semiconductor laser diode is slightly in the x-axis direction (slow axis with respect to the z-axis positive direction). This is because it is tilted in the direction).
- the LD module 1 includes a plurality of unit optical systems for each laser beam. That is, in the example shown in FIG. 1, the LD module 1 is configured to include 10 unit optical systems in accordance with the configuration in which 10 laser beams are emitted.
- the lens SACi i is an integer from 1 to 10) and a mirror Mi (i is an integer from 1 to 10).
- FIG. 2 is a perspective view showing a configuration of a unit optical system provided in the LD module 1 according to the present embodiment.
- FIG. 2 shows the configuration of one of the plurality of unit optical systems included in the LD module 1, but each of the plurality of unit optical systems is the same as the unit optical system Si shown in FIG. It has a configuration.
- a fast axis collimating lens FACi, a slow axis collimating lens SACI, and a mirror Mi are arranged in a straight line on the optical path of the laser beam emitted from the semiconductor laser diode LDi.
- a mirror Mi are arranged side by side.
- Each member constituting the unit optical system Si is installed on the surface of the submount B directly or via a mount (not shown).
- the fast axis collimating lens FACi is for collimating the spread of the laser beam emitted from the semiconductor laser diode LDi in the fast axis direction.
- the slow axis collimating lens SACi is for collimating the spread in the slow axis direction of the laser beam emitted from the semiconductor laser diode LDi.
- the laser beam transmitted through the fast axis collimating lens FACi and the slow axis collimating lens SACi becomes a collimated beam whose propagation direction is converged in the positive z-axis direction and propagates to the mirror Mi. If the spread of the laser beam emitted from the semiconductor laser diode LDi in the slow axis direction is sufficiently small, the slow axis collimating lens SACi may be omitted.
- the mirror Mi is for converting the propagation direction of the laser beam from the z-axis positive direction to the x-axis negative direction in order to guide the laser beam emitted from the semiconductor laser diode LDi to the fast axis focusing lens FL. It is.
- Various conventionally known mirrors can be used for the mirror Mi.
- the mirror Mi is a first mirror (so-called “bounce mirror”) that changes the propagation direction of the laser beam from the positive z-axis direction to the positive y-axis direction, and the propagation direction of the laser beam is y.
- a second mirror (so-called “folding mirror”) that converts from the positive axis direction to the negative x axis direction is used.
- the positions of the mirrors M1 to M10 in the z-axis direction are different from each other so that the plurality of laser beams emitted from the mirrors M1 to M10 do not overlap each other.
- the positions of the mirrors M1 to M10 in the z-axis direction are sequentially approached to the semiconductor laser diode (z in the order of the mirrors M1, M2,..., M10) as they move away from the fast-axis focusing lens FL. It is shifted by a predetermined amount in the negative axis direction. This is because, as shown in FIG. 1, in the plurality of laser beams propagating to the mirrors M1 to M10, the laser beam closer to the fast axis focusing lens FL is inclined to the fast axis focusing lens FL side.
- the distance from the semiconductor laser diode to the mirror is made longer than the other laser beams. This is necessary.
- the shift amount is smaller than the interval between the plurality of laser beams incident on the plurality of mirrors M1 to M10.
- the plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 are propagated toward the fast axis focusing lens FL in a state where the intervals are narrowed by the mirrors M1 to M10.
- FIG. 3 is a perspective view illustrating a configuration of the mirror Mi included in the LD module 1 according to the present embodiment.
- FIG. 3 shows the configuration of one of the mirrors M1 to M10 provided in the LD module 1, but each of the mirrors M1 to M10 has the same configuration as the mirror Mi shown in FIG. Yes.
- the mirror Mi is configured to include a first mirror Mi1 and a second mirror Mi2.
- the mirror Mi has a structure in which the first mirror Mi1 and the second mirror Mi2 are stacked so that the upper surface B1 of the first mirror Mi1 and the lower surface A2 of the second mirror Mi2 overlap each other.
- the first mirror Mi1 is directly or indirectly installed on the surface of the submount B so that the lower surface A1 thereof is parallel to the xz plane.
- the upper surface B1 of the first mirror Mi1 and the lower surface A2 of the second mirror Mi2 are parallel to the lower surface A1.
- the first mirror Mi1 and the second mirror Mi2 may be separated from each other or may be integrated with each other.
- the first mirror Mi1 has a first reflecting surface S1.
- the first reflecting surface S1 converts the propagation direction of the laser beam emitted from the semiconductor laser diode LDi from the z-axis positive direction to the y-axis positive direction. Therefore, the first reflecting surface S1 is a surface substantially parallel to the slow axis of the laser beam and forms an angle of 45 ° with respect to the optical axis of the laser beam (that is, with respect to the lower surface A1). And an angle of 45 °).
- the orientation of the mirror Mi with respect to the laser beam is adjustable, the orientation of the mirror Mi is preferably adjusted so that the first reflecting surface S1 is substantially parallel to the slow axis of the laser beam. .
- the mirror Mi can reflect the laser beam in a predetermined direction without causing unintentional rotation or reflection in an unintended direction with respect to the laser beam.
- the second mirror Mi2 has a second reflecting surface S2.
- the second reflecting surface S2 converts the propagation direction of the laser beam reflected by the first mirror Mi1 from the y-axis positive direction to the x-axis negative direction. Therefore, the second reflecting surface S2 is a surface that is substantially parallel to the fast axis of the laser beam reflected by the first reflecting surface and has an angle of 45 ° with respect to the optical axis of the laser beam. It is comprised so that it may make.
- the mirror Mi has a relatively simple configuration in which two reflecting surfaces are combined, and when the direction with respect to the laser beam is set so that the laser beam is incident at a predetermined incident angle (the above-mentioned first mirror).
- the reflecting surface S1 is a plane parallel to the slow axis of the laser beam
- the laser beam incident on the mirror and the laser beam emitted from the mirror are viewed from the positive direction of the y-axis.
- the laser beam can be reflected so as to make a right angle to.
- the first reflecting surface S1 of the mirror Mi is substantially parallel to the slow axis of the laser beam, so that the first reflecting surface S1 and the slow axis of the laser beam are different. Compared to a configuration that is not substantially parallel, problems such as unintended rotation of the laser beam and reflection in an unintended direction are less likely to occur.
- the second reflecting surface S2 of the mirror Mi is substantially parallel to the fast axis of the laser beam, so that the second reflecting surface S2 and the fast axis of the laser beam are Compared with a configuration in which the laser beams are not substantially parallel, problems such as unintended rotation of the laser beam and reflection in an unintended direction are less likely to occur.
- the LD module 1 of the present embodiment all of the mirrors M1 to M10 adopt the same configuration as the mirror Mi described above. That is, the LD module 1 can use mirrors Mi having the same configuration for each of the mirrors M1 to M10. Therefore, the mirrors M1 to M10 use different configurations or perform different adjustments. There is no need. Therefore, the LD module 1 of the present embodiment can reduce the cost related to the LD module 1, and can realize the LD module 1 at low cost.
- the lower surface of the second mirror and the upper surface of the first mirror are preferably bonded to each other with an adhesive, and in particular, the lower surface of the second mirror and the upper surface of the first mirror.
- Each is preferably parallel to the fast axis (that is, the xz plane) of the laser beam emitted from the mirror Mi.
- the adhesive is applied between the lower surface of the second mirror and the upper surface of the first mirror, until the curing of the adhesive is completed, the lower surface of the second mirror and the first mirror It is preferable that each of the upper surfaces of the mirrors be kept parallel to the fast axes of the plurality of laser beams emitted from the plurality of mirrors.
- the thickness of the adhesive layer between the lower surface of the second mirror and the upper surface of the first mirror can be made uniform. If the thickness of the adhesive layer is uniform, even when the adhesive layer contracts or expands, the occurrence of a situation in which the propagation direction of the output beam is inclined or the arrangement of the optical axis of the output beam is broken is avoided. be able to.
- swelling which can arise in this adhesive bond layer
- contraction which may occur when hardening
- curing an adhesive agent are assumed.
- FIG. 4 is a plan view showing the emission direction of each of the semiconductor laser diodes LD1 to LD10 in the LD module 1 according to the present embodiment.
- the rotation angle ⁇ i is represented by a positive value
- the rotation angle ⁇ i is represented by a negative value.
- each of the mirrors M1 to M10 has a predetermined incident angle, and the direction with respect to the laser beam is set so that the laser beams are incident at the same incident angle. ing. Specifically, each of the mirrors M1 to M10 has an orientation with respect to the laser beam such that the first reflecting surface S1 (see FIG. 3) is a surface substantially parallel to the slow axis of the laser beam. Yes. Further, when each of the mirrors M1 to M10 is oriented as described above, the laser beam incident on the mirror and the laser beam emitted from the mirror are viewed from the positive y-axis direction. (See FIG. 3).
- the emission directions of the plurality of laser beams emitted from the mirrors M1 to M10 are not determined by adjustment of the mirrors but are incident on the mirrors M1 to M10. It is determined by the propagation direction of each of the plurality of laser beams.
- the LD module 1 of the present embodiment adopts a configuration in which a plurality of laser beams are propagated to the FL in a focused manner.
- the LD module 1 of the present embodiment has the semiconductor laser diodes LD1 to LD10 of the semiconductor laser diodes LD1 to LD10 so that a plurality of laser beams are diffusely propagated to the mirrors M1 to M10. Each emission direction is set.
- the plurality of laser beams emitted from the mirrors M1 to M10 propagate to the fast axis focusing lens FL in a converging manner, and are focused at a position closer to the fast axis focusing lens FL as compared with the prior art.
- the LD module 1 of the present embodiment can make the incident end face of the optical fiber OF closer to the fast axis focusing lens FL without reducing the radius of curvature of the fast axis focusing lens FL. Miniaturization of the LD module can be realized without reducing the coupling efficiency of the laser beam.
- the LD module 1 of the present embodiment has a beam bundle (referred to as “beam bundle” in this document) that is incident on the fast axis focusing lens FL, as compared with a configuration in which a plurality of parallel laser beams are incident on the fast axis focusing lens FL.
- beam bundle a beam bundle formed by a plurality of laser beams.
- the LD module 1 of the present embodiment has each laser emitted from the fast axis focusing lens compared to a configuration in which the focal length of the fast axis focusing lens FL is shortened by reducing the radius of curvature of the fast axis focusing lens FL.
- the incident angle of the beam with respect to the optical fiber OF is reduced. For this reason, the incident end face of the optical fiber OF can be positioned closer to the fast axis focusing lens FL without causing a decrease in coupling efficiency.
- the LD module 1 of the present embodiment can propagate a plurality of laser beams to the fast axis focusing lens FL without adjusting the mirror, various problems that may occur due to the adjustment of the mirror are eliminated. Occurrence can be prevented. Therefore, the LD module 1 of the present embodiment can realize downsizing of the LD module without reducing the coupling efficiency of the laser beam.
- the rotation angle ⁇ i of each of the mirrors M1 to M10 is set as follows, so that a plurality of laser beams are focused to the fast axis focusing lens FL. Can be propagated.
- the semiconductor laser diodes LD1 to LD10 are arranged so that the absolute value of the rotation angle ⁇ i is smaller, that is, the semiconductor laser diodes LD1 to LD10 are arranged outside the laser diode array. For each of these, the respective emission directions are set so that the absolute value of the rotation angle ⁇ i becomes larger (that is, the emission direction faces more outward).
- the plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 propagate while spreading outward from the center thereof.
- the plurality of laser beams emitted from the mirrors M1 to M10 propagate while being focused on the center thereof.
- the laser beam incident on the mirror Mi and the laser beam emitted from the mirror Mi are at right angles, so that the laser beam incident on the mirror Mi is relative to the z axis.
- ⁇ i ′ have the same angle.
- FIG. 5 is a graph showing the relationship between the radius of curvature of the fast axis focusing lens FL and the coupling efficiency when the beam bundle is incident on the incident end face of the optical fiber OF.
- the horizontal axis represents the radius of curvature (unit: mm) of the fast axis focusing lens FL
- the vertical axis represents the coupling efficiency (unit:%) when the beam bundle is incident on the optical fiber OF.
- FIG. 5 shows the coupling efficiency when the maximum value of the rotation angle ⁇ i (hereinafter referred to as “maximum rotation angle ⁇ ”) is 0 °, 0.5 °, 1 °, and 1.5 °. Yes.
- the maximum rotation angle ⁇ is larger than 0 °, that is, when a plurality of laser beams intersect at a single point, if the radius of curvature of the fast axis focusing lens FL is decreased, the beam bundle enters the optical fiber OF.
- the coupling efficiency of the will decrease.
- the degree of reduction in coupling efficiency is smaller than when the maximum rotation angle ⁇ is 0 °.
- the coupling efficiency when the radius of curvature of the fast axis focusing lens FL is 10 mm is about 3% higher than when the maximum rotation angle ⁇ is 0 °. Show. This is presumably because the incident angle of each laser beam to the optical fiber OF is smaller than when the maximum rotation angle ⁇ is 0 °.
- FIG. 6 is a graph showing the relationship between the fiber position and the coupling efficiency when the beam bundle is incident on the incident end face of the optical fiber OF.
- the fiber position refers to a distance from a straight line passing through the center of the semiconductor laser diode LD1 and parallel to the z-axis to the incident end face of the optical fiber OF.
- the horizontal axis represents the fiber position (unit: mm), and the vertical axis represents the coupling efficiency (unit:%) when the output beam bundle is incident on the optical fiber OF.
- FIG. 6 also shows the coupling efficiency when the maximum rotation angle ⁇ is 0 °, 0.5 °, 1 °, and 1.5 °.
- the maximum rotation angle ⁇ is larger than 0 °, that is, when the optical axes of the output beams intersect at one point, if the incident end face of the optical fiber OF is brought closer to the fast axis focusing lens FL, the output beam The coupling efficiency of the bundle to the optical fiber OF decreases.
- the degree of decrease in coupling efficiency is smaller than when the maximum rotation angle ⁇ is 0 °.
- the maximum rotation angle ⁇ is set to 1 °, it can be seen that the incident end face of the optical fiber OF can be as close as 7 mm to the exit face of the fast axis focusing lens FL while suppressing a decrease in coupling efficiency to less than 1%. This is presumably because the incident angle of each laser beam to the optical fiber OF is smaller than when the maximum rotation angle ⁇ is 0 °.
- the LD module of the present invention has a plurality of semiconductor laser diodes LD1 to LD10 that have a plurality of laser beams so that the interval between adjacent laser beams gradually increases.
- the plurality of mirrors M1 to M10 reflect the plurality of laser beams toward the fast axis focusing lens FL so that the interval between the adjacent laser beams is gradually narrowed.
- FIG. 7 shows a schematic configuration of the LD module in the example of the present embodiment.
- the distance required to focus a plurality of laser beams was measured using the LD module shown in FIG.
- the LD module of this embodiment includes semiconductor laser diodes LD1 to LD3, fast axis collimating lenses FAC1 to FAC3, slow axis collimating lenses SAC1 to SAC3, mirrors M1 to M3, fast axis focusing lens FL, and A slow axis condensing lens SL is provided. That is, the LD module of this embodiment (FIG. 7) is different from the LD module 1 of this embodiment (FIG. 1) in that the three laser beams are coupled to the optical fiber OF.
- Rotation angle ⁇ of the semiconductor laser diode LD1 ⁇ 1 °
- Rotation angle ⁇ of the semiconductor laser diode LD2 0 °
- Rotation angle ⁇ of the semiconductor laser diode LD3 + 1 °
- Curvature radius of fast axis focusing lens FL 6.9 mm
- Curvature radius of slow axis condensing lens SL 3.5 mm
- FIG. 8 shows a schematic configuration of an LD module in a comparative example of the present embodiment.
- the LD module shown in FIG. 8 is different from the LD module of the above embodiment (FIG. 7) in the rotation angle ⁇ of each semiconductor laser diode.
- the other points are the same as those of the LD module of the above embodiment (FIG. 7).
- Rotation angle ⁇ of the semiconductor laser diode LD1 0 °
- Rotation angle ⁇ of the semiconductor laser diode LD2 0 °
- Rotation angle ⁇ of the semiconductor laser diode LD3 0 °
- Curvature radius of fast axis focusing lens FL 6.9 mm
- Curvature radius of slow axis condensing lens SL 3.5 mm
- the LD module shown in FIG. 7 requires a distance of 12.3 mm from the incident surface of the fast axis focusing lens FL to the incident end surface of the optical fiber OF.
- the LD module shown in FIG. 8 requires a distance of 15.6 mm from the incident surface of the fast axis focusing lens FL to the incident end surface of the optical fiber OF. That is, it has been found that the distance from the incident surface of the fast axis focusing lens FL to the incident end surface of the optical fiber OF can be significantly shortened by propagating a plurality of laser beams to the fast axis focusing lens FL.
- the position of the fast axis collimating lens FACi is determined from the emission end face of the semiconductor laser diode LDi in the z-axis positive direction (that is, the propagation direction of the laser light emitted from the semiconductor laser diode LDi).
- a configuration with a slight offset (3 ⁇ m) is employed.
- the laser beam emitted from the fast axis collimating lens FACi propagates toward the incident end face of the optical fiber OF while gradually reducing the beam diameter in the fast axis direction.
- the LD module 1 of the present embodiment can focus the laser beam on the incident end face of the optical fiber OF, so that the laser beam emitted from each semiconductor laser diode LDi can be more efficiently optical fiber OF. Can be combined.
- each of the plurality of mirrors includes a laser beam incident on the mirror and a laser beam emitted from the mirror when viewed from a direction perpendicular to both the laser beams. It is preferable that it is comprised so that a right angle may be made.
- each mirror can have a relatively simple configuration, so that the occurrence of the above problems can be suppressed.
- the effect of suppressing the above problem becomes more remarkable by adopting the above configuration.
- the first mirror is a plane parallel to the slow axis of the laser beam incident on the mirror and forms an angle of 45 ° with respect to the optical axis of the laser beam.
- the second mirror is a surface parallel to the fast axis of the laser beam reflected by the first reflecting surface, and is 45 with respect to the optical axis of the laser beam. It is preferable to have a second reflecting surface having an angle of °.
- the emission directions of the plurality of laser diodes are set so that the emission direction of the laser beam becomes more outward as the laser diodes are arranged on the outer side. .
- the plurality of laser beams emitted from the plurality of semiconductor laser diodes propagate while spreading outward from the center (center of the beam bundle), and conversely, emitted from the plurality of mirrors.
- the plurality of laser beams propagate while being focused at the center (center of the beam bundle).
- the LD module further includes a plurality of fast axis collimating lenses disposed on the optical paths of the plurality of laser beams emitted from the plurality of laser diodes, and each of the plurality of fast axis collimating lenses includes: , The position of collimating the beam spread in the fast axis direction of the corresponding laser beam is offset in the propagation direction of the laser beam, and the amount of the offset is the beam diameter in the fast axis direction of the laser beam, It is preferable to set so as to minimize at the intersection of a plurality of laser beams focused by the focusing lens.
- the coupling efficiency when the beam bundle composed of the plurality of laser beams is incident on the optical fiber can be further increased.
- the lower surface of the second mirror and the upper surface of the first mirror are bonded to each other, and each of the lower surface of the second mirror and the upper surface of the first mirror includes the plurality of the plurality of mirrors. It is preferable to be parallel to the fast axes of the plurality of laser beams emitted from the mirror.
- the thickness of the adhesive layer formed between the lower surface of the second mirror and the upper surface of the first mirror is uniform, even if these adhesive layers contract or expand. It is possible to avoid the occurrence of a situation in which the propagation direction of the output beam is inclined or the optical axis of the output beam is broken.
- the LD module 1 of the present embodiment includes 10 unit optical systems to combine 10 laser beams, but is not limited thereto. That is, the LD module 1 may be implemented as having nine or less unit optical systems, or may be implemented as having eleven or more unit optical systems.
- each component is provided on the surface of one submount B.
- the present invention is not limited to this.
- a part of each component described above may be provided outside the submount B.
- the position of the fast-axis collimating lens FACi is offset from the reference position in the z-axis positive direction (that is, the propagation direction of the laser light emitted from the semiconductor laser diode LDi).
- the reference position refers to a position where the fast axis collimating lens FACi exerts an action of collimating the beam spread in the fast axis direction of the laser light emitted from the semiconductor laser diode LDi.
- the fast axis collimating lens FACi offset from the reference position in the propagation direction of the laser beam exhibits the function of condensing the laser beam emitted from the semiconductor laser diode LDi, that is, the function of gradually reducing the beam diameter. .
- the LD module 1 it is preferable to minimize the beam diameter of each output beam at the intersection of the output beam bundles by individually setting the offset amount of each fast axis collimating lens FACi.
- the beam diameter of each output beam at the intersection by setting the offset amount ⁇ i of each fast axis collimating lens FACi so that ⁇ 1> ⁇ 2>.
- the LD module 1 of the present embodiment in order to optimize the beam diameter of each output beam, a further lens for adjusting the beam diameter was used.
- the LD module 1 of the present embodiment further optimizes the beam diameter of each output beam by adjusting the offset amount of each fast axis collimating lens FACi, and further adjusts the beam diameter. There is no need to provide a lens. Therefore, the LD module 1 of the present embodiment can reduce the cost related to the LD module 1, and can realize the LD module 1 at low cost.
- the present invention can be suitably used for an LD module.
- it can be suitably used for an LD module using a semiconductor laser diode as a light source.
- LD module LD1 to LD10 Semiconductor laser diode (laser diode) FAC1 to FAC10 Fast axis collimating lens SAC1 to SAC10 Slow axis collimating lens M1 to M10 Mirror Mi1 First mirror S1 Reflecting surface (first reflecting surface) Mi2 second mirror S2 reflecting surface (second reflecting surface) B Submount (substrate) FL fast axis focusing lens (focusing lens) SL Slow axis condenser lens OF Optical fiber
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本発明のLDモジュールにおいて、複数の半導体レーザダイオード(LD1~LD10)は、互いに隣接するレーザビーム同士の間隔が徐々に広がるように、複数のレーザビームを複数のミラー(M1~M10)に向けて出射し、複数のミラー(M1~M10)は、互いに隣接するレーザビーム同士の間隔が徐々に狭まるように、複数のレーザビームを速軸集束レンズ(FL)に向けて反射する。
Description
本発明は、複数のレーザビームを出射および合波するLDモジュールに関する。
従来、複数のレーザダイオードから出射された複数のレーザビームを光ファイバに結合することにより、レーザビームを高出力化および高輝度化することが可能な、LDモジュールが広く用いられている。例えば、下記特許文献1には、互いに平行な複数のレーザビームを、プリズムによって反射させることにより伝搬方向を変換した後、集束レンズによって集束し、光ファイバに入射するマイクロ光学装置が開示されている。
LDモジュールの小型化を図るためには、速軸集束レンズの曲率半径を小さくすることによって、速軸集束レンズの焦点距離を短くすればよい。これにより、光ファイバの入射端面を速軸集束レンズに近づけることができるからである。しかしながら、速軸集束レンズの曲率半径を小さくすると、速軸集束レンズを透過したレーザビームの光ファイバへの入射角が大きくなる。その結果、レーザビームの結合効率が低下するという問題が生じる。速軸集束レンズを透過したレーザビームのうち、入射角が光ファイバの受光角を超えるレーザビームは、光ファイバのコアに閉じ込められることなく、損失となるからである。
本発明は、このような問題に鑑みてなされたものであり、その目的は、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現することにある。
上記課題を解決するために、本発明に係るLDモジュールは、レーザダイオード列をなす複数のレーザダイオードと、前記複数のレーザダイオードから出射された複数のレーザビームの各々を、当該レーザビームの遅軸方向に反射する複数のミラーと、前記複数のミラーによって反射された前記複数のレーザビームを集束する集束レンズと、を備え、前記複数のレーザダイオードは、互いに隣接するレーザビーム同士の間隔が徐々に広がるように、前記複数のレーザビームを前記複数のミラーに向けて出射し、前記複数のミラーは、互いに隣接するレーザビーム同士の間隔が徐々に狭まるように、前記複数のレーザビームを前記集束レンズに向けて反射し、前記複数のミラーの各々は、当該ミラーへ入射されてきたレーザビームを速軸方向に反射する第1のミラーと、前記第1のミラーから反射されてきたレーザビームを遅軸方向に反射する第2のミラーと、を備えて構成されており、前記複数のレーザビームの各々について、当該レーザビームが対応する前記第1のミラーへ入射する時の当該レーザビームの速軸と、当該レーザビームが対応する前記第2のミラーから出射された時の当該レーザビームの遅軸とが、互いに平行であることを特徴とする。
上記LDモジュールによれば、複数のレーザビームの各々について、第1のミラーに入射される該レーザビームの速軸と、第2のミラーから出射された該レーザビームの遅軸とが、互いに平行であるため、該レーザビームに後述する捻じれを生じさせることなく、該レーザビームを第2のミラーから出射させることができる。すなわち、上記LDモジュールによれば、複数のミラーから出射された複数のレーザビームは、いずれも捻じれが生じることなく、互いに遅軸が平行な状態で整列する。このため、上記LDモジュールによれば、レーザビーム同士が干渉したり、レーザビームの一部が隣接するミラーによって遮られたり、一部のレーザビームが集束されない、等の不具合を防止しつつ、複数のレーザビームの間隔が密となるように複数のミラーを密に配置することができる。よって、上記LDモジュールによれば、レーザビームの結合効率の低下を抑制しつつ、LDモジュールの小型化を実現することができる。
例えば、上記構成以外の構成(すなわち、第1のミラーに入射されるレーザビームの速軸と、第2のミラーから出射されたレーザビームの遅軸とが、互いに平行とならない構成)を採用した場合、レーザビームの捻じれが生じることにより、第2のミラーから出射されたレーザビームのビーム幅は、〔第1のミラーに入射される速軸方向のビーム幅×sinθ(θは、第2のミラーによる出射方向の補正角度)〕となる。この場合、複数のレーザビームの間隔を密にしてしまうと、上述の不具合が生じる虞がある。そこで、上記構成(すなわち、第1のミラーに入射されるレーザビームの速軸と、第2のミラーから出射されたレーザビームの遅軸とが、互いに平行となる構成)を採用することにより、レーザビームの捻じれが生じないため、第2のミラーから出射されたレーザビームのビーム幅を、第1のミラーに入射される速軸方向のビーム幅と略同一とすることができる。このため、複数のレーザビームの間隔を密にした場合でも、上述の不具合が生じる虞がない。
また、上記LDモジュールによれば、複数のレーザビームを集束気味に集束レンズへ伝搬する構成を採用しているため、速軸集束レンズの曲率半径を小さくしなくとも、複数のレーザビームを互いに平行な状態で集束レンズへ伝搬する構成と比べて、複数のレーザビームの焦点を、集束レンズに近い位置に形成することができる。したがって、上記LDモジュールによれば、速軸集束レンズの曲率半径を小さくしなくとも、光ファイバの入射端面をより集束レンズに近い位置とすることができる。よって、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現することができる。
本発明によれば、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現することができる。
以下、添付の図面を参照して、本発明の一実施形態に係るLDモジュールについて説明する。
〔LDモジュールの構成〕
まず、図1を参照して、本実施形態に係るLDモジュール1の構成について説明する。図1は、本実施形態に係るLDモジュール1の構成を示す上面図である。図1に示すLDモジュール1は、複数の半導体レーザダイオードから複数のレーザビームを出射し、当該複数のレーザビームを、より高い結合効率で光ファイバに結合するものである。特に、図1では、10本のレーザビームを光ファイバに結合する構成を例示している。
まず、図1を参照して、本実施形態に係るLDモジュール1の構成について説明する。図1は、本実施形態に係るLDモジュール1の構成を示す上面図である。図1に示すLDモジュール1は、複数の半導体レーザダイオードから複数のレーザビームを出射し、当該複数のレーザビームを、より高い結合効率で光ファイバに結合するものである。特に、図1では、10本のレーザビームを光ファイバに結合する構成を例示している。
このため、LDモジュール1は、図1に示すように、半導体レーザダイオードLD1~LD10、速軸コリメートレンズFAC1~FAC10、遅軸コリメートレンズSAC1~SAC10、ミラーM1~M10、速軸集束レンズFL、および、遅軸集光レンズSLを備えて構成されている。
(半導体レーザダイオード)
半導体レーザダイオードLD1~LD10は、各々が独立したチップ上に形成されている。半導体レーザダイオードLD1~LD10は、サブマウントBの表面上において、図中x軸方向に沿って、概ね等間隔で並んだ状態に配置されている。すなわち、半導体レーザダイオードLD1~LD10は、サブマウントBの表面上において、半導体レーザダイオード列をなしている。
半導体レーザダイオードLD1~LD10は、各々が独立したチップ上に形成されている。半導体レーザダイオードLD1~LD10は、サブマウントBの表面上において、図中x軸方向に沿って、概ね等間隔で並んだ状態に配置されている。すなわち、半導体レーザダイオードLD1~LD10は、サブマウントBの表面上において、半導体レーザダイオード列をなしている。
半導体レーザダイオードLD1~LD10の各々は、活性層がxz平面と平行になるように、かつ、出射端面が概ねz軸正方向を向くように、サブマウントBの表面上に配置されている。これにより、半導体レーザダイオードLD1~LD10から出射された複数のレーザビームは、各々が、サブマウントBの表面上の空間において、xz平面に対して平行に、且つ、概ねz軸正方向に向かって、伝搬することとなる。特に、図1に示すように、半導体レーザダイオードLD1~LD10は、x軸に沿って並べられているため、上記複数のレーザビームは、概ね、等間隔且つ互いに平行なレーザビーム列を形成した状態で、z軸正方向に向かって伝搬することとなる。上記において、レーザビームの伝搬方向を「概ねz軸正方向」としているのは、後述するように、各半導体レーザダイオードの出射方向を、z軸正方向に対し、僅かにx軸方向(遅軸方向)に傾けているためである。
〔単位光学系の構成〕
LDモジュール1は、レーザビーム毎の、複数の単位光学系を備えて構成されている。すなわち、図1に示す例では、LDモジュール1は、10本のレーザビームを出射する構成としたことに応じて、10個の単位光学系を備えて構成されている。各単位光学系Si(i=1~10の整数)は、半導体レーザダイオードLDi(i=1~10の整数)と、速軸コリメートレンズFACi(i=1~10の整数)と、遅軸コリメートレンズSACi(i=1~10の整数)と、ミラーMi(i=1~10の整数)とを備えて構成されている。以下、図2を参照して、各単位光学系の具体的な構成について説明する。
LDモジュール1は、レーザビーム毎の、複数の単位光学系を備えて構成されている。すなわち、図1に示す例では、LDモジュール1は、10本のレーザビームを出射する構成としたことに応じて、10個の単位光学系を備えて構成されている。各単位光学系Si(i=1~10の整数)は、半導体レーザダイオードLDi(i=1~10の整数)と、速軸コリメートレンズFACi(i=1~10の整数)と、遅軸コリメートレンズSACi(i=1~10の整数)と、ミラーMi(i=1~10の整数)とを備えて構成されている。以下、図2を参照して、各単位光学系の具体的な構成について説明する。
図2は、本実施形態に係るLDモジュール1が備える単位光学系の構成を示す斜視図である。図2では、LDモジュール1が備える複数の単位光学系のうちの1つについて、その構成を示しているが、上記複数の単位光学系は、いずれも図2に示す単位光学系Siと同様の構成を有している。
図2に示すように、単位光学系Siにおいて、半導体レーザダイオードLDiから出射されたレーザビームの光路上には、順に、速軸コリメートレンズFACi、遅軸コリメートレンズSACi、および、ミラーMiが、直線状に並べて配置されている。単位光学系Siを構成する各部材は、何れも、直接、又は、不図示のマウントを介してサブマウントBの表面上に設置される。
速軸コリメートレンズFACiは、半導体レーザダイオードLDiから出射されたレーザビームの速軸方向の広がりをコリメートするためのものである。遅軸コリメートレンズSACiは、半導体レーザダイオードLDiから出射されたレーザビームの遅軸方向の広がりをコリメートするためのものである。速軸コリメートレンズFACiおよび遅軸コリメートレンズSACiを透過したレーザビームは、伝搬方向がz軸正方向に収斂されたコリメートビームとなり、ミラーMiへ伝搬する。なお、半導体レーザダイオードLDiから出射されるレーザビームの遅軸方向の広がりが十分に小さい場合、遅軸コリメートレンズSACiを省略しても構わない。
ミラーMiは、半導体レーザダイオードLDiから出射されたレーザビームを速軸集束レンズFLへ導くために、上記レーザビームの伝搬方向を、概ねz軸正方向から概ねx軸負方向に変換するためのものである。ミラーMiには、従来から知られている各種ミラーを用いることができる。本実施形態では、ミラーMiとして、上記レーザビームの伝搬方向をz軸正方向からy軸正方向へ変換する第1のミラー(いわゆる「跳ね上げミラー」)と、上記レーザビームの伝搬方向をy軸正方向からx軸負方向へ変換する第2のミラー(いわゆる「折り返しミラー」)とを備えて構成されたものを用いている。
ここで、図1に示すように、ミラーM1~M10から出射される複数のレーザビームが互いに重なり合わないように、ミラーM1~M10のz軸方向の位置は、互いに異なっている。
特に、ミラーM1~M10のz軸方向の位置は、速軸集束レンズFLから離間するにつれて(すなわち、ミラーM1,M2,・・・,M10の順に)、順次、半導体レーザダイオードに近づく方向(z軸負方向)に所定量ずつシフトしている。これは、図1に示すように、ミラーM1~M10へ伝搬する複数のレーザビームにおいては、速軸集束レンズFLに近いレーザビームほど、より速軸集束レンズFL側に傾いているためである。より速軸集束レンズFL側に傾いているレーザビームを、ミラーによって反射し、速軸集束レンズFLに伝搬させるためには、半導体レーザダイオードからミラーまでの距離を、他のレーザビームよりも長くする必要があるためである。
なお、上記シフト量は、複数のミラーM1~M10に入射される複数のレーザビームの間隔よりも、小さくなっている。これにより、半導体レーザダイオードLD1~LD10から出射された複数のレーザビームは、ミラーM1~M10によってその間隔がより狭められた状態で、速軸集束レンズFLに向けて伝搬することとなる。
〔ミラーの構成〕
次に、図3を参照して、本実施形態のLDモジュール1が備えるミラーMiの構成ついて説明する。図3は、本実施形態に係るLDモジュール1が備えるミラーMiの構成を示す斜視図である。図3では、LDモジュール1が備えるミラーM1~M10のうちの1つについて、その構成を示しているが、ミラーM1~M10は、いずれも図3に示すミラーMiと同様の構成を有している。
次に、図3を参照して、本実施形態のLDモジュール1が備えるミラーMiの構成ついて説明する。図3は、本実施形態に係るLDモジュール1が備えるミラーMiの構成を示す斜視図である。図3では、LDモジュール1が備えるミラーM1~M10のうちの1つについて、その構成を示しているが、ミラーM1~M10は、いずれも図3に示すミラーMiと同様の構成を有している。
図3に示すように、ミラーMiは、第1のミラーMi1と、第2のミラーMi2とを備えて構成されている。ミラーMiは、第1のミラーMi1の上面B1と、第2のミラーMi2の下面A2とが互いに重なり合うように、第1のミラーMi1と第2のミラーMi2とが積み重ねられた構造を有している。第1のミラーMi1は、その下面A1が、xz平面に対して平行となるように、サブマウントBの表面上に対し、直接的または間接的に設置される。なお、第1のミラーMi1の上面B1および第2のミラーMi2の下面A2は、下面A1に対して平行な面である。また、第1のミラーMi1と第2のミラーMi2は、互いに別体化されているものであってもよく、互いに一体化されたものであってもよい。
第1のミラーMi1は、第1の反射面S1を有する。第1の反射面S1は、半導体レーザダイオードLDiから出射されたレーザビームの伝搬方向を、z軸正方向からy軸正方向へ変換する。このため、第1の反射面S1は、上記レーザビームの遅軸に対して概ね平行な面であって、上記レーザビームの光軸に対して45°の角度をなす(すなわち、下面A1に対して45°の角度をなす)ように構成されている。
ミラーMiは、上記レーザビームに対する向きが調整可能な場合、上記第1の反射面S1が上記レーザビームの遅軸に対して概ね平行な面となるように、その向きが調整されることが好ましい。これにより、ミラーMiは、上記レーザビームに対し、意図しない回転を生じさせたり、意図しない方向への反射を生じさせたりすることなく、上記レーザビームを所定の方向へ反射することができる。
第2のミラーMi2は、第2の反射面S2を有する。第2の反射面S2は、第1のミラーMi1によって反射されたレーザビームの伝搬方向を、y軸正方向からx軸負方向へ変換する。このため、第2の反射面S2は、前記第1の反射面によって反射されたレーザビームの速軸に対して概ね平行な面であって、上記レーザビームの光軸に対して45°の角度をなすように構成されている。
ミラーMiは、上記のとおり2つの反射面を組み合わせた比較的簡単な構成により、予め定められた入射角でレーザビームが入射されるようにレーザビームに対する向きが設定された場合(上記第1の反射面S1がレーザビームの遅軸に対して平行な面となる場合)において、当該ミラーに入射されるレーザビームと、当該ミラーから出射されるレーザビームとが、y軸正方向から見たときに直角をなすように、レーザビームを反射することができる。
特に、本実施形態のLDモジュール1において、ミラーMiの第1の反射面S1は、レーザビームの遅軸に対して概ね平行となるため、第1の反射面S1とレーザビームの遅軸とが概ね平行でない構成と比べて、レーザビームの意図しない回転や、意図しない方向への反射等といった不具合が生じ難くなっている。
同様に、本実施形態のLDモジュール1において、ミラーMiの第2の反射面S2は、レーザビームの速軸に対して概ね平行となるため、第2の反射面S2とレーザビームの速軸とが概ね平行でない構成と比べて、レーザビームの意図しない回転や、意図しない方向への反射等といった不具合が生じ難くなっている。
本実施形態のLDモジュール1において、ミラーM1~M10のいずれも、上述したミラーMiと同一の構成を採用している。すなわち、LDモジュール1は、ミラーM1~M10の各々に対し、互いに同一の構成のミラーMiを用いることができるため、ミラーM1~M10において、互いに異なる構成を用いたり、互いに異なる調整を行ったりする必要はない。よって、本実施形態のLDモジュール1は、該LDモジュール1に係るコストを削減することができ、該LDモジュール1を安価で実現することができる。
なお、ミラーMiにおいて、第2のミラーの下面および前記第1のミラーの上面は、接着剤によって互いに接着されていることが好ましく、特に、第2のミラーの下面および第1のミラーの上面の各々が、当該ミラーMiから出射されたレーザビームの速軸(すなわち、xz平面)に対して平行であることが好ましい。具体的には、第2のミラーの下面と第1のミラーの上面との間に接着剤を塗布した後、当該接着剤の硬化が完了するまでの間、第2のミラーの下面および第1のミラーの上面の各々が、複数のミラーから出射された複数のレーザビームの速軸に対して平行になる状態を保つことが好ましい。これにより、第2のミラーの下面と第1のミラーの上面との間の接着剤層の厚みを均一化することができる。この接着剤層の厚みが均一であれば、この接着剤層が収縮又は膨張した場合でも、出力ビームの伝播方向が傾いたり出力ビームの光軸の配置が崩れたりするといった事態の発生を回避することができる。なお、この接着剤層に生じ得る収縮又は膨張としては、接着剤を硬化する際に生じ得る硬化収縮や、接着剤を硬化した後に生じ得る熱膨張、熱収縮、膨潤などが想定される。
〔レーザビームの出射方向〕
次に、図4を参照して、半導体レーザダイオードLD1~LD10の各々の出射方向について説明する。図4は、本実施形態に係るLDモジュール1における、半導体レーザダイオードLD1~LD10の各々の出射方向を示す平面図である。なお、以下の説明においては、半導体レーザダイオードLDiの出射方向のz軸に対する傾きを、y軸を回転軸とする回転角θi(i=1~10の整数)によって表す。但し、x軸負方向への傾きについては回転角θiを正の値で表し、x軸正方向への傾きについては回転角θiを負の値で表すこととする。
次に、図4を参照して、半導体レーザダイオードLD1~LD10の各々の出射方向について説明する。図4は、本実施形態に係るLDモジュール1における、半導体レーザダイオードLD1~LD10の各々の出射方向を示す平面図である。なお、以下の説明においては、半導体レーザダイオードLDiの出射方向のz軸に対する傾きを、y軸を回転軸とする回転角θi(i=1~10の整数)によって表す。但し、x軸負方向への傾きについては回転角θiを正の値で表し、x軸正方向への傾きについては回転角θiを負の値で表すこととする。
本実施形態のLDモジュール1においては、ミラーM1~M10の各々は、予め定められた入射角であって、互いに同一の入射角でレーザビームが入射されるように、レーザビームに対する向きが設定されている。具体的には、ミラーM1~M10の各々は、第1の反射面S1(図3参照)がレーザビームの遅軸に対して概ね平行な面となるように、レーザビームに対する向きが設定されている。さらに、ミラーM1~M10の各々は、上記のとおり向きが設定された状態において、当該ミラーに入射されるレーザビームと、当該ミラーから出射されるレーザビームとが、y軸正方向から見たときに直角をなすように構成されている(図3参照)。
すなわち、本実施形態のLDモジュール1において、ミラーM1~M10から出射される複数のレーザビームの各々の出射方向は、各ミラーの調整によって決定付けられるのではなく、ミラーM1~M10へ入射される複数のレーザビームの各々の伝搬方向によって決定付けられる。
特に、本実施形態のLDモジュール1は、複数のレーザビームを集束気味にFLへ伝搬させる構成を採用している。これを実現するため、本実施形態のLDモジュール1は、図1および図4に示すように、複数のレーザビームが拡散気味にミラーM1~M10へ伝搬するように、半導体レーザダイオードLD1~LD10の各々の出射方向が設定されている。この結果、ミラーM1~M10から出射された複数のレーザビームは、集束気味に速軸集束レンズFLへ伝搬し、従来技術と比べてより速軸集束レンズFLに近い位置で集束することとなる。
これにより、本実施形態のLDモジュール1は、速軸集束レンズFLの曲率半径を小さくしなくとも、光ファイバOFの入射端面をより速軸集束レンズFLに近い位置とすることができ、よって、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現することができる。
また、本実施形態のLDモジュール1は、互いに平行な複数のレーザビームを速軸集束レンズFLに入射させる構成と比べて、速軸集束レンズFLに入射されるビーム束(本書において、「ビーム束」とは、複数のレーザビームによって形成される光束のことを意味する。)の最大幅を小さくすることができる。これにより、速軸集束レンズFLの収差の影響を軽減し、よって、レーザビームの結合効率の低下を抑制することができる。
さらに、本実施形態のLDモジュール1は、速軸集束レンズFLの曲率半径を小さくすることによって速軸集束レンズFLの焦点距離を短くする構成と比べて、速軸集束レンズから出射された各レーザビームの、光ファイバOFに対する入射角が小さくなる。このため、結合効率の低下を招来することなく、光ファイバOFの入射端面をより速軸集束レンズFLに近い位置とすることができる。
特に、本実施形態のLDモジュール1は、ミラーの調整を行わなくとも、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させることができるため、上記ミラーの調整による生じ得る各種不具合の発生を防止することができる。よって、本実施形態のLDモジュール1は、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現することができる。
例えば、本実施形態(図4)のLDモジュール1において、ミラーM1~M10の各々の回転角θiを、以下のように設定することにより、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させることができる。
θ1 :1.000°
θ2 :0.666°
θ3 :0.371°
θ4 :0.109°
θ5 :-0.125°
θ6 :-0.335°
θ7 :-0.525°
θ8 :-0.698°
θ9 :-0.856°
θ10:-1.000°
この例では、半導体レーザダイオードLD1~LD10は、レーザダイオード列のより中央側に配置されたものについては、回転角θiの絶対値がより小さくなるように、すなわち、レーザダイオード列のより外側に配置されたものについては、回転角θiの絶対値がより大きくなるように(すなわち、出射方向がより外側を向くように)、各々の出射方向が設定されている。
θ2 :0.666°
θ3 :0.371°
θ4 :0.109°
θ5 :-0.125°
θ6 :-0.335°
θ7 :-0.525°
θ8 :-0.698°
θ9 :-0.856°
θ10:-1.000°
この例では、半導体レーザダイオードLD1~LD10は、レーザダイオード列のより中央側に配置されたものについては、回転角θiの絶対値がより小さくなるように、すなわち、レーザダイオード列のより外側に配置されたものについては、回転角θiの絶対値がより大きくなるように(すなわち、出射方向がより外側を向くように)、各々の出射方向が設定されている。
これにより、図4に示すように、半導体レーザダイオードLD1~LD10から出射された複数のレーザビームは、その中央から外側に広がりつつ伝搬するものとなる。反対に、図1および図4に示すように、ミラーM1~M10から出射された複数のレーザビームは、その中央に集束しつつ伝搬するものとなる。このようなレーザビームを光ファイバに入射することで、レーザビームの結合効率をより高めることができる。
なお、本実施形態のLDモジュール1においては、ミラーMiに入射されるレーザビームとミラーMiから出射されるレーザビームとが直角をなすため、ミラーMiに入射されるレーザビームの、z軸に対して広がる方向の傾き(遅軸方向の傾き)θiと、ミラーMiから出射されるレーザビームの、x軸に対して集束する方向の傾き(速軸方向の傾き)θi´とが、同角度となる。
〔効果の検証〕
以下、図5および図6を参照して、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させる構成を採用することにより、得られる効果について説明する。
以下、図5および図6を参照して、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させる構成を採用することにより、得られる効果について説明する。
図5は、速軸集束レンズFLの曲率半径と、ビーム束が光ファイバOFの入射端面に入射する際の結合効率との関係を示すグラフである。図5に示すグラフにおいて、横軸は、速軸集束レンズFLの曲率半径(単位はmm)を表し、縦軸は、ビーム束を光ファイバOFに入射させる際の結合効率(単位は%)を表す。図5においては、上記回転角θiの最大値(以下、「最大回転角θ」と示す。)を0°、0.5°、1°、1.5°とした場合の結合効率を示している。
図5に示すように、最大回転角θが0°の場合、すなわち、複数のレーザビームが平行に並ぶ場合、速軸集束レンズFLの曲率半径を小さくしていくと、ビーム束の光ファイバOFへの結合効率が低下していく。このような結合効率の低下が生じる原因としては、各レーザビームの光ファイバOFへの入射角が大きくなり、光ファイバOFの受光角を超える成分が増えることが挙げられる。
一方、最大回転角θが0°よりも大きい場合、すなわち、複数のレーザビームが一点で交差する場合も、速軸集束レンズFLの曲率半径を小さくしていくと、ビーム束の光ファイバOFへの結合効率が低下していく。しかしながら、最大回転角θが0°である場合と比べて、結合効率の低下の度合いは小さくなっている。特に、最大回転角θを1°とした場合、速軸集束レンズFLの曲率半径が10mmのときの結合効率は、最大回転角θを0°とした場合と比べて約3%も高い値を示している。これは、各レーザビームの光ファイバOFへの入射角が、最大回転角θを0°とした場合と比べて小さくなっているためであると考えられる。
図6は、ファイバ位置と、ビーム束が光ファイバOFの入射端面に入射する際の結合効率との関係を示すグラフである。ここで、ファイバ位置とは、半導体レーザダイオードLD1の中心を通るz軸に平行な直線から、光ファイバOFの入射端面までの距離のことを指す。図6に示すグラフにおいて、横軸は、ファイバ位置(単位はmm)を表し、縦軸は、出力ビーム束を光ファイバOFに入射させる際の結合効率(単位は%)を表す。図6においても、最大回転角θを0°、0.5°、1°、1.5°とした場合の結合効率を示している。
図6に示すように、最大回転角θが0°の場合、すなわち、各出力ビームの光軸が平行に並ぶ場合、光ファイバOFの入射端面を速軸集束レンズFLに近づけていくと、ビーム束の光ファイバOFへの結合効率が低下していく。このような結合効率の低下が生じる原因としては、各出力ビームが光ファイバOFの入射端面に入射する際の入射角が大きくなり、ファイバの受光角を超える成分が増えることが挙げられる。
一方、最大回転角θが0°よりも大きい場合、すなわち、各出力ビームの光軸が一点で交差する場合も、光ファイバOFの入射端面を速軸集束レンズFLに近づけていくと、出力ビーム束の光ファイバOFへの結合効率が低下していく。しかしながら、最大回転角θが0°の場合と比べて、結合効率の低下の度合いは小さくなっている。特に、最大回転角θを1°として場合、結合効率の低下を1%未満に抑えながら、光ファイバOFの入射端面を速軸集束レンズFLの出射面に7mmも近づけ得ることが分かる。これは、各レーザビームの光ファイバOFへの入射角が、最大回転角θを0°とした場合と比べて小さくなっているためであると考えられる。
以上のように、本発明のLDモジュールは、図1に示すように、複数の半導体レーザダイオードLD1~LD10は、互いに隣接するレーザビーム同士の間隔が徐々に広がるように、複数のレーザビームを複数のミラーM1~M10に向けて出射し、複数のミラーM1~M10は、互いに隣接するレーザビーム同士の間隔が徐々に狭まるように、複数のレーザビームを速軸集束レンズFLに向けて反射する。
これにより、レーザビームの結合効率を低下させることなく、LDモジュールの小型化を実現できる。
以下、図7および図8を参照して、本実施形態に係るLDモジュール1の実施例および比較例について説明する。
〔実施例〕
図7は、本実施形態の実施例におけるLDモジュールの概略構成を示す。
図7は、本実施形態の実施例におけるLDモジュールの概略構成を示す。
本実施例では、図7に示すLDモジュールを用いて、複数のレーザビームを集束させるまでに必要な距離(すなわち、光ファイバOFの入射端面の位置までに要する距離)を測定した。
本実施例のLDモジュールは、図7に示すように、半導体レーザダイオードLD1~LD3、速軸コリメートレンズFAC1~FAC3、遅軸コリメートレンズSAC1~SAC3、ミラーM1~M3、速軸集束レンズFL、および、遅軸集光レンズSLを備えて構成されている。すなわち、本実施例(図7)のLDモジュールは、3本のレーザビームを光ファイバOFに結合する構成とした点で、本実施形態(図1)のLDモジュール1と異なる。
図7に示すLDモジュールでは、各構成部材のパラメータを以下のとおり設定した。
半導体レーザダイオードLD1の回転角θ:-1°
半導体レーザダイオードLD2の回転角θ: 0°
半導体レーザダイオードLD3の回転角θ:+1°
速軸集束レンズFLの曲率半径 :6.9mm
遅軸集光レンズSLの曲率半径 :3.5mm
すなわち、本実施例のLDモジュールでは、本実施形態(図1)のLDモジュール1と同様に、複数のレーザビームが拡散気味に複数のミラーへ伝搬し、複数のレーザビームが集束気味に速軸集束レンズFLへ伝搬する構成を用いた。
半導体レーザダイオードLD2の回転角θ: 0°
半導体レーザダイオードLD3の回転角θ:+1°
速軸集束レンズFLの曲率半径 :6.9mm
遅軸集光レンズSLの曲率半径 :3.5mm
すなわち、本実施例のLDモジュールでは、本実施形態(図1)のLDモジュール1と同様に、複数のレーザビームが拡散気味に複数のミラーへ伝搬し、複数のレーザビームが集束気味に速軸集束レンズFLへ伝搬する構成を用いた。
〔比較例〕
図8は、本実施形態の比較例におけるLDモジュールの概略構成を示す。図8に示すLDモジュールは、各半導体レーザダイオードの回転角θが、上記実施例(図7)のLDモジュールと異なる。その他の点については、上記実施例(図7)のLDモジュールと同様である。
図8は、本実施形態の比較例におけるLDモジュールの概略構成を示す。図8に示すLDモジュールは、各半導体レーザダイオードの回転角θが、上記実施例(図7)のLDモジュールと異なる。その他の点については、上記実施例(図7)のLDモジュールと同様である。
図8に示すLDモジュールでは、各構成部材のパラメータを以下のとおり設定した。
半導体レーザダイオードLD1の回転角θ: 0°
半導体レーザダイオードLD2の回転角θ: 0°
半導体レーザダイオードLD3の回転角θ: 0°
速軸集束レンズFLの曲率半径 :6.9mm
遅軸集光レンズSLの曲率半径 :3.5mm
すなわち、本実施例のLDモジュールでは、本実施形態(図1)のLDモジュール1と異なり、複数のレーザビームが互いに平行に複数のミラーへ伝搬し、複数のレーザビームが互いに平行に速軸集束レンズFLへ伝搬する構成を用いた。
半導体レーザダイオードLD2の回転角θ: 0°
半導体レーザダイオードLD3の回転角θ: 0°
速軸集束レンズFLの曲率半径 :6.9mm
遅軸集光レンズSLの曲率半径 :3.5mm
すなわち、本実施例のLDモジュールでは、本実施形態(図1)のLDモジュール1と異なり、複数のレーザビームが互いに平行に複数のミラーへ伝搬し、複数のレーザビームが互いに平行に速軸集束レンズFLへ伝搬する構成を用いた。
〔実施結果〕
上記実施例を実施した結果、図7に示すLDモジュールでは、速軸集束レンズFLの入射面から、光ファイバOFの入射端面まで、12.3mmの距離を要することが分かった。一方、上記比較例を実施した結果、図8に示すLDモジュールでは、速軸集束レンズFLの入射面から、光ファイバOFの入射端面まで、15.6mmの距離を要することが分かった。すなわち、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させることにより、速軸集束レンズFLの入射面から、光ファイバOFの入射端面までの距離を大幅に短縮できることが分かった。
上記実施例を実施した結果、図7に示すLDモジュールでは、速軸集束レンズFLの入射面から、光ファイバOFの入射端面まで、12.3mmの距離を要することが分かった。一方、上記比較例を実施した結果、図8に示すLDモジュールでは、速軸集束レンズFLの入射面から、光ファイバOFの入射端面まで、15.6mmの距離を要することが分かった。すなわち、複数のレーザビームを集束気味に速軸集束レンズFLへ伝搬させることにより、速軸集束レンズFLの入射面から、光ファイバOFの入射端面までの距離を大幅に短縮できることが分かった。
なお、上記実施例のLDモジュールにおいては、速軸コリメートレンズFACiの位置を、半導体レーザダイオードLDiの出射端面から、z軸正方向(すなわち、半導体レーザダイオードLDiから出射されたレーザ光の伝播方向)に、僅かに(3μm)オフセットする構成が採用されている。これにより、速軸コリメートレンズFACiから出射されたレーザビームは、速軸方向のビーム径を徐々に小さくしながら、光ファイバOFの入射端面に向かって伝搬することとなる。これにより、本実施例のLDモジュール1は、光ファイバOFの入射端面において、レーザビームを集光させることができ、よって、各半導体レーザダイオードLDiから出射されるレーザビームを更に効率よく光ファイバOFに結合させることが可能となっている。
上記LDモジュールにおいて、前記複数のミラーの各々は、当該ミラーに入射されるレーザビームと、当該ミラーから出射されるレーザビームとが、双方のレーザビームに対して垂直な方向から見たときに、直角をなすように構成されていることが好ましい。
上記の構成によれば、各ミラーを比較的単純な構成とすることができるため、上記不具合の発生を抑制することができる。特に、複数の反射面を組み合わせて構成されたミラーを用いる場合には、上記構成を採用することにより、上記不具合の抑制効果がより顕著なものとなる。
上記LDモジュールにおいて、前記第1のミラーは、当該ミラーに入射されてくるレーザビームの遅軸に対して平行な面であって、前記レーザビームの光軸に対して45°の角度をなす第1の反射面を有し、前記第2のミラーは、前記第1の反射面によって反射されたレーザビームの速軸に対して平行な面であって、前記レーザビームの光軸に対して45°の角度をなす第2の反射面を有することが好ましい。
上記の構成によれば、上記第1のミラーおよび上記第2のミラーの反射による、ビームの捻じれをより生じ難くすることができる。
上記LDモジュールにおいて、前記複数のレーザダイオードは、前記レーザダイオード列のより外側に配置されるにつれて、レーザビームの出射方向がより外側となるように、各々の出射方向が設定されていることが好ましい。
上記の構成によれば、複数の半導体レーザダイオードから出射された複数のレーザビームは、その中央(ビーム束の中心)から外側に広がりつつ伝搬するものとなり、反対に、複数のミラーから出射された複数のレーザビームは、その中央(ビーム束の中心)に集束しつつ伝搬するものとなる。このようなレーザビームを光ファイバに入射することで、レーザビームの結合効率をより高めることができる。
上記LDモジュールにおいて、前記複数のレーザダイオードから出射された前記複数のレーザビームの各々の光路上に配置された複数の速軸コリメートレンズをさらに備えており、前記複数の速軸コリメートレンズの各々は、対応するレーザビームの速軸方向のビーム広がりをコリメートする位置を基準として、該レーザビームの伝播方向にオフセットされており、該オフセットの量が、該レーザビームの速軸方向のビーム径を、前記集束レンズによって集束された複数のレーザビームの交差点において最小化するように設定されている、ことが好ましい。
上記の構成によれば、上記交差点において、各レーザビームのビーム径が最小化されるので、上記複数のレーザビームからなるビーム束を光ファイバに入射させる際の結合効率を更に高めることができる。
上記LDモジュールにおいて、前記第2のミラーの下面および前記第1のミラーの上面は、互いに接着されており、前記第2のミラーの下面および前記第1のミラーの上面の各々は、前記複数のミラーから出射された前記複数のレーザビームの速軸に対して平行であることが好ましい。
上記の構成によれば、第2のミラーの下面と第1のミラーの上面との間に形成される接着剤層の厚みが均一であれば、これらの接着剤層が収縮又は膨張した場合でも、出力ビームの伝播方向が傾いたり出力ビームの光軸の配置が崩れたりするといった事態の発生を回避することができる。
〔付記事項〕
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
(単位光学系(レーザビーム)の数について)
本実施形態のLDモジュール1は、10本のレーザビームを結合すべく、10個の単位光学系を備えているが、これに限らない。すなわち、LDモジュール1は、9個以下の単位光学系を備えたものとして実施してもよく、11個以上の単位光学系を備えたものとして実施してもよい。
本実施形態のLDモジュール1は、10本のレーザビームを結合すべく、10個の単位光学系を備えているが、これに限らない。すなわち、LDモジュール1は、9個以下の単位光学系を備えたものとして実施してもよく、11個以上の単位光学系を備えたものとして実施してもよい。
(各構成部材の設置場所について)
本実施形態のLDモジュール1は、図1に示すように、各構成部材が1枚のサブマウントBの表面上に設けられているが、これに限らない。例えば、上記各構成部材の一部が、サブマウントBの外部に設けられている構成とすることもできる。例えば、速軸集束レンズFLと遅軸集光レンズSLとが、サブマウントBの外部(例えば、第2のサブマウント等)に設けられている構成や、遅軸集光レンズSLが、サブマウントBの外部に設けられている構成とすることもできる。
本実施形態のLDモジュール1は、図1に示すように、各構成部材が1枚のサブマウントBの表面上に設けられているが、これに限らない。例えば、上記各構成部材の一部が、サブマウントBの外部に設けられている構成とすることもできる。例えば、速軸集束レンズFLと遅軸集光レンズSLとが、サブマウントBの外部(例えば、第2のサブマウント等)に設けられている構成や、遅軸集光レンズSLが、サブマウントBの外部に設けられている構成とすることもできる。
本実施形態に係るLDモジュール1において、速軸コリメートレンズFACiの位置を、z軸正方向(すなわち、半導体レーザダイオードLDiから出射されたレーザ光の伝播方向)に、基準位置からオフセットする構成を採用してもよい。ここで、基準位置とは、速軸コリメートレンズFACiが半導体レーザダイオードLDiから出射されたレーザ光の速軸方向のビーム広がりを平行化(コリメート)する作用を発揮する位置のことを指す。基準位置からレーザ光の伝播方向にオフセットされた速軸コリメートレンズFACiは、半導体レーザダイオードLDiから出射されたレーザ光を集光する作用、すなわち、ビーム径を次第に小さくする作用を発揮することになる。
特に、本実施形態に係るLDモジュール1において、各速軸コリメートレンズFACiのオフセット量を個別に設定することにより、各出力ビームのビーム径を出力ビーム束の交差点において最少化させることが好ましい。例えば、各速軸コリメートレンズFACiのオフセット量Δiを、Δ1>Δ2>・・・>Δ10となるように設定することにより、各出力ビームのビーム径を上記交差点において最少化させることが好ましい。
従来のLDモジュールでは、各出力ビームのビーム径を最適化するため、該ビーム径を調整するためのさらなるレンズを用いていた。一方、上述のとおり、本実施形態のLDモジュール1は、各速軸コリメートレンズFACiのオフセット量を調整することにより、各出力ビームのビーム径を最適化するため、ビーム径を調整するためのさらなるレンズを設ける必要はない。よって、本実施形態のLDモジュール1は、該LDモジュール1に係るコストを削減することができ、該LDモジュール1を安価で実現することができる。
本発明は、LDモジュールに好適に利用することができる。特に、半導体レーザダイオードを光源とするLDモジュールに好適に利用することができる。
1 LDモジュール
LD1~LD10 半導体レーザダイオード(レーザダイオード)
FAC1~FAC10 速軸コリメートレンズ
SAC1~SAC10 遅軸コリメートレンズ
M1~M10 ミラー
Mi1 第1のミラー
S1 反射面(第1の反射面)
Mi2 第2のミラー
S2 反射面(第2の反射面)
B サブマウント(基板)
FL 速軸集束レンズ(集束レンズ)
SL 遅軸集光レンズ
OF 光ファイバ
LD1~LD10 半導体レーザダイオード(レーザダイオード)
FAC1~FAC10 速軸コリメートレンズ
SAC1~SAC10 遅軸コリメートレンズ
M1~M10 ミラー
Mi1 第1のミラー
S1 反射面(第1の反射面)
Mi2 第2のミラー
S2 反射面(第2の反射面)
B サブマウント(基板)
FL 速軸集束レンズ(集束レンズ)
SL 遅軸集光レンズ
OF 光ファイバ
Claims (6)
- レーザダイオード列をなす複数のレーザダイオードと、
前記複数のレーザダイオードから出射された複数のレーザビームの各々の光路上に配置された複数の速軸コリメートレンズと、
前記複数のレーザダイオードから出射された前記複数のレーザビームの各々を、当該レーザビームの遅軸方向に反射する複数のミラーと、
前記複数のミラーによって反射された前記複数のレーザビームを、当該複数のレーザビームが交差するように集束する速軸集束レンズと、
を備え、
前記複数のレーザダイオードは、
互いに隣接するレーザビーム同士の間隔が徐々に広がるように、前記複数のレーザビームを前記複数のミラーに向けて出射し、
前記複数のミラーは、
互いに隣接するレーザビーム同士の間隔が徐々に狭まるように、前記複数のレーザビームを前記速軸集束レンズに向けて反射し、
前記複数のミラーの各々は、
当該ミラーへ入射されてきたレーザビームを速軸方向に反射する第1のミラーと、前記第1のミラーから反射されてきたレーザビームを遅軸方向に反射する第2のミラーと、を備えて構成されており、
前記複数のレーザビームの各々について、
当該レーザビームが対応する前記第1のミラーへ入射する時の当該レーザビームの速軸と、当該レーザビームが対応する前記第2のミラーから出射された時の当該レーザビームの遅軸とが、互いに平行である
ことを特徴とするLDモジュール。 - 前記複数のミラーの各々は、
当該ミラーに入射されるレーザビームと、当該ミラーから出射されるレーザビームとが、双方のレーザビームに対して垂直な方向から見たときに、直角をなすように構成されている
ことを特徴とする請求項1に記載のLDモジュール。 - 前記第1のミラーは、
当該ミラーに入射されてくるレーザビームの遅軸に対して平行な面であって、前記レーザビームの光軸に対して45°の角度をなす第1の反射面を有し、
前記第2のミラーは、
前記第1の反射面によって反射されたレーザビームの速軸に対して平行な面であって、前記レーザビームの光軸に対して45°の角度をなす第2の反射面を有する
を備えることを特徴とする請求項2に記載のLDモジュール。 - 前記複数のレーザダイオードは、
前記レーザダイオード列のより外側に配置されるにつれて、レーザビームの出射方向がより外側となるように、各々の出射方向が設定されている
ことを特徴とする請求項1から3のいずれか1項に記載のLDモジュール。 - 前記複数の速軸コリメートレンズの各々は、
対応するレーザビームの速軸方向のビーム広がりをコリメートする位置を基準として、該レーザビームの伝播方向にオフセットされており、該オフセットの量が、該レーザビームの速軸方向のビーム径を、前記速軸集束レンズによって集束された複数のレーザビームの交差点において最小化するように設定されている、
ことを特徴とする請求項1から4のいずれか一項に記載のLDモジュール。 - 前記第2のミラーの下面および前記第1のミラーの上面は、互いに接着されており、
前記第2のミラーの下面および前記第1のミラーの上面の各々は、前記複数のミラーから出射された前記複数のレーザビームの速軸に対して平行である
ことを特徴とする請求項1から5のいずれか一項に記載のLDモジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480042718.5A CN105408794B (zh) | 2013-07-31 | 2014-07-17 | Ld模块 |
EP14832180.5A EP3029502B1 (en) | 2013-07-31 | 2014-07-17 | Laser diode based module |
US15/009,142 US9594252B2 (en) | 2013-07-31 | 2016-01-28 | LD module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-159333 | 2013-07-31 | ||
JP2013159333A JP5597288B1 (ja) | 2013-07-31 | 2013-07-31 | Ldモジュール |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/009,142 Continuation US9594252B2 (en) | 2013-07-31 | 2016-01-28 | LD module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016078A1 true WO2015016078A1 (ja) | 2015-02-05 |
Family
ID=51840266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069047 WO2015016078A1 (ja) | 2013-07-31 | 2014-07-17 | Ldモジュール |
Country Status (5)
Country | Link |
---|---|
US (1) | US9594252B2 (ja) |
EP (1) | EP3029502B1 (ja) |
JP (1) | JP5597288B1 (ja) |
CN (1) | CN105408794B (ja) |
WO (1) | WO2015016078A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018059757A (ja) * | 2016-10-04 | 2018-04-12 | オムロンオートモーティブエレクトロニクス株式会社 | 投光光学系、物体検出装置 |
US11025031B2 (en) | 2016-11-29 | 2021-06-01 | Leonardo Electronics Us Inc. | Dual junction fiber-coupled laser diode and related methods |
EP3750218A4 (en) * | 2018-02-06 | 2021-11-03 | Nlight, Inc. | DIODE LASER DEVICE WITH FAC LENS BEAM STEERING OUTSIDE THE PLANE |
WO2020036998A1 (en) | 2018-08-13 | 2020-02-20 | Lasertel, Inc. | Use of metal-core printed circuit board (pcb) for generation of ultra-narrow, high-current pulse driver |
US11296481B2 (en) * | 2019-01-09 | 2022-04-05 | Leonardo Electronics Us Inc. | Divergence reshaping array |
CN111585165B (zh) | 2019-02-15 | 2024-06-18 | 日亚化学工业株式会社 | 发光装置的制造方法、发光装置、或基部 |
JP7206494B2 (ja) * | 2019-02-15 | 2023-01-18 | 日亜化学工業株式会社 | 発光装置の製造方法、発光装置 |
JP2020145327A (ja) * | 2019-03-07 | 2020-09-10 | 株式会社島津製作所 | 半導体レーザモジュール及びその装置 |
US11752571B1 (en) | 2019-06-07 | 2023-09-12 | Leonardo Electronics Us Inc. | Coherent beam coupler |
JP7370753B2 (ja) * | 2019-07-18 | 2023-10-30 | 古河電気工業株式会社 | 光源ユニット、光源装置および光ファイバレーザ |
CN110718848A (zh) * | 2019-09-18 | 2020-01-21 | 深圳市星汉激光科技有限公司 | 半导体激光器 |
CN114402242A (zh) * | 2019-09-25 | 2022-04-26 | 三菱电机株式会社 | 受光元件模块 |
WO2023276794A1 (ja) | 2021-06-29 | 2023-01-05 | 日亜化学工業株式会社 | 発光装置 |
JP2023058370A (ja) | 2021-10-13 | 2023-04-25 | 日亜化学工業株式会社 | 発光装置、発光モジュール |
WO2024070857A1 (ja) * | 2022-09-29 | 2024-04-04 | 日亜化学工業株式会社 | 発光装置および発光モジュール |
CN115494593B (zh) * | 2022-09-29 | 2024-07-02 | 中国电子科技集团公司第四十四研究所 | 一种轻重量的光纤耦合激光器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003309309A (ja) * | 2002-04-17 | 2003-10-31 | Itaru Watanabe | 高密度・高出力レーザー装置 |
JP2004252428A (ja) | 2003-01-30 | 2004-09-09 | Fuji Photo Film Co Ltd | レーザ光合波装置 |
JP2004258624A (ja) * | 2003-02-03 | 2004-09-16 | Fuji Photo Film Co Ltd | レーザ光合波装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3071360B2 (ja) * | 1993-04-30 | 2000-07-31 | 新日本製鐵株式会社 | リニアアレイレーザダイオードに用いる光路変換器及びそれを用いたレーザ装置及びその製造方法 |
US5513201A (en) * | 1993-04-30 | 1996-04-30 | Nippon Steel Corporation | Optical path rotating device used with linear array laser diode and laser apparatus applied therewith |
US5418880A (en) * | 1994-07-29 | 1995-05-23 | Polaroid Corporation | High-power optical fiber amplifier or laser device |
DE19537265C1 (de) * | 1995-10-06 | 1997-02-27 | Jenoptik Jena Gmbh | Anordnung zur Zusammenführung und Formung der Strahlung mehrerer Laserdiodenzeilen |
US6028722A (en) * | 1996-03-08 | 2000-02-22 | Sdl, Inc. | Optical beam reconfiguring device and optical handling system for device utilization |
US5629791A (en) * | 1996-05-31 | 1997-05-13 | Eastman Kodak Company | Optical compensation for laser emitter array non-linearity |
JP2001215443A (ja) * | 2000-02-04 | 2001-08-10 | Hamamatsu Photonics Kk | 光学装置 |
DE502004007897D1 (de) * | 2004-07-19 | 2008-10-02 | Trumpf Laser Gmbh & Co Kg | Diodenlaseranordnung und Strahlformungseinheit dafür |
JP2006171348A (ja) * | 2004-12-15 | 2006-06-29 | Nippon Steel Corp | 半導体レーザ装置 |
US7733932B2 (en) * | 2008-03-28 | 2010-06-08 | Victor Faybishenko | Laser diode assemblies |
CN102576973A (zh) * | 2009-01-19 | 2012-07-11 | 奥兰若技术有限公司 | 具有用于1060nm的保护滤光器的高功率多芯片泵浦模块以及包括其的泵浦模块 |
DE102010038571A1 (de) * | 2010-07-28 | 2012-02-02 | Jenoptik Laser Gmbh | Vorrichtung und Verfahren zur Strahlformung |
CN203071399U (zh) * | 2012-12-28 | 2013-07-17 | 西安炬光科技有限公司 | 一种窄光谱高功率半导体激光器耦合装置 |
-
2013
- 2013-07-31 JP JP2013159333A patent/JP5597288B1/ja active Active
-
2014
- 2014-07-17 CN CN201480042718.5A patent/CN105408794B/zh active Active
- 2014-07-17 WO PCT/JP2014/069047 patent/WO2015016078A1/ja active Application Filing
- 2014-07-17 EP EP14832180.5A patent/EP3029502B1/en active Active
-
2016
- 2016-01-28 US US15/009,142 patent/US9594252B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003309309A (ja) * | 2002-04-17 | 2003-10-31 | Itaru Watanabe | 高密度・高出力レーザー装置 |
JP2004252428A (ja) | 2003-01-30 | 2004-09-09 | Fuji Photo Film Co Ltd | レーザ光合波装置 |
JP2004258624A (ja) * | 2003-02-03 | 2004-09-16 | Fuji Photo Film Co Ltd | レーザ光合波装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2015031739A (ja) | 2015-02-16 |
EP3029502A1 (en) | 2016-06-08 |
CN105408794A (zh) | 2016-03-16 |
JP5597288B1 (ja) | 2014-10-01 |
US20160147025A1 (en) | 2016-05-26 |
EP3029502B1 (en) | 2021-10-06 |
US9594252B2 (en) | 2017-03-14 |
EP3029502A4 (en) | 2016-07-27 |
CN105408794B (zh) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5597288B1 (ja) | Ldモジュール | |
JP5717714B2 (ja) | 合波装置、合波方法、及び、ldモジュール | |
JP5767684B2 (ja) | 導光装置、製造方法、及び、ldモジュール | |
JP5940709B2 (ja) | 導光装置の製造方法。 | |
WO2013168445A1 (ja) | 半導体レーザモジュール | |
US9252885B2 (en) | Method for manufacturing wavelength division multiplexing transmission apparatus and wavelength division multiplexing transmission apparatus | |
WO2018142657A1 (ja) | 導光装置、レーザモジュール、及び導光装置の製造方法 | |
WO2015146721A1 (ja) | 導光装置、製造方法、及び、ldモジュール | |
JP6093388B2 (ja) | 合波装置、合波装置の製造方法、及び、ldモジュール | |
US20150049779A1 (en) | Semiconductor laser optical device | |
JP6359848B2 (ja) | 光レセプタクルおよびこれを備えた光モジュール | |
WO2017068843A1 (ja) | 光路変換素子、光インターフェース装置、光伝送システム | |
US11675144B2 (en) | Laser module | |
JP2018173610A (ja) | レーザモジュール | |
JP2005164665A (ja) | 発光モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480042718.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014832180 Country of ref document: EP |