WO2015012331A1 - X線ct装置及び画像再構成方法 - Google Patents

X線ct装置及び画像再構成方法 Download PDF

Info

Publication number
WO2015012331A1
WO2015012331A1 PCT/JP2014/069505 JP2014069505W WO2015012331A1 WO 2015012331 A1 WO2015012331 A1 WO 2015012331A1 JP 2014069505 W JP2014069505 W JP 2014069505W WO 2015012331 A1 WO2015012331 A1 WO 2015012331A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection data
ray
image
data
ffs
Prior art date
Application number
PCT/JP2014/069505
Other languages
English (en)
French (fr)
Inventor
藤井 英明
中澤 哲夫
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015528320A priority Critical patent/JP6377615B2/ja
Priority to CN201480038728.1A priority patent/CN105377140B/zh
Priority to US14/905,057 priority patent/US9895124B2/en
Publication of WO2015012331A1 publication Critical patent/WO2015012331A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • G06T3/4069Super resolution, i.e. output image resolution higher than sensor resolution by subpixel displacement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/465Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]

Definitions

  • the present invention relates to an X-ray CT apparatus and an image reconstruction method, and more particularly to an image reconstruction method suitable for an X-ray CT apparatus using an X-ray tube apparatus capable of irradiating X-rays from a plurality of focal positions.
  • the X-ray CT apparatus circulates around the subject with the X-ray tube apparatus and the X-ray detector facing each other, and irradiates X-rays from a plurality of rotation angle directions (views) for each view.
  • the apparatus detects X-rays transmitted through a specimen and generates a tomographic image of the subject based on the detected projection data.
  • FFS Fluorescence Fluorescence
  • X-ray tube apparatuses having a function of irradiating X-rays by shifting the X-ray focal point to a plurality of positions have been developed.
  • the X-ray focal point position can be shifted to a plurality of locations by electromagnetically moving the position of the electron beam incident on the anode (target).
  • a plurality of projection data with different X-ray irradiation paths can be obtained from the same rotation angle direction (view), so that the spatial resolution of the X-ray CT apparatus can be improved (FFS method).
  • the image reconstructed using the conventional FFS method improves the spatial resolution near the center in the entire effective visual field, but has a problem that the spatial resolution is lowered in the peripheral portion other than the central portion.
  • Patent Document 1 by setting the optimum focal point movement distance based on the number of views photographed in one rotation (angle difference between adjacent views) and the distance between the X-ray tube device and the rotation center, A BFFS (Balanced Flying Focus Spot) method is proposed to make the spatial resolution of the periphery uniform and improve.
  • the sampling rate and gantry rotation speed of the data collection device are limited due to hardware limitations. Therefore, to increase the number of views taken in one rotation, it is necessary to reduce the rotation speed of the gantry.
  • the number of views is increased by reducing the rotation speed, motion artifacts increase in organs such as the heart that move quickly. Such motion artifact is more inconvenient for a radiologist who performs image diagnosis because an organ such as the heart that moves faster has a larger influence on the image. For this reason, there is a desire to improve the spatial resolution over the entire effective field of view without reducing the rotation speed in imaging for a part with motion.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an FFS method for improving spatial resolution by obtaining projection data by moving an X-ray focal point position to a plurality of positions. Another object of the present invention is to provide an X-ray CT apparatus and an image reconstruction method capable of improving the spatial resolution of the entire effective visual field without reducing the rotation speed.
  • the first invention provides an X-ray tube device that irradiates a subject with X-rays from a plurality of focal positions, and an X-ray tube that is disposed opposite to the X-ray tube device and transmits the subject.
  • An X-ray detector for detecting transmitted X-rays that are rays, the X-ray tube device and the X-ray detector, a rotating disk that rotates around the subject, and the focal point in the X-ray tube device
  • a focus shift X-ray control unit that shifts the position to an arbitrary position, and a focus shift by combining the transmitted X-rays by each X-ray irradiated with the focus position shifted to a plurality of positions by the focus shift X-ray control unit
  • a focus shift projection data generation unit that generates projection data, a virtual view generation unit that generates a virtual view in a view direction of the focus shift projection data, and generates upsampled projection data using the virtual view;
  • a reconstruction calculation unit that uses the actual data of the focus shift projection data in a central area closer to the image center than the boundary and reconstructs an image using the upsampling projection data in a peripheral area outside the boundary.
  • a step of acquiring focus shift projection data which is projection data of each X-ray irradiated by shifting the X-ray focal position in the X-ray tube apparatus to a plurality of positions, and a view direction of the focus shift projection data Generating a virtual view, and generating upsampled projection data using the virtual view, and using the actual data of the focus shift projection data in a central region closer to the image center than a predetermined boundary in the image plane, And reconstructing an image using the upsampled projection data in a peripheral region outside the boundary.
  • an X-ray CT apparatus and an image reconstruction method can be provided.
  • the X-ray CT apparatus 1 includes a scan gantry unit 100 and a console 120.
  • the scan gantry unit 100 is an apparatus that irradiates a subject with X-rays and detects X-rays that have passed through the subject, and includes an X-ray tube device 101, a rotating disk 102, a collimator 103, an X-ray detector 106, A data collection device 107, a gantry control device 108, a bed control device 109, and a focus shift X-ray control device 110 are provided.
  • the rotary disk 102 is provided with an opening 104, and the X-ray tube device 101 and the X-ray detector 106 are arranged to face each other through the opening 104.
  • the subject placed on the bed 105 is inserted into the opening 104.
  • the turntable 102 rotates around the subject by a driving force transmitted from a turntable drive device controlled by the gantry control device 108 through a drive transmission system.
  • the console 120 is a device that controls each part of the scan gantry unit 100 and acquires projection data measured by the scan gantry unit 100 to generate and display an image.
  • the console 120 includes an input device 121, an image arithmetic device 122, a storage device 123, a system control device 124, and a display device 125.
  • the X-ray tube apparatus 101 is a flying focal X-ray tube apparatus that can move the focal position of the rotating anode (target). Assuming that the rotation axis direction of the X-ray CT apparatus 1 is the Z direction, the flying focal X-ray tube apparatus deflects the electron beam applied to the rotating anode (target) in the X direction or the Y direction orthogonal to the Z direction. As a result, the X-ray focal position is shifted, and X-rays of slightly different paths are irradiated from the same view position.
  • the moving direction of the focus by the X-ray tube apparatus 101 is the rotation direction (channel direction) of the X-ray CT apparatus 1.
  • the focus position is a position shifted from the reference focus position in the rotation direction (channel direction) by “+ ⁇ a” and “ ⁇ b”. That is, the X-ray tube apparatus 101 emits X-rays from the first focal position “+ ⁇ a” moved in the positive direction of the channel direction and the second focal position “ ⁇ b” moved in the negative direction.
  • FFS projection data projection data obtained using the FFS (Flying Focus Spot) method
  • the projection data obtained from the X-rays irradiated from the first focal position are FFS (+) projection data
  • the projection data obtained from the X-rays irradiated from the second focal position are FFS ( ⁇ Called projection data.
  • FFS (no) projection data projection data obtained by X-rays irradiated from a reference focal position that does not use the FFS technique.
  • the X-ray tube device 101 is controlled by the focus shift X-ray control device 110 to irradiate X-rays having a predetermined intensity continuously or intermittently.
  • the focus shift X-ray control device 110 is an X-ray tube voltage and X-ray tube that are applied to or supplied to the X-ray tube device 101 in accordance with the X-ray tube voltage and X-ray tube current determined by the system control device 124 of the console 120. Control the current.
  • the focus shift X-ray control device 110 performs control so as to alternately move to the first and second focus positions described above for each view as the turntable 102 rotates, for example.
  • a collimator 103 is provided at the X-ray irradiation port of the X-ray tube apparatus 101.
  • the collimator 103 limits the irradiation range of the X-rays emitted from the X-ray tube device 101. For example, it is formed into a cone beam (conical or pyramidal beam).
  • the opening width of the collimator 103 is controlled by the system controller 124.
  • the X-ray detector 106 includes, for example, about 1000 X-ray detection element groups configured by a combination of a scintillator and a photodiode in the channel direction (circumferential direction), for example, about 1 to 320 in the column direction (body axis direction). It is an arrangement.
  • the X-ray detector 106 is disposed so as to face the X-ray tube apparatus 101 through the subject.
  • the X-ray detector 106 detects the X-ray dose irradiated from the X-ray tube device 101 and transmitted through the subject, and outputs it to the data collection device 107.
  • the data collection device 107 collects X-ray doses detected by individual X-ray detection elements of the X-ray detector 106, converts them into digital data, and sequentially outputs them to the image calculation device 122 of the console 120 as transmitted X-ray data. To do.
  • the image calculation device 122 acquires the transmission X-ray data input from the data collection device 107 and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • the X-ray tube device 101 emits X-rays having different focal points for each view, for example, so the image calculation device 122 is obtained by X-rays emitted from the first focal position.
  • FFS (+) projection data that is the projection data and FFS ( ⁇ ) projection data that is the projection data obtained from the X-rays irradiated from the second focal position are created.
  • the image calculation device 122 includes a virtual view generation unit 126 and a reconstruction calculation unit 127.
  • the virtual view generation unit 126 generates a virtual view for the focus shift projection data (FFS (+) projection data and FFS ( ⁇ ) projection data) photographed using the FFS method, and inserts the virtual view to perform upsampling projection.
  • Create data A virtual view is a view that is inserted by calculation at a view position that is not actually photographed.
  • the projection data of the virtual view can be obtained by interpolation or estimation based on actually captured projection data (hereinafter referred to as actual data). Details of the virtual view generation will be described later.
  • the projection data generated (upsampled) by the virtual view generation unit 126 is referred to as upsampled projection data.
  • the reconstruction calculation unit 127 uses the projection data actually measured (actual data of FFS (+) projection data and FFS ( ⁇ ) projection data) and the upsampled projection data generated by the virtual view generation unit 126. An image such as a tomographic image of the subject is reconstructed.
  • the reconstruction calculation unit 127 reconstructs an image using actual data (FFS (+) projection data, FFS ( ⁇ ) projection data) and upsampled projection data in consideration of the spatial resolution of the image.
  • the spatial resolution of the central region is improved by reconstructing the image using the actual data of the FFS (+) projection data and the FFS ( ⁇ ) projection data in the central region in the image plane.
  • the spatial resolution is improved by reconstructing the image using the upsampled projection data in the peripheral region of the image.
  • the spatial resolution of the peripheral area is improved by using upsampled projection data in the peripheral area. Plan. Since the upsampled projection data inserts a virtual view by calculation, the number of views can be improved without reducing the rotation speed. Therefore, it is particularly suitable for creating an image of a moving part.
  • any method such as an analytical method such as a filtered back projection method or a successive approximation method may be used.
  • Image data reconstructed by the image computation device 122 (reconstruction computation unit 127) is input to the system control device 124, stored in the storage device 123, and displayed on the display device 125.
  • the system control device 124 is a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the storage device 123 is a data recording device such as a hard disk, and stores programs, data, and the like for realizing the functions of the X-ray CT apparatus 1 in advance.
  • the system control device 124 performs photographing processing according to the processing procedure shown in FIG. In the imaging process, the system control device 124 sends a control signal corresponding to the imaging conditions set by the operator to the focus shift X-ray control device 110, the bed control device 109, and the gantry control device 108 of the scan gantry unit 100, The above-described units are controlled. Details of each process will be described later.
  • the display device 125 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the system control device 124.
  • the display device 125 displays the reconstructed image output from the image calculation device 122 and various information handled by the system control device 124.
  • the input device 121 includes, for example, a keyboard, a pointing device such as a mouse, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the system control device 124.
  • the operator operates the X-ray CT apparatus 1 interactively using the display device 125 and the input device 121.
  • the input device 121 may be a touch panel type input device configured integrally with the display screen of the display device 125.
  • FIG. 2 is a flowchart for explaining the flow of the entire imaging process executed by the X-ray CT apparatus 1 according to the present invention.
  • the system control device 124 receives input of shooting conditions and reconstruction conditions.
  • the imaging conditions include X-ray conditions such as X-ray tube voltage and X-ray tube current, imaging range, gantry rotation speed, bed speed, and the like.
  • the reconstruction condition includes a reconstruction FOV, a reconstruction slice thickness, and the like.
  • the system control device 124 When imaging conditions and reconstruction conditions are input via the input device 121 or the like (step S101), the system control device 124, based on the imaging conditions, the focus shift X-ray control device 110, the gantry control device 108, and the bed control device Send control signal to 109.
  • the focus shift X-ray control device 110 controls electric power input to the X-ray tube device 101 based on a control signal input from the system control device 124.
  • the focus shift X-ray control device 110 moves the X-ray focal point position alternately by moving the electron beam irradiating the rotating anode of the X-ray tube device 101 by a predetermined direction and distance at a predetermined timing. Perform FFS control to irradiate the line.
  • the gantry control device 108 controls the drive system of the turntable 102 according to the photographing conditions such as the rotation speed, and rotates the turntable 102.
  • the bed control device 109 aligns the bed to a predetermined shooting start position based on the shooting range.
  • the X-ray irradiation from the X-ray tube device 101 and the measurement of transmitted X-ray data by the X-ray detector 106 are repeated as the rotating disk 102 rotates.
  • the data acquisition device 107 acquires transmission X-ray data measured by the X-ray detector 106 at various angles (views) around the subject and sends the acquired data to the image calculation device 122.
  • the image calculation device 122 acquires the transmission X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data.
  • imaging is performed by moving the X-ray focal position to two points using the FFS method, so that the image arithmetic unit 122 is a projection obtained by X-rays irradiated from the first focal position.
  • FFS (+) projection data that is data and FFS ( ⁇ ) projection data that is projection data obtained by X-rays irradiated from the second focal position are created (step S102).
  • the image calculation device 122 uses the FFS (+) projection data and the FFS ( ⁇ ) projection data (collectively referred to as FFS projection data) created in the process of step S102 to perform virtual View generation processing is performed (step S103).
  • the virtual view generation unit 126 inserts (upsamples) the virtual view into the actual data so as to have a preset number of views, and generates upsampled projection data.
  • the number of views may be a value set in advance according to the specifications of the device, or may be a value set by the operator. Further, it may be a value determined by an image quality index (particularly spatial resolution) set by the operator or other parameters. A specific method of the virtual view generation process will be described later (see FIGS. 3 to 12).
  • step S104 the reconstruction calculation unit 127 of the image calculation device 122 next reconstructs the image based on the reconstruction condition input in step S101.
  • Configuration processing is performed (step S104). Any kind of image reconstruction algorithm may be used in the image reconstruction process. For example, back projection processing such as the Feldkamp method may be performed, or a successive approximation method or the like may be used.
  • the spatial resolution of an image reconstructed using FFS projection data is higher in the center area of the image than when FFS projection data is not used, and projection data without FFS is used as it goes to the periphery. It may be lower than the case (see FIG. 13). Therefore, in the present invention, in the reconstruction calculation process in step S104, projection data upsampled by a virtual view is used for a region with a low spatial resolution (Low region; peripheral region) where the FFS effect cannot be obtained. In the region where the FFS effect can be obtained (Hi region; central region), the image is reconstructed using the actual data of the FFS projection data (see FIGS. 13 to 15). Details of the reconstruction process will be described later.
  • step S104 When the image is reconstructed in step S104, the system control device 124 displays the reconstructed image on the display device 125 (step S105), and ends the series of photographing processing.
  • the image calculation device 122 obtains the FFS (+) projection data.
  • FFS projection data 503 is obtained by alternately combining 501 and FFS ( ⁇ ) projection data 502 in the view direction (step S202).
  • virtual view generation 504 is executed for the FFS projection data 503 (step S203) to obtain upsampled projection data 505.
  • the virtual view generation unit 126 outputs the upsampled projection data 505 to the reconstruction calculation unit 127 (Step S204).
  • the virtual view generation process (B) will be described with reference to FIG. 5 and FIG.
  • the image calculation device 122 When acquiring the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101 (step S301), the image calculation device 122 obtains the FFS (+) projection data. Virtual view generation 504 is executed for each of 501 and FFS ( ⁇ ) projection data 502 (step S302). Then, the FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and FFS ( ⁇ ) projection data 512 in the view direction (step S303). The virtual view generation unit 126 outputs the upsampled projection data 513 to the reconstruction calculation unit 127 (step S304).
  • the virtual view generation process (C) will be described with reference to FIGS.
  • the image calculation device 122 obtains the FFS (+) projection data.
  • Virtual view generation 504 is executed for each of 501 and FFS ( ⁇ ) projection data 502 (step S402).
  • the upsampled FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and the FFS ( ⁇ ) projection data 512 in the view direction (step S403).
  • the virtual view generation unit 126 further performs missing data processing 514 on the upsampled FFS projection data 513 (step S404).
  • Missing data processing refers to the projection data adjacent to the view direction and the channel direction from the missing data generated in the FFS projection data 513 obtained by alternately combining the FFS (+) projection data and the FFS ( ⁇ ) projection data in the view direction. Alternatively, it is a process of filling by interpolation or estimation using projection data in the vicinity thereof.
  • the FFS (+) projection data and the FFS ( ⁇ ) projection data obtained by moving the focal position in the channel direction have different X-ray paths. Therefore, data twice as many as the number of channels is obtained.
  • step S404 missing data processing 514 is performed to fill in such missing data.
  • the virtual view generating unit 126 When obtaining the upsampled projection data 515 subjected to the missing data processing 514 in step S404, the virtual view generating unit 126 outputs the upsampled projection data 515 to the reconstruction calculating unit 127 (step S405).
  • the virtual view generation process (D) will be described with reference to FIG. 9 and FIG.
  • the image calculation device 122 Upon obtaining the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101 (step S501), the image calculation device 122 obtains the FFS (+) projection data. Virtual view generation 504 is executed for each of 501 and FFS ( ⁇ ) projection data 502 (step S502). Then, the upsampled FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and the FFS ( ⁇ ) projection data 512 in the view direction (step S503).
  • the virtual view generation unit 126 further performs virtual view generation 504 on the upsampled FFS projection data 513 (step S504).
  • Upsampling projection data 516 is obtained by the processing in step S504.
  • the virtual view generation unit 126 outputs the upsampled projection data 516 to the reconstruction calculation unit 127.
  • Step S505 a virtual view calculation method (upsampling method) will be described with reference to FIG.
  • Each upsampling method shown in FIG. 11 can be applied to any of the virtual view generation processing in step S203 in FIG. 3, step S302 in FIG. 5, step S402 in FIG. 7, step S502 in FIG. 9, and step S504.
  • the virtual view generation unit 126 (image arithmetic unit 122), for the view to be inserted (virtual view), projection data close to the view direction or channel direction, or Ray data (opposite data) or opposing data
  • the projection data of the virtual view is calculated by interpolation or estimation using projection data close to the view direction or the channel direction.
  • a virtual view can be generated using opposing ray data (hereinafter, opposing ray data is referred to as opposing data).
  • opposing data is referred to as opposing data.
  • FIGS. 11 (a) and 11 (b) an example will be described in which a virtual view is generated by using opposing data for projection data obtained by one rotation of shooting, and the number of views is doubled.
  • Ray31 and Ray32 face each other. That is, the same X-ray irradiation route.
  • Opposite data at point A1 and point A2 in Ray31 are point B1 and point B2 in Ray32, respectively.
  • Point B1 and point B2 are data of adjacent channels on the real view View (2 ⁇ m + ⁇ ) as shown in FIG.
  • the relationship between the points A1 and B1 on the projection data can be expressed by the following equation (1) using a function R ( ⁇ , ⁇ ) using parameters where the channel direction is ⁇ and the view direction is ⁇ . .
  • the point A1A2 in the virtual view 41 between the point A1 and the point A2 is the point B1B2 obtained from the point B1 and the point B2 on the real view View (2 ⁇ m + ⁇ ) by the following equations (4) and (5) It can be calculated.
  • a point adjacent to one pixel in the virtual view 41 (point C1C2 in FIG. 11 (b)) is calculated from the opposing data, and channel data (points indicated by double circles in FIG. 11 (b) is obtained by linear interpolation. V41b) can be generated.
  • each channel data of the virtual view 41 is calculated.
  • the channel data of each point can be calculated using the facing data in the same manner.
  • the virtual view generation method (upsampling method) using facing data, facing data that has the closest biological information (measurement data that has passed through the subject) to the channel data to be estimated (points indicated by double circles) Each channel data of the virtual view is calculated based on (actual data).
  • the opposite data having the closest biological information is the ray that has the closest transmission path among the measured rays and is incident from the opposite direction.
  • the feature is that a ray is selectively acquired, a virtual ray estimated from the selected ray is calculated, and a virtual view is generated.
  • the channel data of the virtual view was obtained using the average value of the two points of the opposite data, but in the case of N times sampling, it may be obtained by linear interpolation or nonlinear interpolation between the two points. Good. Also, by this method, upsampling in the channel direction can be performed simultaneously.
  • the virtual view generation method is not limited to the upsampling method using the facing data as described above. As shown in Fig. 11 (c), it may be a two-point interpolation that simply interpolates between adjacent views, or a four-point interpolation that interpolates using data of adjacent views and channels as shown in Fig. 11 (d). Alternatively, as shown in FIG. 11 (e), interpolation by the TV method (Total Variation) may be used.
  • the number of views of upsampled projection data may be an arbitrary number of views including a decimal value such as 1.5 times the actual data. For example, when the number of views is partially increased in the view direction, the number of views is a fractional multiple.
  • the cross section of the subject 2 has a shape approximating an ellipse. Therefore, as shown in Fig. 12 (b), in the view corresponding to the major axis of the ellipse, the number of views is increased, for example, the number of views is increased, and the upsampled projection data 518 is generated by a fractional multiple. Is also possible.
  • the spatial resolution of an image reconstructed using FFS projection data is higher in the central area of the image than in the case where FFS projection data is not used, and projection without FFS as it goes to the periphery. May be lower than when using data (see FIG. 13).
  • FIG. 13 (b) is a graph 606 showing the relationship between the distance from the center O and the spatial resolution in the tomographic image 601 shown in FIG. 13 (a).
  • the spatial resolution an index value representing
  • the spatial resolution is FFS (none) Higher than using projection data.
  • the spatial resolution is when FFS (no) projection data is used. It becomes low compared with.
  • image reconstruction is performed using FFS projection data (actual data) that is not up-sampled, and in the peripheral area 603, the virtual view is generated.
  • FFS projection data actual data
  • the spatial resolution of the peripheral region 603 is improved.
  • the spatial resolution can be improved in the central region 604 while preventing adverse effects due to the creation of data, and the peripheral region 603 can be generated without reducing the rotation speed by generating a virtual view.
  • the number of views can be increased, thereby improving the spatial resolution.
  • the reconstruction calculation unit 127 acquires a boundary point P 0 of spatial resolution (step S601).
  • the boundary point P 0 is the distance from the imaging center at a position where the spatial resolution obtained from the FFS projection data and the spatial resolution obtained from the FFS-free projection data are reversed.
  • This boundary point P 0 is obtained in advance from experimental data and is stored in the storage device 123 or the like.
  • MTF Modulation Transfer Function
  • the boundary point P 0 described above may be obtained for each different spatial resolution index value such as MTF 50%, 10%, 2%, etc., and may be selected by the operator. Since what kind of image quality is required depending on the purpose of examination or diagnosis, it is desirable that the necessary spatial resolution can be selected according to the balance with other image quality (noise, etc.).
  • the boundary point serving as the center of gravity may be obtained from the boundary point P 0 obtained by a plurality of spatial resolutions such as MTF 50%, 10%, and 2%.
  • Reconstruction operation unit 127 up-sampling projection data with actual data of the FFS projection data at the center area 604 of the center side than the boundary point P 0, and up-sampled FFS projection data from the boundary point P 0 in the outer peripheral region 603 Is used to perform reconstruction calculation (step S602).
  • the upsampling projection data used for the peripheral region 603 may be upsampling projection data created by any of the above-described virtual view generation processes (A) to (D). That is, the upsampled projection data 505 generated by the virtual view generation processing (A) shown in FIGS. 3 and 4 as shown in FIG. 15 (a) may be used, or as shown in FIG. 15 (b). Upsampling projection data 513 generated in the virtual view generation process (B) shown in FIGS. 5 and 6 may be used, or the virtual view generation process (C shown in FIGS. 7 and 8 as shown in FIG. ) May be used, or as shown in FIG. 15 (d), the up-sampling projection data 516 generated in the virtual view generation process (D) shown in FIGS. 9 and 10 may be used. Also good.
  • the virtual view generation method may employ the upsampling method using the opposing data as described above, or two points adjacent in the view direction. May be used, or may be interpolation using four points adjacent to the view direction and the channel direction, or may be interpolation using a TV method or the like.
  • the actual data of the FFS projection data and the upsampled projection data may be combined on the projection data, and then the image may be reconstructed such as back projection processing.
  • the reconstruction calculation unit 127 outputs the image created by the process of step S602 (step S603).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1 of the first embodiment uploads the focus shift projection data (FFS projection data) obtained by shifting the X-ray focal position in the X-ray tube apparatus 101 in the view direction.
  • FFS projection data focus shift projection data
  • the actual data of the FFS projection data is used in the center region 604 closer to the photographing center than the predetermined boundary point P 0 , and the upsampling projection is performed in the peripheral region 603 far from the photographing center from the boundary point P 0. Reconstruct the image using the data.
  • the spatial resolution of the peripheral portion can be improved regardless of the rotational speed limit due to hardware limitations, and the spatial resolution of the entire effective visual field can be improved. It is suitable for imaging a moving part.
  • the X-ray CT apparatus 1 of the second embodiment performs the combining process so that the spatial resolution at the boundary point P 0 is smoothly continuous in the reconstruction calculation process.
  • boundary area Q 100% of the image reconstructed from the actual data of the FFS projection data is used as in the first embodiment.
  • the peripheral region 603a outside the boundary region Q 100% of the image reconstructed with the upsampled projection data is used as in the first embodiment.
  • the image reconstructed from the FFS projection data and the image reconstructed from the upsampled projection data according to the distance from the center are synthesized while changing the weights.
  • FIG. 17 is a graph showing the weighting coefficient applied to the reconstructed image based on the upsampled projection data.
  • the weighting factor W (P) changes according to the distance P from the center O.
  • the curve is “0” in the central area 604a, the curve smoothly rising in the boundary area Q, and “1” in the peripheral area 603a.
  • the weighting coefficient applied to the reconstructed image based on the FFS actual projection data also changes depending on the distance from the center O.
  • W (P) shown in FIG. “1” a curve that smoothly falls in the boundary region Q, and “0” in the peripheral region 603a.
  • the range of the boundary region Q is arbitrary, and may be changed according to the desired spatial resolution of the desired region.
  • the weighting factor is represented by a smooth curve depending on the distance P from the center of the image, but is not limited to this, and may be represented by a straight line or a broken line.
  • the upsampling projection data used for the peripheral region 603a and the boundary region Q is the virtual view generation process (see above).
  • Upsampling projection data created by any method of A) to (D) may be used. That is, the upsampled projection data 505 generated by the virtual view generation processing (A) shown in FIGS. 3 and 4 as shown in FIG. 16 (a) may be used, or as shown in FIG. 16 (b).
  • Upsampling projection data 513 generated in the virtual view generation process (B) shown in FIGS. 5 and 6 may be used, or the virtual view generation process (C shown in FIGS. 7 and 8 as shown in FIG. )
  • the virtual view calculation method is the interpolation by two points adjacent to the view direction as described above (FIG. 11 (c)), or the view direction and the channel direction. It may be obtained by interpolation using the four points adjacent to the same (same (d)), interpolation or estimation using the TV method or the like (same (e)), or may be calculated using the opposite data (same ( a), (b)).
  • the number of views of the upsampled projection data is not limited to twice the actual data, and may be more than twice the number of views.
  • the number of views may be partially increased in the view direction, and an arbitrary number of views including a decimal value such as 1.5 times may be used.
  • the reconstruction calculation unit 127 acquires a boundary point P 0 of spatial resolution (step S701).
  • the acquisition of the boundary point P 0 is the same as in the first embodiment (step S601 in FIG. 14).
  • the reconstruction calculation unit 127 creates an image reconstructed using actual FFS projection data and an image reconstructed using upsampled projection data obtained by upsampling the FFS projection data (step S702). ).
  • the reconstruction calculation unit 127 uses the image reconstructed from the actual data of the FFS projection data in the center region 604a on the center side of the boundary region Q including the boundary point P 0 , and uses the peripheral region outside the boundary region Q.
  • 603a a composite image using the image reconstructed by the upsampling projection data is created.
  • each image reconstructed in step S702 is weighted and added so as to have continuous spatial resolution (step S703).
  • the weighting method is, for example, by multiplying the image created by upsampling projection data by the weighting factor of the shape shown in FIG. 17, and the weighting factor of the shape opposite to the graph shown in FIG. Multiply the images created by the above and add these images.
  • the reconstruction calculation unit 127 outputs the image created by the process of step S703 (step S704).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • X-rays CT apparatus 1 of the second embodiment in the reconstruction processing of an image, using the actual data of the FFS projection data in near the central region 604a to the image center, the boundary point P 0 In the peripheral region 603a on the peripheral side, the reconstructed images are synthesized using the upsampling projection data. Furthermore, each of the above-mentioned images is weighted and added so that the spatial resolution smoothly continues in a predetermined boundary region Q.
  • weighted addition is performed when the reconstructed image is combined, but the upsampled projection data and the actual data of the FFS projection data are combined on the projection data, and then The combined projection data may be reconstructed.
  • projection data created by weighted addition of up-sampling projection data and actual data of FFS projection data at a portion corresponding to the boundary region Q is used.
  • an image using actual data of FFS projection data and an image using upsampled projection data may be synthesized by changing the weight over the entire image. Good.
  • FIG. 19 is a graph showing the weighting factor W ′ (P) to be applied to the reconstructed image based on the upsampled projection data in the third embodiment.
  • W ′ (P) the weighting factor
  • it rises smoothly from “0” in the region near the center, and becomes “1” at the edge of the peripheral region. That is, even in regions other than the boundary region Q, the weighting coefficient changes according to the distance from the center O.
  • the graph shape of the weighting factor may be arbitrary, and the weighting factor is changed so that a desired spatial resolution can be obtained in a desired region even in a region other than the boundary region Q.
  • weighting coefficient applied to the reconstructed image based on the FFS actual projection data is smoothly lowered from “1” in the area close to the center and becomes “0” at the end of the peripheral area, contrary to FIG.
  • the weighting factor W ′ (P) is expressed by a smooth curve depending on the distance P from the center of the image, but is not limited thereto, and may be expressed by a straight line. Good.
  • the reconstruction calculator 127 acquires a boundary point P 0 of spatial resolution (step S801).
  • the acquisition of the boundary point P 0 is the same as in the first embodiment (step S601 in FIG. 14).
  • the reconstruction calculation unit 127 creates an image reconstructed using the actual data of the FFS projection data and an image reconstructed using the upsampled projection data obtained by upsampling the FFS projection data (Step S802). ).
  • the up-sampled projection data may be generated using any of the virtual view generation processes (A) to (D).
  • the reconstruction calculation unit 127 multiplies each image by a weighting factor of a desired shape and adds it (step S803).
  • the weight is the desired space in the desired area when combining the image reconstructed using the actual FFS projection data and the image reconstructed using the upsampled projection data obtained by upsampling the FFS projection data. It is for combining at an appropriate ratio so as to obtain a resolution.
  • the reconstruction calculation unit 127 outputs the image created by the process of step S803 (step S804).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1 uses the weighting coefficient that changes according to the distance from the imaging center in the image reconstruction calculation process, based on the actual data of the FFS projection data.
  • the reconstructed image and the image reconstructed by upsampling projection data are synthesized.
  • the actual data 503 of FFS projection data is applied to the region of interest (ROI; Region Of Interest) 7 and the center region 604 set by the operator.
  • upsampling projection data 505 is applied to the peripheral region 603.
  • the actual data 503 of the FFS projection data is used for the range within the ROI 7.
  • the system controller 124 and the region of interest (ROI) 7 are set (step S901).
  • the ROI 7 is set by the operator via the input device 121.
  • the reconstruction calculation unit 127 acquires a boundary point P 0 of spatial resolution (step S902).
  • the acquisition of the boundary point P 0 is the same as in the first embodiment (step S601 in FIG. 14).
  • the reconstruction calculation unit 127 uses the actual data of the FFS projection data in the ROI 7 and the central area 604 set in step S901, and uses the upsampled projection data based on the virtual view in the peripheral area 603 excluding the ROI 7. Reconfiguration is performed (step S903).
  • the up-sampled projection data may be generated using any of the virtual view generation processes (A) to (D).
  • the reconstruction calculation unit 127 outputs the image created by the process of step S903 (step S904).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1 increases the reliability of the image by reconstructing an image using the actual data of the FFS projection data in the ROI 7 and the central region 604. Further, in the peripheral region 603 excluding ROI 7, the spatial resolution is improved by using up-sampling projection data. As a result, it is possible to obtain an image with high reliability at the ROI to be diagnosed and the central portion of the image and with improved spatial resolution in the peripheral portion.
  • the boundary region Q is subjected to the combining process as shown in the second embodiment, or the weighting factor of the desired shape as shown in the third embodiment is used. Then, the image based on the FFS projection data and the image based on the upsampling projection data may be weighted and added.
  • the reconstruction calculation unit 127 includes an area 1002 from the center O to the distance P1 and an area 1003 from the distance P1 to the distance P2 in the image plane of the reconstructed image 1001. Then, an image reconstructed using FFS projection data having different views (upsampling numbers) is synthesized with respect to the region 1004 from the distance P2 to the distance P3.
  • the region 1002 uses the actual view number V1 of the FFS projection data
  • the region 1003 uses the FFS projection data upsampled to the view number V2
  • the region 1004 uses the FFS projection data upsampled to the view number V3. .
  • the synthesized image ⁇ (V) can be expressed by the following equation (6). it can.
  • the upsampled projection data may be created by any of the virtual view generation processes (A) to (D) described in the first embodiment.
  • the combining process may be performed so as to obtain continuous spatial resolution at the boundary between the region 1002 and the region 1003 or at the boundary between the region 1003 and the region 1004.
  • the combining process is the same as in the second embodiment.
  • the reconstruction was performed with projection data of each view number using weighting factors W (V1), W (V2), and W (V3) that continuously and smoothly change the spatial resolution.
  • W (V1), W (V2), and W (V3) that continuously and smoothly change the spatial resolution.
  • the images ⁇ (V1), ⁇ (V2), and ⁇ (V3) are synthesized.
  • the synthesized image ⁇ (V) can be expressed by the following equation (7).
  • the number of regions is three, but is not limited to three, and can be expanded to N regions as in an image 1001b shown in FIG. is there.
  • the synthesized image ⁇ (V) can be expressed by the following equation (8).
  • the spatial resolution can be improved by a desired amount by gradually and appropriately increasing the number of upsamplings as the distance from the image center O increases. Thereby, the spatial resolution can be made uniform over the entire image. It is also possible to create images with various image quality according to the purpose of diagnosis, such as preferentially improving the spatial resolution of a desired region.
  • X-ray CT device 100 scan gantry unit, 101 X-ray tube device, 102 turntable, 103 collimator, 106 X-ray detector, 110 focus shift X-ray control device, 120 console, 121 input device, 122 image calculation device , 123 storage device, 124 system control device, 125 display device, 126 virtual view generation unit, 127 reconstruction calculation unit, 501 FFS (+) projection data, 502 FFS (-) projection data, 503 FFS projection data (focus shift projection) Data), 505, 513, 515, 516, 518 Upsampling projection data

Abstract

 X線焦点位置を複数の位置に移動して投影データを得ることにより空間分解能を向上するFFS法において、回転速度を落とすことなく有効視野全体の空間分解能を向上することを可能とするX線CT装置及び画像再構成方法を提供するために、X線管装置101におけるX線焦点位置をシフトさせて焦点シフト投影データ(FFS投影データ)を取得し、仮想ビュー生成部126はFFS投影データをビュー方向にアップサンプリング(仮想ビューの生成)を行い、画像の再構成演算処理では、再構成演算部127は、所定の境界より画像中心に近い中心領域604ではFFS投影データの実データを用い、境界より外側の周辺領域603ではアップサンプリング投影データを用いて画像を再構成する。

Description

X線CT装置及び画像再構成方法
 本発明は、X線CT装置及び画像再構成方法に関し、詳細には、複数の焦点位置からX線を照射可能なX線管装置を使用したX線CT装置に好適な画像再構成方法に関する。
 X線CT装置は、X線管装置とX線検出器とを対向配置させた状態で被検体の周囲を周回させ、複数の回転角度方向(ビュー)からX線を照射してビュー毎に被検体を透過したX線を検出し、検出した投影データに基づいて被検体の断層像を生成する装置である。近年では、複数の位置にX線焦点をシフトさせてX線を照射する機能を有するFFS(Flying Focal Spot)X線管装置が開発されている。FFSX線管装置では、陽極(ターゲット)へ入射する電子ビームの位置を電磁的に移動させることにより、X線焦点位置を複数箇所にシフトさせることができる。これにより、同一の回転角度方向(ビュー)からX線照射経路が異なる複数の投影データを得ることができるため、X線CT装置の空間分解能を向上させることができる(FFS法)。
 ところで、従来のFFS法を用いて再構成された画像は、有効視野全体における中心付近の空間分解能が向上するが、中心部以外の周辺部では空間分解能が落ちるという問題がある。これに対して特許文献1では、1回転で撮影されるビュー数(隣り合うビューの角度差)とX線管装置-回転中心間距離とに基づいて最適な焦点移動距離を設定することで、周辺部の空間分解能を均一とし、かつ向上させるBFFS(Balanced Flying Focus Spot)法を提案している。
特開2010-35812号公報
 しかしながら、ハードウェアの限界によりデータ収集装置のサンプリングレートやガントリ回転速度は制限される。したがって1回転で撮影されるビュー数を増加させるには、ガントリの回転速度を落とす必要がある。回転速度を落としてビュー数を増加させた場合、心臓等の動きが速い臓器ではモーションアーチファクトが増加してしまう。こうしたモーションアーチファクトは心臓等の動きが速い臓器ほど画像への影響が大きく、画像診断を行う放射線医にとって不都合である。このため、運動を伴う部位を対象とした撮影においては、回転速度を落とさずに有効視野全体にわたる空間分解能を向上したいという要望がある。
 本発明は、前述した問題点に鑑みてなされたものであり、その目的とするところは、X線焦点位置を複数の位置に移動して投影データを得ることにより空間分解能を向上するFFS法において、回転速度を落とすことなく有効視野全体の空間分解能を向上することが可能なX線CT装置及び画像再構成方法を提供することである。
 前述した目的を達成するために第1の発明は、複数の焦点位置から被検体にX線を照射するX線管装置と、前記X線管装置に対向配置され、前記被検体を透過したX線である透過X線を検出するX線検出器と、前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、前記X線管装置における前記焦点位置を任意の位置にシフトさせる焦点シフトX線制御部と、前記焦点シフトX線制御部により前記焦点位置が複数箇所にシフトされて照射された各X線による前記透過X線を組み合わせて焦点シフト投影データを生成する焦点シフト投影データ生成部と、前記焦点シフト投影データのビュー方向に仮想ビューを生成し、前記仮想ビューを用いてアップサンプリング投影データを生成する仮想ビュー生成部と、画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データの実データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成する再構成演算部と、を備えることを特徴とするX線CT装置である。
 第2の発明は、X線管装置におけるX線焦点位置を複数箇所にシフトさせて照射した各X線による投影データである焦点シフト投影データを取得するステップと、前記焦点シフト投影データのビュー方向に仮想ビューを生成し、前記仮想ビューを用いてアップサンプリング投影データを生成するステップと、画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データの実データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成するステップと、を含むことを特徴とする画像再構成方法である。
 本発明により、X線焦点位置を複数の位置に移動して投影データを得ることにより空間分解能を向上するFFS法において、回転速度を落とすことなく有効視野全体の空間分解能を向上することが可能なX線CT装置及び画像再構成方法を提供できる。
X線CT装置1の全体構成図 X線CT装置1が実行する処理全体の流れを説明するフローチャート 仮想ビュー生成処理(A)の流れを説明するフローチャート 仮想ビュー生成処理(A)の手順を示す概念図 仮想ビュー生成処理(B)の流れを説明するフローチャート 仮想ビュー生成処理(B)の手順を示す概念図 仮想ビュー生成処理(C)の流れを説明するフローチャート 仮想ビュー生成処理(C)の手順を示す概念図 仮想ビュー生成処理(D)の流れを説明するフローチャート 仮想ビュー生成処理(D)の手順を示す概念図 (a)及び(b)対向データを用いたアップサンプリング方法について説明する図、(c)2点による補間、(d)4点による補間、(e)TV法による補間を示す図 部分的にビュー数が異なるアップサンプリング投影データ518について説明する図 画像の中心領域604と周辺領域603とにおける空間分解能の変化について説明する図 再構成演算処理の流れを説明するフローチャート 図14の再構成演算処理に使用する投影データの態様を示す図 第2の実施の形態の再構成演算処理について説明する図 第2の実施の形態の再構成演算処理において適用する重み係数の例 第2の実施の形態の再構成演算処理の流れを説明するフローチャート 第3の実施の形態の再構成演算処理において適用する重み係数の例 第3の実施の形態の再構成演算処理の流れを説明するフローチャート 第4の実施の形態の再構成演算処理において設定されるROIと、各領域に使用する投影データについて説明する概念図 第4の実施の形態の再構成演算処理の流れを説明するフローチャート 第5の実施の形態の再構成演算処理において、画像中心からの距離に応じて異なるビュー数でアップサンプリングした投影データを用いて再構成した画像を合成する例 図23の例において、境界付近で領域が滑らかになるように重み付けして画像を合成する例 図24の例における領域数をN個の領域に拡張した例
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 [第1の実施の形態]
 まず、図1を参照して、X線CT装置1の全体構成について説明する。
 図1に示すように、X線CT装置1は、スキャンガントリ部100と操作卓120とを備える。
 スキャンガントリ部100は、被検体に対してX線を照射するとともに被検体を透過したX線を検出する装置であり、X線管装置101、回転盤102、コリメータ103、X線検出器106、データ収集装置107、ガントリ制御装置108、寝台制御装置109、及び焦点シフトX線制御装置110を備える。
 回転盤102には開口部104が設けられ、開口部104を介してX線管装置101とX線検出器106とが対向配置される。開口部104に寝台105に載置された被検体が挿入される。回転盤102は、ガントリ制御装置108によって制御される回転盤駆動装置から駆動伝達系を通じて伝達される駆動力によって被検体の周囲を回転する。
 操作卓120は、スキャンガントリ部100の各部を制御するとともにスキャンガントリ部100で計測した投影データを取得して画像の生成及び表示を行う装置である。操作卓120は、入力装置121、画像演算装置122、記憶装置123、システム制御装置124、及び表示装置125を備える。
 X線管装置101は、回転陽極(ターゲット)における焦点位置を移動可能なフライング焦点X線管装置である。X線CT装置1の回転軸方向をZ方向とすると、フライング焦点X線管装置は、回転陽極(ターゲット)に照射する電子ビームをZ方向に直交するX方向またはY方向に偏向させる。これによりX線焦点位置をシフトさせ、同じビュー位置から微小に異なる経路のX線を照射する。
 本実施の形態において、X線管装置101による焦点の移動方向はX線CT装置1の回転方向(チャンネル方向)とする。また、焦点の位置は基準焦点位置から回転方向(チャンネル方向)に「+σa」及び「-σb」にシフトした位置とする。つまりX線管装置101は、チャンネル方向の正方向に移動した第1の焦点位置「+σa」と負方向に移動した第2の焦点位置「-σb」からそれぞれX線を照射する。
 以下の説明では、FFS(Flying Focus Spot)法を利用して得た投影データをFFS投影データと呼ぶ。特に、上述の第1の焦点位置から照射されたX線によって得た投影データをFFS(+)投影データ、上述の第2の焦点位置から照射されたX線によって得た投影データをFFS(-)投影データと呼ぶ。また、FFS技術を利用しない基準焦点位置から照射されたX線によって得た投影データをFFS(無)投影データと呼ぶ。
 X線管装置101は、焦点シフトX線制御装置110に制御されて所定の強度のX線を連続的または断続的に照射する。焦点シフトX線制御装置110は、操作卓120のシステム制御装置124により決定されたX線管電圧及びX線管電流に従って、X線管装置101に印加または供給するX線管電圧及びX線管電流を制御する。焦点シフトX線制御装置110は、例えば回転盤102の回転に伴ってビュー毎に上述の第1及び第2の焦点位置に交互に移動させるよう制御する。
 X線管装置101のX線照射口にはコリメータ103が設けられる。コリメータ103は、X線管装置101から放射されたX線の照射範囲を制限する。例えばコーンビーム(円錐形または角錐形ビーム)等に成形する。コリメータ103の開口幅はシステム制御装置124により制御される。
 X線管装置101から照射され、コリメータ103を通過し、被検体を透過した透過X線はX線検出器106に入射する。
 X線検出器106は、例えばシンチレータとフォトダイオードの組み合わせによって構成されるX線検出素子群をチャンネル方向(周回方向)に例えば1000個程度、列方向(体軸方向)に例えば1~320個程度配列したものである。X線検出器106は、被検体を介してX線管装置101に対向するように配置される。X線検出器106はX線管装置101から照射されて被検体を透過したX線量を検出し、データ収集装置107に出力する。
 データ収集装置107は、X線検出器106の個々のX線検出素子により検出されるX線量を収集し、ディジタルデータに変換し、透過X線データとして操作卓120の画像演算装置122に順次出力する。
 画像演算装置122は、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って再構成に必要な投影データを作成する。FFS法を用いる場合、X線管装置101からは例えばビュー毎に交互に焦点が異なるX線が照射されるため、画像演算装置122は、第1の焦点位置から照射されたX線により得られた投影データであるFFS(+)投影データと、第2の焦点位置から照射されたX線により得られた投影データであるFFS(-)投影データとを作成する。
 画像演算装置122は、仮想ビュー生成部126と再構成演算部127とを備える。
 仮想ビュー生成部126は、FFS法を用いて撮影された焦点シフト投影データ(FFS(+)投影データ及びFFS(-)投影データ)に対して仮想ビューを生成し、挿入することでアップサンプリング投影データを作成する。仮想ビューとは、実際に撮影されないビュー位置に演算により挿入されるビューである。仮想ビューの投影データは、実際に撮影された投影データ(以下、実データという)に基づいて補間或いは推定することにより求めることができる。仮想ビュー生成の詳細については後述する。仮想ビュー生成部126によって生成された(アップサンプリングされた)投影データをアップサンプリング投影データと呼ぶ。
 再構成演算部127は、実際に計測した投影データ(FFS(+)投影データ及びFFS(-)投影データの実データ)と、仮想ビュー生成部126により生成されたアップサンプリング投影データとを用いて被検体の断層像等の画像を再構成する。
 本実施の形態において、再構成演算部127は画像の空間分解能に配慮して実データ(FFS(+)投影データ、FFS(-)投影データ)とアップサンプリング投影データとを用いた画像を再構成する。具体的には、画像面内における中心領域でFFS(+)投影データ及びFFS(-)投影データの実データを用いて画像を再構成することにより中心領域の空間分解能を向上する。また画像の周辺領域でアップサンプリング投影データを用いて画像を再構成することにより、空間分解能を向上させる。つまり、画像の全領域でFFS投影データを用いた場合は周辺領域で空間分解能が落ちてしまうが、本実施の形態では、周辺領域にアップサンプリング投影データを用いることで周辺領域の空間分解能の向上を図る。アップサンプリング投影データは、演算によって仮想ビューを挿入するため回転速度を下げなくてもビュー数を向上できる。したがって、動きのある部位の画像を作成する場合に特に好適である。
 画像の再構成処理は、例えばフィルタ補正逆投影法等の解析的方法や逐次近似法等のいずれの方法を用いてもよい。
 画像演算装置122(再構成演算部127)により再構成された画像データは、システム制御装置124に入力され、記憶装置123に保存されるとともに表示装置125に表示される。
 システム制御装置124は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたコンピュータである。記憶装置123はハードディスク等のデータ記録装置であり、X線CT装置1の機能を実現するためのプログラムやデータ等が予め記憶される。
 システム制御装置124は、図2に示す処理手順に従って撮影処理を行う。撮影処理においてシステム制御装置124は、操作者により設定された撮影条件に応じた制御信号をスキャンガントリ部100の焦点シフトX線制御装置110、寝台制御装置109、及びガントリ制御装置108に送出し、上述の各部を制御する。各処理の詳細については後述する。
 表示装置125は、液晶パネル、CRTモニタ等のディスプレイ装置と、ディスプレイ装置と連携して表示処理を実行するための論理回路で構成され、システム制御装置124に接続される。表示装置125は画像演算装置122から出力される再構成画像、並びにシステム制御装置124が取り扱う種々の情報を表示する。
 入力装置121は、例えば、キーボード、マウス等のポインティングデバイス、テンキー、及び各種スイッチボタン等により構成され、操作者によって入力される各種の指示や情報をシステム制御装置124に出力する。操作者は、表示装置125及び入力装置121を使用して対話的にX線CT装置1を操作する。入力装置121は表示装置125の表示画面と一体的に構成されるタッチパネル式の入力装置としてもよい。
 次に、図2~図15を参照して、X線CT装置1の動作を説明する。
 図2は、本発明に係るX線CT装置1が実行する撮影処理全体の流れを説明するフローチャートである。
 撮影処理において、まずシステム制御装置124は、撮影条件及び再構成条件の入力を受け付ける。撮影条件は、X線管電圧、X線管電流等のX線条件、撮影範囲、ガントリ回転速度、寝台速度等を含む。再構成条件は、再構成FOV、再構成スライス厚等を含む。
 入力装置121等を介して撮影条件及び再構成条件が入力されると(ステップS101)、システム制御装置124は撮影条件に基づいて焦点シフトX線制御装置110、ガントリ制御装置108、及び寝台制御装置109に制御信号を送る。焦点シフトX線制御装置110は、システム制御装置124から入力される制御信号に基づいてX線管装置101に入力する電力を制御する。また焦点シフトX線制御装置110は、X線管装置101の回転陽極に照射する電子ビームを所定のタイミングで所定の方向及び距離だけ移動させることにより、X線焦点位置を交互に移動させてX線を照射するFFS制御を行う。ガントリ制御装置108は回転速度等の撮影条件に従って回転盤102の駆動系を制御し、回転盤102を回転させる。寝台制御装置109は、撮影範囲に基づいて寝台を所定の撮影開始位置へ位置合わせする。
 X線管装置101からのX線照射とX線検出器106による透過X線データの計測が、回転盤102の回転とともに繰り返される。データ収集装置107は、被検体の周囲の様々な角度(ビュー)においてX線検出器106により計測された透過X線データを取得し、画像演算装置122に送る。画像演算装置122は、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って投影データを作成する。本発明では、FFS法を用いて、X線焦点位置を2点に移動させて撮影を行っているため、画像演算装置122は、第1の焦点位置から照射されたX線により得られた投影データであるFFS(+)投影データと、第2の焦点位置から照射されたX線により得られた投影データであるFFS(-)投影データとを作成する(ステップS102)。
 画像演算装置122(仮想ビュー生成部126)は、ステップS102の処理で作成されたFFS(+)投影データとFFS(-)投影データ(これらを総称してFFS投影データという)を用いて、仮想ビュー生成処理を行う(ステップS103)。
 仮想ビュー生成処理において、仮想ビュー生成部126は、予め設定されたビュー数となるように、実データに仮想ビューを挿入(アップサンプリング)し、アップサンプリング投影データを作成する。ビュー数は、装置の仕様に従って予め設定された値としてもよいし、操作者により設定された値としてもよい。また、操作者が設定した画質指標(特に空間分解能)やその他のパラメータによって決定される値としてもよい。仮想ビュー生成処理の具体的な方法については、後述する(図3~図12参照)。
 ステップS103の処理により仮想ビューが挿入されたアップサンプリング投影データが作成されると、次に画像演算装置122の再構成演算部127は、ステップS101で入力された再構成条件に基づいて画像の再構成処理を行う(ステップS104)。画像の再構成処理において使用する画像再構成アルゴリズムはどのような種類のものを用いてもよい。例えば、Feldkamp法等の逆投影処理を行ってもよいし、逐次近似法等を用いてもよい。
 従来、FFS投影データを使用して再構成される画像の空間分解能は、FFS投影データを使用しない場合と比較すると、画像の中心領域で高く、周辺に行くに伴いFFS無の投影データを使用した場合よりも低くなることがある(図13参照)。そこで、本発明ではステップS104の再構成演算処理において、FFSの効果が得られない空間分解能が低い領域(Low領域;周辺領域)に対して仮想ビューによるアップサンプリングされた投影データを用いる。FFSの効果が得られる領域(Hi領域;中心領域)においてはFFS投影データの実データを用いて画像を再構成する(図13~図15参照)。再構成処理の詳細については後述する。
 ステップS104において画像が再構成されると、システム制御装置124は、再構成された画像を表示装置125に表示し(ステップS105)、一連の撮影処理を終了する。
 次に、ステップS103の仮想ビュー生成処理について、図3~図10を参照して仮想ビュー生成処理(A)~(D)の各態様について説明する。
 まず仮想ビュー生成処理(A)について、図3及び図4を参照して説明する。
 画像演算装置122は、X線管装置101の焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS201)、FFS(+)投影データ501とFFS(-)投影データ502とをビュー方向に交互に組み合わせることにより、FFS投影データ503を得る(ステップS202)。更に、FFS投影データ503に対して仮想ビュー生成504を実行し(ステップS203)、アップサンプリング投影データ505を得る。仮想ビュー生成部126はアップサンプリング投影データ505を再構成演算部127に出力する(ステップS204)。
 仮想ビュー生成処理(B)について、図5及び図6を参照して説明する。
 画像演算装置122は、X線管装置101の焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS301)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ仮想ビュー生成504を実行する(ステップS302)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、FFS投影データ513を得る(ステップS303)。仮想ビュー生成部126はアップサンプリング投影データ513を再構成演算部127に出力する(ステップS304)。
 仮想ビュー生成処理(C)について、図7及び図8を参照して説明する。
 画像演算装置122は、X線管装置101の焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS401)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ仮想ビュー生成504を実行する(ステップS402)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、アップサンプリングされたFFS投影データ513を得る(ステップS403)。
 仮想ビュー生成部126はアップサンプリングされたFFS投影データ513に対して、更に欠損データ処理514を行う(ステップS404)。
 欠損データ処理とは、FFS(+)投影データ、FFS(-)投影データをビュー方向に交互に組み合わせて得たFFS投影データ513に生じた欠損データを、ビュー方向及びチャンネル方向に隣接する投影データまたはその近傍の投影データを用いて補間や推定することにより埋める処理である。チャンネル方向に焦点位置を移動して得たFFS(+)投影データとFFS(-)投影データは、それぞれX線経路が異なる。そのためチャンネル数の2倍のデータを得ることとなる。撮影時に1ビュー毎に焦点位置を交互に移動させて投影データを計測する場合は、例えば奇数ビューでFFS(+)投影データを取得し、偶数ビューでFFS(-)投影データを取得するため、これらを交互に組み合わせたFFS投影データ513には、1ビュー毎に互い違いに欠損データが生じている。
 ステップS404の処理では、このような欠損データを埋める欠損データ処理514を行う。
 ステップS404の欠損データ処理514が行われたアップサンプリング投影データ515を得ると、仮想ビュー生成部126はアップサンプリング投影データ515を再構成演算部127に出力する(ステップS405)。
 仮想ビュー生成処理(D)について、図9及び図10を参照して説明する。
 画像演算装置122は、X線管装置101の焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS501)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ仮想ビュー生成504を実行する(ステップS502)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、アップサンプリングされたFFS投影データ513を得る(ステップS503)。
 仮想ビュー生成部126はアップサンプリングされたFFS投影データ513に対して、更に仮想ビュー生成504を実行する(ステップS504)。ステップS504の処理により、アップサンプリング投影データ516を得る。仮想ビュー生成部126はアップサンプリング投影データ516を再構成演算部127に出力する。(ステップS505)
 ここで、仮想ビューの算出方法(アップサンプリング方法)について図11を参照して説明する。図11に示す各アップサンプリング方法は、図3のステップS203、図5のステップS302、図7のステップS402、図9のステップS502及びステップS504の仮想ビュー生成処理のいずれにも適用できる。
 仮想ビュー生成部126(画像演算装置122)は、挿入するビュー(仮想ビュー)について、ビュー方向またはチャンネル方向に近接する投影データ、或いは対向するレイ(Ray)のデータ(対向データ)、もしくは対向データのビュー方向またはチャンネル方向に近接する投影データ等を用いて、仮想ビューの投影データを補間または推定により算出する。
 (対向データを用いて仮想ビューを生成するアップサンプリング方法)
 1回転(2π)の撮影で得られる投影データでは、対向するレイのデータ(以下、対向するレイのデータを対向データという)を用いて仮想ビューを生成することができる。図11(a)、(b)を参照して、1回転の撮影で得た投影データについて、対向データを用いて仮想ビューを生成し、ビュー数を2倍にする例について説明する。
 図11(a)に示す1回転分の投影データにおいて、Ray31とRay32とは対向する。つまり、同じX線照射経路である。Ray31における点A1及び点A2における対向データはそれぞれ、Ray32の点B1及び点B2となる。点B1及び点B2は図11(a)に示すように実ビューView(2γm+π)上の隣接するチャンネルのデータである。投影データ上の点A1及び点B1の関係は、チャンネル方向をγ、ビュー方向をθとしたパラメータを用いた関数R(γ,θ)を用いて、以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 また、点A1及び点B1におけるチャンネルとビューの関係は以下の式(2)、式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 これにより、点A1及び点A2の間の仮想ビュー41における点A1A2は実ビューView(2γm+π)上の点B1及び点B2から求めた点B1B2として、以下の式(4)、式(5)により算出できる。
Figure JPOXMLDOC01-appb-M000003
 同様の手順で、仮想ビュー41における1画素分隣の点(図11(b)の点C1C2)を対向データから算出し、線形補間により図11(b)の2重丸で示すチャンネルデータ(点V41b)を生成できる。この操作を繰り返し実行して、仮想ビュー41の各チャンネルデータを算出する。他の仮想ビュー42、43、…についても同様に対向データを用いて各点のチャンネルデータを算出できる。
 対向データを用いた仮想ビューの生成方法(アップサンプリング方法)では、推定すべきチャンネルデータ(2重丸で示す点)に対して最も近い生体情報(被検体を透過した計測データ)を有する対向データ(実データ)を基に仮想ビューの各チャンネルデータを算出する。最も近い生体情報を有する対向データとは、計測されたRayの中で透過経路が最も近く、かつ逆方向から入射するRayのことである。Rayを選択的に取得し、選択されたRayから推定される仮想Rayを算出し、仮想ビューを生成することが特徴である。この手法を用いることにより、チャンネル数はそのままに、ビュー数のみアップサンプリングすることが可能である。2倍サンプリングの場合は、対向データの2点の平均値等を用いて仮想ビューのチャンネルデータを求めたが、N倍サンプリングとする場合は、2点間の線形補間または非線形補間により求めてもよい。また、この方法により、チャンネル方向のアップサンプリングも同時に行うことも可能である。
 なお、仮想ビューの生成方法は、上述したように対向データを用いたアップサンプリング方法に限定されない。図11(c)に示すように単純に隣接するビュー同士で補間する2点補間としてもよいし、図11(d)に示すように隣接するビュー及びチャンネルのデータを用いて補間する4点補間としてもよいし、図11(e)に示すようにTV法(Total Variation)による補間を用いてもよい。
 また、アップサンプリング投影データのビュー数は実データの1.5倍等のように小数の数値を含む任意のビュー数としてもよい。例えば、ビュー方向に部分的にビュー数を増加させる場合は、小数倍のビュー数となる。図12(a)に示すように被検体2の断面は楕円に近似した形状である。そのため、図12(b)に示すように、楕円の長径に相当するビューではビュー数を密にするなど、部分的なビュー数増加を図り、小数倍のアップサンプリング投影データ518を生成することも可能である。
 次に、図2のステップS104の再構成演算処理について、図13~図15を参照して説明する。
 上述したように、FFS投影データを使用して再構成される画像の空間分解能は、FFS投影データを使用しない場合と比較すると、画像の中心領域で高く、周辺部に行くに伴いFFS無の投影データを使用した場合よりも低くなることがある(図13参照)。
 図13(b)は、図13(a)に示す断層像601における中心Oからの距離と空間分解能の関係を示すグラフ606である。FFS投影データを使用した場合は、画像中心Oから点P0までの距離にある境界605の内側の領域(以下、中心領域604という)では、空間分解能(を表す指標値)はFFS(無)投影データを使用した場合と比較して高い。一方、境界点P0(図13(a)に示す境界605)より外側の領域(以下、周辺領域603という)では、空間分解能(を表す指標値)はFFS(無)投影データを使用した場合と比較して低くなる。
 そこで、すでに十分な空間分解能を有する中心領域604のデータに対しては、アップサンプリングを行わないFFS投影データ(実データ)を用いて画像再構成を行い、周辺領域603では、仮想ビュー生成によりアップサンプリングされた投影データを用いて画像再構成を行うことで、周辺領域603の空間分解能を向上させる。
 このようにすることで、中心領域604では、データの作りこみによる悪影響を防ぎつつ空間分解能を向上することができ、かつ、周辺領域603では、仮想ビューを生成することにより回転速度を落とすことなくビュー数を向上し、これにより空間分解能を向上することができる。
 再構成演算処理の手順について図14のフローチャートを参照して説明する。
 まず、再構成演算部127は、空間分解能の境界点P0を取得する(ステップS601)。境界点P0は、FFS投影データにより得た空間分解能とFFS無し投影データにより得た空間分解能とが逆転する位置の撮影中心からの距離である。この境界点P0は、実験データにより予め求められ、記憶装置123等に保持される。
 空間分解能の評価指標値としてはMTF(Modulation Transfer Function)がある。例えば、MTF50%、10%、2%等のように、異なる空間分解能指標値毎に上述の境界点P0を求め、操作者により選択させるようにしてもよい。検査や診断目的に応じてどのような画質が求められるかは異なるため、その他の画質(ノイズ等)とのバランスに応じて必要な空間分解能を選択できることが望ましい。
 或いは、MTF50%、10%、2%等の複数の空間分解能により得た境界点P0から重心となる境界点を求めてもよい。
 再構成演算部127は、境界点P0より中心側の中心領域604でFFS投影データの実データを用い、境界点P0より外側の周辺領域603でFFS投影データをアップサンプリングしたアップサンプリング投影データを用いて、再構成演算を行う(ステップS602)。
 周辺領域603に使用するアップサンプリング投影データは、上述の仮想ビュー生成処理(A)~(D)のうちどの方法で作成されたアップサンプリング投影データを用いてもよい。すなわち、図15(a)に示すように図3及び図4に示す仮想ビュー生成処理(A)で生成したアップサンプリング投影データ505を用いてもよいし、図15(b)に示すように図5及び図6に示す仮想ビュー生成処理(B)で生成したアップサンプリング投影データ513を用いてもよいし、図15(c)に示すように図7及び図8に示す仮想ビュー生成処理(C)で生成したアップサンプリング投影データ515を用いてもよいし、図15(d)に示すように図9及び図10に示す仮想ビュー生成処理(D)で生成したアップサンプリング投影データ516を用いてもよい。
 またいずれのアップサンプリング投影データ505,513,515,516も、仮想ビューの生成方法は、上述したように対向データを用いたアップサンプリング方法を採用してもよいし、ビュー方向に隣接する2点による補間としてもよいし、またはビュー方向及びチャンネル方向に隣接する4点による補間としてもよいし、或いはTV法等を用いた補間等でもよい。
 再構成演算では、FFS投影データの実データとアップサンプリング投影データとを投影データ上で合成した後に、逆投影処理等の画像の再構成を行うものとしてもよいし、FFS投影データの実データを用いて再構成した画像の中心領域604に該当する部分と、アップサンプリング投影データを用いて再構成した画像の周辺領域603に該当する部分とを合成した画像を作成してもよい。
 再構成演算部127は、ステップS602の処理により作成した画像に出力する(ステップS603)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第1の実施の形態のX線CT装置1は、X線管装置101におけるX線焦点位置をシフトさせて得た焦点シフト投影データ(FFS投影データ)をビュー方向にアップサンプリングする。そして、画像の再構成演算処理では、所定の境界点P0より撮影中心に近い中心領域604ではFFS投影データの実データを用い、境界点P0より撮影中心から遠い周辺領域603ではアップサンプリング投影データを用いて画像を再構成する。
 仮想ビューによりアップサンプリングされたデータを有効視野周辺部に用いるため、ビュー数を増加させるために回転速度を落として撮影を行う必要がない。したがって、ハードウェアの制限による回転速度の限界等によらず周辺部の空間分解能を向上し、有効視野全体の空間分解能を向上することができる。動きのある部位の撮影に好適である。
 [第2の実施の形態]
 次に、図16~図18を参照して本発明の第2の実施の形態について説明する。
 第2の実施の形態のX線CT装置1は、再構成演算処理において、境界点P0における空間分解能が滑らかに連続するように結合処理を行う。
 結合処理では、図16に示すように、境界点P0を含む所定範囲の領域(以下、境界領域Qと呼ぶ)でFFS投影データにより再構成された画像とアップサンプリング投影データにより再構成された画像との双方を所定の割合で合成する。境界領域Qより中心部に近い中心領域604aでは、第1の実施の形態と同様にFFS投影データの実データにより再構成された画像を100%使用する。境界領域Qより外側の周辺領域603aでは、第1の実施の形態と同様にアップサンプリング投影データにより再構成された画像を100%使用する。
 すなわち、中心からの距離に応じてFFS投影データにより再構成された画像とアップサンプリング投影データにより再構成された画像を互いに重みを変化させながら合成する。
 図17は、アップサンプリング投影データによる再構成画像に掛ける重み係数を示すグラフである。図17に示すように、中心Oからの距離Pに応じて重み係数W(P)が変化する。中心領域604aで「0」、境界領域Qで滑らかに上昇する曲線、周辺領域603aで「1」となっている。なお、FFS実投影データによる再構成画像に掛ける重み係数も中心Oからの距離に応じて重み係数が変化するが、図17に示す重み係数W(P)とは逆に、中心領域604aで「1」、境界領域Qで滑らかに下降する曲線、周辺領域603aで「0」となる。
 境界領域Qの範囲は任意であり、所望の領域の所望の空間分解能に応じて変化させるようにしてもよい。
 また、図17の例では重み係数は画像中心からの距離Pに依存する滑らかな曲線で表されるものとしたが、これに限定されず、直線や折れ線で表されるものとしてもよい。
 また、第2の実施の形態においても、図16(a)~図16(d)に示すように、周辺領域603a及び境界領域Qに使用するアップサンプリング投影データは、上述の仮想ビュー生成処理(A)~(D)のうちどの方法で作成されたアップサンプリング投影データを用いてもよい。すなわち、図16(a)に示すように図3及び図4に示す仮想ビュー生成処理(A)で生成したアップサンプリング投影データ505を用いてもよいし、図16(b)に示すように図5及び図6に示す仮想ビュー生成処理(B)で生成したアップサンプリング投影データ513を用いてもよいし、図16(c)に示すように図7及び図8に示す仮想ビュー生成処理(C)で生成したアップサンプリング投影データ515を用いてもよいし、図16(d)に示すように図9及び図10に示す仮想ビュー生成処理(D)で生成したアップサンプリング投影データ516を用いてもよい。
 またいずれのアップサンプリング投影データ505,513,515,516も、仮想ビューの算出方法は、上述したようにビュー方向に隣接する2点による補間(図11(c))、またはビュー方向及びチャンネル方向に隣接する4点による補間(同(d))、或いはTV法等を用いた補間や推定(同(e))により求めてもよいし、対向データを用いて算出してもよい(同(a)、(b))。
 また、アップサンプリング投影データのビュー数は実データの2倍に限らず、2倍より多いビュー数としてもよい。また、ビュー方向に部分的にビュー数を増加させ、1.5倍等のように小数の数値を含む任意のビュー数としてもよい。
 図18を参照して、第2の実施の形態の再構成演算処理の流れを説明する。
 まず、再構成演算部127は、空間分解能の境界点P0を取得する(ステップS701)。境界点P0の取得は、第1の実施の形態(図14のステップS601)と同様である。
 次に、再構成演算部127は、FFS投影データの実データを用いて再構成した画像と、FFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを作成する(ステップS702)。
 次に、再構成演算部127は、境界点P0を含む境界領域Qより中心側の中心領域604aでFFS投影データの実データにより再構成された画像を用い、境界領域Qより外側の周辺領域603aでアップサンプリング投影データにより再構成された画像を用いた合成画像を作成する。境界領域Qでは連続的な空間分解能となるようにステップS702で再構成した各画像を重み付け加算する(ステップS703)。重み付けの方法は上述したように、例えば図17に示す形状の重み係数をアップサンプリング投影データにより作成した画像に乗じ、図17に示すグラフとは逆の形状の重み係数をFFS投影データの実データにより作成した画像に乗じ、これらの画像を加算する。
 再構成演算部127は、ステップS703の処理により作成した画像を出力する(ステップS704)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第2の実施の形態のX線CT装置1は、画像の再構成演算処理において、画像中心に近い中心領域604aではFFS投影データの実データを用い、境界点P0より周辺側の周辺領域603aではアップサンプリング投影データを用いて再構成した各画像を合成する。更に、所定の境界領域Qで、空間分解能が滑らかに連続するように上述の各画像を重み付け加算する。
 これにより、第1の実施の形態の効果に加え、更に、境界領域Qで空間分解能が滑らかに連続した画像を得ることが可能となる。
 なお、上述の再構成演算処理では、再構成された画像を合成する際に重み付け加算するものとしたが、投影データ上でアップサンプリング投影データとFFS投影データの実データとを合成し、その後、合成された投影データを再構成してもよい。この場合は、境界領域Qに該当する部分で、アップサンプリング投影データとFFS投影データの実データとを重み付け加算して作成した投影データを用いるものとする。
 [第3の実施の形態]
 次に、図19及び図20を参照して本発明の第3の実施の形態について説明する。
 第3の実施の形態のX線CT装置1では、画像全体にわたって、重みを変化させてFFS投影データの実データを用いた画像とアップサンプリング投影データを用いた画像とを合成するようにしてもよい。
 図19は、第3の実施の形態において、アップサンプリング投影データによる再構成画像に掛ける重み係数W'(P)を示すグラフである。このグラフでは、中心に近い領域で「0」から滑らかに上昇し、周辺領域の端部で「1」となっている。すなわち、境界領域Q以外の領域でも、中心Oからの距離に応じて重み係数が変化する形状となっている。このように、重み係数のグラフ形状は任意としてよく、境界領域Q以外の領域であっても所望の領域で所望の空間分解能が得られるように重み係数を変化させる。
 なお、FFS実投影データによる再構成画像に掛ける重み係数は、図19とは逆に、中心に近い領域で「1」から滑らかに下降し、周辺領域の端部で「0」となる。
 また、図19の例では重み係数W'(P)は画像中心からの距離Pに依存する滑らかな曲線で表されるものとしたが、これに限定されず、直線で表されるものとしてもよい。
 図20を参照して、第3の実施の形態の再構成演算処理の流れを説明する。
 まず、再構成演算部127は、空間分解能の境界点P0を取得する(ステップS801)。境界点P0の取得は、第1の実施の形態(図14のステップS601)と同様である。
 次に、再構成演算部127は、FFS投影データの実データを用いて再構成した画像と、FFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを作成する(ステップS802)。
 アップサンプリング投影データは、仮想ビュー生成処理(A)~(D)のいずれを用いて生成されたものを使用してもよい。
 次に、再構成演算部127は、所望の形状の重み係数を各画像に掛け、加算する(ステップS803)。重みは、FFS投影データの実データを用いて再構成した画像と、FFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを合成する際に、所望の領域で所望の空間分解能を得るように適切な比率で合成するためのものである。
 そして再構成演算部127は、ステップS803の処理により作成した画像を出力する(ステップS804)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第3の実施の形態のX線CT装置1は、画像の再構成演算処理において、撮影中心からの距離に応じて変化する重み係数を用いてFFS投影データの実データにより再構成した画像と、アップサンプリング投影データにより再構成した画像とを合成する。
 これにより、第1の実施の形態の効果に加え、更に、画像の所望の領域で所望の空間分解能となる画像を得ることが可能となる。また、実データの重みを大きくすることにより、所望の領域で信頼性の高い画像を得ることが可能となる。
 [第4の実施の形態]
 次に、図21及び図22を参照して本発明の第4の実施の形態について説明する。
 第4の実施の形態では、図21に示すように、操作者により設定された関心領域(ROI;Region Of Interest)7及び中心領域604に対してFFS投影データの実データ503を適用する。また周辺領域603にはアップサンプリング投影データ505を適用する。ROI7が周辺領域603にある場合には、ROI7内の範囲についてはFFS投影データの実データ503を用いる。
 図22を参照して、第4の実施の形態の再構成演算処理の流れを説明する。
 まず、システム制御装置124、関心領域(ROI)7を設定する(ステップS901)。ROI7の設定は、入力装置121を介して操作者により行われる。次に、再構成演算部127は、空間分解能の境界点P0を取得する(ステップS902)。境界点P0の取得は、第1の実施の形態(図14のステップS601)と同様である。
 次に、再構成演算部127は、ステップS901で設定したROI7と中心領域604でFFS投影データの実データを用い、ROI7を除く周辺領域603で、仮想ビューによるアップサンプリング投影データを用いて画像を再構成する(ステップS903)。
 アップサンプリング投影データは、仮想ビュー生成処理(A)~(D)のいずれを用いて生成されたものを使用してもよい。
 再構成演算部127は、ステップS903の処理により作成した画像を出力する(ステップS904)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第4の実施の形態のX線CT装置1は、ROI7及び中心領域604でFFS投影データの実データを用いた画像を再構成することにより、画像の信頼性を高める。また、ROI7を除く周辺領域603ではアップサンプリング投影データを用い空間分解能を向上させる。これにより、診断の対象であるROIや画像の中心部で信頼性が高く、かつ周辺部の空間分解能も向上した画像を得ることが可能となる。
 なお、第4の実施の形態においても、境界領域Qで、第2の実施の形態に示すような結合処理を行ったり、第3の実施の形態に示すような所望の形状の重み係数を使用してFFS投影データによる画像とアップサンプリング投影データによる画像とを加重加算してもよい。
  [第5の実施の形態]
 次に、図23~図25を参照して本発明の第5の実施の形態について説明する。
 図23に示すように、第5の実施の形態では、再構成演算部127は、再構成画像1001の画像面内において中心Oから距離P1までの領域1002、距離P1から距離P2までの領域1003、距離P2から距離P3までの領域1004に対して、それぞれ異なるビュー数(アップサンプリング数)のFFS投影データを用いて再構成された画像を合成する。例えば、領域1002ではFFS投影データの実データのビュー数V1とし、領域1003ではビュー数V2にアップサンプリングしたFFS投影データを使用し、領域1004ではビュー数V3にアップサンプリングしたFFS投影データを使用する。
 各領域1002,1003,1004の合成前の各画像をξ(V1)、ξ(V2)、ξ(V3)とすると、合成後の画像ξ(V)は以下の式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 アップサンプリング投影データは、第1の実施の形態で説明した仮想ビュー生成処理(A)~(D)のいずれの方法で作成されたものでもよい。
 また、図24に示す画像1001aのように、領域1002と領域1003の境界部や領域1003と領域1004の境界部で連続的な空間分解能を得るように、結合処理を行うようにしてもよい。結合処理については、第2の実施の形態と同様である。すなわち境界部1006,1007で、空間分解能を連続的に滑らかに変化させるような重み係数W(V1)、W(V2)、W(V3)を用いて各ビュー数の投影データにより再構成された画像ξ(V1)、ξ(V2)、ξ(V3)を合成する。
 合成後の画像ξ(V)は以下の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、図23及び図24に示す例では領域数を3つとしたが、3つに限定されるものではなく、図25に示す画像1001bのように、N個の領域に拡張することも可能である。
 合成後の画像ξ(V)は以下の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 第5の実施の形態によれば、画像中心Oからの距離Pに応じて異なるビュー数V1~Vnのアップサンプリング投影データを用いた画像を合成できる。したがって、例えば、境界点P0より周辺領域では、画像中心Oから遠ざかるにしたがってアップサンプリング数を徐々に適切に増加させることにより、空間分解能を所望の量だけ向上させることができる。これにより、画像全体にわたって空間分解能を一様にできる。また、所望の領域の空間分解能を優先的に向上させるなど、診断目的に応じて様々な画質の画像を作成することも可能となる。
 以上、本発明に係るX線CT装置の好適な実施形態について説明したが、本発明は、上述の実施形態に限定されるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1 X線CT装置、100 スキャンガントリ部、101 X線管装置、102 回転盤、103 コリメータ、106 X線検出器、110 焦点シフトX線制御装置、120 操作卓、121 入力装置、122 画像演算装置、123 記憶装置、124 システム制御装置、125 表示装置、126 仮想ビュー生成部、127 再構成演算部、501 FFS(+)投影データ、502 FFS(-)投影データ、503 FFS投影データ(焦点シフト投影データ)、505、513、515,516,518 アップサンプリング投影データ

Claims (11)

  1.  複数の焦点位置から被検体にX線を照射するX線管装置と、
     前記X線管装置に対向配置され、前記被検体を透過したX線である透過X線を検出するX線検出器と、
     前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、
     前記X線管装置における前記焦点位置を任意の位置にシフトさせる焦点シフトX線制御部と、
     前記焦点シフトX線制御部により前記焦点位置が複数箇所にシフトされて照射された各X線による前記透過X線を組み合わせて焦点シフト投影データを生成する焦点シフト投影データ生成部と、
     前記焦点シフト投影データのビュー方向に仮想ビューを生成し、前記仮想ビューを用いてアップサンプリング投影データを生成する仮想ビュー生成部と、
     画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データの実データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成する再構成演算部と、
     を備えることを特徴とするX線CT装置。
  2.  前記再構成演算部は、前記焦点シフト投影データの実データと前記アップサンプリング投影データとを所定の割合で加重加算した画像を生成することを特徴とする請求項1に記載のX線CT装置。
  3.  前記再構成演算部は、前記境界を含む境界領域で前記画像の空間分解能が滑らかに連続するように、加重加算に用いられる重み係数を設定することを特徴とする請求項2に記載のX線CT装置。
  4.  前記再構成演算部は、所望の位置で所定の空間分解能が得られるように、加重加算に用いられる重み係数が変化する範囲を設定することを特徴とする請求項2に記載のX線CT装置。
  5.  関心領域を設定する関心領域設定部を更に備え、
     前記再構成演算部は、更に、前記関心領域設定部により設定された関心領域において前記焦点シフト投影データの実データを用いることを特徴とする請求項1に記載のX線CT装置。
  6.  前記仮想ビュー生成部は、異なるビュー数のアップサンプリング投影データを生成し、 前記再構成演算部は、前記画像面内における画像中心からの距離に応じてビュー数が異なるアップサンプリング投影データを用いた画像を生成することを特徴とする請求項1に記載のX線CT装置。
  7.  前記仮想ビュー生成部は、
     前記焦点位置を前記X線検出器のチャンネル方向の正方向に移動して得られた第1の焦点シフト投影データと負方向に移動して得られた第2の焦点シフト投影データとをビュー方向に交互に組み合わせた焦点シフト投影データを生成し、当該焦点シフト投影データをビュー方向にアップサンプリングすることによりアップサンプリング投影データを生成することを特徴とする請求項1に記載のX線CT装置。
  8.  前記仮想ビュー生成部は、
     前記焦点位置を前記X線検出器のチャンネル方向の正方向に移動して得られた第1の焦点シフト投影データと負方向に移動して得られた第2の焦点シフト投影データとをそれぞれビュー方向にアップサンプリングし、アップサンプリングした第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせることによりアップサンプリング投影データを生成することを特徴とする請求項1に記載のX線CT装置。
  9.  前記仮想ビュー生成部は、
     アップサンプリングされた第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせた投影データに、更に欠損データ処理を施したアップサンプリング投影データを生成することを特徴とする請求項8に記載のX線CT装置。
  10.  前記仮想ビュー生成部は、
     アップサンプリングされた第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせた投影データを、更にビュー方向にアップサンプリングしたアップサンプリング投影データを生成することを特徴とする請求項8に記載のX線CT装置。
  11.  X線管装置におけるX線焦点位置を複数箇所にシフトさせて照射した各X線による投影データである焦点シフト投影データを取得するステップと、
     前記焦点シフト投影データのビュー方向に仮想ビューを生成し、前記仮想ビューを用いてアップサンプリング投影データを生成するステップと、
     画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データの実データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成するステップと、
     を含むことを特徴とする画像再構成方法。
PCT/JP2014/069505 2013-07-26 2014-07-24 X線ct装置及び画像再構成方法 WO2015012331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015528320A JP6377615B2 (ja) 2013-07-26 2014-07-24 X線ct装置及び画像再構成方法
CN201480038728.1A CN105377140B (zh) 2013-07-26 2014-07-24 X射线ct装置以及图像重构方法
US14/905,057 US9895124B2 (en) 2013-07-26 2014-07-24 X-ray CT apparatus and image reconstruction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-155600 2013-07-26
JP2013155600 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015012331A1 true WO2015012331A1 (ja) 2015-01-29

Family

ID=52393364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069505 WO2015012331A1 (ja) 2013-07-26 2014-07-24 X線ct装置及び画像再構成方法

Country Status (4)

Country Link
US (1) US9895124B2 (ja)
JP (1) JP6377615B2 (ja)
CN (1) CN105377140B (ja)
WO (1) WO2015012331A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978516B2 (ja) * 2013-01-28 2016-08-24 株式会社日立製作所 X線ct装置及び画像再構成方法
CN107928694B (zh) * 2017-12-05 2020-11-03 上海联影医疗科技有限公司 Ct剂量调制方法、装置、ct扫描方法及ct系统
EP3764325B1 (en) * 2019-07-12 2024-05-15 Canon Medical Systems Corporation System and program for avoiding focal spot blurring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503631A (ja) * 2002-10-25 2006-02-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンピュータ断層撮影用のダイナミック検出器インターレーシング
JP2011229906A (ja) * 2010-04-06 2011-11-17 Toshiba Corp X線ct装置
US20120069950A1 (en) * 2010-09-17 2012-03-22 Siemens Ag Method and x-ray device for creating an x-ray projection image
JP2013085956A (ja) * 2011-10-18 2013-05-13 Toshiba Corp X線コンピュータ断層撮像装置(x線ct装置)及びx線コンピュータ断層撮像装置の作動方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810251A (ja) * 1994-06-28 1996-01-16 Hitachi Medical Corp X線断層撮影方法および装置
CN101035464A (zh) * 2004-10-06 2007-09-12 皇家飞利浦电子股份有限公司 计算层析成像方法
JP4841216B2 (ja) * 2005-10-03 2011-12-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線撮影装置
US8175218B2 (en) * 2007-10-29 2012-05-08 Kabushiki Kaisha Toshiba Interpolation interlacing based data upsampling algorithm for cone-beam x-ray CT flying focal spot projection data
JP2010035812A (ja) * 2008-08-05 2010-02-18 Toshiba Corp X線コンピュータ断層撮影装置
JP5570716B2 (ja) * 2008-10-29 2014-08-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置およびプログラム
JPWO2016080311A1 (ja) * 2014-11-21 2017-08-31 株式会社日立製作所 X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503631A (ja) * 2002-10-25 2006-02-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンピュータ断層撮影用のダイナミック検出器インターレーシング
JP2011229906A (ja) * 2010-04-06 2011-11-17 Toshiba Corp X線ct装置
US20120069950A1 (en) * 2010-09-17 2012-03-22 Siemens Ag Method and x-ray device for creating an x-ray projection image
JP2013085956A (ja) * 2011-10-18 2013-05-13 Toshiba Corp X線コンピュータ断層撮像装置(x線ct装置)及びx線コンピュータ断層撮像装置の作動方法

Also Published As

Publication number Publication date
JPWO2015012331A1 (ja) 2017-03-02
CN105377140B (zh) 2018-04-13
JP6377615B2 (ja) 2018-08-22
US20160183900A1 (en) 2016-06-30
US9895124B2 (en) 2018-02-20
CN105377140A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN107106108B (zh) X射线ct装置、投影数据的上采样方法以及图像重构方法
US7372934B2 (en) Method for performing image reconstruction using hybrid computed tomography detectors
JP4646810B2 (ja) 断層撮影像の再構成方法及び断層撮影装置
JP5085310B2 (ja) 画像処理装置、プログラムおよびx線ct装置
WO2012033028A1 (ja) X線ct装置および管電流決定方法
JP6513431B2 (ja) X線ct装置及びその制御方法
KR20170025096A (ko) 단층 영상 복원 장치 및 그에 따른 단층 영상 복원 방법
JP5728304B2 (ja) X線ct装置及び画像再構成方法
US20130308744A1 (en) X-ray computed tomography apparatus, medical image processing apparatus, x-ray computed tomography method, and medical image processing method
US9532755B2 (en) X-ray computed tomographic imaging apparatus and method for same
JP2011244875A (ja) 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
US20120250968A1 (en) Method for generating image data of an object under examination, projection data processing device, x-ray system and computer program
JP6377615B2 (ja) X線ct装置及び画像再構成方法
JP2021010727A (ja) X線ctシステム及び医用処理装置
KR20170087320A (ko) 단층 영상 생성 장치 및 그에 따른 단층 영상 복원 방법
JP7091262B2 (ja) コンピュータ断層撮影における空間分解能を向上させるためのシステムおよび方法
JP2010284350A (ja) X線ct装置
JP2021020057A (ja) 高解像度スペクトルコンピュータ断層撮影撮像のためのシステムおよび方法
US10383589B2 (en) Direct monochromatic image generation for spectral computed tomography
JP2010172590A (ja) X線ct装置および画像処理装置
JP2015116408A (ja) X線ct装置及び不良素子補正方法
WO2017130657A1 (ja) X線ct装置、撮影条件設定方法及び撮影条件設定プログラム
JP6220599B2 (ja) X線ct装置及び投影データのアップサンプリング方法
JP2020103571A (ja) 医用処理装置及びx線診断システム
JP5183988B2 (ja) 放射線ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528320

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905057

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829095

Country of ref document: EP

Kind code of ref document: A1