WO2015010605A1 - 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法 - Google Patents

利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法 Download PDF

Info

Publication number
WO2015010605A1
WO2015010605A1 PCT/CN2014/082728 CN2014082728W WO2015010605A1 WO 2015010605 A1 WO2015010605 A1 WO 2015010605A1 CN 2014082728 W CN2014082728 W CN 2014082728W WO 2015010605 A1 WO2015010605 A1 WO 2015010605A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
face
nano structure
metal micro
fiber
Prior art date
Application number
PCT/CN2014/082728
Other languages
English (en)
French (fr)
Inventor
杨天
贺晓龙
唐一禾
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to EP14829546.2A priority Critical patent/EP3026473A4/en
Priority to US14/906,664 priority patent/US10422959B2/en
Priority to CN201480042255.2A priority patent/CN106170725A/zh
Publication of WO2015010605A1 publication Critical patent/WO2015010605A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29368Light guide comprising the filter, e.g. filter deposited on a fibre end

Definitions

  • the invention belongs to the field of micro-nano processing, and in particular relates to a method for fabricating a metal micro-nano structure on an end face of an optical fiber by a peel-and-stick method. Background technique
  • Integrating micro-nano devices on the end faces of optical fibers using optical fiber guided wave technology to excite and detect micro-nano devices with light waves, will bring simple, flexible and easy-to-carry optical functional devices.
  • the optical fibers are very thin, such devices can be inserted very small. Work in the space and in the environment.
  • using existing mainstream micro-nano patterning techniques including UV lithography, electron beam lithography, focused ion beam etching, etc., it is difficult to efficiently fabricate micro-nano patterns and devices directly at the fiber end faces.
  • the invention is based on the method of preparing a metal micro/nano structure on another substrate, and then peeling and pasting it onto the end face of the fiber to fabricate the metal micro-nano structure of the fiber end face.
  • a similar strip stripping method has been used to fabricate high surface quality metal micro/nanostructures on a large area of planar substrate (P. Nagpal, NClindquist, SH Oh and DJ Norris, "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials, "Science 325, 594 (2009)), but the method reported above requires a target substrate with strong metal adhesion, and is not suitable for fabricating metal micro/nano structures on the fiber end faces.
  • Nanostructures are very attractive topics, and many attempts have been made in the literature, but no peel-paste method has been reported. Here, the peel-and-paste method is introduced.
  • the main principle is to use precious metals and some solid materials (such as Glass, mica, silicon, etc.) Weak surface bonding between substrates.
  • the micro-nano pattern is etched on a substrate with weak adhesion to the metal surface, and then the metal is deposited on the substrate of the existing micro-nano pattern, and then The metal layer is peeled off and transferred to another planar substrate with the bonding surface of the original metal and the substrate facing upward to complete the preparation of the metal micro/nano structure on the substrate.
  • the metal micro/nano structure produced by the peel-and-paste method also has a very smooth surface.
  • the existing peel-paste is large Product stripping - paste, i.e. the entire metal microstructure nanostructures on the substrate peeled and transferred to another substrate.
  • the angle between the end face of the fiber itself before fabrication and the fiber is not completely vertical, for example, 90 ⁇ 1 degree, that is, it has a certain angular deviation, so the conventional fiber end face
  • the method of fabricating micro-nanostructures is difficult to achieve precise verticality between the micro-nanostructure plane and the fiber, which will affect the final optical performance of the fiber end-face integrated device to some extent.
  • the present invention draws on the idea of peeling off precious metals from a weakly bonded substrate in peel-and-paste, and demonstrates a new high-quality preparation of metal micro/nano structures on fiber end faces, and the process Simple, fast, and low cost method. Moreover, the present invention can correct the angle between the completed fiber end face micro-nanostructure plane and the optical fiber to an accurate 90 degrees by a predetermined angle of 90 degrees between the optical fiber and the substrate.
  • an object of the present invention is to provide a method for fabricating a metal micro/nano structure on an end face of an optical fiber by a peel-and-paste method, thereby realizing a high-quality preparation of a metal micro/nano structure on an end face of an optical fiber.
  • the method of correcting the angle between the micro-nano-structure plane of the fiber end face and the fiber to the precise 90 degree can be corrected, and the process is simple and fast, and the cost is low.
  • the present invention provides a method for fabricating a metal micro/nano structure on an end face of an optical fiber by a peel-and-stick method, the method comprising at least the following steps: 1) providing a substrate and an optical fiber on the surface of the substrate Preparing a metal micro-nano structure; 2) applying an adhesive to an end surface of the optical fiber or a surface of the metal micro-nano structure; 3) placing the optical fiber at a predetermined angle with the substrate and passing the adhesive Sticky Combining the fiber end face and the metal micro-nano structure; 4) curing the adhesive, and peeling the fiber end face from the metal micro-nano structure from the surface of the substrate to complete the fabrication.
  • a method of producing a metal micro/nano structure on an end face of an optical fiber by a peel-and-stick method according to the present invention is characterized in that: the metal micro/nano structure is a metal micro-nano structure having a low bonding force characteristic with respect to the surface of the substrate.
  • the substrate is a silicon substrate
  • the metal micro/nano structure is a gold micro/nano structure
  • the metal micro/nano structure is a gold nanowire groove array structure.
  • the predetermined angle described in the step 3) is 90°.
  • a method of achieving a predetermined angle of 90° between the optical fiber and the substrate is used to form a mirror image of the optical fiber and the optical fiber on the substrate.
  • the angle between the plane of the fabricated metal micro/nano structure and the fiber is equal to a predetermined angle of 90°, instead of determining The angle between the end face of the fiber itself and the fiber before fabrication.
  • the adhesive is an epoxy resin having a curing temperature of 120 to 240 ° C and a curing time of 1 to 10 min.
  • the front portion of the optical fiber is a bare optical fiber.
  • the front portion of the optical fiber is a fiber length within 0.1 mm from the end face of the optical fiber.
  • the bare fiber is a single mode bare fiber having a core diameter of not more than 15 ⁇ m.
  • the method for fabricating a metal micro/nano structure on the end face of an optical fiber by the peel-and-stick method of the present invention has the following beneficial effects: a metal micro/nano structure having a low bonding force is formed on the substrate, and the end face of the optical fiber is coated with a paste. Mixing or coating an adhesive on the surface of the metal micro-nano structure, bonding the fiber end face and the metal micro-nano structure at a predetermined angle, finally curing the adhesive and peeling off the fiber end face And metal micro-nanostructures to complete the preparation.
  • the method described in the present invention avoids the complication of the processing flow and the cost increase caused by directly performing micro-nano processing on the fiber end face.
  • Figure 1 is a schematic view showing the process of the method for producing a metal micro/nano structure on a fiber end face by a peel-and-stick method of the present invention.
  • Fig. 2 is a flow chart showing the implementation of the method for producing a metal micro/nano structure on a fiber end face by a peel-and-stick method according to the present invention.
  • Fig. 3 is a view showing a method for fabricating a metal micro/nano structure on a fiber end face by a peel-and-stick method according to the present invention.
  • a gold nanowire groove array pattern produced on an end face of an optical fiber under an optical microscope.
  • FIG. 4 is a view showing a method for fabricating a metal micro/nano structure on a fiber end face by a peel-and-stick method according to the present invention.
  • Step 1) ⁇ Step 4) detailed description
  • the present embodiment provides a method for fabricating a metal micro/nano structure on an end face of an optical fiber 107 by a peel-and-stick method, the method comprising at least the following steps:
  • step 1) S1 is first performed to provide a substrate and an optical fiber 107, and a predetermined metal micro/nano structure is prepared on the surface of the substrate; and then step 2) S2 is performed on the end surface of the optical fiber 107. Or the surface of the metal micro-nano structure is coated with an adhesive 106; then, steps 3) S3 are performed, the optical fiber 107 is at a predetermined angle with the substrate, and the optical fiber 107 is bonded by the adhesive 106. End face and the metal micro/nano structure; finally performing step 4) S4, curing the adhesive 106, and peeling the end face of the optical fiber 107 from the surface of the metal micro-nano structure to complete Production.
  • the front portion of the optical fiber is a bare fiber.
  • the front portion of the optical fiber is a fiber length within 0.1 mm from the end face of the optical fiber.
  • the bare fiber is a single-mode bare fiber having a core diameter of not more than 15 ⁇ m.
  • the metal micro/nanostructure is a metal micro-nano structure having low binding force characteristics with respect to the surface of the substrate. This property helps to strip the metal micro-nanostructure from the substrate to ensure the integrity of the metal micro-nanostructure and improve the yield of fabrication.
  • the substrate is a silicon substrate 104
  • the metal micro/nano structure is a gold micro/nano structure 105.
  • the metal micro-nano structure is a gold nano-slot array structure.
  • the preset angle is 90°.
  • the adhesive 106 is an epoxy resin having a curing temperature of 120 to 240 ° C and a curing time of 1 to 10 min ; preferably, the curing temperature is 180 ° C and the curing time is 5 min.
  • the gold micro/nano structure 105 is first prepared on a silicon wafer by a conventional micro-nano processing process, and then the adhesive 106 is applied to the end surface of the optical fiber 107, and the optical fiber coated with the adhesive 106 is used.
  • the end face of 107 is adhered to the gold micro/nano structure 105 on the silicon substrate 104, and the gold micro/nano structure 105 is removed from The silicon substrate 104 is peeled off, whereby the gold micro/nano structure 105 is transferred to the end face of the optical fiber 107.
  • other metals and substrates having weak surface bonding with the selected metal may also be used.
  • the specific process is as follows: firstly, a gold film having a thickness of 15 to 50 nm is deposited on the silicon substrate 104 by electron beam evaporation, and then a film of 50 to 200 nm thick poly(methyl methacrylate) (PMMA) is spin-coated on the gold film, and then A micro-nano pattern is prepared on the PMMA film by electron beam lithography, and the micro-nano pattern is transferred to the gold film by an argon ion beam etching process to form a gold micro/nano structure 105, and finally washed with acetone. The PMMA film is removed.
  • PMMA poly(methyl methacrylate)
  • the silicon substrate 104 on which the gold micro/nano structure 105 is formed is fixed to the observation point of the stereo microscope 101 at an angle to the horizontal plane by the jig 103 (the side having the gold micro/nano structure 105 is upward), and the angle adopted here is 60°.
  • Droplets of the adhesive 106 are taken up on the end faces of the optical fibers 107.
  • the optical fiber 107 is fixed by the jig 103 and assembled on a fixed five-dimensional stage 102 including x, y, z, pitch and horizontal corners, and the end face of the optical fiber 107 is brought close to the silicon by the five-dimensional stage 102.
  • the surface of the substrate 104 is as shown in FIG.
  • the optical fiber 107 and the mirror image of the optical fiber 107 in the silicon substrate 104 are observed by the stereo microscope 101, and the rotation angle of the optical fiber 107 is adjusted so that the optical fiber 107 is aligned with the mirror image of the optical fiber 107, thereby ensuring that the optical fiber 107 is perpendicular to the surface of the silicon substrate 104.
  • the end face of the optical fiber 107 is moved and aligned with the gold micro/nano structure 105 such that the optical fiber 107 slowly approaches the gold micro/nano structure 105 at an angle perpendicular to the surface of the silicon substrate 104 until the adhesive 106 is observed to contact the gold micro/nano structure 105. Stop moving the fiber 107.
  • the adhesive 106 used is an epoxy resin (EPO-TEK 330 manufactured by Epoxy Technology Co., Ltd.), and the curing method is heat curing. Specifically, the epoxy resin is heated to 120 to 240°. C, heating time is l ⁇ 10min, in this embodiment the heating temperature is 180 ° C, and the heating time is 5 min.
  • the optical fiber 107 is removed from the surface of the silicon substrate 104, and the transfer of the gold micro/nanostructure 105 on the silicon substrate 104 to the end face of the optical fiber 107 is completed to complete the preparation.
  • the gold micro/nano structure 105 fabricated on the silicon wafer can be transferred to the end face of the optical fiber 107 with high quality by the method described in the present invention.
  • the present invention successfully transfers a gold nano-slot array structure having a period of 800 nm and a width of 50 nm on the silicon wafer to the end face of the optical fiber 107.
  • the method for producing a metal micro/nano structure on the end face of an optical fiber by the peel-and-stick method of the present invention comprises the steps of: fabricating a metal micro/nano structure with a lower binding force on the substrate, then applying an adhesive to the end face of the fiber or applying an adhesive to the surface of the metal micro/nano structure, and then presetting The fiber end face and the metal micro/nano structure are bonded at an angle, and the adhesive is finally cured and the fiber end face and the metal micro/nano structure are peeled off to complete the preparation.
  • the method described in the present invention avoids the complication of the processing flow and the cost increase caused by directly performing micro-nano processing on the fiber end face.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法,先于基底上制作与之结合力较低的金属微纳米结构,然后于光纤端面涂覆粘合剂或于所述金属微纳米结构表面涂覆粘合剂,接着以预设角度粘合所述光纤端面及所述金属微纳米结构,最后固化所述粘合剂并将所述光纤端面及金属微纳米结构从基底剥离以完成制备。由于借鉴了剥离-粘贴中将贵金属从与之弱结合的基底上剥离的方法,从而提供了一种可以在光纤端面高质量地制备金属微纳米结构的方法,而且该方法过程简单快速、成本低。

Description

利用剥离 -粘贴法在光纤端面制作金属微纳米结构的方法
技术领域
本发明属于微纳加工领域,特别是涉及一种利用剥离-粘贴法在光纤端面制作 金属微纳米结构的方法。 背景技术
将微纳米器件集成在光纤的端面, 通过光纤导波技术用光波激发与探测微纳 米器件, 将带来简便灵活、 易于携带的光学功能器件; 同时因为光纤很细, 这类 器件可以插入很小的空间和体内环境进行工作。 然而使用现有的主流微纳米图形 加工技术, 包括紫外光刻、 电子束光刻、 聚焦离子束刻蚀等, 很难在光纤端面直 接有效地制备微纳米图形和器件。 这是因为如果使用紫外光刻或电子束光刻在光 纤端面直接制备微纳米图形, 则需要在样品上均匀可控地涂敷光刻胶, 为达到较 高的加工精度, 整个光纤端面的光刻胶厚度需要非常均匀, 而因为光纤端面的面 积非常小(例如光纤通信使用的光纤, 其包层直径通常仅有 125微米左右), 无法 采用半导体行业常用的旋涂方法来涂敷光刻胶。 人们采用了在光纤端面沾上光刻 胶的液滴然后用气枪将光刻胶液滴吹平的技术, 但是这种方法对光刻胶厚度的控 制非常不准确,使用这种方法在光纤端面制备微纳米图形的成品率很低(Shengfei Feng, Xinping Zhang, Hao Wang, Mudi Xin, and Zhenzhen Lu, "Fiber coupled waveguide grating structures," Appl. Phys. Lett. 96, 133101 (2010))。而如果使用聚焦 离子束刻蚀的方法在光纤端面制备微纳米图形, 虽然可以获得所需要的图形, 但 是聚焦离子束刻蚀的制备时间很长, 制备成本非常高; 并且每在一根新的光纤的 端面制作前都需要重新校准聚焦离子束刻蚀仪器的聚焦参数 (A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, "Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications," J. Vac. Sci. Technol. B 26, 2168 (2008))。
本发明是基于先在其他基底上制备金属微纳米结构, 然后将其剥离并粘贴到 光纤端面的方法来制作光纤端面的金属微纳米结构。 类似的剥离 -粘贴 (template stripping ) 方法已经被用于在较大面积的平面衬底上制作高表面质量的金属微纳 米结构 (P. Nagpal, N.C.lindquist, S.H. Oh and D.J. Norris, "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials," Science 325, 594(2009) ), 但是如上已报 道的方法需要与金属附着力强的目标衬底, 不适于在光纤端面制作金属微纳米结 构。 在光纤端面制作金属微纳米结构是非常吸引人的课题, 文献里多有尝试, 但 是并无报道用剥离-粘贴的方法来实现之。 在此介绍一下剥离-粘贴法, 其主要原 理是利用贵金属与一些固体材料 (如玻璃, 云母, 硅等) 基底之间的弱表面结合 力。 首先在与金属表面结合力弱的基底上刻蚀微纳米图形, 然后将金属沉积在此 已有微纳米图形的基底上, 之后将金属层剥离并转移至另一平面衬底并使原先金 属与基底的结合面朝上, 以完成在此衬底上制备金属微纳米结构。 当使用云母或 者硅等具有极高表面平滑度的基底时,通过剥离 -粘贴法制作的金属微纳米结构也 有非常平滑的表面。 已有的剥离-粘贴均为大面积剥离-粘贴, 即将整个基底上的 金属微纳米结构剥离并转移到其他衬底。
另外, 由于受到光纤切割精度的限制, 制作前的光纤本身的端面与光纤之间 的角度并非完全垂直, 例如为 90±1 度, 也就是说具有一定的角度偏差, 因此, 传统的于光纤端面制作微纳米结构的方法难以实现微纳米结构平面与光纤之间的 精确垂直, 从而会在一定程度上影响光纤端面集成器件的最终的光学性能。
鉴于现有技术的以上缺陷,本发明借鉴了剥离-粘贴中将贵金属从与之弱结合 的基底剥离的思想, 展示了一种新的可以在光纤端面高质量地制备金属微纳米结 构, 而且过程简单快速、 成本低的方法。 并且, 本发明通过光纤与基底呈预设角 度 90度的过程可以把完成制作后的光纤端面微纳米结构平面与光纤之间的角度 纠正到精确的 90度。 发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种利用剥离-粘贴法 在光纤端面制作金属微纳米结构的方法, 以实现一种可以在光纤端面高质量地制 备金属微纳米结构, 可以把完成制作后的光纤端面微纳米结构平面与光纤之间的 角度纠正到精确的 90度, 而且过程简单快速、 成本低的方法。
为实现上述目的及其他相关目的, 本发明提供一种利用剥离-粘贴法在光纤端 面制作金属微纳米结构的方法,所述方法至少包括以下步骤: 1 )提供基底及光纤, 于所述基底表面制备金属微纳米结构; 2)于所述光纤的端面或所述金属微纳米结 构的表面涂敷粘合剂; 3 )使所述光纤与所述基底呈预设角度并通过所述粘合剂粘 合所述光纤端面及所述金属微纳米结构; ; 4)固化所述粘合剂, 并将所述光纤端 面与所述金属微纳米结构从所述基底表面进行剥离, 以完成制作。
在本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法,其特征 在于: 所述金属微纳米结构为相对于所述基底表面具有低结合力特性的金属微纳 米结构。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 所述基底为硅基底, 所述金属微纳米结构为金微纳米结构。
对于上述方案, 更进一步地, 所述金属微纳米结构为金纳米线槽阵列结构。 作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 步骤 3 ) 中所述的预设角度为 90°。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 实现所述光纤与基底呈 90°预设角度的方法为使光纤及光纤在基底 的镜像成一条直线。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 完成制作后的金属微纳米结构的平面与光纤之间的角度等于 90°预 设角度, 而非取决于制作前的光纤本身的端面与光纤之间的角度。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 所述粘合剂为环氧树脂, 固化温度为 120~240°C, 固化时间为 l~10min。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 所述的光纤的前部为裸光纤。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 所述光纤的前部为从光纤端面开始 0.1mm以内的光纤长度。
作为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法的一 个优选方案, 所述的裸光纤为芯径不大于 15微米的单模裸光纤。
如上所述, 本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方 法, 具有以下有益效果: 于基底上制作与之结合力较低的金属微纳米结构, 于光 纤端面涂敷粘合剂或于所述金属微纳米结构表面涂敷粘合剂, 并以预设角度粘合 所述光纤端面及所述金属微纳米结构, 最后固化所述粘合剂并剥离所述光纤端面 及金属微纳米结构以完成制备。 本发明描述的方法避免了直接对光纤端面进行微 纳米加工所造成的加工流程的复杂化以及成本的提高。 在硅片上大规模、 自动化 地制作微纳米结构已经是成熟、 高效、 高质量的工艺, 本发明展示的方法只需在 此基础上进行简单快速的剥离和粘贴, 适于低成本、 高效率的生产。 同时还有如 下优点: 在光纤端面涂敷粘合剂可以弥补光纤端面原有的缺陷, 在体式显微镜下 将光纤与其镜像对齐的过程可以纠正涂敷粘合剂后的光纤端面与光纤之间的角度 到 90度, 剥离的方法给出非常平滑的金表面能够提高微纳米金器件本身的质量。 总之, 本发明展示的在光纤端面制作金属微纳米结构的方法拥有低成本, 高质量 以及简单快速的优点。 附图说明
图 1 显示为本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方 法实施过程示意图。
图 2 显示为本发明利用剥离 -粘贴法在光纤端面制作金属微纳米结构的方法 的实施流程示意图。
图 3 显示为本发明利用剥离 -粘贴法在光纤端面制作金属微纳米结构的方法 在光学显微镜下的在光纤端面制作的金纳米线槽阵列图。
图 4 显示为本发明利用剥离 -粘贴法在光纤端面制作金属微纳米结构的方法 在电子显微镜下的在光纤端面制作的金纳米线槽阵列图。 元件标号说明
体视显微镜
五维位移台
夹具
硅基底
金微纳米结构
粘合剂
光纤
步骤 1 ) 〜步骤 4) 具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说 明书所揭露的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外 不同的具体实施方式加以实施或应用, 本说明书中的各项细节也可以基于不同观 点与应用, 在没有背离本发明的精神下进行各种修饰或改变。
请参阅图 1〜图 4。 需要说明的是, 本实施例中所提供的图示仅以示意方式说 明本发明的基本构想, 遂图式中仅显示与本发明中有关的组件而非按照实际实施 时的组件数目、 形状及尺寸绘制, 其实际实施时各组件的型态、 数量及比例可为 一种随意的改变, 且其组件布局型态也可能更为复杂。
本实施例提供一种利用剥离-粘贴法在光纤 107 的端面制作金属微纳米结构 的方法, 所述方法至少包括以下步骤:
如图 1〜图 2所示, 首先进行步骤 1 ) S1, 提供基底及光纤 107, 于所述基底 表面制备预设的金属微纳米结构; 然后进行步骤 2) S2, 于所述光纤 107的端面 或所述金属微纳米结构的表面涂敷粘合剂 106; 接着进行步骤 3 ) S3, 使所述光 纤 107与所述基底呈预设角度并通过所述粘合剂 106粘合所述光纤 107的端面及 所述金属微纳米结构; 最后进行步骤 4) S4, 固化所述粘合剂 106, 并将所述光 纤 107的端面与所述金属微纳米结构从所述基底表面进行剥离, 以完成制作。
作为示例, 所述的光纤的前部为裸光纤。 具体地, 所述光纤的前部为从光纤 端面开始 0.1mm 以内的光纤长度。 在本实施例中, 所述的裸光纤为芯径不大于 15微米的单模裸光纤。
所述金属微纳米结构为相对于所述基底表面具有低结合力特性的金属微纳米 结构。 该特性有助于将所述金属微纳米结构从所述基底中剥离, 以保证金属微纳 米结构的完整性, 提高制作的良率。 在本实施例中, 所述基底为硅基底 104, 所 述金属微纳米结构为金微纳米结构 105。 在以具体的实施过程中, 所述金属微纳 米结构为金纳米线槽阵列结构。 所述步骤 3 ) 中, 所述的预设角度为 90°。 所述 粘合剂 106为环氧树脂, 固化温度为 120~240°C, 固化时间为 l~10min; 优选地, 所述固化温度为 180°C, 固化时间为 5min。 在具体的实施过程中, 首先用传统的微纳米加工工艺在硅晶圆片上制备金微 纳米结构 105,然后在光纤 107的端面涂敷粘合剂 106,用涂敷了粘合剂 106的光 纤 107的端面粘住硅基底 104上的金微纳米结构 105, 再将金微纳米结构 105从 硅基底 104剥离, 从而金微纳米结构 105被转移到光纤 107的端面。 实际使用中 也可以选择使用其它金属以及和所选择的金属具有弱表面结合力的基底。
具体流程为:首先用电子束蒸发在硅基底 104上沉积厚度为 15~50nm金薄膜, 然后在所述金薄膜上旋涂 50~200nm厚的 Poly(methyl methacrylate) (PMMA)胶的 薄膜, 接着用电子束光刻的工艺在所述 PMMA薄膜上制备微纳米图形, 再用氩 离子束刻蚀的工艺把微纳米图形转移到所述金薄膜上制作金微纳米结构 105, 最 后用丙酮清洗以去除所述 PMMA薄膜。
然后用夹具 103将制作有金微纳米结构 105的硅基底 104以与水平面成一定 角度固定在体视显微镜 101的观察点上(有金微纳米结构 105的一面向上),此处 采用的角度为 60°。在光纤 107的端面沾取粘合剂 106的液滴。接着, 用夹具 103 将光纤 107固定, 并组装在一个固定的包括 x、 y、 z、 俯仰角及水平转角的五维 位移台 102之上, 利用五维位移台 102将光纤 107的端面靠近硅基底 104表面, 如图 1所示。 通过体视显微镜 101观察光纤 107以及光纤 107在硅基底 104里的 镜像, 调节光纤 107的转角使光纤 107与光纤 107的镜像成一条直线, 从而保证 光纤 107与硅基底 104表面垂直。将光纤 107的端面移动并对准金微纳米结构 105, 使光纤 107以垂直该硅基底 104表面的角度慢慢接近金微纳米结构 105直至观察 到粘合剂 106接触到金微纳米结构 105则停止移动光纤 107。
最后, 根据所使用的粘合剂 106的固化条件使其固化, 如果使用加热固化型 粘合剂 106, 则加热硅基底 104使胶固化; 如使用紫外固化胶, 则用紫外灯照射 使胶固化, 等等。 在本实施过程中, 采用的粘合剂 106 为环氧树脂 (Epoxy Technology公司生产的 EPO-TEK 330), 固化的方式为热固化, 具体地, 将所述 环氧树脂加热到 120~240°C, 加热的时间为 l~10min, 在本实施例中加热温度为 180°C , 加热时间为 5min。 待粘合剂 106固化之后, 将光纤 107移开硅基底 104 表面, 完成硅基底 104上的金微纳米结构 105到光纤 107的端面的转移, 以完成 制备。
如图 3〜图 4所示, 通过本发明所描述的方法可以高质量地将硅片上制作的金 微纳米结构 105转移到光纤 107的端面。 在具体的实施过程中, 本发明成功地将 硅片上的周期为 800nm, 宽度为 50nm的金纳米线槽阵列结构转移到光纤 107的 端面上。
综上所述, 本发明的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方 法, 包括步骤: 先于基底上制作与之结合力较低的金属微纳米结构, 然后于光纤 端面涂敷粘合剂或于所述金属微纳米结构表面涂敷粘合剂, 接着以预设角度粘合 所述光纤端面及所述金属微纳米结构, 最后固化所述粘合剂并剥离所述光纤端面 及金属微纳米结构以完成制备。 本发明描述的方法避免了直接对光纤端面进行微 纳米加工所造成的加工流程的复杂化以及成本的提高。 在硅片上大规模、 自动化 地制作微纳米结构已经是成熟、 高效、 高质量的工艺, 本发明展示的方法只需在 此基础上进行简单快速的剥离和粘贴, 适于低成本、 高效率的生产。 同时还有如 下优点: 在光纤端面涂敷粘合剂可以弥补光纤端面原有的缺陷, 在体式显微镜下 将光纤与其镜像对齐的过程可以纠正涂敷粘合剂后的光纤端面与光纤之间的角度 到 90度, 剥离的方法给出非常平滑的金表面能够提高微纳米金器件本身的质量。 总之, 本发明展示的在光纤端面制作金属微纳米结构的方法拥有低成本, 高质量 以及简单快速的优点。 所以, 本发明有效克服了现有技术中的种种缺点而具高度 产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任 何熟悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修 饰或改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的 精神与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求所涵

Claims

权利要求书 、 一种利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征在于, 所述方法至 少包括以下步骤:
a) 提供基底及光纤, 于所述基底表面制备金属微纳米结构;
b) 于所述光纤端面或所述金属微纳米结构的表面涂敷粘合剂;
c) 使所述光纤与所述基底呈预设角度并通过所述粘合剂粘合所述光纤端面及所述金属 微纳米结构;
d) 固化所述粘合剂, 并将所述光纤端面与所述金属微纳米结构从所述基底表面进行剥 离, 以完成制作。 、 根据权利要求 1所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 所述金属微纳米结构为相对于所述基底表面具有低结合力特性的金属微纳米结 构。 、 根据权利要求 1所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 所述基底为硅基底。 、 根据权利要求 3所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 所述金属微纳米结构为金微纳米结构。 、 根据权利要求 4所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 所述金属微纳米结构为金纳米线槽阵列结构。 、 根据权利要求 1所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 步骤 3 ) 中所述的预设角度为 90°。 、 根据权利要求 6所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 实现所述光纤与基底呈 90°预设角度的方法为使光纤及光纤在基底的镜像成一条直 线。 、 根据权利要求 6所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 完成制作后的金属微纳米结构的平面与光纤之间的角度等于 90°预设角度, 而非取 决于制作前的光纤本身的端面与光纤之间的角度。 、 根据权利要求 1所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征 在于: 所述粘合剂为环氧树脂, 固化温度为 120~240°C, 固化时间为 l~10min。 、 根据权利要求 1所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其 特征在于: 所述的光纤的前部为裸光纤。 1、 根据权利要求 10所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征在于: 所述光纤的前部为从光纤端面开始 0.1mm以内的光纤长度。 、 根据权利要求 10所述的利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法, 其特征在于: 所述的裸光纤为芯径不大于 15微米的单模裸光纤。
PCT/CN2014/082728 2013-07-26 2014-07-22 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法 WO2015010605A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14829546.2A EP3026473A4 (en) 2013-07-26 2014-07-22 Method using peel-and-stick to fabricate an optical fiber end-face metallic micro/nanostructure
US14/906,664 US10422959B2 (en) 2013-07-26 2014-07-22 Method for fabricating a metallic micro/nanostructure at an optical fiber end-facet by the glue-and-strip method
CN201480042255.2A CN106170725A (zh) 2013-07-26 2014-07-22 利用剥离‑粘贴法在光纤端面制作金属微纳米结构的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310321163.5 2013-07-26
CN201310321163.5A CN104345358B (zh) 2013-07-26 2013-07-26 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法

Publications (1)

Publication Number Publication Date
WO2015010605A1 true WO2015010605A1 (zh) 2015-01-29

Family

ID=52392730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082728 WO2015010605A1 (zh) 2013-07-26 2014-07-22 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法

Country Status (4)

Country Link
US (1) US10422959B2 (zh)
EP (1) EP3026473A4 (zh)
CN (2) CN104345358B (zh)
WO (1) WO2015010605A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345358B (zh) * 2013-07-26 2016-02-10 上海煦源生物科技有限公司 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法
WO2017079882A1 (zh) * 2015-11-09 2017-05-18 杨天 一种端面具有金属微纳米结构的光纤及其制备方法和应用方法
CN107621274B (zh) * 2016-07-13 2020-01-07 上海交通大学 一种光纤传感器及其声波探测应用方法
CN108761641A (zh) * 2018-07-27 2018-11-06 纤瑟(天津)新材料科技有限公司 通过微纳结构转移方法在光纤端面制备微纳结构的方法
CN109797418A (zh) * 2018-12-17 2019-05-24 河南师范大学 一种在倾斜光纤端面大面积均匀制备金纳米孔阵列的方法
CN111302298A (zh) * 2020-02-20 2020-06-19 大连理工大学 一种转移金属薄膜的方法及其应用
CN113416006B (zh) * 2021-06-10 2023-04-11 西湖大学 一种光纤端面集成微纳结构的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381739A (zh) * 2002-06-03 2002-11-27 上海交通大学 光纤端面微细加工方法
CN1402260A (zh) * 2002-09-29 2003-03-12 上海交通大学 光纤纳米尖端的加工方法
US20090172846A1 (en) * 2005-06-06 2009-07-02 Centre National De La Recherche Scientifique- Cnrs Nanometric emitter/receiver guides
CN102487579A (zh) * 2011-09-05 2012-06-06 深圳光启高等理工研究院 一种超材料的制备方法和超材料
CN102954957A (zh) * 2011-08-25 2013-03-06 福州高意光学有限公司 一种拉曼光谱仪探针及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916187A (en) * 1987-02-24 1990-04-10 Ashland Oil, Inc. Epoxy resin with polyamine-polyphenol solid salt in liquid poly(alkylene oxide) polyamine-polyphenol
JP2003139905A (ja) * 2001-10-31 2003-05-14 Yazaki Corp 反射防止構造および反射防止構造の製造方法
DE10323087B4 (de) * 2003-05-16 2006-12-21 Frank Optic Products Gmbh Optische Technologien Verfahren und Vorrichtung zum Beschichten der Stirnflächen konfektionierter Lichtleiter
KR100588401B1 (ko) * 2003-10-30 2006-06-09 광주과학기술원 환원된 금속 이온 및/또는 희토류 이온이 도핑된 광섬유또는 광소자 제조방법
JP4786928B2 (ja) * 2005-04-11 2011-10-05 株式会社リコー 導波路素子、空間変調素子および時間変調素子
US8620120B2 (en) * 2008-06-23 2013-12-31 Imec Retro-reflective structures
CN101713738B (zh) * 2009-12-22 2012-07-04 上海大学 表面增强拉曼散射光纤探针
WO2012079018A2 (en) * 2010-12-09 2012-06-14 University Of Florida Research Foundation, Inc. Surface plasmon sensors and methods for producing the same
US20130039616A1 (en) * 2011-08-08 2013-02-14 Gary Shambat Optical Fibers Functionalized with Photonic Crystal Resonant Optical Structures
CN104345358B (zh) * 2013-07-26 2016-02-10 上海煦源生物科技有限公司 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381739A (zh) * 2002-06-03 2002-11-27 上海交通大学 光纤端面微细加工方法
CN1402260A (zh) * 2002-09-29 2003-03-12 上海交通大学 光纤纳米尖端的加工方法
US20090172846A1 (en) * 2005-06-06 2009-07-02 Centre National De La Recherche Scientifique- Cnrs Nanometric emitter/receiver guides
CN102954957A (zh) * 2011-08-25 2013-03-06 福州高意光学有限公司 一种拉曼光谱仪探针及其制作方法
CN102487579A (zh) * 2011-09-05 2012-06-06 深圳光启高等理工研究院 一种超材料的制备方法和超材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. DHAWAN; J. F. MUTH; D. N. LEONARD; M. D. GERHOLD; J. GLEESON; T. VO-DINH; P. E. RUSSELL: "Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications", J. VAC. SCI. TECHNOL., vol. B 26, 2008, pages 2168
P. NAGPAL; N.C.LINDQUIST; S.H. OH; D.J. NORRIS: "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials", SCIENCE, vol. 325, 2009, pages 594, XP055006862, DOI: doi:10.1126/science.1174655
PRASHANT, N. ET AL.: "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials", SCIENCE, vol. 325, no. 594, 31 July 2009 (2009-07-31), pages 595 - 597, XP055006862 *
See also references of EP3026473A4
SHENGFEI FENG; XINPING ZHANG; HAO WANG; MUDI XIN; ZHENZHEN LU: "Fiber coupled waveguide grating structures", APPL. PHYS. LETT., vol. 96, 2010, pages 133101, XP012130616, DOI: doi:10.1063/1.3373422

Also Published As

Publication number Publication date
CN104345358A (zh) 2015-02-11
EP3026473A1 (en) 2016-06-01
CN106170725A (zh) 2016-11-30
EP3026473A4 (en) 2017-02-22
CN104345358B (zh) 2016-02-10
US20160161677A1 (en) 2016-06-09
US10422959B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2015010605A1 (zh) 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法
JP6342405B2 (ja) 担体上の解放可能な基板
CN116256829A (zh) 一种近眼显示器衍射光栅波导的制备方法
KR101020634B1 (ko) 기능성 나노패턴을 갖는 렌즈의 제조방법
CN108761600B (zh) 一种预应力辅助纳米压印制作高密度衍射光栅的方法
WO2017079882A1 (zh) 一种端面具有金属微纳米结构的光纤及其制备方法和应用方法
CN109292732B (zh) 一种具有等离子体聚焦性能的折线型纳米间隙及其制备方法
CN101823690A (zh) Su-8纳米流体系统的制作方法
JP2003240931A (ja) 回折光学素子及びその製造方法
WO2017057220A1 (ja) 撥水性部材及びその製造方法
JP5576555B2 (ja) ナノインプリントフィルムの製造方法
WO2021164733A1 (zh) 一种转移纳米结构的方法及其应用
US11123960B2 (en) Film mold and imprinting method
JP6045782B2 (ja) 微細凹凸パタン基材及びその製造方法、並びに、ワイヤグリッド偏光板及びその製造方法
JP2009139545A (ja) 光学フィルムおよび光学フィルムの製造方法
CN111115563A (zh) 一种全干法功能材料剥离的方法
US20030038033A1 (en) Process for fabricating high aspect ratio embossing tool and microstructures
CN111071984A (zh) 一种选择性剥离光刻胶制备微纳结构的方法
KR101170532B1 (ko) 미세 패턴의 형성방법
CN104360443A (zh) 一种刻蚀方法
KR101566263B1 (ko) 초해상막 및 이를 이용한 리소그래피 방법
WO2016155344A1 (zh) 一种平面波导装置的制造方法
Chu et al. New fabrication for DSRRs nanostructure in optics
JP2003156614A (ja) パタン形成方法、光学部品、及び、光学部品の製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906664

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014829546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014829546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE