WO2015012802A1 - Passenger and vehicle elevator system - Google Patents

Passenger and vehicle elevator system Download PDF

Info

Publication number
WO2015012802A1
WO2015012802A1 PCT/US2013/051590 US2013051590W WO2015012802A1 WO 2015012802 A1 WO2015012802 A1 WO 2015012802A1 US 2013051590 W US2013051590 W US 2013051590W WO 2015012802 A1 WO2015012802 A1 WO 2015012802A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
passenger
housing
elevator
recited
Prior art date
Application number
PCT/US2013/051590
Other languages
French (fr)
Inventor
Gil DEZER
Original Assignee
Dezer Gil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2016001004A priority Critical patent/MX371293B/en
Priority to ES13889789T priority patent/ES2940309T3/en
Application filed by Dezer Gil filed Critical Dezer Gil
Priority to CUP2016000009A priority patent/CU24332B1/en
Priority to RU2016105131A priority patent/RU2672510C2/en
Priority to EP13889789.7A priority patent/EP3024769B1/en
Priority to BR112016001567-3A priority patent/BR112016001567B1/en
Priority to CA2918876A priority patent/CA2918876C/en
Priority to NZ716282A priority patent/NZ716282A/en
Priority to CN201380078471.8A priority patent/CN105517938B/en
Priority to DK13889789.7T priority patent/DK3024769T3/en
Priority to PCT/US2013/051590 priority patent/WO2015012802A1/en
Priority to SG11201600437XA priority patent/SG11201600437XA/en
Priority to AU2013394940A priority patent/AU2013394940B2/en
Priority to JP2016529743A priority patent/JP6389522B2/en
Publication of WO2015012802A1 publication Critical patent/WO2015012802A1/en
Priority to IL24372216A priority patent/IL243722B/en
Priority to PH12016500138A priority patent/PH12016500138A1/en
Priority to HK16109697.9A priority patent/HK1221451A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices
    • E04H6/422Automatically operated car-parks
    • E04H6/424Positioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/22Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of movable platforms for horizontal transport, i.e. cars being permanently parked on palettes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/28Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of turntables or rotary rings for horizontal transport
    • E04H6/282Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of turntables or rotary rings for horizontal transport turntables, rotary elevators or the like on which the cars are not permanently parked
    • E04H6/285Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of turntables or rotary rings for horizontal transport turntables, rotary elevators or the like on which the cars are not permanently parked using car-gripping transfer means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/30Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only
    • E04H6/40Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in horizontal direction only characterised by use of turntables or rotary rings

Definitions

  • the present invention relates to elevators, and particularly to a passenger and vehicle elevator system for carrying a vehicle and at least one passenger within a multi-story building.
  • Multi-story garages are desired in areas where land costs require a maximum utilization of land area for rentable or saleable building space.
  • multi-story garages can be inconvenient to use for many building occupants if parking is required on an upper level of the garage and a pathway between an upper level dwelling unit and the garage requires travel between ground level and the upper garage level, as well as travel between ground level and an upper level dwelling or other occupiable unit in the building or buildings adjacent to the garage.
  • Multi- story garages have been constructed in which connecting bridges or walkways between parking decks and upper floors of buildings adjacent thereto have required stairways interconnecting the walkways or bridges with the parking decks, since the decks and the respective building floors have not been placed at the same elevations.
  • Such arrangements have been unsatisfactory for elderly and disabled persons, as well as when moving large articles and furnishings between the garage and living units on the closest adjacent floors.
  • the passenger and vehicle elevator system carries a vehicle containing at least one passenger to a desired parking spot within a multi-story building.
  • the passenger and vehicle elevator system includes a plurality of elevator cars arrayed substantially
  • Each elevator car includes a housing and at least one door.
  • the elevator car housing has a floor, a ceiling and at least one sidewalk
  • the elevator car is dimensioned and configured for carrying a vehicle and at least one passenger.
  • parking location-related information is read from the vehicle by an external sensor, such as an RFID sensor, bar code reader, or the like.
  • a linearly translating platform is mounted to the floor of each of the elevator car housings.
  • the linearly translating platform is adapted for automatically carrying the vehicle and the at least one passenger through the at least one door.
  • the vehicle may be rotated within the housing by driven rotation of the platform or rotation of the floor, allowing for selective angular positioning of the vehicle with respect to the housing.
  • the elevator car ascends and descends within a corresponding elevator shaft in a manner similar to that of a conventional elevator.
  • Fig. 1 is a diagrammatic plan view of a single exemplary floor of a multi- story building utilizing a passenger and vehicle elevator system according to the present invention.
  • Fig. 2A is a diagrammatic side view in section of an individual elevator car of the passenger and vehicle elevator system according to the present invention.
  • Fig. 2B is a diagrammatic top view of the individual elevator car of Fig. 2A.
  • Fig. 3A is a diagrammatic environmental top view, partially in section, illustrating a vehicle approaching an individual elevator of the passenger and vehicle elevator system according to the present invention.
  • Fig. 3B is a diagrammatic environmental top view, partially in section, illustrating extension of a platform of the elevator of Fig. 3A to carry the vehicle into the elevator.
  • Fig. 3C is a diagrammatic environmental top view, partially in section, illustrating the vehicle carried within the elevator of Fig. 3A.
  • Fig. 1 illustrates an exemplary floor plan of a single floor of a multi-story building B utilizing the passenger and vehicle elevator system 10.
  • three separate elevators 12, 14, 16 are shown positioned about a central axis A of the building B.
  • each elevator 12, 14, 16 includes an elevator car that may be selectively raised or lowered within a cylindrical elevator shaft by conventional elevator machinery, which is not shown in the drawings for clarity.
  • the cylindrical elevator shaft is shown for exemplary purposes only, and that the contouring and relative dimensions of both the elevator shaft and corresponding elevator car may be varied as desired.
  • Each elevator car includes at least one inner set of doors (or a single door) that selectively open and close, and each floor of the multi-story building includes at least one set of outer doors (or a single door), and preferably two angularly offset sets of outer doors, corresponding to each elevator 12, 14, and 16.
  • any desired number of elevators may be utilized, and that their positioning with respect to a building floor may be varied.
  • the elevators 12, 14, 16 are arrayed as an equilateral triangle, with each of elevators 12, 14, 16 serving one of regions 18, 20, 22.
  • each of regions 18, 20, 22 spans approximately 120° of arc, and each region 28, 20, 22 is separated from the adjacent region(s) by exemplary stairwells S or the like.
  • each of regions 18, 20, 22 is bisected (as indicated by the dashed, radial lines in Fig. 1), such that region 18 is divided into sub-regions 24, 26; region 20 is divided into sub-regions 28, 30; and region 22 is divided into sub-regions 24-34.
  • Each of the sub-regions 24-34 represents an individual office or dwelling space.
  • each of the three regions 18, 20, 22 contains two individual offices or dwelling spaces. As shown, there are two parking spaces allocated for each sub- region 24-34.
  • Sub-region 24 includes a pair of parking spaces 36; sub-region 26 includes a pair of parking spaces 38; sub-region 28 includes a pair of parking spaces 40; sub-region 30 includes a pair of parking spaces 42; sub-region 32 includes a pair of parking spaces 44; and sub-region 34 includes a pair of parking spaces 46.
  • the living quarters or office space for each sub-region may be disposed radially outward from the corresponding parking spaces for the sub-region.
  • each of elevators 12, 14 and 16 operates in an identical manner.
  • a single elevator car 12 is illustrated.
  • either the inner doors 54 of the elevator car of elevator 12 may comprise one set spanning 180° of the elevator car and the elevator 12 may be equipped with a turntable to select either sub- region 24 to access parking spaces 36 or sub-region 26 to access parking spaces 38, or the inner doors 54 of the elevator car may comprise two side-by-side sets which each span 90° and the floor of the elevator car may rotate to select either sub-region 24 or sub-region 26.
  • sub-region 24 has one set of outer doors 56 that open when sub-region 24 is selected, and sub-region 26 has another set of outer doors 56 that open when sub-region 26 is selected.
  • the inner doors 54 and the outer doors 56 must open and close along an arcuate or circumferential path, rather than the conventional rectilinear path of conventional elevator doors.
  • the vehicle V is positioned on a platform 50 within the elevator 12, and the platform 50 is mounted on a controllable, rotational mount 52.
  • This rotational mount drives rotation of the platform 50.
  • This rotation not only allows selection of any of the four parking spaces within a particular region, but further allows the vehicle V to enter the elevator 12 front end first and then be rotated within the elevator to also exit the elevator 12 front end first.
  • Such rotating platforms and drive systems are well known, and any suitable type of controllable, rotational mount 52 may be utilized.
  • One such rotating platform is manufactured by PALIS Global Parking Technologies GmbH of Gersthofen,
  • Fig. 3A illustrates a vehicle V first approaching the doors 54 of the elevator 12.
  • the doors 54 have circumferentially opened, as described above, and the platform 50 is linearly translated beneath the vehicle V and raised to carry the vehicle V.
  • the platform 50 is translated back into the elevator 12, as shown in Fig. 3C, and the vehicle V may be carried to the desired floor.
  • any suitable type of driven platform may be utilized. Such translational dollies and mounts are well known. One such driven platform is manufactured by PALIS Global Parking Technologies GmbH of Gersthofen, Germany. Other examples of other such systems are shown in PCT Application Publication No. WO 2004/045932 Al, to Zangerle et al., and U.S. Patent No. 4,768,914, issued to Sing, each of which is hereby incorporated by reference in its entirety. It should be understood that the system 10 may be used in combination with any suitable type of multi-story building. In use, vehicle V enters a ground floor, below-ground floor or lobby level and drives to one of elevators 12, 14, 16, positioning the vehicle as shown in Fig. 3A.
  • the vehicle passes by a sensor 70, as shown in Fig. 3A.
  • Sensor 70 may be a bar code reader, an RFID sensor or the like, exchanging signals 72 with a matching label or device mounted on vehicle V for identifying the vehicle, including data identifying the vehicle's assigned floor and parking space.
  • the vehicle V is directed towards the appropriate entry or staging area in front of the corresponding one of elevators 12, 14, 16 for the particular parking space.
  • the driver turns off the ignition of vehicle V and preferably remains within the vehicle V.
  • the doors 54 to the elevator associated with the particular staging area open and the automatically controlled translating platform or dolly 50 moves outward from the elevator.
  • the platform 50 moves underneath the vehicle V, lifts the vehicle V, and withdraws back into the elevator with the vehicle V remaining on the platform 50.
  • the elevator doors 54 then close and the elevator ascends to the appropriate floor or level.
  • the elevator doors 54 open and the laterally moving platform extends outward and deposits the vehicle V in its assigned parking space.
  • the laterally moveable platform then withdraws from under the vehicle V, moves back into the elevator, the elevator doors 54 close, and the elevator is then ready to move the next vehicle.
  • the driver of vehicle V wishes the leave the building B, the driver signals for the appropriate elevator and the process is reversed.
  • the system 10 not only raises the vehicle V from the entrance level to the appropriate floor of the building B, but is also capable of moving the vehicle V to the correct parking space. This is accomplished by the rotating mount 52 for rotating the platform 50.
  • the platform 50 may be equipped with its own turntable, rather than being mounted thereon. During the ascent from the entrance level, the platform 50 may be rotated, if necessary, such that the vehicle V is placed into the correct parking space. During the descent back to the street level, the platform 50 is rotated so that when the elevator doors 54 open, the platform 50 moves the vehicle V outwardly into the departure area.
  • the departure area is spaced apart from the staging or loading area such that vehicles may egress from the building without interfering with the progression of other vehicles which are entering the building and waiting in the staging area. It should be understood that though two exemplary parking spaces are shown for each office or residential unit, any desired number of parking spaces may be allotted.
  • a carbon monoxide detector 74 will register if the vehicle engine is operating and a positive response from the carbon monoxide detector 74 will prevent loading the vehicle onto the elevator. For example, doors 54 may remain closed until a zero or minimal level of carbon monoxide is measured by sensor 74.
  • one or more carbon monoxide sensors 76 within the elevator will stop the elevator's ascent and return the elevator to the entrance level. It should be understood that any suitable type of sensors may be utilized to ensure that the vehicle is not in operation. Additional sensors may be used to measuring vehicle dimensions, motion or the like, such as laser sensors, for example.
  • suitable motion detectors or optical sensors 78 may further be provided within the elevator to detect opening of the vehicle door or trunk, which may be utilized as a basis for stopping the ascent or descent of the elevator. Further, conventional smoke, heat or fire detectors may also be mounted within the elevator.
  • each elevator should be of a size sufficient to accommodate, for example, a vehicle of approximately six meters in length and two meters in width. Similarly, each elevator should be able to accommodate the weight of a motor vehicle and its passengers, preferably being able to carry loads up to approximately 3,500 kg.

Abstract

The passenger and vehicle elevator system (10) includes a plurality of elevator cars (12, 14, 16) arrayed substantially equidistantly and equiangularly from a central shaft of the building (B). Each elevator car (12) includes a housing and at least one door (54). The housing has a floor, a ceiling, and at least one sidewall. A linearly translating platform (50) is mounted on the floor of each of the housings. The linearly translating platform is adapted for automatically carrying the vehicle (V) and the at least one passenger through the at least one door (54). Further, the vehicle (V) may be rotated within the housing by driven rotation of the platform (50) or the floor, allowing for selective angular positioning of the vehicle (V) with respect to the housing. The elevator car (12) ascends and descends within a corresponding elevator shaft (S) in a manner similar to that of a conventional elevator.

Description

PASSENGER AND VEHICLE ELEVATOR SYSTEM
TECHNICAL FIELD
The present invention relates to elevators, and particularly to a passenger and vehicle elevator system for carrying a vehicle and at least one passenger within a multi-story building.
BACKGROUND ART
The increasing cost of urban land, together with the need to provide affordable high density housing, as well as low-cost commercial or professional office space, presents several problems in the development of building complexes, particularly including motor vehicle parking facilities. Specifically, the need to develop affordable high-density housing, such as apartment or condominium complexes, has presented a problem in providing adequate space for parking personal motor vehicles in close proximity to the apartment or condominium building or buildings without encountering the prohibitive cost of erecting buildings with garage facilities directly above, or more commonly, directly below the building floors or levels that are dedicated to multiple dwelling units.
National and local regulatory requirements with respect to fire ratings of structures with garages directly underneath residential dwelling units is cost prohibitive with respect to providing affordable housing in many urban areas. Further, the irregular shape of land parcels usually available for high-density housing in highly developed urban areas also presents a problem with respect to the placement of adequate parking spaces for personal automobile vehicles, which are closely adjacent the vehicle owner's dwelling unit.
One solution to the above-mentioned problems is the development of multi-story garages for motor vehicles directly adjacent to, or within, the buildings that include the dwelling units to be occupied by the persons normally parking their vehicles in the garage. Multi-story garages are desired in areas where land costs require a maximum utilization of land area for rentable or saleable building space. However, multi-story garages can be inconvenient to use for many building occupants if parking is required on an upper level of the garage and a pathway between an upper level dwelling unit and the garage requires travel between ground level and the upper garage level, as well as travel between ground level and an upper level dwelling or other occupiable unit in the building or buildings adjacent to the garage. Multi- story garages have been constructed in which connecting bridges or walkways between parking decks and upper floors of buildings adjacent thereto have required stairways interconnecting the walkways or bridges with the parking decks, since the decks and the respective building floors have not been placed at the same elevations. Such arrangements have been unsatisfactory for elderly and disabled persons, as well as when moving large articles and furnishings between the garage and living units on the closest adjacent floors.
Other considerations that must be taken into account in the development of high- density housing with multistory garages adjacent thereto concerns placement of the garage with respect to the dwelling units while maintaining adequate open space therebetween to conform to regulatory requirements and aesthetic desires of the building occupants.
It would obviously be desirable to be able to provide the same access between a building dwelling unit on an upper floor or level and an upper story garage parking space as is provided for persons occupying a ground floor dwelling unit and corresponding ground level parking. Consideration should be given not only to the convenience of walking a substantially level pathway between a dwelling unit and the parking place for the building occupants' personal vehicles, but also with regard to such activities as trash disposal, mail delivery and pickup and the ease of moving personal effects and furniture in and out of a dwelling unit. Further, it would also be desirable to be able to maximize space for both parking and the residential or office spaces in such an arrangement.
Thus, a passenger and vehicle elevator system solving the aforementioned problems is desired.
DISCLOSURE OF INVENTION
The passenger and vehicle elevator system carries a vehicle containing at least one passenger to a desired parking spot within a multi-story building. The passenger and vehicle elevator system includes a plurality of elevator cars arrayed substantially
equidistantly from a central shaft of the building. Each elevator car includes a housing and at least one door. The elevator car housing has a floor, a ceiling and at least one sidewalk The elevator car is dimensioned and configured for carrying a vehicle and at least one passenger. Preferably, parking location-related information is read from the vehicle by an external sensor, such as an RFID sensor, bar code reader, or the like. A linearly translating platform is mounted to the floor of each of the elevator car housings. The linearly translating platform is adapted for automatically carrying the vehicle and the at least one passenger through the at least one door. Further, the vehicle may be rotated within the housing by driven rotation of the platform or rotation of the floor, allowing for selective angular positioning of the vehicle with respect to the housing. The elevator car ascends and descends within a corresponding elevator shaft in a manner similar to that of a conventional elevator.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings. BRIEF DESCRIPTION OF DRAWINGS
Fig. 1 is a diagrammatic plan view of a single exemplary floor of a multi- story building utilizing a passenger and vehicle elevator system according to the present invention.
Fig. 2A is a diagrammatic side view in section of an individual elevator car of the passenger and vehicle elevator system according to the present invention.
Fig. 2B is a diagrammatic top view of the individual elevator car of Fig. 2A.
Fig. 3A is a diagrammatic environmental top view, partially in section, illustrating a vehicle approaching an individual elevator of the passenger and vehicle elevator system according to the present invention.
Fig. 3B is a diagrammatic environmental top view, partially in section, illustrating extension of a platform of the elevator of Fig. 3A to carry the vehicle into the elevator.
Fig. 3C is a diagrammatic environmental top view, partially in section, illustrating the vehicle carried within the elevator of Fig. 3A.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
BEST MODES FOR CARRYING OUT THE INVENTION
Fig. 1 illustrates an exemplary floor plan of a single floor of a multi-story building B utilizing the passenger and vehicle elevator system 10. In the exemplary floor plan of Fig. 1, three separate elevators 12, 14, 16 are shown positioned about a central axis A of the building B. It will be understood that each elevator 12, 14, 16 includes an elevator car that may be selectively raised or lowered within a cylindrical elevator shaft by conventional elevator machinery, which is not shown in the drawings for clarity. It should be understood that the cylindrical elevator shaft is shown for exemplary purposes only, and that the contouring and relative dimensions of both the elevator shaft and corresponding elevator car may be varied as desired. Each elevator car includes at least one inner set of doors (or a single door) that selectively open and close, and each floor of the multi-story building includes at least one set of outer doors (or a single door), and preferably two angularly offset sets of outer doors, corresponding to each elevator 12, 14, and 16. It should be understood that any desired number of elevators may be utilized, and that their positioning with respect to a building floor may be varied. In the exemplary configuration of Fig. 1, in which the three elevators 12, 14, 16 are positioned such that their centers are equidistant from axis A, the elevators 12, 14, 16 are arrayed as an equilateral triangle, with each of elevators 12, 14, 16 serving one of regions 18, 20, 22. For the circular arrangement of the floor plan shown in the example of Fig. 1, each of regions 18, 20, 22 spans approximately 120° of arc, and each region 28, 20, 22 is separated from the adjacent region(s) by exemplary stairwells S or the like.
In the exemplary configuration of Fig. 1, each of regions 18, 20, 22 is bisected (as indicated by the dashed, radial lines in Fig. 1), such that region 18 is divided into sub-regions 24, 26; region 20 is divided into sub-regions 28, 30; and region 22 is divided into sub-regions 24-34. Each of the sub-regions 24-34 represents an individual office or dwelling space. Thus, in this exemplary layout, each of the three regions 18, 20, 22 contains two individual offices or dwelling spaces. As shown, there are two parking spaces allocated for each sub- region 24-34. Sub-region 24 includes a pair of parking spaces 36; sub-region 26 includes a pair of parking spaces 38; sub-region 28 includes a pair of parking spaces 40; sub-region 30 includes a pair of parking spaces 42; sub-region 32 includes a pair of parking spaces 44; and sub-region 34 includes a pair of parking spaces 46. The living quarters or office space for each sub-region may be disposed radially outward from the corresponding parking spaces for the sub-region.
Each of elevators 12, 14 and 16 operates in an identical manner. In Figs. 2A and 2B, a single elevator car 12 is illustrated. In order for the elevator car 12 to provide access to any of the two parking space pairs 36, 38 in sector 18 (in the configuration of Fig. 1), either the inner doors 54 of the elevator car of elevator 12 may comprise one set spanning 180° of the elevator car and the elevator 12 may be equipped with a turntable to select either sub- region 24 to access parking spaces 36 or sub-region 26 to access parking spaces 38, or the inner doors 54 of the elevator car may comprise two side-by-side sets which each span 90° and the floor of the elevator car may rotate to select either sub-region 24 or sub-region 26. Preferably sub-region 24 has one set of outer doors 56 that open when sub-region 24 is selected, and sub-region 26 has another set of outer doors 56 that open when sub-region 26 is selected. In the exemplary circular configuration of the elevators illustrated in Figs. 1 and 2B, the inner doors 54 and the outer doors 56 must open and close along an arcuate or circumferential path, rather than the conventional rectilinear path of conventional elevator doors.
As shown in Fig. 2A, the vehicle V is positioned on a platform 50 within the elevator 12, and the platform 50 is mounted on a controllable, rotational mount 52. This rotational mount drives rotation of the platform 50. This rotation not only allows selection of any of the four parking spaces within a particular region, but further allows the vehicle V to enter the elevator 12 front end first and then be rotated within the elevator to also exit the elevator 12 front end first. Such rotating platforms and drive systems are well known, and any suitable type of controllable, rotational mount 52 may be utilized. One such rotating platform is manufactured by PALIS Global Parking Technologies GmbH of Gersthofen,
Germany. Another such mount is the Turntable 505, manufactured by Otto Wohr GmbH of Fiolzheim, Germany. Other examples of such rotating platforms for vehicles are shown in U.S. Patent No. 4,264,257, issued to Saurwein, and U.S. Patent Application Publication No. US 2005/0095092 Al, to Segal et al, each of which is hereby incorporated by reference in its entirety.
In addition to the rotation of the platform 50 by rotational mount 52, the platform 50 is also preferably horizontally translatable. Fig. 3A illustrates a vehicle V first approaching the doors 54 of the elevator 12. In Fig. 3B, the doors 54 have circumferentially opened, as described above, and the platform 50 is linearly translated beneath the vehicle V and raised to carry the vehicle V. Once the platform 50 is fully positioned under the vehicle V and raised to support the vehicle, the platform 50 is translated back into the elevator 12, as shown in Fig. 3C, and the vehicle V may be carried to the desired floor.
It should be understood that any suitable type of driven platform may be utilized. Such translational dollies and mounts are well known. One such driven platform is manufactured by PALIS Global Parking Technologies GmbH of Gersthofen, Germany. Other examples of other such systems are shown in PCT Application Publication No. WO 2004/045932 Al, to Zangerle et al., and U.S. Patent No. 4,768,914, issued to Sing, each of which is hereby incorporated by reference in its entirety. It should be understood that the system 10 may be used in combination with any suitable type of multi-story building. In use, vehicle V enters a ground floor, below-ground floor or lobby level and drives to one of elevators 12, 14, 16, positioning the vehicle as shown in Fig. 3A. Preferably, at the entrance, the vehicle passes by a sensor 70, as shown in Fig. 3A. Sensor 70 may be a bar code reader, an RFID sensor or the like, exchanging signals 72 with a matching label or device mounted on vehicle V for identifying the vehicle, including data identifying the vehicle's assigned floor and parking space. In response to the identification of the particular vehicle V and its assigned floor and parking space, the vehicle V is directed towards the appropriate entry or staging area in front of the corresponding one of elevators 12, 14, 16 for the particular parking space.
Once at the appropriate staging area, the driver turns off the ignition of vehicle V and preferably remains within the vehicle V. The doors 54 to the elevator associated with the particular staging area open and the automatically controlled translating platform or dolly 50 moves outward from the elevator. The platform 50 moves underneath the vehicle V, lifts the vehicle V, and withdraws back into the elevator with the vehicle V remaining on the platform 50. The elevator doors 54 then close and the elevator ascends to the appropriate floor or level.
Once at the appropriate floor or level, the elevator doors 54 open and the laterally moving platform extends outward and deposits the vehicle V in its assigned parking space. The laterally moveable platform then withdraws from under the vehicle V, moves back into the elevator, the elevator doors 54 close, and the elevator is then ready to move the next vehicle. When the driver of vehicle V wishes the leave the building B, the driver signals for the appropriate elevator and the process is reversed.
As noted above, since at least two parking spaces are preferably associated with each office or residential unit, the system 10 not only raises the vehicle V from the entrance level to the appropriate floor of the building B, but is also capable of moving the vehicle V to the correct parking space. This is accomplished by the rotating mount 52 for rotating the platform 50. As an alternative, the platform 50 may be equipped with its own turntable, rather than being mounted thereon. During the ascent from the entrance level, the platform 50 may be rotated, if necessary, such that the vehicle V is placed into the correct parking space. During the descent back to the street level, the platform 50 is rotated so that when the elevator doors 54 open, the platform 50 moves the vehicle V outwardly into the departure area. Preferably, the departure area is spaced apart from the staging or loading area such that vehicles may egress from the building without interfering with the progression of other vehicles which are entering the building and waiting in the staging area. It should be understood that though two exemplary parking spaces are shown for each office or residential unit, any desired number of parking spaces may be allotted.
Since the vehicle V is being transported vertically with one or more passengers within the elevator, and since the vehicles are being parked within the building at a level coextensive with an office or a residence, it is desirable to avoid having the vehicle engine operating either in the elevator or in the parking area. Thus, once the vehicle V initially enters the loading or staging area, a carbon monoxide detector 74 will register if the vehicle engine is operating and a positive response from the carbon monoxide detector 74 will prevent loading the vehicle onto the elevator. For example, doors 54 may remain closed until a zero or minimal level of carbon monoxide is measured by sensor 74. Should the vehicle engine be off upon the entry into the elevator, but the engine started thereafter, one or more carbon monoxide sensors 76 within the elevator will stop the elevator's ascent and return the elevator to the entrance level. It should be understood that any suitable type of sensors may be utilized to ensure that the vehicle is not in operation. Additional sensors may be used to measuring vehicle dimensions, motion or the like, such as laser sensors, for example.
In order to avoid injury to the operator of the vehicle and/or any passengers, suitable motion detectors or optical sensors 78 may further be provided within the elevator to detect opening of the vehicle door or trunk, which may be utilized as a basis for stopping the ascent or descent of the elevator. Further, conventional smoke, heat or fire detectors may also be mounted within the elevator.
Although the elevators 12, 14, 16 may be varied in number, size and overall configuration, each elevator should be of a size sufficient to accommodate, for example, a vehicle of approximately six meters in length and two meters in width. Similarly, each elevator should be able to accommodate the weight of a motor vehicle and its passengers, preferably being able to carry loads up to approximately 3,500 kg.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims

CLAIMS I claim:
1. A passenger and vehicle elevator system, comprising:
an elevator car having a housing and at least one door, the housing having a floor, a ceiling and at least one sidewall, the housing being adapted for carrying a vehicle and at least one passenger;
a linearly translating platform mounted on the floor of the housing, the linearly translating platform being adapted for carrying the vehicle and the at least one passenger through the at least one door;
means for selectively rotating the vehicle within the housing; and
means for selectively raising and lowering the elevator car.
2. The passenger and vehicle elevator system as recited in claim 1, wherein the housing is substantially cylindrical.
3. The passenger and vehicle elevator system as recited in claim 2, wherein the at least one door is arcuate.
4. The passenger and vehicle elevator system as recited in claim 1, further comprising at least one sensor configured for reading parking information from the vehicle.
5. The passenger and vehicle elevator system as recited in claim 4, wherein the at least one sensor comprises an RFID reader.
6. The passenger and vehicle elevator system as recited in claim 4, wherein the at least one sensor comprises a bar code reader.
7. The passenger and vehicle elevator system as recited in claim 1, further comprising:
a first carbon monoxide sensor mounted external to the housing; and
means for preventing the vehicle from entering the housing when the first carbon monoxide sensor detects levels of carbon monoxide indicating an engine of the vehicle is operating.
8. The passenger and vehicle elevator system as recited in claim 7, further comprising:
a second carbon monoxide sensor mounted within the housing; and means for preventing the elevator car from parking the vehicle within the building when the second carbon monoxide sensor detects levels of carbon monoxide indicating the engine of the vehicle is operating.
9. The passenger and vehicle elevator system as recited in claim 8, further comprising:
a motion sensor mounted within the housing; and
means for preventing the elevator car from parking the vehicle within the building when the motion sensor detects motion within the housing.
10. A passenger and vehicle elevator system, comprising:
an elevator car having a housing and at least one door, the housing having a floor, a ceiling and at least one sidewall, the housing being adapted for carrying a vehicle and at least one passenger;
a linearly translating platform mounted on the floor of the housing, the platform being adapted for carrying the vehicle and the at least one passenger through the at least one door; means for selectively rotating the vehicle within the housing;
at least one sensor configured for reading parking information from the vehicle; and means for selectively raising and lowering the elevator car.
11. The passenger and vehicle elevator system as recited in claim 10, wherein the housing is substantially cylindrical.
12. The passenger and vehicle elevator system as recited in claim 2, wherein the at least one door is arcuate.
13. The passenger and vehicle elevator system as recited in claim 10, wherein the at least one sensor comprises an RFID reader.
14. The passenger and vehicle elevator system as recited in claim 10, wherein the at least one sensor comprises a bar code reader.
15. The passenger and vehicle elevator system as recited in claim 10, further comprising:
a first carbon monoxide sensor mounted external to the housing; and
means for preventing the vehicle from entering the housing when the first carbon monoxide sensor detects levels of carbon monoxide indicating an engine of the vehicle is operating.
16. The passenger and vehicle elevator system as recited in claim 15, further comprising:
a second carbon monoxide sensor mounted within the housing; and means for preventing the elevator car from parking the vehicle within the building when the second carbon monoxide sensor detects levels of carbon monoxide indicating the engine of the vehicle is operating.
17. The passenger and vehicle elevator system as recited in claim 16, further comprising:
a motion sensor mounted within the housing; and
means for preventing the elevator car from parking the vehicle within the building when the motion sensor detects motion within the housing.
18. A passenger and vehicle elevator system, comprising:
a plurality of elevator cars arrayed substantially equidistantly and equiangularly from a central shaft of a building, each of the elevator cars having a housing and at least one door, the housing having a floor, a ceiling and at least one sidewall, the elevator cars being adapted for carrying a vehicle and at least one passenger;
a linearly translating platform mounted on the floor of each of the elevator cars, the platform being adapted for carrying the vehicle and the at least one passenger through the at least one door;
means for selectively rotating the vehicle within each of the elevator cars;
at least one sensor for reading parking information from the vehicle; and
means for selectively raising and lowering each of the elevator cars.
19. The passenger and vehicle elevator system as recited in claim 18, further comprising a first carbon monoxide sensor mounted external to each said housing, the first carbon monoxide sensor having means for generating a first detection signal when an engine of the vehicle is operating and the vehicle attempts to enter the elevator car.
20. The passenger and vehicle elevator system as recited in claim 19, further comprising a second carbon monoxide sensor mounted within each said housing, the second carbon monoxide sensor having means for generating a second detection signal when the engine of the vehicle is operating inside the elevator car.
PCT/US2013/051590 2013-07-23 2013-07-23 Passenger and vehicle elevator system WO2015012802A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AU2013394940A AU2013394940B2 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
NZ716282A NZ716282A (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
CUP2016000009A CU24332B1 (en) 2013-07-23 2013-07-23 PASSENGER AND VEHICLE ELEVATOR SYSTEM
RU2016105131A RU2672510C2 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
EP13889789.7A EP3024769B1 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
BR112016001567-3A BR112016001567B1 (en) 2013-07-23 2013-07-23 PASSENGER AND VEHICLE ELEVATOR SYSTEM
CA2918876A CA2918876C (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
MX2016001004A MX371293B (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system.
CN201380078471.8A CN105517938B (en) 2013-07-23 2013-07-23 Passenger and vehicle lift system
PCT/US2013/051590 WO2015012802A1 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
DK13889789.7T DK3024769T3 (en) 2013-07-23 2013-07-23 PASSENGER AND VEHICLE ELEVATOR SYSTEM
SG11201600437XA SG11201600437XA (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system
ES13889789T ES2940309T3 (en) 2013-07-23 2013-07-23 Vehicle and Passenger Elevator System
JP2016529743A JP6389522B2 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator systems
IL24372216A IL243722B (en) 2013-07-23 2016-01-21 Passenger and vehicle elevator system
PH12016500138A PH12016500138A1 (en) 2013-07-23 2016-01-21 Passenger and vehicle elevator system
HK16109697.9A HK1221451A1 (en) 2013-07-23 2016-08-15 Passenger and vehicle elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/051590 WO2015012802A1 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system

Publications (1)

Publication Number Publication Date
WO2015012802A1 true WO2015012802A1 (en) 2015-01-29

Family

ID=52393673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/051590 WO2015012802A1 (en) 2013-07-23 2013-07-23 Passenger and vehicle elevator system

Country Status (17)

Country Link
EP (1) EP3024769B1 (en)
JP (1) JP6389522B2 (en)
CN (1) CN105517938B (en)
AU (1) AU2013394940B2 (en)
BR (1) BR112016001567B1 (en)
CA (1) CA2918876C (en)
CU (1) CU24332B1 (en)
DK (1) DK3024769T3 (en)
ES (1) ES2940309T3 (en)
HK (1) HK1221451A1 (en)
IL (1) IL243722B (en)
MX (1) MX371293B (en)
NZ (1) NZ716282A (en)
PH (1) PH12016500138A1 (en)
RU (1) RU2672510C2 (en)
SG (1) SG11201600437XA (en)
WO (1) WO2015012802A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601236A (en) * 2017-11-06 2018-01-19 孙复庆 Lift car vehicle prevents system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106760779A (en) * 2017-01-17 2017-05-31 颜萌 Vehicle storage and lease garage
CN108756339B (en) * 2018-04-23 2024-03-22 宜春学院 Four-part type automobile and bicycle hybrid stereo garage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445712A1 (en) 1990-03-09 1991-09-11 SOILMEC S.p.A. Underground circular or variable radius parking place
JPH0510045A (en) * 1991-07-05 1993-01-19 Taisei Corp Multi-stage parking lot
JPH0571236A (en) * 1991-09-10 1993-03-23 Nippon Steel Corp Space parking equipment
DE19842298A1 (en) 1998-09-16 2000-04-06 Fraunhofer Ges Forschung Parking garage with transfer boxes handler and parking boxes uses vehicle pallets indented for wheels as raised by handler for moving to parking box.
JP2001200650A (en) * 2000-01-18 2001-07-27 Nippon Steel Corp Cage type multistory parking facility
US20030138309A1 (en) * 2002-01-24 2003-07-24 Michael Kozak Automobile display system
WO2006039830A1 (en) 2004-10-13 2006-04-20 Fridolin Stutz Wholly automated mobile device and corresponding fast, economical and compact method for parking private vehicles
US20120279807A1 (en) * 2009-09-11 2012-11-08 Inventio Ag Elevator system operation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425716Y1 (en) * 1964-02-02 1967-03-22
US3395815A (en) * 1964-12-15 1968-08-06 Johnson Stuart Mechanical car-parking tower
US4594044A (en) * 1983-08-08 1986-06-10 Olaf Soot Rotating truck lift
JPS61116683U (en) * 1984-12-28 1986-07-23
JPH02209566A (en) * 1989-02-06 1990-08-21 Hitachi Elevator Eng & Service Co Ltd Multi soried parking facility device
SU1813867A1 (en) * 1990-07-02 1993-05-07 Mikhail G Imyanitov Multistory automated garage
JPH04166576A (en) * 1990-10-30 1992-06-12 Toshiba Corp Safety device for car carrying elevator
JPH04176971A (en) * 1990-11-13 1992-06-24 Oshima Kensetsu Kk Parking device provided exclusively for multistory dwelling house
JP2524555B2 (en) * 1991-08-13 1996-08-14 山岸 英昭 Access structure to underground structure
JPH06215299A (en) * 1993-01-20 1994-08-05 Csk Corp Automatic managing device for parking lot
JPH0776948A (en) * 1993-09-06 1995-03-20 Toshiba Corp Elevator control device
JPH07215600A (en) * 1994-02-01 1995-08-15 Toshiba Corp Exhaust device of elevator for automobile with cab door
JPH09251598A (en) * 1996-03-14 1997-09-22 Ishikawajima Harima Heavy Ind Co Ltd Parking lot system
JP2693945B2 (en) * 1996-05-24 1997-12-24 株式会社日立ビルシステム Car elevator
US6212832B1 (en) * 1997-05-30 2001-04-10 Zhuangmei Gao Silo structure of vehicle parking system
US20070031218A1 (en) * 1999-07-30 2007-02-08 Gerhard Haag A system and method for automated goods storage and retrieval
AU2001278658A1 (en) * 2000-07-20 2002-02-05 Maurice Segal Vehicle parking building and system
JP2006063699A (en) * 2004-08-27 2006-03-09 Miracle Three Corporation Multistory parking space attached building
JP2006221275A (en) * 2005-02-08 2006-08-24 Hitachi Ltd Management and control apparatus for parking lot
RU2305741C2 (en) * 2005-11-03 2007-09-10 Сергей Евгеньевич Варламов Multistory passenger car garage module
RU2302990C1 (en) * 2005-11-14 2007-07-20 Игорь Николаевич Кочергин Lifting-and-transporting device
US8632290B2 (en) * 2010-01-21 2014-01-21 Auto Parkit, Llc Automated parking system
JP2012220259A (en) * 2011-04-05 2012-11-12 Clarion Co Ltd In-vehicle apparatus and vehicle azimuth correction method thereof
RU112239U1 (en) * 2011-10-20 2012-01-10 Игорь Абрамович Ярошецкий RESIDENTIAL BUILDING WITH INTEGRATED CAR PARK

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445712A1 (en) 1990-03-09 1991-09-11 SOILMEC S.p.A. Underground circular or variable radius parking place
JPH0510045A (en) * 1991-07-05 1993-01-19 Taisei Corp Multi-stage parking lot
JPH0571236A (en) * 1991-09-10 1993-03-23 Nippon Steel Corp Space parking equipment
DE19842298A1 (en) 1998-09-16 2000-04-06 Fraunhofer Ges Forschung Parking garage with transfer boxes handler and parking boxes uses vehicle pallets indented for wheels as raised by handler for moving to parking box.
JP2001200650A (en) * 2000-01-18 2001-07-27 Nippon Steel Corp Cage type multistory parking facility
US20030138309A1 (en) * 2002-01-24 2003-07-24 Michael Kozak Automobile display system
WO2006039830A1 (en) 2004-10-13 2006-04-20 Fridolin Stutz Wholly automated mobile device and corresponding fast, economical and compact method for parking private vehicles
US20120279807A1 (en) * 2009-09-11 2012-11-08 Inventio Ag Elevator system operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3024769A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601236A (en) * 2017-11-06 2018-01-19 孙复庆 Lift car vehicle prevents system

Also Published As

Publication number Publication date
DK3024769T3 (en) 2023-03-13
SG11201600437XA (en) 2016-02-26
MX371293B (en) 2020-01-24
BR112016001567A2 (en) 2017-07-25
RU2016105131A (en) 2017-08-29
CA2918876C (en) 2023-04-04
HK1221451A1 (en) 2017-06-02
NZ716282A (en) 2019-08-30
CU24332B1 (en) 2018-04-03
JP6389522B2 (en) 2018-09-12
JP2016525492A (en) 2016-08-25
MX2016001004A (en) 2016-08-03
RU2672510C2 (en) 2018-11-15
EP3024769A4 (en) 2017-03-15
ES2940309T3 (en) 2023-05-05
CN105517938B (en) 2018-05-15
BR112016001567B1 (en) 2023-04-25
CA2918876A1 (en) 2015-01-29
IL243722A0 (en) 2016-04-21
CN105517938A (en) 2016-04-20
EP3024769A1 (en) 2016-06-01
AU2013394940A1 (en) 2016-02-11
CU20160009A7 (en) 2016-11-29
EP3024769B1 (en) 2022-12-07
AU2013394940B2 (en) 2019-05-30
IL243722B (en) 2019-10-31
PH12016500138A1 (en) 2016-04-18

Similar Documents

Publication Publication Date Title
US9016999B2 (en) Passenger and vehicle elevator system
AU664660B2 (en) Motor-vehicle parking system
US10738496B2 (en) Parking garage for motor vehicles, in particular multistory parking garage, and method for manufacturing a parking garage
WO2002008545A2 (en) Vehicle parking building and system
US6209270B1 (en) Multilevel building with ramp
JP2006505729A (en) Parking Lot
US20170226765A1 (en) Vehicle parking with automated guided vehicles, vertically reciprocating conveyors and safety barriers
US20070294952A1 (en) Car park
WO2014079226A1 (en) Multi-floor, multi-ring alignment movable parking disk commercial combination parking building of automatic vehicle storage and retrieval
US20090028674A1 (en) Vertical integrated parking system
US20040237421A1 (en) Inner-city passenger car sales and service centre with minimal area requirements
CA2918876C (en) Passenger and vehicle elevator system
JP6784719B2 (en) Passenger and vehicle elevator system
KR102107314B1 (en) Parking tower
JPH06280418A (en) Motor pool
US3378151A (en) Parking garage
US20180002941A1 (en) Passenger and Vehicle Elevator System
JP2021008817A (en) Passenger and vehicle elevator system
US3382990A (en) Automatic circular parking tower
JP2002030817A (en) Apartment house with parking garage
JPH0794776B2 (en) Multi-level parking device
IES86447Y1 (en) Pallet-less automatic multilevel circular car parking system
CA2505171A1 (en) Business method for use with a mixed-use building having a commercial showroom and a multi-unit structure directly accessible therefrom
CA2565301A1 (en) Business method for use with a mixed-use building having a commercial showroom and a multi-unit structure directly accessible therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2918876

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 243722

Country of ref document: IL

Ref document number: 12016500138

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2016529743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/001004

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P81/2016

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201600739

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001567

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013394940

Country of ref document: AU

Date of ref document: 20130723

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 16042302

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2016105131

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016001567

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160125