WO2015012145A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2015012145A1
WO2015012145A1 PCT/JP2014/068698 JP2014068698W WO2015012145A1 WO 2015012145 A1 WO2015012145 A1 WO 2015012145A1 JP 2014068698 W JP2014068698 W JP 2014068698W WO 2015012145 A1 WO2015012145 A1 WO 2015012145A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex chamber
liquid
chamber
vortex
vibration
Prior art date
Application number
PCT/JP2014/068698
Other languages
English (en)
French (fr)
Inventor
植木 哲
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2015528237A priority Critical patent/JP6395323B2/ja
Priority to CN201480041261.6A priority patent/CN105393019B/zh
Priority to EP14829011.7A priority patent/EP3026292B1/en
Priority to US14/900,868 priority patent/US9816581B2/en
Publication of WO2015012145A1 publication Critical patent/WO2015012145A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/107Passage design between working chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
  • This application claims priority based on Japanese Patent Application No. 2013-154958 for which it applied to Japan on July 25, 2013, and uses the content here.
  • the vibration isolator includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, a second mounting member connected to the other, and an elastic connecting the both mounting members. And a partition member that partitions the liquid chamber in the first mounting member into which the liquid is sealed into a first liquid chamber and a second liquid chamber.
  • the vibration isolator further includes a first restriction passage and a second restriction passage communicating the two liquid chambers with each other, a cylinder chamber provided between the two liquid chambers, and an open position and a closed position in the cylinder chamber. And a plunger member arranged to be movable between the two.
  • a plurality of types of vibrations having different frequencies such as idle vibrations and shake vibrations, are input to the vibration isolator. Therefore, in this vibration isolator, the resonance frequencies of the first restriction passage and the second restriction passage are set (tuned) to frequencies of different types of vibrations. Then, the plunger member moves between the open position and the closed position according to the input vibration frequency, so that the restriction passage through which the liquid flows is changed between the first restriction passage and the second restriction passage. Switching.
  • the inventor of the present application adopts a configuration in which a vortex chamber unit that communicates the two liquid chambers as the partition member, thereby simplifying the structure and facilitating manufacture. It came to obtain the knowledge that it is possible.
  • the vortex chamber unit is provided with a vortex chamber, a rectifying path, and a communication hole.
  • the vortex chamber swirls the liquid flowing into the interior.
  • the rectifying channel communicates one of the liquid chambers with the vortex chamber and opens into the vortex chamber in the circumferential direction of the vortex chamber.
  • the communication hole communicates the other liquid chamber and the vortex chamber among the two liquid chambers.
  • the vortex chamber is configured to form a swirling flow of the liquid in accordance with the flow velocity of the liquid flowing in from the rectifying passage and to let the liquid flow out of the communication hole.
  • the liquid flows between the two liquid chambers through the vortex chamber unit.
  • the vortex chamber unit is designed so that when a desired vibration is input to the vibration isolator, a swirl flow of liquid is formed in the vortex chamber to absorb and attenuate the vibration. Yes.
  • the shape of a specific vortex chamber unit is designed so that a swirling flow of liquid is formed in the vortex chamber when the desired vibration described above is input. Thereafter, the size of the vortex chamber unit is changed according to, for example, the degree of attenuation and absorption.
  • the size of the vortex chamber unit is changed according to, for example, the degree of attenuation and absorption.
  • expand or reduce the shape of the opening that opens to the liquid chamber in the rectifying channel to another shape that is similar to this shape and then change the inner diameter of the vortex chamber to the opening. Increase or decrease depending on the similarity ratio. As a result, the same type of vibration can be absorbed and attenuated regardless of the size of the vortex chamber unit.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a vibration isolator capable of exhibiting attenuation characteristics with high accuracy.
  • the vibration isolator according to the present invention includes a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachment members.
  • the partition member is provided with a vortex chamber unit that communicates the two liquid chambers.
  • the vortex chamber unit communicates a vortex chamber that swirls the liquid flowing into the interior and one of the liquid chambers and the vortex chamber, and the circumferential direction of the vortex chamber in the vortex chamber And a communication hole that communicates the other liquid chamber of the two liquid chambers with the vortex chamber.
  • the vortex chamber forms a swirling flow of the liquid according to the flow velocity of the liquid flowing in from the rectifying passage, and causes the liquid to flow out of the communication hole.
  • a first vortex chamber as the vortex chamber communicates with the first liquid chamber through a first rectification passage as the rectification passage, and the second vortex chamber through the first communication hole as the communication hole.
  • a plurality of first vortex chamber units communicating with the liquid chamber are provided.
  • each first vortex chamber unit is designed such that when a desired vibration is input, this vibration is absorbed and attenuated by each of the plurality of first vortex chamber units.
  • the vortex chamber unit since the vortex chamber unit includes a plurality of first vortex chamber units, the size of the opening that opens to the first liquid chamber in each rectification path of the plurality of first vortex chamber units. The total sum of the opening areas of these openings can be ensured to be equal to the opening area of the opening of the rectifying path when there is only one first vortex chamber unit.
  • the volume of each vortex chamber of the plurality of first vortex chamber units can also be suppressed small. .
  • the sum total of the volume of these vortex chambers can be made smaller than the volume of the vortex chamber when only one first vortex chamber unit is provided as the vortex chamber unit.
  • the opening area of the rectifying passage is equally ensured in the entire plurality of first vortex chamber units. The volume of the vortex chamber can be reduced.
  • the opening area of the opening of the rectifying passage can be equally ensured in the whole of the plurality of first vortex chamber units, even if the volume of the vortex chamber is small, the first vortex chamber unit is 1 Vibrations can be damped and absorbed as much as if there were only one. Further, as described above, since the volume of the vortex chamber can be reduced in the entirety of the plurality of first vortex chamber units, when a desired vibration having a small amplitude is input, the liquid is supplied to each of the first vortex chamber units. The swirl chamber in one vortex chamber unit can be swirled with higher sensitivity than when only one first vortex chamber unit is provided. As a result, it becomes possible to easily absorb and attenuate the vibration, and the damping characteristic of the vibration isolator can be exhibited with high accuracy.
  • the partition member is provided with a restriction passage that communicates the liquid chambers and has a resonance frequency equal to the frequency of the first vibration, and the resonance frequency of the rectifying path is higher than the frequency of the first vibration. May be equivalent to the frequency of the high second vibration.
  • the present invention when the first vibration is input, a large amount of liquid flows into the first vortex chamber per unit time according to, for example, the amplitude of the first vibration. At this time, for example, a flow is formed so as to swirl in the first vortex chamber by the inertial force of the liquid flowing into the inside, and this flow develops into a vortex, whereby both liquid chambers passing through the first vortex chamber unit are formed. The distribution resistance between them increases. As a result, the liquid preferentially flows between the two liquid chambers through the restriction passage, and resonance occurs in the restriction passage to absorb and attenuate the first vibration.
  • the partition member may partition the liquid chamber in the axial direction of the first mounting member, and the axis of the vortex chamber may extend along an intersecting surface intersecting the axis of the first mounting member.
  • the axis of the vortex chamber may extend along the circumferential direction of the first mounting member, and a plurality of the vortex chamber units may be arranged in the circumferential direction of the first mounting member.
  • the partition member is provided with a vortex chamber member in which the vortex chamber unit is formed, and the vortex chamber member is separated from the first mounting member by a dividing surface extending across the axis of the first mounting member.
  • the dividing surface divides the vortex chambers of all the vortex chamber units in the axial direction of the first mounting member, and the rectifying path extends in the axial direction of the first mounting member.
  • the partition member may be open to an end surface of the partition member facing the outside in the axial direction.
  • the dividing surface divides the vortex chambers of all the vortex chamber units in the axial direction of the first mounting member, and the rectifying path extends in the axial direction of the first mounting member and opens at the end surface of the partition member. is doing. Therefore, when the divided body formed by dividing the vortex chamber member by the dividing surface is formed by a mold, it is possible to easily remove the mold from the divided body in the axial direction of the first mounting member. This vibration isolator can be easily formed.
  • the communication hole may open into the vortex chamber from an end surface facing the axial direction of the vortex chamber among the wall surfaces defining the vortex chamber.
  • the communication hole may be arranged coaxially with the axis of the vortex chamber.
  • the communication hole is arranged coaxially with the axis of the vortex chamber, the length of the swirling flow of the liquid formed in the vortex chamber is kept large along the swirling direction so that the liquid stays in the vortex chamber. It becomes possible to make it easier to dampen and absorb vibrations more effectively.
  • a second vortex chamber as the vortex chamber communicates with the second liquid chamber through a second rectification passage as the rectification passage, and through the second communication hole as the communication hole.
  • a plurality of second vortex chamber units communicating with the first liquid chamber may be provided.
  • the vortex chamber unit is provided with a first vortex chamber unit and a second vortex chamber unit. Therefore, by circulating the first vortex chamber unit through the liquid flowing from the first liquid chamber to the second liquid chamber, the vibration is absorbed and attenuated, and the liquid flowing from the second liquid chamber to the first liquid chamber is changed. By circulating the second vortex chamber unit, vibration can be absorbed and attenuated, and vibration can be effectively absorbed and attenuated.
  • the attenuation characteristic can be exhibited with high accuracy.
  • FIG. 4 is a cross-sectional view taken along line AA shown in FIG. 3.
  • FIG. 3 It is a schematic diagram of the vortex chamber unit provided in the vortex chamber member shown in FIG. 2, and is a diagram for explaining the flow of the liquid when the flow velocity of the liquid flowing in from the rectifying path is high.
  • FIG. 3 It is a schematic diagram of the vortex chamber unit provided in the vortex chamber member shown in FIG.
  • the vibration isolator 10 includes a cylindrical first mounting member 11 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member connected to the other. 12, an elastic body 13 that couples the two attachment members 11, 12 to each other, a liquid chamber in the first attachment member 11 in which a liquid is sealed, and a main liquid chamber having the elastic body 13 as a part of the wall surface. (First liquid chamber) 14, and a partition member 16 that partitions the sub liquid chamber (second liquid chamber) 15.
  • the second mounting member 12 is formed in a columnar shape
  • the elastic body 13 is formed in a cylindrical shape
  • the first mounting member 11, the second mounting member 12, and the elastic body 13 are coaxial with the common shaft. It is arranged.
  • this common shaft is referred to as an axis O (the axis of the first mounting member)
  • the main liquid chamber 14 side along the axis O direction (the axial direction of the first mounting member) is referred to as one side
  • the sub liquid chamber 15 side is referred to. The other side.
  • a direction orthogonal to the axis O is referred to as a radial direction (a radial direction of the first mounting member), and a direction around the axis O is referred to as a circumferential direction (a circumferential direction of the first mounting member).
  • the vibration isolator 10 When the vibration isolator 10 is mounted on an automobile, for example, the second mounting member 12 is connected to an engine as a vibration generating unit, while the first mounting member 11 receives vibration through a bracket (not shown). It is connected to the vehicle body as a part to suppress the transmission of engine vibration to the vehicle body.
  • the vibration isolator 10 is a liquid enclosure type in which a liquid such as ethylene glycol, water, or silicone oil is enclosed in the liquid chamber of the first mounting member 11.
  • the first attachment member 11 includes a one-side outer cylinder 21 located on one side and an other-side outer cylinder 22 located on the other side along the axis O direction.
  • the elastic body 13 is connected in a liquid-tight state to one end of the one-side outer cylinder 21, and the opening on one side of the one-side outer cylinder 21 is closed by the elastic body 13. Yes.
  • the other-side end portion 21a is formed to have a larger diameter than other portions.
  • the inside of the one side outer cylinder 21 is the main liquid chamber 14.
  • an annular groove 21 b that extends continuously over the entire circumference is formed in a portion that continues from the other side with respect to the portion to which the elastic body 13 is connected.
  • a diaphragm 17 is connected to the other end of the other outer cylinder 22 in a liquid-tight state, and the opening on the other side of the other outer cylinder 22 is closed by the diaphragm 17.
  • one end portion 22 a is formed with a larger diameter than the other portion, and is fitted in the other-side end portion 21 a of the one-side outer cylindrical body 21.
  • a partition member 16 is fitted in the other outer cylinder 22, and the sub liquid chamber 15 is provided between the partition member 16 and the diaphragm 17.
  • the other side outer cylinder 22 is covered almost entirely with a rubber film formed integrally with the diaphragm 17.
  • An internal thread portion 12a is formed coaxially with the axis O on one end face of the second mounting member 12.
  • the second mounting member 12 protrudes from the first mounting member 11 to one side.
  • the second mounting member 12 is formed with a flange portion 12b that protrudes outward in the radial direction and continuously extends over the entire circumference.
  • the flange portion 12 b is separated from the one end edge of the first attachment member 11 to the other side.
  • the elastic body 13 is formed of a material such as rubber that can be elastically deformed, and is formed in a cylindrical shape whose diameter is gradually increased from one side to the other side.
  • One end of the elastic body 13 is connected to the second mounting member 12, and the other end is connected to the first mounting member 11. Note that the inner peripheral surface of the one outer cylinder 21 of the first mounting member 11 is covered with a rubber film formed integrally with the elastic body 13 over almost the entire area.
  • the partition member 16 partitions the liquid chamber in the direction of the axis O.
  • the partition member 16 includes a mounting member 41 and a vortex chamber member 42.
  • the mounting member 41 is mounted on the first mounting member 11.
  • the mounting member 41 is formed in an annular shape coaxial with the axis O and is fitted in the other outer cylinder 22.
  • a support member 43 is provided in the other end of the mounting member 41.
  • the support member 43 is formed in a cross shape in a plan view of the vibration isolator 10 viewed from the direction of the axis O, and the end of the support member 43 is connected to the inner peripheral surface of the mounting member 41.
  • the vortex chamber member 42 is liquid-tightly fitted in the mounting member 41.
  • the vortex chamber member 42 is supported by the support member 43 from the other side.
  • the partition member 16 is provided with vortex chamber units 31 a and 31 b communicating with both liquid chambers 14 and 15, and a restriction passage 44.
  • the vortex chamber units 31 a and 31 b include vortex chambers 33 a and 33 b, rectifying channels 34 a and 34 b, and communication holes 32 a and 32 b.
  • the inner peripheral surfaces of the vortex chambers 33a and 33b are circular.
  • the rectifying channels 34a and 34b communicate one of the liquid chambers 14 and 15 with the vortex chambers 33a and 33b.
  • the rectifying paths 34a and 34b are opened in the vortex chambers 33a and 33b in the circumferential direction of the vortex chambers 33a and 33b.
  • the communication holes 32 a and 32 b communicate the other liquid chamber of the liquid chambers 14 and 15 with the vortex chambers 33 a and 33 b. As shown in FIGS.
  • the communication holes 32 a and 32 b are end surfaces (axial end surfaces and bottom surfaces) facing the axis L direction of the vortex chambers 33 a and 33 b among the wall surfaces defining the vortex chambers 33 a and 33 b. To the vortex chambers 33a and 33b.
  • the communication holes 32a and 32b are arranged coaxially with the axis L of the vortex chambers 33a and 33b.
  • a large number of vortex chamber units 31 a and 31 b are formed in the vortex chamber member 42.
  • the axis L of each of the vortex chambers 33a and 33b of the large number of vortex chamber members 42 extends along an intersecting surface intersecting the axis O, and in the illustrated example, extends along the circumferential direction, and on a split surface 42b described later.
  • Each of the rectifying paths 34a and 34b of the large number of vortex chamber members 42 extends linearly in the direction of the axis O, and is open to an end face of the partition member 16 facing the outside in the direction of the axis O.
  • a plurality of vortex chamber units 31 a and 31 b are arranged in the circumferential direction, and form a unit row 35 having an annular shape coaxial with the axis O.
  • the unit rows 35 are arranged in two rows with different diameters.
  • the vortex chamber units 31a and 31b are provided with a plurality of first vortex chamber units 31a and a plurality of second vortex chamber units 31b.
  • the plurality of first vortex chamber units 31 a have the same shape and the same size.
  • the first vortex chamber 33a as the vortex chamber communicates with the main liquid chamber 14 through the first rectification passage 34a as the rectification passage, and the sub liquid chamber through the first communication hole 32a as the communication hole. 15 communicates.
  • the plurality of second vortex chamber units 31b have the same shape and the same size.
  • the second vortex chamber 33b as the vortex chamber communicates with the auxiliary liquid chamber 15 through the second rectification path 34b as the rectification path, and passes through the second communication hole 32b as the communication hole. 14 communicates.
  • first vortex chamber units 31a and second vortex chamber units 31b are provided and are alternately arranged in the circumferential direction.
  • 60 first vortex chamber units 31a and 60 second vortex chamber units 31b are provided, each 20 in the radially inner unit row 35 and 40 in the radially outer unit row 35. It is arranged one by one.
  • a pair of the first vortex chamber unit 31a and the second vortex chamber unit 31b adjacent in the circumferential direction are connected through a communication path 36 extending in the circumferential direction.
  • the communication path 36 is disposed between the first vortex chamber 33a and the second vortex chamber 33b, and communicates both the vortex chambers 33a and 33b.
  • the inner peripheral surface of the communication path 36 is formed in a circular shape.
  • the communication path 36 opens into the vortex chambers 33a and 33b from the end surfaces of the first vortex chamber 33a and the second vortex chamber 33b.
  • the opening that opens to the first vortex chamber 33a is the first communication hole 32a
  • the opening that opens to the second vortex chamber 33b is the second communication hole 32b.
  • the first communication hole 32a of the first vortex chamber unit 31a communicates with the auxiliary liquid chamber 15 through the second vortex chamber unit 31b.
  • the second communication hole 32b of the second vortex chamber unit 31b communicates with the main liquid chamber 14 through the first vortex chamber unit 31a.
  • the first vortex chamber unit 31 a and the second vortex chamber unit 31 b constitute a communication channel 30 that communicates the main liquid chamber 14 and the sub liquid chamber 15. Although a large number of communication channels 30 are formed in the partition member 16, only one communication channel 30 for each unit row 35 is indicated by a dotted line in FIG.
  • the vortex chambers 33a and 33b swirl the liquid flowing into the interior.
  • the vortex chambers 33a and 33b form a swirling flow of the liquid according to the flow velocity of the liquid flowing in from the rectifying passages 34a and 34b, and allow the liquid to flow out from the communication holes 32a and 32b.
  • the rectifying paths 34a and 34b extend from the inner peripheral surface of the vortex chambers 33a and 33b along the tangential direction of the inner peripheral surface, and the liquid flowing into the vortex chambers 33a and 33b from the rectifying paths 34a and 34b. Is swirled by flowing along the inner peripheral surfaces of the vortex chambers 33a, 33b.
  • FIG. 6 when the liquid flows into the vortex chambers 33a and 33b from the communication holes 32a and 32b, the liquid simply passes through the vortex chambers 33a and 33b without swirling.
  • the restriction passage 44 is provided independently of the communication flow path 30, and is provided on the outer peripheral surface of the mounting member 41 in the illustrated example.
  • the resonance frequency of the restriction passage 44 is equivalent to the frequency of the shake vibration (first vibration) (for example, the frequency is 14 Hz or less and the amplitude is greater than ⁇ 0.5 mm), and the resonance frequency is resonant (liquid column) with respect to the shake vibration input. Resonance).
  • the resonance frequency of the restriction passage 44 is lower than the resonance frequency of the rectification paths 34a and 34b.
  • the resonance frequency of the rectifying paths 34a and 34b is equal to the frequency of idle vibration (second vibration) having a frequency higher than the shake vibration and a small amplitude (for example, a frequency of 15 Hz to 40 Hz and an amplitude of ⁇ 0.5 mm or less). It has become.
  • the rectifying paths 34a and 34b function as orifices that generate resonance (liquid column resonance) with respect to the input of idle vibration.
  • the vortex chamber member 42 is divided into two divided bodies 42a in the axis O direction.
  • the vortex chamber member 42 is divided by a dividing surface 42b extending across the axis O.
  • the dividing surface 42b is orthogonal to the axis O.
  • the dividing surface 42b divides the vortex chambers 33a and 33b and the communication holes 32a and 32b of all the vortex chamber units 31a and 31b in the axis O direction.
  • the outer peripheral edge of the dividing surface 42b reaches the outer peripheral surface of the vortex chamber member 42.
  • the illustration of the dividing surface 42b is omitted for easy understanding of the drawing.
  • the vibration isolator 10 when a shake vibration is input, the vortex chamber unit is absorbed and attenuated by the plurality of first vortex chamber units 31a and the plurality of second vortex chamber units 31b, respectively. 31a and 31b are designed.
  • both the attachment members 11 and 12 are relatively displaced while elastically deforming the elastic body 13, and the hydraulic pressure in the main liquid chamber 14 fluctuates. To do. Then, a large amount of liquid in the main liquid chamber 14 flows into the first vortex chamber 33a through the first rectifying path 34a in accordance with the amplitude of the shake vibration. That is, as shown by a two-dot chain line in FIG. 5, when the shake vibration is input, the liquid whose flow velocity is increased flows into the first vortex chamber 33a. For example, the first vortex chamber is caused by the inertial force of the liquid flowing into the interior.
  • a flow is formed so as to swirl within 33a, and this flow develops into a vortex.
  • a large amount of liquid in the sub liquid chamber 15 flows into the second vortex chamber 33b through the second rectifying path 34b in accordance with the amplitude of the shake vibration, and the inertial force of the liquid flowing into the interior
  • a flow is formed so as to swirl within the second vortex chamber 33b, and this flow develops into a vortex.
  • the flow resistance between the main liquid chamber 14 and the sub liquid chamber 15 through each communication channel 30 increases, so that the liquid is restricted between the main liquid chamber 14 and the sub liquid chamber 15.
  • 44 preferentially circulates through the pipe 44 and liquid injection resonance occurs in the restriction passage 44 to absorb and dampen the shake vibration.
  • both the shake vibration and the idle vibration are absorbed by providing the vortex chamber units 31a and 31b instead of the plunger member as in the prior art.
  • the vibration damping device 10 can be simplified and the structure thereof can be simplified.
  • the vortex chamber units 31a and 31b are provided with a plurality of the first vortex chamber units 31a, as shown in FIG. 2, the vortex chamber units 31a and 31b are connected to the main liquid chamber 14 in the rectifying channels 34a of the plurality of first vortex chamber units 31a. While keeping the size of the openings to be opened small, the sum of the opening areas of these openings is ensured to be equal to the opening area of the opening of the rectifying channel 34a when there is only one first vortex chamber unit 31a. can do.
  • the opening area of the rectifying passage 34a is the same in the whole of the plurality of first vortex chamber units 31a as compared with the case where there is only one first vortex chamber unit 31a.
  • the volume of the vortex chamber 33a can be reduced even if the volume of the vortex chamber 33a is small. Vibration can be attenuated and absorbed to the same extent as when only one unit 31a is provided. Further, as described above, the volume of the vortex chamber 33a can be reduced as a whole of the plurality of first vortex chamber units 31a. Therefore, when a desired vibration having a small amplitude is input, the liquid is supplied.
  • each first swirl chamber unit 31a can be swirled with higher sensitivity than when only one first swirl chamber unit 31a is provided. As a result, it becomes possible to easily absorb and attenuate the vibration, and the damping characteristic of the vibration isolator 10 can be exhibited with high accuracy.
  • the vortex chamber units 31a and 31b are provided with a first vortex chamber unit 31a and a second vortex chamber unit 31b. Therefore, by flowing the first vortex chamber unit 31 a to the liquid flowing from the main liquid chamber 14 to the sub liquid chamber 15, the vibration is absorbed and attenuated, and the liquid flowing from the sub liquid chamber 15 to the main liquid chamber 14. In addition, by circulating the second vortex chamber unit 31b, vibration can be absorbed and attenuated, and vibration can be effectively absorbed and attenuated.
  • the communication holes 32a and 32b are opened in the vortex chambers 33a and 33b from the end surfaces of the vortex chambers 33a and 33b, it is possible to stably generate a swirling flow of liquid, and to effectively generate vibrations. Can attenuate and absorb. Further, since the communication holes 32a and 32b are arranged coaxially with the axis L of the vortex chambers 33a and 33b, the length along the swirling direction of the swirling flow of the liquid formed by the vortex chambers 33a and 33b is ensured to be large. Thus, the liquid can be easily retained in the vortex chambers 33a and 33b, and the vibration can be attenuated and absorbed more effectively.
  • the axis L of the vortex chambers 33a and 33b extends along the intersecting surface, it is possible to easily form a large number of vortex chamber units 31a and 31b in the partition member 16, and the vibration isolator 10 Space efficiency can be increased. Further, since a plurality of vortex chamber units 31a and 31b are arranged in the circumferential direction, it becomes possible to easily form more vortex chamber units 31a and 31b in the partition member 16, and the space of the vibration isolator 10 is increased. Efficiency can be further increased.
  • the dividing surface 42b divides the vortex chambers 33a, 33b of all the vortex chamber units 31a, 31b in the direction of the axis O, and the rectifying passages 34a, 34b extend in the direction of the axis O and are end faces of the partition member 16. Is open. Therefore, when the divided body 42a is formed by a mold, the mold can be easily removed from the divided body 42a in the direction of the axis O, and the vibration isolator 10 can be easily formed. it can.
  • the main liquid chamber 14 and the sub liquid chamber 15 are communicated only through the communication flow path 30, and the restriction passage 44 is not provided.
  • the vibrations are absorbed and attenuated by the plurality of first vortex chamber units 31a and the plurality of second vortex chamber units 31b, respectively.
  • One vortex chamber unit 31a, 31b is designed.
  • the idle vibration has a relatively small amplitude but a high frequency
  • the shake vibration has a low frequency but a large amplitude. Therefore, when such normal vibration is input, the first rectification is performed from the main liquid chamber 14. Any flow velocity of the liquid flowing into the first vortex chamber 33a through the passage 34a can be increased to a certain level or more. Therefore, by making the shape of the vortex chamber units 31a and 31b according to the present embodiment different from the vortex chamber units 31a and 31b of the vibration isolator 10 according to the embodiment, any vibration of the shake vibration and the idle vibration is generated. Even when it is input, as shown by a two-dot chain line in FIG. 5, a swirl flow of liquid can be formed in the first vortex chamber 33a.
  • the pressure loss of the liquid is increased due to, for example, the viscous resistance of the liquid, the energy loss due to the formation of the swirling flow, the energy loss due to the friction between the liquid and the wall surface of the first vortex chamber 33a. This absorbs and damps vibrations.
  • the flow rate of the liquid flowing into the first vortex chamber 33a significantly increases as the liquid flow velocity increases, and the first vortex is formed by the swirling flow formed by the liquid flowing into the first vortex chamber 33a.
  • the liquid swirled in the first vortex chamber 33a then flows out from the first communication hole 32a and flows into the auxiliary liquid chamber 15 through the communication path 36 and the second vortex chamber unit 31b.
  • the liquid flowing into the second vortex chamber 33 b from the second communication hole 32 b does not swirl but simply passes through the second vortex chamber 33 b and passes through the sub liquid chamber 15. Flow into.
  • the liquid swirled in the second vortex chamber 33b then flows out from the second communication hole 32b and flows into the main liquid chamber 14 through the communication path 36 and the first vortex chamber unit 31a.
  • the liquid flowing into the first vortex chamber 33 a from the first communication hole 32 a does not swirl but simply passes through the first vortex chamber 33 a and passes through the main liquid chamber 14. Flow into.
  • micro vibrations having a frequency higher than expected and a very small amplitude may be input to the vibration isolator 50 unintentionally.
  • the flow velocity of the liquid flowing into the vortex chambers 33a and 33b through the rectifying paths 34a and 34b is low, so that the vortex chambers 33a and 33b have a low flow rate as shown by a two-dot chain line in FIG.
  • the swirling of the liquid at is suppressed.
  • the swirl flow of the liquid does not occur in each of the vortex chambers 33a and 33b, the liquid simply passes through the vortex chambers 33a and 33b and smoothly flows, so that an increase in the dynamic spring constant is suppressed.
  • the liquid swirl flow is formed in the vortex chambers 33a and 33b, thereby increasing the pressure loss of the liquid and absorbing and damping the vibration.
  • the vibration can be absorbed and attenuated according to the flow velocity of the liquid regardless of the vibration frequency. Therefore, it is possible to simplify the structure and facilitate the manufacture while absorbing and attenuating a plurality of types of vibrations having different frequencies.
  • the increase of the dynamic spring constant can be suppressed. Therefore, for example, when an unintentional vibration such as a fine vibration having a frequency higher than that of a normal vibration and a very small amplitude is input, the dynamic spring constant is lower when the flow velocity of the liquid is lower than when the normal vibration is input. As a result, the product characteristics of the vibration isolator 50 can be easily secured.
  • the restriction passage 44 is connected to the communication channel 30 instead of being provided independently of the communication channel 30.
  • One restriction passage 44 is provided for each of the many communication flow paths 30.
  • Each restriction passage 44 is connected to the communication passage 36 in the communication flow path 30.
  • the restriction passage 44 is provided with a first restriction passage 44a and a second restriction passage 44b.
  • the first restriction passage 44 a communicates the communication passage 36 and the main liquid chamber 14.
  • the second restriction passage 44 b communicates the communication passage 36 and the auxiliary liquid chamber 15.
  • the first restriction passages 44a and the second restriction passages 44b are alternately arranged in the circumferential direction with respect to a large number of communication flow paths 30, and different kinds of restriction passages are provided in the communication flow paths 30 adjacent in the circumferential direction. 44 is provided.
  • Each restriction passage 44a, 44b includes a horizontal passage 61 and a vertical passage 62.
  • the lateral passage 61 extends from the communication passage 36 in the radial direction.
  • the axis of the horizontal passage 61 is located on the dividing surface 42b.
  • the vertical passage 62 extends from the horizontal passage 61 toward the outside in the direction of the axis O and opens into the main liquid chamber 14 or the sub liquid chamber 15.
  • the vibration isolators 10 and 50 absorb and attenuate both the idle vibration and the shake vibration, but the present invention is not limited to this.
  • the present invention may be appropriately changed to other configurations that absorb and attenuate both the first vibration and the second vibration having a higher frequency than the first vibration.
  • each vortex chamber unit 31a, 31b the one rectification
  • straightening path 34a, 34b is provided in each vortex chamber unit 31a, 31b, this invention is not limited to this.
  • a plurality of rectification paths may be provided in each vortex chamber unit.
  • the first vortex chamber 33a and the second vortex chamber 33b communicate with each other through the communication path 36, but the present invention is not limited to this.
  • the first vortex chamber and the second vortex chamber are adjacent to each other in the circumferential direction via a thin plate-like wall portion, and both the vortex chambers communicate with each other through a hole portion that is provided in the circumferential direction in the wall portion. You may do it.
  • each of the first communication hole and the second communication hole can be configured by the common hole.
  • the axis L of the vortex chambers 33a and 33b extends along the circumferential direction and extends along the intersecting surface, but the present invention is not limited to this.
  • the axis of the vortex chamber may extend in the axial direction of the first mounting member.
  • the rectification path may extend in the radial direction of the first mounting member.
  • the dividing surface may not divide the vortex chambers of all the vortex chamber units in the axial direction of the first mounting member.
  • the first communication hole 32a communicates with the sub liquid chamber 15 through the second vortex chamber unit 31b, but the present invention is not limited to this.
  • the first communication hole may open directly to the secondary liquid chamber.
  • the first rectification path instead of the first communication hole may communicate with the main liquid chamber through the second vortex chamber unit.
  • the second communication hole 32b communicates with the main liquid chamber 14 through the first vortex chamber unit 31a, but the present invention is not limited to this.
  • the second communication hole may open directly to the main liquid chamber.
  • the second rectification path instead of the second communication hole may communicate with the sub liquid chamber through the first vortex chamber unit.
  • the vortex chamber units 31a and 31b are provided with the 1st vortex chamber unit 31a and the 2nd vortex chamber unit 31b, this invention is not limited to this.
  • only a plurality of first vortex chamber units may be provided as the vortex chamber unit. That is, in the modified example of the present invention, the first vortex chamber as the vortex chamber communicates with the first liquid chamber through the first rectification channel as the rectification channel and the first vortex chamber through the first communication hole as the communication hole. It is possible to appropriately change to another configuration in which a plurality of first vortex chamber units communicating with the two liquid chambers are provided.
  • the vibration isolators 10 and 50 are provided with the main liquid chamber 14 as the first liquid chamber and the sub liquid chamber 15 as the second liquid chamber.
  • the vibration isolator may be appropriately changed to another configuration in which a sub liquid chamber as a first liquid chamber is provided and a main liquid chamber as a second liquid chamber is provided.
  • the partition member 16 partitions the liquid chamber in the 1st attachment member 11 into the main liquid chamber 14 and the sub liquid chamber 15 which have the elastic body 13 in a part of wall surface
  • this invention is this. Not limited to.
  • a pair of elastic bodies may be provided in the axial direction, and instead of providing the secondary liquid chamber, a pressure receiving liquid chamber having an elastic body in a part of the wall surface may be provided. That is, the partition member partitions the liquid chamber in the first mounting member in which the liquid is sealed into the first liquid chamber and the second liquid chamber, and at least one of the liquid chambers of the first liquid chamber and the second liquid chamber.
  • the vortex chamber units 31a and 31b are not limited to those shown in the above embodiment, and a vortex chamber that forms a swirling flow of the liquid according to the flow velocity of the liquid flowing in from the rectifying passage and flows the liquid out of the communication hole. You may change suitably to the other structure which has.
  • the engine is connected to the second mounting member 12 and the first mounting member 11 is connected to the vehicle body has been described.
  • the engine may be configured to be connected in reverse.
  • the vibration isolator 10 and 50 according to the present invention is not limited to the engine mount of the vehicle, but can be applied to other than the engine mount.
  • the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.
  • the damping characteristics can be exhibited with high accuracy in the vibration isolator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

 仕切り部材(16)には、液室間を連通する複数の渦室ユニット(31a、31b)が設けられる。渦室ユニット(31a、31b)には、内部に流入する液体を旋回させる渦室(33a、33b)と、一方の液室から、渦室(33a、33b)の周方向に向けて開口する整流路(34a、34b)と、他方の液室と渦室(33a、33b)とを連通する連通孔(32a、32b)と、が備えられている。渦室(33a、33b)は、整流路(34a、34b)から流入する液体の流速に応じて液体の旋回流を形成する。この防振装置(10)によれば、減衰特性を高精度に発揮させることができる。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。
 本願は、2013年7月25日に日本に出願された特願2013-154956号に基づき優先権を主張し、その内容をここに援用する。
 この種の防振装置として、例えば下記特許文献1記載の構成が知られている。この防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、液体が封入される第1取付け部材内の液室を、第1液室および第2液室に仕切る仕切り部材と、を備えている。この防振装置はさらに、両液室を互いに連通する第1の制限通路および第2の制限通路と、両液室の間に設けられたシリンダ室と、シリンダ室内に、開放位置と閉塞位置との間で移動可能に配設されたプランジャ部材と、を備えている。
 この防振装置には、例えばアイドル振動やシェイク振動など、周波数が異なる複数種類の振動が入力される。そこでこの防振装置では、第1の制限通路および第2の制限通路それぞれの共振周波数が、異なる種類の振動それぞれの周波数に設定(チューニング)されている。そして、プランジャ部材が、入力された振動の周波数に応じて開放位置と閉塞位置との間で移動することで、液体が流通する制限通路を、第1の制限通路と第2の制限通路とで切り替えている。
特開2007-120598号公報
 ここで、本願発明者は鋭意検討した結果、前記仕切り部材として、前記両液室を連通する渦室ユニットが設けられた構成を採用することにより、構造の簡素化および製造の容易化を図ることができるという知見を得るに至った。
 この防振装置では、前記渦室ユニットに、渦室と、整流路と、連通孔と、を備えさせている。前記渦室は、内部に流入する液体を旋回させる。前記整流路は、前記両液室のうち、一方の液室と渦室とを連通し、渦室内に、渦室の周方向に向けて開口する。前記連通孔は、前記両液室のうち、他方の液室と渦室とを連通する。また前記渦室を、整流路から流入する液体の流速に応じて液体の旋回流を形成し、この液体を連通孔から流出させるように構成する。
 この防振装置に振動が入力されると、液体が、渦室ユニットを通して両液室間を流通する。このとき、整流路から渦室に流入された液体の流速が十分に高められて渦室内で液体の旋回流が形成されると、この振動が吸収および減衰される。そこで前記防振装置では、この防振装置に所望の振動が入力されたときに、渦室内で液体の旋回流が形成されて振動が吸収および減衰されるように、渦室ユニットを設計している。
 なお、渦室ユニットを設計するときには、まず、前述の所望の振動が入力されたときに渦室内で液体の旋回流が形成されるような特定の渦室ユニットの形状を設計する。その後、この渦室ユニットの大きさを、例えば減衰および吸収の程度などに応じて変更する。渦室ユニットの大きさを変更するときには、整流路において液室に開口する開口部の形状を、この形状と相似をなす他の形状に拡大または縮小した上で、渦室の内径を、開口部の相似比に応じて大きくまたは小さくする。これにより、渦室ユニットの大きさによらず、同種の振動を吸収および減衰することができる。
 しかしながら、前記防振装置では、前述の所望の振動のうち、振幅が小さいものが入力されたときには、渦室内で液体が旋回し難く、この防振装置の減衰特性が精度良く発揮されない可能性がある。
 本発明は、前述した事情に鑑みてなされたものであって、減衰特性を高精度に発揮させることができる防振装置を提供することを目的とする。
 前記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、液体が封入される前記第1取付け部材内の液室を、第1液室および第2液室に仕切る仕切り部材と、を備えている。前記第1液室および前記第2液室の両液室のうちの少なくとも1つは、前記弾性体を壁面の一部に有する。前記仕切り部材には、前記両液室を連通する渦室ユニットが設けられている。前記渦室ユニットには、内部に流入する液体を旋回させる渦室と、前記両液室のうち、一方の液室と前記渦室とを連通し、前記渦室内に、前記渦室の周方向に向けて開口する整流路と、前記両液室のうち、他方の液室と前記渦室とを連通する連通孔と、が備えられている。前記渦室は、前記整流路から流入する液体の流速に応じて液体の旋回流を形成し、この液体を前記連通孔から流出させる。前記渦室ユニットには、前記渦室としての第1渦室が、前記整流路としての第1整流路を通して前記第1液室に連通し、前記連通孔としての第1連通孔を通して前記第2液室に連通する第1渦室ユニットが複数備えられている。
 この発明では、所望の振動が入力されたときに、この振動が複数の第1渦室ユニットそれぞれによって吸収および減衰されるように、各第1渦室ユニットを設計しておく。
 ここでこの防振装置では、渦室ユニットに、第1渦室ユニットが複数備えられているので、複数の第1渦室ユニットの各整流路において第1液室に開口する開口部の大きさを小さく抑えつつ、これらの開口部の開口面積の総和を、第1渦室ユニットが1つのみである場合における整流路の開口部の開口面積と同等に確保することができる。
 また前述のように、複数の第1渦室ユニットの各整流路の開口部の大きさを小さく抑えることができるので、複数の第1渦室ユニットの各渦室の容積も小さく抑えることができる。これにより、これらの渦室の容積の総和を、渦室ユニットとして第1渦室ユニットが1つのみ備えられている場合における渦室の容積よりも小さくすることができる。
 以上より、この防振装置では、第1渦室ユニットが1つのみである場合に比べて、複数の第1渦室ユニットの全体で、整流路の開口部の開口面積を同等に確保しつつ渦室の容積を小さくすることができる。
 そしてこのように、複数の第1渦室ユニットの全体で、整流路の開口部の開口面積を同等に確保することができるので、渦室の容積が小さくても、第1渦室ユニットが1つのみである場合と同程度に振動を減衰および吸収することができる。
 また前述のように、複数の第1渦室ユニットの全体で、渦室の容積を小さくすることができるので、所望の振動のうち、振幅が小さいものが入力されたときに、液体を各第1渦室ユニットにおける渦室内で、第1渦室ユニットが1つのみである場合に比べて感度良く旋回させることができる。これにより、振動を吸収および減衰させ易くすることが可能になり、この防振装置の減衰特性を高精度に発揮させることができる。
 また、前記仕切り部材には、前記両液室を連通し、共振周波数が第1振動の周波数と同等とされた制限通路が設けられ、前記整流路の共振周波数は、前記第1振動よりも周波数が高い第2振動の周波数と同等とされていてもよい。
 この発明では、第1振動の入力時には、例えばこの第1振動の振幅などに応じ、単位時間あたりに多量の液体が第1渦室内に流入する。このとき例えば、内部に流入した液体の慣性力により第1渦室内を旋回するように流れが形成され、この流れが発達して渦となることで、第1渦室ユニットを通した両液室間の流通抵抗が上昇する。これにより、液体が、両液室間で制限通路を通して優先的に流通し、制限通路内で共振が生じて第1振動が吸収および減衰される。
 一方、第2振動の入力時には、例えばこの第2振動の振幅などに応じ、単位時間あたりに少量の液体が第1渦室内に流入することから、内部に流入した液体により第1渦室内の渦流が十分に発達せず、第1渦室ユニットを通した両液室間の流通抵抗が低く抑えられる。これにより、液体に、第1渦室ユニットを積極的に流通させることが可能になり、第1整流路内で共振が生じて第2振動が吸収および減衰される。
 以上のように、前記従来技術のようなプランジャ部材に代えて渦室ユニットを設けることで、互いに周波数が異なる第1振動および第2振動の両方を吸収および減衰させることが可能になり、防振装置の構造の簡素化および製造の簡便化を図ることができる。
 また、前記仕切り部材は、前記液室を前記第1取付け部材の軸線方向に仕切り、前記渦室の軸線は、前記第1取付け部材の軸線に交差する交差面に沿って延びていてもよい。
 この場合、渦室の軸線が、交差面に沿って延びているので、仕切り部材に多くの渦室ユニットを形成し易くすることが可能になり、この防振装置のスペース効率を高めることができる。
 また、前記渦室の軸線は、前記第1取付け部材の周方向に沿って延び、前記渦室ユニットは、前記第1取付け部材の周方向に複数配置されていてもよい。
 この場合、渦室ユニットが、第1取付け部材の周方向に複数配置されているので、仕切り部材に一層多くの渦室ユニットを形成し易くすることが可能になり、この防振装置のスペース効率を更に高めることができる。
 また、前記仕切り部材には、前記渦室ユニットが形成された渦室部材が備えられ、前記渦室部材は、前記第1取付け部材の軸線に交差して延びる分割面によって、前記第1取付け部材の軸線方向に分割され、前記分割面は、全ての前記渦室ユニットそれぞれの前記渦室を前記第1取付け部材の軸線方向に分割し、前記整流路は、前記第1取付け部材の軸線方向に延び、前記仕切り部材において前記第1取付け部材の軸線方向の外側を向く端面に開口していてもよい。
 この場合、分割面が、全ての渦室ユニットそれぞれの渦室を第1取付け部材の軸線方向に分割し、かつ、整流路が、第1取付け部材の軸線方向に延びて仕切り部材の端面に開口している。したがって、渦室部材が分割面によって分割されてなる分割体を金型によって形成する場合、この金型を分割体から第1取付け部材の軸線方向に容易に脱型し易くすることが可能になり、この防振装置を簡便に形成することができる。
 また、前記連通孔は、前記渦室を画成する壁面のうち、この渦室の軸線方向を向く端面から前記渦室内に開口していてもよい。
 この場合、連通孔が、渦室の端面から渦室内に開口しているので、液体の旋回流を安定して生じさせることが可能になり、振動を効果的に減衰および吸収することができる。
 また、前記連通孔は、前記渦室の軸線と同軸に配置されていてもよい。
 この場合、連通孔が、渦室の軸線と同軸に配置されているので、渦室で形成される液体の旋回流の旋回方向に沿った長さを大きく確保して液体を渦室内で滞留させ易くすることが可能になり、振動をより効果的に減衰および吸収することができる。
 また、前記渦室ユニットには、前記渦室としての第2渦室が、前記整流路としての第2整流路を通して前記第2液室に連通し、前記連通孔としての第2連通孔を通して前記第1液室に連通する第2渦室ユニットが複数備えられていてもよい。
 この場合、渦室ユニットに第1渦室ユニットと第2渦室ユニットとが備えられている。したがって、第1液室から第2液室に流通する液体に、第1渦室ユニットを流通させることで、振動を吸収および減衰するとともに、第2液室から第1液室に流通する液体に、第2渦室ユニットを流通させることで、振動を吸収および減衰することが可能になり、振動を効果的に吸収および減衰することができる。
 本発明に係る防振装置によれば、減衰特性を高精度に発揮させることができる。
本発明の第1実施形態に係る防振装置の縦断面図である。 図1に示す防振装置を構成する仕切り部材に備えられた渦室部材を示す斜視図である。 図2に示す渦室部材に設けられた渦室ユニットを示す模式的な斜視図である。 図3に示すA-A断面矢視図である。 図2に示す渦室部材に設けられた渦室ユニットの模式図であって、整流路から流入される液体の流速が高い場合における液体の流れを説明する図である。 図2に示す渦室部材に設けられた渦室ユニットの模式図であって、連通孔から流入される液体の流れを説明する図である。 図2に示す渦室部材に設けられた渦室ユニットの模式図であって、整流路から流入される液体の流速が低い場合における液体の流れを説明する図である。 本発明の第2実施形態に係る防振装置の縦断面図である。 本発明の第3実施形態に係る防振装置の縦断面図である。 図9に示す渦室部材に設けられた渦室ユニットを示す模式的な斜視図である。 図10に示すB-B断面矢視図である。 図9に示す防振装置を構成する制限通路を説明する模式図である。
(第1実施形態)
 以下、本発明に係る防振装置の第1実施形態を、図1から図7を参照しながら説明する。
 この防振装置10は、図1に示すように、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材11、および他方に連結される第2取付け部材12と、これらの両取付け部材11、12同士を互いに連結する弾性体13と、液体が封入される第1取付け部材11内の液室を、弾性体13を壁面の一部に有する主液室(第1液室)14、および副液室(第2液室)15に仕切る仕切り部材16と、を備えている。
 図示の例では、第2取付け部材12は柱状に形成されるとともに、弾性体13は筒状に形成され、第1取付け部材11、第2取付け部材12および弾性体13は、共通軸と同軸に配設されている。以下、この共通軸を軸線O(第1取付け部材の軸線)といい、軸線O方向(第1取付け部材の軸線方向)に沿う主液室14側を一方側といい、副液室15側を他方側という。軸線Oに直交する方向を径方向(第1取付け部材の径方向)といい、軸線O回りに周回する方向を周方向(第1取付け部材の周方向)という。
 なお、この防振装置10が例えば自動車に装着される場合には、第2取付け部材12が振動発生部としてのエンジンに連結される一方、第1取付け部材11が図示しないブラケットを介して振動受部としての車体に連結され、エンジンの振動が車体に伝達するのを抑える。この防振装置10は、第1取付け部材11の前記液室に、例えばエチレングリコール、水、シリコーンオイル等の液体が封入された液体封入型である。
 第1取付け部材11は、軸線O方向に沿って、一方側に位置する一方側外筒体21と、他方側に位置する他方側外筒体22と、を備えている。
 一方側外筒体21における一方側の端部には、前記弾性体13が液密状態で連結されていて、この弾性体13により一方側外筒体21の一方側の開口部が閉塞されている。一方側外筒体21のうち、他方側の端部21aは、他の部分より大径に形成されている。そして、一方側外筒体21の内部が前記主液室14となっている。なお一方側外筒体21において、弾性体13が連結された部分に対して他方側から連なる部分には、全周にわたって連続して延びる環状溝21bが形成されている。
 他方側外筒体22における他方側の端部には、ダイヤフラム17が液密状態で連結されていて、このダイヤフラム17により他方側外筒体22における他方側の開口部が閉塞されている。他方側外筒体22のうち、一方側の端部22aは、他の部分より大径に形成されていて、前記一方側外筒体21における他方側の端部21a内に嵌合されている。また他方側外筒体22内には、仕切り部材16が嵌合されていて、仕切り部材16とダイヤフラム17との間に、前記副液室15が設けられている。なお他方側外筒体22は、ダイヤフラム17と一体に形成されたゴム膜によって、ほぼ全域にわたって被覆されている。
 第2取付け部材12における一方側の端面には、軸線Oと同軸に雌ねじ部12aが形成されている。第2取付け部材12は、第1取付け部材11から一方側に突出している。第2取付け部材12には、径方向の外側に向けて突出し、かつ全周にわたって連続して延びるフランジ部12bが形成されている。フランジ部12bは、第1取付け部材11における一方側の端縁から他方側に離れている。
 弾性体13は、弾性変形可能な例えばゴム等の材料等で形成され、一方側から他方側に向かうに従い漸次拡径された筒状に形成されている。弾性体13のうち、一方側の端部が、第2取付け部材12に連結され、他方側の端部が、第1取付け部材11に連結されている。なお、第1取付け部材11の一方側外筒体21の内周面は、弾性体13と一体に形成されたゴム膜により、ほぼ全域にわたって覆われている。
 仕切り部材16は、前記液室を軸線O方向に仕切る。仕切り部材16には、装着部材41と、渦室部材42と、が備えられている。装着部材41は、第1取付け部材11に装着されている。装着部材41は、軸線Oと同軸の環状に形成されて他方側外筒体22内に嵌合されている。装着部材41の他方側の端部内には、支持部材43が設けられている。支持部材43は、この防振装置10を軸線O方向から見た平面視において、十字状に形成されていて、支持部材43の端部は、装着部材41の内周面に連結されている。渦室部材42は、装着部材41内に液密に嵌合されている。渦室部材42は、支持部材43により他方側から支持されている。
 ここで仕切り部材16には、両液室14、15を連通する渦室ユニット31a、31bと、制限通路44と、が設けられている。図1から図4に示すように、渦室ユニット31a、31bは、渦室33a、33bと、整流路34a、34bと、連通孔32a、32bと、を備えている。
 渦室33a、33bの内周面は、円形状をなしている。整流路34a、34bは、両液室14、15のうち、一方の液室と渦室33a、33bとを連通する。整流路34a、34bは、渦室33a、33b内に、渦室33a、33bの周方向に向けて開口している。連通孔32a、32bは、両液室14、15のうち、他方の液室と渦室33a、33bとを連通する。図3および図4に示すように、連通孔32a、32bは、渦室33a、33bを画成する壁面のうち、この渦室33a、33bの軸線L方向を向く端面(軸方向端面、底面)から渦室33a、33b内に開口している。連通孔32a、32bは、渦室33a、33bの軸線Lと同軸に配置されている。
 図2に示すように、渦室ユニット31a、31bは、渦室部材42に多数形成されている。多数の渦室部材42の各渦室33a、33bの軸線Lは、軸線Oに交差する交差面に沿って延び、図示の例では、周方向に沿って延びていて、後述する分割面42b上に位置する。多数の渦室部材42の各整流路34a、34bは、軸線O方向に直線状に延び、仕切り部材16の渦室部材42において軸線O方向の外側を向く端面に開口している。
 渦室ユニット31a、31bは、周方向に複数配置されていて、軸線Oと同軸の環状をなすユニット列35を形成している。ユニット列35は、互いに直径を異ならせて2列配置されている。
 ここで渦室ユニット31a、31bには、複数の第1渦室ユニット31aと、複数の第2渦室ユニット31bと、が備えられている。
 図2および図3に示すように、複数の第1渦室ユニット31aは、互いに同等の形状でかつ同等の大きさに形成されている。第1渦室ユニット31aでは、渦室としての第1渦室33aが、整流路としての第1整流路34aを通して主液室14に連通し、連通孔としての第1連通孔32aを通して副液室15に連通する。
 複数の第2渦室ユニット31bは、互いに同等の形状でかつ同等の大きさに形成されている。第2渦室ユニット31bでは、渦室としての第2渦室33bが、整流路としての第2整流路34bを通して副液室15に連通し、連通孔としての第2連通孔32bを通して主液室14に連通する。
 図2に示すように、第1渦室ユニット31aおよび第2渦室ユニット31bは、互いに同数設けられていて、周方向に交互に配置されている。図示の例では、第1渦室ユニット31aおよび第2渦室ユニット31bは60個ずつ設けられていて、径方向の内側のユニット列35に20個ずつ、径方向の外側のユニット列35に40個ずつ配置されている。
 図3および図4に示すように、周方向に隣り合う一組の第1渦室ユニット31aおよび第2渦室ユニット31bは、周方向に延びる連通路36を通して接続されている。連通路36は、第1渦室33aと第2渦室33bとの間に配置され、これらの両渦室33a、33bを連通している。
 連通路36の内周面は円形状に形成されている。連通路36は、第1渦室33aおよび第2渦室33bの端面から各渦室33a、33b内に開口している。そして連通路36のうち、第1渦室33aに開口する開口部が前記第1連通孔32aとされ、第2渦室33bに開口する開口部が前記第2連通孔32bとなっている。
 なお、前述の一組の第1渦室ユニット31aおよび第2渦室ユニット31bでは、第1渦室ユニット31aの第1連通孔32aは、第2渦室ユニット31bを通して副液室15に連通し、第2渦室ユニット31bの第2連通孔32bは、第1渦室ユニット31aを通して主液室14に連通している。これらの第1渦室ユニット31aおよび第2渦室ユニット31bは、主液室14と副液室15とを連通する連絡流路30を構成している。連絡流路30は、仕切り部材16に多数形成されているが、図2では、図面の見易さのため、各ユニット列35について1つの連絡流路30のみを点線で示している。
 図5に示すように、渦室33a、33bは、内部に流入する液体を旋回させる。渦室33a、33bは、整流路34a、34bから流入する液体の流速に応じて液体の旋回流を形成し、この液体を連通孔32a、32bから流出させる。整流路34a、34bは、渦室33a、33bの内周面から、この内周面の接線方向に沿って延在していて、整流路34a、34bから渦室33a、33bに流入された液体は、渦室33a、33bの内周面に沿って流動することで旋回する。なお図6に示すように、液体が、連通孔32a、32bから渦室33a、33bに流入された場合には、液体は、渦室33a、33b内で旋回せずに単に通過する。
 図1に示すように、制限通路44は、連絡流路30とは独立して設けられ、図示の例では装着部材41の外周面に設けられている。制限通路44の共振周波数は、シェイク振動(第1振動)(例えば、周波数が14Hz以下、振幅が±0.5mmより大きい)の周波数と同等とされ、シェイク振動の入力に対して共振(液柱共振)を生じさせる。
 なお制限通路44の共振周波数は、整流路34a、34bの共振周波数よりも低くなっている。整流路34a、34bの共振周波数は、シェイク振動よりも周波数が高くかつ振幅が小さいアイドル振動(第2振動)(例えば、周波数が15Hz~40Hz、振幅が±0.5mm以下)の周波数と同等となっている。整流路34a、34bは、アイドル振動の入力に対して共振(液柱共振)を生じさせるオリフィスとして機能する。
 渦室部材42は、軸線O方向に2つの分割体42aに分割されている。渦室部材42は、軸線Oに交差して延びる分割面42bによって分割されている。分割面42bは、軸線Oに直交している。分割面42bは、全ての渦室ユニット31a、31bそれぞれの渦室33a、33bおよび連通孔32a、32bを軸線O方向に分割している。なお分割面42bの外周縁は、渦室部材42の外周面に到達しているが、図2では、図面の見易さのため、分割面42bの図示を省略している。
 次に、前記防振装置10の作用について説明する。
 この防振装置10では、シェイク振動が入力されたときに、このシェイク振動が複数の第1渦室ユニット31aおよび複数の第2渦室ユニット31bそれぞれによって吸収および減衰されるように、渦室ユニット31a、31bが設計されている。
 すなわち、この防振装置10に軸線O方向にシェイク振動が入力されると、両取付け部材11、12が弾性体13を弾性変形させながら相対的に変位して主液室14の液圧が変動する。すると、このシェイク振動の振幅に応じて、主液室14内の液体が単位時間当たり多量に、第1整流路34aを通して第1渦室33a内に流入する。つまり図5に2点鎖線で示すように、シェイク振動の入力時には流速が高められた液体が第1渦室33a内へ流入するため、例えば、内部に流入した液体の慣性力により第1渦室33a内を旋回するように流れが形成され、この流れが発達して渦となる。またこのとき、シェイク振動の振幅に応じて、副液室15内の液体が単位時間あたり多量に、第2整流路34bを通して第2渦室33b内に流入し、内部に流入した液体の慣性力により第2渦室33b内を旋回するように流れが形成され、この流れが発達して渦となる。
 以上により、各連絡流路30を通した主液室14と副液室15との間の流通抵抗が上昇することから、液体が、主液室14と副液室15との間で制限通路44を通して優先的に流通し、制限通路44内で液注共振が生じてシェイク振動が吸収および減衰される。
 一方、この防振装置10に軸線O方向にアイドル振動が入力されると、前述のように主液室14の液圧が変動したときに、このアイドル振動の振幅に応じた少量の液体が渦室33a、33b内に流入する。その結果、渦室33a、33bの内部に流入した液体により渦室33a、33b内の渦流が十分に発達せず、図7に2点鎖線で示すように、渦室33a、33b内を流動する液体は旋回することなく、あるいは旋回量が少なく通過する。これにより、各連絡流路30を通した主液室14と副液室15との間の流通抵抗が低く抑えられる。したがって、液体に、連絡流路30を積極的に流通させることが可能になり、整流路34a、34b内で共振が生じてアイドル振動が吸収および減衰される。
 以上説明したように、本実施形態に係る防振装置10によれば、前記従来技術のようなプランジャ部材に代えて渦室ユニット31a、31bを設けることで、シェイク振動およびアイドル振動の両方を吸収および減衰させることが可能になり、防振装置10の構造の簡素化および製造の簡便化を図ることができる。
 また、渦室ユニット31a、31bに、第1渦室ユニット31aが複数備えられているので、図2に示すように、複数の第1渦室ユニット31aの各整流路34aにおいて主液室14に開口する開口部の大きさを小さく抑えつつ、これらの開口部の開口面積の総和を、第1渦室ユニット31aが1つのみである場合における整流路34aの開口部の開口面積と同等に確保することができる。
 また前述のように、複数の第1渦室ユニット31aの各整流路34aの開口部の大きさを小さく抑えることができるので、複数の第1渦室ユニット31aの各渦室33aの容積も小さく抑えることができる。これにより、これらの渦室33aの容積の総和を、渦室ユニットとして第1渦室ユニット31aが1つのみ備えられている場合における渦室33aの容積よりも小さくすることができる。
 以上より、この防振装置10では、第1渦室ユニット31aが1つのみである場合に比べて、複数の第1渦室ユニット31aの全体で、整流路34aの開口部の開口面積を同等に確保しつつ渦室33aの容積を小さくすることができる。
 そしてこのように、複数の第1渦室ユニット31aの全体で、整流路34aの開口部の開口面積を同等に確保することができるので、渦室33aの容積が小さくても、第1渦室ユニット31aが1つのみである場合と同程度に振動を減衰および吸収することができる。
 また前述のように、複数の第1渦室ユニット31aの全体で、渦室33aの容積を小さくすることができるので、所望の振動のうち、振幅が小さいものが入力されたときに、液体を各第1渦室ユニット31aにおける渦室33a内で、第1渦室ユニット31aが1つのみである場合に比べて感度良く旋回させることができる。これにより、振動を吸収および減衰させ易くすることが可能になり、この防振装置10の減衰特性を高精度に発揮させることができる。
 また、渦室ユニット31a、31bに第1渦室ユニット31aと第2渦室ユニット31bとが備えられている。したがって、主液室14から副液室15に流通する液体に、第1渦室ユニット31aを流通させることで、振動を吸収および減衰するとともに、副液室15から主液室14に流通する液体に、第2渦室ユニット31bを流通させることで、振動を吸収および減衰することが可能になり、振動を効果的に吸収および減衰することができる。
 また連通孔32a、32bが、渦室33a、33bの端面から渦室33a、33b内に開口しているので、液体の旋回流を安定して生じさせることが可能になり、振動を効果的に減衰および吸収することができる。
 さらに連通孔32a、32bが、渦室33a、33bの軸線Lと同軸に配置されているので、渦室33a、33bで形成される液体の旋回流の旋回方向に沿った長さを大きく確保して液体を渦室33a、33b内で滞留させ易くすることが可能になり、振動をより効果的に減衰および吸収することができる。
 また渦室33a、33bの軸線Lが、交差面に沿って延びているので、仕切り部材16に多くの渦室ユニット31a、31bを形成し易くすることが可能になり、この防振装置10のスペース効率を高めることができる。
 さらに渦室ユニット31a、31bが、周方向に複数配置されているので、仕切り部材16に一層多くの渦室ユニット31a、31bを形成し易くすることが可能になり、この防振装置10のスペース効率を更に高めることができる。
 また、分割面42bが、全ての渦室ユニット31a、31bそれぞれの渦室33a、33bを軸線O方向に分割し、かつ、整流路34a、34bが、軸線O方向に延びて仕切り部材16の端面に開口している。したがって、分割体42aを金型によって形成する場合、この金型を分割体42aから軸線O方向に容易に脱型し易くすることが可能になり、この防振装置10を簡便に形成することができる。
(第2実施形態)
 次に、本発明に係る第2実施形態に係る防振装置を、図8を参照して説明する。
 なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
 図8に示すように、この防振装置50では、主液室14と副液室15とが、連絡流路30のみを通して連通されていて、制限通路44が設けられていない。そして、シェイク振動およびアイドル振動などの通常の振動が入力されたときに、この振動が複数の第1渦室ユニット31aおよび複数の第2渦室ユニット31bそれぞれによって吸収および減衰されるように、第1渦室ユニット31a、31bが設計されている。
 すなわち、アイドル振動は、比較的振幅が小さいものの周波数が高く、シェイク振動は、周波数が低いものの振幅が大きいことから、このような通常の振動が入力されたときには、主液室14から第1整流路34aを通して第1渦室33a内に流入する液体の流速をいずれも一定以上に高めることができる。したがって、本実施形態に係る渦室ユニット31a、31bの形状を、前記実施形態に係る防振装置10の渦室ユニット31a、31bとは異ならせることで、シェイク振動およびアイドル振動のいずれの振動が入力されたときであっても、図5に2点鎖線で示すように、第1渦室33a内で液体の旋回流を形成することができる。
 その結果、例えば、液体の粘性抵抗や、旋回流を形成することによるエネルギー損失、液体と第1渦室33aの壁面との間の摩擦によるエネルギー損失などを起因として、液体の圧力損失が高められ、これにより振動が吸収および減衰される。なおこのとき、液体の流速の上昇に伴って第1渦室33a内に流入する液体の流量が顕著に上昇し、第1渦室33a内に流入した液体により形成された旋回流で第1渦室33a内が満たされた状態で、さらに液体が第1渦室33a内に流入しようとする場合、液体の圧力損失を大きく確保することができる。
 第1渦室33a内で旋回させられた液体は、その後、第1連通孔32aから流出され、連通路36および第2渦室ユニット31bを通して副液室15に流入する。このとき図6に2点鎖線で示すように、第2連通孔32bから第2渦室33b内に流入した液体は旋回することなく、第2渦室33b内を単に通過して副液室15に流入する。
 また副液室15内の液体が、連絡流路30を通して主液室14側に向けて流動しようとすると、この液体はまず、第2整流路34bを通して第2渦室33b内に流入する。このときも、液体の流速が一定以上の高さである場合には、図5に2点鎖線で示すように、第2渦室33b内で液体の旋回流を形成することが可能になり、液体の圧力損失が高められて振動が吸収および減衰される。なお図示の例では、第2渦室33b内の旋回流は、第1渦室33a内の旋回流と周方向に沿って同一方向に向けて旋回する。
 そして、第2渦室33b内で旋回させられた液体は、その後、第2連通孔32bから流出され、連通路36および第1渦室ユニット31aを通して主液室14に流入する。このとき図6に2点鎖線で示すように、第1連通孔32aから第1渦室33a内に流入した液体は旋回することなく、第1渦室33a内を単に通過して主液室14に流入する。
 ところでこの防振装置50には、例えば想定よりも周波数が高く振幅が極めて小さい微振動などが意図せず入力されることがある。微振動が入力されたときには、整流路34a、34bを通して各渦室33a、33b内に流入する液体の流速が低いことから、図7に2点鎖線で示すように、各渦室33a、33b内での液体の旋回が抑制される。そして、各渦室33a、33bで液体の旋回流が生じない場合には、液体が渦室33a、33bを単に通過して円滑に流通することから、動ばね定数の上昇が抑えられる。
 以上説明したように、本実施形態に係る防振装置50によれば、渦室33a、33b内で液体の旋回流を形成することで、液体の圧力損失を高めて振動を吸収および減衰することができる。その結果、例えばアイドル振動やシェイク振動などの通常の振動が入力されたときに、振動の周波数によらず液体の流速に応じて振動を吸収および減衰することができる。したがって、互いに周波数が異なる複数種類の振動を吸収および減衰しつつ、構造の簡素化および製造の容易化を図ることができる。
 また、流速が低く渦室33a、33b内での液体の旋回が抑制された状態下では、動ばね定数の上昇が抑えられる。したがって、例えば、通常の振動よりも周波数が高く振幅が極めて小さい微振動などの意図しない振動が入力されたとき等、通常の振動が入力されたときよりも液体の流速が低いときには、動ばね定数の上昇を抑えることが可能になり、この防振装置50の製品特性を確保し易くすることができる。
(第3実施形態)
 次に、本発明に係る第3実施形態に係る防振装置を、図9から図12を参照して説明する。
 なお、この第3実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
 図9から図12に示すように、この防振装置60では、制限通路44が、連絡流路30と独立して設けられるのに代えて、連絡流路30に接続されている。制限通路44は、多数の連絡流路30それぞれに1つずつ設けられている。各制限通路44は、連絡流路30における連通路36に接続されている。
 制限通路44には、第1制限通路44aと、第2制限通路44bと、が備えられている。第1制限通路44aは、連通路36と主液室14とを連通する。第2制限通路44bは、連通路36と副液室15とを連通する。第1制限通路44aおよび第2制限通路44bは、多数の連絡流路30に対して周方向に交互に配置されていて、周方向に隣り合う連絡流路30には、互いに異なる種類の制限通路44が設けられている。
 各制限通路44a、44bは、横通路61と、縦通路62と、を備えている。横通路61は、連通路36から径方向に向けて延びている。横通路61の軸線は、前記分割面42b上に位置する。縦通路62は、横通路61から軸線O方向の外側に向けて延び、主液室14または副液室15に開口する。
 前記防振装置60にシェイク振動が入力されて主液室14から連絡流路30に液体が流入しようとすると、前述のように第1渦室33a内で渦が発生する。その結果、主液室14内の液体が、第1制限通路44a、連通路36および第2渦室ユニット31bを通して副液室15に流入する。またこのとき、副液室15から連絡流路30内に液体が流入しようとすると、前述のように第2渦室33b内で渦が発生する。その結果、副液室15内の液体が、第2制限通路44b、連通路36および第1渦室ユニット31aを通して副液室15に流入する。
 以上のように、シェイク振動の入力時に、液体が第1制限通路44aや第2制限通路44bを流通することで、振動を吸収および減衰することができる。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 ここで前記実施形態では、防振装置10、50は、アイドル振動およびシェイク振動の両方を吸収および減衰するが、本発明はこれに限られない。本発明は、第1振動と、この第1振動よりも周波数が高い第2振動と、の両振動を吸収および減衰する他の構成に適宜変更してもよい。
 また前記実施形態では、整流路34a、34bは、各渦室ユニット31a、31bに1つずつ設けられているが、本発明はこれに限られない。例えば、整流路は、各渦室ユニットに複数ずつ設けられていてもよい。
 また前記実施形態では、第1渦室33aと第2渦室33bとが、連通路36を通して連通されているが、これに限られない。例えば、第1渦室と第2渦室とが、薄板状の壁部を介して周方向に隣接していて、両渦室が、前記壁部に周方向に貫設された孔部を通して連通していてもよい。この場合、第1連通孔および第2連通孔それぞれを、共通の前記孔部により構成することができる。
 また前記実施形態では、渦室33a、33bの軸線Lが、周方向に沿って延び、交差面に沿って延びているが、本発明はこれに限られない。例えば渦室の軸線が、第1取付け部材の軸線方向に延びていてもよい。
 さらに前記実施形態では、整流路34a、34bは、軸線O方向に延びているが、本発明はこれに限られない。例えば整流路が、第1取付け部材の径方向に延びていてもよい。
 さらに本発明の変形例では、分割面が、全ての渦室ユニットそれぞれの渦室を第1取付け部材の軸線方向に分割していなくてもよい。
 また前記実施形態では、第1連通孔32aは、第2渦室ユニット31bを通して副液室15に連通しているが、本発明はこれに限られない。例えば第1連通孔が、副液室に直接開口していてもよい。この場合、例えば第1連通孔ではなく第1整流路が、第2渦室ユニットを通して主液室に連通していてもよい。
 また前記実施形態では、第2連通孔32bは、第1渦室ユニット31aを通して主液室14に連通しているが、本発明はこれに限られない。例えば第2連通孔が、主液室に直接開口していてもよい。この場合、例えば第2連通孔ではなく第2整流路が、第1渦室ユニットを通して副液室に連通していてもよい。
 また前記実施形態では、渦室ユニット31a、31bには、第1渦室ユニット31aおよび第2渦室ユニット31bが備えられているが、本発明はこれに限られない。例えば渦室ユニットとして、複数の第1渦室ユニットのみが備えられていてもよい。つまり本発明の変形例では、渦室ユニットに、渦室としての第1渦室が、整流路としての第1整流路を通して第1液室に連通し、連通孔としての第1連通孔を通して第2液室に連通する第1渦室ユニットが複数備えられた他の構成に適宜変更することができる。
 さらに前記実施形態では、防振装置10、50に、第1液室としての主液室14が備えられ、第2液室としての副液室15が備えられているが、本発明はこれに限られない。例えば、防振装置に、第1液室としての副液室が備えられ、第2液室としての主液室が備えられた他の構成などに適宜変更してもよい。
 また前記実施形態では、仕切り部材16が、第1取付け部材11内の液室を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るが、本発明はこれに限られない。例えば、前記ダイヤフラムを設けるのに代えて、弾性体を軸線方向に一対設けて、副液室を設けるのに代えて、弾性体を壁面の一部に有する受圧液室を設けてもよい。つまり仕切り部材が、液体が封入される第1取付け部材内の液室を、第1液室および第2液室に仕切り、第1液室および第2液室の両液室のうちの少なくとも1つが、弾性体を壁面の一部に有する他の構成に適宜変更してもよい。
 また渦室ユニット31a、31bは、前記実施形態に示したものに限られず、整流路から流入する液体の流速に応じて液体の旋回流を形成し、この液体を連通孔から流出させる渦室を有する他の構成に適宜変更してもよい。
 また前記実施形態では、エンジンを第2取付け部材12に接続し、第1取付け部材11を車体に接続する場合の説明をしたが、逆に接続するように構成してもよい。
 さらに、本発明に係る防振装置10、50は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントにも適用することも可能である。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 防振装置において、減衰特性を高精度に発揮させることができる。
10、50 防振装置、11 第1取付け部材、12 第2取付け部材、13 弾性体、14 主液室、15 副液室、16 仕切り部材、31a 第1渦室ユニット、31b 第2渦室ユニット、32a 第1連通孔、32b 第2連通孔、33a 第1渦室、33b 第2渦室、34a 第1整流路、34b 第2整流路、42 渦室部材、42b 分割面、44 制限通路、L 渦室の軸線、O 第1取付け部材の軸線

Claims (8)

  1.  振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、
     これらの両取付け部材を連結する弾性体と、
     液体が封入される前記第1取付け部材内の液室を、第1液室および第2液室に仕切る仕切り部材と、を備え、
     前記第1液室および前記第2液室の両液室のうちの少なくとも1つは、前記弾性体を壁面の一部に有する防振装置であって、
     前記仕切り部材には、前記両液室を連通する渦室ユニットが設けられ、
     前記渦室ユニットには、
     内部に流入する液体を旋回させる渦室と、
     前記両液室のうち、一方の液室と前記渦室とを連通し、前記渦室内に、前記渦室の周方向に向けて開口する整流路と、
     前記両液室のうち、他方の液室と前記渦室とを連通する連通孔と、が備えられ、
     前記渦室は、前記整流路から流入する液体の流速に応じて液体の旋回流を形成し、この液体を前記連通孔から流出させ、
     前記渦室ユニットには、前記渦室としての第1渦室が、前記整流路としての第1整流路を通して前記第1液室に連通し、前記連通孔としての第1連通孔を通して前記第2液室に連通する第1渦室ユニットが複数備えられている防振装置。
  2.  前記仕切り部材には、前記両液室を連通し、共振周波数が第1振動の周波数と同等とされた制限通路が設けられ、
     前記整流路の共振周波数は、前記第1振動よりも周波数が高い第2振動の周波数と同等とされている請求項1記載の防振装置。
  3.  前記仕切り部材は、前記液室を前記第1取付け部材の軸線方向に仕切り、
     前記渦室の軸線は、前記第1取付け部材の軸線に交差する交差面に沿って延びている請求項1または2に記載の防振装置。
  4.  前記渦室の軸線は、前記第1取付け部材の周方向に沿って延び、
     前記渦室ユニットは、前記第1取付け部材の周方向に複数配置されている請求項3記載の防振装置。
  5.  前記仕切り部材には、前記渦室ユニットが形成された渦室部材が備えられ、
     前記渦室部材は、前記第1取付け部材の軸線に交差して延びる分割面によって、前記第1取付け部材の軸線方向に分割され、
     前記分割面は、全ての前記渦室ユニットそれぞれの前記渦室を前記第1取付け部材の軸線方向に分割し、
     前記整流路は、前記第1取付け部材の軸線方向に延び、前記仕切り部材において前記第1取付け部材の軸線方向の外側を向く端面に開口している請求項3または4に記載の防振装置。
  6.  前記連通孔は、前記渦室を画成する壁面のうち、この渦室の軸線方向を向く端面から前記渦室内に開口している請求項1から5のいずれか1項に記載の防振装置。
  7.  前記連通孔は、前記渦室の軸線と同軸に配置されている請求項6記載の防振装置。
  8.  前記渦室ユニットには、前記渦室としての第2渦室が、前記整流路としての第2整流路を通して前記第2液室に連通し、前記連通孔としての第2連通孔を通して前記第1液室に連通する第2渦室ユニットが複数備えられている請求項1から7のいずれか1項に記載の防振装置。
PCT/JP2014/068698 2013-07-25 2014-07-14 防振装置 WO2015012145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015528237A JP6395323B2 (ja) 2013-07-25 2014-07-14 防振装置
CN201480041261.6A CN105393019B (zh) 2013-07-25 2014-07-14 隔振装置
EP14829011.7A EP3026292B1 (en) 2013-07-25 2014-07-14 Vibration prevention device
US14/900,868 US9816581B2 (en) 2013-07-25 2014-07-14 Vibration prevention device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013154956 2013-07-25
JP2013-154956 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012145A1 true WO2015012145A1 (ja) 2015-01-29

Family

ID=52393189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068698 WO2015012145A1 (ja) 2013-07-25 2014-07-14 防振装置

Country Status (5)

Country Link
US (1) US9816581B2 (ja)
EP (1) EP3026292B1 (ja)
JP (1) JP6395323B2 (ja)
CN (1) CN105393019B (ja)
WO (1) WO2015012145A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016508A1 (en) * 2014-03-17 2017-01-19 Bridgestone Corporation Vibration damping device
US9566856B2 (en) 2014-06-23 2017-02-14 Sumitomo Riko Company Limited Fluid-filled vibration damping device
US10034925B2 (en) 2015-07-29 2018-07-31 Onkimmune Limited Modified natural killer cells and natural killer cell lines having increased cytotoxicity
US10906951B2 (en) 2015-07-29 2021-02-02 Onk Therapeutics Limited Modified natural killer cells and natural killer cell lines having increased cytotoxicity
JP2021063549A (ja) * 2019-10-11 2021-04-22 本田技研工業株式会社 車両用防振装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134629B2 (ja) 2013-10-25 2017-05-24 株式会社ブリヂストン 防振装置
JP6300406B2 (ja) * 2014-04-24 2018-03-28 株式会社ブリヂストン 防振装置
JP6300407B2 (ja) * 2014-04-30 2018-03-28 株式会社ブリヂストン 防振装置
JP6335622B2 (ja) * 2014-04-30 2018-05-30 株式会社ブリヂストン 防振装置
JP6355242B2 (ja) * 2014-06-05 2018-07-11 株式会社ブリヂストン 防振装置
JP6431437B2 (ja) * 2015-04-27 2018-11-28 株式会社ブリヂストン 防振装置
US9818651B2 (en) * 2016-03-11 2017-11-14 Globalfoundries Inc. Methods, apparatus and system for a passthrough-based architecture
JP6619702B2 (ja) * 2016-06-23 2019-12-11 株式会社ブリヂストン 防振装置
CN110573763B (zh) * 2017-04-27 2021-10-29 株式会社普利司通 隔振装置
JP7346189B2 (ja) * 2019-09-17 2023-09-19 株式会社プロスパイラ 防振装置
CN112576681B (zh) * 2019-09-27 2023-02-24 现代自动车株式会社 用于车辆的悬置
JP7399587B2 (ja) * 2020-10-08 2023-12-18 株式会社プロスパイラ 防振装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118921A (en) * 1981-01-12 1982-07-24 Nissan Motor Co Ltd Mounting device of power unit
JPS6073147A (ja) * 1983-09-30 1985-04-25 Nissan Motor Co Ltd 流体入りマウント装置
JPS6228543A (ja) * 1985-07-25 1987-02-06 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト 減圧減衰式弾性軸受
JP2004516435A (ja) * 2000-12-22 2004-06-03 コンティテヒ・ルフトフェーダージステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ダンパを備えた液圧ばね
JP2007120598A (ja) 2005-10-27 2007-05-17 Bridgestone Corp 防振装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL299872A (ja) * 1962-10-30 1900-01-01
JPS60184737A (ja) * 1984-02-21 1985-09-20 Honda Motor Co Ltd 流体入りマウント
DE3410781C2 (de) * 1984-03-23 1986-08-07 Metzeler Kautschuk GmbH, 8000 München Zweikammer-Motorlager mit hydraulischer Dämpfung
FR2617930B1 (fr) * 1987-07-07 1992-07-31 Peugeot Support hydroelastique, notamment pour assurer la suspension d'un moteur dans un vehicule
DE3730425A1 (de) * 1987-09-10 1989-03-23 Metzeler Gmbh Hydraulisch daempfendes motorlager
DE3731479A1 (de) * 1987-09-18 1989-04-06 Metzeler Gmbh Hydraulisch daempfendes zweikammer-motorlager
US6056279A (en) * 1998-04-30 2000-05-02 General Motors Corporation Duo-pumping hydraulic mount
US9038997B2 (en) * 2008-02-05 2015-05-26 Cooper-Standard Automotive Inc. Axially damped hydraulic mount assembly
CN101813154B (zh) * 2009-02-24 2013-02-13 仓敷化工株式会社 液体封入式隔振装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118921A (en) * 1981-01-12 1982-07-24 Nissan Motor Co Ltd Mounting device of power unit
JPS6073147A (ja) * 1983-09-30 1985-04-25 Nissan Motor Co Ltd 流体入りマウント装置
JPS6228543A (ja) * 1985-07-25 1987-02-06 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト 減圧減衰式弾性軸受
JP2004516435A (ja) * 2000-12-22 2004-06-03 コンティテヒ・ルフトフェーダージステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ダンパを備えた液圧ばね
JP2007120598A (ja) 2005-10-27 2007-05-17 Bridgestone Corp 防振装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016508A1 (en) * 2014-03-17 2017-01-19 Bridgestone Corporation Vibration damping device
US9772003B2 (en) * 2014-03-17 2017-09-26 Bridgestone Corporation Vibration damping device
US9566856B2 (en) 2014-06-23 2017-02-14 Sumitomo Riko Company Limited Fluid-filled vibration damping device
DE102015109970B4 (de) 2014-06-23 2018-08-02 Toyota Jidosha Kabushiki Kaisha Fluidgefüllte Vibrationsdämpfungsvorrichtung
US10034925B2 (en) 2015-07-29 2018-07-31 Onkimmune Limited Modified natural killer cells and natural killer cell lines having increased cytotoxicity
US10906951B2 (en) 2015-07-29 2021-02-02 Onk Therapeutics Limited Modified natural killer cells and natural killer cell lines having increased cytotoxicity
US10960064B2 (en) 2015-07-29 2021-03-30 Onk Therapeutics Limited Modified natural killer cells and natural killer cell lines having increased cytotoxicity
JP2021063549A (ja) * 2019-10-11 2021-04-22 本田技研工業株式会社 車両用防振装置
JP7029433B2 (ja) 2019-10-11 2022-03-03 本田技研工業株式会社 車両用防振装置

Also Published As

Publication number Publication date
US9816581B2 (en) 2017-11-14
CN105393019A (zh) 2016-03-09
US20160160956A1 (en) 2016-06-09
JP6395323B2 (ja) 2018-09-26
EP3026292B1 (en) 2019-11-27
JPWO2015012145A1 (ja) 2017-03-02
EP3026292A4 (en) 2016-07-20
CN105393019B (zh) 2017-10-17
EP3026292A1 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6395323B2 (ja) 防振装置
JP6245646B2 (ja) 防振装置
JP6196682B2 (ja) 防振装置
JP6134629B2 (ja) 防振装置
JP6274927B2 (ja) 防振装置
JP6072242B2 (ja) 防振装置
JP6265562B2 (ja) 防振装置
JP6196681B2 (ja) 防振装置
WO2015166864A1 (ja) 防振装置
WO2015163027A1 (ja) 防振装置
JP6028099B2 (ja) 防振装置
JP6355242B2 (ja) 防振装置
WO2017221823A1 (ja) 防振装置
WO2015163034A1 (ja) 防振装置
WO2014196520A1 (ja) 防振装置
WO2017221816A1 (ja) 防振装置
JP2016003726A (ja) 防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041261.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528237

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014829011

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE