WO2015012059A1 - ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 - Google Patents
ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 Download PDFInfo
- Publication number
- WO2015012059A1 WO2015012059A1 PCT/JP2014/067125 JP2014067125W WO2015012059A1 WO 2015012059 A1 WO2015012059 A1 WO 2015012059A1 JP 2014067125 W JP2014067125 W JP 2014067125W WO 2015012059 A1 WO2015012059 A1 WO 2015012059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- quartet
- nucleic acid
- acid molecule
- stem
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/04—Dairy products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
- G01N33/542—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/12—Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
- C12N2310/127—DNAzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/15—Nucleic acids forming more than 2 strands, e.g. TFOs
- C12N2310/151—Nucleic acids forming more than 2 strands, e.g. TFOs more than 3 strands, e.g. tetrads, H-DNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3519—Fusion with another nucleic acid
Definitions
- the present invention relates to a target analysis fluorescent sensor, a target analysis kit, and a target analysis method using the same.
- Detecting targets is required in various fields such as clinical medicine, food, and environment.
- a technique using an antibody that specifically binds to the target is widely used as a method of utilizing the interaction with the target.
- a new method using a nucleic acid molecule (so-called aptamer) specific to the target has been developed.
- DNAzyme is a DNA molecule that has a G-quartet structure and causes catalytic activity of the same oxidation-reduction reaction as peroxidase and the like.
- the target can be indirectly detected by binding the target to the aptamer and measuring the catalytic activity of the DNAzyme in the sensor to which the target is bound (Non-patent Document 1).
- Non-patent Documents 2 and 3 Non-patent Documents 2 and 3
- a method for detecting a target by measuring fluorescence due to the complex formation instead of the catalytic activity of the oxidation-reduction reaction of DNAzyme in a sensor in which an aptamer and DNAzyme are linked has also been reported.
- an object of the present invention is to provide a new fluorescence sensor for target analysis, a target analysis kit, and a target analysis method using the same.
- the fluorescent sensor for target analysis of the present invention has the following (I), (II), (III) having a G-quartet forming region (D) forming a G-quartet structure and a binding region (A) binding to the target.
- At least one nucleic acid molecule selected from the group consisting of: (IV) and (V) In the absence of the target, G-quartet formation of the G-quartet formation region (D) is inhibited, A G-quartet structure is formed in the G-quartet formation region (D) by contact of the target with the binding region (A) in the presence of a target, and the G-quartet formation region (D) is complexed with porphyrin. By forming the above, the complex generates fluorescence.
- the blocking region (B) is complementary to a partial region (Dp) in the G-quartet-forming region (D);
- a terminal region (Ab) on the blocking region (B) side in the binding region (A) is complementary to a region (Df) adjacent to the partial region (Dp) in the G-quartet formation region (D);
- a single-stranded nucleic acid molecule that is complementary to the terminal region (Af) opposite to the blocking region (B) in the binding region (A).
- the blocking region (B) is complementary to a partial region (Dp) of the G-quartet-forming region (D);
- the stem formation region (S D ) has a sequence complementary to the G-quartet formation region (D),
- the stem-forming region (S A ) is a single-stranded nucleic acid molecule having a sequence complementary to the binding region (A).
- the G-quartet forming region (D) includes a first region (D1) and a second region (D2), and the first region (D1) and the second region (D2) form a G-quartet.
- V a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2), The first strand (ss1) has the G-quartet formation region (D) and the binding region (A), The second strand (ss2) has a stem formation region (S D ) and a stem formation region (S A ), and the stem formation region (S D ) A double-stranded nucleic acid molecule having a complementary sequence, wherein the stem-forming region (S A ) has a sequence complementary to the binding region (A).
- the target analysis kit of the present invention includes a sensor and a reagent, wherein the sensor is the fluorescent sensor for target analysis of the present invention, and the reagent includes porphyrin.
- the target analysis method of the present invention comprises a contact step of bringing a sample into contact with the target analysis fluorescent sensor of the present invention, and And detecting a target in the sample by detecting fluorescence due to a complex of the G-quartet formation region (D) and the porphyrin in the sensor in the presence of porphyrin.
- the target can be indirectly analyzed by the generation of fluorescence simply and efficiently.
- the present invention can be said to be an extremely useful technique for research and examination in various fields such as clinical medicine, food, and environment.
- FIG. 1 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 2 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 3 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 4 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 5 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 6 is a schematic diagram showing an example of a G-quartet structure in the sensor of the present invention.
- FIG. 1 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 2 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 3 is a schematic diagram showing an example of a
- FIG. 7 is a schematic diagram showing an example of a nucleic acid molecule in the sensor of the present invention.
- FIG. 8 is a graph showing fluorescence intensity in Example 2 of the present invention, where (A) shows the result of adding a melamine sensor, and (B) shows the result of adding no melamine sensor.
- FIG. 9 is a graph showing fluorescence intensity in Example 3 of the present invention, where (A) shows the result of adding a melamine sensor, and (B) shows the result of adding no melamine sensor.
- FIG. 10 is a graph showing the difference in fluorescence intensity between the melamine sensor added and the melamine sensor not added in Example 3 of the present invention.
- the fluorescent sensor of the present invention for example, in the single-stranded nucleic acid molecule (I) or (II),
- the G-quartet forming region (D), the blocking region (B), and the binding region (A) are provided in this order from the 5 ′ side.
- the fluorescent sensor of the present invention for example, in the single-stranded nucleic acid molecule (III),
- the stem forming region (S) includes a stem forming region (S D ) and a stem forming region (S A ),
- the G-quartet formation region (D) and the stem formation region (S D ) have complementary sequences to each other;
- the binding region (A) and the stem formation region (S A ) have complementary sequences.
- the fluorescent sensor of the present invention includes, for example, the G-quartet formation region (D), the stem formation region (S D ), the binding region (A), and the stem formation in the single-stranded nucleic acid molecule (III).
- the region (S A ) is connected in the following order (1), (2), (3) or (4).
- the fluorescent sensor of the present invention for example, in the single-stranded nucleic acid molecule (IV),
- the first region (D1) and the second region (D2) are: Each has a sequence complementary to each other at the end opposite to the position of the binding region (A).
- the fluorescent sensor of the present invention has, for example, a linker sequence between the G-quartet formation region (D) and the binding region (A).
- the fluorescence sensor of the present invention further has a base material, for example, and the nucleic acid molecule is arranged on the base material.
- the nucleic acid molecule is linked to the base material via a linker region.
- a reagent part containing a reagent is further arranged on the base material, and the reagent contains porphyrin.
- the porphyrin is at least one porphyrin selected from the group consisting of N-methylmesoporphyrin, Zn-DIGP, ZnPP9 and TMPyP.
- the senor is a sensor in which the nucleic acid molecule is arranged on a base material, and a reagent part containing the reagent is further arranged on the base material.
- the porphyrin is at least one porphyrin selected from the group consisting of N-methylmesoporphyrin, Zn-DIGP, ZnPP9 and TMPyP.
- the detection of fluorescence in the detection step is measurement of fluorescence intensity.
- the sample is at least one selected from the group consisting of raw milk, processed milk and powdered milk.
- the target is melamine.
- the target analysis fluorescent sensor includes the G-quartet formation region (D) that forms the G-quartet structure and the binding region (A) that binds to the target (I ), (II), (III), (IV) and (V), comprising at least one nucleic acid molecule selected from the group consisting of:
- the G-quartet formation region (D) that forms the G-quartet structure and the binding region (A) that binds to the target (I ), (II), (III), (IV) and (V), comprising at least one nucleic acid molecule selected from the group consisting of:
- a G-quartet structure is formed in the G-quartet formation region (D) by contact of the target with the binding region (A) in the presence of a target
- the G-quartet formation region (D) is complexed with porphyrin.
- the target analysis sensor of the present invention is also referred to as a sensor, and the region is also referred to as a nucleic acid region.
- the single-stranded nucleic acid molecule in the present invention can also be referred to as a single-stranded nucleic acid element, for example.
- the switch-OFF or the turn-OFF
- the formation of the G-quartet structure is represented by the switch-ON. (Or turn-ON).
- the G-quartet (also referred to as G-tetrad) is generally known as a surface structure in which G (guanine) is a tetramer.
- the G-quartet formation region (D) is a region having a plurality of bases G and forming a G-quartet structure with the plurality of bases G in the region.
- the G-quartet structure may be, for example, either a parallel type or an anti-parallel type, and is preferably a parallel type.
- the number of G-quartet structures formed in the G-quartet formation region (D) is not particularly limited, and may be one surface or a plurality of two or more surfaces.
- the quartet formation region (D) preferably forms a guanine quadruplex (or G-quadruplex) structure in which multiple G-quartets are stacked.
- the sequence of the G-quartet formation region (D) may be any sequence that forms the G-quartet structure, and more preferably a sequence that forms a guanine quadruplex structure.
- the region where the G-quartet structure is formed in the presence of porphyrin emits fluorescence by forming a complex with porphyrin.
- the G-quartet formation region (D) in the absence of the target, the G-quartet formation region (D) is inhibited from forming a G-quartet structure, and in the presence of the target, the binding region (A) When the target contacts, the inhibition of formation of the G-quartet structure in the G-quartet formation region (D) is released, and the G-quartet formation region (D) forms a G-quartet structure.
- the G-quartet formation region (D) in the absence of the target, cannot form a G-quartet structure, so that no fluorescence is emitted due to the complex formation with porphyrin.
- the G-quartet-forming region (D) forms a G-quartet structure, and fluorescence is generated by complex formation with porphyrin. Therefore, for example, the presence or absence of the target in the sample or the target amount can be analyzed by fluorescence due to the complex formation between the G-quartet formation region (D) and porphyrin.
- a nucleic acid molecule that forms the G-quartet structure for example, a nucleic acid molecule (catalytic nucleic acid molecule) that generates a catalytic function of an enzyme is known.
- the catalytic function is not particularly limited, and is, for example, a catalytic function of a redox reaction.
- the oxidation-reduction reaction is, for example, a reaction that causes transfer of electrons between two substrates in the process of generating a product from the substrates.
- the kind of the redox reaction is not particularly limited.
- the catalytic function of the oxidation-reduction reaction includes, for example, the same activity as an enzyme, and specifically includes, for example, the same activity as peroxidase (hereinafter referred to as “peroxidase-like activity”).
- peroxidase activity include horseradish peroxidase (HRP) activity.
- the catalytic nucleic acid molecule is generally called a DNA enzyme or DNAzyme in the case of a DNA sequence, and is called an RNA enzyme or RNAzyme in the case of an RNA sequence.
- such a catalytic nucleic acid molecule can be used for the G-quartet formation region (D).
- the G-quartet formation region (D) is only required to form a G-quartet structure, and the presence or absence of the catalytic function is not limited.
- DNAzyme examples include nucleic acid molecules such as the following articles (1) to (4). (1) Travascio et al., Chem. Biol., 1998, vol.5, p.505-517 (2) Cheng et al., Biochemistry, 2009, vol.48, p.7817-7823 (3) Teller et al., Anal. Chem., 2009, vol.81, p.9114-9119 (4) Tao et al., Anal. Chem., 2009, vol.81, p.2144-2149
- the G-quartet formation region (D) may be, for example, a single-stranded type or a double-stranded type.
- the single-stranded type can form a G-quartet structure, for example, in a single-stranded G-quartet formation region (D), and the double-stranded type includes, for example, the first region (D1) and the second region.
- a G-quartet structure can be formed between the first region (D1) and the second region (D2).
- the latter double-stranded type includes, for example, a structure in which the first region and the second region are indirectly linked, and will be specifically described in the nucleic acid molecule (IV) described later.
- the length of the single-stranded G-quartet formation region (D) is not particularly limited, and the lower limit is, for example, 11 base length, 13 base length, 15 base length, and the upper limit is, for example, 60 bases Long, 36 bases, 18 bases long.
- the lengths of the first region (D1) and the second region (D2) are not particularly limited. Also good.
- the length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
- the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
- the length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
- the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
- the target is not particularly limited, and any target can be selected. And according to the arbitrary target, a binding nucleic acid molecule that binds to the target may be used as the binding region (A).
- the target is not particularly limited, and examples thereof include low molecular weight compounds, microorganisms, viruses, food allergens, agricultural chemicals, mold poisons, and antibodies.
- Examples of the low molecular weight compound include melamine, antibiotics, agricultural chemicals, and environmental hormones.
- Examples of the microorganism include Salmonella, Listeria, Escherichia coli, and mold, and examples of the virus include norovirus.
- the length of the binding region (A) is not particularly limited, and the lower limit is, for example, 12 base length, 15 base length, 18 base length, and the upper limit is, for example, 140 base length, 80 base length, 60 bases
- the range is, for example, 12 to 140 bases long, 15 to 80 bases long, 18 to 60 bases long.
- the phrase “the other sequence is complementary to a certain sequence” means, for example, a sequence that can be annealed between the two. The annealing is also referred to as stem formation.
- complementary means, for example, complementarity when aligning two kinds of sequences is 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 100%, ie fully complementary.
- another sequence is complementary to a certain sequence when the sequence is directed from the 5 ′ side to the 3 ′ side, and the sequence is directed from the other 3 ′ side to the 5 ′ side. Means that the bases of each other are complementary.
- Nucleic acid molecule (I) The nucleic acid molecule (I) has the G-quartet-forming region (D), the blocking region (B), and the binding region (A) in this order,
- the blocking region (B) is complementary to a partial region (Dp) in the G-quartet-forming region (D);
- a terminal region (Ab) on the blocking region (B) side in the binding region (A) is complementary to a region (Df) adjacent to the partial region (Dp) in the G-quartet formation region (D);
- the binding region (A) is a single-stranded nucleic acid molecule complementary to a terminal region (Af) opposite to the blocking region (B) side.
- the G-quartet formation region (D) is, for example, the single-stranded type.
- nucleic acid molecule (I) for example, based on the following mechanism, the G-quartet formation in the G-quartet formation region (D) is controlled to be ON-OFF depending on the presence or absence of a target.
- the present invention is not limited to this mechanism.
- nucleic acid sequences are considered to be thermodynamically fluctuating between structures that can be formed, and the abundance ratio of relatively stable ones is considered to be high.
- a binding nucleic acid molecule such as an aptamer generally changes to a more stable three-dimensional structure upon contact with a target and binds to the target in the presence of the target.
- nucleic acid molecules such as DNAzyme are generally known to generate catalytic activity by a stable three-dimensional structure such as a G-quartet structure.
- the partial region (Dp) of the G-quartet formation region (D) is complementary to the blocking region (B) and is adjacent to the G-quartet formation region (D). Since the region (Df) is complementary to the terminal region (Ab) of the binding region (A), stem formation is possible in these complementary relationships. Therefore, in the absence of the target, the stem formation between the partial region (Dp) of the G-quartet formation region (D) and the blocking region (B) and the adjacent region of the G-quartet formation region (D) ( Stem formation occurs between Df) and the terminal region (Ab) of the binding region (A).
- Formation of the G-quartet structure in the G-quartet formation region (D) is inhibited by the former stem formation, and as a result, complex formation between the G-quartet formation region (D) and porphyrin is inhibited (switch -OFF), the latter formation of the stem blocks the formation of the more stable three-dimensional structure in the binding region (A), and maintains the blocking structure in a state where it is not bonded to the target.
- the structure of the molecule in this state is also called a blocking type or an inactive type.
- the binding region (A) changes to a more stable three-dimensional structure due to the contact of the target with the binding region (A).
- stem formation in the binding region (A) is released, and the target binds to the binding region (A) that has been changed to the more stable three-dimensional structure by intramolecular annealing.
- the stem formation of the G-quartet formation region (D) is also released by the three-dimensional structure of the binding region (A) accompanying the release of the stem formation in the binding region (A), and the G-quartet formation region (D) changes to a more stable three-dimensional structure by intramolecular annealing, and as a result, a G-quartet structure is formed in the region of the G-quartet formation region (D), resulting in the formation of the G-quartet.
- a complex of region (D) and porphyrin is formed and emits fluorescence (switch ON).
- the structure in this state is also called active form.
- the nucleic acid molecule (I) may further have a stabilization region (S).
- the stabilization region (S) is optional and may not be included.
- the stabilization region (S) is, for example, an array for stabilizing the structure when the binding region (A) is bound to the target.
- the stabilization region (S) is, for example, complementary to the blocking region (B) or complementary to a part thereof, specifically, on the binding region (A) side in the blocking region (B). It is preferably complementary to the terminal region (Ba).
- the stabilization region (S) connected to the binding region (A) and the binding region ( A stem is also formed between the blocking region (B) and the terminal region (Ba) connected to A).
- FIG. 1 shows a schematic diagram of a single-stranded nucleic acid molecule (I) in a state where each region is linked from the 5 'side as an example of the nucleic acid molecule (I).
- FIG. 1 is a schematic diagram showing the order of each sequence, (B) is a schematic diagram of a blocking type in the absence of a target, and (C) is an active type in the presence of a target.
- D is a structural unit (nucleotide) of the G-quartet formation region (D)
- B is a structural unit of the blocking region (B)
- A is a structural unit of the binding region (A)
- S represents the structural unit of the stabilization region (S)
- the line between the structural units represents a bond.
- FIG. 1 schematically shows each region, and the number of constituent units (arrangement length) of each region is not limited at all, and the stabilization region (S) is arbitrary. (The same applies hereinafter).
- examples of the nucleic acid molecule (I) include the G-quartet formation region (D), the blocking region (B), the binding region (A), and optionally the stabilization. It has area
- part of the G-quartet formation region (D) comprises the blocking region (B) and the binding region. It binds to a part of (A) to form a stem, and becomes a blocking type single-stranded nucleic acid molecule.
- region (S) in this order.
- part of the G-quartet formation region (D) comprises the blocking region (B) and the binding region. It binds to a part of (A) to form a stem, and becomes a blocking type single-stranded nucleic acid molecule.
- FIG. 1 (B) in the absence of a target, part of the G-quartet formation region (D) comprises the blocking region (B) and the binding region. It binds to a part of (A) to form a stem, and becomes a
- the nucleic acid molecule (I), in the presence of a target is brought into contact with the binding region (A) by the contact of the target with the binding region (A).
- a three-dimensional structure is formed by the intramolecular annealing, and stem formation in the G-quartet formation region (D) is also released accordingly, and the G-quartet formation region (D) becomes a G-quartet by the intramolecular annealing.
- the three-dimensional structure of the binding region (A) is further stabilized by combining the blocking region (B) and the stabilization region (S).
- the G-quartet-forming region (D), the blocking region (B), the binding region (A), and optionally the stabilizing region (S) are However, it may be indirectly linked by interposing a spacer sequence, but it is preferable that they are directly linked without interposing the spacer sequence.
- the G-quartet formation region (D) has a sequence complementary to the blocking region (B) and also has a sequence complementary to a part of the binding region (A).
- the blocking region (B) is complementary to a part of the G-quartet formation region (D) and has the stabilization region (S). It is also complementary to region (S).
- the arrangement and length of the blocking region (B) are not particularly limited, and can be appropriately set according to, for example, the arrangement and length of the G-quartet formation region (D).
- the length of the blocking region (B) is not particularly limited, and the lower limit is, for example, 1 base length, 2 base lengths, 3 base lengths, and the upper limit is, for example, 20 base lengths, 15 base lengths, 10 bases
- the range is, for example, 1 to 20 bases long, 2 to 15 bases long, and 3 to 10 bases long.
- the length of the partial region (Dp) of the G-quartet formation region (D) is, for example, lower limit is, for example, 1 base length, 2 base length, 3 base length, and upper limit is For example, the length is 20 bases, 15 bases, 10 bases, and the range is, for example, 1-20 bases, 2-15 bases, 3-10 bases.
- the length of the blocking region (B) and the length of the partial region (Dp) of the G-quartet formation region (D) are preferably the same, for example.
- the position of the partial region (Dp) in the G-quartet formation region (D), that is, the annealing region of the blocking region (B) in the G-quartet formation region (D), There is no particular limitation.
- the partial region ( For example, Dp) can be set under the following conditions.
- the lower limit of the length of the region (Db) between the region (D) side terminal is, for example, 3 base lengths, 4 base lengths, 5 base lengths
- the upper limit is, for example, 40 base lengths, 30 base lengths 20 base length
- the range is, for example, 3 to 40 base length, 4 to 30 base length, 5 to 20 base length.
- the lower limit of the length of the region (Df) adjacent to the partial region (Dp) in the G-quartet formation region (D) and opposite to the blocking region (B) side is, for example, 0 Base length, 1 base length, 2 base length, upper limit is, for example, 40 base length, 30 base length, 20 base length, and the range is, for example, 0-40 base length, 1-30 base length, It is 2 to 20 bases long.
- the terminal region (Ab) on the blocking region (B) side in the binding region (A) is complementary to the adjacent region (Df) of the G-quartet forming region (D) as described above.
- the terminal region (Ab) of the binding region (A) may be complementary to the entire region of the adjacent region (Df) of the G-quartet forming region (D), or the adjacent region (Df) It may be complementary to the partial region.
- the terminal region (Ab) of the binding region (A) is complementary to the terminal region of the adjacent region (Df) on the partial region (Dp) side of the G-quartet formation region (D). It is preferable that
- the length of the terminal region (Ab) in the binding region (A) complementary to the adjacent region (Df) of the G-quartet formation region (D) is not particularly limited, and the lower limit is, for example, one base length
- the upper limit is, for example, 20 base length, 8 base length, 3 base length, and the range is, for example, 1-20 base length, 1-8 base length, 1-3 base length.
- the stabilization region (S) is, for example, complementary to the blocking region (B) or complementary to a part thereof, and specifically, the binding region (B) in the blocking region (B). It is preferably complementary to the terminal region (Ba) on the A) side.
- the sequence and length of the stabilization region (S) are not particularly limited, and are appropriately determined according to, for example, the sequence and length of the blocking region (B), the sequence and length of the binding region (A), and the like. it can.
- the lower limit of the length of the stabilization region (S) is, for example, 0 base length and 1 base length
- the upper limit is, for example, 10 base length, 5 base length, 3 base length
- the range is For example, the length is 0 to 10 bases, 1 to 5 bases, or 1 to 3 bases.
- the stabilization region (S) is complementary to the entire blocking region (B)
- the blocking region (B) has the same length as the stabilization region (S).
- the stabilization region (S) is complementary to a part of the blocking region (B), a part of the blocking region (B), for example, the terminal region (Ba) It is the same length as (S).
- the total length of the nucleic acid molecule (I) is not particularly limited, and the lower limit is, for example, 25 base length, 35 base length, 40 base length, and the upper limit is, for example, 200 base length, 120 base length, The range is, for example, 25 to 200 bases, 35 to 120 bases, 40 to 80 bases.
- a linker region may be further added to one end or both ends.
- the linker region added to the terminal is also referred to as an additional linker region.
- the length of the additional linker region is not particularly limited and is, for example, 1 to 60 bases long.
- nucleic acid molecule (II) has the G-quartet formation region (D), the blocking region (B), the binding region (A), and the stabilization region (S) in this order, and the blocking region (B ) Is complementary to the partial region (Dp) of the G-quartet forming region (D), and the terminal region (Ba) on the front binding region (A) side of the blocking region (B) is It is a single-stranded nucleic acid molecule complementary to the activation region (S).
- the G-quartet formation region (D) is, for example, the single-stranded type.
- the binding region (A) is preferably a sequence that alone does not form intramolecular annealing necessary for binding to a target.
- the nucleic acid molecule (II) is bound to the binding region (A) by annealing the terminal region (Ba) of the blocking region (B) and the stabilization region (S) in the presence of a target. It is preferable that the three-dimensional structure is formed from the entire region (A), the terminal region (Ba), and the stabilization region (S).
- the G-quartet formation in the G-quartet formation region (D) is controlled to ON / OFF depending on the presence or absence of a target based on the following mechanism. Note that the present invention is not limited to this mechanism.
- the binding region (A) is a sequence that does not form intramolecular annealing necessary for binding to the target by itself, formation of the more stable three-dimensional structure for binding to the target is blocked, It remains unbound with the target. That is, in the absence of the target, the nucleic acid molecule (II) maintains a blocking structure.
- the structure of the molecule in this state is also called a blocking type or an inactive type.
- the binding region (A) changes to a more stable three-dimensional structure due to the contact of the target with the binding region (A).
- the stem formation between the terminal region (Ba) of the blocking region (B) and the partial region (Dp) of the G-quartet formation region (D) is released, and the blocking region (B)
- the stem is formed by annealing the terminal region (Ba) and the stabilization region (S), and this stem plays a role of intramolecular annealing necessary for the binding region (A) to bind to the target,
- the three-dimensional structure is formed from the whole of the stem and the binding region (A), and the target is bound to the binding region (A).
- the G-quartet formation region (D) newly forms a G-quartet structure by intramolecular annealing, As a result, a complex of the G-quartet formation region (D) and porphyrin is formed and emits fluorescence (switch ON).
- the structure in this state is also called active form.
- FIG. 2 shows a schematic diagram of a single-stranded nucleic acid molecule (II) in a state where the regions are linked from the 5 'side as an example of the nucleic acid molecule (II).
- FIG. 2 (A) is a schematic diagram showing the order of each region, (B) is a schematic diagram of a blocking type in the absence of a target, and (C) is an active type in the presence of a target.
- D is a structural unit (nucleotide) of the G-quartet formation region (D)
- B is a structural unit of the blocking region (B)
- A is a structural unit of the binding region (A)
- S represents the structural unit of the stabilization region (S)
- the line between the structural units represents a bond.
- FIG. 2 schematically shows each region, and the number of constituent units (arrangement length) of each region is not limited at all (hereinafter the same).
- examples of the nucleic acid molecule (II) include the G-quartet formation region (D), the blocking region (B), the binding region (A), and the stabilization region ( S) in this order.
- the nucleic acid molecule (II) for example, as shown in FIG. 2 (B), in the absence of a target, a part of the G-quartet formation region (D) is bound to the blocking region (B). , Forming a stem and becoming a blocking type single-stranded nucleic acid. At this time, the bonding region (A) does not form the three-dimensional structure.
- FIG. 2 (B) In the nucleic acid molecule (II), for example, as shown in FIG. 2 (B), in the absence of a target, a part of the G-quartet formation region (D) is bound to the blocking region (B). , Forming a stem and becoming a blocking type single-stranded nucleic acid. At this time, the bonding region (A) does not form the three-dimensional
- the nucleic acid molecule (II) is allowed to contact the blocking region (B) with the binding region (A) in the presence of the target.
- Stem formation with the G-quartet formation region (D) is released, and a stem is newly formed between the blocking region (B) and the stabilization region (S), and the binding region (A) and the A three-dimensional structure is formed from the blocking region (B) and the stabilization region (S).
- the G-quartet formation region (D) has a G-quartet structure due to its intramolecular annealing.
- the binding region (A), the blocking region (B), and the stabilization may be performed by the binding between the blocking region (B) and the stabilization region (S).
- the three-dimensional structure formed from the region (S) is further stabilized.
- nucleic acid molecule (II) the description of the nucleic acid molecule (I) can be used unless otherwise indicated.
- the G-quartet formation region (D), the blocking region (B), and the stabilization region (S) are the same as those of the nucleic acid molecule (I), for example.
- the blocking region (B) has a complementary sequence to each of the G-quartet formation region (D) and the stabilization region (S). Specifically, the blocking region (B) is complementary to the partial region (Dp) of the G-quartet formation region (D), and the binding region (A) side end of the blocking region (B). The region (Ba) is complementary to the stabilization region (S).
- the length of the terminal region (Ba) complementary to the stabilization region (S) is not particularly limited, and the lower limit is, for example, one base length, and the upper limit is, for example, 15 base length, 10 base length and 3 base length, and the range is, for example, 1 to 10 base length, 1 to 5 base length, and 1 to 3 base length.
- the total length of the nucleic acid molecule (II) is not particularly limited, and the lower limit is, for example, 25 base length, 35 base length, 40 base length, and the upper limit is, for example, 200 base length, 120 base length, The range is, for example, 25 to 200 bases, 35 to 120 bases, 40 to 80 bases.
- nucleic acid molecule (III) has the G-quartet formation region (D), the stem formation region (S D ), the binding region (A), and the stem formation region (S A ).
- D ) has a sequence complementary to the G-quartet formation region (D)
- the stem formation region (S A ) has a sequence complementary to the binding region (A).
- the G-quartet formation region (D) is, for example, the single-stranded type.
- the G-quartet formation in the G-quartet formation region (D) is controlled to be ON-OFF depending on the presence or absence of a target based on the following mechanism. Note that the present invention is not limited to this mechanism.
- the nucleic acid molecule (III) is annealed in the molecule with the G-quartet formation region (D) and the stem formation region (S D ). Formation of the G-quartet structure of (D) is inhibited, and as a result, formation of a complex between the G-quartet formation region (D) and porphyrin is inhibited (switch-OFF).
- the structure of the binding region (A) is also fixed by annealing the binding region (A) and the stem formation region (S A ) in the molecule.
- the structure of the molecule in this state is also called an inactive type.
- the nucleic acid molecule (III) is, under the target presence, by contact of the target to the binding region (A), annealing of the coupling region (A) and the stem forming regions (S A) is released The three-dimensional structure of the binding region (A) changes to a more stable structure.
- the stem formation region (S D ) preferably has a sequence complementary to the whole or a part of the G-quartet formation region (D).
- the stem forming region (S A ) is, for example, a sequence that is entirely or partially complementary to a part of the binding region (A).
- the order of the regions is such that the G-quartet formation region (D) and the stem formation region (S D ) are annealed in the molecule, and the binding region (A) It said stem forming regions (S a) and is may be a sequence that anneals.
- the following order can be illustrated as a specific example. (1) 5'- A-S D -D-S A -3 ' (2) 5'-S A -DSD D -A -3 ' (3) 5'- D-S A -A-S D -3 ' (4) 5'-S D -AS A -D -3 '
- the formation of the G-quartet structure is turned on and off as follows.
- the binding nucleic acid molecule (A) and the stem-forming region (S A ), the G-quartet-forming molecule (D) and the stem-forming region (S D ) each form a stem, and the G -Inhibits the formation of the G-quartet structure of the quartet-forming molecule (D).
- the contact of the target with the binding nucleic acid molecule (A) releases the respective stem formation, and a G-quartet structure is formed in the G-quartet-forming molecule (D).
- the stem formation region (S D ) is complementary to the 3 ′ side region of the G-quartet formation molecule (D), and the stem formation region (S A ) It is preferably complementary to the 3 ′ region of the binding nucleic acid molecule (A).
- the stem formation region (S D ) is complementary to the 5 ′ region of the G-quartet formation molecule (D), and the stem formation region (S A ) It is preferably complementary to the 5 ′ region of the binding nucleic acid molecule (A).
- the regions may be connected directly or indirectly.
- the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region.
- the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
- the nucleic acid molecule (III) preferably has, for example, two intervening linker regions that are non-complementary to each other as the intervening linker region.
- the positions of the two intervening linker regions are not particularly limited.
- the following order can be exemplified for the forms (1) to (4) further having two intervening linker regions.
- the intervening linker region linked to the binding nucleic acid molecule (A) is indicated by (L 1 )
- the intervening linker region linked to the G-quartet-forming molecule (D) is indicated by (L 2 ).
- the nucleic acid molecule (II) may have, for example, both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
- the formation of the G-quartet structure is turned on and off as follows.
- the binding nucleic acid molecule (A) and the stem-forming region (S A ), the G-quartet-forming molecule (D), and the stem-forming region (S D ) each form a stem.
- the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop between these two stems, and the G-quartet structure molecule (D) has a G-quartet structure. Inhibits formation.
- the contact of the target with the binding nucleic acid molecule (A) releases the respective stem formation, and a G-quartet structure is formed in the G-quartet-forming molecule (D).
- FIGS. 3 and 4 The state of the nucleic acid molecule (III) in the absence of the target is shown in the schematic diagrams of FIGS. 3 and 4, taking the form (1 ')-(4') as an example. 3 and 4, (A) and (B) show forms in which the order of the regions is opposite to each other.
- FIG. 3A shows the form (1 ′)
- FIG. 3B shows the form (2 ′)
- FIG. 4A shows the form (3 ′)
- FIG. 4B shows the form (4 ′. ).
- A is the binding nucleic acid molecule (A)
- L1 is the intervening linker region (L1)
- SD is the stem-forming sequence (S D )
- D is the G-quartet formation.
- molecules (D) L2 is the intervening linker region (L2)
- S a shows the stem-forming sequence (S a).
- a self-annealing of the nucleic acid molecule (II) forms stems at two locations, and an internal loop is formed between the stems.
- the lengths of the stem-forming sequence (S A ) and the stem-forming sequence (S D ) are not particularly limited.
- the length of the stem forming sequence (S A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long.
- the stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases.
- the stem forming sequence (S A ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the intervening linker region (L 1 ) and the (L 2 ) are not particularly limited in length, and are, for example, 1 to 10 bases long, 1 or 2 bases long, 1 base long .
- the length of the nucleic acid molecule (III) is not particularly limited.
- the length of the nucleic acid molecule (II) is, for example, 40 to 120 bases long, 45 to 100 bases long, 50 to 80 bases long.
- the additional linker region may be further added to one end or both ends.
- the length of the additional linker region is not particularly limited, and is as described above, for example.
- one end of the nucleic acid molecule (III) may be linked to a base material via the additional linker region.
- the nucleic acid molecule (IV) has the G-quartet formation region (D) and the binding region (A), and the G-quartet formation region (D) includes the first region (D1) and the second region ( D2), and a G-quartet is formed by the first region (D1) and the second region (D2), and the first region ( D1) and a single-stranded nucleic acid molecule having the second region (D2) on the other end side of the binding region (A).
- the G-quartet formation region (D) is, for example, the double-stranded type (hereinafter also referred to as “split type”).
- the split-type G-quartet-forming molecule (D) is a molecule that includes the first region (D1) and the second region (D2) and forms a G-quartet structure as a pair.
- the first region (D1) and the second region (D2) may be any sequence that forms the G-quartet structure, and more preferably a guanine quadruplex structure. It is the arrangement
- the G-quartet formation in the G-quartet formation region (D) is controlled to be ON-OFF depending on the presence or absence of a target. Note that the present invention is not limited to this mechanism.
- the first region (D1) and the second region (D2) that form a G-quartet structure in a pair form the binding region (A). Are spaced apart from each other.
- the first region (D1) and the second region (D2) are arranged at a distance, in the absence of the target, the first region (D1) and the second region ( D2) is inhibited from forming a G-quartet structure, and as a result, complex formation between the G-quartet-forming molecule (D) and porphyrin is inhibited (switch-OFF).
- the structure of the molecule in this state is also called an inactive type.
- the nucleic acid molecule (IV) has a more stable structure in which the three-dimensional structure of the binding region (A) has a stem-loop structure by the contact of the target with the binding region (A). Change.
- the first region (D1) and the second region (D2) approach each other with the change in the three-dimensional structure of the binding region (A), and the first region (D1) and the second region (D2).
- a G-quartet structure is formed between them and, as a result, a complex of the G-quartet formation region (D) and porphyrin is formed and emits fluorescence (switch-ON).
- the structure of the molecule in this state is also called an active form. Therefore, according to the nucleic acid molecule (IV), fluorescence due to the complex formation does not occur in the absence of the target, and fluorescence due to the complex formation occurs only in the presence of the target.
- Target analysis such as
- the nucleic acid molecule (IV) uses a double-stranded type as the G-quartet formation region (D), and the first region (D1) and the above-described region via the binding region (A).
- the second region (D2) is arranged. For this reason, for example, it is not necessary to set conditions for each type of aptamer, and since a desired aptamer can be set as the binding region (A), the versatility is excellent.
- the first region (D1) and the second region (D2) may be arranged via the binding region (A), and any of the binding regions (A) You may arrange
- the first region (D1) is disposed on the 5 ′ side of the coupling region (A)
- the second region (D2) is disposed on the three side of the coupling region (A), unless otherwise specified. An example is shown.
- the first region (D1) and the binding region (A) may be connected directly or indirectly, or the second region (D2) and The binding region (A) may be connected directly or indirectly.
- the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region.
- Means that the 'terminal and the 5' end of the other region are linked via the intervening linker region; specifically, the 3 'end of one region and the 5' end of the intervening linker region Means that the 3 ′ end of the intervening linker region and the 5 ′ end of the other region are directly bound.
- the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
- the nucleic acid molecule (IV) has the intervening linker region (first linker region (L1)) between the first region (D1) and the binding region (A). It is preferable to have the intervening linker region (second linker region (L2)) between two regions (D2) and the binding region (A).
- the first linker region (L1) and the second linker region (L2) may be either one or preferably both. When both the first linker region (L1) and the second linker region (L2) are included, the lengths may be the same or different.
- the length of the linker region is not particularly limited, and the lower limit is, for example, 1, 3, 5, 7, 9 bases, and the upper limit is, for example, 20, 15, 10 bases.
- the base sequence from the 5 ′ end side of the first linker region (L1) and the base sequence from the 3 ′ end side of the second linker region (L2) may be non-complementary to each other, for example. preferable.
- the base sequence from the 5 ′ end of the first linker region (L1) and the base sequence from the 3 ′ end of the second linker region (L2) are aligned, and the nucleic acid molecule (IV It can be said that it is a region that forms an internal loop in the molecule.
- D2 the distance between the first region (D1) and the second region (D2) can be sufficiently maintained.
- the formation of a G-quartet structure by the first region (D1) and the second region (D2) is sufficiently suppressed, and fluorescence is generated in the absence of the target.
- the background based on can be sufficiently reduced.
- FIG. 5 is a schematic view showing ON / OFF of fluorescence generation in the nucleic acid molecule (IV). As shown on the left of FIG. 5, in the absence of a target, the nucleic acid molecule (IV) suppresses the formation of a G-quartet structure between the first region (D1) and the second region (D2). Inactive form.
- W in the formula is, for example, from the 5 ′ side
- W in the formula is, for example, from the 5 ′ side
- W in the formula is, for example, from the 5 ′ side
- W in the formula is, for example, from the 5 ′ side
- W in the formula is, for example, From the 5 ′ side, the first linker region (L1), the binding region (A), and the second linker region (L2) are provided in this order.
- nucleic acid molecule (IV) represented by D1-W-D2 is represented by, for example, D1-L1-A-D2, D1-A-L2-D2, or D1-L1-A-L2-D2, respectively. be able to.
- the first region (D1) and the second region (D2) are complementary to each other at the end opposite to the position of the binding region (A). It preferably has a sequence. Specifically, for example, when the first region (D1) is disposed on the 5 ′ side of the coupling region (A), the first region (D1) and the second region (D2) are: It is preferable that the 5 ′ end of the first region (D1) and the 3 ′ end of the second region (D2) have sequences complementary to each other. For example, when the first region (D1) is disposed on the 3 ′ side of the coupling region (A), the first region (D1) and the second region (D2) are the first region (D1).
- the 3 ′ end of the region (D1) and the 5 ′ end of the second region (D2) preferably have complementary sequences.
- a stem structure can be formed between the sequences by intramolecular annealing. It becomes possible. Therefore, for example, when the first region (D1) and the second region (D2) approach each other due to a change in the three-dimensional structure of the binding region (A) due to the contact of the target in the presence of the target, the arrangement The formation of the G-quartet structure of the first region (D1) and the second region (D2) is facilitated by forming the stem structure therebetween.
- the nucleic acid molecule (IV) can be represented by D1-W-D2, for example, as described above, and specifically can be represented by the following formula (I).
- 5 'side sequence (N) n1 -GGG- (N) n2 - (N) n3 - is the sequence of the first region (D1) (d1)
- 3 ′ sequence-(N) m3- (N) m2 -GGG- (N) m1 is the sequence (d2) of the second region (D2)
- W is a region between the first region (D1) and the second region (D2), including the coupling region (A)
- N represents a base
- n1, n2, and n3, and m1, m2, and m3 represent the number of repetitions of the base N, respectively.
- the formula (I) shows a state where the first region (D1) and the second region (D2) are aligned in the nucleic acid molecule (IV), which is the first region (D1).
- the second region (D2) are schematic views showing the arrangement relationship between the first region (D1) and the second region (D2) in the present invention. This is not a limitation.
- (N) n1 and (N) m1 satisfy the following condition (1): N) n2 and (N) m2 preferably satisfy the following condition (2), and (N) n3 and (N) m3 preferably satisfy the following condition (3).
- Condition (1) In (N) n1 and (N) m1 , the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other, and n1 and m1 Are the same 0 or a positive integer.
- Condition (2) (N) n2 and (N) m2 are such that the base sequence from the 5 ′ end of (N) n2 and the base sequence from the 3 ′ end of (N) m2 are non-complementary to each other, m2 is a positive integer, and may be the same or different.
- N and (N) m3 are those in which n3 and m3 are 3 or 4, respectively, and may be the same or different, have three bases G, and when n3 or m3 is 4, (N) In n3 and (N) m3 , the second or third base is a base H other than G.
- the condition (1) is a condition of (N) n1 at the 5 ′ end and (N) m1 at the 3 ′ end when the first region (D1) and the second region (D2) are aligned. .
- the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other and have the same length.
- (N) n1 and (N) m1 are complementary sequences of the same length, they can be said to be stem regions that form stems in an aligned state.
- N1 and m1 may be the same 0 or a positive integer, for example, 0, 1 to 10, 1, 2, or 3, respectively.
- the condition (2) is a condition of (N) n2 and (N) m2 when the first region (D1) and the second region (D2) are aligned.
- the base sequence of (N) n2 and the base sequence of (N) m2 are non-complementary to each other, and n2 and m2 may have the same length or different lengths. Since (N) n2 and (N) m2 are non-complementary sequences, they can be said to be regions that form an inner loop in an aligned state.
- N2 and m2 are positive integers, for example, 1 to 10, 1 or 2, respectively.
- n2 and m2 may be the same or different.
- n2 m2, n2> m2, and n2 ⁇ m2, and preferably n2> m2 and n2 ⁇ m2.
- the condition (3) is a condition of (N) n3 and (N) m3 when the first region (D1) and the second region (D2) are aligned.
- the base sequence of (N) n3 and the base sequence of (N) m3 are 3 or 4 base length sequences having 3 bases G, and the same or different May be.
- n3 or m3 is 4,
- (N) n3 and (N) m3 are bases H other than G in the second or third base.
- Examples of the base H that is a base other than G include A, C, T, and U, and preferably A, C, or T.
- condition (3) include the following conditions (3-1), (3-2), and (3-3).
- Condition (3-1) Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GHGG, and the sequence from the other 5 ′ side is GGG.
- Condition (3-2) Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GGHG, and the sequence from the other 5 ′ side is GGG.
- Condition (3-3) Both (N) n3 and (N) m3 sequences are GGG.
- the length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
- the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
- the length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
- the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
- the lengths of the first region (D1) and the second region (D2) may be the same or different.
- W means a region between the sequence (d1) and the sequence (d2) in the nucleic acid molecule (IV), and is a lower-case region on the 5 ′ end side and the 3 ′ end side
- the underlined regions on the 5 ′ side and 3 ′ side represent (N) n2 and (N) m2 , respectively, and are underlined on the 5 ′ side and 3 ′ side, respectively.
- Regions between the partial region and W indicate (N) n3 and (N) m3 , respectively.
- stem regions (N) n1 and (N) m1 are changed to 0-3 base lengths, and internal loop regions (N) n2 and (N) m2 are converted to AC (N) n3 and (N) m3, which are the G region, are set to 3 base lengths of GGG and 4 base lengths of GTGG, and W is not limited.
- Combinations 25-48 in Table 2 show that (N) n1 and (N) m1 that are stem regions are one base length of A and one base length of T and (N) n2 and (N) m2 that are internal loop regions Is changed to 1 or 2 base length, and (N) n3 and (N) m3, which are G regions, are set to 4 types of 4 base lengths of GAGG, GGAG, GCGG and GTGG and 3 base lengths of GGG And W is not limited.
- the combination 49 in Table 2 shows (N) n1 and (N) m1 that are stem regions, 2 base lengths of CA and 2 bases of TG, and (N) n2 and (N) m2 that are internal loop regions, This is a sequence in which (N) n3 and (N) m3, which are 1 base length of T and A and G region, are set to 4 base lengths of GAGG and 3 base lengths of GGG, and W is not limited.
- a combination 24 (SEQ ID NO: 24) is used.
- FIG. 6 is an outline of the G-quartet structure formed between the first region (D1) and the second region (D2) in the single-stranded nucleic acid molecule of the combination 24 (SEQ ID NO: 24).
- a guanine quadruplex in which the G-quartet is three-sided is formed between G in the first region (D1) and G in the second region (D2). Note that the present invention is not limited to this example.
- the length of the nucleic acid molecule (IV) is not particularly limited.
- the lower limit of the length of the nucleic acid molecule (IV) is, for example, 25 base length, 30 base length, 35 base length, and the upper limit is, for example, 200 base length, 100 base length, 80 base length, For example, it is 25 to 200 bases long, 30 to 100 bases long, 35 to 80 bases long.
- the additional linker region may be further added to one end or both ends.
- the length of the additional linker region is not particularly limited, and is as described above, for example.
- one end of the nucleic acid molecule (IV) may be linked to a base material via the additional linker region.
- the nucleic acid molecule (V) is a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2), and the first strand (ss1) is the G-quartet-forming region ( D) and the binding region (A) in this order, and the second strand (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem The formation region (S D ) has a sequence complementary to the G-quartet formation region (D), and the stem formation region (S A ) is complementary to the binding region (A).
- a double-stranded nucleic acid molecule having a sequence.
- the G-quartet formation region (D) is, for example, the single-stranded type.
- the G-quartet formation in the G-quartet formation region (D) is controlled to be ON-OFF depending on the presence or absence of a target based on the following mechanism. Note that the present invention is not limited to this mechanism. In the absence of a target, the nucleic acid molecule (V) contains the G-quartet formation region (D) of the first strand (ss1) and the stem formation region (ss2) of the second strand (ss2) in the molecule.
- S D is annealed to inhibit the formation of the G-quartet structure in the G-quartet formation region (D), and as a result, the formation of a complex between the G-quartet formation region (D) and porphyrin is prevented. Obstructed (switch-OFF).
- the binding region (A) of the first strand (ss1) and the stem formation region (S A ) of the second strand (ss2) are annealed, whereby the binding region (A ) Structure is also fixed.
- the structure of the molecule in this state is also called an inactive type.
- the nucleic acid molecule (V) is released from the annealing of the binding region (A) and the stem formation region (S A ) by the contact of the target with the binding region (A).
- the three-dimensional structure of the binding region (A) changes to a more stable structure.
- annealing of the G-quartet formation region (D) and the stem formation region (S D ) is released, and a G-quartet structure is formed in the region of the G-quartet formation region (D).
- a complex of the G-quartet formation region (D) and porphyrin is formed and emits fluorescence (switch-ON).
- the structure of the molecule in this state is also called an active form.
- fluorescence due to the complex formation does not occur in the absence of the target, and fluorescence due to the complex formation occurs only in the presence of the target.
- Target analysis such as
- the stem formation region (S D ) preferably has a sequence complementary to the whole or a part of the G-quartet formation region (D).
- the stem forming region (S A ) is, for example, a sequence that is entirely or partially complementary to a part of the binding region (A).
- the order of the regions is such that the G-quartet-forming region (D) and the stem-forming region (S D ) are annealed in the molecule, and the binding region (A) It said stem forming regions (S a) and is may be a sequence that anneals.
- the following order can be illustrated as a specific example. (1) ss1 5'- AD-3 ' ss2 3'- S A -S D -5 ' (2) ss1 5'- DA-3 ' ss2 3'- S D -S A -5 '
- the stem forming region (S A ) is complementary to the 3 ′ side region of the binding nucleic acid molecule (A), and the stem forming region (S D ) is the G-quartet forming molecule. It is preferably complementary to the 5 ′ side region of (D).
- the stem formation region (S D ) is complementary to the 3 ′ side region of the G-quartet formation molecule (D)
- the stem formation region (S A ) is the binding nucleic acid molecule It is preferably complementary to the 5 ′ side region of (A).
- the regions may be connected directly or indirectly.
- the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region.
- the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
- the nucleic acid molecule (V) is, for example, between the binding nucleic acid molecule (A) in the first strand (ss1) and the G-quartet-forming molecule (D), and in the second strand (ss2). It is preferable to have the intervening linker region between the stem forming region (S D ) and the stem forming region (S A ).
- the intervening linker region (L 1 ) in the first strand (ss1) and the intervening linker region (L 2 ) in the second strand (ss2) are preferably non-complementary sequences.
- the following order can be exemplified for the forms in which (1) and (2) have the intervening linker region in the first chain (ss1) and the second chain (ss2).
- an intervening linker region that links the binding nucleic acid molecule (A) and the G-quartet-forming molecule (D) is (L 1 )
- the stem-forming region (S D ) and the stem-forming region (S The intervening linker region linking A 1 ) is indicated by (L 2 ).
- the nucleic acid molecule (V) may have, for example, both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
- the formation of the G-quartet structure is turned on and off as follows.
- the binding nucleic acid molecule (A) and the stem-forming region (S A ), the G-quartet-forming molecule (D), and the stem-forming region (S D ) each form a stem.
- the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop between these two stems, and the G-quartet structure molecule (D) has a G-quartet structure. Inhibits formation.
- the contact of the target with the binding nucleic acid molecule (A) releases the respective stem formation, and a G-quartet structure is formed in the G-quartet-forming molecule (D).
- FIG. 7 is a schematic diagram showing the state of the nucleic acid molecule (V) in the absence of the target, taking the forms (1 ′) and (2 ′) as an example.
- (A) and (B) show a form in which the order of each region is opposite to each other.
- FIG. 7A shows the form (1 ′)
- FIG. 7B shows the form (2 ′).
- A is the binding nucleic acid molecule (A)
- L1 is the intervening linker region (L1)
- SD is the stem-forming sequence (S D )
- D is the G-quartet-forming molecule (D )
- L2 represents the intervening linker region (L2)
- S A represents the stem-forming sequence (S A ).
- stems are formed at two locations by annealing the first strand (ss1) and the second strand (ss2) in the nucleic acid molecule (IV). An internal loop is formed between the two.
- the lengths of the stem forming sequence (S A ) and the stem forming sequence (S D ) are not particularly limited.
- the length of the stem forming sequence (S A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long.
- the stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases.
- the stem forming sequence (S A ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively.
- the lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the intervening linker region (L 1 ) and the (L 2 ) are not particularly limited in length, and are, for example, 1 to 10 bases long, 1 or 2 bases long, 1 base long .
- the lengths of the first strand (ss1) and the second strand (ss2) are not particularly limited.
- the length of the first strand (ss1) is, for example, 40 to 200 bases long, 42 to 100 bases long, 45 to 60 bases long.
- the length of the second strand (ss2) is, for example, 4 to 120 bases long, 5 to 25 bases long, or 10 to 15 bases long.
- the additional linker region may be further added to the one end or both ends of the first strand (ss1) and the second strand (ss2).
- the length of the additional linker region is not particularly limited, and is as described above, for example.
- one end of the first strand (ss1) or the second strand (ss2) may be linked to a base material via the additional linker region.
- nucleic acid molecules (VI) may be, for example, the following nucleic acid molecule (VI).
- the nucleic acid molecule (VI) has the G-quartet formation region (D) and the binding region (A) in this order, and the G-quartet formation region (D) and the binding region (A) are: Single-stranded nucleic acid molecules having sequences complementary to each other.
- the G-quartet formation region (D) is, for example, the single-stranded type.
- the G-quartet formation in the G-quartet formation region (D) is controlled to be ON-OFF depending on the presence or absence of a target.
- the present invention is not limited to this mechanism.
- the nucleic acid molecule (I) anneals in the molecule with the G-quartet formation region (D) and the binding region (A), so that the G-quartet formation region (D ) Is inhibited, and as a result, formation of a complex between the G-quartet formation region (D) and porphyrin is inhibited (switch-OFF).
- the structure of the molecule in this state is also called an inactive type.
- the three-dimensional structure of the binding region (A) changes to a more stable structure by the contact of the target with the binding region (A). Accordingly, the intra-region annealing between the G-quartet formation region (D) and the coupling region (A) is canceled, and a G-quartet structure is formed in the region of the G-quartet formation region (D). As a result, a complex of the G-quartet formation region (D) and porphyrin is formed and emits fluorescence (switch-ON). The structure in this state is also called active form. For this reason, according to the sensor of the present invention, in the absence of the target, the fluorescence due to the complex formation does not occur, and the fluorescence due to the complex formation occurs only in the presence of the target. Target analysis is possible.
- the G-quartet formation region (D) and the binding region (A) are the sequence from the 5 ′ side of the G-quartet formation region (D), and the binding region (A). It is preferable that the sequence from the 3 ′ side of () has a sequence complementary to each other.
- the complementary sequence in the G-quartet formation region (D) and the complementary sequence in the binding region (A) can also be referred to as a stem formation region (S), respectively.
- the complementary sequence is the stem forming region (S A ) for the binding region (A)
- the complementary sequence in the latter binding region (A) is the complementary sequence in the binding region (A) is the G-quartet forming region ( It can also be referred to as a stem formation region (S D ) for D ).
- a part of the G-quartet formation region (D) is the complementary sequence, that is, the stem formation region (S A )
- the binding region (A) is a part of the G-quartet formation region (D), for example.
- a complementary sequence, that is, the stem forming region (S D ) is preferable.
- the position of the complementary sequence in the G-quartet formation region (D) and the position of the complementary sequence in the binding region (A) are not particularly limited.
- the length of each complementary sequence between the G-quartet-forming molecule (D) and the binding nucleic acid molecule (A) is not particularly limited.
- the length of each complementary sequence is, for example, 1 to 30 bases long, 1 to 10 bases long, or 1 to 7 bases long.
- the G-quartet formation region (D) and the binding region (A) may be directly or indirectly linked.
- the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bonded via a linker region.
- the intervening linker region connecting the regions is also referred to as an intervening linker region.
- the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
- the length of the intervening linker region is not particularly limited and is, for example, 0 to 20, 1 to 10 bases, or 1 to 6 bases.
- one end of the nucleic acid molecule (VI) may be linked to a base material via the additional linker region.
- the length of the nucleic acid molecule (VI) is not particularly limited.
- the length of the nucleic acid molecule (VI) is, for example, 40 to 120 bases long, 45 to 100 bases long, or 50 to 80 bases long.
- the sensor of the present invention may be, for example, a molecule having the nucleic acid molecule or a molecule composed of the nucleic acid.
- the sensor of the present invention is a molecule containing a nucleotide residue, and may be, for example, a molecule consisting only of a nucleotide residue or a molecule containing a nucleotide residue.
- the nucleotide is, for example, ribonucleotide, deoxyribonucleotide and derivatives thereof.
- the sensor may be, for example, DNA containing deoxyribonucleotide and / or a derivative thereof, RNA containing ribonucleotide and / or a derivative thereof, or a chimera (DNA / RNA) containing the former and the latter But you can.
- the sensor is preferably DNA.
- the nucleotide may contain, for example, either a natural base (non-artificial base) or a non-natural base (artificial base) as a base.
- a natural base include A, C, G, T, U, and modified bases thereof.
- the modification include methylation, fluorination, amination, and thiolation.
- the unnatural base include 2′-fluoropyrimidine, 2′-O-methylpyrimidine and the like. Specific examples include 2′-fluorouracil, 2′-aminouracil, 2′-O-methyluracil, Examples include 2-thiouracil.
- the nucleotide may be, for example, a modified nucleotide, and the modified nucleotide is, for example, a 2′-methylated-uracil nucleotide residue, 2′-methylated-cytosine nucleotide residue, 2′-fluorinated-uracil nucleotide. Residue, 2′-fluorinated-cytosine nucleotide residue, 2′-aminated-uracil nucleotide residue, 2′-aminated-cytosine nucleotide residue, 2′-thiolated-uracil nucleotide residue, 2′- Thio-cytosine nucleotide residues and the like.
- the candidate molecule may include non-nucleotides such as PNA (peptide nucleic acid) and LNA (Locked Nucleic Acid).
- the porphyrin is not particularly limited, and examples thereof include unsubstituted porphyrin and derivatives thereof.
- examples of the derivatives include substituted porphyrins and metal porphyrins complexed with metal elements.
- Examples of the substituted porphyrin include N-methylmesoporphyrin (NMM), TMPyP (5,10,15,20-tetrakis (N-methylpyridinium-4-yl) -21H, 23H-porphyrin, tetrakis (p- And toluene sulfonate))).
- Examples of the metal porphyrin include iron porphyrin and zinc porphyrin.
- Zn-DIGP tetrakis- (diisopropyl-guanidino) zinc phthalocyanine
- ZnPP9 Zinc (H) protoporphyrin D
- the porphyrin is preferably NMM, for example.
- the nucleic acid molecule may be in a free state or the nucleic acid molecule may be immobilized.
- the latter sensor can be used as a device, for example, by immobilizing the nucleic acid molecule on the substrate.
- the substrate include substrates such as plates, sheets, films, and swabs; containers such as well plates and tubes; beads, particles, filters, and the like.
- the nucleic acid molecule may be immobilized at either the 5 'end or the 3' end, for example.
- the immobilization method is not particularly limited, and examples thereof include chemical bonding.
- streptavidin or avidin is bound to one of the base material and the nucleic acid molecule, biotin is bound to the other, and the method is immobilized using the binding between the former and the latter. Can be given.
- the immobilization method for example, other known nucleic acid immobilization methods can be adopted.
- the method include a method using photolithography, and specific examples thereof can be referred to US Pat. No. 5,424,186.
- the immobilization method include a method of synthesizing the nucleic acid molecule on the base material. As this method, for example, a so-called spot method can be mentioned.
- US Pat. No. 5,807,522, Japanese Patent Publication No. 10-503841 and the like can be referred to.
- the nucleic acid molecule may be directly or indirectly immobilized on the base material, for example.
- the nucleic acid molecule is preferably immobilized on the substrate at the end of the nucleic acid molecule.
- the nucleic acid molecule may be immobilized on the base material via a linker for immobilization.
- the linker may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, and examples thereof include the above-described additional linker region.
- the sensor of the present invention may include, for example, a plurality of detected parts.
- the sensor for example, fractionates the surface of the base material into a matrix, and includes the detected portions as described above in each fractionation region.
- the number of sensors arranged in one detected part is not particularly limited.
- the senor of the present invention may further include a reagent part including a reagent.
- the reagent includes, for example, the porphyrin.
- the reagent part can be arranged, for example, on the substrate, and the arrangement part of the reagent part in the substrate may be the same as or different from the arrangement part of the nucleic acid molecule, for example. In the latter case, for example, it is only necessary that the reagent in the reagent part can contact the sensor by adding a sample.
- the method of using the sensor of the present invention is not particularly limited, and can be used for the target analysis method of the present invention as follows.
- the target analysis method of the present invention includes a contact step of contacting a sample with the target analysis fluorescent sensor of the present invention, and the G-quartet formation region (D) in the sensor in the presence of porphyrin. ) And a porphyrin complex, and detecting a target in the sample by detecting fluorescence.
- the sample is not particularly limited.
- the sample may be, for example, a sample including a target or a sample in which it is unknown whether or not the target is contained.
- the sample is preferably a liquid sample, for example.
- the analyte when the analyte is a liquid, the analyte may be used as it is as a sample, or a diluted solution mixed in a solvent may be used as a sample.
- the analyte is, for example, a solid or a powder, a mixed solution mixed with a solvent, a suspension suspended in a solvent, or the like may be used as a sample.
- the solvent is not particularly limited, and examples thereof include water and a buffer solution. Examples of the specimen include specimens collected from living organisms, soil, seawater, river water, sewage, food and drink, purified water, air, and the like.
- sample examples include raw milk, processed milk and powdered milk.
- the target in the sample is analyzed without performing pretreatment to remove protein and lipid from the sample. Can do.
- the sensor and the sample are preferably brought into contact with each other in the container.
- immobilized on the said base material as a sensor of this invention, the said sample can be made to contact the said sensor on the said base material, for example.
- the detection step is, for example, a step of detecting fluorescence from the sensor in the presence of porphyrin.
- the fluorescence detection may be, for example, visual observation or fluorescence intensity detection.
- the excitation wavelength is, for example, 350 to 550 nm, 350 to 450 nm, and 399 nm
- the emission wavelength is, for example, 550 to 700 nm, 550 to 650 nm, and 605 nm.
- the porphyrin may coexist with the sensor in the contact step, or may coexist with the sensor in the next detection step.
- porphyrin may be supplied to the sensor before contacting the sample with the sensor, or porphyrin may be supplied to the sensor simultaneously with the contact of the sample.
- porphyrin may be arranged in advance in the reagent part of the sensor, for example, as described above.
- porphyrin may be supplied to the sensor after the sample is brought into contact with the sensor.
- the form of the porphyrin is not particularly limited.
- the sensor it is preferable to supply the sensor as a reagent solution mixed with a liquid.
- the liquid for mixing the porphyrin is preferably a buffer solution such as Tris-HCl.
- the concentration of the porphyrin in the reagent solution is not particularly limited, and is, for example, 50 to 500 mmol / L, 100 to 300 mmol / L.
- the pH of the reagent solution is, for example, 6 to 9, 6.8 to 9.
- the time for the contacting step is not particularly limited and is, for example, 1 to 30 minutes.
- the processing time from when the sensor, the sample, and porphyrin are in contact until the fluorescence is detected is, for example, 1 to 30 minutes.
- the temperature conditions in the contact step and the detection step are not particularly limited, and are, for example, 15 to 37 ° C.
- a cleaning step may be further provided between the contact step and the detection step.
- the cleaning step is, for example, a step of cleaning the sensor with a cleaning liquid after bringing the sensor into contact with the sample.
- the washing step for example, impurities contained in the sample can be removed, and analysis with higher accuracy is possible.
- the washing liquid is not particularly limited, and examples thereof include aqueous solvents such as water and buffer solutions.
- the nucleic acid molecule is immobilized on the base material as described above.
- the G-quartet formation region (D) forms a G-quartet structure to detect fluorescence generated by forming a complex with porphyrin, the light emission of the sensor itself is detected. It can be said that this is detected.
- the present invention does not require a catalytic reaction substrate or the like for measuring the catalytic activity of a catalytic molecule such as DNAzyme, for example, as in a conventional sensor.
- the substrate for catalytic reaction is, for example, a substrate that produces color, fluorescence, or the like disappears due to catalytic reaction.
- the analysis kit of the present invention includes a sensor and a reagent as described above, the sensor is the target analysis fluorescent sensor of the present invention, and the reagent includes porphyrin. To do.
- the analysis kit of the present invention is characterized by containing the sensor and porphyrin, and other configurations are not limited at all.
- the analysis kit of the present invention may contain components such as the buffer solution and the base material in addition to the sensor and porphyrin.
- the senor and the reagent may be separately accommodated, for example.
- these components may be accommodated separately from the sensor, for example.
- the nucleic acid molecule may be immobilized on the base material, or the nucleic acid molecule may not be immobilized.
- the analysis kit may further include instructions for use, for example.
- Example 1 Using a melamine aptamer as the binding nucleic acid molecule (A) and a single-stranded DNAzyme as the G-quartet-forming molecule (D), a fluorescence sensor for melamine analysis was prepared.
- a fluorescent sensor for melamine analysis corresponding to the nucleic acid molecule (I) was prepared.
- the arrangement of the fluorescent sensor is shown below.
- the underlined portion on the 5 'side is DNAzyme
- the underlined portion on the 3' side is melamine aptamer.
- region enclosed with the square is a mutually complementary arrangement
- the said fluorescence sensor becomes a block type.
- Example 2 Using the fluorescent sensor for melamine analysis of Example 1, melamine in milk was detected.
- Buffer A 50 mmol / L Tris-HCl (pH 7.4), 20 mmol / L KCl and 0.05% (w / v) Triton X-100
- Buffer B 50 mmol / L Tris-HCl (pH 7.4), 20 mmol / L KCl, 0.05% (w / v) Triton X-100 and 50 mmol / L EDTA
- a sensor reagent in which the fluorescent sensor was suspended in the buffer B and an NMM reagent in which NMM was suspended in the buffer B were prepared.
- Commercial milk (100% raw milk, trade name Meiji delicious milk, Meiji Co., Ltd.) was used as a 100% sample, and the commercial milk diluted with the buffer A in Example 1 was used as a diluted sample.
- the sensor reagent was put in a 1.5 mL tube, treated at 95 ° C. for 5 minutes, and then incubated at room temperature for 15 minutes.
- the NMM reagent and 25 ⁇ L of the sample were added to the tube and incubated at room temperature for 30 minutes.
- the final concentration of the sensor is 400 nmol / L
- the final concentration of NMM is 200 nmol / L
- the final concentration of milk is 0 (no milk added), 10, 20, 30, 40 And 50%.
- this reaction solution was dispensed into wells of a plate (trade name Greiner 384 Flat Bottom Black Polystyrol, manufactured by Greiner), and the fluorescence intensity was measured.
- the fluorescence intensity was measured using a measuring device (trade name: TECAN infinite M1000 PRO, TECAN) with an excitation wavelength of 399 nm and an emission wavelength of 550 to 690 nm.
- FIG. 8 is a graph showing the fluorescence intensity in the emission wavelength region, where (A) is the result of the fluorescence intensity of the sensor-added reaction liquid, and (B) is the result of the fluorescence intensity of the sensor-unadded reaction liquid. .
- the vertical axis represents the fluorescence intensity
- the horizontal axis represents the emission wavelength.
- the sensor-added reaction liquid showed a larger peak at 605 nm than the sensor-unadded reaction liquid in FIG. 8 (B). From this result, it was confirmed that the emission wavelength of 605 nm showed the highest S / N ratio, and that the fluorescence by the complex of the sensor and NMM could be detected in milk.
- Example 3 Using the fluorescent sensor for melamine analysis of Example 1, melamine in milk was detected.
- Example 2 Commercial milk (raw milk 100%, trade name Meiji delicious milk, Meiji Co., Ltd.) was used as a melamine-free 100% sample, and the commercial milk diluted with the buffer A of Example 1 was diluted with melamine-free. Used as a sample. Furthermore, a melamine-added sample was prepared by adding melamine to the melamine-free 100% sample and the melamine-free diluted sample. The sample-added reaction solution and the sensor-free sample were used in the same manner as in Example 2 except that the melamine-free sample and the melamine-added sample were used as samples, and the measurement conditions were set to an excitation wavelength of 399 nm and an emission wavelength of 605 nm. The fluorescence intensity was measured for the reaction solution. In the reaction solution, the final concentration of the milk was 0, 10, 20, 30, 40 and 50%, and the final concentration of added melamine was 0, 1, 2, 3, 5 mmol / L.
- FIG. 9 is a graph showing the fluorescence intensity, where (A) shows the result of the fluorescence intensity of the reaction solution added with the sensor, and (B) shows the result of the fluorescence intensity of the reaction solution not added with the sensor.
- the vertical axis indicates the fluorescence intensity.
- the horizontal axis indicates the type of sample, and from the left, sample sets of the final concentration of milk in the reaction solution of 0, 10, 20, 30, 40, 50%, and 5 bars of each set. From the left, the final concentration of melamine in the reaction solution is 0, 1, 2, 3, 5 mmol / L. As shown in FIG.
- the melamine 0 mmol / L sample in each sample set was approximately the same as the fluorescence intensity of the non-sensor added reaction solution in FIG. 9B. From this, it was found that the background when using the sensor is low, and for example, it can be standardized by subtracting the fluorescence intensity of the non-sensor added reaction solution from the fluorescence intensity of the sensor added reaction solution.
- FIG. 10 shows the result of subtracting the fluorescence intensity of the non-sensor addition reaction solution of FIG. 9B from the fluorescence intensity of the sensor addition reaction solution of FIG. 9A.
- FIG. 10 is a graph showing the fluorescence intensity, which is a value obtained by subtracting the fluorescence intensity of the non-sensor-added reaction liquid from the fluorescence intensity of the sensor-added reaction liquid, and the horizontal axis represents the final concentration of milk in the reaction liquid, Each plot shows the final concentration of melamine in the reaction solution. As shown in FIG. 10, in any of the reaction solutions having a final milk concentration of 10-50%, the fluorescence intensity significantly increased due to the presence of melamine. From this result, it was found that melamine can be detected regardless of the milk concentration of the sample.
- the target can be indirectly analyzed by the generation of fluorescence simply and efficiently.
- the present invention can be said to be an extremely useful technique for research and examination in various fields such as clinical medicine, food, and environment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
新たなターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法を提供する。 本発明のターゲット分析用蛍光センサは、G-カルテット構造を形成するG-カルテット形成核酸領域(D)とターゲットに結合する結合核酸領域(A)とを有する核酸分子を含み、ターゲット非存在下、前記G-カルテット形成核酸領域(D)のG-カルテット形成が阻害され、ターゲット存在下、前記結合核酸領域(A)への前記ターゲットの接触により、前記G-カルテット形成核酸領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成核酸領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とする。
Description
本発明は、ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲット分析方法に関する。
臨床医療、食品、環境等の様々な分野において、ターゲットの検出が必要とされている。前記ターゲットの検出は、一般的に、前記ターゲットとの相互作用を利用する方法として、前記ターゲットに特異的に結合する抗体を用いた手法が汎用されている。そして、近年、前記抗体に代えて、新たに、前記ターゲットに特異的な核酸分子(いわゆるアプタマー)を使用する方法が開発されている。
前記アプタマーを使用する方法としては、例えば、アプタマーとDNAzymeとを連結したセンサが報告されている。DNAzymeとは、G-カルテット構造をとることで、ペルオキシダーゼ等と同様の酸化還元反応の触媒活性を生起するDNA分子である。このセンサによれば、まず、前記アプタマーにターゲットを結合させ、前記ターゲットが結合したセンサにおける前記DNAzymeの触媒活性を測定することで、間接的に、ターゲットを検出できる(非特許文献1)。
また、G-カルテット構造を形成したDNAzymeは、ポルフィリンとの複合体を形成することで、蛍光を発することが報告されている(非特許文献2および非特許文献3)。そこで、新たに、アプタマーとDNAzymeとを連結したセンサにおいて、DNAzymeの酸化還元反応の触媒活性ではなく、前記複合体形成による蛍光を測定することで、ターゲットを検出する方法も報告されている。しかしながら、実用面において、より適した新たな構造の蛍光センサの提供が望まれている。
Tellerら、 Anal.Chem., 2009年、vol.81、p.9114-9119
Jiangtao Renら、Anal. Bioanal. Chem. 2011年、399、p.2763-2770
Seung Soo Ohら、PNAS、2010年、vol.107、32、p.14053-14058
そこで、本発明は、新たなターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法を提供することを目的とする。
本発明のターゲット分析用蛍光センサは、G-カルテット構造を形成するG-カルテット形成領域(D)とターゲットに結合する結合領域(A)とを有する下記(I)、(II)、(III)、(IV)および(V)からなる群から選択された少なくとも一つの核酸分子を含み、
ターゲット非存在下、前記G-カルテット形成領域(D)のG-カルテット形成が阻害され、
ターゲット存在下、前記結合領域(A)への前記ターゲットの接触により、前記G-カルテット形成領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とする。
(I)前記G-カルテット形成領域(D)、ブロッキング領域(B)、および前記結合領域(A)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)における部分領域(Dp)に対して相補的であり、
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)が、前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域(Df)に相補的であり、且つ、前記結合領域(A)における前記ブロッキング領域(B)側とは反対側の末端領域(Af)に相補的である一本鎖核酸分子。
(II)前記G-カルテット形成領域(D)、ブロッキング領域(B)、前記結合領域(A)、および安定化領域(S)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)の部分領域(Dp)に対して相補的であり、
前記ブロッキング領域(B)の前結合領域(A)側の末端領域(Ba)が、前記安定化領域(S)に対して相補的である一本鎖核酸分子。
(III)前記G-カルテット形成領域(D)、ステム形成領域(SD)、前記結合領域(A)およびステム形成領域(SA)を有し、
前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する一本鎖核酸分子。
(IV)前記G-カルテット形成領域(D)および前記結合領域(A)を有し、
前記G-カルテット形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
(V)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G-カルテット形成領域(D)と前記結合領域(A)とを有し、
前記第2鎖(ss2)は、ステム形成領域(SD)およびステム形成領域(SA)を有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。
ターゲット非存在下、前記G-カルテット形成領域(D)のG-カルテット形成が阻害され、
ターゲット存在下、前記結合領域(A)への前記ターゲットの接触により、前記G-カルテット形成領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とする。
(I)前記G-カルテット形成領域(D)、ブロッキング領域(B)、および前記結合領域(A)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)における部分領域(Dp)に対して相補的であり、
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)が、前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域(Df)に相補的であり、且つ、前記結合領域(A)における前記ブロッキング領域(B)側とは反対側の末端領域(Af)に相補的である一本鎖核酸分子。
(II)前記G-カルテット形成領域(D)、ブロッキング領域(B)、前記結合領域(A)、および安定化領域(S)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)の部分領域(Dp)に対して相補的であり、
前記ブロッキング領域(B)の前結合領域(A)側の末端領域(Ba)が、前記安定化領域(S)に対して相補的である一本鎖核酸分子。
(III)前記G-カルテット形成領域(D)、ステム形成領域(SD)、前記結合領域(A)およびステム形成領域(SA)を有し、
前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する一本鎖核酸分子。
(IV)前記G-カルテット形成領域(D)および前記結合領域(A)を有し、
前記G-カルテット形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
(V)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G-カルテット形成領域(D)と前記結合領域(A)とを有し、
前記第2鎖(ss2)は、ステム形成領域(SD)およびステム形成領域(SA)を有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。
本発明のターゲット分析用キットは、センサと試薬とを含み、前記センサが、前記本発明のターゲット分析用蛍光センサであり、前記試薬が、ポルフィリンを含むことを特徴とする。
本発明のターゲット分析方法は、前記本発明のターゲット分析用蛍光センサに試料を接触させる接触工程、および、
ポルフィリン存在下、前記センサにおける前記G-カルテット形成領域(D)とポルフィリンとの複合体による蛍光を検出することによって、前記試料中のターゲットを検出する検出工程を含むことを特徴とする。
ポルフィリン存在下、前記センサにおける前記G-カルテット形成領域(D)とポルフィリンとの複合体による蛍光を検出することによって、前記試料中のターゲットを検出する検出工程を含むことを特徴とする。
本発明のターゲット分析用蛍光センサによれば、簡便且つ効率的に、蛍光の発生により間接的にターゲットを分析できる。このため、本発明は、例えば、臨床医療、食品、環境等の様々な分野における研究および検査に、極めて有用な技術といえる。
本発明の蛍光センサは、例えば、前記(I)または(II)の一本鎖核酸分子において、
前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)を、5’側からこの順序で有している。
前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)を、5’側からこの順序で有している。
本発明の蛍光センサは、例えば、前記(III)の一本鎖核酸分子において、
前記ステム形成領域(S)として、ステム形成領域(SD)とステム形成領域(SA)とを有し、
前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とが、互いに相補的な配列を有し、
前記結合領域(A)と前記ステム形成領域(SA)とが、互いに相補的な配列を有する。
前記ステム形成領域(S)として、ステム形成領域(SD)とステム形成領域(SA)とを有し、
前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とが、互いに相補的な配列を有し、
前記結合領域(A)と前記ステム形成領域(SA)とが、互いに相補的な配列を有する。
本発明の蛍光センサは、例えば、前記(III)の一本鎖核酸分子において、前記G-カルテット形成領域(D)、前記ステム形成領域(SD)、前記結合領域(A)および前記ステム形成領域(SA)が、下記(1)、(2)、(3)または(4)の順序で連結している。
(1) 前記結合領域(A)、前記ステム形成領域(SD)、前記G-カルテット形成領域(D)および前記ステム形成領域(SA)の順序
(2) 前記ステム形成領域(SA)、前記G-カルテット形成領域(D)、前記ステム形成領域(SD)および前記結合領域(A)の順序
(3) 前記G-カルテット形成領域(D)、前記ステム形成領域(SA)、前記結合領域(A)および前記ステム形成領域(SD)の順序
(4) 前記ステム形成領域(SD)、前記結合領域(A)、前記ステム形成領域(SA)および前記G-カルテット形成領域(D)の順序
(1) 前記結合領域(A)、前記ステム形成領域(SD)、前記G-カルテット形成領域(D)および前記ステム形成領域(SA)の順序
(2) 前記ステム形成領域(SA)、前記G-カルテット形成領域(D)、前記ステム形成領域(SD)および前記結合領域(A)の順序
(3) 前記G-カルテット形成領域(D)、前記ステム形成領域(SA)、前記結合領域(A)および前記ステム形成領域(SD)の順序
(4) 前記ステム形成領域(SD)、前記結合領域(A)、前記ステム形成領域(SA)および前記G-カルテット形成領域(D)の順序
本発明の蛍光センサは、例えば、前記(IV)の一本鎖核酸分子において、
前記第1領域(D1)と前記第2領域(D2)とが、
それぞれ、前記結合領域(A)の位置とは反対側の末端に、互いに相補的な配列を有する。
前記第1領域(D1)と前記第2領域(D2)とが、
それぞれ、前記結合領域(A)の位置とは反対側の末端に、互いに相補的な配列を有する。
本発明の蛍光センサは、例えば、前記G-カルテット形成領域(D)と前記結合領域(A)との間に、リンカー配列を有する。
本発明の蛍光センサは、例えば、さらに、基材を有し、前記基材に、前記核酸分子が配置されている。
本発明の蛍光センサは、例えば、前記核酸分子が、リンカー領域を介して前記基材に連結されている。
本発明の蛍光センサは、例えば、前記基材に、さらに、試薬を含む試薬部が配置されており、前記試薬が、ポルフィリンを含む。
本発明の蛍光センサは、例えば、前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである。
本発明の分析用キットは、例えば、前記センサが、前記核酸分子が基材に配置されたセンサであり、前記基材に、さらに、前記試薬を含む試薬部が配置されている。
本発明の分析用キットは、例えば、前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである。
本発明の分析方法は、例えば、前記検出工程における蛍光の検出が、蛍光強度の測定である。
本発明の分析方法は、例えば、前記試料が、原乳、加工乳および粉ミルクからなる群から選択された少なくとも一つである。
本発明の分析方法は、例えば、前記ターゲットが、メラミンである。
1.ターゲット分析用蛍光センサ
本発明のターゲット分析用センサは、前述のように、G-カルテット構造を形成するG-カルテット形成領域(D)とターゲットに結合する結合領域(A)とを有する前記(I)、(II)、(III)、(IV)および(V)からなる群から選択された少なくとも一つの核酸分子を含み、
ターゲット非存在下、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、
ターゲット存在下、前記結合領域(A)への前記ターゲットの接触により、前記G-カルテット形成領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とする。
本発明のターゲット分析用センサは、前述のように、G-カルテット構造を形成するG-カルテット形成領域(D)とターゲットに結合する結合領域(A)とを有する前記(I)、(II)、(III)、(IV)および(V)からなる群から選択された少なくとも一つの核酸分子を含み、
ターゲット非存在下、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、
ターゲット存在下、前記結合領域(A)への前記ターゲットの接触により、前記G-カルテット形成領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とする。
以下、本発明のターゲット分析用センサをセンサ、領域を核酸領域ともいう。本発明における前記一本鎖核酸分子は、例えば、一本鎖核酸素子ということもできる。また、前記G-カルテット形成領域(D)について、G-カルテット構造の形成が阻害されることを、スイッチ-OFF(またはturn-OFF)、G-カルテット構造が形成されることを、スイッチ-ON(またはturn-ON)ともいう。
前記G-カルテット(G-tetradともいう)は、一般に、G(グアニン)が四量体となった面の構造として知られている。本発明において、前記G-カルテット形成領域(D)は、複数の塩基Gを有し、その領域内で、複数の塩基GによるG-カルテット構造を形成する領域である。本発明において、前記G-カルテット構造は、例えば、パラレル型およびアンチパラレル型のいずれでもよく、好ましくは、パラレル型である。本発明のセンサにおいて、前記G-カルテット形成領域(D)において形成されるG-カルテット構造の個数は、特に制限されず、例えば、1面でも、2面以上の複数でもよいが、前記G-カルテット形成領域(D)は、G-カルテットが複数面重なった、グアニン四重鎖(またはG-quadruplexという)構造を形成することが好ましい。本発明において、前記G-カルテット形成領域(D)の配列は、前記G-カルテット構造を形成する配列であればよく、より好ましくは、グアニン四重鎖構造を形成する配列である。
ポルフィリン存在下でG-カルテット構造を形成した領域は、ポルフィリンとの複合体形成により、蛍光を発する。他方、本発明のセンサは、ターゲットの非存在下では、前記G-カルテット形成領域(D)が、G-カルテット構造の形成を阻害されており、ターゲット存在下で、前記結合領域(A)にターゲットが接触することで、前記G-カルテット形成領域(D)のG-カルテット構造の形成阻害が解除され、前記G-カルテット形成領域(D)がG-カルテット構造を形成する。このため、本発明のセンサによれば、ターゲット非存在下では、前記G-カルテット形成領域(D)がG-カルテット構造を形成できないため、ポルフィリンとの複合体形成による蛍光は発することなく、ターゲット存在下で、はじめて前記G-カルテット形成領域(D)がG-カルテット構造を形成し、ポルフィリンとの複合体形成による蛍光が生じる。このため、例えば、試料におけるターゲットの存在の有無またはターゲット量を、G-カルテット形成領域(D)とポルフィリンとの複合体形成による蛍光によって、分析できる。
前記G-カルテット構造を形成する核酸分子としては、例えば、酵素の触媒機能を生じる核酸分子(触媒核酸分子)が知られている。前記触媒機能は、特に制限されず、例えば、酸化還元反応の触媒機能である。前記酸化還元反応は、例えば、基質から生成物が生成される過程において、二つの基質の間に電子の授受を生じる反応である。前記酸化還元反応の種類は、特に制限されない。前記酸化還元反応の触媒機能は、例えば、酵素と同様の活性があげられ、具体的には、例えば、ペルオキシダーゼと同様の活性(以下、「ペルオキシダーゼ様活性」という)等があげられる。前記ペルオキシダーゼ活性は、例えば、西洋わさび由来ペルオキシダーゼ(HRP)活性があげられる。前記触媒核酸分子は、一般に、DNA配列の場合、DNAエンザイムまたはDNAzymeと呼ばれ、RNA配列の場合、RNAエンザイムまたはRNAzymeと呼ばれる。本発明において、前記G-カルテット形成領域(D)は、例えば、このような前記触媒核酸分子を使用できる。なお、本発明において、前記G-カルテット形成領域(D)は、G-カルテット構造を形成できればよく、前記触媒機能の有無は制限されない。
前記DNAzymeとしては、例えば、下記論文(1)~(4)等の核酸分子が例示できる。
(1)Travascioら, Chem. Biol., 1998年, vol.5, p.505-517
(2)Chengら, Biochemistry, 2009年, vol.48, p.7817-7823
(3)Tellerら, Anal. Chem., 2009年, vol.81, p.9114-9119
(4)Taoら, Anal. Chem., 2009年, vol.81, p.2144-2149
(1)Travascioら, Chem. Biol., 1998年, vol.5, p.505-517
(2)Chengら, Biochemistry, 2009年, vol.48, p.7817-7823
(3)Tellerら, Anal. Chem., 2009年, vol.81, p.9114-9119
(4)Taoら, Anal. Chem., 2009年, vol.81, p.2144-2149
前記G-カルテット形成領域(D)は、例えば、一本鎖型でもよいし、二本鎖型でもよい。前記一本鎖型は、例えば、一本鎖のG-カルテット形成領域(D)内で、G-カルテット構造を形成でき、前記二本鎖型は、例えば、第1領域(D1)と第2領域(D2)とからなり、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造を形成できる。後者の二本鎖型は、例えば、前記第1領域と、前記第2領域とが、間接的に連結された構造があげられ、具体的には、後述する核酸分子(IV)において説明する。
前記一本鎖型のG-カルテット形成領域(D)の長さは、特に制限されず、下限は、例えば、11塩基長、13塩基長、15塩基長であり、上限は、例えば、60塩基長、36塩基長、18塩基長である。
前記二本鎖型のG-カルテット形成領域(D)において、前記第1領域(D1)および前記第2領域(D2)の長さは、特に制限されず、両者は同じであっても異なってもよい。前記第1領域(D1)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第2領域(D2)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。
本発明のセンサにおいて、ターゲットは、特に制限されず、任意のターゲットが選択できる。そして、前記任意のターゲットに応じて、前記ターゲットに結合する結合核酸分子を、前記結合領域(A)として使用すればよい。
前記ターゲットは、特に制限されず、例えば、低分子化合物、微生物、ウイルス、食物アレルゲン、農薬、カビ毒、抗体等が例示できる。前記低分子化合物は、例えば、メラミン、抗生物質、農薬、環境ホルモン等があげられる。前記微生物は、例えば、サルモネラ菌、リステリア菌、大腸菌、カビ等があげられ、前記ウイルスは、例えば、ノロウイルス等があげられる。
前記結合領域(A)の長さは、特に制限されず、下限は、例えば、12塩基長、15塩基長、18塩基長であり、上限は、例えば、140塩基長、80塩基長、60塩基長であり、その範囲は、例えば、12~140塩基長、15~80塩基長、18~60塩基長である。
本発明において、ある配列に対して他の配列が相補的であるとは、例えば、両者間でアニーリングが生じ得る配列であることを意味する。前記アニーリングを、ステム形成ともいう。本発明において、相補的とは、例えば、2種類の配列をアラインメントした際の相補性が、例えば、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上、100%、すなわち完全相補である。また、核酸分子内において、ある配列に対して他の配列が相補的であるとは、一方の5’側から3’側に向かう配列と、他方の3’側から5’側に向かう配列とを対比させた際に、互いの塩基が相補的であることを意味する。
本発明のセンサにおける前記核酸分子について、前記(I)、(II)、(III)、(IV)および(V)のそれぞれを、以下に説明する。なお、特に示さない限り、各核酸分子の記載を、それぞれ援用できる。
(1)核酸分子(I)
前記核酸分子(I)は、前記G-カルテット形成領域(D)、ブロッキング領域(B)、および前記結合領域(A)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)における部分領域(Dp)に対して相補的であり、
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)が、前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域(Df)に相補的であり、且つ、前記結合領域(A)における前記ブロッキング領域(B)側とは反対側の末端領域(Af)に相補的な一本鎖核酸分子である。
前記核酸分子(I)は、前記G-カルテット形成領域(D)、ブロッキング領域(B)、および前記結合領域(A)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)における部分領域(Dp)に対して相補的であり、
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)が、前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域(Df)に相補的であり、且つ、前記結合領域(A)における前記ブロッキング領域(B)側とは反対側の末端領域(Af)に相補的な一本鎖核酸分子である。
前記核酸分子(I)において、前記G-カルテット形成領域(D)は、例えば、前記一本鎖型である。
前記核酸分子(I)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。一般的に、核酸配列は、形成し得る構造の間で熱力学的に揺らいでおり、相対的に安定性の高いものの存在比率が高くなると考えられている。そして、アプタマー等の結合核酸分子は、一般的に、ターゲット存在下では、ターゲットとの接触によって、より安定な立体構造に変化して、前記ターゲットに結合することが知られている。また、DNAzyme等の核酸分子も、一般的に、G-カルテット構造のような安定な立体構造によって、触媒活性を生起することが知られている。
前記核酸分子(I)において、前記G-カルテット形成領域(D)の部分領域(Dp)が、前記ブロッキング領域(B)と相補的であり、且つ、前記G-カルテット形成領域(D)における隣接領域(Df)が、前記結合領域(A)の前記末端領域(Ab)と相補的であるため、これらの相補関係において、ステム形成が可能である。このため、ターゲットの非存在下では、前記G-カルテット形成領域(D)の部分領域(Dp)と前記ブロッキング領域(B)とのステム形成および前記G-カルテット形成領域(D)の隣接領域(Df)と前記結合領域(A)の前記末端領域(Ab)とのステム形成が生じる。前者のステム形成により、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体形成が阻害され(スイッチ-OFF)、後者のステム形成により、前記結合領域(A)において、前記より安定な立体構造の形成がブロックされ、ターゲットと結合していない状態のブロッキング型構造が維持される。この状態の前記分子の構造を、ブロッキング型または不活性型ともいう。一方、ターゲットの存在下では、前記結合領域(A)への前記ターゲットの接触により、前記結合領域(A)がより安定な立体構造に変化する。これに伴い、前記結合領域(A)におけるステム形成が解除され、分子内アニーリングによって前記より安定な立体構造に変化した前記結合領域(A)に、前記ターゲットが結合する。そして、前記結合領域(A)におけるステム形成の解除に伴う前記結合領域(A)の前記立体構造化により、前記G-カルテット形成領域(D)のステム形成も解除され、前記G-カルテット形成領域(D)が分子内アニーリングによってより安定な立体構造に変化し、結果的に、前記G-カルテット形成領域(D)の領域内でG-カルテット構造が形成され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチON)。この状態の構造を、活性型ともいう。このため、本発明のセンサによれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記核酸分子(I)は、さらに、安定化領域(S)を有してもよく、この場合、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、前記結合領域(A)、および前記安定化領域(S)が、この順序で連結されていることが好ましい。以下、前記核酸分子(I)として、前記安定化領域(S)を有する一本鎖核酸分子の形態を示す場合、前記安定化領域(S)は、任意であり、含まない形態でもよい。
前記安定化領域(S)は、例えば、前記結合領域(A)がターゲットと結合する際の構造を安定化するための配列である。前記安定化領域(S)は、例えば、前記ブロッキング領域(B)に相補的またはその一部に相補的であり、具体的には、前記ブロッキング領域(B)における前記結合領域(A)側の末端領域(Ba)に相補的であることが好ましい。この場合、例えば、ターゲット存在下、分子内アニーリングによる前記結合領域(A)の立体構造が形成された際、前記結合領域(A)に連結する前記安定化領域(S)と、前記結合領域(A)に連結する前記ブロッキング領域(B)の末端領域(Ba)との間でも、ステムが形成される。前記結合領域(A)に連結する領域において、このようなステムが形成されることによって、ターゲットと結合する前記結合領域(A)の立体構造が、より安定化される。
前記核酸分子(I)において、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)、ならびに任意の前記安定化領域(S)の順序は、特に制限されず、例えば、5’側からこの順序で連結してもよいし、3’側からこの順序で連結してもよく、好ましくは前者である。図1に、前記核酸分子(I)の一例として、5’側から前記各領域が連結している状態の一本鎖核酸分子(I)の模式図を示す。図1において、(A)が、各配列の順序を示した模式図であり、(B)が、ターゲット非存在下におけるブロッキング型の模式図であり、(C)は、ターゲット存在下における活性型の模式図である。図1において、Dは、前記G-カルテット形成領域(D)の構成単位(ヌクレオチド)、Bは、前記ブロッキング領域(B)の構成単位、Aは、前記結合領域(A)の構成単位、Sは、前記安定化領域(S)の構成単位を、それぞれ示し、各構成単位間の線は、結合を示す。なお、図1は、各領域を模式的に示したものであり、各領域の構成単位の数(配列の長さ)は、何ら制限されず、また、前記安定化領域(S)は、任意である(以下、同様)。
図1(A)に示すように、前記核酸分子(I)の一例は、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、前記結合領域(A)、および任意で前記安定化領域(S)を、この順序で有する。前記核酸分子(I)は、例えば、図1(B)に示すように、ターゲット非存在下では、前記G-カルテット形成領域(D)の一部が、前記ブロッキング領域(B)および前記結合領域(A)の一部と結合して、ステムを形成し、ブロッキング型の一本鎖核酸分子となる。他方、前記核酸分子(I)は、例えば、図1(C)に示すように、ターゲットの存在下では、前記結合領域(A)への前記ターゲットの接触により、前記結合領域(A)は、その分子内アニーリングにより立体構造を形成し、それに伴い、前記G-カルテット形成領域(D)におけるステム形成も解除され、前記G-カルテット形成領域(D)は、その分子内アニーリングにより、G-カルテット構造を形成する。また、図1(C)に示すように、例えば、前記ブロッキング領域(B)と前記安定化領域(S)とが結合することによって、前記結合領域(A)の立体構造が、より安定化される。
前記核酸分子(I)において、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)、ならびに任意で前記安定化領域(S)は、例えば、それぞれの間が、スペーサー配列が介在することにより間接的に連結してもよいが、前記スペーサー配列が介在することなく直接的に連結していることが好ましい。
前記G-カルテット形成領域(D)は、前述のように、前記ブロッキング領域(B)に相補的な配列を有し、且つ、前記結合領域(A)の一部にも相補的な配列を有する。また、前記ブロッキング領域(B)は、前述のように、前記G-カルテット形成領域(D)の一部と相補的であり、また、前記安定化領域(S)を有する場合は、前記安定化領域(S)にも相補的である。
前記ブロッキング領域(B)の配列および長さは、特に制限されず、例えば、前記G-カルテット形成領域(D)の配列および長さ等に応じて、適宜設定できる。
前記ブロッキング領域(B)の長さは、特に制限されず、下限は、例えば、1塩基長、2塩基長、3塩基長であり、上限は、例えば、20塩基長、15塩基長、10塩基長であり、その範囲は、例えば、1~20塩基長、2~15塩基長、3~10塩基長である。
これに対して、前記G-カルテット形成領域(D)の前記部分領域(Dp)の長さは、例えば、下限は、例えば、1塩基長、2塩基長、3塩基長であり、上限は、例えば、20塩基長、15塩基長、10塩基長であり、その範囲は、例えば、1~20塩基長、2~15塩基長、3~10塩基長である。前記ブロッキング領域(B)の長さと前記G-カルテット形成領域(D)の前記部分領域(Dp)の長さは、例えば、同じであることが好ましい。
前記核酸分子(I)において、前記G-カルテット形成領域(D)における前記部分領域(Dp)の位置、すなわち、前記G-カルテット形成領域(D)における前記ブロッキング領域(B)のアニール領域は、特に制限されない。前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)、ならびに任意で前記安定化領域(S)が、この順序で連結している場合、前記部分領域(Dp)は、例えば、以下の条件で設定できる。
前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域であって、前記部分領域(Dp)のブロッキング領域(B)側末端と前記ブロッキング領域(B)における前記G-カルテット形成領域(D)側末端との間の領域(Db)の長さは、下限が、例えば、3塩基長、4塩基長、5塩基長であり、上限が、例えば、40塩基長、30塩基長、20塩基長であり、その範囲が、例えば、3~40塩基長、4~30塩基長、5~20塩基長である。
前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域であって、前記ブロッキング領域(B)側とは反対側の領域(Df)の長さは、下限が、例えば、0塩基長、1塩基長、2塩基長であり、上限は、例えば、40塩基長、30塩基長、20塩基長であり、その範囲は、例えば、0~40塩基長、1~30塩基長、2~20塩基長である。
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)は、前述のように、前記G-カルテット形成領域(D)の隣接領域(Df)に相補的である。ここで、前記結合領域(A)の末端領域(Ab)は、前記G-カルテット形成領域(D)の隣接領域(Df)の全領域に対して相補的でもよいし、前記隣接領域(Df)の部分領域に対して相補的でもよい。後者の場合、前記結合領域(A)の末端領域(Ab)は、前記隣接領域(Df)における、前記G-カルテット形成領域(D)の部分領域(Dp)側の末端領域に対して相補的であることが好ましい。
前記G-カルテット形成領域(D)の隣接領域(Df)に相補的な、前記結合領域(A)における末端領域(Ab)の長さは、特に制限されず、下限は、例えば、1塩基長であり、上限は、例えば、20塩基長、8塩基長、3塩基長であり、その範囲は、例えば、1~20塩基長、1~8塩基長、1~3塩基長である。
前記安定化領域(S)は、前述のように、例えば、ブロッキング領域(B)に相補的またはその一部に相補的であり、具体的には、前記ブロッキング領域(B)における前記結合領域(A)側の末端領域(Ba)に相補的であることが好ましい。
前記安定化領域(S)の配列および長さは、特に制限されず、例えば、前記ブロッキング領域(B)の配列および長さ、前記結合領域(A)の配列および長さ等に応じて適宜決定できる。前記安定化領域(S)の長さは、下限が、例えば、0塩基長、1塩基長であり、上限が、例えば、10塩基長、5塩基長、3塩基長であり、その範囲は、例えば、0~10塩基長、1~5塩基長、1~3塩基長である。これに対して、例えば、前記安定化領域(S)が前記ブロッキング領域(B)の全体と相補的な場合、前記ブロッキング領域(B)は、前記安定化領域(S)と同じ長さであり、例えば、前記安定化領域(S)が前記ブロッキング領域(B)の一部と相補的な場合、前記ブロッキング領域(B)の一部、例えば、前記末端領域(Ba)は、前記安定化領域(S)と同じ長さである。
前記核酸分子(I)の全長の長さは、特に制限されず、下限は、例えば、25塩基長、35塩基長、40塩基長であり、上限は、例えば、200塩基長、120塩基長、80塩基長であり、その範囲は、例えば、25~200塩基長、35~120塩基長、40~80塩基長である。
前記核酸分子(I)は、例えば、一方の末端または両端に、さらにリンカー領域が付加されてもよい。前記末端に付加されたリンカー領域を、以下、付加リンカー領域ともいう。前記付加リンカー領域の長さは、特に制限されず、例えば、1~60塩基長である。
(2)核酸分子(II)
前記核酸分子(II)は、前記G-カルテット形成領域(D)、ブロッキング領域(B)、前記結合領域(A)、および安定化領域(S)をこの順序で有し、前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)の部分領域(Dp)に対して相補的であり、前記ブロッキング領域(B)の前結合領域(A)側の末端領域(Ba)が、前記安定化領域(S)に対して相補的な一本鎖核酸分子である。
前記核酸分子(II)は、前記G-カルテット形成領域(D)、ブロッキング領域(B)、前記結合領域(A)、および安定化領域(S)をこの順序で有し、前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)の部分領域(Dp)に対して相補的であり、前記ブロッキング領域(B)の前結合領域(A)側の末端領域(Ba)が、前記安定化領域(S)に対して相補的な一本鎖核酸分子である。
前記核酸分子(II)において、前記G-カルテット形成領域(D)は、例えば、前記一本鎖型である。
前記核酸分子(II)において、前記結合領域(A)は、それ単独では、ターゲットとの結合に必要な分子内アニーリングが形成されない配列であることが好ましい。そして、前記核酸分子(II)は、ターゲット存在下、前記結合領域(A)に隣接する前記ブロッキング領域(B)の末端領域(Ba)と前記安定化領域(S)とのアニーリングによって、前記結合領域(A)と前記末端領域(Ba)と前記安定化領域(S)との全体から、前記立体構造が形成されることが好ましい。
前記核酸分子(II)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。
前記一本鎖核酸(II)において、前記G-カルテット形成領域(D)の部分領域(Dp)が、前記ブロッキング領域(B)と相補的であるため、この相補関係において、ステム形成が可能である。このため、ターゲットの非存在下では、前記G-カルテット形成領域(D)の部分領域(Dp)と前記ブロッキング領域(B)とのステム形成が生じる。このステム形成により、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体形成が阻害され(スイッチOFF)る。また、前記結合領域(A)は、それ単独ではターゲットとの結合に必要な分子内アニーリングが形成されない配列であるため、ターゲットと結合するための、より安定な前記立体構造の形成がブロックされ、ターゲットと結合していない状態が維持される。つまり、ターゲット非存在下において、前記核酸分子(II)は、ブロッキング型構造が維持される。この状態の前記分子の構造を、ブロッキング型または不活性型ともいう。一方、ターゲットの存在下では、前記結合領域(A)への前記ターゲットの接触により、前記結合領域(A)がより安定な立体構造に変化する。これに伴い、前記ブロッキング領域(B)の末端領域(Ba)と前記G-カルテット形成領域(D)の部分領域(Dp)とのステム形成が解除され、新たに、前記ブロッキング領域(B)の末端領域(Ba)と前記安定化領域(S)とのアニーリングにより、ステムが形成され、このステムが、前記結合領域(A)がターゲットに結合するために必要な分子内アニーリングの役目を担い、前記ステムと前記結合領域(A)との全体から、前記立体構造が形成され、前記結合領域(A)に前記ターゲットが結合する。そして、前記ブロッキング領域(B)と前記G-カルテット形成領域(D)とのステム形成の解除により、新たに前記G-カルテット形成領域(D)が分子内アニーリングによってG-カルテット構造を形成し、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチON)。この状態の構造を、活性型ともいう。このため、本発明のセンサによれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記核酸分子(II)において、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、前記結合領域(A)、および前記安定化領域(S)の順序は、特に制限されず、例えば、5’側からこの順序で連結してもよいし、3’側からこの順序で連結してもよく、好ましくは前者である。図2に、前記核酸分子(II)の一例として、5’側から前記各領域が連結している状態の一本鎖核酸分子(II)の模式図を示す。図2において、(A)が、各領域の順序を示した模式図であり、(B)が、ターゲット非存在下におけるブロッキング型の模式図であり、(C)は、ターゲット存在下における活性型の模式図である。図2において、Dは、前記G-カルテット形成領域(D)の構成単位(ヌクレオチド)、Bは、前記ブロッキング領域(B)の構成単位、Aは、前記結合領域(A)の構成単位、Sは、前記安定化領域(S)の構成単位を、それぞれ示し、各構成単位間の線は、結合を示す。なお、図2は、各領域を模式的に示したものであり、各領域の構成単位の数(配列の長さ)は、何ら制限されない(以下、同様)。
図2(A)に示すように、前記核酸分子(II)の一例は、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、前記結合領域(A)、および前記安定化領域(S)を、この順序で有する。前記核酸分子(II)は、例えば、図2(B)に示すように、ターゲット非存在下では、前記G-カルテット形成領域(D)の一部が、前記ブロッキング領域(B)と結合して、ステムを形成し、ブロッキング型の一本鎖核酸となる。この際、前記結合領域(A)は、前記立体構造を形成していない。他方、前記核酸分子(II)は、例えば、図2(C)に示すように、ターゲットの存在下では、前記結合領域(A)への前記ターゲットの接触により、前記ブロッキング領域(B)と前記G-カルテット形成領域(D)とのステム形成が解除され、新たに、前記ブロッキング領域(B)と前記安定化領域(S)との間でステムが形成され、前記結合領域(A)と前記ブロッキング領域(B)と前記安定化領域(S)とから、立体構造が形成される。そして、例えば、前記ブロッキング領域(B)と前記G-カルテット形成領域(D)とのステム形成の解除に伴い、前記G-カルテット形成領域(D)は、その分子内アニーリングにより、G-カルテット構造を形成する。また、図2(C)に示すように、例えば、前記ブロッキング領域(B)と前記安定化領域(S)との結合によって、前記結合領域(A)と前記ブロッキング領域(B)と前記安定化領域(S)とから形成された立体構造が、より安定化される。
前記核酸分子(II)において、特に示さない限り、前記核酸分子(I)の記載を援用できる。前記核酸分子(II)において、前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記安定化領域(S)は、例えば、前記核酸分子(I)と同様である。
前記ブロッキング領域(B)は、前述のように、前記G-カルテット形成領域(D)と前記安定化領域(S)のそれぞれに対して、相補的な配列を有している。具体的には、前記ブロッキング領域(B)は、前記G-カルテット形成領域(D)の部分領域(Dp)に相補的であり、前記ブロッキング領域(B)の前記結合領域(A)側の末端領域(Ba)は、前記安定化領域(S)に対しても相補的である。
前記ブロッキング領域(B)において、前記安定化領域(S)と相補的な末端領域(Ba)の長さは、特に制限されず、下限は、例えば、1塩基長であり、上限は、例えば、15塩基長、10塩基長、3塩基長であり、その範囲は、例えば、1~10塩基長、1~5塩基長、1~3塩基長である。
前記核酸分子(II)の全長の長さは、特に制限されず、下限は、例えば、25塩基長、35塩基長、40塩基長であり、上限は、例えば、200塩基長、120塩基長、80塩基長であり、その範囲は、例えば、25~200塩基長、35~120塩基長、40~80塩基長である。
(3)核酸分子(III)
前記核酸分子(III)は、前記G-カルテット形成領域(D)、ステム形成領域(SD)、前記結合領域(A)およびステム形成領域(SA)を有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する一本鎖核酸分子である。
前記核酸分子(III)は、前記G-カルテット形成領域(D)、ステム形成領域(SD)、前記結合領域(A)およびステム形成領域(SA)を有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する一本鎖核酸分子である。
前記核酸分子(III)において、前記G-カルテット形成領域(D)は、例えば、前記一本鎖型である。
前記核酸分子(III)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(III)は、ターゲット非存在下では、前記分子内で、前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とがアニーリングすることで、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体形成が阻害される(スイッチ-OFF)。また、前記分子内で、前記結合領域(A)と前記ステム形成領域(SA)とがアニーリングすることで、前記結合領域(A)の構造も固定されている。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(III)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)と前記ステム形成領域(SA)とのアニーリングが解除され、前記結合領域(A)の立体構造が、より安定な構造に変化する。これに伴い、前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とのアニーリングが解除され、前記G-カルテット形成領域(D)の領域内でG-カルテット構造が形成され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチ-ON)。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(III)によれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記ステム形成領域(SD)は、例えば、その全部または一部が、前記G-カルテット形成領域(D)の一部に対して相補的な配列であることが好ましい。また、前記ステム形成領域(SA)は、例えば、その全部または一部が、前記結合領域(A)の一部に対して相補的な配列であることが好ましい。
前記核酸分子(III)において、前記各領域の順序は、前記分子内で、前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とがアニーリングし、前記結合領域(A)と前記ステム形成領域(SA)とがアニーリングする順序であればよい。具体例としては、以下の順序が例示できる。
(1) 5’- A-SD-D-SA -3’
(2) 5’- SA-D-SD-A -3’
(3) 5’- D-SA-A-SD -3’
(4) 5’- SD-A-SA-D -3’
(1) 5’- A-SD-D-SA -3’
(2) 5’- SA-D-SD-A -3’
(3) 5’- D-SA-A-SD -3’
(4) 5’- SD-A-SA-D -3’
前記(1)-(4)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下、前記結合核酸分子(A)と前記ステム形成領域(SA)、前記G-カルテット形成分子(D)と前記ステム形成領域(SD)が、それぞれステムを形成し、前記G-カルテット形成分子(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合核酸分子(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G-カルテット形成分子(D)において、G-カルテット構造が形成される。
前記(1)および(3)において、前記ステム形成領域(SD)は、前記G-カルテット形成分子(D)の3’側領域と相補的であり、前記ステム形成領域(SA)は、前記結合核酸分子(A)の3’側領域と相補的であることが好ましい。前記(2)および(4)において、前記ステム形成領域(SD)は、前記G-カルテット形成分子(D)の5’側領域と相補的であり、前記ステム形成領域(SA)は、前記結合核酸分子(A)の5’側領域と相補的であることが好ましい。
前記核酸分子(III)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。
前記核酸分子(III)は、例えば、前記介在リンカー領域として、互いに非相補的な2つの介在リンカー領域を有することが好ましい。前記2つの介在リンカー領域の位置は、特に制限されない。
具体例として、前記(1)-(4)が、さらに2つの介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記結合核酸分子(A)に連結する介在リンカー領域を(L1)、前記G-カルテット形成分子(D)に連結する介在リンカー領域を(L2)で示す。前記核酸分子(II)は、例えば、介在リンカー領域として、例えば、(L1)および(L2)の両方を有してもよいし、いずれか一方のみを有してもよい。
(1’) 5’- A-L1-SD-D-L2-SA -3’
(2’) 5’- SA-L2-D-SD-L1-A -3’
(3’) 5’- D-L2-SA-A-L1-SD -3’
(4’) 5’- SD-L1-A-SA-L2-D -3’
(1’) 5’- A-L1-SD-D-L2-SA -3’
(2’) 5’- SA-L2-D-SD-L1-A -3’
(3’) 5’- D-L2-SA-A-L1-SD -3’
(4’) 5’- SD-L1-A-SA-L2-D -3’
前記(1’)-(4’)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下において、例えば、前記結合核酸分子(A)と前記ステム形成領域(SA)、前記G-カルテット形成分子(D)と前記ステム形成領域(SD)が、それぞれステムを形成し、これら2つのステムの間で、前記介在リンカー領域(L1)と前記介在リンカー領域(L2)が、内部ループを形成して、前記G-カルテット形成分子(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合核酸分子(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G-カルテット形成分子(D)において、G-カルテット構造が形成される。
前記(1’)-(4’)の形態を例として、ターゲット非存在下における前記核酸分子(III)の状態を、図3および図4の模式図に示す。図3および図4において、(A)と(B)とは、互いに、各領域の順序が、逆向きとなっている形態を示す。図3(A)が、形態(1’)、図3(B)が、形態(2’)、図4(A)が、形態(3’)、図4(B)が、形態(4’)である。
図3および図4において、Aは、前記結合核酸分子(A)、L1は、前記介在リンカー領域(L1)、SDは、前記ステム形成配列(SD)、Dは、前記G-カルテット形成分子(D)、L2は、前記介在リンカー領域(L2)、SAは、前記ステム形成配列(SA)を示す。図3および図4に示すように、ターゲット非存在下では、前記核酸分子(II)の自己アニーリングによって、二カ所にステムが形成され、前記ステムの間に内部ループが形成される。そして、ターゲット存在下では、前記結合核酸分子(A)にターゲットが結合することによって、前記2つのステム形成が解除され、前記G-カルテット形成分子(D)がG-カルテット構造を形成し、ポルフィリンとの複合体を形成することで、蛍光を発する。
前記核酸分子(III)において、前記ステム形成配列(SA)および前記ステム形成配列(SD)の長さは、特に制限されない。前記ステム形成配列(SA)の長さは、例えば、1~60塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(SD)の長さは、例えば、1~30塩基長、0~10塩基長、1~10塩基長、0~7塩基長、1~7塩基長である。前記ステム形成配列(SA)と前記ステム形成配列(SD)は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。
前記介在リンカー領域(L1)および(L2)の長さは、特に制限されない。前記介在リンカー領域(L1)および(L2)の長さは、それぞれ、例えば、0~30塩基長、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L1)および(L2)の長さは、例えば、同じでも、異なってもよい。前記介在リンカー領域(L1)および前記(L2)は、後者の場合、長さの差は、特に制限されず、例えば、1~10塩基長、1または2塩基長、1塩基長である。
前記核酸分子(III)の長さは、特に制限されない。前記核酸分子(II)の長さは、例えば、40~120塩基長、45~100塩基長、50~80塩基長である。
前記一本鎖核酸分子(III)は、例えば、一方の末端または両端に、さらに前記付加リンカー領域が付加されてもよい。前記付加リンカー領域の長さは、特に制限されず、例えば、前述の通りである。
前記核酸分子(III)は、例えば、一方の末端が、前記付加リンカー領域を介して、基材に連結されてもよい。
(4)核酸分子(IV)
前記核酸分子(IV)は、前記G-カルテット形成領域(D)および前記結合領域(A)を有し、前記G-カルテット形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子である。
前記核酸分子(IV)は、前記G-カルテット形成領域(D)および前記結合領域(A)を有し、前記G-カルテット形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子である。
前記核酸分子(IV)において、前記G-カルテット形成領域(D)は、例えば、前記二本鎖型(以下、「スプリット型」ともいう)である。前記スプリット型のG-カルテット形成分子(D)は、前記第1領域(D1)と前記第2領域(D2)とを含み、両者が一対となりG-カルテット構造を形成する分子である。前記核酸分子(IV)において、前記第1領域(D1)および前記第2領域(D2)は、それぞれ、前記G-カルテット構造を形成する配列であればよく、より好ましくは、グアニン四重鎖構造を形成する配列である。
前記核酸分子(IV)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(IV)は、前述のように、一対となってG-カルテット構造を形成する前記第1領域(D1)と前記第2領域(D2)とが、前記結合領域(A)を介して、それぞれ離れて配置されている。このように、前記第1領域(D1)と前記第2領域(D2)とが距離を置いて配置されているため、ターゲット非存在下では、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成分子(D)とポルフィリンとの複合体形成が阻害される(スイッチ-OFF)。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(IV)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)の立体構造が、ステムループ構造を有するより安定な構造に変化する。この前記結合領域(A)の立体構造の変化に伴い、前記第1領域(D1)と前記第2領域(D2)とが接近し、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造が形成され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチ-ON)。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(IV)によれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記核酸分子(IV)は、前述のように、G-カルテット形成領域(D)として、二本鎖型を使用し、前記結合領域(A)を介して、前記第1領域(D1)と前記第2領域(D2)とを配置している。このため、例えば、アプタマーの種類ごとに条件設定を行う必要がなく、前記結合領域(A)として所望のアプタマーをセットできることから、汎用性に優れる。
前記核酸分子(IV)において、前記第1領域(D1)と前記第2領域(D2)は、前記結合領域(A)を介して配置されていればよく、いずれが前記結合領域(A)の5’側または3’側に配置されてもよい。以下、特に説明しない限り、便宜上、前記結合領域(A)の5’側に前記第1領域(D1)、前記結合領域(A)の3側に前記第2領域(D2)が配置されている例を示す。
前記核酸分子(IV)は、例えば、前記第1領域(D1)と前記結合領域(A)との間が、直接的または間接的に連結してもよいし、前記第2領域(D2)と前記結合領域(A)との間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味し、具体的には、一方の領域の3’末端と前記介在リンカー領域の5’末端とが直接結合し、前記介在リンカー領域の3’末端と他方の領域の5’末端とが直接結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。
前記核酸分子(IV)は、前述のように、前記第1領域(D1)と前記結合領域(A)との間に前記介在リンカー領域(第1リンカー領域(L1))を有し、前記第2領域(D2)と前記結合領域(A)との間に前記介在リンカー領域(第2リンカー領域(L2))を有することが好ましい。前記第1リンカー領域(L1)および前記第2リンカー領域(L2)は、いずれか一方でもよく、両方を有することが好ましい。前記第1リンカー領域(L1)と前記第2リンカー領域(L2)の両方を有する場合、それぞれの長さは、同じ長さでもよいし異なってもよい。
前記リンカー領域の長さは、特に制限されず、その下限は、例えば、1、3、5、7、9塩基長であり、その上限は、例えば、20、15、10塩基長である。
また、前記第1リンカー領域(L1)の5’末端側からの塩基配列と前記第2リンカー領域(L2)の3’末端側からの塩基配列とは、例えば、互いに非相補的であることが好ましい。この場合、前記第1リンカー領域(L1)の5’末端側からの塩基配列と前記第2リンカー領域(L2)の3’末端側からの塩基配列は、アライメントした状態で、前記核酸分子(IV)の分子内で内部ループを形成する領域ともいえる。このように、前記第1領域(D1)および前記第2領域(D2)と前記結合領域(A)との間に、非相補的な前記第1リンカー領域(L1)と前記第2リンカー領域(D2)を有することで、例えば、前記第1領域(D1)と前記第2領域(D2)との距離を十分に保つことができる。このため、例えば、ターゲット非存在下における、前記第1領域(D1)と前記第2領域(D2)とによるG-カルテット構造の形成を、十分に抑制し、ターゲット非存在下での、蛍光発生に基づくバックグラウンドを十分に低下することができる。
前記核酸分子(IV)として、前記第1リンカー領域(L1)と前記第2リンカー領域(L2)と有する形態について、図5の模式図を用いて、前記第1領域(D1)と前記第2領域(D2)とによる蛍光発生のON-OFFを説明する。なお、本発明は、これには制限されない。図5は、前記核酸分子(IV)における蛍光発生のON-OFFを示す概略図である。図5の左に示すように、ターゲット非存在下、前記核酸分子(IV)は、前記第1領域(D1)と前記第2領域(D2)との間でのG-カルテット構造の形成が抑制された不活性型となる。他方、ターゲット存在下では、前記結合領域(A)にターゲットが接触することで、前記結合領域(A)の立体構造が変化し、これに伴い、前記第1領域(D1)と前記第2領域(D2)とが接近して、両者の間でG-カルテット構造が形成された活性型となる。
前記核酸分子(IV)が、例えば、「D1-W-D2」で表され、リンカーとして、前記第1リンカー領域(L1)のみを有する場合、前記式におけるWは、例えば、5’側から、第1リンカー領域(L1)と前記結合領域(A)とをこの順序で有し、前記第2リンカー領域(L2)のみを有する場合、前記式におけるWは、例えば、5’側から、前記結合領域(A)と第2リンカー領域(L2)とをこの順序で有し、前記第1リンカー領域(L1)と前記第2リンカー領域(L2)の両方を有する場合、前記式におけるWは、例えば、5’側から、前記第1リンカー領域(L1)と前記結合領域(A)と前記第2リンカー領域(L2)とをこの順序で有する。この場合、D1-W-D2で表される核酸分子(IV)は、それぞれ、例えば、D1-L1-A-D2、D1-A-L2-D2またはD1-L1-A-L2-D2と表すことができる。
前記核酸分子(IV)は、例えば、前記第1領域(D1)と前記第2領域(D2)とが、それぞれ、前記結合領域(A)の位置とは反対側の末端に、互いに相補的な配列を有することが好ましい。具体的には、例えば、前記第1領域(D1)が前記結合領域(A)の5’側に配置されている場合、前記第1領域(D1)と前記第2領域(D2)とは、前記第1領域(D1)の5’末端と前記第2領域(D2)の3’末端に、互いに相補的な配列を有することが好ましい。また、例えば、前記第1領域(D1)が前記結合領域(A)の3’側に配置されている場合、前記第1領域(D1)と前記第2領域(D2)とは、前記第1領域(D1)の3’末端と前記第2領域(D2)の5’末端に、互いに相補的な配列を有することが好ましい。このように、前記第1領域(D1)と前記第2領域(D2)とが、それぞれの末端における前記相補的な配列を有することで、前記配列間で、分子内アニーリングによりステム構造の形成が可能となる。このため、例えば、ターゲット存在下、ターゲットの接触による前記結合領域(A)の立体構造の変化に伴い、前記第1領域(D1)と前記第2領域(D2)とが接近した際、前記配列間でのステム構造の形成によって、前記第1領域(D1)と前記第2領域(D2)とのG-カルテット構造の形成がより容易になる。
前記式(I)中、
5’側の配列(N)n1-GGG-(N)n2-(N)n3-が、前記第1領域(D1)の配列(d1)であり、
3’側の配列-(N)m3-(N)m2-GGG-(N)m1が、前記第2領域(D2)の配列(d2)であり、
Wが、前記第1領域(D1)と前記第2領域(D2)との間の領域であって、前記結合領域(A)を含み、
Nは、塩基を示し、n1、n2およびn3ならびにm1、m2およびm3は、それぞれ塩基Nの繰り返し個数を示す。
5’側の配列(N)n1-GGG-(N)n2-(N)n3-が、前記第1領域(D1)の配列(d1)であり、
3’側の配列-(N)m3-(N)m2-GGG-(N)m1が、前記第2領域(D2)の配列(d2)であり、
Wが、前記第1領域(D1)と前記第2領域(D2)との間の領域であって、前記結合領域(A)を含み、
Nは、塩基を示し、n1、n2およびn3ならびにm1、m2およびm3は、それぞれ塩基Nの繰り返し個数を示す。
前記式(I)は、前記核酸分子(IV)において、前記第1領域(D1)と前記第2領域(D2)とを分子内アライメントした状態を示すが、これは、前記第1領域(D1)と前記第2領域(D2)との配列の関係を示すための模式図であって、本発明において、前記第1領域(D1)と前記第2領域(D2)とが、この状態を取ることを限定するものではない。
前記第1領域(D1)の配列(d1)および前記第2領域(D2)の配列(d2)は、例えば、(N)n1と(N)m1とが、下記条件(1)を満たし、(N)n2と(N)m2とが、下記条件(2)を満たし、(N)n3と(N)m3とが、下記条件(3)を満たすことが好ましい。
条件(1)
(N)n1および(N)m1は、(N)n1の5’末端側からの塩基配列と(N)m1の3’末端側からの塩基配列とが、互いに相補的であり、n1およびm1は、同じ0または正の整数である。
条件(2)
(N)n2および(N)m2は、(N)n2の5’末端側からの塩基配列と(N)m2の3’末端側からの塩基配列とが、互いに非相補的であり、n2およびm2は、それぞれ、正の整数であり、同じでも異なってもよい。
条件(3)
(N)n3および(N)m3は、n3およびm3が、それぞれ、3または4であり、同じでも異なってもよく、3つの塩基Gを有し、n3またはm3が4の場合、(N)n3および(N)m3は、2番目または3番目の塩基がG以外の塩基Hである。
(N)n1および(N)m1は、(N)n1の5’末端側からの塩基配列と(N)m1の3’末端側からの塩基配列とが、互いに相補的であり、n1およびm1は、同じ0または正の整数である。
条件(2)
(N)n2および(N)m2は、(N)n2の5’末端側からの塩基配列と(N)m2の3’末端側からの塩基配列とが、互いに非相補的であり、n2およびm2は、それぞれ、正の整数であり、同じでも異なってもよい。
条件(3)
(N)n3および(N)m3は、n3およびm3が、それぞれ、3または4であり、同じでも異なってもよく、3つの塩基Gを有し、n3またはm3が4の場合、(N)n3および(N)m3は、2番目または3番目の塩基がG以外の塩基Hである。
前記条件(1)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の5’末端の(N)n1と3’末端の(N)m1との条件である。前記条件(1)において、前記(N)n1の5’末端側からの塩基配列と前記(N)m1の3’末端側からの塩基配列とは、互いに相補的であり、同じ長さである。(N)n1と(N)m1とは、同じ長さの相補的な配列であるため、アライメントした状態で、ステムを形成するステム領域ともいえる。
n1およびm1は、同じ0または正の整数であればよく、例えば、それぞれ、0、1~10、1、2または3である。
前記条件(2)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の(N)n2と(N)m2との条件である。前記条件(2)において、前記(N)n2の塩基配列と前記(N)m2の塩基配列とは、互いに非相補的であり、n2およびm2は、同じ長さでも異なる長さでもよい。 (N)n2と(N)m2とは、非相補的な配列であるため、アライメントした状態で、内部ループを形成する領域ともいえる。
n2およびm2は、正の整数であり、例えば、それぞれ、1~10、1または2である。n2とm2とは、同じでも異なってもよく、例えば、n2=m2、n2>m2、n2<m2のいずれでもよく、好ましくはn2>m2、n2<m2である。
前記条件(3)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の (N)n3と(N)m3との条件である。前記条件(3)において、前記(N)n3の塩基配列と前記(N)m3の塩基配列とは、それぞれ、3つの塩基Gを有する3塩基長または4塩基長の配列であり、同じでも異なってもよい。n3またはm3が4の場合、(N)n3および(N)m3は、2番目または3番目の塩基がG以外の塩基Hである。3つのGを有する(N)n3および(N)m3は、(N)n1と(N)n2との間のGGGおよび(N)m1と(N)m2との間のGGGとともに、G-カルテット構造を形成するG領域である。
n3およびm3は、例えば、n3=m3、n3>m3、n3<m3のいずれでもよく、好ましくはn3>m3、n3<m3である。
G以外の塩基である前記塩基Hは、例えば、A、C、TまたはUがあげられ、好ましくは、A、CまたはTである。
前記条件(3)は、具体例として、下記条件(3-1)、(3-2)または(3-3)があげられる。
条件(3-1)
(N)n3および(N)m3のうち、一方の5’側からの配列がGHGGであり、他方の5’側からの配列がGGGである。
条件(3-2)
(N)n3および(N)m3のうち、一方の5’側からの配列がGGHGであり、他方の5’側からの配列がGGGである。
条件(3-3)
(N)n3および(N)m3の両方の配列がGGGである。
条件(3-1)
(N)n3および(N)m3のうち、一方の5’側からの配列がGHGGであり、他方の5’側からの配列がGGGである。
条件(3-2)
(N)n3および(N)m3のうち、一方の5’側からの配列がGGHGであり、他方の5’側からの配列がGGGである。
条件(3-3)
(N)n3および(N)m3の両方の配列がGGGである。
前記第1領域(D1)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第2領域(D2)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第1領域(D1)と前記第2領域(D2)の長さは、それぞれ同じであっても異なってもよい。
前記核酸分子(IV)において、前記第1領域(D1)の配列(d1)と前記第2領域(D2)の配列(d2)との組み合わせを、以下に例示するが、本発明は、これらには制限されない。下記1~49の組み合わせにおいて、Wは、前記核酸分子(IV)における前記配列(d1)および前記配列(d2)との間の領域を意味し、5’末端側および3’末端側の小文字領域は、それぞれ(N)n1および(N)m1を示し、5’側および3’側の下線部領域は、それぞれ(N)n2および(N)m2を示し、5’側および3’側の下線部領域とWとの間の領域が、それぞれ(N)n3および(N)m3を示す。
表1の組み合わせ1-24は、ステム領域となる(N)n1および(N)m1を、0-3塩基長に変化させ、内部ループ領域となる(N)n2および(N)m2を、ACの2塩基長とAの1塩基長、G領域となる(N)n3および(N)m3を、GGGの3塩基長とGTGGの4塩基長に設定した配列であり、Wは、制限されない。
表2の組み合わせ25-48は、ステム領域となる(N)n1および(N)m1を、Aの1塩基長とTの1塩基長、内部ループ領域となる(N)n2および(N)m2を、1または2塩基長に変化させ、G領域となる(N)n3および(N)m3を、GAGG、GGAG、GCGGおよびGTGGの4種類の4塩基長とGGGの3塩基長に設定した配列であり、Wは、制限されない。表2の組み合わせ49は、ステム領域となる(N)n1および(N)m1を、CAの2塩基長とTGの2塩基長、内部ループ領域となる(N)n2および(N)m2を、TおよびAの1塩基長、G領域となる(N)n3および(N)m3を、GAGGの4塩基長とGGGの3塩基長に設定した配列であり、Wは、制限されない。
ターゲット存在下、前記核酸分子(IV)における前記第1領域(D1)と前記第2領域(D2)との間で形成されるG-カルテット構造について、一例として、組み合わせ24(配列番号24)を図6に示す。図6は、組み合わせ24(配列番号24)の一本鎖核酸分子における、前記第1領域(D1)と前記第2領域(D2)との間で形成されるG-カルテット構造の概略である。図6に示すように、前記第1領域(D1)におけるGと前記第2領域(D2)におけるGとの間で、G-カルテットが3面重なったグアニン四重鎖が形成される。なお、本発明は、この例示に限定されない。
前記核酸分子(IV)の長さは、特に制限されない。前記核酸分子(IV)の長さは、下限が、例えば、25塩基長、30塩基長、35塩基長であり、上限が、例えば、200塩基長、100塩基長、80塩基長、その範囲が、例えば、25~200塩基長、30~100塩基長、35~80塩基長である。
前記核酸分子(IV)は、例えば、一方の末端または両端に、さらに前記付加リンカー領域が付加されてもよい。前記付加リンカー領域の長さは、特に制限されず、例えば、前述の通りである。
前記核酸分子(IV)は、例えば、一方の末端が、前記付加リンカー領域を介して、基材に連結されてもよい。
(5)核酸分子(V)
前記核酸分子(V)は、第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、前記第1鎖(ss1)は、前記G-カルテット形成領域(D)と前記結合領域(A)とをこの順序で有し、前記第2鎖(ss2)は、ステム形成領域(SD)およびステム形成領域(SA)をこの順序で有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子である。
前記核酸分子(V)は、第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、前記第1鎖(ss1)は、前記G-カルテット形成領域(D)と前記結合領域(A)とをこの順序で有し、前記第2鎖(ss2)は、ステム形成領域(SD)およびステム形成領域(SA)をこの順序で有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子である。
前記核酸分子(V)において、前記G-カルテット形成領域(D)は、例えば、前記一本鎖型である。
前記核酸分子(V)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(V)は、ターゲット非存在下では、前記分子内で、前記第1鎖(ss1)の前記G-カルテット形成領域(D)と前記第2鎖(ss2)の前記ステム形成領域(SD)とがアニーリングすることで、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体形成が阻害される(スイッチ-OFF)。また、前記分子内で、前記第1鎖(ss1)の前記結合領域(A)と前記第2鎖(ss2)の前記ステム形成領域(SA)とがアニーリングすることで、前記結合領域(A)の構造も固定されている。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(V)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)と前記ステム形成領域(SA)とのアニーリングが解除され、前記結合領域(A)の立体構造が、より安定な構造に変化する。これに伴い、前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とのアニーリングが解除され、前記G-カルテット形成領域(D)の領域内でG-カルテット構造が形成され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチ-ON)。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(V)によれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記ステム形成領域(SD)は、例えば、その全部または一部が、前記G-カルテット形成領域(D)の一部に対して相補的な配列であることが好ましい。また、前記ステム形成領域(SA)は、例えば、その全部または一部が、前記結合領域(A)の一部に対して相補的な配列であることが好ましい。
前記核酸分子(V)において、前記各領域の順序は、前記分子内で、前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とがアニーリングし、前記結合領域(A)と前記ステム形成領域(SA)とがアニーリングする順序であればよい。具体例としては、以下の順序が例示できる。
(1) ss1 5’- A-D -3’
ss2 3’- SA-SD -5’
(2) ss1 5’- D-A -3’
ss2 3’- SD-SA -5’
(1) ss1 5’- A-D -3’
ss2 3’- SA-SD -5’
(2) ss1 5’- D-A -3’
ss2 3’- SD-SA -5’
前記(1)において、前記ステム形成領域(SA)は、前記結合核酸分子(A)の3’側領域と相補的であり、前記ステム形成領域(SD)は、前記G-カルテット形成分子(D)の5’側領域と相補的であることが好ましい。前記(2)において、前記ステム形成領域(SD)は、前記G-カルテット形成分子(D)の3’側領域と相補的であり、前記ステム形成領域(SA)は、前記結合核酸分子(A)の5’側領域と相補的であることが好ましい。
前記核酸分子(V)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。
前記核酸分子(V)は、例えば、前記第1鎖(ss1)における前記結合核酸分子(A)と前記G-カルテット形成分子(D)との間、および、前記第2鎖(ss2)における前記ステム形成領域(SD)と前記ステム形成領域(SA)との間に、前記介在リンカー領域を有することが好ましい。前記第1鎖(ss1)における介在リンカー領域(L1)と、前記第2鎖(ss2)における介在リンカー領域(L2)とは、互いに非相補的な配列であることが好ましい。
具体例として、前記(1)および(2)が、前記第1鎖(ss1)および前記第2鎖(ss2)に前記介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記結合核酸分子(A)と前記G-カルテット形成分子(D)とを連結する介在リンカー領域を(L1)、前記ステム形成領域(SD)と前記ステム形成領域(SA)とを連結する介在リンカー領域を(L2)で示す。前記核酸分子(V)は、例えば、介在リンカー領域として、例えば、(L1)および(L2)の両方を有してもよいし、いずれか一方のみを有してもよい。
(1’) ss1 5’- A-L1-D -3’
ss2 3’- SA-L2-SD -5’
(2’) ss1 5’- D-L1-A -3’
ss2 3’- SD-L2-SA -5’
(1’) ss1 5’- A-L1-D -3’
ss2 3’- SA-L2-SD -5’
(2’) ss1 5’- D-L1-A -3’
ss2 3’- SD-L2-SA -5’
前記(1’)および(2’)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下において、例えば、前記結合核酸分子(A)と前記ステム形成領域(SA)、前記G-カルテット形成分子(D)と前記ステム形成領域(SD)が、それぞれステムを形成し、これら2つのステムの間で、前記介在リンカー領域(L1)と前記介在リンカー領域(L2)が、内部ループを形成して、前記G-カルテット形成分子(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合核酸分子(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G-カルテット形成分子(D)において、G-カルテット構造が形成される。
前記(1’)および(2’)の形態を例として、ターゲット非存在下における前記核酸分子(V)の状態を、図7の模式図に示す。図7において、(A)と(B)とは、互いに、各領域の順序が、逆向きとなっている形態を示す。図7(A)が、形態(1’)、図7(B)が、形態(2’)である。
図7において、Aは、前記結合核酸分子(A)、L1は、前記介在リンカー領域(L1)、SDは、前記ステム形成配列(SD)、Dは、前記G-カルテット形成分子(D)、L2は、前記介在リンカー領域(L2)、SAは、前記ステム形成配列(SA)を示す。図7に示すように、ターゲット非存在下では、前記核酸分子(IV)における前記第1鎖(ss1)と前記第2鎖(ss2)とのアニーリングによって、二カ所にステムが形成され、前記ステムの間に内部ループが形成される。そして、ターゲット存在下では、前記結合核酸分子(A)にターゲットが結合することによって、前記2つのステム形成が解除され、前記G-カルテット形成分子(D)がG-カルテット構造を形成し、ポルフィリンとの複合体を形成することで、蛍光を発する。
前記核酸分子(V)において、前記ステム形成配列(SA)および前記ステム形成配列(SD)の長さは、特に制限されない。前記ステム形成配列(SA)の長さは、例えば、1~60塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(SD)の長さは、例えば、1~30塩基長、0~10塩基長、1~10塩基長、0~7塩基長、1~7塩基長である。前記ステム形成配列(SA)と前記ステム形成配列(SD)は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。
前記介在リンカー領域(L1)および(L2)の長さは、特に制限されない。前記介在リンカー領域(L1)および(L2)の長さは、それぞれ、例えば、0~30塩基長、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L1)および(L2)の長さは、例えば、同じでも、異なってもよい。前記介在リンカー領域(L1)および前記(L2)は、後者の場合、長さの差は、特に制限されず、例えば、1~10塩基長、1または2塩基長、1塩基長である。
前記核酸分子(V)において、前記第1鎖(ss1)および前記第2鎖(ss2)の長さは、特に制限されない。前記第1鎖(ss1)の長さは、例えば、40~200塩基長、42~100塩基長、45~60塩基長である。前記第2鎖(ss2)の長さは、例えば、4~120塩基長、5~25塩基長、10~15塩基長である。
前記一本鎖核酸分子(V)は、例えば、前記第1鎖(ss1)および前記第2鎖(ss2)の前記一方の末端または両端に、さらに前記付加リンカー領域が付加されてもよい。前記付加リンカー領域の長さは、特に制限されず、例えば、前述の通りである。
前記核酸分子(V)は、例えば、前記第1鎖(ss1)または前記第2鎖(ss2)の一方の末端が、前記付加リンカー領域を介して、基材に連結されてもよい。
(6)核酸分子(VI)
本発明において、前記核酸分子は、例えば、下記核酸分子(VI)でもよい。前記核酸分子(VI)は、前記G-カルテット形成領域(D)および前記結合領域(A)をこの順序で有し、前記G-カルテット形成領域(D)と前記結合領域(A)とが、互いに相補的な配列を有する一本鎖核酸分子である。
本発明において、前記核酸分子は、例えば、下記核酸分子(VI)でもよい。前記核酸分子(VI)は、前記G-カルテット形成領域(D)および前記結合領域(A)をこの順序で有し、前記G-カルテット形成領域(D)と前記結合領域(A)とが、互いに相補的な配列を有する一本鎖核酸分子である。
前記核酸分子(VI)において、前記G-カルテット形成領域(D)は、例えば、前記一本鎖型である。
前記核酸分子(VI)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G-カルテット形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(I)は、ターゲット非存在下では、前記分子内で、前記G-カルテット形成領域(D)と前記結合領域(A)とがアニーリングすることで、前記G-カルテット形成領域(D)のG-カルテット構造の形成が阻害され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体形成が阻害される(スイッチ-OFF)。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(I)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)の立体構造が、より安定な構造に変化する。これに伴い、前記G-カルテット形成領域(D)と前記結合領域(A)との領域内アニーリングが解除され、前記G-カルテット形成領域(D)の領域内でG-カルテット構造が形成され、結果として、前記G-カルテット形成領域(D)とポルフィリンとの複合体が形成され、蛍光を発する(スイッチ-ON)。この状態の構造を、活性型ともいう。このため、本発明のセンサによれば、ターゲット非存在下では、前記複合体形成による蛍光が発生せず、ターゲット存在下でのみ、前記複合体形成による蛍光が発生するため、定性または定量等のターゲット分析が可能となる。
前記核酸分子(VI)において、前記G-カルテット形成領域(D)と前記結合領域(A)とは、前記G-カルテット形成領域(D)の5’側からの配列と、前記結合領域(A)の3’側からの配列とが、互いに相補的な配列を有することが好ましい。前記G-カルテット形成領域(D)における相補配列および前記結合領域(A)における相補配列は、それぞれステム形成領域(S)ということもでき、また、前者の前記G-カルテット形成領域(D)における相補配列は、前記結合領域(A)に対するステム形成領域(SA)、後者の前記結合領域(A)における相補配列は、前記結合領域(A)における相補配列は、前記G-カルテット形成領域(D)に対するステム形成領域(SD)ということもできる。前記G-カルテット形成領域(D)は、例えば、その一部が、前記相補配列、すなわち前記ステム形成領域(SA)であり、前記結合領域(A)は、例えば、その一部が、前記相補配列、すなわち前記ステム形成領域(SD)であることが好ましい。前記G-カルテット形成領域(D)における前記相補配列の位置、前記結合領域(A)における前記相補配列の位置は、それぞれ、特に制限されない。
前記核酸分子(VI)において、前記G-カルテット形成分子(D)と前記結合核酸分子(A)との間における各相補配列の長さは、特に制限されない。前記各相補配列の長さは、例えば、1~30塩基長、1~10塩基長、1~7塩基長である。
前記核酸分子(VI)は、例えば、前記G-カルテット形成領域(D)と前記結合領域(A)との間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、リンカー領域を介して結合していることを意味する。
前記領域間を連結するリンカー領域を、以下、介在リンカー領域ともいう。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。前記介在リンカー領域の長さは、特に制限されず、例えば、0~20、1~10塩基長、1~6塩基長である。
前記核酸分子(VI)は、例えば、一方の末端が、前記付加リンカー領域を介して、基材に連結されてもよい。
前記核酸分子(VI)の長さは、特に制限されない。前記核酸分子(VI)の長さは、例えば、40~120塩基長、45~100塩基長、50~80塩基長である。
本発明のセンサは、例えば、前記核酸分子を有する分子でもよいし、前記核酸からなる分子でもよい。
本発明のセンサは、ヌクレオチド残基を含む分子であり、例えば、ヌクレオチド残基のみからなる分子でもよいし、ヌクレオチド残基を含む分子でもよい。前記ヌクレオチドは、例えば、リボヌクレオチド、デオキシリボヌクレオチドおよびそれらの誘導体である。具体的に、前記センサは、例えば、デオキシリボヌクレオチドおよび/またはその誘導体を含むDNAでもよいし、リボヌクレオチドおよび/またはその誘導体を含むRNAでもよいし、前者と後者とを含むキメラ(DNA/RNA)でもよい。前記センサは、好ましくは、DNAである。
前記ヌクレオチドは、塩基として、例えば、天然塩基(非人工塩基)および非天然塩基(人工塩基)のいずれを含んでもよい。前記天然塩基は、例えば、A、C、G、T、Uおよびこれらの修飾塩基があげられる。前記修飾は、例えば、メチル化、フルオロ化、アミノ化、チオ化等があげられる。前記非天然塩基は、例えば、2’-フルオロピリミジン、2’-O-メチルピリミジン等があげられ、具体例としては、2’-フルオロウラシル、2’-アミノウラシル、2’-O-メチルウラシル、2-チオウラシル等があげられる。前記ヌクレオチドは、例えば、修飾されたヌクレオチドでもよく、前記修飾ヌクレオチドは、例えば、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。前記候補分子は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)等の非ヌクレオチドを含んでもよい。
前記ポルフィリンは、特に制限されず、例えば、無置換体のポルフィリン、その誘導体があげられる。前記誘導体は、例えば、置換体のポルフィリンおよび金属元素と錯体を形成した金属ポルフィリン等があげられる。前記置換体のポルフィリンは、例えば、N-メチルメソポルフィリン(NMM)、TMPyP(5,10,15,20-テトラキス(N-メチルピリジニウム-4-イル)-21H,23H-ポルフィリン、テトラキス(p-トルエンスルホネート))等があげられる。前記金属ポルフィリンは、例えば、鉄ポルフィリン、亜鉛ポルフィリン等があげられ、具体例として、Zn-DIGP(テトラキス-(ジイソプロピル-グアニジノ)亜鉛フタロシアニン)、ZnPP9(Zinc(H)プロトポルフィリンD)等があげられる。前記ポルフィリンは、例えば、NMMが好ましい。
本発明のセンサは、例えば、前記核酸分子が遊離状態であってもよいし、前記核酸分子が固定化した状態であってもよい。後者のセンサは、例えば、前記核酸分子を前記基材に固定化し、デバイスとして使用できる。前記基材は、例えば、プレート、シート、フィルム、スワブ等の基板;ウェルプレート、チューブ等の容器;ビーズ、粒子、フィルター等があげられる。前記核酸分子は、例えば、5’末端および3’末端のいずれを固定化してもよい。
前記固定化方法は、特に制限されず、例えば、化学的結合による連結が例示できる。具体例としては、例えば、前記基材および前記核酸分子のいずれか一方に、ストレプトアビジンまたはアビジンを結合させ、他方に、ビオチンを結合させ、前者と後者との結合を利用して固定化する方法があげられる。
前記固定化方法は、例えば、この他に、公知の核酸固定化方法が採用できる。前記方法は、例えば、フォトリソグラフィーを利用する方法があげられ、具体例として、米国特許5,424,186号明細書等を参照できる。また、前記固定化方法は、例えば、前記基材上で前記核酸分子を合成する方法があげられる。この方法は、例えば、いわゆるスポット法があげられ、具体例として、米国特許5,807,522号明細書、特表平10-503841号公報等を参照できる。
前記核酸分子は、例えば、前記基材に、直接的に固定化してもよいし、間接的に固定化してもよい。前者の場合、例えば、前記核酸分子の末端において、前記核酸分子を前記基材に固定化することが好ましい。後者の場合、例えば、前記核酸分子を、固定化用のリンカーを介して、前記基材に固定化してもよい。前記リンカーは、例えば、核酸配列でもよいし、非核酸配列でもよく、前述の付加リンカー領域等があげられる。前記基材に前記核酸分子が固定化されている場合、前記核酸分子の配置部は、前記センサにおける被検出部ということもできる。
本発明のセンサは、例えば、複数の被検出部を備えてもよい。この場合、前記センサは、例えば、前記基材の表面をマトリックスに分画し、各分画領域に、前述のような被検出部を備えることが好ましい。本発明のセンサにおいて、1つの被検出部に配置するセンサの数は、特に制限されない。
本発明のセンサは、例えば、さらに、試薬を含む試薬部が配置されてもよい。前記試薬は、例えば、前記ポルフィリンを含む。前記試薬部は、例えば、前記基材に配置でき、前記基材における前記試薬部の配置部位は、例えば、前記核酸分子の配置部位と同じでもよいし、異なってもよい。後者の場合、例えば、試料の添加によって、前記試薬部の前記試薬が、前記センサに接触できればよい。
本発明のセンサの使用方法は、特に制限されず、以下のように、本発明のターゲットの分析方法に使用できる。
2.ターゲット分析方法
本発明のターゲット分析方法は、前述のように、前記本発明のターゲット分析用蛍光センサに試料を接触させる接触工程、および、ポルフィリン存在下、前記センサにおける前記G-カルテット形成領域(D)とポルフィリンとの複合体による蛍光を検出することによって、前記試料中のターゲットを検出する検出工程を含むことを特徴とする。
本発明のターゲット分析方法は、前述のように、前記本発明のターゲット分析用蛍光センサに試料を接触させる接触工程、および、ポルフィリン存在下、前記センサにおける前記G-カルテット形成領域(D)とポルフィリンとの複合体による蛍光を検出することによって、前記試料中のターゲットを検出する検出工程を含むことを特徴とする。
前記試料は、特に制限されない。前記試料は、例えば、ターゲットを含む試料、およびターゲットを含有するか否かが不明な試料のいずれでもよい。前記試料は、例えば、液体試料が好ましい。被検体が、例えば、液体の場合、前記被検体をそのまま試料として使用してもよいし、溶媒に混合した希釈液を試料として使用してもよい。被検体が、例えば、固体、粉末等の場合は、溶媒に混合した混合液、または、溶媒に懸濁した懸濁液等を、試料として使用してもよい。前記溶媒は、特に制限されず、例えば、水、緩衝液等があげられる。前記被検体は、例えば、生体、土壌、海水、川水、下水、飲食品、浄水、空気中等から採取した検体があげられる。
また、前記試料の具体例として、例えば、原乳、加工乳および粉ミルクがあげられる。前記試料中の非タンパク質または非脂質をターゲットとする場合、本発明のセンサによれば、例えば、前記試料からタンパク質および脂質を除去する前処理を行うことなく、前記試料中のターゲットを分析することができる。
本発明のセンサとして、遊離状態の前記核酸分子を使用する場合、例えば、前記容器内で、前記センサと前記試料とを接触させることが好ましい。また、本発明のセンサとして、前記基材に固定化した前記核酸分子を使用する場合、例えば、前記基材上の前記センサに、前記試料を接触させることができる。
前記検出工程は、例えば、ポルフィリン存在下、前記センサからの蛍光の検出を行う工程である。前記蛍光の検出は、例えば、目視でもよいし、蛍光強度の検出でもよい。
蛍光強度の検出において、励起波長は、例えば、350~550nm、350~450nm、399nmであり、発光波長は、例えば、550~700nm、550~650nm、605nmである。
本発明の分析方法において、前記ポルフィリンは、例えば、前記接触工程で、前記センサと共存させてもよいし、次の検出工程で、前記センサと共存させてもよい。前者の場合、例えば、前記センサに前記試料を接触させる前に、前記センサにポルフィリンを供給してもよいし、前記試料の接触と同時に、前記センサにポルフィリンを供給してもよい。この場合、ポルフィリンは、例えば、前述のように、前記センサの試薬部に予め配置してもよい。他方、後者の場合、前記センサに前記試料を接触させた後、前記センサにポルフィリンを供給してもよい。
ポルフィリンを前記センサに供給する場合、前記ポルフィリンの形態は、特に制限されず、例えば、液体に混合した試薬液として、前記センサに供給することが好ましい。前記ポルフィリンを混合する液体は、例えば、Tris-HCl等の緩衝液が好ましい。前記試薬液における前記ポルフィリンの濃度は、特に制限されず、例えば、50~500mmol/L、100~300mmol/Lである。また、前記試薬液のpHは、例えば、6~9、6.8~9である。
前記接触工程の時間は、特に制限されず、例えば、1~30分である。前記接触工程および前記検出工程において、前記センサと前記試料とポルフィリンとが接触してから、蛍光を検出するまでの処理時間は、例えば、1~30分である。前記接触工程および前記検出工程の温度条件は、特に制限されず、例えば、15~37℃である。
本発明の分析方法において、前記接触工程と前記検出工程との間に、さらに、洗浄工程を有してもよい。前記洗浄工程は、例えば、前記センサと前記試料とを接触させた後、前記センサを洗浄液で洗浄する工程である。前記洗浄工程によって、例えば、前記試料中に含まれる夾雑物を除去でき、さらに精度に優れる分析が可能となる。前記洗浄液は、特に制限されず、例えば、水、緩衝液等の水性溶媒があげられる。前記センサは、例えば、前記洗浄工程が容易に行えることから、前述のような基材に前記核酸分子が固定化されていることが好ましい。
本発明は、前述のように、G-カルテット形成領域(D)がG-カルテット構造を形成して、ポルフィリンとの複合体を形成することによって発生する蛍光を検出するため、前記センサ自体の発光の検出ともいえる。このため、本発明は、例えば、従来のセンサのように、DNAzyme等の触媒分子の触媒活性を測定するための、触媒反応用基質等は不要である。前記触媒反応用基質とは、例えば、触媒反応によって、発色、蛍光等を生じる、もしくは、それらが消失する基質等である。
3.分析用キット
本発明の分析用キットは、前述のように、センサと試薬とを含み、前記センサが、前記本発明のターゲット分析用蛍光センサであり、前記試薬が、ポルフィリンを含むことを特徴とする。本発明の分析用キットは、前記センサとポルフィリンとを含むことが特徴であり、その他の構成は何ら制限されない。
本発明の分析用キットは、前述のように、センサと試薬とを含み、前記センサが、前記本発明のターゲット分析用蛍光センサであり、前記試薬が、ポルフィリンを含むことを特徴とする。本発明の分析用キットは、前記センサとポルフィリンとを含むことが特徴であり、その他の構成は何ら制限されない。
本発明の分析用キットは、前記センサおよびポルフィリンの他に、例えば、前記緩衝液および前記基材等の構成成分を含んでもよい。
本発明の分析用キットにおいて、例えば、前記センサと前記試薬とは、例えば、それぞれ別個に収容されてもよい。また、本発明の分析用キットが、前述のように、さらに他の構成要件を含む場合、これらの構成要件は、例えば、前記センサと別個に収容されてもよい。前記センサは、例えば、前記核酸分子が前記基材に固定化されてもよいし、前記核酸分子が固定化されていなくてもよい。前記分析用キットは、例えば、さらに、使用説明書を含んでもよい。
以下、実施例等により、本発明を詳しく説明するが、本発明は、これらに限定されるものではない。
(実施例1)
結合核酸分子(A)としてメラミンアプタマー、G-カルテット形成分子(D)として一本鎖型DNAzymeとを用いて、メラミン分析用蛍光センサを作製した。
結合核酸分子(A)としてメラミンアプタマー、G-カルテット形成分子(D)として一本鎖型DNAzymeとを用いて、メラミン分析用蛍光センサを作製した。
前記核酸分子(I)に該当するメラミン分析用蛍光センサを作製した。前記蛍光センサの配列を以下に示す。下記配列において、5’側の下線部が、DNAzymeであり、3’側の下線部が、メラミンアプタマーである。そして、四角で囲んだ領域が、互いに相補的な配列であり、メラミン非存在下で、これらがステムを形成することで、前記蛍光センサはブロック型となる。
(実施例2)
前記実施例1のメラミン分析用蛍光センサを用いて、牛乳中のメラミンの検出を行った。
前記実施例1のメラミン分析用蛍光センサを用いて、牛乳中のメラミンの検出を行った。
緩衝液A:50mmol/L Tris-HCl(pH7.4)、
20mmol/L KClおよび
0.05%(w/v) TritonX-100
緩衝液B:50mmol/L Tris-HCl(pH7.4)、
20mmol/L KCl、
0.05%(w/v) TritonX-100および
50mmol/L EDTA
20mmol/L KClおよび
0.05%(w/v) TritonX-100
緩衝液B:50mmol/L Tris-HCl(pH7.4)、
20mmol/L KCl、
0.05%(w/v) TritonX-100および
50mmol/L EDTA
前記蛍光センサを前記緩衝液Bに懸濁したセンサ試薬、NMMを前記緩衝液Bに懸濁したNMM試薬を、それぞれ調製した。市販牛乳(生乳100%、商品名明治おいしい牛乳、株式会社明治)を100%サンプルとし、前記市販牛乳を前記実施例1の前記緩衝液Aで希釈したものを希釈サンプルとして使用した。
まず、1.5mLのチューブに前記センサ試薬を入れ、95℃で5分間処理した後、室温で15分間インキュベートした。つぎに、前記チューブに、前記NMM試薬と前記サンプル25μLとを添加して、室温で30分間インキュベートした。前記反応液50μLにおいて、前記センサの最終濃度は、400nmol/Lとし、NMMの最終濃度は、200nmol/Lとし、前記牛乳の最終濃度は、0(牛乳未添加)、10、20、30、40および50%とした。そして、この反応液を、プレート(商品名Greiner 384 Flat Bottom Black Polystyrol、Greiner社製)のウェルに分注し、蛍光強度を測定した。蛍光強度の測定は、測定装置(商品名TECAN infinite M1000 PRO、TECAN社)を使用し、励起波長は399nmとし、発光波長は550~690nmとした。
これらの結果を図8に示す。図8は、発光波長域における蛍光強度を示すグラフであり、(A)が、センサ添加反応液の蛍光強度の結果であり、(B)が、センサ未添加反応液の蛍光強度の結果である。各グラフにおいて、縦軸は、蛍光強度、横軸は、発光波長を示す。図8(A)に示すように、センサ添加反応液では、図8(B)のセンサ未添加反応液よりも、605nmにおいて大きなピークが確認できた。この結果から、発光波長605nmが最も高いS/N比を示すこと、牛乳において、前記センサとNMMとの複合体による蛍光を検出できることが確認できた。
(実施例3)
前記実施例1のメラミン分析用蛍光センサを用いて、牛乳中のメラミンの検出を行った。
前記実施例1のメラミン分析用蛍光センサを用いて、牛乳中のメラミンの検出を行った。
市販牛乳(生乳100%、商品名明治おいしい牛乳、株式会社明治)を、メラミン未添加100%サンプルとし、前記市販牛乳を前記実施例1の前記緩衝液Aで希釈したものを、メラミン未添加希釈サンプルとして使用した。さらに、前記メラミン未添加100%サンプルおよび前記メラミン未添加希釈サンプルに、メラミンを添加して、メラミン添加サンプルを調製した。サンプルとして、前記メラミン未添加サンプルと前記メラミン添加サンプルを使用し、測定条件を、励起波長399nm、発光波長605nmとした以外は、前記実施例2と同様にして、センサ添加反応液とセンサ未添加反応液とについて、蛍光強度を測定した。なお、前記反応液において、前記牛乳の最終濃度は、0、10、20、30、40および50%とし、添加メラミンの最終濃度は、0、1、2、3、5mmol/Lとした。
これらの結果を図9に示す。図9は、蛍光強度を示すグラフであり、(A)が、センサ添加反応液の蛍光強度の結果であり、(B)が、センサ未添加反応液の蛍光強度の結果である。各グラフにおいて、縦軸は、蛍光強度を示す。各グラフにおいて、横軸は、サンプルの種類を示し、左から、前記反応液における牛乳の最終濃度0、10、20、30、40、50%のサンプルセットであり、各セットの5本のバーは、左から前記反応液におけるメラミンの最終濃度が0、1、2、3、5mmol/Lである。図9(B)に示すように、センサ未添加反応液は、牛乳濃度を統一した各サンプルセットにおいて、メラミン濃度にかかわらず、蛍光強度は一定であった。これに対して、図9(A)に示すように、センサ添加反応液は、各サンプルセットにおいて、メラミン濃度の増加に伴って、蛍光強度が増加した。これらの結果から、実施例の蛍光センサによれば、サンプル中のメラミンを濃度依存的に検出できることがわかった。
また、図9(A)において、各サンプルセットのメラミン0mmol/Lのサンプルは、図9(B)におけるセンサ未添加反応液の蛍光強度と同程度であった。このことから、センサ使用時バックグラウンドは低く、例えば、センサ未添加反応液の蛍光強度を、センサ添加反応液の蛍光強度から引くことで、標準化することもできることがわかった。
そこで、図9(A)のセンサ添加反応液の蛍光強度から、図9(B)のセンサ未添加反応液の蛍光強度を差し引いた結果を、図10に示す。
図10は、蛍光強度を示すグラフであり、センサ添加反応液の蛍光強度からセンサ未添加反応液の蛍光強度を差し引いた値であり、横軸は、前記反応液における牛乳の最終濃度であり、各プロットは、前記反応液におけるメラミンの最終濃度を示す。図10に示すように、牛乳終濃度が10-50%の反応液のいずれにおいても、メラミンの存在によって、蛍光強度が顕著に増加した。この結果から、サンプルの牛乳濃度にかかわらず、メラミンを検出できることがわかった。
一般的に、市場では、500ppm(4mmol/L)以上のメラミンを検出できることが求められている。図11において、添加メラミン濃度が4mmol/Lである牛乳100%をサンプルとして使用した反応液(メラミン終濃度2mmol/L、牛乳終濃度50%)について、十分な蛍光強度が得られていることから、市場で求められている精度を十分に実現していることがわかった。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2013年7月23日に出願された日本出願特願2013-152476を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
本発明のターゲット分析用蛍光センサによれば、簡便且つ効率的に、蛍光の発生により間接的にターゲットを分析できる。このため、本発明は、例えば、臨床医療、食品、環境等の様々な分野における研究および検査に、極めて有用な技術といえる。
Claims (17)
- G-カルテット構造を形成するG-カルテット形成領域(D)とターゲットに結合する結合領域(A)とを有する下記(I)、(II)、(III)、(IV)および(V)からなる群から選択された少なくとも一つの核酸分子を含み、
ターゲット非存在下、前記G-カルテット形成領域(D)のG-カルテット形成が阻害され、
ターゲット存在下、前記結合領域(A)への前記ターゲットの接触により、前記G-カルテット形成領域(D)においてG-カルテット構造が形成され、前記G-カルテット形成領域(D)がポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じることを特徴とするターゲット分析用蛍光センサ。
(I)前記G-カルテット形成領域(D)、ブロッキング領域(B)、および前記結合領域(A)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)における部分領域(Dp)に対して相補的であり、
前記結合領域(A)における前記ブロッキング領域(B)側の末端領域(Ab)が、前記G-カルテット形成領域(D)における前記部分領域(Dp)の隣接領域(Df)に相補的であり、且つ、前記結合領域(A)における前記ブロッキング領域(B)側とは反対側の末端領域(Af)に相補的である一本鎖核酸分子。
(II)前記G-カルテット形成領域(D)、ブロッキング領域(B)、前記結合領域(A)、および安定化領域(S)をこの順序で有し、
前記ブロッキング領域(B)が、前記G-カルテット形成領域(D)の部分領域(Dp)に対して相補的であり、
前記ブロッキング領域(B)の前結合領域(A)側の末端領域(Ba)が、前記安定化領域(S)に対して相補的である一本鎖核酸分子。
(III)前記G-カルテット形成領域(D)、ステム形成領域(SD)、前記結合領域(A)およびステム形成領域(SA)を有し、
前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する一本鎖核酸分子。
(IV)前記G-カルテット形成領域(D)および前記結合領域(A)を有し、
前記G-カルテット形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
(V)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G-カルテット形成領域(D)と前記結合領域(A)とをこの順序で有し、
前記第2鎖(ss2)は、ステム形成領域(SD)およびステム形成領域(SA)をこの順序で有し、前記ステム形成領域(SD)は、前記G-カルテット形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(SA)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。 - 前記(I)または(II)の一本鎖核酸分子において、
前記G-カルテット形成領域(D)、前記ブロッキング領域(B)、および前記結合領域(A)を、5’側からこの順序で有している、請求項1記載の蛍光センサ。 - 前記(III)の一本鎖核酸分子において、
前記ステム形成領域(S)として、ステム形成領域(SD)とステム形成領域(SA)とを有し、
前記G-カルテット形成領域(D)と前記ステム形成領域(SD)とが、互いに相補的な配列を有し、
前記結合領域(A)と前記ステム形成領域(SA)とが、互いに相補的な配列を有する、請求項1記載の蛍光センサ。 - 前記(III)の一本鎖核酸分子において、前記G-カルテット形成領域(D)、前記ステム形成領域(SD)、前記結合領域(A)および前記ステム形成領域(SA)が、下記(1)、(2)、(3)または(4)の順序で連結している、請求項3記載の蛍光センサ。
(1) 前記結合領域(A)、前記ステム形成領域(SD)、前記G-カルテット形成領域(D)および前記ステム形成領域(SA)の順序
(2) 前記ステム形成領域(SA)、前記G-カルテット形成領域(D)、前記ステム形成領域(SD)および前記結合領域(A)の順序
(3) 前記G-カルテット形成領域(D)、前記ステム形成領域(SA)、前記結合領域(A)および前記ステム形成領域(SD)の順序
(4) 前記ステム形成領域(SD)、前記結合領域(A)、前記ステム形成領域(SA)および前記G-カルテット形成領域(D)の順序 - 前記(IV)の一本鎖核酸分子において、
前記第1領域(D1)と前記第2領域(D2)とが、
それぞれ、前記結合領域(A)の位置とは反対側の末端に、互いに相補的な配列を有する、請求項1記載の蛍光センサ。 - 前記G-カルテット形成領域(D)と前記結合領域(A)との間に、リンカー配列を有する、請求項1から5のいずれか一項に記載の蛍光センサ。
- さらに、基材を有し、
前記基材に、前記核酸分子が配置されている、請求項1から6のいずれか一項に記載の蛍光センサ。 - 前記核酸分子が、リンカー領域を介して前記基材に連結されている、請求項7記載の蛍光センサ。
- 前記基材に、さらに、試薬を含む試薬部が配置されており、
前記試薬が、ポルフィリンを含む、請求項1から8のいずれか一項に記載の蛍光センサ。 - 前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである、請求項9記載の蛍光センサ。
- センサと試薬とを含み、
前記センサが、請求項1から10のいずれか一項に記載のターゲット分析用蛍光センサであり、
前記試薬が、ポルフィリンを含むことを特徴とするターゲット分析用キット。 - 前記センサが、前記核酸分子が基材に配置されたセンサであり、
前記基材に、さらに、前記試薬を含む試薬部が配置されている、請求項11記載のターゲット分析用キット。 - 前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである、請求項11または12記載のターゲット分析用キット。
- 請求項1から10のいずれか一項に記載のターゲット分析用蛍光センサに試料を接触させる接触工程、および、
ポルフィリン存在下、前記センサにおける前記G-カルテット形成領域(D)とポルフィリンとの複合体による蛍光を検出することによって、前記試料中のターゲットを検出する検出工程を含むことを特徴とする、ターゲットの分析方法。 - 前記検出工程における蛍光の検出が、蛍光強度の測定である、請求項14記載の分析方法。
- 前記試料が、原乳、加工乳および粉ミルクからなる群から選択された少なくとも一つである、請求項14または15記載の分析方法。
- 前記ターゲットが、メラミンである、請求項14から16のいずれか一項に記載の分析方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/906,897 US10012631B2 (en) | 2013-07-23 | 2014-06-27 | Fluorescence sensor for target analysis, kit for target analysis, and target analysis method using same |
CN201480041690.3A CN105452467A (zh) | 2013-07-23 | 2014-06-27 | 用于靶标分析的荧光传感器、用于靶标分析的试剂盒、和使用其的靶标分析方法 |
EP14829556.1A EP3026114A1 (en) | 2013-07-23 | 2014-06-27 | Fluorescence sensor for target analysis, kit for target analysis, and target analysis method using same |
HK16104595.3A HK1216760A1 (zh) | 2013-07-23 | 2016-04-21 | 用於靶標分析的螢光傳感器、用於靶標分析的試劑盒、和使用其的靶標分析方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-152476 | 2013-07-23 | ||
JP2013152476A JP5503062B1 (ja) | 2013-07-23 | 2013-07-23 | ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015012059A1 true WO2015012059A1 (ja) | 2015-01-29 |
Family
ID=50941801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067125 WO2015012059A1 (ja) | 2013-07-23 | 2014-06-27 | ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10012631B2 (ja) |
EP (1) | EP3026114A1 (ja) |
JP (1) | JP5503062B1 (ja) |
CN (1) | CN105452467A (ja) |
HK (1) | HK1216760A1 (ja) |
WO (1) | WO2015012059A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017098746A1 (ja) * | 2015-12-11 | 2017-06-15 | Necソリューションイノベータ株式会社 | コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法 |
US20180238867A1 (en) * | 2015-10-30 | 2018-08-23 | Nec Solution Innovators, Ltd. | Detection device and target detection method using the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6338191B2 (ja) * | 2013-07-01 | 2018-06-06 | Necソリューションイノベータ株式会社 | 属性推定システム |
WO2015012060A1 (ja) * | 2013-07-23 | 2015-01-29 | Necソリューションイノベータ株式会社 | ターゲット分析用センサ、ターゲット分析用デバイス、および、これを用いたターゲットの分析方法 |
KR101789679B1 (ko) * | 2016-08-29 | 2017-10-25 | 바디텍메드(주) | 샘플 흐름을 감지하는 형광 리더기 |
CN106680255A (zh) * | 2017-01-04 | 2017-05-17 | 吉林大学 | 基于g‑四联体核酸适配体荧光探针检测三聚氰胺 |
CN111693518B (zh) * | 2019-03-14 | 2022-08-05 | 重庆工商大学 | 一种汞离子的检测方法 |
CN110031440A (zh) * | 2019-04-29 | 2019-07-19 | 滁州学院 | 一种气敏型荧光传感器检测设备及其在油脂类食品检测中的应用 |
CN110100829B (zh) * | 2019-04-30 | 2021-06-15 | 华中农业大学 | N-甲基卟啉二丙酸ix在抗植物病毒中的应用 |
CN110567952B (zh) * | 2019-09-29 | 2021-05-11 | 上海应用技术大学 | 一种基于核酸适配体修饰纳米金的环丙氨嗪检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5424186A (en) | 1989-06-07 | 1995-06-13 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
JPH10503841A (ja) | 1994-06-17 | 1998-04-07 | ザ ボード オブ トランティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 生体試料から成るミクロ配列を作成するための方法および装置 |
WO2011016565A1 (ja) * | 2009-08-07 | 2011-02-10 | Necソフト株式会社 | 分析用核酸素子、それを用いた分析方法、分析用試薬および分析用具 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7378236B1 (en) | 1994-06-17 | 2008-05-27 | The Board Of Trustees Of The Leland Stanford Junior University | Method for analyzing gene expression patterns |
WO2008122088A1 (en) | 2007-04-05 | 2008-10-16 | Lifeprint Australia Pty Ltd | Methods for detecting a target nucleotide sequence in a sample utilising a nuclease-aptamer complex |
WO2013140629A1 (ja) * | 2012-03-23 | 2013-09-26 | Necソフト株式会社 | Atpまたはampの分析用デバイスおよび分析方法 |
AU2013314405A1 (en) * | 2012-09-11 | 2015-04-09 | Unisense Diagnostics Aps | Detection of non-nucleic acid analytes using strand displacement exchange reactions |
-
2013
- 2013-07-23 JP JP2013152476A patent/JP5503062B1/ja active Active
-
2014
- 2014-06-27 WO PCT/JP2014/067125 patent/WO2015012059A1/ja active Application Filing
- 2014-06-27 CN CN201480041690.3A patent/CN105452467A/zh active Pending
- 2014-06-27 EP EP14829556.1A patent/EP3026114A1/en not_active Withdrawn
- 2014-06-27 US US14/906,897 patent/US10012631B2/en active Active
-
2016
- 2016-04-21 HK HK16104595.3A patent/HK1216760A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5424186A (en) | 1989-06-07 | 1995-06-13 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
JPH10503841A (ja) | 1994-06-17 | 1998-04-07 | ザ ボード オブ トランティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 生体試料から成るミクロ配列を作成するための方法および装置 |
US5807522A (en) | 1994-06-17 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for fabricating microarrays of biological samples |
WO2011016565A1 (ja) * | 2009-08-07 | 2011-02-10 | Necソフト株式会社 | 分析用核酸素子、それを用いた分析方法、分析用試薬および分析用具 |
Non-Patent Citations (9)
Title |
---|
"Annual Meeting of the Molecular Biology Society of Japan Program.", YOSHISHU (WEB), vol. 35 TH, 2012, pages 3P-0757 * |
CHENG, BIOCHEMISTRY, vol. 48, 2009, pages 7817 - 7823 |
JIANGTAO REN ET AL., ANAL. BIOANAL. CHEM., vol. 399, 2011, pages 2763 - 2770 |
SEUNG SOO OH ET AL., PNAS, vol. 107, no. 32, 2010, pages 14053 - 14058 |
TAO, ANAL. CHEM., vol. 81, 2009, pages 2144 - 2149 |
TELLER ET AL., ANAL. CHEM., vol. 81, 2009, pages 9114 - 9119 |
TELLER, ANAL. CHEM., vol. 81, 2009, pages 9114 - 9119 |
TRAVASCIO, CHEM. BIOL., vol. 5, 1998, pages 505 - 517 |
ZHANXIA Z. ET AL.: "Fluorescence Detection of DNA, Adenosine-5'-Triphosphate (ATP), and Telomerase Activity by Zinc(II)-Protoporphyrin IX/G-Quadruplex Labels.", ANAL. CHEM., vol. 84, no. 11, 2012, pages 4789 - 4797 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180238867A1 (en) * | 2015-10-30 | 2018-08-23 | Nec Solution Innovators, Ltd. | Detection device and target detection method using the same |
WO2017098746A1 (ja) * | 2015-12-11 | 2017-06-15 | Necソリューションイノベータ株式会社 | コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法 |
JPWO2017098746A1 (ja) * | 2015-12-11 | 2018-11-15 | Necソリューションイノベータ株式会社 | コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015019645A (ja) | 2015-02-02 |
CN105452467A (zh) | 2016-03-30 |
JP5503062B1 (ja) | 2014-05-28 |
EP3026114A1 (en) | 2016-06-01 |
HK1216760A1 (zh) | 2016-12-02 |
US20160146772A1 (en) | 2016-05-26 |
US10012631B2 (en) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5503062B1 (ja) | ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 | |
L Neo et al. | G-quadruplex based probes for visual detection and sensing | |
Liao et al. | Visual specific luminescent probing of hybrid G-quadruplex DNA by a ruthenium polypyridyl complex | |
US7855054B2 (en) | Multiplexed analyses of test samples | |
AU2013271401B2 (en) | Aptamer-based multiplexed assays | |
US11788119B2 (en) | Padlock probe detection method | |
AU2008275917A2 (en) | Multiplexed analyses of test samples | |
WO2013140681A1 (ja) | ターゲットの分析用デバイスおよび分析方法 | |
WO2007100711A2 (en) | Methods and compositions for detecting polynucleotides | |
US20080096193A1 (en) | Methods and compositions for detecting polynucleotides | |
US10233442B2 (en) | Method for affinity purification | |
CN114127282A (zh) | 适体的筛选方法和使用适体的免疫分析方法 | |
WO2008041960A2 (en) | Methods and compositions for detecting polynucleotides | |
JP6041408B2 (ja) | 核酸素子候補分子、および、これを用いたターゲット分析用核酸素子のスクリーニング方法 | |
Kimoto et al. | Evolving aptamers with unnatural base pairs | |
US20080220436A1 (en) | Methods and compositions for rapid light-activated isolation and detection of analytes | |
WO2018179514A1 (ja) | ステロイド骨格含有化合物検出デバイスおよびこれを用いたステロイド骨格含有化合物の検出方法 | |
JP6218250B2 (ja) | ターゲット分析用センサ、ターゲット分析用デバイス、および、これを用いたターゲットの分析方法 | |
JP5959026B2 (ja) | メラミンの分析用核酸センサ、分析用デバイスおよび分析方法 | |
CN113109305B (zh) | 基于拆分型核酸适配体和硫代黄素t检测atp的方法 | |
JP6570086B2 (ja) | 検出デバイスおよびこれを用いたターゲットの検出方法 | |
WO2017098746A1 (ja) | コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法 | |
AU2017202493B2 (en) | Multiplexed analyses of test samples | |
Ji et al. | Rational design and development of a universal baby spinach-based sensing platform for the detection of biomolecules | |
WO2015033650A1 (ja) | サンプルの製造方法およびターゲットの分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480041690.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14829556 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14906897 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014829556 Country of ref document: EP |