WO2015015952A1 - 自在継手用ヨーク付トルク伝達軸及びその製造方法 - Google Patents

自在継手用ヨーク付トルク伝達軸及びその製造方法 Download PDF

Info

Publication number
WO2015015952A1
WO2015015952A1 PCT/JP2014/066579 JP2014066579W WO2015015952A1 WO 2015015952 A1 WO2015015952 A1 WO 2015015952A1 JP 2014066579 W JP2014066579 W JP 2014066579W WO 2015015952 A1 WO2015015952 A1 WO 2015015952A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque transmission
transmission shaft
universal joint
spline
yoke
Prior art date
Application number
PCT/JP2014/066579
Other languages
English (en)
French (fr)
Inventor
祥史 黒川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2015529457A priority Critical patent/JP6354761B2/ja
Priority to CN201480042285.3A priority patent/CN105473882B/zh
Priority to EP14832831.3A priority patent/EP3001060B1/en
Priority to US14/900,845 priority patent/US9915291B2/en
Publication of WO2015015952A1 publication Critical patent/WO2015015952A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/101Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/16Forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/75Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0852Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
    • F16D1/0858Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to the elasticity of the hub (including shrink fits)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7026Longitudinally splined or fluted rod
    • Y10T403/7035Specific angle or shape of rib, key, groove, or shoulder

Definitions

  • the present invention relates to a torque transmission shaft with a universal joint yoke and a method of manufacturing the same, which constitutes an intermediate shaft for transmitting a rotation of a steering shaft to an input shaft of a steering gear unit.
  • a steering device as shown in FIG. 11 is used as a steering device for an automobile.
  • This steering device has a configuration capable of giving a desired steering angle to left and right steering wheels (not shown) by converting the rotational motion of the steering wheel 1 operated by the driver into a linear motion by the steering gear unit 2.
  • the steering wheel 1 is fixed to the rear end portion of the steering shaft 3.
  • the front end portion of the steering shaft 3 is connected to the base end portion of the input shaft 6 of the steering gear unit 2 via a pair of universal joints 4 a and 4 b and an intermediate shaft 5.
  • the steering gear unit 2 is configured, and both ends of a rack shaft having rack teeth meshed with pinion teeth provided at an intermediate portion of the input shaft 6 are respectively connected to left and right steering wheels.
  • the base end portions of the pair of tie rods 7, 7 are connected via a spherical joint.
  • the intermediate shaft 5 constituting the steering device as described above has one or both of the following (1) and (2). For this reason, a function for expanding and contracting the entire length is required.
  • the interval between the universal joints 4a and 4b may fluctuate. In such a case, the intermediate shaft 5 can be adjusted smoothly so that the front and rear position can be adjusted. It is necessary to make the entire length smoothly extendable (with light force).
  • the steering gear unit 2 In the event of a collision accident, the steering gear unit 2 is strongly pushed backward along with the primary collision in which the automobile collides with another automobile or the like.
  • the steering wheel 1 supported and fixed to the rear end portion of the steering shaft 3 is displaced (pushed up) toward the driver's body and driven.
  • the entire length of the intermediate shaft 5 is configured to be reduced by the impact load accompanying the primary collision so that the movement of the steering gear unit 2 accompanying the primary collision is not transmitted to the steering shaft 3 as it is.
  • the load required to expand and contract the intermediate shaft 5 may be somewhat large.
  • the intermediate shaft 5 constituting the steering device is required to have a function of expanding and contracting the entire length in addition to the function of transmitting torque.
  • the intermediate shaft 5 having such a function has been conventionally used. Widely implemented (see, for example, Patent Documents 1 and 2). 12 to 13 show an example of the intermediate shaft 5 that has been widely used in the past.
  • the intermediate shaft 5 includes a pair of torque transmission shafts 8a and 8b each having a circular or tubular shape.
  • the base end portions of the yokes 9 and 9 for constituting the universal joints 4a and 4b are respectively provided at the outer end portions in the axial direction of the torque transmission shafts 8a and 8b (the end portions that are the base end portions and opposite to each other). Bonded and fixed.
  • Each of the universal joints 4a and 4b is coupled with the other yokes 9a and 9b via the cross shaft 10 at the tip ends of the yokes 9 and 9, and the central axes of the yokes 9, 9a and 9b are inclined with each other. However, torque can be transmitted between the yokes 9, 9a, 9b.
  • the tip portion (left end portion in FIG. 12) of the circular torque transmission shaft 8a has a larger diameter than the middle portion, and
  • the male spline portion 11 is provided on the outer peripheral surface of the tip of the torque transmission shaft 8a.
  • the groove bottom diameter d 11 of the male spline section 11, larger than the outer diameter D 8a of the intermediate portion of the torque transmission shaft 8a in (d 11> D 8a) to that, the male in the large diameter portion Spline teeth can be formed by broaching, which is a kind of cutting process.
  • female spline teeth are formed on the inner peripheral surface of the circular torque transmission shaft 8b over almost the entire length of the inner peripheral surface of the torque transmission shaft 8b, so that almost the entire inner peripheral surface of the torque transmission shaft 8b is formed. Is a female spline portion 18.
  • the circular torque transmission shaft 8a and the circular torque transmission shaft 8b have a male spline portion 11 formed on the outer peripheral surface of the distal end portion of the circular torque transmission shaft 8a.
  • the intermediate shaft 5 that can be extended and contracted is obtained.
  • the function corresponding to the above (1) and (2) can be obtained, and the same is performed with a somewhat large force. By doing so, only the function corresponding to the above (2) can be obtained (with the contraction of the intermediate shaft 5, the impact energy input from the front end portion of the intermediate shaft 5 can be absorbed based on the collision accident).
  • FIG. 14 shows a conventional example of a method of manufacturing a torque transmission shaft with a universal joint yoke, in which a circular hook-shaped torque transmission shaft 8a and a yoke 9 are integrally formed in response to such a situation.
  • a first intermediate material 12 as shown in FIG. 14A is formed by performing plastic working such as forging on a hollow or solid material made of metal such as medium carbon steel. Get.
  • first Moto ⁇ the outer diameter D 13 is constant over the entire length
  • the base end portion of the yoke 9 is fixed to the other axial end portion (the right end portion in FIG. 14) of the first raw material portion 13, and the first raw material portion 13 and the yoke 9 are integrally formed. is doing.
  • the outer diameter D13 of the first element 13 is an intermediate portion of the completed circular torque transmission shaft 8a shown in FIGS.
  • the second intermediate material 14 completes an outer diameter D 15 of a portion closer to the other end in the axial direction (the axial intermediate portion of the second intermediate material 14) in the second raw material portion 15 provided in one half of the axial direction.
  • the outer diameter D 8a (D 15 ⁇ D 8a ) of the intermediate portion of the subsequent circular-ring-shaped torque transmission shaft 8a is substantially the same as the outer diameter D 8a (D 15 ⁇ D 8a ).
  • a diameter portion 16 is provided.
  • male spline teeth are formed on the outer peripheral surface of the large-diameter portion 16, and the male spline portion 11 is provided on the outer peripheral surface of the portion, so that the circular torque transmission shaft 8a and the yoke 9 are integrated.
  • a torque transmission shaft 17 with a universal joint yoke is formed.
  • the trouble of connecting and fixing the torque transmission shaft 8a and the yoke 9 by welding or the like is not required as in the conventional structure shown in FIG. Since the strength of the coupling portion can be improved, it is advantageous from the viewpoint of cost reduction and strength improvement of the intermediate shaft 5.
  • it is necessary to perform machining such as turning on the first axial portion 13 near the other end in the axial direction which not only increases the manufacturing cost of the torque transmission shaft 17 with the universal joint yoke, but also the male spline portion. groove bottom diameter d 11 of 11 becomes larger than necessary, universal including joint yoke with the torque transmission shaft 17, hardly reducing the weight of the entire intermediate shaft 5.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a torque transmission shaft with a yoke for a universal joint that can keep the manufacturing cost low and can be easily reduced in weight. It is to provide a manufacturing method.
  • the torque transmission shaft with a yoke for a universal joint has a circular rod shape (hollow or solid round bar shape), a flange portion provided with a male spline portion on the outer peripheral surface of one axial end portion, an axial direction of the flange portion, and the like.
  • a yoke provided with a pair of arms that pivotally support the end of the cross shaft that constitutes the cross shaft universal joint, and the groove bottom diameter of the male spline portion is Among them, the outer diameter is smaller than the outer diameter of the portion separated from the male spline portion in the axial direction.
  • a coating layer made of a low friction material may be provided on the surface of the male spline part.
  • the thickness dimension regarding the radial direction of the groove bottom layer formed in the groove bottom part of the said male spline part among the said coating layers is related with the radial direction of the tooth tip layer formed in the tooth tip part of the said male spline part. It may be larger than the thickness dimension.
  • the cross-sectional shape of the spline groove of the male spline part may be formed in a partial arc shape.
  • Such a torque transmission shaft with a yoke for a universal joint and at least the other axial end portion is formed in a tubular shape, and a female spline portion that is spline-engaged with the male spline portion is provided on the inner peripheral surface of the other axial end portion.
  • a torque transmission shaft between the torque transmission shaft with the universal joint yoke and the other torque transmission shaft, and the torque transmission shaft with the universal joint yoke is the other torque transmission shaft.
  • a telescopic shaft capable of axial displacement relative to the torque transmission shaft is configured.
  • an outer diameter of a portion of the collar portion that is axially deviated from the male spline portion may be smaller than a diameter of an inscribed circle of the female spline portion of the other torque transmission shaft.
  • the yoke is fixed to the other axial end portion.
  • the groove bottom diameter of the outer peripheral surface of the axial one end portion is increased.
  • the male spline portion is smaller than the outer diameter of the portion near the other end in the axial direction and has a tooth tip diameter larger than the outer diameter of the portion near the other end in the axial direction of the flange portion.
  • the plastic working may be a forging process performed by pressing a die having a processing surface corresponding to the outer surface shape of the male spline portion against the outer peripheral surface of one end portion in the axial direction of the bowl-shaped element.
  • the cross-sectional shape of the spline groove of the male spline part may be formed in a partial arc shape.
  • spline described in the present specification and claims includes serrations in which the pitch of teeth and grooves in the circumferential direction is rough, and not only general splines but also the pitch of teeth in the circumferential direction is fine. Including what is called.
  • the manufacturing cost can be kept low and the weight can be easily reduced. That is, in the case of the present invention, in order to form a male spline portion on the outer peripheral surface of the axial one end portion of the saddle-like element, a plurality of portions in the circumferential direction of the axial one end portion are crushed inward in the radial direction. A plurality of spline groove portions extending in the axial direction are formed, and at the same time, surplus extruded from each spline groove portion is raised outward (in a radial direction) between spline groove portions adjacent to each other in the circumferential direction. ).
  • the male spline part is made by plastic working, the hardness of the spline teeth constituting the male spline part becomes sufficiently high due to the densification and work hardening of the metal material accompanying the plastic working, and the male spline part Female spline formed on the inner peripheral surface of the male spline part and other torque transmission shafts, even if the tooth tip circle diameter is not particularly large (even if the height of the spline teeth constituting the male spline part is kept to a certain extent) The strength of the spline engagement with the portion can be sufficiently secured (the capacity of torque that can be transmitted by the torque transmission shaft with the universal joint yoke can be secured).
  • the pitch circle diameter of the spline engaging portion between the male and female spline portions, and the outer diameter (groove bottom) of the portion of the torque transmission shaft with the universal joint yoke provided with the spline engaging portion It is no longer necessary to increase the diameter and diameter of the tooth tip circle), and the torque transmission shaft with the universal joint yoke and, moreover, the lightening of the telescopic shaft such as an intermediate shaft incorporating the universal joint yoke torque transmission shaft. It becomes easy to plan.
  • FIG. 1 It is a side view of a torque transmission shaft with a universal joint yoke, showing a first embodiment of the present invention.
  • A is an end view showing a torque transmission shaft with a universal joint yoke as viewed from the left in FIG. 1, and
  • B is a torque transmission shaft with a universal joint yoke and another torque transmission of a circular tube. It is sectional drawing shown in the state which combined the axis
  • (A) and (B) are partial side views showing a state in which a male spline portion is provided at one axial end of the flange portion in order to make a torque transmission shaft with a universal joint yoke, and (C) is a male spline.
  • FIG. 1 It is a fragmentary sectional view which shows the state which combined the part with the female spline part of the other torque transmission shaft.
  • A) And (B) is a side view which shows the whole torque transmission shaft with a universal joint yoke in the same state as FIG. 3 (A) (B).
  • A) And (B) is an expanded sectional view along the VV line of FIG. 1 which shows two examples of the structure which provided the coating layer made from a low friction material in the male spline part. It is an expanded sectional view equivalent to VI section of Drawing 2 (B) showing the relation between the spline teeth which constitute the male and female spline parts, and the pitch circle diameter of a spline engaging part. It is a figure similar to FIG.
  • FIG. 6 which shows another shape of the spline tooth
  • FIG. 5 is a view corresponding to the enlarged VV cross-sectional view of FIG. It is a partial cutaway side view showing one example of a steering device for vehicles incorporating an intermediate shaft provided with a torque transmission shaft with a yoke for a universal joint, which is a subject of the present invention. It is a cutaway side view which similarly takes out and shows an intermediate shaft.
  • (A) is an end view showing the state of the circular cone-shaped torque transmission shaft as viewed from the left in FIG. It is sectional drawing shown in the state combined with the torque transmission shaft.
  • (A) to (C) are side views showing a conventional torque transmission shaft with a universal joint yoke in the order of manufacturing steps.
  • FIG. 1 shows a completed state of the torque transmission shaft 17a with a universal joint yoke according to this embodiment.
  • a torque transmission shaft 17a with a universal joint yoke is provided with a male spline portion 11a on the outer peripheral surface of one end portion (left end portion in FIG. 1) of the flange portion 19 having a circular cross section, and the other axial end portion of the flange portion 19 Of the four end portions provided on the cross shaft 10 (see FIG. 12) constituting the cross shaft type universal joint 4a (right end portion in FIG. 1), two end portions on the opposite side in the radial direction are respectively pivotally supported.
  • the base end portion of the yoke 9 having a pair of arm portions 20 and 20 is fixed.
  • the outer diameter D 19 of the portion that is off the spline portion 11a in the axial direction is smaller (d 11 ⁇ D 19 ).
  • such a torque transmission shaft 17a with a universal joint yoke has a female spline portion 18 provided on the inner peripheral surface of another torque transmission shaft 8b having a circular shape. Then, the male spline part 11a is engaged with the spline.
  • the intermediate shaft 5 (see FIGS. 11 to 13) that can transmit torque with the other torque transmission shaft 8b and can expand and contract in the axial direction is configured.
  • the torque transmission shaft 17a with a universal joint yoke as described above is made of metal and is hollow or solid. As a general rule, it is made by applying only plastic working to a bowl-shaped material. That is, although cutting and polishing are performed for finishing, cutting and polishing that change the shape and dimensions are not performed except in principle for chamfering the end portion.
  • the saddle-shaped element 21 as shown in FIGS.
  • the axial one-side end portion is then formed on the outer peripheral surface of the hook-like element 21 in the axial direction as shown in FIGS. 3 (A) and 3 (B).
  • a plastic working for deforming the outer peripheral surface in the radial direction is performed, and the male spline portion 11a is formed on the outer peripheral surface of the one axial end portion.
  • Male spline portion 11a as described above, smaller than the outer diameter D 19 of Mizosoko ⁇ d 11 is rod portion 19 (d 11 ⁇ D 19) , the outer diameter D 19 of the tip diameter D 11 is rod portion 19 (D 11 ⁇ D 19 ⁇ D 11 ).
  • the outer diameter D 19 of Mizosoko ⁇ d 11 and rod portion 19, the tooth tip circle of the female spline portion 18 formed on the inner peripheral surface of the other of the torque transmission shaft 8b is a circular tubular (inscribed circle) diameter D 18 is smaller than ⁇ see FIG. 3C ⁇ (d 11 ⁇ D 19 ⁇ D 18 ). Therefore, as will be described later, in the state where the male spline portion 11a and the female spline portion 18 are engaged with each other by spline engagement, the tooth tips of the spline teeth 22a and 22a constituting the female spline portion 18 and the groove of the male spline portion 11a. The bottom and the outer peripheral surface of the flange portion 19 do not interfere with each other.
  • a plurality of circumferentially-directed portions on the outer peripheral surface of the axial end portion of the bowl-shaped element 21 are crushed inward in the radial direction, and a plurality of portions each extending in the axial direction.
  • Spline groove portions 23, 23 are formed.
  • the surplus material (metal material) pushed out from the spline groove portions 23, 23 is moved to a portion between the spline groove portions 23, 23 adjacent to each other in the circumferential direction.
  • a plurality of spline teeth 22, 22 each having a bank shape that is long in the axial direction is formed by bulging (bulging) outward in the direction.
  • a part of the circumferential direction is recessed radially inward to form spline grooves 23 and 23 that are long in the axial direction, and the spline grooves 23 and 23 adjacent to each other in the circumferential direction.
  • Any one can be used as long as it can be bulged radially outward and processed into spline teeth 22, 22 that are long in the axial direction.
  • press working, forging, rolling, etc. can be employed.
  • forging in particular cold forging, is most preferable in terms of obtaining excellent dimensional accuracy and shape accuracy and obtaining a high-strength male spline portion 11a.
  • the inner surface matches the outer surface shape of the male spline portion 11a (unevenness is reversed and other basic shapes match).
  • the die which is a kind of mold having a shape, the axial one end of the hook-shaped element 21 is strongly pressed in the axial direction, and a plurality of circumferential locations on the outer circumferential surface of the axial one end of the hook-shaped element 21 are obtained.
  • the spline grooves 23 and 23 are formed by pressing inward in the radial direction in the axial direction (actually suppressing expansion outward in the radial direction), and the spline grooves 23 adjacent to each other in the circumferential direction. , 23 bulges (bulges) radially outward in the shape of a bank so that the outer surface shape of this one axial end matches the inner surface shape of the die.
  • the torque transmission shaft 17a with a universal joint yoke integrally provided with the male spline portion 11a on the outer peripheral surface of the one axial end portion and the yoke 9 on the other axial end portion thereof is shown in FIG.
  • the male spline portion 11a is spline-engaged with the female spline portion 18 formed on the inner peripheral surface of the other torque transmission shaft 8b having a circular tube shape, so that another torque transmission shaft is obtained.
  • An intermediate shaft 5 as shown in FIGS. 11 to 12 that can transmit torque to and from the shaft 8b and can expand and contract in the axial direction. In this state, as shown in FIG.
  • the tooth tips of the spline teeth 22, 22 constituting the male spline portion 11 a exist radially outward from the pitch circle P, and each of the spline teeth 22, 22 constituting the female spline portion 18.
  • the tips of the spline teeth 22a, 22a are present radially inward from the pitch circle P.
  • the spline teeth 22 and 22a exist in a state where the pitch circle P is sandwiched from both sides in the radial direction. Therefore, the rigidity of the meshing part (spline engaging part) between the two spline parts 11a and 18 can be increased, and the intermediate shaft 5 can easily transmit a large torque stably.
  • the spline engagement state (engagement strength in the axial direction) between the male spline part 11a and the female spline part 18 is appropriately regulated according to the performance required for the intermediate shaft 5.
  • the intermediate shaft 5 In order for the intermediate shaft 5 to be adjusted with a light force, for example, in order to smoothly adjust the front and rear position of the steering wheel, the axial displacement of the spline portion is performed with a slight force.
  • coating layers 24a and 24b made of a low friction material for reducing the frictional resistance in the axial direction of the spline engaging portion with the female spline portion 18 may be provided on the surface of the male spline portion 11a. it can.
  • the low friction material for forming the coating layers 24a and 24b various materials having required heat resistance and wear resistance can be used.
  • polyamide resin (PA) polyphenylene sulfide resin (PPS)
  • PPS polyphenylene sulfide resin
  • POM polyacetal resin
  • a solid lubricant such as molybdenum disulfide can also be used.
  • the coating layer 24a shown in FIG. 5A has thickened portions corresponding to the bottoms of the spline groove portions 23 and 23. Therefore, in a state where the male spline portion 11a and the female spline portion 18 are engaged with each other by spline engagement, the female spline portion 18 and the coating layer 24a are in contact with each other or in close proximity to each other.
  • the coating layer 24b shown in FIG. 5B is thinned as a whole, including the portions corresponding to the bottoms of the spline groove portions 23 and 23.
  • the manufacturing cost of the torque transmission shaft 17a with a universal joint yoke can be kept low.
  • Such a torque transmission shaft 17a with a universal joint yoke can be easily reduced in weight. That is, in the case of the manufacturing method of this embodiment, in order to form the male spline portion 11a on the outer peripheral surface of the axial element one end of the bowl-shaped element 21, a plurality of circumferential positions on the outer peripheral surface of this axial one end portion are formed in diameter.
  • a plurality of spline groove portions 23a, 23a are formed which are crushed inward in the direction of the shaft, and at the same time, surplus parts extruded from the spline groove portions 23a, 23a are splined adjacent to each other in the circumferential direction.
  • 23a, and a plurality of spline teeth 22 and 22 are formed so as to protrude outward in the radial direction, each extending in the axial direction. Therefore, the tip end portions of the spline teeth 22a, 22a constituting the female spline portion 18 formed on the inner peripheral surface of the other torque transmission shaft 8b having a circular tube shape, and the flange portion 19 of the torque transmission shaft 17a with a universal joint yoke.
  • the male spline portion 11a is made by plastic working, the hardness and toughness of the spline teeth 22 and 22 constituting the male spline portion 11a are particularly reduced by densification and work hardening of the metal material accompanying the plastic working. Male spline even if the tip diameter of the male spline portion 11a is not particularly large (even if the height of each spline tooth 22, 22 constituting the male spline portion 11a is kept to a certain extent).
  • An intermediate shaft that can sufficiently secure the strength of spline engagement between the portion 11a and the female spline portion 18 formed on the inner peripheral surface of the other torque transmission shaft 8b and includes the torque transmission shaft 17a with a universal joint yoke.
  • the pitch circle diameter of the spline engaging portion between the male and female spline portions 11a, 18 and the outer diameter of the portion of the torque transmission shaft 17a with the universal joint yoke provided with the spline engaging portion eliminates the need for unnecessarily large, for a universal joint yoke with the torque transmission shaft 17a, configured to include a yoke with the torque transmission shaft 17a for a universal joint by extension Therefore, the intermediate shaft 5 can be easily reduced in weight.
  • FIG. 8 shows a state where the torque transmission shaft 17b with a universal joint yoke of this embodiment is combined with the torque transmission shaft 8b to form the intermediate shaft 5.
  • the characteristic of the torque transmission shaft 17b with the universal joint yoke of this embodiment is that the structure of the coating layer 24c made of a low friction material provided on the surface of the male spline portion 11a is devised. Since the structure and manufacturing method of the other parts are the same as those of the torque transmission shaft 17a with a universal joint yoke of the first embodiment described above, the following description will focus on the structure of the coating layer 24c.
  • the coating layer 24c is formed over the entire length and the entire circumference of the male spline portion 11a.
  • the thickness W 25 in the radial direction of the groove bottom layer 25, 25 formed on the groove bottom portion of the male spline portion 11a (the direction perpendicular to the groove bottom surface) is addendum portion of the male spline portion 11a formed a radial tooth tip layers 26 larger than the thickness W 26 relates (the direction perpendicular to the tooth tip) (W 25> W 26) .
  • the outer diameter dimension D 25 of each groove bottom layer 25, 25 is larger than the outer diameter dimension D 19 of the flange portion 19 (D 25 > D 19 ). Also, as shown in FIGS. 8 to 9, in the state of the intermediate shaft 5, the outer peripheral surface of each groove bottom layer 25, 25 and the tip surface of the female spline teeth of the female spline portion 18 constituting the torque transmission shaft 8b. A gap for retaining grease is formed between the outer peripheral surfaces of the tooth tip layers 26 and 26 and the groove bottom surface of the female spline portion 18. That is, the outer diameter D 25 of each groove bottom layer 25, 25 is smaller than the diameter D 18a of the tip circle (inscribed circle) of the female spline portion 18 (D 25 ⁇ D 18a ). Furthermore, the outer diameter D 26 of each tooth tip layer 26, 26 is smaller than the diameter D 18b of the groove bottom circle of the female spline portion 18 (D 24b ⁇ D 18b ).
  • the portion excluding the coating layer 24c is manufactured by the same manufacturing method as in the first embodiment.
  • the groove bottom diameter d 11 of the male spline portion 11a, a rod portion 19 The tooth diameter D 11 is smaller than the outer diameter D 19 (d 11 ⁇ D 19 ), and the tooth tip diameter D 11 is larger than the outer diameter D 19 of the collar portion 19 (d 11 ⁇ D 19 ⁇ D 11 ). Therefore, in the state where the coating layer 24c is not provided, for example, as shown in FIG.
  • the space (gap) between the groove bottom surface of the male spline portion 11a and the tooth tip surface of the female spline portion 18 becomes large.
  • This space preferably has a certain size in order to keep grease inside. However, if this space is too large, the damping effect (damping effect) due to the grease existing in this space will be reduced, and vibrations when the intermediate shaft 5 expands and contracts in the axial direction will be transmitted to the steering wheel, and the driver May feel uncomfortable.
  • the relationship between the thicknesses of the groove bottom layers 25, 25 and the tooth tip layers 26, 26 of the coating layer 24c is regulated as described above. For this reason, the space can be reduced by these groove bottom layers 25, 25 and can be regulated to an appropriate size. As a result, the damping effect (damping effect) by the grease filled in this space can be improved.
  • Other structures, functions, and effects are the same as those in the first embodiment.
  • this invention is not limited to embodiment mentioned above, A deformation
  • a part of the circumferential direction of one end portion in the axial direction of the bowl-shaped element is recessed inward in the radial direction, and each of them is formed in the axial direction.
  • it is a spline groove part that squeezes, it swells (swells) radially outward between the spline groove parts adjacent to each other in the circumferential direction, and each can be processed into spline teeth that squeeze in the axial direction. Pressing, forging, rolling, etc. can be used.
  • the axial end of the saddle-shaped element is compressed from the radial direction between a plurality of dies that are displaced (perspectively moved) in the radial direction.
  • the uneven shape formed on the inner peripheral surface which is a processing surface, is transferred to the outer peripheral surface of one end portion in the axial direction of the bowl-shaped element to form the male spline portion.
  • the above-mentioned saddle-shaped element is formed in a die which is a kind of a die having an inner surface shape corresponding to the outer surface shape of the male spline portion (the unevenness is reversed and other basic shapes match).
  • One end of the axial direction is strongly pressed in the axial direction.
  • the axial direction one end part of this saddle-shaped element is bulged radially outward, and the outer surface shape of this axial direction one end part is made to correspond with the inner surface shape of the said die
  • teeth corresponding to the outer surface shape of the male spline part are formed on the side surfaces facing each other, and the ribs are placed between a pair of rack-shaped pressing molds each of which is a mold.
  • the two pressing dies are reciprocally displaced in the direction in which the respective teeth are arranged in a state where the one end portion in the axial direction of the element is strongly clamped.
  • the shape of the teeth formed on these two pressing dies is transferred to the outer peripheral surface of the other axial end portion of the bowl-shaped element to form the male spline portion.
  • the present invention is based on a Japanese patent application filed on July 30, 2013 (Japanese Patent Application No. 2013-157518) and a Japanese patent application filed on March 13, 2014 (Japanese Patent Application No. 2014-050230). The contents are incorporated herein by reference.
  • the present invention is applied to an intermediate shaft that constitutes a steering device for an automobile and transmits the rotation of the steering shaft to the input shaft of the steering gear unit.
  • the engaging portion between the circular torque transmission shaft and the circular torque transmission shaft may be formed by fine pitch serrations as shown in FIG. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 完成後の杆部(19)の外径D19と一致する外径D21を有し、軸方向他端部に二股のヨーク(9)の基端部を固設した杆状素子(21)の軸方向片端部に、この軸方向片端部外周面を径方向に変形させる塑性加工を施す事により、この軸方向片端部外周面に、溝底径d11が、杆部(19)の外径よりも小さく、歯先径D11がこの杆部(19)の外径よりも大きな雄スプライン部(11a)を形成する。

Description

自在継手用ヨーク付トルク伝達軸及びその製造方法
 本発明は、例えば自動車用ステアリング装置を構成して、ステアリングシャフトの回転をステアリングギヤユニットの入力軸に伝達する為の中間シャフトを構成する、自在継手用ヨーク付トルク伝達軸及びその製造方法に関する。
 自動車のステアリング装置として従来から、例えば図11に示す様なステアリング装置が使用されている。このステアリング装置は、運転者が操作するステアリングホイール1の回転運動を、ステアリングギヤユニット2で直線運動に変換する事により、図示しない左右の操舵輪に対して所望の舵角を付与可能な構成を有する。この様な構成を実現する為に具体的には、ステアリングホイール1を、ステアリングシャフト3の後端部に固定している。これと共に、このステアリングシャフト3の前端部を、1対の自在継手4a、4b、及び中間シャフト5を介して、ステアリングギヤユニット2の入力軸6の基端部に接続している。更に、このステアリングギヤユニット2を構成し、この入力軸6の中間部に設けたピニオン歯と噛合したラック歯を有するラック軸の両端部に、それぞれが左右の操舵輪に対して連結される、1対のタイロッド7、7の基端部を、球面継手を介して接続している。
 上述の様に構成するステアリング装置の場合、運転者がステアリングホイール1を操作すると、このステアリングホイール1の回転が、ステアリングシャフト3と、両自在継手4a、4b及び中間シャフト5とを介して、ピニオン軸6に伝達される。この結果、ラック軸が軸方向(車体の幅方向)に変位し、これに伴って、両タイロッド7、7が押し引きされる事により、左右の操舵輪に所望の舵角が付与される。
 ところで、上述の様なステアリング装置を構成する中間シャフト5には、両自在継手4a、4b同士の間でトルクを伝達する機能に加えて、次の(1)(2)のうちの一方又は双方の理由により、全長を伸縮する機能が求められる。
 ステアリングホイール1の前後位置調節を円滑に行なわせる為。
 ステアリングホイール1の前後位置調節に伴って、両自在継手4a、4b同士の間隔が変動する場合がある為、この様な場合には、前後位置調節を円滑に行なわせる為に、中間シャフト5の全長を円滑に(軽い力で)伸縮可能にする必要がある。
(2) 衝突事故時に運転者の身体を保護する為。
 衝突事故の際には、自動車が他の自動車等に衝突する一次衝突に伴って、ステアリングギヤユニット2が後方に強く押される。この様なステアリングユニット2の動きがそのままステアリングシャフト3に伝達されると、ステアリングシャフト3の後端部に支持固定したステアリングホイール1が運転者の身体に向け勢い良く変位し(突き上げられ)、運転者の保護を難しくする。そこで、中間シャフト5の全長を、一次衝突に伴う衝撃荷重により縮める様に構成して、この一次衝突に伴うステアリングギヤユニット2の動きが、そのままステアリングシャフト3に伝達されない様にする。尚、この機能を果すべく、中間シャフト5を伸縮させる為に要する荷重は、或る程度大きくても良い。
 ステアリング装置を構成する中間シャフト5には、上述の様に、トルクを伝達する機能に加えて、全長を伸縮する機能を要求されるが、この様な機能を併せ持った中間シャフト5は、従来から広く実施されている(例えば、特許文献1、2参照)。図12~13は、従来から広く実施されている中間シャフト5の1例を示している。この中間シャフト5は、円杆状若しくは円管状である1対のトルク伝達軸8a、8bを備える。トルク伝達軸8a、8bの軸方向外端部(基端部であり、互いに反対側の端部)には、それぞれ自在継手4a、4bを構成する為のヨーク9、9の基端部をそれぞれ結合固定している。自在継手4a、4bはそれぞれ、ヨーク9、9の先端部に、十字軸10を介して別のヨーク9a、9bを結合して、それぞれのヨーク9、9a、9bの中心軸同士が傾斜した状態でも、各ヨーク9、9a、9b同士の間でトルクの伝達を可能にしている。
 又、中間シャフト5を構成する両トルク伝達軸8a、8bのうち、円杆状のトルク伝達軸8aの先端部(図12の左端部)を中間部よりも大径とし、この大径部分の外周面に雄スプライン歯を形成する事で、トルク伝達軸8aの先端部外周面に雄スプライン部11を設けている。従来構造の場合には、雄スプライン部11の溝底径d11を、トルク伝達軸8aの中間部の外径D8aよりも大きく(d11>D8a)する事で、大径部分に雄スプライン歯を、切削加工の一種であるブローチ加工により形成可能としている。これに対して円管状のトルク伝達軸8bの内周面には雌スプライン歯を、トルク伝達軸8bの内周面のほぼ全長に亙り形成して、トルク伝達軸8bの内周面のほぼ全体を、雌スプライン部18としている。
 円杆状のトルク伝達軸8aと円管状のトルク伝達軸8bとは、図12に示す様に円杆状のトルク伝達軸8aの先端部外周面に形成した雄スプライン部11を、円管状のトルク伝達軸8bの内周面に設けた雌スプライン部18にスプライン係合させる事で、全長を伸縮可能な中間シャフト5を得られる。この場合に、両スプライン部11、18の軸方向変位が軽い力で行われる様にすれば、前記(1)及び(2)に対応した機能を得られ、同じく或る程度大きな力で行われる様にすれば、前記(2)に対応した機能のみを得られる(中間シャフト5の収縮に伴い、衝突事故に基づいてこの中間シャフト5の前端部から入力された衝撃エネルギを吸収できる)。
 上述の様な、両端部にそれぞれ自在継手4a、4bを設けた中間シャフト5の構成各部材のうち、円杆状のトルク伝達軸8aとヨーク9とを一体に造り、自在継手用ヨーク付トルク伝達軸を得れば、トルク伝達軸8aとヨーク9とを溶接等により結合固定する手間が不要になると共に、結合部の強度を向上させられる為、中間シャフト5の低コスト化及び強度向上の面から有利になる。図14は、この様な事情に対応して、円杆状のトルク伝達軸8aとヨーク9とを一体に造る、自在継手用ヨーク付トルク伝達軸の製造方法の従来例を示している。
 この従来の製造方法では、先ず、中炭素鋼等の金属製で中空又は中実の素材に、鍛造加工等の塑性加工を施す事により、図14(A)に示す様な第一中間素材12を得る。この第一中間素材12は、軸方向片半部(軸方向他端部を除く部分で、図14の左側部分を言う)を、外径D13がほぼ全長に亙り一定である第一素杆部13とし、第一素杆部13の軸方向他端部(図14の右端部)にヨーク9の基端部を固設して、第一素杆部13とヨーク9とを一体に形成している。第一素杆部13の外径D13は、図12~13に示した、完成後の円杆状のトルク伝達軸8aの中間部(雄スプライン部11及びヨーク9から軸方向に外れた部分)の外径D8aよりも大きく、雄スプライン部11の歯先円直径(外接円直径)D11とほぼ同じ(D11≒D13>D8a)としている。この様な第一素杆部13の軸方向他端寄り部分(第一中間素材12の軸方向中間部)に旋削等の削り加工を施す事により、図14(B)に示す様な第二中間素材14を得る。第二中間素材14は、軸方向片半部に設けた第二素杆部15のうちの軸方向他端寄り部分(第二中間素材14の軸方向中間部)の外径D15を、完成後の円杆状のトルク伝達軸8aの中間部の外径D8a(D15≒D8a)とほぼ同じとすると共に、軸方向片端部に軸方向他端寄り部分よりも外径が大きい大径部16を設けている。次に、大径部16の外周面に雄スプライン歯を形成し、当該部分の外周面に雄スプライン部11を設ける事で、円杆状のトルク伝達軸8aとヨーク9とを一体とした、自在継手用ヨーク付トルク伝達軸17を造る。
 上述の様な自在継手用ヨーク付トルク伝達軸17によれば、図12に示した従来構造の様に、トルク伝達軸8aとヨーク9とを溶接等により結合固定する手間が不要になり、且つ、結合部の強度を向上させられる為、中間シャフト5の低コスト化及び強度向上の面から有利になる。但し、第一素杆部13の軸方向他端寄り部分に旋削等の削り加工を施す手間が必要になり、自在継手用ヨーク付トルク伝達軸17の製造コストが嵩むだけでなく、雄スプライン部11の溝底径d11が必要以上に大きくなり、自在継手用ヨーク付トルク伝達軸17を含む、中間シャフト5全体の軽量化を図り難い。
日本国特開2001-182736号公報 日本国特開2012-117560号公報
 本発明は、上述の様な事情に鑑みて為されたものであり、その目的は、製造コストを低く抑える事ができ、しかも、軽量化を図り易い、自在継手用ヨーク付トルク伝達軸及びその製造方法を提供することにある。
 本発明の自在継手用ヨーク付トルク伝達軸は、円杆状(中空又は中実丸棒状)で、軸方向片端部外周面に雄スプライン部を設けた杆部と、該杆部の軸方向他端部に固設され、十字軸式自在継手を構成する十字軸の端部を枢支する1対の腕部を備えるヨークとを備え、前記雄スプライン部の溝底径が、前記杆部のうちで前記雄スプライン部から軸方向に外れた部分の外径よりも小さい。
 また、前記雄スプライン部の表面には、低摩擦材製のコーティング層が設けられてもよい。
 また、前記コーティング層のうち、前記雄スプライン部の溝底部分に形成された溝底層の径方向に関する厚さ寸法を、前記雄スプライン部の歯先部分に形成された歯先層の径方向に関する厚さ寸法よりも大きくしてもよい。
 さらに、前記雄スプライン部のスプライン溝の断面形状が部分円弧状に形成されてもよい。
 この様な自在継手用ヨーク付トルク伝達軸と、少なくとも軸方向他端部を円管状とし、該軸方向他端部の内周面に、前記雄スプライン部とスプライン係合する雌スプライン部を有する他のトルク伝達軸と、を有して、自在継手用ヨーク付トルク伝達軸と他のトルク伝達軸との間でのトルク伝達が可能で、且つ、自在継手用ヨーク付トルク伝達軸が他のトルク伝達軸に対する軸方向の相対変位が可能な伸縮軸を構成する。また、前記伸縮軸は、前記杆部のうちで前記雄スプライン部から軸方向に外れた部分の外径が、前記他のトルク伝達軸の雌スプライン部の内接円の直径より小さくてもよい。
 さらに、本発明の自在継手用ヨーク付トルク伝達軸の製造方法によれば、上述の様な自在継手用ヨーク付トルク伝達軸を造るのに、軸方向他端部に前記ヨークを固設しており、軸方向片半部の外径が、完成後の前記杆部の軸方向他端寄り部分(前記雄スプライン部から軸方向に外れた部分)の外径と一致する杆状素子を用い、該杆状素子の軸方向片端部外周面に、該軸方向片端部外周面を径方向に変形させる塑性加工を施す事で、該軸方向片端部外周面に、溝底径が前記杆部の軸方向他端寄り部分の外径よりも小さく、歯先径が前記杆部の軸方向他端寄り部分の外径よりも大きな前記雄スプライン部を形成する。
 また、前記塑性加工が、前記雄スプライン部の外面形状に見合う形状の加工面を有する金型を、前記杆状素子の軸方向片端部外周面に押し付ける事により行う鍛造加工であってもよい。
 さらに、前記雄スプライン部のスプライン溝の断面形状が部分円弧状に形成されてもよい。
 尚、本明細書及び特許請求の範囲に記載した文言「スプライン」は、円周方向に関する歯及び溝のピッチが粗い、一般的なスプラインだけでなく、円周方向に関する歯のピッチが細かい、セレーションと呼ばれるものも含む。
 上述の様に構成する本発明の自在継手用ヨーク付トルク伝達軸及びその製造方法によれば、製造コストを低く抑える事ができ、且つ、軽量化を図り易くできる。
 即ち、本発明の場合には、杆状素子の軸方向片端部外周面に雄スプライン部を形成する為に、軸方向片端部の円周方向複数箇所を径方向内方に押し潰してそれぞれが軸方向に亙る複数本のスプライン溝部を形成すると同時に、これら各スプライン溝部から押し出された余肉を、円周方向に隣り合うスプライン溝部同士の間部分で、径方向外方に向け隆起させる(盛り上げる)。これにより、これら各間部分に、それぞれが軸方向に亙る複数本のスプライン歯を形成する。従って、円管状とした他のトルク伝達軸の内周面に形成した雌スプライン部を構成するスプライン歯の先端部と、自在継手用ヨーク付トルク伝達軸の杆部の外周面との干渉を防止する為に、前記杆状素子のうちで、杆部となるべき部分に旋削等の削り加工を施す必要がない。この為、前記自在継手用ヨーク付トルク伝達軸の製造コストを低く抑えられる。又、前記雄スプライン部を塑性加工により造る為、この塑性加工に伴う金属材料の緻密化と加工硬化とにより、雄スプライン部を構成するスプライン歯の硬さが十分に高くなり、雄スプライン部の歯先円直径を特に大きくしなくても(雄スプライン部を構成するスプライン歯の高さを或る程度低く抑えても)雄スプライン部と他のトルク伝達軸の内周面に形成した雌スプライン部とのスプライン係合の強度を十分に確保できる(自在継手用ヨーク付トルク伝達軸が伝達できるトルクの容量を確保できる)。従って、前記雄、雌両スプライン部同士のスプライン係合部のピッチ円直径、延いては、前記自在継手用ヨーク付トルク伝達軸のうちでスプライン係合部を設けた部分の外径(溝底径及び歯先円直径)を必要以上に大きくする必要がなくなり、前記自在継手用ヨーク付トルク伝達軸、延いては、自在継手用ヨーク付トルク伝達軸を組み込んだ中間シャフトの如き伸縮軸の軽量化を図り易くなる。
本発明の第1実施形態を示す、自在継手用ヨーク付トルク伝達軸の側面図である。 (A)は、図1の左方から見た、自在継手用ヨーク付トルク伝達軸単体を示す端面図、(B)は、自在継手用ヨーク付トルク伝達軸と、円管状の他のトルク伝達軸とを組み合わせた状態で示す断面図である。 (A)及び(B)は、自在継手用ヨーク付トルク伝達軸を造る為、杆部の軸方向片端部に雄スプライン部を設ける状態を工程順に示す部分側面図、(C)は、雄スプライン部を、他のトルク伝達軸の雌スプライン部と組み合わせた状態を示す部分断面図である。 (A)及び(B)は、自在継手用ヨーク付トルク伝達軸全体を、図3(A)(B)と同じ状態で示す側面図である。 (A)及び(B)は、雄スプライン部に低摩擦材製のコーティング層を設けた構造の2例を示す、図1のV-V線に沿った拡大断面図である。 前記雄、雌両スプライン部を構成するスプライン歯と、スプライン係合部のピッチ円直径との関係を示す、図2(B)のVI部に相当する拡大断面図である。 雄スプライン部を構成するスプライン歯の別形状を示す、図6と同様の図である。 本発明の第2実施形態を示す、図2(B)と同様の図である。 本発明の第2実施形態を示す、図6と同様の図である。 雄スプライン部の一種である雄セレーションの断面形状を示す、図1の拡大V-V断面図に相当する図である。 本発明の対象となる自在継手用ヨーク付トルク伝達軸を備えた中間シャフトを組み込んだ自動車用ステアリング装置の1例を示す部分切断側面図である。 同じく中間シャフトを取り出して示す切断側面図である。 (A)は、円杆状のトルク伝達軸を図12の左方から見た状態を、この円杆状のトルク伝達軸単体の状態で示す端面図、(B)は、円管状の他のトルク伝達軸と組み合わせた状態で示す断面図である。 (A)~(C)は、従来の自在継手用ヨーク付トルク伝達軸を、製造工程順に示す側面図である。
 [第1実施形態]
 本発明の第1実施形態に就いて、図1~7により説明する。図1は、本実施形態の自在継手用ヨーク付トルク伝達軸17aの、完成後の状態を示している。自在継手用ヨーク付トルク伝達軸17aは、断面円形の杆部19の軸方向片端部(図1の左端部)の外周面に雄スプライン部11aを設けると共に、杆部19の軸方向他端部(図1の右端部)に、十字軸式自在継手4aを構成する十字軸10(図12参照)に設けた4箇所の端部のうち、径方向反対側2箇所の端部をそれぞれ枢支する為の1対の腕部20、20を有するヨーク9の基端部を固設している。特に、本実施形態の自在継手用ヨーク付トルク伝達軸17aの場合には、雄スプライン部11aの溝底径d11を、杆部19の軸方向他端寄り部分(杆部19のうちで雄スプライン部11aから軸方向に外れた部分)の外径D19よりも小さい(d11<D19)としている。この様な自在継手用ヨーク付トルク伝達軸17aは、図2(B)及び図3(C)に示す様に、円管状の他のトルク伝達軸8bの内周面に設けた雌スプライン部18に、雄スプライン部11aをスプライン係合させる。これにより、他のトルク伝達軸8bとの間でのトルク伝達が可能で、且つ、軸方向寸法の伸縮が可能な中間シャフト5(図11~13参照)を構成する。
 上述の様な自在継手用ヨーク付トルク伝達軸17aは、図3(A)、図(B)、図4(A)及び図4(B)に示す様に、金属製で中空又は中実の杆状の素材に、原則として塑性加工のみを施す事により造る。即ち、切削加工及び研磨加工は、仕上の為に行う事はあっても、形状及び寸法を変更する程の切削加工及び研磨加工は、端部の面取り等を除き、原則として行わない。本実施形態の場合、上述の様な自在継手用ヨーク付トルク伝達軸17aを造る為、先ず、図3(A)及び図4(A)に示す様な杆状素子21を、例えば炭素鋼、ステンレス鋼等の金属製の素材に、プレス加工や鍛造加工等の塑性加工を施す事により造る。杆状素子21は、軸方向他端部にヨーク9の基端部を固設すると共に、軸方向片半部(軸方向他端部を除く部分)の外径D21を、完成後の杆部19の外径D19と一致(D21=D19)させている。この様な杆状素子21を造る為の塑性加工は、杆状素子21の外径D21を、軸方向片半部に関して、図14(A)に示した従来の第一中間素材12の第一素杆部13の外径D13よりも細く、図14(C)に示した完成後のトルク伝達軸8aの中間部の外径D8aとほぼ同じ(D13>D21≒D8a)にした点以外、第一中間素材12を造る場合と同様である。又、杆状素子21を造る為の塑性加工の実施方法自体は、従来から知られている方法を適用できるので、詳しい図示並びに説明は省略する。
 上述の様な杆状素子21を造ったならば、次いで、杆状素子21の軸方向片端部外周面に、図3(A)及び図3(B)に示す様に、この軸方向片端部外周面を径方向に変形させる塑性加工を施して、この軸方向片端部外周面に雄スプライン部11aを形成する。雄スプライン部11aは、前述した様に、溝底径d11が杆部19の外径D19よりも小さく(d11<D19)、歯先径D11が杆部19の外径D19よりも大きい(d11<D19<D11)。又、溝底径d11及び杆部19の外径D19は、円管状である他のトルク伝達軸8bの内周面に形成した雌スプライン部18の歯先円(内接円)の直径D18{図3(C)参照}よりも小さい(d11<D19<D18)。従って、後述する様に、雄スプライン部11aと雌スプライン部18とをスプライン係合させた状態で、雌スプライン部18を構成する各スプライン歯22a、22aの歯先と、雄スプライン部11aの溝底や杆部19の外周面とが干渉する事はない。
 尚、雄スプライン部11aを形成する為の塑性加工では、杆状素子21の軸方向片端部外周面の円周方向複数箇所を径方向内方に押し潰して、それぞれが軸方向に伸長する複数本のスプライン溝部23、23を形成する。これと同時に、これら各スプライン溝部23、23から押し出された余肉(金属材料)を、円周方向に隣り合うこれら各スプライン溝部23、23同士の間部分に移動させ、これら各間部分を径方向外方に向け隆起(膨出)させて、それぞれが軸方向に長い土手状である、複数本のスプライン歯22、22を形成する。この為、塑性加工としては、円周方向の一部を径方向内方に凹ませてそれぞれが軸方向に長いスプライン溝部23、23とすると共に、円周方向に隣り合うスプライン溝部23、23同士の間を径方向外方に隆起させて、それぞれが軸方向に長いスプライン歯22、22に加工できるものであれば良く、例えばプレス加工、鍛造加工、ローリング加工等が採用可能である。
 この様な塑性加工のうち、鍛造加工、特に冷間鍛造加工が、優れた寸法精度及び形状精度を得られ、しかも高強度の雄スプライン部11aを得られる面から最も好ましい。鍛造加工により、杆状素子21の軸方向片端部外周面を雄スプライン部11aに加工する場合には、雄スプライン部11aの外面形状に見合う(凹凸が逆でその他の基本形状が一致する)内面形状を有する、金型の一種であるダイス内で杆状素子21の軸方向片端部を軸方向に強く押圧し、杆状素子21の軸方向片端部外周面の円周方向の複数箇所を、軸方向に亙り径方向内方に押圧して(実際には径方向外方に膨らむのを抑え付けて)各スプライン溝部23、23を形成すると共に、円周方向に隣り合うこれら各スプライン溝部23、23同士の間部分を、土手状に径方向外方に隆起(膨出)させて、この軸方向片端部の外面形状をダイスの内面形状に一致させる。
 上述の様にして軸方向片端部外周面に雄スプライン部11aを、軸方向他端部にヨーク9を、それぞれ一体に設けた自在継手用ヨーク付トルク伝達軸17aは、図3(C)及び図2(B)に示す様に、雄スプライン部11aを、円管状である他のトルク伝達軸8bの内周面に形成した雌スプライン部18にスプライン係合させる事により、他のトルク伝達軸8bとの間でのトルク伝達が可能で、且つ、軸方向寸法の伸縮を可能な、図11~12に示す様な中間シャフト5とする。この状態で、雄スプライン部11aを構成する各スプライン歯22、22の歯先は、図6に示す様に、ピッチ円Pよりも径方向外方に存在し、雌スプライン部18を構成する各スプライン歯22a、22aの歯先は、ピッチ円Pよりも径方向内方に存在する。要するに、これら各スプライン歯22、22aは、このピッチ円Pを径方向両側から挟んだ状態で存在する。従って、両スプライン部11a、18同士の噛合部(スプライン係合部)の剛性を高くして、中間シャフト5により、大きなトルクを安定して伝達し易くできる。尚、雄スプライン部11aを構成する各スプライン歯22、22同士の間に存在するスプライン溝部23、23の断面形状を、図7に示す様に部分円弧状にすれば、これら各スプライン溝部23、23を挟む状態で設けられるスプライン歯22、22の剛性を高くできる。この結果、中間シャフト5により、大きなトルクをより安定して伝達し易くできる。
 尚、雄スプライン部11aと雌スプライン部18とのスプライン係合状態(軸方向に関する係合強度)は、中間シャフト5に要求される性能に応じて適切に規制される。中間シャフト5を、例えばステアリングホイールの前後位置調節を円滑に行なわれる様にすべく、スプライン部の軸方向変位が軽い力で行われる様にする為には、図5(A)、(B)に示す様に、雄スプライン部11aの表面に、雌スプライン部18とのスプライン係合部の、軸方向に関する摩擦抵抗を低減する為の、低摩擦材製のコーティング層24a、24bを設ける事もできる。この様なコーティング層24a、24bを構成する為の低摩擦材としては、必要とする耐熱性、耐摩耗性を有する各種物質を利用できるが、例えばポリアミド樹脂(PA)、ポリフェニレンサルファイド樹脂(PPS)、ポリアセタール樹脂(POM)等の合成樹脂に加え、二硫化モリブデン等の固体潤滑剤を使用する事もできる。
 コーティング層24a、24bのうち、図5(A)に示したコーティング層24aは、各スプライン溝部23、23の底部に対応する部分を厚くしている。従って、雄スプライン部11aと雌スプライン部18とをスプライン係合させた状態では、雌スプライン部18とコーティング層24aとが、全面に亙り、当接若しくは近接対向する。これに対して、図5(B)に示したコーティング層24bは、各スプライン溝部23、23の底部に対応する部分を含めて、全体を薄くしている。従って、雄スプライン部11aと雌スプライン部18とをスプライン係合させた状態では、雌スプライン部18の歯先部とコーティング層24bとの間に隙間が存在する状態となる。この隙間には、雄スプライン部11aと雌スプライン部18とのスプライン係合部を潤滑する為のグリースを溜めておく事ができ、このグリースによるスプライン係合部の潤滑状態を長期間に亙り良好に保つ面から有利になる。
 前述した構成を有し、上述の様にして造る本実施形態の自在継手用ヨーク付トルク伝達軸17aによれば、自在継手用ヨーク付トルク伝達軸17aの製造コストを低く抑える事ができ、しかも、この様な自在継手用ヨーク付トルク伝達軸17aの軽量化も図り易い。
 即ち、本実施形態の製造方法の場合には、杆状素子21の軸方向片端部外周面に雄スプライン部11aを形成するのに、この軸方向片端部外周面の円周方向複数個所を径方向内方に押し潰してそれぞれが軸方向に亙る複数本のスプライン溝部23a、23aを形成すると同時に、これら各スプライン溝部23a、23aから押し出された余肉を、円周方向に隣り合うスプライン溝部23a、23a同士の間部分で、径方向外方に向け隆起させ、それぞれが軸方向に亙る複数本のスプライン歯22、22を形成する。従って、円管状とした他のトルク伝達軸8bの内周面に形成した雌スプライン部18を構成するスプライン歯22a、22aの先端部と、自在継手用ヨーク付トルク伝達軸17aの杆部19の外周面との干渉を防止する為に、杆部19となるべき素杆部である杆状素子21の中間部乃至基端部に旋削等の削り加工を施す必要がない。この為、自在継手用ヨーク付トルク伝達軸17aの製造コストを低く抑えられる。
 又、雄スプライン部11aを塑性加工により造る為、塑性加工に伴う金属材料の緻密化と加工硬化とにより、雄スプライン部11aを構成する各スプライン歯22、22の硬さや靱性が特に低下する事なく十分に高くなり、雄スプライン部11aの歯先円直径を特に大きくしなくても(雄スプライン部11aを構成する各スプライン歯22、22の高さを或る程度低く抑えても)雄スプライン部11aと他のトルク伝達軸8bの内周面に形成した雌スプライン部18とのスプライン係合の強度を十分に確保できて、自在継手用ヨーク付トルク伝達軸17aを含んで構成する中間シャフト5が伝達できるトルクの容量を確保できる。この為、雄、雌両スプライン部11a、18同士のスプライン係合部のピッチ円直径、延いては、自在継手用ヨーク付トルク伝達軸17aのうちでスプライン係合部を設けた部分の外径(溝底径d11及び歯先円直径D11)を必要以上に大きくする必要がなくなり、自在継手用ヨーク付トルク伝達軸17a、延いては自在継手用ヨーク付トルク伝達軸17aを含んで構成する中間シャフト5の軽量化を図り易くなる。
 [第2実施形態]
 本発明の第2実施形態に就いて、図8~9により説明する。図8は、本実施形態の自在継手用ヨーク付トルク伝達軸17bを、トルク伝達軸8bと組み合わせて中間シャフト5とした状態を示している。尚、本実施形態の自在継手用ヨーク付トルク伝達軸17bの特徴は、雄スプライン部11aの表面に設けた低摩擦材製のコーティング層24cの構造を工夫した点にある。その他の部分の構造及び製造方法は、前述した第1実施形態の自在継手用ヨーク付トルク伝達軸17aと同様であるので、以下、コーティング層24cの構造を中心に説明する。
 本実施形態の場合、コーティング層24cを、雄スプライン部11aの全長且つ全周に亙り形成している。コーティング層24cのうち、雄スプライン部11aの溝底部分に形成された溝底層25、25の径方向(溝底面に直交する方向)に関する厚さ寸法W25が、雄スプライン部11aの歯先部分に形成された歯先層26、26の径方向(歯先に直交する方向)に関する厚さ寸法W26よりも大きい(W25>W26)。具体的には、各溝底層25、25の厚さ寸法W25を、各歯先層26、26の厚さ寸法W26の、2~3倍程としている{W25=(2~3)W26}。尚、コーティング層24cのうち、雄スプライン部11aの各スプライン歯の円周方向側面に形成された側面層27の、円周方向側面に直交する方向の厚さ寸法W27は、各歯先層26、26の厚さ寸法W26と等しい(W27=W26)。
 又、各溝底層25、25の外径寸法D25は、杆部19の外径寸法D19よりも大きい(D25>D19)。又、図8~9に示す様に中間シャフト5とした状態で、各溝底層25、25の外周面と、トルク伝達軸8bを構成する雌スプライン部18の雌スプライン歯の歯先面との間、及び、各歯先層26、26の外周面と、雌スプライン部18の溝底面との間には、グリースを留めておく為の隙間が形成されている。即ち、各溝底層25、25の外径寸法D25は、雌スプライン部18の歯先円(内接円)の直径D18aよりも小さい(D25<D18a)。更に、各歯先層26、26の外径寸法D26は、雌スプライン部18の溝底円の直径D18bよりも小さい(D24b<D18b)。
 本実施形態の自在継手用ヨーク付トルク伝達軸17bのうち、コーティング層24cを除く部分は、第1実施形態の場合と同様の製造方法により造られている。この様な本発明の製造方法により造られた自在継手用ヨーク付トルク伝達軸17bの場合、特徴的な製造工程に起因して、雄スプライン部11aの溝底径d11が、杆部19の外径D19よりも小さく(d11<D19)、歯先径D11が杆部19の外径D19よりも大きくなる(d11<D19<D11)。従って、コーティング層24cを設けていない状態では、例えば、図2に示す様に、雄スプライン部11aの溝底面と、雌スプライン部18の歯先面との間の空間(隙間)が大きくなる。この空間は、その内側にグリースを留めておくために、ある程度の大きさを確保するのが好ましい。ところが、この空間が大き過ぎると、この空間に存在するグリースによる制振効果(ダンピング効果)が小さくなってしまい、中間シャフト5が軸方向に伸縮する際の振動が、ステアリングホイールまで伝わり、運転者が違和感を感じる可能性がある。
 一方、本実施形態の場合、コーティング層24cの各溝底層25、25と各歯先層26、26との厚さの関係を、上述の様に規制している。この為、これら各溝底層25、25により、空間を小さくして、適切な大きさに規制する事ができる。この結果、この空間に充填されたグリースによる制振効果(ダンピング効果)を向上させる事ができる。その他の部分の構造及び作用・効果は、第1実施形態と同様である。
 なお、本発明は、前述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
 例えば、本発明の雄スプライン部を形成する為の塑性加工としては、杆状素子の軸方向片端部のうちの円周方向の一部を径方向内方に凹ませて、それぞれが軸方向に亙るスプライン溝部とすると共に、円周方向に隣り合うスプライン溝部同士の間を径方向外方に隆起(膨出)させて、それぞれが軸方向に亙るスプライン歯に加工できるものであれば良く、例えばプレス加工、鍛造加工、ローリング加工等が採用可能である。このうちのプレス加工による場合には、それぞれが径方向に変位(遠近動)する複数の金型同士の間で前記杆状素子の軸方向片端部を径方向から圧縮し、これら各金型の加工面である内周面に形成した凹凸形状を前記杆状素子の軸方向片端部の外周面に転写して、前記雄スプライン部を形成する。
 又、鍛造加工による場合には、この雄スプライン部の外面形状に見合う(凹凸が逆でその他の基本形状が一致する)内面形状を有する、金型の一種であるダイス内で前記杆状素子の軸方向片端部を軸方向に強く押圧する。これにより、この杆状素子の軸方向片端部を径方向外方に膨出させて、この軸方向片端部の外面形状を前記ダイスの内面形状に一致させる。
 更に、ローリング加工による場合には、互いに対向する側面にそれぞれ前記雄スプライン部の外面形状に見合う形状の歯を形成した、それぞれが金型である1対のラック状の押型同士の間に前記杆状素子の軸方向片端部を強く挟持した状態で、これら両押型同士を、それぞれの歯を並べた方向に往復変位させる。これにより、これら両押型に形成した歯の形状を、前記杆状素子の軸方向他端部の外周面に転写して、前記雄スプライン部を形成する。
 なお、本発明は、2013年7月30日出願の日本特許出願(特願2013-157518)及び2014年3月13日出願の日本特許出願(特願2014-050230)に基づくものであり、その内容はここに参照として取り込まれる。
 以上の説明は、本発明を、自動車用のステアリング装置を構成して、ステアリングシャフトの回転をステアリングギヤユニットの入力軸に伝達する為の中間シャフトを対象として行ったが、本発明は、端部に十字軸式自在継手を、中間部にスプライン係合部を、それぞれ設けた、各種トルク伝達軸に適用できる。又、伝達すべきトルクが特に大きくない場合には、円杆状のトルク伝達軸と円管状のトルク伝達軸との係合部を、図10に示す様な、ピッチの細かいセレーションにより造る事もできる。
  1  ステアリングホイール
  2  ステアリングギヤユニット
  3  ステアリングシャフト
  4a、4b 自在継手
  5  中間シャフト
  6  入力軸
  7  タイロッド
  8a、8b トルク伝達軸
  9、9a、9b ヨーク
 10  十字軸
 11、11a  雄スプライン部
 12  第一中間素材
 13  第一素杆部
 14  第二中間素材
 15  第二素杆部
 16  大径部
 17a、17b  自在継手用ヨーク付トルク伝達軸
 18  雌スプライン部
 19  杆部
 20  腕部
 21  杆状素子
 22、22a  スプライン歯
 23、23a  スプライン溝部
 24a、24b  コーティング層
 25  溝底層
 26  歯先層
 27  側面層

Claims (8)

  1.  円杆状で、軸方向片端部外周面に雄スプライン部を設けた杆部と、該杆部の軸方向他端部に固設され、十字軸式自在継手を構成する十字軸の端部を枢支する1対の腕部を備えるヨークとを備える自在継手用ヨーク付トルク伝達軸に於いて、
     前記雄スプライン部の溝底径が、前記杆部のうちで前記雄スプライン部から軸方向に外れた部分の外径よりも小さい、自在継手用ヨーク付トルク伝達軸。
  2.  前記雄スプライン部の表面には、低摩擦材製のコーティング層が設けられている、請求項1に記載の自在継手用ヨーク付トルク伝達軸。
  3.  前記コーティング層のうち、前記雄スプライン部の溝底部分に形成された溝底層の径方向に関する厚さ寸法が、前記雄スプライン部の歯先部分に形成された歯先層の径方向に関する厚さ寸法よりも大きい、請求項2に記載の自在継手用ヨーク付トルク伝達軸。
  4.  前記雄スプライン部のスプライン溝の断面形状が部分円弧状に形成される、請求項1に記載の自在継手用ヨーク付トルク伝達軸。
  5.  請求項1~4のいずれか1項に記載の自在継手用ヨーク付トルク伝達軸と、
     少なくとも軸方向他端部を円管状とし、該軸方向他端部の内周面に、前記雄スプライン部とスプライン係合する雌スプライン部を有する他のトルク伝達軸と、
    を有し、前記杆部のうちで前記雄スプライン部から軸方向に外れた部分の外径が、前記他のトルク伝達軸の雌スプライン部の内接円の直径より小さい、伸縮軸。
  6.  円杆状で、軸方向片端部外周面に雄スプライン部を設けた杆部と、該杆部の軸方向他端部に固設され、十字軸式自在継手を構成する十字軸の端部を枢支する1対の腕部を備えるヨークとを備える自在継手用ヨーク付トルク伝達軸の製造方法であって、
     軸方向他端部に前記ヨークを固設しており、軸方向片半部の外径が、完成後の前記杆部の軸方向他端寄り部分の外径と一致する杆状素子を用い、該杆状素子の軸方向片端部外周面に、該軸方向片端部外周面を径方向に変形させる塑性加工を施す事で、該軸方向片端部外周面に、溝底径が前記杆部の軸方向他端寄り部分の外径よりも小さく、歯先径が前記杆部の軸方向他端寄り部分の外径よりも大きな前記雄スプライン部を形成する、自在継手用ヨーク付トルク伝達軸の製造方法。
  7.  前記塑性加工が、前記雄スプライン部の外面形状に見合う形状の加工面を有する金型を、前記杆状素子の軸方向片端部外周面に押し付ける事により行う鍛造加工である、請求項6に記載の自在継手用ヨーク付トルク伝達軸の製造方法。
  8.  前記雄スプライン部のスプライン溝の断面形状が部分円弧状に形成される、請求項6に記載の自在継手用ヨーク付トルク伝達軸の製造方法。
PCT/JP2014/066579 2013-07-30 2014-06-23 自在継手用ヨーク付トルク伝達軸及びその製造方法 WO2015015952A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015529457A JP6354761B2 (ja) 2013-07-30 2014-06-23 自在継手用ヨーク付トルク伝達軸
CN201480042285.3A CN105473882B (zh) 2013-07-30 2014-06-23 带有万向接头用叉轭的力矩传递轴及其制造方法和伸缩轴
EP14832831.3A EP3001060B1 (en) 2013-07-30 2014-06-23 Torque transmission shaft with yoke for universal joint and manufacturing method therefor
US14/900,845 US9915291B2 (en) 2013-07-30 2014-06-23 Torque transmission shaft having universal joint yoke and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-157518 2013-07-30
JP2013157518 2013-07-30
JP2014-050230 2014-03-13
JP2014050230 2014-03-13

Publications (1)

Publication Number Publication Date
WO2015015952A1 true WO2015015952A1 (ja) 2015-02-05

Family

ID=52431494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066579 WO2015015952A1 (ja) 2013-07-30 2014-06-23 自在継手用ヨーク付トルク伝達軸及びその製造方法

Country Status (5)

Country Link
US (1) US9915291B2 (ja)
EP (1) EP3001060B1 (ja)
JP (1) JP6354761B2 (ja)
CN (1) CN105473882B (ja)
WO (1) WO2015015952A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030059A1 (ja) * 2015-08-20 2017-02-23 日本精工株式会社 ヨーク一体型シャフト及び伸縮軸
JP2017106566A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト用雄軸の製造方法
JP2019084859A (ja) * 2017-11-02 2019-06-06 日本精工株式会社 ステアリング装置
WO2022050306A1 (ja) * 2020-09-02 2022-03-10 日本精工株式会社 ステアリングシャフト及びステアリングシャフトの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292439B2 (ja) * 2013-12-17 2018-03-14 株式会社ジェイテクト 操舵用スプライン伸縮軸およびステアリング装置
USD785082S1 (en) * 2015-01-16 2017-04-25 S-Printing Solution Co., Ltd. Toner cartridge
KR101930335B1 (ko) * 2016-10-11 2018-12-19 이양화 파이프를 이용한 유니버셜 조인트 제조방법
CN110461497B (zh) * 2017-03-27 2022-10-21 日本精工株式会社 转向装置用轴、转向装置用轴的制造方法及电动助力转向装置
AT520015B1 (de) * 2017-05-30 2019-02-15 Miba Sinter Austria Gmbh Baugruppe mit einer Steckverzahnung
FR3081756A1 (fr) * 2018-05-31 2019-12-06 Albea Services Procede de fabrication d'une tige de guidage d'une pompe
WO2020105582A1 (ja) * 2018-11-22 2020-05-28 日本精工株式会社 トルク伝達軸
CN111900826B (zh) * 2020-08-06 2022-07-15 珠海格力电器股份有限公司 一种轴伸可伸缩的电机
KR102477473B1 (ko) * 2020-09-17 2022-12-13 두산에너빌리티 주식회사 세그먼트 조절 장치, 이를 포함하는 터빈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182736A (ja) 1999-12-24 2001-07-06 Koyo Seiko Co Ltd 伸縮自在シャフト
JP2009097558A (ja) * 2007-10-15 2009-05-07 Ntn Corp スプライン、スプライン連結構造、動力伝達軸及び等速自在継手
JP2010127295A (ja) * 2008-11-25 2010-06-10 Nsk Ltd 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸
JP2011085152A (ja) * 2009-10-13 2011-04-28 Ntn Corp 動力伝達用軸およびアッセンブリ体
JP2011126487A (ja) * 2009-12-21 2011-06-30 Ntn Corp 車輪用軸受装置
JP2011241957A (ja) * 2010-05-21 2011-12-01 Mitsubishi Agricultural Machinery Co Ltd 作業車両の伝動構造
JP2012117560A (ja) 2010-11-29 2012-06-21 Jtekt Corp 伸縮可能シャフトおよびその製造方法並びに車両用操舵装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE27068E (en) * 1970-01-26 1971-02-23 Slip spline assembly
EP0707157B1 (en) * 1994-10-13 2003-07-09 Matsui Universal Joint Manufacturing Company Method of producing a propeller shaft
US5836823A (en) * 1996-02-28 1998-11-17 Dana Corporation Webbed yoke for universal joint
WO2004113150A1 (ja) * 2003-06-20 2004-12-29 Nsk Ltd. 車両ステアリング装置
CN100489330C (zh) 2004-06-14 2009-05-20 恩斯特格罗布股份公司 用于毂轴连接的槽形型材
WO2008057060A2 (en) * 2006-11-06 2008-05-15 Tirsan Kardan Sanayi Ve Ticaret Anonim Sirketi Sliding group of cardan shaft with interlocking mechanism
WO2014192653A1 (ja) * 2013-05-27 2014-12-04 日本精工株式会社 伸縮軸用インナーシャフトおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182736A (ja) 1999-12-24 2001-07-06 Koyo Seiko Co Ltd 伸縮自在シャフト
JP2009097558A (ja) * 2007-10-15 2009-05-07 Ntn Corp スプライン、スプライン連結構造、動力伝達軸及び等速自在継手
JP2010127295A (ja) * 2008-11-25 2010-06-10 Nsk Ltd 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸
JP2011085152A (ja) * 2009-10-13 2011-04-28 Ntn Corp 動力伝達用軸およびアッセンブリ体
JP2011126487A (ja) * 2009-12-21 2011-06-30 Ntn Corp 車輪用軸受装置
JP2011241957A (ja) * 2010-05-21 2011-12-01 Mitsubishi Agricultural Machinery Co Ltd 作業車両の伝動構造
JP2012117560A (ja) 2010-11-29 2012-06-21 Jtekt Corp 伸縮可能シャフトおよびその製造方法並びに車両用操舵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001060A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030059A1 (ja) * 2015-08-20 2017-02-23 日本精工株式会社 ヨーク一体型シャフト及び伸縮軸
JPWO2017030059A1 (ja) * 2015-08-20 2018-04-26 日本精工株式会社 ヨーク一体型シャフト及び伸縮軸
JP2017106566A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト用雄軸の製造方法
JP2019084859A (ja) * 2017-11-02 2019-06-06 日本精工株式会社 ステアリング装置
JP7024329B2 (ja) 2017-11-02 2022-02-24 日本精工株式会社 ステアリング装置
WO2022050306A1 (ja) * 2020-09-02 2022-03-10 日本精工株式会社 ステアリングシャフト及びステアリングシャフトの製造方法

Also Published As

Publication number Publication date
CN105473882B (zh) 2018-10-12
JPWO2015015952A1 (ja) 2017-03-02
CN105473882A (zh) 2016-04-06
US20160153499A1 (en) 2016-06-02
EP3001060A4 (en) 2016-04-27
EP3001060A1 (en) 2016-03-30
EP3001060B1 (en) 2019-01-30
US9915291B2 (en) 2018-03-13
JP6354761B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6354761B2 (ja) 自在継手用ヨーク付トルク伝達軸
JP5447694B2 (ja) ステアリング装置用伸縮軸
US9951806B2 (en) Telescopic shaft
EP3006305B1 (en) Inner shaft for telescopic shaft and production method thereof
WO2012066904A1 (ja) 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸
US10953454B2 (en) Method for producing a steering shaft part and steering shaft for a motor vehicle
JP6481797B2 (ja) 伸縮シャフト
JP6597010B2 (ja) 伸縮自在シャフトの製造方法
US20190388947A1 (en) Hollow Torque Transmission Member and Manufacturing Method Thereof, Intermediate Shaft, and Steering Apparatus for Automobile
JP5034881B2 (ja) 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸
JP7024329B2 (ja) ステアリング装置
JP6512129B2 (ja) 伸縮自在シャフト
JP7342631B2 (ja) ホールカバー付きアウタチューブ
JP2019031993A (ja) 伸縮シャフト
JP7322617B2 (ja) ステアリング中間シャフト用アウタチューブの製造方法
JP7234686B2 (ja) アウタシャフト及びその製造方法
JP6897184B2 (ja) アウタチューブ及びその製造方法
JP2017145946A (ja) 伸縮自在シャフト
JP2017106566A (ja) 伸縮自在シャフト用雄軸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042285.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529457

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900845

Country of ref document: US

Ref document number: 2014832831

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE