WO2015014188A1 - 一种高吸液速率的高吸水性树脂及其制备方法 - Google Patents
一种高吸液速率的高吸水性树脂及其制备方法 Download PDFInfo
- Publication number
- WO2015014188A1 WO2015014188A1 PCT/CN2014/080963 CN2014080963W WO2015014188A1 WO 2015014188 A1 WO2015014188 A1 WO 2015014188A1 CN 2014080963 W CN2014080963 W CN 2014080963W WO 2015014188 A1 WO2015014188 A1 WO 2015014188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- solution
- absorbent resin
- resin
- super absorbent
- Prior art date
Links
- 239000011347 resin Substances 0.000 title claims abstract description 188
- 229920005989 resin Polymers 0.000 title claims abstract description 188
- 239000002250 absorbent Substances 0.000 title claims abstract description 58
- 230000002745 absorbent Effects 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 78
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 229920000642 polymer Polymers 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000010894 electron beam technology Methods 0.000 claims abstract description 23
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 21
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims abstract description 20
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 99
- 238000010521 absorption reaction Methods 0.000 claims description 69
- 229920001577 copolymer Polymers 0.000 claims description 50
- 239000002245 particle Substances 0.000 claims description 50
- 239000000243 solution Substances 0.000 claims description 50
- 230000008961 swelling Effects 0.000 claims description 48
- 239000000178 monomer Substances 0.000 claims description 41
- 238000007654 immersion Methods 0.000 claims description 40
- 238000004108 freeze drying Methods 0.000 claims description 26
- 239000007864 aqueous solution Substances 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 22
- 238000004132 cross linking Methods 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 231100000987 absorbed dose Toxicity 0.000 claims description 8
- 238000007873 sieving Methods 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 238000002386 leaching Methods 0.000 claims 4
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 claims 3
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims 3
- 150000002632 lipids Chemical class 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 abstract description 46
- 238000007598 dipping method Methods 0.000 abstract description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 11
- 238000011161 development Methods 0.000 abstract description 4
- 229940068984 polyvinyl alcohol Drugs 0.000 description 73
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 73
- 239000012153 distilled water Substances 0.000 description 30
- 239000000047 product Substances 0.000 description 30
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 239000002504 physiological saline solution Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 238000010298 pulverizing process Methods 0.000 description 11
- HWSBJTCINXERHA-UHFFFAOYSA-N C(C=C)(=O)NC(CS(=O)(=O)O)(C)S Chemical compound C(C=C)(=O)NC(CS(=O)(=O)O)(C)S HWSBJTCINXERHA-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000010257 thawing Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 229930182558 Sterol Natural products 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- -1 poly Ethylene Polymers 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- 150000003432 sterols Chemical class 0.000 description 5
- 235000003702 sterols Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 206010070834 Sensitisation Diseases 0.000 description 4
- 206010040880 Skin irritation Diseases 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000007059 acute toxicity Effects 0.000 description 4
- 231100000403 acute toxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 230000036556 skin irritation Effects 0.000 description 4
- 231100000475 skin irritation Toxicity 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 206010046543 Urinary incontinence Diseases 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000035479 physiological effects, processes and functions Effects 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003020 moisturizing effect Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229940070721 polyacrylate Drugs 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QCQLSBQCHLNRLK-UHFFFAOYSA-N CC(C(=O)O)(NC(=O)C=C)S Chemical compound CC(C(=O)O)(NC(=O)C=C)S QCQLSBQCHLNRLK-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241000772413 Lutrogale perspicillata Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 230000013016 learning Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010850 salt effect Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F261/00—Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
- C08F261/02—Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
- C08F261/04—Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/02—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
Definitions
- the invention relates to the technical field of functional polymer materials, in particular to a high water absorption resin with high liquid absorption rate and a preparation method thereof. Background technique
- Super Absorbent Resin is a new type of high molecular polymer with strong hydrophilic groups with a three-dimensional network structure that has been rapidly developed in recent years. It can quickly absorb a large amount of water and expand into a gel. Resin, with high water absorption and water retention.
- the research of superabsorbent resin has been carried out for more than 60 years, and various high-absorbent resins have been successfully developed in Japan, the United States and other countries.
- Sanyo Chemicals Co., Ltd. is the world's first manufacturer to produce water-absorbent resins in the world in 1978. At present, Japan's three high-absorbent resins account for about 55% of global production. China is becoming an emerging large market for international superabsorbent resins.
- superabsorbent resin raw materials one is natural materials such as starch, alginate, protein, chitosan, etc.; the other is petrochemical polymer materials such as polyethylene oxide, polyvinyl alcohol, poly Ethylene, polystyrene, polyurethane, etc., the most reported in the literature is the grafting of acrylic acid and its salts with other polymer materials.
- Superabsorbent resins have been widely used in many fields such as health care, industry, agriculture, forestry and daily life. Among them, urinary incontinence mattresses, infant diapers and women's sanitary napkins account for more than 70% of the total market.
- the salt tolerance, liquid absorption rate and biocompatibility of the superabsorbent resin still need to be further improved and improved, which is the focus and difficulty of the international superabsorbent resin research.
- infants and young children's diapers and women's sanitary napkins often have liquid side leakage such as urine or menstruation due to the low liquid absorption capacity, especially the liquid absorption rate.
- At least the sanitary products need to be replaced at night; Weak, liquids are often wet-coated by hygienic materials; certain polymer monomers are irritating, sensitizing, toxic or potentially toxic to skin and cells, ie, low in safety and biocompatibility. Summary of the invention
- an object of the present invention is to provide a superabsorbent resin having a high liquid absorption rate, which is superior in liquid absorption rate and ability to internationally renowned superabsorbent resin products, and which is excellent in biocompatibility and safe in use.
- the present invention provides a high water absorption rate superabsorbent resin which is a copolymer obtained by radiation crosslinking and grafting of an aqueous solution of a mixture of a polymer and a monomer;
- the aqueous solution of the mixture of polymer and monomer comprises, by mass percent,:
- the degree of polymerization of the polyvinyl alcohol is 1700 ⁇ 2400;
- the sodium polyacrylate has a molecular weight of 2 10 3 to 5 10 3 .
- the high liquid absorption rate superabsorbent resin of the present invention is composed of 2 to 10% by weight of polyvinyl alcohol (poly Vinyl Alcohol, PVA for short) and 18 to 26% by weight of sodium polyacrylate (Poly Acrylate Sodium).
- PAAS polyvinyl alcohol
- AMPS 3 ⁇ 9wt% 2-Acrylamide-2-MethylPro Panesulfonic Acid
- the aqueous solution of the mixture of the polymer and the monomer comprises:
- the superabsorbent resin is a copolymer obtained by radiation crosslinking and grafting of an aqueous solution composed of 2 wt% of PVA, 26 wt% of PAAS and 9 wt% of AMPS by mass percentage.
- the invention provides a preparation method of the high liquid absorption rate super absorbent resin described above, including The following steps:
- the method further comprises the following steps:
- the drying is: placing the gel state copolymer in an electric drying oven, drying at 40 to 50 ° C for 24 to 48 hours to obtain a dried gel;
- the pulverization is: placing the dried gel in a pulverizer at a rotation speed of 2500 to 3000 r/min, and pulverizing for 25 to 30 s to obtain granules;
- the division is divided into: the particles are separated by an oscillating extension to obtain resin particles having a mesh number of 40 to 100 mesh.
- the dipping and swelling are: placing the resin particles in an immersion liquid for room temperature immersion and swelling, and after 6-8 hours, obtaining the swollen resin particles;
- the mass ratio of the resin particles to the immersion liquid is 1:30 to 1:40.
- the immersion liquid is composed of decyl alcohol and tri-distilled water, and the mass ratio of the sterol to the three distilled water is 1:9-7:3.
- the thawing is: filtering the excess resin liquid after swelling, placing it in a low temperature water tank of -100-80 ° C, and thawing for 2 ⁇ 3 hours, after obtaining the lyophilization
- the lyophilized resin is: the lyophilized resin granule is subjected to vacuum freeze-drying using a freeze dryer for 48 to 72 hours, and the cold trap temperature is -60 to 50 ° C to obtain a highly water-absorbent resin product.
- step A) after mixing, it is placed in a high-pressure steam pot, and dissolved at 110 to 120 ° C for heating, and after l ⁇ 2 hours, an aqueous solution of a mixture of a polymer and a monomer is obtained.
- the aqueous solution of the mixture of the polymer and the monomer is quantitatively poured into a smooth disk-shaped mold, and the thickness of the solution is l-15 mm.
- the energy of the electron beam irradiation is 0.8 to 2.45 MeV
- the current is 2 to 14 mA
- the total absorbed dose is 30 to 60 kGy.
- the invention also provides a method for preparing the above high liquid absorption rate superabsorbent resin, which comprises the following steps:
- Electron beam irradiation and gel The solution in the mold is cross-linked and grafted under electron beam irradiation conditions with an energy of 0.8 to 2.45 MeV, a current of 2 to 14 mA, and a total absorbed dose of 30 to 60 kGy.
- Synthetic gel state PVA/PAAS/AMPS copolymer Synthetic gel state PVA/PAAS/AMPS copolymer
- the gelled copolymer synthesized in the step (3) is placed in an electric drying oven, dried at 40 to 50 ° C for 24 to 48 hours to obtain a dried gel, and the resulting dried The gel is placed in a pulverizer at a speed of 2500 ⁇ 3000r/min, pulverized for 25 ⁇ 30s, and divided by a shocking Xue machine to obtain 40 ⁇ : 100 mesh resin particles;
- the ratio of the PVA/PAAS/AMPS and the three distilled water is 2 to 10 wt%: 18 to 26 wt%: 3 to 9 wt%: 55 to 77 wt%, based on the mass percentage.
- the metering ratio of PVA/PAAS/AMPS and tri-distilled water is 2 wt%: 26 wt%: 9 wt%: 63 wt%, based on mass percentage.
- the mold is made of aluminum alloy or glass.
- the immersion liquid is composed of decyl alcohol and triple distilled water.
- the mass ratio of the decyl alcohol to the triple distilled water in the immersion liquid is 1:9-7:3.
- the mass ratio of the methanol to the triple distilled water in the dip is 5:5. Due to the application of the above technical solutions, the present invention has the following advantages compared with the prior art: The pH value of the super absorbent resin of the present invention, the physiological saline absorption amount and the centrifugal liquid retention amount have reached the internationally renowned products such as Sanyo Chemicals Co., Ltd.
- Figure 1 is an SEM image of a super absorbent resin without a post-treatment process
- Figure 2 is an SEM image of a superabsorbent resin after a post-treatment process
- Figure 3 is an infrared spectrum of a superabsorbent resin
- Figure 4 is a graph showing the effect of PAAS content on the swelling degree of gel copolymer
- Figure 5 is a graph showing the effect of PVA content on the swelling degree of gel copolymer
- Figure 6 is a graph showing the effect of AMPS content on the swelling degree of gel copolymer
- Figure 7 is a SEM image of the superabsorbent resin of Example 4 without a post-treatment process
- Fig. 8 is a SEM image of the super absorbent resin of the fourth embodiment after the post-treatment process. detailed description
- the present invention provides a high water absorption rate superabsorbent resin which is a copolymer obtained by radiation crosslinking and grafting of a mixture of a polymer and a monomer;
- the aqueous solution of the mixture of polymer and monomer comprises, by mass percent,:
- the degree of polymerization of the polyvinyl alcohol is 1700 ⁇ 2400;
- the sodium polyacrylate has a molecular weight of 2 10 3 to 5 10 3 .
- the invention utilizes electron beam radiation crosslinking and grafting to synthesize a novel PVA/PAAS/AMPS copolymer, which is used as a superabsorbent resin after post-treatment process, and has a very high liquid absorption rate, which is advantageous for application.
- the aqueous solution mixture of the polymer and the monomer contains 2 to 10% by weight of polyvinyl alcohol, preferably 2 to 6% by weight of polyvinyl alcohol, and more preferably 2% by weight of polyvinyl alcohol.
- Poly Vinyl Alcohol (PVA) is a raw material for highly water-absorbent resins due to its structural characteristics.
- the degree of polymerization of the polyvinyl alcohol is 1,700 2,400, and the degree of saponification is generally 98% or more, and chemically pure PVA may be used.
- the aqueous solution mixture of the polymer and the monomer comprises 18 to 26% by weight of sodium polyacrylate, preferably 22 to 26% by weight of sodium polyacrylate, more preferably 26% by weight of sodium polyacrylate.
- Poly Acrylate Sodium (PAAS) is one of the copolymerization raw materials of the present invention, and it contains a strongly hydrophilic ionic sodium carboxylate group (-COONa), which is highly water-soluble.
- the sodium polyacrylate has a molecular weight of 2 10 3 to 5 10 3 , preferably 3 10 3 to 5 10 3 , and can be used for analytically pure PAAS.
- the aqueous solution of the mixture of the polymer and the monomer comprises 3 to 9 wt% of 2-acrylamido-2-mercaptopropanesulfonic acid, preferably 6 to 9 wt% of 2-acrylamido-2-indenyl group, by mass percentage.
- Propanesulfonic acid more preferably contains 9 wt% 2-acrylamido-2-mercaptopropionic acid.
- 2-Acrylamide-2-MethylPro Panesulfonic Acid (AMPS) is a hydrogen atom in the amide group of an acrylamide molecule substituted by an alkyl cross-acid molecule.
- a compound containing a hydrophilic strong anionic sulfonic acid group (-S0 3 - ) which, together with the above-mentioned polymer raw materials, constitutes an aqueous solution of the polymer and monomer of the present invention, and is easily combined with a water-soluble PAAS to form High-absorbent resin three-dimensional network structure.
- chemically pure AMPS can be used.
- the aqueous solution of the mixture of the polymer and the monomer comprises 55 to 77% by weight of water, preferably 63 to 70% by weight of water, more preferably 63 to 65% by weight of water, most preferably It preferably contains 63% by weight of water.
- the water is preferably three distilled water.
- the aqueous solution of the mixture of polymer and monomer comprises: 2 wt% polyvinyl alcohol; 26 wt% sodium polyacrylate; 9 wt% 2-acrylamido-2-mercaptopropane acid; 63wt% three steamed water, the best effect.
- the aqueous solution of the mixture of the polymer and the monomer is subjected to radiation crosslinking and grafting to obtain a PVA/PAAS/AMPS copolymer, which is a resin having excellent liquid absorption and liquid retention ability through a post-treatment process.
- the present invention provides a method for preparing a high liquid absorption superabsorbent resin as described above, comprising the steps of:
- the ingredients were first mixed, and polyvinyl alcohol, sodium polyacrylate and 2-acrylamido-2-mercaptopropanesulfonic acid and water were uniformly mixed according to the mass percentage described above.
- the contents of the polyvinyl alcohol, sodium polyacrylate and 2-acrylamido-2-mercaptopropanesulfonic acid and water are as described above, and will not be further described herein.
- the above mixture solution is preferably placed in an autoclave and dissolved by heating to prepare a uniform transparent solution.
- the heating and dissolving temperature is preferably 110 to 120 ° C; and the time is preferably 1 to 2 h to obtain an aqueous solution of a mixture of a polymer and a monomer.
- the present invention is irradiated with an electron accelerator device, and crosslinked and grafted by electron beam irradiation to synthesize a new gel state PVA/PAAS/AMPS copolymer.
- the present invention Prior to crosslinking and grafting, the present invention preferably injects an aqueous solution of the mixture of the polymer and the monomer quantitatively into a smooth disk-shaped mold to complete injection molding.
- the mold is preferably made of aluminum alloy or glass, and the size of the mold can be determined according to the electron beam irradiation width.
- the thickness of the solution is preferably from 1 to 15 mm, more preferably from 8 to 15 mm.
- the embodiment of the present invention uses an electron accelerator device to irradiate the solution in the mold with an electron beam to synthesize a gel-state copolymer.
- the irradiation conditions include: the energy of the electron beam irradiation is preferably 0.8 to 2.45 MeV, more preferably 1.5 to 2.0 MeV; and the current is preferably 2 to 14 mA. More preferably, it is 9 to 13 mA; the total absorbed dose is preferably 30 to 60 kGy, more preferably 40 to 50 kGy.
- the present invention preferably further comprises the steps of: sequentially drying, pulverizing, sieving, dipping, swelling, thawing, and freeze-drying the gel state copolymer to obtain a freeze-dried Super absorbent resin.
- the steps of drying, dipping, thawing, and freeze-drying (lyophilization) are post-radiation treatment processes, which have a significant effect on the liquid absorbing properties of the superabsorbent resin.
- the drying is: placing the gelled superabsorbent resin in an electric drying oven,
- the pulverization is: placing the dried gel in a pulverizer at a rotation speed of 2500 to 3000 r/min, and pulverizing for 25 to 30 s to obtain granules.
- the division is divided into: the particles are separated by an oscillating extension to obtain resin particles having a mesh number of 40 to 100 mesh.
- the uncrosslinked monomer in the super absorbent resin has a great influence on the performance and biocompatibility of the super absorbent resin.
- the embodiment of the present invention dipped and swelled with the immersion liquid to obtain a swelling property. Resin particles.
- the dipping and swelling are: placing the resin particles in a dipping solution for room temperature immersion and swelling to obtain swollen resin particles.
- the mass ratio of the resin particles to the immersion liquid is preferably 1:30:40.
- the immersion and swelling time is preferably 6 to 8 hours in order to remove the uncrosslinked monomer and sufficiently swell the resin particles.
- the immersion liquid is preferably composed of decyl alcohol and tri-distilled water, which has a dual function of removing uncrosslinked monomers and swelling resins in the resin.
- the mass ratio of the sterol to the tri-distilled water is preferably from 1:9 to 7:3, and the effect is good.
- the present invention is subjected to freeze-drying treatment to obtain a highly water-absorbent resin product after freeze-drying, and the moisture-proof package is reserved.
- the freeze-drying treatment has a very significant effect on the improvement of the liquid absorption performance of the super absorbent resin.
- the extraction is: filtering the excess resin liquid after swelling the resin particles, and placing it at -100-80 °C. Low temperature In the water tank, the product is frozen for 2 to 3 hours, and the resin particles after the freezing are obtained.
- the freeze-drying is: applying the frozen resin pellets to a freeze-drying machine for vacuum drying, the time is 48 to 72 hours, and the cold trap temperature is -60 to 50 ° C to obtain a highly water-absorbent resin product after cold drying.
- the present invention detects its physical and chemical properties.
- ISO17910-2001 standard the form, water content, fine structure, molecular structure, pH value, swelling degree of three distilled water and liquid absorption ratio, swelling degree of physiological saline and suction of the prepared super absorbent resin product
- the liquid multiplication rate, the centrifugal liquid retention amount, and the liquid absorption rate are detected.
- the present invention performs biocompatibility detection on the superabsorbent resin.
- the liquid absorption rate and the three steamed water absorption amount of the PVA/PAAS/AMPS super absorbent resin of the invention are very significantly superior to the domestic famous super absorbent resin products, and are at the international leading level.
- the pH of the superabsorbent resin of the present invention, the amount of physiological saline absorbed, and the level of the centrifuge liquid retention are also among the internationally advanced levels.
- the superabsorbent resin of the present invention has no acute toxicity, cytotoxicity, sensitization and skin irritation, is excellent in biocompatibility, and is safe to use.
- the preparation method of the super absorbent resin of the invention is simple in process and easy to implement.
- PVA is chemically pure, with a degree of polymerization of 1700 and a saponification degree of 98%;
- PAAS is of analytical grade and has a molecular weight of 5 x l0 3 ;
- AMPS is chemically pure with a molecular weight of 207.25.
- PVA was 6 wt%
- PAAS was 18 wt%
- AMPS was 6 wt%
- trihydrated water was 70 wt%.
- the above mixture solution was uniformly mixed, placed in an autoclave, and dissolved by heating at 110 ° C for 2 hours to prepare a uniform transparent solution.
- the uniform solution is quantitatively infused into a smooth disc-shaped mold, and the mold is made of an aluminum alloy, the size of which is determined according to the electron beam irradiation width, and the solution thickness is lmm.
- a immersion liquid consisting of sterol and tri-distilled water in a mass ratio of 7:3 is prepared, and the resin particles are placed in the immersion liquid, and the mass ratio of the resin particles to the immersion liquid is 1: 30, immersed and swelled at room temperature for 8 h to remove uncrosslinked monomers and sufficiently swell the resin particles.
- PVA is chemically pure, with a degree of polymerization of 2400 and a saponification degree of 99%; PAAS is of analytical grade, molecular weight 2 x l0 3 ; AMPS is chemically pure and has a molecular weight of 207.25.
- PVA 10 wt%
- PAAS 22 wt%
- AMPS 3 wt%
- trihydrated water 65 wt%.
- the above mixture solution was uniformly mixed, placed in an autoclave, and dissolved by heating at 120 ° C for 1 hour to prepare a uniform transparent solution.
- the uniform solution is quantitatively poured into a smooth disc-shaped mold, and the mold is made of an aluminum alloy, the size of which is determined according to the electron beam irradiation width, and the solution thickness is 15 mm.
- Dipping and swelling Preparing a dip having a mass ratio of 1:9 consisting of decyl alcohol and tri-distilled water, and placing the resin particles in the immersion liquid, the mass ratio of the resin particles to the immersion liquid is 1: 40, immersed and swelled at room temperature for 8 h to remove uncrosslinked monomers and sufficiently swell the resin particles.
- °C, PVA/PAAS/AMPS super absorbent resin products are prepared, and the moisture-proof package is ready for use.
- PVA is chemically pure, the degree of polymerization is: 1700, the degree of saponification is 99%; PAAS is analytically pure, the molecular weight is 3 x l0 3 ; AMPS is chemically pure, and the molecular weight is 207.25.
- PVA was 2 wt%
- PAAS was 26 wt%
- AMPS was 9 wt%
- tri-distilled water was 63 wt%.
- the above mixture solution was uniformly mixed, placed in an autoclave, and dissolved by heating at 120 ° C for 2 hours to prepare a uniform transparent solution.
- the uniform solution is quantitatively infused into a smooth disc-shaped mold, and the mold is made of an aluminum alloy, the size of which is determined according to the electron beam irradiation width, and the solution thickness is 8 mm.
- the solution in the mold is irradiated with an electron accelerator device.
- the irradiation conditions are: energy of 1.5 MeV, current of 9 mA, and total absorbed dose of 50 kGy.
- a new gel state PVA/PAAS/AMPS copolymer was synthesized by cross-linking and grafting by electron beam irradiation.
- a immersion liquid consisting of sterol and tri-distilled water in a mass ratio of 5:5 is prepared, and the resin particles are placed in the immersion liquid, and the mass ratio of the resin particles to the immersion liquid is 1: 35, immersed and swelled at room temperature for 7 h to remove uncrosslinked monomers and sufficiently swell the resin particles.
- the morphology, texture, color, water content, and the like of the superabsorbent resin were observed.
- the pH electrode was inserted into the buffer for calibration.
- 0.5g of superabsorbent resin was placed in a beaker containing 100ml of normal saline, the beaker was placed on a magnetic stirrer, and a 25mm diameter iron core PTFE stirrer was used, stirred at a medium speed for 10 minutes, allowed to stand for 1 min, and then applied standard.
- the PH electrode was used to measure the pH of the supernatant.
- the radiation-synthesized gel copolymer was cut into 5 samples and placed in a constant temperature drying oven. The mixture was dried to constant weight at 50 ° C and weighed separately. This is the dry plastic sample mass M l and immersed in three distilled water for 24 h. Fully swell the balance, take out the sample, wait for it to no longer have water droplets, weigh, this is the swelling rubber sample mass M 2 .
- the degree of swelling of the gel copolymer in the three distilled water was calculated according to the following formula.
- the radiation-synthesized gel copolymer was cut into 5 samples and placed in a constant temperature drying oven, dried at 50 ° C to constant weight, and weighed separately. This is the dry rubber sample mass M l and immersed in physiological saline for 24 h. Fully swell the balance, take out the sample, wait for it to no longer have water droplets, weigh, this is the swelling rubber sample mass M 2 .
- the degree of swelling of the gel copolymer in physiological saline was calculated according to the following formula.
- the experimental results were expressed as mean standard deviation ( ⁇ ). Statistical analysis was performed on the experimental data using the SPSS19.0 statistical software package. The multivariate comparison was used to compare the SNK method with variance analysis. ⁇ 0.05 indicates significant statistical results. Learning differences, indicating a statistically significant difference. Experimental results
- the PVA/PAAS/AMPS superabsorbent resin prepared by the inventors was white compact solid particles having a particle size of 40-100 mesh and a water content of 3.6 ⁇ 0.3%. After absorbing liquid, it swells into transparent gelatinous granules.
- the inventors analyzed and identified the material molecules of PVA/PAAS/AMPS superabsorbent resin by infrared spectroscopy. It can be seen from Fig. 3 that the NH bond stretching vibration peak of AMPS amide is 3436.7/cm- 1 , the COO-Na symmetric stretching vibration peak of PAAS is 1406/cm- 1 , and the COO-Na antisymmetric stretching vibration peak is 1606.1 /cm.
- the C-0 stretching vibration peak of PVA alcohol near 1053.3/cm" 1 is the characteristic absorption peak of synthetic ester V ee at 1330 1150/cm- 1 , so 1203.8/cm- 1 is the characteristic absorption peak of ester, 619.4/cm Nearby is the characteristic absorption peak of the horizontal acid group.
- the absorption peak near 1352.3/cm is not the characteristic absorption peak of the molecular bond of the experimental materials (PVA, PAAS and AMPS), which belongs to the fingerprint area in the infrared spectrum, which may be the experiment.
- the new bond absorption peak of the copolymer formed by radiation cross-linking is generally formed in the fingerprint area.
- the results of infrared spectroscopy indicate that the experimental material has been synthesized by electron beam radiation crosslinking and grafting. PVA/PAAS/AMPS copolymer.
- the inventors used the quality of PAAS, PVA and AMPS as the object of investigation, and carried out three-factor and three-level orthogonal test design, which can reduce the sample size of the experiment and truly reflect the experimental results, which is beneficial to quickly screen out the three materials. The best ratio.
- Nine groups of gel-state PVA/PAAS/AMPS copolymer samples designed by orthogonal test were synthesized by radiation, and the swelling degree of these samples was measured. The results are shown in Table 1.
- AMPS is a compound formed by substituting a hydrogen atom of an amide group on an acrylamide molecule with an alkyl cross-acid molecule, and is easily combined with a water-soluble PAAS to form a three-dimensional network structure of a highly water-absorbent resin.
- AMPS contains a hydrophilic strong anionic sulfonic acid group (-S0 3 - )
- the high hydrophilic group contained in the three-dimensional network structure is greatly increased, the degree of polymer ionization is increased, and the number of anions on the three-dimensional grid point is also increased during liquid absorption, resulting in intra-network penetration.
- the liquid absorption performance also increases;
- the PAAS in the superabsorbent resin system contains a strong hydrophilic ionic sodium carboxylate group (-COONa)
- the content of AMPS increases, and the resin system
- the ionic amide group (-CONH 2 ) is also increased, -CONH 2 and -COONa are prone to synergistic effects, weakening the iso-ionic and salt effects of the pipetting process, and reducing the sensitivity of the resin system to the salt concentration in the solution system. Sensibility, so that the superabsorbent resin enhances the absorption capacity of physiological saline and ammonia.
- the uncrosslinked monomer in the superabsorbent resin has a large influence on the performance and biocompatibility of the super absorbent resin. Therefore, the inventors have for the first time at home and abroad to develop a immersion liquid composed of decyl alcohol and tri-distilled water, which has the dual function of removing uncrosslinked monomers and swelling resins in the resin.
- a immersion liquid composed of decyl alcohol and tri-distilled water, which has the dual function of removing uncrosslinked monomers and swelling resins in the resin.
- SAR superabsorbent resin
- the irradiated gel copolymer dry rubber particles are placed in the immersion liquid, and the mass ratio of the dry rubber particles to the immersion liquid is 1:40, and the post-treatment processes such as immersion, swelling, thawing and lyophilization are performed.
- the liquid absorption properties of the superabsorbent resin were measured, and the results are shown in Table 2.
- the irradiated gel copolymer solid particles were dipped, dried or freeze-dried by immersion liquid, and the effects of dipping, drying and lyophilization on the liquid absorbing properties of the superabsorbent resin were observed.
- Table 3 The irradiated gel copolymer solid particles were dipped, dried or freeze-dried by immersion liquid, and the effects of dipping, drying and lyophilization on the liquid absorbing properties of the superabsorbent resin were observed.
- the three-distilled water absorption ratio of the second group of the impregnated superabsorbent resin is significantly increased ( ⁇ 0.05) as compared with the first group of the unwashed superabsorbent resin, indicating that the uncrosslinking is removed.
- the monomer can significantly improve the three-distilled water absorption capacity of the resin.
- the third group of lyophilized superabsorbent resin has a significant increase in the three-distilled water absorption ratio, the physiological saline absorption ratio and the liquid absorption rate ( ⁇ 0.01), indicating that the freeze-drying treatment has a very significant effect on the improvement of the liquid absorption performance of the super absorbent resin.
- the freeze-drying can increase the three-dimensional network pore size of the swelling resin, and the larger the network structure, the higher the water absorption and liquid absorption ratio, and the liquid absorption rate also increases significantly.
- the third group of the superabsorbent resin after the immersion, thawing and lyophilization treatment was improved by 1.9 times, and the physiological saline was sucked.
- the liquid magnification was increased by 1.4 times and the aspiration rate was increased by 2.0 times, both of which had very significant statistical differences ( ⁇ ⁇ 0.01).
- Su Da SAR highly water-absorbent tree sap prepared by the present invention
- PVA is chemically pure, with a degree of polymerization of 2400 and a degree of saponification of 98%;
- PAAS is of analytical grade and has a molecular weight of 4 ⁇ 10 3 ;
- AMPS is chemically pure with a molecular weight of 207.25.
- PVA was 3 wt%
- PAAS was 25 wt%
- AMPS was 8 wt%
- tri-distilled water was 64 wt%.
- the above mixture solution was uniformly mixed, placed in an autoclave, and dissolved by heating at 110 ° C for 2 hours to prepare a uniform transparent solution.
- the uniform solution is quantitatively poured into a smooth disc-shaped mold, and the mold is made of an aluminum alloy, the size of which is determined according to the electron beam irradiation width, and the solution thickness is 10 mm.
- the solution in the mold is irradiated with an electron accelerator device.
- the irradiation conditions are: energy of 0.8 MeV, current of 2 mA, and total absorbed dose of 40 kGy.
- a new gel state PVA/PAAS/AMPS copolymer was synthesized by cross-linking and grafting by electron beam irradiation.
- a immersion liquid consisting of sterol and tri-distilled water in a mass ratio of 7:3 is prepared, and the resin particles are placed in the immersion liquid, and the mass ratio of the resin particles to the immersion liquid is 1: 40, immersed and swelled at room temperature for 6 h to remove uncrosslinked monomers and sufficiently swell the resin particles.
- the pH value of the superabsorbent resin of the present invention has reached the level of internationally renowned products such as Sanyo Chemicals High Absorbent Resin, and the liquid absorption rate and the three steaming.
- the water absorption amount is very significantly superior to the well-known super absorbent resin products at home and abroad ( ⁇ ⁇ 0.01), which is the international leading level; the super absorbent resin of the invention has no acute toxicity, cytotoxicity, sensitization and skin irritation. It has excellent biocompatibility and safe use. It can be widely used in many fields such as urinary incontinence mattresses, infant diapers and women's sanitary napkins, as well as water and moisturizing in agriculture and forestry. It has great application and development value.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种高吸液速率的高吸水性树脂及其制备方法,按照质量百分比,该方法首先将聚合度为1700~2400的2~10%聚乙烯醇、分子量为2~5×103的18~26%聚丙烯酸钠、3~9%2-丙烯酰胺基-2-甲基丙磺酸和55~77%水混合,得到聚合物和单体的混合物水溶液;然后应用电子束辐照交联和接枝合成共聚物凝胶,优选经浸洗液溶胀和浸洗,再经萃冻和冻干,得到高吸水性树脂。所述高吸水性树脂的pH值、生理盐水吸液量和离心保液量已达国际水平,尤其吸液速率和三蒸水吸液量具有显著优势;且工艺简便,生物相容性好,使用安全,可用于尿不湿和妇女卫生用巾等医疗卫生用品、石油化工及农林保水保湿等领域,具有巨大的应用和开发价值。
Description
一种高吸液速率的高吸水性树脂及其制备方法
本申请要求于 2013 年 07 月 31 日提交中国专利局、 申请号为 201310329272.1、发明名称为 "一种高吸液速率的高吸水性树脂及其制备方法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及功能高分子材料技术领域 ,尤其涉及一种高吸液速率的高吸水 性树脂及其制备方法。 背景技术
高吸水性树脂 ( Super Absorbent Resin, 简称 SAR )是近年迅速发展起来 的一种具有三维网络结构的含有强亲水性基团的新型高分子聚合物 ,能快速吸 收大量水分并膨胀为凝胶状的树脂, 具有高吸水性和保水性。 高吸水性树脂的 研制已有 60余年的历史, 日本、 美国等国家相继成功地开发了多种高吸水性 树脂。 日本三洋化成是全球最早研究并于 1978年在世界上最早生产吸水性树 脂的厂家, 目前日本三大雅高吸水性树脂占全球产量的 55%左右。我国正成为 国际高吸水性树脂的新兴大市场, 然而其研制、产品性能和生产能力尚处于落 后水平。 高吸水性树脂原材料主要有两类: 一类为天然材料,如淀粉、藻酸盐、 蛋白质、 壳聚糖等; 另一类为石油化工高分子材料,如聚氧化乙烯、聚乙烯醇、 聚乙烯、 聚苯乙烯、 聚氨酯等, 文献报道最多的是将丙烯酸及其盐与其他高分 子材料的接枝研究。 高吸水性树脂已广泛用于医疗卫生、 工业、 农林和日常生 活等许多领域, 其中尿失禁床垫、婴幼儿尿不湿和妇女卫生巾等医疗卫生用品 约占市场总量的 70%以上。 然而, 高吸水性树脂的耐盐性、 吸液速率和生物相 容性仍需进一步改善和提高, 这是目前国际高吸水性树脂研究的焦点和难点。 例如婴幼儿尿不湿和妇女卫生巾由于吸液能力尤其是吸液速率较低,使用中常 常出现尿液或月经等液体侧漏,夜晚至少需要更换一次卫生用品; 保湿和加压 保湿功能较弱, 液体经常通过卫生材料湿透衣被; 某些聚合物单体对皮肤和细 胞具有刺激作用、 致敏性、 毒性或潜在的毒性, 即安全性和生物相容性较低。
发明内容
有鉴于此, 本发明的目的在于提供一种具有高吸液速率的高吸水性树脂, 其吸液速率和能力显著优于国际著名高吸水性树脂产品, 并且生物相容性优 良, 使用安全。
为实现上述目的, 本发明提供一种高吸液速率的高吸水性树脂, 其为由聚 合物和单体的混合物水溶液经辐射交联和接枝而成的共聚物;
按照质量百分比计, 所述聚合物和单体的混合物水溶液包含:
2~10wt%聚乙烯醇;
18~26wt%聚丙烯酸钠;
3~9wt% 2-丙烯酰胺基 -2-曱基丙磺酸; 和
55~77wt%水;
所述聚乙烯醇的聚合度为 1700~2400;
所述聚丙烯酸钠的分子量为 2 103~5 103。
本发明提供如下技术方案:
本发明的高吸液速率的高吸水性树脂,按照质量百分比计,为由 2~10wt% 聚乙烯醇( Poly Vinyl Alcohol, 全文简称 PVA ) 、 18~26wt%聚丙烯酸钠 ( Poly Acrylate Sodium , 全文简称 PAAS ) 和 3~9wt%2-丙烯酰胺基 -2-曱基丙磺酸 ( 2-Acrylamide-2-MethylPro Panesulfonic Acid, 全文简称 AMPS )组成聚合物 和单体的水溶液, 加热溶解, 经辐射交联和接枝而成的 PVA/PAAS/AMPS共 聚物, 其中, 所述的 PVA聚合度为 1700 2400, 所述的 PAAS分子量 2~5 103。
优选的, 所述聚合物和单体的混合物水溶液包含:
2wt%聚乙烯醇;
26wt%聚丙烯酸钠;
9wt%2-丙烯酰胺基 -2-曱基丙磺酸; 和
63wt%的水。
优选的, 所述的高吸水性树脂, 按照质量百分比计, 为由 2wt%PVA、 26wt%PAAS和 9wt%AMPS组成的水溶液辐射交联和接枝而成的共聚物。
本发明提供一种上文所述的高吸液速率的高吸水性树脂的制备方法,包括
以下步骤:
A )按照上文所述的质量百分比, 将聚乙烯醇、 聚丙烯酸钠和 2-丙烯酰胺 基 -2-曱基丙磺酸以及水混合, 得到聚合物和单体的混合物水溶液;
B ) 将所述聚合物和单体的混合物水溶液应用电子束辐照进行交联和接 枝, 得到凝胶态共聚物。
优选的, 还包括以下步骤:
C )将所述凝胶态共聚物依次进行烘干、 粉碎、 筛分、 浸洗、 溶胀、 萃冻 和冷冻干燥, 得到高吸水性树脂产品;
所述烘干为: 将所述凝胶态共聚物置于电热干燥箱内, 40~50 °C烘干 24~48h, 得到干燥凝胶;
所述粉碎为: 将所述干燥凝胶置于粉碎机中, 转速为 2500~3000r/min, 粉 碎 25~30s, 得到颗粒;
所述 分为: 将所述颗粒用震荡 分机进行 分, 得到目数为 40〜: 100目 的树脂颗粒。
优选的, 所述步骤 C )中, 所述浸洗和溶胀为: 将所述树脂颗粒置于浸洗 液中进行室温浸洗和溶胀, 6~8h后, 得到溶胀后的树脂颗粒;
所述树脂颗粒与所述浸洗液的质量比为 1:30~1 :40。
优选的, 所述浸洗液由曱醇和三蒸水组成, 所述曱醇与三蒸水的质量比为 1:9~7:3。
优选的, 所述步骤 C )中, 所述萃冻为: 将溶胀后的树脂颗粒滤除多余液 体, 置于 -100— 80 °C的低温水箱中, 萃冻 2~3h, 得到萃冻后的树脂颗粒; 所述冷冻干燥为: 将萃冻后的树脂颗粒应用冷冻干燥机进行真空冷冻干 燥, 时间为 48~72h, 冷阱温度为 -60— 50 °C , 得到 高吸水性树脂产品。
优选的, 所述步骤 A ) 中, 混合后, 置于高压蒸汽锅中, 110~120°C加热 溶解, l~2h后, 得到聚合物和单体的混合物水溶液。
优选的, 所述步骤 B )中, 交联和接枝前, 将所述聚合物和单体的混合物 水溶液定量灌注于平滑的盘状模具中, 溶液的厚度为 l~15mm。
优选的, 所述步骤 B ) 中, 交联和接枝时, 所述电子束辐照的能量为 0.8~2.45MeV, 电流为 2~14mA, 总吸收剂量为 30~60kGy。
本发明也提供了一种制备上述高吸液速率的高吸水性树脂的方法,具体包 括下述步骤:
( 1 ) 配料: 将 PVA/PAAS/AMPS和三蒸水按照质量百分比混合均匀, 置于高压蒸汽锅中, 110~120°C加热溶解 l~2h, 制成均一透明的混合物溶液; ( 2 )注模: 将步骤 ( 1 )所得的混合物溶液定量灌注于平滑的盘状模具中, 溶液厚度为 l~15mm;
( 3 ) 电子束照射和凝胶: 将模具内的溶液在能量为 0.8~2.45MeV, 电流 为 2~14mA, 总吸收剂量为 30~60kGy的电子束辐照条件下进行交联和接枝, 合成凝胶态的 PVA/PAAS/AMPS共聚物;
( 4 )烘干、 粉碎和筛分: 将步骤(3 )合成的凝胶态共聚物置于电热干燥 箱内, 40~50°C烘干 24~48h, 获得干燥凝胶, 再将所得的干燥凝胶置于粉碎机 中,转速 2500~3000r/min,粉碎 25~30s, 用震荡薛分机进行 分,获得 40〜: 100 目树脂颗粒;
( 5 )浸洗和溶胀: 将树脂颗粒置于浸洗液中, 树脂颗粒与浸洗液的质量 比为 1:30 1:40, 室温浸洗和溶胀 6~8h;
( 6 )萃冻和冷冻干燥: 将浸洗和溶胀后的树脂颗粒滤除多余液体, 置于 -100— 80 °C低温水箱萃冻 2~3h, 然后应用冷冻干燥机真空冷冻干燥 48~72h, 冷阱温度为 -60— 50 °C , 得到 PVA/PAAS/AMPS高吸水性树脂产品。
上述技术方案中, 步骤(1 ) 中, 按照质量百分比计, PVA/PAAS/AMPS 和三蒸水的计量比为 2~10wt%:18~26wt%:3~9wt%:55~77wt%。
优选的, 按照质量百分比计, PVA/PAAS/AMPS 和三蒸水的计量比为 2wt%:26wt%:9wt%:63wt%。
上述技术方案中, 步骤(2 ) 中, 所述的模具为铝合金或玻璃制成。
上述技术方案中, 步骤(5 ) 中, 所述的浸洗液由曱醇和三蒸水组成。 优选的, 步骤(5 )中, 所述的浸洗液中曱醇和三蒸水的质量比为 1:9~7:3。 进一步的, 步骤(5 ) 中, 所述的浸洗液中甲醇和三蒸水的质量比为 5:5。 由于上述技术方案的运用, 本发明与现有技术相比具有下列优点: 本发明的高吸水性树脂的 pH值、 生理盐水吸液量和离心保液量已达国际 著名产品如日本三洋化成高吸水性树脂产品的水平,而三蒸水吸水量和吸液速
率则非常显著地优于国内外著名高吸水性树脂产品 (Ρ < 0.01 ) , 居国际领先 水平; 本发明的高吸水性树脂无急性毒性、 细胞毒性、 致敏性和皮肤刺激性, 生物相容性优良, 使用安全, 可广泛用于尿失禁床垫、 婴幼儿尿不湿和妇女卫 生巾等医疗卫生用品, 以及农林保水保湿等诸多领域, 具有巨大的应用和开发 价值。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地, 下面描述中的有关本发明的附图 仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为未经后处理工艺的高吸水性树脂 SEM图;
图 2为经后处理工艺的高吸水性树脂 SEM图;
图 3为高吸水性树脂的红外光谱图;
图 4为 PAAS含量对凝胶共聚物溶胀度的影响曲线图;
图 5为 PVA含量对凝胶共聚物溶胀度的影响曲线图;
图 6为 AMPS含量对凝胶共聚物溶胀度的影响曲线图;
图 7为实施例四未经后处理工艺的高吸水性树脂 SEM图;
图 8为实施例四经后处理工艺的高吸水性树脂 SEM图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行详 细的描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动 的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供了一种高吸液速率的高吸水性树脂,其为由聚合物和单体的混 合物水溶液经辐射交联和接枝而成的共聚物;
按照质量百分比计, 所述聚合物和单体的混合物水溶液包含:
2~10wt%聚乙烯醇;
18~26wt%聚丙烯酸钠;
3~9wt%2-丙烯酰胺基 -2-曱基丙磺酸;
55~77wt %水;
所述聚乙烯醇的聚合度为 1700~2400;
所述聚丙烯酸钠的分子量为 2 103~5 103。
本发明利用电子束辐射交联和接枝, 合成了一种新的 PVA/PAAS/AMPS 共聚物, 经后处理工艺, 其作为高吸水性树脂, 具有极高的吸液速率, 利于应 用。
在本发明中,按照质量百分比计, 所述聚合物和单体的混合物水溶液包含 2~10wt %聚乙烯醇,优选包含 2~6wt %聚乙烯醇,更优选包含 2wt %聚乙烯醇。 聚乙烯醇(Poly Vinyl Alcohol, 全文简称 PVA ) 因其结构特点, 可以作为高吸 水性树脂的原材料。 所述聚乙烯醇的聚合度为 1700 2400, 皂化度一般在 98% 以上, 釆用化学纯的 PVA即可。
按照质量百分比计,所述聚合物和单体的混合物水溶液包含 18~26wt %聚 丙烯酸钠, 优选包含 22~26wt %聚丙烯酸钠, 更优选包含 26 wt %聚丙烯酸钠。 聚丙烯酸钠 ( Poly Acrylate Sodium, 全文简称 PAAS )是本发明的共聚原料之 一, 其含有强亲水性离子型羧酸钠基团(-COONa ), 水溶性强。 所述聚丙烯酸 钠的分子量为 2 103~5 103,优选为 3 103~5 103,可釆用分析纯的 PAAS。
按照质量百分比计, 所述聚合物和单体的混合物水溶液包含 3~9wt%2 -丙 烯酰胺基 -2-曱基丙磺酸, 优选包含 6~9wt%2-丙烯酰胺基 -2-曱基丙磺酸, 更优 选包含 9wt%2-丙烯酰胺基 -2-曱基丙横酸。 2-丙烯酰胺基 -2-曱基丙横酸 ( 2-Acrylamide-2-MethylPro Panesulfonic Acid, 全文简称 AMPS )是丙烯酰胺 分子上酰胺基中的一个氢原子被烷基横酸分子所取代而形成的化合物 ,含有亲 水性的强阴离子性磺酸基团 (-S03- ), 其与上述聚合物原料共同组成本发明聚 合物和单体的水溶液, 易与水溶性强的 PAAS结合, 形成高吸水性树脂三维网 络结构。 在本发明中, 可以釆用化学纯的 AMPS。
除了上述聚合物和单体,按照质量百分比计, 所述聚合物和单体的混合物 水溶液包含 55~77wt%水, 优选包含 63~70wt%的水, 更优选包含 63~65wt%的 水, 最优选包含 63wt%的水。 在本发明中, 所述水优选为三蒸水。
在本发明的一个实施例中,所述聚合物和单体的混合物水溶液包含: 2wt% 聚乙烯醇; 26wt%聚丙烯酸钠; 9wt%2-丙烯酰胺基 -2-曱基丙横酸; 和 63wt% 三蒸水, 效果最佳。
本发明将所述聚合物和单体的混合物水溶液进行辐射交联和接枝, 得到 PVA/PAAS/AMPS共聚物, 经后处理工艺, 即为具有极好吸液和保液能力的树 脂。
相应的,本发明提供了一种上文所述的高吸液速率的高吸水性树脂的制备 方法, 包括以下步骤:
A )按照上文所述的质量百分比, 将聚乙烯醇、 聚丙烯酸钠和 2-丙烯酰胺 基 -2-曱基丙磺酸以及水混合, 得到聚合物和单体的混合物水溶液;
B ) 将所述聚合物和单体的混合物水溶液应用电子束辐照进行交联和接 枝, 得到凝胶态共聚物。
本发明实施例首先进行配料, 按照上文所述的质量百分比, 将聚乙烯醇、 聚丙烯酸钠和 2-丙烯酰胺基 -2-曱基丙磺酸以及水混合均匀。 所述聚乙烯醇、 聚丙烯酸钠和 2-丙烯酰胺基 -2-曱基丙磺酸以及水的内容如前文所述, 在此不 再一一赘述。
混合后,本发明优选将上述混合物溶液置于高压蒸汽锅中,通过加热溶解, 制成均一透明的溶液。 其中, 所述加热溶解的温度优选为 110~ 120 °C; 时间优 选为 l~2h, 得到聚合物和单体的混合物水溶液。
得到聚合物和单体的混合物水溶液后,本发明实施例应用电子加速器装置 照射, 通过电子束辐射交联和接枝, 合成一种新的凝胶态 PVA/PAAS/AMPS 共聚物。
交联和接枝前,本发明优选将所述聚合物和单体的混合物水溶液定量灌注 于平滑的盘状模具中, 完成注模。 其中, 所述模具优选为铝合金或玻璃制成, 模具的大小可依据电子束照射宽度确定。 所述模具中, 溶液的厚度优选为 l~15mm, 更优选为 8~15mm。
注模结束后, 本发明实施例利用电子加速器装置,将模具内的溶液进行电 子束照射, 合成凝胶态共聚物。
本发明应用电子加速器装置照射进行交联和接枝时, 辐照条件包括: 所述 电子束辐照的能量优选为 0.8~2.45MeV, 更优选为 1.5~2.0MeV; 电流优选为 2-14mA , 更优选为 9~13mA ; 总吸收剂量优选为 30~60kGy , 更优选为 40~50kGy。
得到凝胶态共聚物后, 本发明优选还包括以下步骤: 将所述凝胶态共聚物 依次进行烘干、 粉碎、 筛分、 浸洗、 溶胀、 萃冻和冷冻干燥, 得到冷冻干燥后 的高吸水性树脂。
在本发明中, 烘干、 浸洗、 萃冻和冷冻干燥(冻干)等步骤属于辐射后处 理工艺, 对高吸水性树脂的吸液性能有显著的影响。
具体的, 所述烘干为: 将所述凝胶态的高吸水性树脂置于电热干燥箱内,
40~50 °C烘干 24~48h, 得到干燥凝胶。
所述粉碎为: 将所述干燥凝胶置于粉碎机中, 转速为 2500~3000r/min, 粉 碎 25~30s, 得到颗粒。
所述 分为: 将所述颗粒用震荡 分机进行 分, 得到目数为 40〜: 100目 的树脂颗粒。
高吸水性树脂中未交联单体对高吸水性树脂的性能和生物相容性具有较 大影响, 得到树脂颗粒后, 本发明实施例将其经浸洗液浸洗和溶胀, 得到溶胀 后的树脂颗粒。
具体的, 所述浸洗和溶胀为: 将所述树脂颗粒置于浸洗液中进行室温浸洗 和溶胀, 得到溶胀后的树脂颗粒。 其中, 所述树脂颗粒与所述浸洗液的质量比 优选为 1 :30 1 :40。 所述浸洗和溶胀的时间优选为 6~8h, 以便去除未交联的单 体并使树脂颗粒充分溶胀。
在本发明中, 所述浸洗液优选由曱醇和三蒸水组成, 该浸洗液具有去除树 脂中未交联单体和溶胀树脂的双重作用。 所述曱醇与三蒸水的质量比优选为 1 :9-7:3 , 效果较好。
得到溶胀后的树脂颗粒后, 本发明实施例将其进行萃冻冻干处理,得到冷 冻干燥后的高吸水性树脂产品, 防潮封装备用。
萃冻冻干处理对高吸水性树脂吸液性能的提高具有非常显著的作用,具体 的, 所述萃冻为: 将溶胀后的树脂颗粒滤除多余液体, 置于 -100— 80 °C的低温
水箱中, 萃冻 2~3h, 得到萃冻后的树脂颗粒。
所述冷冻干燥为: 将萃冻后的树脂颗粒应用冷冻干燥机进行真空冷冻干 燥, 时间为 48~72h, 冷阱温度为 -60— 50°C , 得到冷干后的高吸水性树脂产品。
得到高吸水性树脂产品后, 本发明对其进行理化性能进行检测。参照国际 标准化组织 ISO17910-2001标准, 本发明对制备的高吸水性树脂产品的形态、 含水量、 微细结构、 分子结构、 pH值、 三蒸水溶胀度及吸液倍率、 生理盐水 溶胀度及吸液倍率、 离心保液量和吸液速率等进行检测。 参照 ISO10993-5 ( 2009 )标准, 本发明对所述高吸水性树脂进行生物相容性检测。
结果表明, 本发明 PVA/PAAS/AMPS 高吸水性树脂的吸液速率和三蒸水 吸液量均非常显著地优于国内著名高吸水性树脂产品,居国际领先水平。并且, 本发明所述高吸水性树脂的 pH值、 生理盐水吸液量和离心保液量的水平也在 国际先进水平之列。 另外, 本发明所述高吸水性树脂无急性毒性、 细胞毒性、 致敏性和皮肤刺激性, 生物相容性优良, 使用安全。
本发明高吸水性树脂的制备方法工艺简便, 易于实施。
下面结合附图和实施例对本发明提供的高吸液速率的高吸水性树脂及其 制备方法作具体地说明。 实施例一
PVA/PAAS/AMPS辐射共聚物的制备:
( l ) PVA为化学纯, 聚合度为 1700, 皂化度为 98%; PAAS为分析纯, 分子量 5 x l03; AMPS为化学纯, 分子量为 207.25。
配料: PVA为 6wt%, PAAS为 18wt%, AMPS为 6wt%,三蒸水为 70wt%。 将上述混合物溶液混合均匀, 置于高压蒸汽锅中, 110°C加热溶解 2h, 制 成均一透明的溶液。
( 2 )将均一溶液定量灌注于平滑的盘状模具中, 模具用铝合金制成, 其 大小依据电子束照射宽度确定, 溶液厚度为 lmm。
( 3 )模具内的溶液应用电子加速器装置照射,辐照条件:能量为 0.8MeV, 电流为 2mA, 总吸收剂量为 30kGy。 通过电子束辐射交联和接枝, 合成一种 新的凝胶态 PVA/PAAS/AMPS共聚物。
辐射后处理工艺和方法:
( 4 )干燥粉碎和筛分: 将辐射合成的 PVA/PAAS/AMPS共聚物凝胶置于 电热干燥箱内, 40°C烘干 48h, 获得干燥凝胶。 将干燥凝胶置于粉碎机中, 转 速 2500r/min, 粉碎 30s, 用震荡筛分机进行筛分, 获得 40 ~ 100目树脂颗粒。
( 5 )浸洗和溶胀: 配制由曱醇和三蒸水组成的质量比为 7:3 的浸洗液, 将树脂颗粒置于浸洗液中,树脂颗粒与浸洗液的质量比为 1:30, 置于室温浸洗 和溶胀 8h, 以便去除未交联的单体并使树脂颗粒充分溶胀。
( 6 )萃冻和冷冻干燥: 将浸洗溶胀后的树脂颗粒滤除多余液体, 置于 -80 °C低温水箱萃冻 2h, 然后应用冷冻干燥机真空冷冻干燥 72h, 冷阱温度为 -50 °C , 制备出 PVA/PAAS/AMPS高吸水性树脂产品, 防潮封装备用。
实施例二
PVA/PAAS/AMPS辐射共聚物的制备:
( 1 ) PVA为化学纯, 聚合度为 2400, 皂化度为 99%; PAAS为分析纯, 分子量 2 x l03; AMPS为化学纯, 分子量为 207.25。
配料: PVA为 10wt%, PAAS为 22wt%, AMPS为 3wt%,三蒸水为 65wt%。 将上述混合物溶液混合均匀, 置于高压蒸汽锅中, 120°C加热溶解 lh, 制 成均一透明的溶液。
( 2 )将均一溶液定量灌注于平滑的盘状模具中, 模具用铝合金制成, 其 大小依据电子束照射宽度确定, 溶液厚度为 15mm。
( 3 )模具内的溶液应用电子加速器装置照射,辐照条件:能量为 2.45MeV, 电流为 14mA, 总吸收剂量为 60kGy。 通过电子束辐射交联和接枝, 合成一种 新的凝胶态 PVA/PAAS/AMPS共聚物。
辐射后处理工艺和方法:
( 4 )干燥粉碎和筛分: 将辐射合成的 PVA/PAAS/AMPS共聚物凝胶置于 电热干燥箱内, 50°C烘干 24h, 获得干燥凝胶。 将干燥凝胶置于粉碎机中, 转 速 3000r/min, 粉碎 25s, 用震荡 分机进行 分, 获得 40 ~ 100目树脂颗粒。
( 5 )浸洗和溶胀: 配制由曱醇和三蒸水组成的质量比为 1:9 的浸洗液, 将树脂颗粒置于浸洗液中,树脂颗粒与浸洗液的质量比为 1:40, 置于室温浸洗 和溶胀 8h, 以便去除未交联的单体并使树脂颗粒充分溶胀。
( 6 )萃冻和冷冻干燥:将浸洗溶胀后的树脂颗粒滤除多余液体,置于 -100 °C低温水箱萃冻 2h, 然后应用冷冻干燥机真空冷冻干燥 48h, 冷阱温度为 -60 °C , 制备出 PVA/PAAS/AMPS高吸水性树脂产品, 防潮封装备用。
实施例三
PVA/PAAS/AMPS辐射共聚物的制备:
( 1 ) PVA为化学纯, 聚合度为: 1700, 皂化度为 99%; PAAS为分析纯, 分子量 3 x l03; AMPS为化学纯, 分子量为 207.25。
配料: PVA为 2wt%, PAAS为 26wt%, AMPS为 9wt%,三蒸水为 63wt%。 将上述混合物溶液混合均匀, 置于高压蒸汽锅中, 120°C加热溶解 2h, 制 成均一透明的溶液。
( 2 )将均一溶液定量灌注于平滑的盘状模具中, 模具用铝合金制成, 其 大小依据电子束照射宽度确定, 溶液厚度为 8mm。
( 3 )模具内的溶液应用电子加速器装置照射,辐照条件:能量为 1.5MeV, 电流为 9mA, 总吸收剂量为 50kGy。 通过电子束辐射交联和接枝, 合成一种 新的凝胶态 PVA/PAAS/AMPS共聚物。
辐射后处理工艺和方法:
( 4 )干燥粉碎和筛分: 将辐射合成的 PVA/PAAS/AMPS共聚物凝胶置于 电热干燥箱内, 45°C烘干 36h, 获得干燥凝胶。 将干燥凝胶置于粉碎机中, 转 速 2800r/min, 粉碎 28s, 用震荡筛分机进行筛分, 获得 40 ~ 100目树脂颗粒。
( 5 )浸洗和溶胀: 配制由曱醇和三蒸水组成的质量比为 5:5 的浸洗液, 将树脂颗粒置于浸洗液中,树脂颗粒与浸洗液的质量比为 1:35, 置于室温浸洗 和溶胀 7h, 以便去除未交联的单体并使树脂颗粒充分溶胀。
( 6 )萃冻和冷冻干燥: 将浸洗溶胀后的树脂颗粒滤除多余液体, 置于 -90 °C低温水箱萃冻 2.5h, 然后应用冷冻干燥机真空冷冻干燥 60h,冷阱温度为 -55 °C , 制备出 PVA/PAAS/AMPS高吸水性树脂产品, 防潮封装备用。
PVA/PAAS/AMPS高吸水性树脂的理化性能检测方法
1、 高吸水性树脂理化性能的测定
发明人制备的高吸水性树脂产品和国内外著名高吸水性树脂产品的理化 性能均参照国际标准化组织 ISO17910 - 2001标准进行检测。
1.1 高吸水性树脂形态观察和含水量
观察高吸水性树脂的形态、 质地、 颜色和含水量等。
1.2 高吸水性树脂微细结构观察
应用扫描电镜 ( Scanning Electron MicroscoPe, SEM )进行高吸水性树脂的 ϋ细结构观察。
1.3 高吸水性树脂的红外光谱分析( Infrared SPectra Analysis )
应用溴化钾压片法, 将 2mg高吸水性树脂与 300mgKBr粉末在玛瑙研钵 中研磨混匀, 然后在压片机上压成透明薄片,将其放入傅立叶变换红外光语仪 内, 进行高吸水性树脂的分子测量。
1.4 PH值测定
配制緩冲液: NaOH溶液(PH=7.0±0.02 )和 HC1溶液( PH=4.0±0.02 ) 。 将 PH电极插入緩冲液中进行校正。将 0.5g高吸水性树脂放入装有 100ml生理 盐水的烧杯中,将烧杯置于磁力搅拌器上,使用直径 25mm的铁芯四氟搅拌子, 中速搅拌 lOmin, 静置 lmin, 然后应用标准 PH电极测定上清液的 PH值。
1.5 三蒸水溶胀度测定
将辐射合成的凝胶共聚物剪取 5个样本放置于恒温干燥箱中, 50°C烘干至 恒重, 分别称重, 此为干胶样本质量 Ml 将其浸入三蒸馏水中 24h, 达到充 分溶胀平衡, 取出样本, 待其不再有水滴出, 称重, 此为溶胀胶样本质量 M2。 按照下面的公式计算凝胶共聚物在三蒸水中的溶胀度。
三蒸水溶胀度 = (M2-M1)/M1 100%
1.6 生理盐水溶胀度测定
将辐射合成的凝胶共聚物剪取 5个样本放置于恒温干燥箱中, 50°C烘干至 恒重, 分别称重, 此为干胶样本质量 Ml 将其浸入生理盐水中 24h, 达到充 分溶胀平衡, 取出样本, 待其不再有水滴出, 称重, 此为溶胀胶样本质量 M2。 按照下面的公式计算凝胶共聚物在生理盐水中的溶胀度。
生理盐水溶胀度 = (M2-M1)/M1 100%
1.7 三蒸水吸液倍率测定
精确称量 0.5g高吸水性树脂 (精确度为 0.001 ) , 放入装有 500g三蒸水 的大烧杯中, 充分吸液 60min, 达到溶胀平衡, 然后滤除液体并静置 lOmin, 称其质量 m, 计算三蒸水吸液倍率, 三蒸水吸液倍率 = (m-0.5)/0.5。
1.8 生理盐水吸液倍率测定
精确称量 0.5g高吸水性树脂 (精确度为 0.001 ) , 放入装有 500g生理盐 水的大烧杯中, 充分吸液 60min, 达到溶胀平衡, 然后滤除液体并静置 lOmin, 称其质量 m, 计算生理盐水吸液倍率, 生理盐水吸液倍率 = (m-0.5)/0.5。
1.9 离心保液量测定
做 6个大小一样的无纺布袋, 尺寸为 60mm * 60mm, 其中 3个为样品袋, 另外 3个为空白袋。 每个样品袋装入 0.2g高吸水性树脂, 热封。 将样品袋和 空白袋置于生理盐水中, 溶胀 30min, 分别称量样品袋和空白袋质量, 二者之 差即为离心前溶胀样品质量。 然后分别放入离心机离心, 转速 250g/min, 时间 3min, 分别称量样品袋和空白袋质量, 二者之差即为离心后溶胀样品质量。 由 此计算出离心保液量, 离心保液量=离心后溶胀样品质量 /离心前溶胀样品质 量。
1.10 吸液速率测定
釆用漩涡法测定吸液速率,称 50g生理盐水置于放入容量为 100ml烧杯中, 将烧杯置于恒温磁力搅拌器上, 用直径 25mm的铁芯四氟搅拌子, 开机于 25 时搅拌, 观察到烧杯中溶液的漩涡后, 加入 2.0g高吸水性树脂, 开始计时, 等到漩涡消失时记录时间 t ( s ) , 以此作为高吸水性树脂吸液速率。 时间 t ( s ) 越少, 表示吸液速率越高。
1.11 统计学处理
实验结果以均数士标准差 ( ± 表示。釆用 SPSS19.0统计软件包对实验数 据进行统计学分析, 多组均数比较应用方差分析两两比较 SNK法, Ρ<0.05表 示具有显著性统计学差异, 表示具有非常显著性统计学差异。 实验结果
一、 高吸水性树脂的外观和含水量
发明人制备的 PVA/PAAS/AMPS高吸水性树脂外观呈白色致密固体颗粒, 颗粒大小在 40-100 目之间, 含水量为 3.6±0.3%。 吸液后溶胀为透明的凝胶状 颗粒。
二、 高吸水性树脂微细结构的扫描电镜观察
应用 SEM观察了辐射后处理工艺对 PVA/PAAS/AMPS高吸水性树脂微细 结构的影响, 分别示于图 1和图 2。 图 1的球型微粒分布均匀, 排列紧密; 图 2的球形微粒分布较均匀, 排列疏松, 出现许多不规则的大小不一的孔隙, 表 明经浸洗溶胀和冻干等后处理工艺可使高吸水性树脂三维网状结构更加疏松。
三、 高吸水性树脂的红外光谱分析
发明人应用红外光谱分析对 PVA/PAAS/AMPS 高吸水性树脂的物质分子 进行了分析和鉴定。 由图 3可见, 3436.7/cm-1处有 AMPS酰胺的 N-H键伸缩 振动峰, 1406/cm-1是 PAAS的 COO-Na对称伸缩振动峰, 1606.1 /cm 是 COO-Na 反对称伸缩振动峰, 1053.3/cm"1 附近有 PVA 醇的 C-0 伸缩振动峰, 在 1330 1150/cm-1是合成酯 Ve e的特征吸收峰, 所以 1203.8/cm-1是酯的特征吸 收峰, 619.4/cm 附近是横酸基的特征吸收峰。 1352.3/cm 附近的吸收峰不是 本实验材料(PVA、 PAAS和 AMPS )分子键的特征吸收峰, 这里属于红外光 谱中通称的指紋区,即可能是本实验材料经辐射交联后形成的共聚物的新键吸 收峰, 新键一般都是在指紋区形成。 红外光谱分析结果表明, 本实验材料经电 子束辐射交联和接枝合成了一种新的 PVA/PAAS/AMPS共聚物。
四、 PVA/PAAS/AMPS共聚物的最佳配比选择
发明人以 PAAS、 PVA以及 AMPS的质量为考察对象, 进行三因素三水 平正交试验设计, 这样即可减少实验的样本量, 又可真实的反映实验结果, 有 利于快速筛选出这三种材料的最佳配比。 应用辐射合成了正交试验设计的 9 组凝胶态 PVA/PAAS/AMPS共聚物样品,并对这些样品的溶胀度进行了测定, 结果列于表 1。
表 1 辐射合成的 9种凝胶共聚物的溶胀度测定结果 ( n=5, 士 s )
PAAS PVA AMPS 三蒸 *置度 生運 fii 壞匿直
(wt %} {wt %) (wt %) ( ) { % )
1 26 2 9 37731.2土 3869,0 4582.5 ±3«.3
2 26 6 3 3誦 2.3土 2棚 .8 ** 3224J+161.0 **
3 26 10 6 22279.1 ±1768.8 ·* 2609.2 ±417.5
4 22 2 6 46850.8±4288,7 ** 棚 1.1 ±2固
5 22 6 9 35366.7±4301.5 ** 3405.5±2翻.4 »
6 22 10 3 誦 41.1 ±1736 J ** 22誦土通 9
7 18 2 3 301墨 ±8129.1 ** 2968.2 ±577,8
8 18 6 6 3172 5±5242.5 ** 2觀.8±».2
9 18 10 9 26125.8+2030.2 ** 2045.9±200.8
注: 与第 1靈瞻, * , P <0,05; ** .· P <0.01
由表 1结果可见, 经电子束辐照合成了一系列溶胀度不同的凝胶共聚物。 考虑到用于医疗卫生用品的高吸水性树脂主要接触和吸收离子性体液, 如尿 液、血液等,故我们以生理盐水溶胀度作为高吸水性树脂材料优化配比的筛选 标准。第 1组样品的生理盐水溶胀度高达 4582.5 ± 316.3%,与其他样品比较具 有非常显著性统计学差异(Ρ < 0.01 ) 。 因此, 本发明高吸水性树脂组成材料 PAAS、 PVA和 AMPS的优化配比为 26:2:9 ( wt% ) 。
在 PAAS、 PVA和 AMPS优化配比 26:2:9 ( wt% ) 的基础上, 保持其中 2 种材料配比不变, 改变 1种材料的含量, 以期研究单一材料含量变化对凝胶共 聚物溶胀度的影响, 结果示于图 4、 图 5和图 6。
由图 4、图 5和图 6可见, PAAS、 PVA和 AMPS含量分别为 26wt%、 2wt% 和 9wt%时, 其凝胶共聚物溶胀度可达峰值。 这进一步表明, PAAS、 PVA和 AMPS的最佳优化配比为 26:2:9 ( wt% ) 。
由图 6可见, 在 26wt%PAAS和 2wt%PVA的组成不变的条件下, AMPS 在一定剂量范围内增加可明显提高凝胶共聚物的溶胀度, 表明 AMPS是影响 高吸水性树脂溶胀度, 尤其是生理盐水溶胀度的主要因素之一。
其原理可能为: AMPS是丙烯酰胺分子上酰胺基中的一个氢原子被烷基横 酸分子所取代而形成的化合物, 易与水溶性强的 PAAS结合,形成高吸水性树 脂三维网络结构, 随着 AMPS在一定剂量范围内的增加, 高吸水性树脂吸液 性能随之增加, 其原理有两方面: ( 1 ) 由于 AMPS含有亲水性的强阴离子性 磺酸基团 (-S03- ) , 随着 AMPS用量的增加, 三维网络结构中所含高亲水基 团大幅度上升, 聚合物离子化程度升高,在吸液时三维网格点上的阴离子数目 也增加, 导致网络内渗透压增加, 吸液性能也随之增加; (2 ) 由于高吸水性 树脂体系中 PAAS含有强亲水性离子型羧酸钠基团 ( -COONa ) , 随着 AMPS 含量的增加, 树脂体系中非离子型酰胺基 (-CONH2 ) 也增加, -CONH2与 -COONa易产生协同效应, 削弱吸液过程的同离子效应和盐效应, 降低了树脂 体系对溶液体系中盐浓度的敏感性,使高吸水性树脂对生理盐水和氨的吸收能 力增力口。
五、 辐射后处理工艺对高吸水性树脂吸液性能的影响
1、 不同配比浸洗液对高吸水性树脂吸液性能的影响
高吸水性树脂中未交联单体对高吸水性树脂的性能和生物相容性具有较 大影响。 因此, 发明人在国内外首次研制出由曱醇和三蒸水组成的浸洗液, 该 浸洗液具有去除树脂中未交联单体和溶胀树脂的双重作用。我们研究了曱醇和 三蒸水不同质量配比浸洗液处理对高吸水性树脂(SAR )吸液性能的影响, 以 便确定浸洗液的最佳组成。 将辐照合成的凝胶共聚物干胶颗粒置于浸洗液中, 干胶颗粒与浸洗液的质量比为 1: 40, 经浸洗、 溶胀、 萃冻和冻干等辐射后处 理工艺, 测定高吸水性树脂的吸液性能, 结果列于表 2。
表 2 不同配比浸洗液对 SAR吸液性能的影响 ( n=5, 士 s ) 组别 三¾水吸液倍 生珊娜赚 鼠液逢车
(:甲醇: Ξ蒸木:) J { -a - J 磨军 ( - ) (s) ϊ n mM:龜 59 =0£
3: 7漫翁液 纏 ¾乎組 3β0 =固 ^ 21.2=1, ?
3 ft 7: 3漫謹麵着缓 ^^ ^ ^^ j ·Ί ' 59.7=J J β
4 ft i: s漫醒删麵量 320,9=10.0** 4S,2=0J** 19, =1,2
由表 2结果可见, 第 1组树脂三蒸水吸液倍率显著高于第 2、 3和 4组 ( Ρ<0.01 ); 生理盐水吸液倍率显著高于第 2和 4组(Ρ<0.01 ); 吸液速率各 组之间无显著性统计学差异(Ρ>0.05 )。 上述结果表明, 经曱醇与三蒸水质量 配比为 5:5 的浸洗液处理可非常显著地增加高吸水性树脂的吸液性能 ( PO.01 ) 。
2、 浸洗和冻干对高吸水性树脂吸液性能的影响
将辐照合成的凝胶共聚物固体颗粒经浸洗液浸洗、 烘干或萃冻冻干处理, 观察了浸洗、 烘干和冻干对高吸水性树脂吸液性能的影响, 结果列于表 3。
^ -, 's 'i-> ια^ψ· . ¾ ¾.· (s)
·> * 5:5浸議删讓葡 430,8=112* 44.2=2.4 30.2= I J
3 *1 5:5浸議攝靈誓缓 55,1=0,1**™ i:,3=2J"e
与第 着, *¾7K J><0,05t **¾« J><0,Cili
与霄 氣 ft嚷, =«* »c0.0it ^iOJli
由表 3可见, 与第 1组未浸洗的高吸水性树脂比较, 第 2组经浸洗的高吸 水性树脂的三蒸水吸液倍率显著增加(Ρ<0.05 ) , 表明去除未交联的单体可显 著提高树脂的三蒸水吸液能力。 与第 2组浸洗烘干的高吸水性树脂比较, 第 3 组浸洗冻干的高吸水性树脂的三蒸水吸液倍率、生理盐水吸液倍率和吸液速率 均显著增加(Ρ<0.01 ) , 表明经萃冻冻干处理对高吸水性树脂吸液性能的提高 具有非常显著的作用。萃冻冻干可使溶胀树脂的三维网络孔径增大, 网络结构 越大, 吸水和吸液倍率越高, 吸液速率亦显著增加。 与第 1组未浸洗而烘干的 高吸水性树脂比较, 第 3组经浸洗、萃冻和冻干后处理的高吸水性树脂的三蒸 水吸液倍率提高 1.9倍, 生理盐水吸液倍率提高 1.4倍, 吸液速率提高 2.0倍, 均具有非常显著性统计学差异(Ρ <0.01 ) 。
六、 苏大 SAR与国内外著名 SAR产品的理化性能比较
参照国际 ISO17910-2001标准,我们分别测定了本发明制备的高吸水性树 月旨 (简称苏大 SAR )和国内外著名 SAR产品的理化性能, 结果列于表 4。
表 4 苏大 SAR与国内外著名 SAR产品的理化性能比较(n=5, ^ 士
SAR产品 pH 三蒸 *吸液信 生理 16*¾液 吸液速率 高心爆 ¾»
率 輪) 信率(g½) (S) ¾ f) 雾大 6.3±0,1 624,6±22.5 59.脚.6 3=2.9 53.5±4,3 三 化成 6.2=0,01 357.7±9,7** 58.5±1,5 42,7±2.3·* 56.8±L2 三太雅 6觸.1 320層.0** 53,1±2,8* 14 ,C1±6,2» 52, 1±3,2
¾国 Kolon 5,4±0, 3593±5,0** 53,6*3,?»» 29,3±0,8»» 31.3士 1.3**
大 -it 6. .3 502.0±14.6* 48.8±2,3* 32,0±2.4·* 41.i±l,6* 海嚷 5肩.1 557,3=46** 57.3+5.2 53.7±3.2** 纖.1 棚 5,4=0,2' 326艇.7** 473±1.1* 33.ft±0,8** 33,ft±2,2** 广东 5.2=0,2* 344.8=5,0** 46.5±1.?« 39.3±?, 1** 44.3±1.5* 注: 与 苏大 SAR比较, »表示 〈0.05— ^ ' 表示! > <0 =
由表 4可见,苏大高吸水性树脂吸液速率和三蒸水吸液量均非常显著地优 于国内外著名高吸水性树脂产品(Ρ < 0.01 ) , 居国际领先水平; pH值、 生理 盐水吸液量和离心保液量与国际著名产品日本三洋化成树脂比较无显著性统 计学差异(ρ > 0.05 ) , 居国际先进水平。
苏州大学魏召阳研制了 PAAS/PVA高吸水性树脂 【魏召阳; 卢祖坤; 岳 凌; 李莉; 杨淑琴; 杨占山 *。 苏州大学学报(医学版) , 32 ( 5 ) : 661-664 , 2012, *为通讯作者】 , 该树脂简称为苏大 -魏, 其组成和制备工艺与本发明不 同, 其吸液能力和速率等性能均显著低于本发明的高吸水性树脂。
七、 生物相容性检测 标准检测, 苏大高吸水性树脂无急性毒性、 细胞毒性、 致敏性和皮肤刺激性, 生物相容性优良, 使用安全。 实施例四
PVA/PAAS/AMPS辐射共聚物的制备:
( 1 ) PVA为化学純, 聚合度为 2400, 皂化度为 98%; PAAS为分析純, 分子量 4 χ 103; AMPS为化学纯, 分子量为 207.25。
配料: PVA为 3wt%, PAAS为 25wt%, AMPS为 8wt%,三蒸水为 64wt%。 将上述混合物溶液混合均匀, 置于高压蒸汽锅中, 110°C加热溶解 2h, 制 成均一透明的溶液。
( 2 )将均一溶液定量灌注于平滑的盘状模具中, 模具用铝合金制成, 其 大小依据电子束照射宽度确定, 溶液厚度为 10mm。
( 3 )模具内的溶液应用电子加速器装置照射,辐照条件:能量为 0.8MeV, 电流为 2mA, 总吸收剂量为 40kGy。 通过电子束辐射交联和接枝, 合成一种 新的凝胶态 PVA/PAAS/AMPS共聚物。
辐射后处理工艺和方法:
( 4 )干燥粉碎和筛分: 将辐射合成的 PVA/PAAS/AMPS共聚物凝胶置于 电热干燥箱内, 40°C烘干 48h, 获得干燥凝胶。 将干燥凝胶置于粉碎机中, 转 速 2600r/min, 粉碎 28s, 用震荡筛分机进行筛分, 获得 40 ~ 100目树脂颗粒。
( 5 )浸洗和溶胀: 配制由曱醇和三蒸水组成的质量比为 7:3 的浸洗液, 将树脂颗粒置于浸洗液中,树脂颗粒与浸洗液的质量比为 1:40, 置于室温浸洗 和溶胀 6h, 以便去除未交联的单体并使树脂颗粒充分溶胀。
( 6 )萃冻和冷冻干燥: 将浸洗溶胀后的树脂颗粒滤除多余液体, 置于 -80 °C低温水箱萃冻 3h, 然后应用冷冻干燥机真空冷冻干燥 50h, 冷阱温度为 -55 °C , 制备出 PVA/PAAS/AMPS高吸水性树脂产品, 防潮封装备用。
按照上文所述的方法,对制得的未经后处理工艺和经后处理工艺的高吸水 性树脂的微细结构进行观察。 结果分别示于图 7和图 8, 由图 7和图 8可知, 经浸洗溶胀和冻干等后处理工艺可使高吸水性树脂孔隙增多,三维网状结构更 力口疏松。
综上所述, 本发明的高吸水性树脂的 pH值、 生理盐水吸液量和离心保液 量已达国际著名产品如日本三洋化成高吸水性树脂产品的水平 ,而吸液速率和 三蒸水吸液量则非常显著地优于国内外著名高吸水性树脂产品 (Ρ < 0.01 ) , 居国际领先水平; 本发明的高吸水性树脂无急性毒性、 细胞毒性、 致敏性和皮 肤刺激性, 生物相容性优良, 使用安全, 可广泛用于尿失禁床垫、 婴幼儿尿不 湿和妇女卫生巾等医疗卫生用品, 以及农林保水保湿等诸多领域, 具有巨大的 应用和开发价值。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现 本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非
限制性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落 在权利要求的等同要件的含义和范围内的所有变化嚢括在本发明内。
此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施 方式仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经 适当组合, 形成本领域技术人员可以理解的其他实施方式。
Claims
1、 一种高吸液速率的高吸水性树脂, 其特征在于: 为由聚合物和单体的 混合物水溶液经辐射交联和接枝而成的共聚物;
按照质量百分比计, 所述聚合物和单体的混合物水溶液包含:
2~10wt %聚乙烯醇;
18~26wt %聚丙烯酸钠;
3~9wt %2-丙烯酰胺基 -2-曱基丙磺酸;
55~77wt %水;
所述聚乙烯醇的聚合度为 1700~2400;
所述聚丙烯酸钠的分子量为 2 103~5 103。
2、 根据权利要求 1所述的高吸水性树脂, 其特征在于: 所述聚合物和单 体的混合物水溶液包含:
2wt %聚乙烯醇;
26wt %聚丙烯酸钠;
9wt %2-丙烯酰胺基 -2-曱基丙磺酸;
63wt %水。
3、 一种权利要求 1所述的高吸液速率的高吸水性树脂的制备方法, 其特 征在于, 包括以下步骤:
A )按照权利要求 1 所述的质量百分比, 将聚乙烯醇、 聚丙烯酸钠和 2- 丙烯酰胺基 -2-曱基丙磺酸以及水混合, 得到聚合物和单体的混合物水溶液;
B ) 将所述聚合物和单体的混合物水溶液应用电子束辐照进行交联和接 枝, 得到凝胶态共聚物。
4、 根据权利要求 3所述的制备方法, 其特征在于: 还包括以下步骤: C )将所述凝胶态共聚物依次进行烘干、 粉碎、 筛分、 浸洗、 溶胀、 萃冻 和冷冻干燥 , 得到冷冻干燥后的高吸水性树脂产品;
所述烘干为: 将所述凝胶态共聚物脂置于电热干燥箱内, 40~50 °C烘干 24~48h, 得到干燥凝胶;
所述粉碎为: 将所述干燥凝胶置于粉碎机中, 转速为 2500~3000r/min, 粉
碎 25~30s, 得到颗粒;
所述 分为: 将所述颗粒用震荡 分机进行 分, 得到目数为 40〜: 100目 的树脂颗粒。
5、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 C ) 中, 所 述浸洗和溶胀为: 将所述树脂颗粒置于浸洗液中进行室温浸洗和溶胀, 6~8h 后, 得到溶胀后的树脂颗粒;
所述树脂颗粒与所述浸洗液的质量比为 1 :30~1 :40。
6、 根据权利要求 5所述的制备方法, 其特征在于: 所述浸洗液由曱醇和 三蒸水组成, 所述曱醇与三蒸水的质量比为 1 :9~7:3。
7、 根据权利要求 5所述的制备方法, 其特征在于: 所述步骤 C ) 中, 所 述萃冻为:将溶胀后的树脂颗粒滤除多余液体,置于 -100— 80 °C的低温水箱中, 萃冻 2~3h, 得到萃冻后的树脂颗粒;
所述冷冻干燥为: 将萃冻后的树脂颗粒应用冷冻干燥机进行真空冷冻干 燥, 时间为 48~72h, 冷阱温度为 -60— 50°C , 得到冷冻干燥后的高吸水性树脂。
8、 根据权利要求 3至 7任一项所述的制备方法, 其特征在于: 所述步骤
A ) 中, 混合后, 置于高压蒸汽锅中, 110~120 °C加热溶解, l~2h后, 得到聚 合物和单体的混合物水溶液。
9、 根据权利要求 3至 7任一项所述的制备方法, 其特征在于: 所述步骤
B ) 中, 交联和接枝前, 将所述聚合物和单体的混合物水溶液定量灌注于平滑 的盘状模具中, 溶液的厚度为 l~15mm。
10、 根据权利要求 9所述的制备方法, 其特征在于: 所述步骤 B )中, 交 联和接枝时, 所述电子束辐照的能量为 0.8~2.45MeV, 电流为 2~14mA, 总吸 收剂量为 30~60kGy。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14831539.3A EP3029080A4 (en) | 2013-07-31 | 2014-06-27 | SUPER ABSORBENT RESIN WITH HIGH SOLUTION ABSORPTION FREQUENCY AND MANUFACTURING METHOD THEREFOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310329272.1A CN103360555B (zh) | 2013-07-31 | 2013-07-31 | 一种高吸液速率的高吸水性树脂及其制备方法 |
CN201310329272.1 | 2013-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015014188A1 true WO2015014188A1 (zh) | 2015-02-05 |
Family
ID=49362874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/080963 WO2015014188A1 (zh) | 2013-07-31 | 2014-06-27 | 一种高吸液速率的高吸水性树脂及其制备方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3029080A4 (zh) |
CN (1) | CN103360555B (zh) |
WO (1) | WO2015014188A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103360555B (zh) * | 2013-07-31 | 2016-01-20 | 苏州大学 | 一种高吸液速率的高吸水性树脂及其制备方法 |
CN104448157B (zh) * | 2014-11-25 | 2017-04-05 | 中广核达胜加速器技术有限公司 | 一种电子束辐照加工高性能吸水性树脂的合成方法 |
CN109852355A (zh) * | 2019-03-18 | 2019-06-07 | 四川上之登新材料有限公司 | 一种聚合物降滤失剂 |
CN111117632A (zh) * | 2019-12-24 | 2020-05-08 | 陈红喜 | 一种耐盐型保水剂的制备方法 |
CN118267510B (zh) * | 2024-06-03 | 2024-08-13 | 泉州市美爽卫生用品有限公司 | 一种卫生巾芯体材料复合工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200736320A (en) * | 2006-03-24 | 2007-10-01 | Formosa Plastics Corp | The superabsorbent resin and the manufacturing method thereof |
CN101058660A (zh) * | 2007-01-29 | 2007-10-24 | 江南大学 | 一种交联聚丙烯酸钠与交联羧甲基淀粉复配高吸水性树脂的制备方法 |
CN101293110A (zh) * | 2008-05-28 | 2008-10-29 | 苏州大学 | 一种医用水凝胶创伤敷料及其制备方法 |
KR20120013152A (ko) * | 2010-08-04 | 2012-02-14 | 주식회사 엘지화학 | 양이온성 광개시제를 이용한 고흡수성 수지의 제조 방법 및 고흡수성 수지 제조용 조성물 |
CN102378778A (zh) * | 2009-03-31 | 2012-03-14 | 株式会社日本触媒 | 颗粒状吸水性树脂的制造方法 |
WO2013064648A1 (en) * | 2011-11-04 | 2013-05-10 | Akzo Nobel Chemicals International B.V. | Graft dendrite copolymers, and methods for producing the same |
CN103360555A (zh) * | 2013-07-31 | 2013-10-23 | 苏州大学 | 一种高吸液速率的高吸水性树脂及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19646484C2 (de) * | 1995-11-21 | 2000-10-19 | Stockhausen Chem Fab Gmbh | Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung |
US10189961B2 (en) * | 2007-09-05 | 2019-01-29 | The General Hospital Corporation | Creep resistant, highly lubricious, tough, and ionic hydrogels including PVA-PAAMPS hydrogels |
CN102336861A (zh) * | 2011-07-01 | 2012-02-01 | 东莞市赛璞实业有限公司 | 一种聚丙烯酸盐高吸水性树脂及其制备方法 |
GB2511528A (en) * | 2013-03-06 | 2014-09-10 | Speciality Fibres And Materials Ltd | Absorbent materials |
-
2013
- 2013-07-31 CN CN201310329272.1A patent/CN103360555B/zh active Active
-
2014
- 2014-06-27 WO PCT/CN2014/080963 patent/WO2015014188A1/zh active Application Filing
- 2014-06-27 EP EP14831539.3A patent/EP3029080A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200736320A (en) * | 2006-03-24 | 2007-10-01 | Formosa Plastics Corp | The superabsorbent resin and the manufacturing method thereof |
CN101058660A (zh) * | 2007-01-29 | 2007-10-24 | 江南大学 | 一种交联聚丙烯酸钠与交联羧甲基淀粉复配高吸水性树脂的制备方法 |
CN101293110A (zh) * | 2008-05-28 | 2008-10-29 | 苏州大学 | 一种医用水凝胶创伤敷料及其制备方法 |
CN102378778A (zh) * | 2009-03-31 | 2012-03-14 | 株式会社日本触媒 | 颗粒状吸水性树脂的制造方法 |
KR20120013152A (ko) * | 2010-08-04 | 2012-02-14 | 주식회사 엘지화학 | 양이온성 광개시제를 이용한 고흡수성 수지의 제조 방법 및 고흡수성 수지 제조용 조성물 |
WO2013064648A1 (en) * | 2011-11-04 | 2013-05-10 | Akzo Nobel Chemicals International B.V. | Graft dendrite copolymers, and methods for producing the same |
CN103360555A (zh) * | 2013-07-31 | 2013-10-23 | 苏州大学 | 一种高吸液速率的高吸水性树脂及其制备方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3029080A4 * |
WEI ZHAOYANG; LU ZUKUN; YUE LING; LI LI; YANG SHUQIN; YANG ZHANSHAN, SUZHOU UNIVERSITY JOURNAL OF MEDICAL SCIENCE, vol. 32, no. 5, 2012, pages 661 - 664 |
Also Published As
Publication number | Publication date |
---|---|
EP3029080A1 (en) | 2016-06-08 |
CN103360555B (zh) | 2016-01-20 |
EP3029080A4 (en) | 2016-12-14 |
CN103360555A (zh) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015014188A1 (zh) | 一种高吸液速率的高吸水性树脂及其制备方法 | |
Zamani et al. | A new foaming technique for production of superabsorbents from carboxymethyl chitosan | |
CA2695974C (en) | Polymer hydrogels and methods of preparation thereof | |
FI85590B (fi) | Hydrogelbildande polymerkompositioner foer anvaendning i absorberande produkter, foerfarande foer deras framstaellning och dessa innehaollande produkter. | |
CN106413765B (zh) | 附聚的超吸收聚合物颗粒 | |
JP6557721B2 (ja) | 粒子状吸水剤 | |
MXPA02008764A (es) | Superabosorbentes permanentemente humedecibles. | |
WO2005108472A1 (en) | Water absorbing agent and production method thereof | |
DK160673B (da) | Fremgangsmaade til fremstilling af et absorberende materiale og anvendelse heraf | |
MXPA02006537A (es) | Polimeros superabsorbentes. | |
WO2007037454A9 (en) | Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent | |
JP4758960B2 (ja) | 吸収性樹脂粒子及び吸収性物品 | |
CN104334617A (zh) | 经过复合表面处理的羧烷基化淀粉聚丙烯酸盐复合物 | |
JP5149654B2 (ja) | 吸収性樹脂粒子及び吸収性物品 | |
Mondal et al. | Cellulosic hydrogels: A greener solution of sustainability | |
CN108003391A (zh) | 一种全多糖衍生物基超吸水凝胶及其制备方法和应用 | |
JPH06306298A (ja) | 生分解性及び高吸収性樹脂組成物、この組成物からなる不織布及びその用途 | |
WO2013009225A1 (en) | Absorbent composite material and an absorbent article comprising the absorbent composite material | |
WO2001047570A1 (en) | Fibrous materials | |
TWI322839B (en) | Hemostatic non-woven fabrics and method for manufacturing the same | |
Erizal | Synthesis of poly (acrylamide-co-acrylic acid)-starch based superabsorbent hydrogels by gamma radiation: study its swelling behavior | |
JP2013133399A (ja) | 吸水性ポリマー粒子 | |
CN102284080A (zh) | 一种壳聚糖复合缩醛化聚乙烯醇医用敷料的制备方法 | |
US20050080389A1 (en) | Absorbent articles having increased absorbency of complex fluids | |
US20220126269A1 (en) | Method for manufacturing carboxymethyl cellulose particles, carboxymethyl cellulose particles manufactured thereby, and absorbent article comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014831539 Country of ref document: EP |