WO2016155344A1 - 一种平面波导装置的制造方法 - Google Patents

一种平面波导装置的制造方法 Download PDF

Info

Publication number
WO2016155344A1
WO2016155344A1 PCT/CN2015/095750 CN2015095750W WO2016155344A1 WO 2016155344 A1 WO2016155344 A1 WO 2016155344A1 CN 2015095750 W CN2015095750 W CN 2015095750W WO 2016155344 A1 WO2016155344 A1 WO 2016155344A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
manufacturing
layer
segments
layers
Prior art date
Application number
PCT/CN2015/095750
Other languages
English (en)
French (fr)
Inventor
杨磊
Original Assignee
杨文君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨文君 filed Critical 杨文君
Publication of WO2016155344A1 publication Critical patent/WO2016155344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to a method of fabricating an optical device, and more particularly to a method of fabricating a planar waveguide device.
  • planar waveguide display panel is disclosed in Chinese Patent Application No. 201210172215.2, which is hereby incorporated by reference.
  • the planar waveguide display panel 800 primarily includes a straight waveguide, and light from the projection system 803 incident on one end of the flat waveguide propagates in a totally reflective manner, along the direction of the light entering the screen region 802 from the conductive region 801.
  • a plurality of segments are divided in the screen area 802 (for example, segments 1, 2, 3, and 4 in FIG.
  • the pixel after being propagated to the selected pixel, the pixel points the light in the straight waveguide from the position Launched, however, the problem with such flat waveguide display panels is that the manufacture of the sections on the surface is difficult, the joints at the intersections of the sections are susceptible to display effects, or the process is complicated, which is not conducive to mass production.
  • the inventors of the present invention have innovatively applied a photolithography technique to a planar waveguide device to fabricate a planar waveguide device coated with a multi-segment film layer on a waveguide surface.
  • the present invention provides a method of fabricating a planar waveguide device comprising the following steps:
  • the method further includes:
  • the manufacturing method further comprises:
  • the forming in the step a and the step d includes:
  • Coating the liquid film material by a pulling method, a spin coating method, a spray coating method, a knife coating method, a vapor deposition method or a sputtering method; or
  • the film layer material is printed on the surface of the waveguide by printing.
  • different segments in the first group of film layers in the step a are formed in batches, and the second group or at least one group in the step d is attached Different sections in the membrane section are formed in batches.
  • the method further comprises: forming a preliminary film layer on the surface of the waveguide, the step further comprising: directly pasting the solid initial layer material; using the pulling method, rotating
  • the liquid or solid initial film material is applied by coating, spray coating, knife coating, vapor deposition or sputtering; or the initial film material is printed on the surface of the waveguide by printing.
  • the method further includes:
  • step g forming a second film layer on the first film layer, wherein the forming in the step g comprises:
  • Coating the liquid film material by a pulling method, a spin coating method, a spray coating method, a knife coating method, a vapor deposition method or a sputtering method; or
  • the film layer material is printed on the surface of the waveguide by printing.
  • the antireflection film is further fabricated on the first film layer, and the manufacturing method further comprises further bonding or coating the diffusion film, the microprism film and the diffusion film on the antireflection film. / or light increase Strong film.
  • the exposed exposure light is at a predetermined angle with respect to the surface of the waveguide.
  • the step b and the step e further comprise: imprinting the first set of film layer segments, the second group of film layer segments or the at least one portion while being exposed.
  • the exposure light is simultaneously irradiated to the first group of film layers, the second group of film layers or the at least one additional film layer segment.
  • the imprinting mold and the mask are integrated.
  • a functional material or a film layer having a scattering or reflecting function is directly injected or adhered to the microstructure.
  • Figure 1 is a flow chart showing the basic steps of a method of fabricating a planar waveguide device having only two layers of film layers in accordance with the present invention.
  • FIG. 2a-2h show structural diagrams of various stages of the manufacturing method according to Fig. 1.
  • Figure 3 shows an embodiment in which two layers of antireflection coating are applied.
  • Fig. 4 shows another embodiment of the planar waveguide device of the present invention.
  • Figures 5a-5b illustrate one embodiment of forming a microstructure on a film segment.
  • Figures 6a-6b illustrate another embodiment of forming a microstructure on a film segment.
  • Figures 7a-7c illustrate the process of forming a functional film layer on a microstructure.
  • Fig. 8 shows a planar waveguide device suitable for employing the manufacturing method of the present invention.
  • Figure 1 is a flow chart showing the basic steps of a method of fabricating a planar waveguide device having only two layers of film layers in accordance with the present invention. The method 100 of manufacturing the planar waveguide device shown in Fig. 1 will be discussed in detail below with reference to Figs. 2a-2h.
  • a first set of film segments 202 are formed on the surface of the waveguide 201 shown in Figure 2a.
  • adjacent ones of the first set of film sections 202 eg, section 0, section 2, and section 4 in Figure 2a
  • the first set of film segments 202 can be applied to the surface of the waveguide 201 by a doctor blade 203.
  • a doctor blade 203 For example, a special knife coater can be used, including several doctor blades, each of which is equipped with a different medium material, and is responsible for simultaneously coating different media in different sections (generally the thickness of the blade is between 0.5 and 50 um). Determined by specific application).
  • the first group of film layers 202 in step 101 can be pulled by a method of directly applying a solid film material on the surface of the waveguide 201, using a pulling method, a spin coating method, a spray coating method, a knife coating method, The method of applying a liquid or non-liquid film material by a vapor deposition method or a sputtering method, or forming a film layer material on the surface of the waveguide by printing (for example, screen printing).
  • the first set of film segments 202 are exposed using a mask 204 to cure the desired portion 205 of the first set of film segments 202, as shown in Figures 2b and 2c.
  • step 103 the uncured edge portion 206 of the first set of film segments 202 is removed, as shown in Figure 2c, to obtain the structure shown in Figure 2d.
  • a second set of film layer segments 207 is further formed between adjacent segments in the first set of film layer segments 202, such as in Figure 2d, based on the structure illustrated in Figure 2d. Section 1 and Section 3.
  • a second set of film zones can be used using a doctor blade 203 Segment 207 is applied to the surface of waveguide 201.
  • the second set of film segments 207 in step 104 can also utilize the method of pulling the solid film material directly on the surface of the waveguide 201, using the pulling method, Coating a liquid or non-liquid film material by spin coating, spray coating, knife coating, vapor deposition or sputtering, or printing a film material on the waveguide by printing (for example, screen printing) Formed on the surface.
  • step 101 different sections (for example, section 0, section 2, section 4) of the first group of film layer sections 202 may be formed synchronously or in batches. .
  • the same is true for the different segments in the second set of film segments 207 in step 104.
  • the second set of film segments 207 are exposed using a mask 208 to cure the second set of film segments 207, as shown in Figure 2f.
  • the resulting structure as shown in Figure 2g or Figure 2h is obtained.
  • 2h shows the structure of the planar waveguide device which is desired to be manufactured in the present invention.
  • the structure shown in FIG. 2g may also be formed due to processing environment or process control problems, that is, an undesired protrusion is formed at the intersection of the first set of film layer sections 202 and the second set of film layer sections 207. Part 209.
  • the protruding portion 209 is also not cured by the exposure of the step 105, it can be removed relatively easily, such as by scraping or washing, to finally obtain the cross-sectional structure shown in Fig. 2h.
  • the invention is not limited to the embodiment shown in Figure 2 above.
  • the invention may not be limited to the implementation of the two sets of film layers shown in Figure 2 (i.e., the first film layer consists only of the first set of film layers and the second set of film layers).
  • n sets of film segments can be formed separately.
  • a second set of film segments may be formed between a portion of adjacent segments of the first set of film layers, followed by curing with a mask and removing the protruding portions; Forming at least one additional layer of film layers between the remaining adjacent segments of a set of film layers (such as the third group, the fourth group, the nth group of additional film layer segments), and then performing the same mask Processing steps such as exposure curing and removal of the protruding portions, such that the first set of film layers, the second set of film layers, and the at least one additional film layer portion together constitute a first film layer.
  • a step of forming an initial film layer on the surface of the waveguide may be further included.
  • the step may further comprise: directly adhering the solid initial layer material; coating the liquid or non-liquid initial film material by a pulling method, a spin coating method, a spray coating method, a knife coating method, a steaming method or a sputtering method; Or printing the initial film material by printing (such as screen printing) On the surface of the waveguide.
  • the first film layer comprises a segment 1, a segment 2, a segment 3 and a segment 4, such as the first group of film layer segments and the second group of film layer segments in the embodiment shown in FIG. 2 above.
  • the first film layer is formed, and an antireflection film can be further formed on the first film layer.
  • the purpose of fabricating the antireflection film is to increase the transmittance of light from the waveguide into the upper dielectric layer segment.
  • the antireflection film can be produced by a method such as a pulling method, a spin coating method, a spray coating method, a knife coating method, a vapor deposition method, or a sputtering method.
  • a second film layer 210 that is, the segment 5 in FIG. 3, is further formed on the upper surfaces of the segment 1, the segment 2, the segment 3 and the segment 4.
  • the forming of the second film layer 210 may include: directly bonding a solid film material; coating the liquid film material by a pulling method, a spin coating method, a spray coating method, a knife coating method, a vapor deposition method or a sputtering method. Or printing a film material on the surface of the waveguide by printing (for example, screen printing).
  • the second film layer 210 may be a diffusion film, a microprism film, and/or a light enhancement film.
  • At least one side of the desired portion of the first set of film sections 202 is at a predetermined angle relative to the surface of the waveguide 201.
  • This structure is obtained by causing the exposure light to be at a predetermined angle with respect to the surface of the waveguide 201 in the above-described exposure steps (e.g., step 102 and step 105). Having the intersections of adjacent segments form an angle with each other eliminates image breaks that may occur at the interface.
  • Figures 5a-5b illustrate one embodiment of forming a microstructure on a film segment.
  • the following steps may be further included in the above steps 102 and 105: by imprinting on the first set of film layers (Fig. 5a) or the second set of film layers ( Figure 5b) forming a microstructure 212 thereon (e.g., a microprism structure for effecting the function of some or all of the upper film layers), wherein the embossing includes imprinting a transparent imprint dies 211 on the first set of film segments 202 Or on the second set of film layers 207, the exposure light (arrows in the figure indicate the direction of illumination of the exposure light) is simultaneously irradiated to the first set of film layers 202 and the second set of film layers 207.
  • a microstructure 212 e.g., a microprism structure for effecting the function of some or all of the upper film layers
  • the embossing includes imprinting a transparent imprint dies 211 on the first set of film
  • Figures 6a-6b illustrate another embodiment of forming a microstructure on a film segment. Compared with the embodiment shown in Figs. 5a - 5b, the embodiment shown in Figs. 6a - 6b more preferably forms the transparent imprinting mold 211 integrally with the mask 204 to further improve processing efficiency and operational precision.
  • the functional film layer 213 may also be formed on the microstructure 212. Cheng.
  • the functional film layer 213 may be formed on the microstructure 212 by direct injection (refer to FIG. 7a) or by pasting (refer to FIG. 7b) at the same time as or after the formation of the microstructure 212.
  • a manufacturing example is described below in order to more clearly understand the present invention.
  • a 19 mm thick float glass was used as the waveguide material, and a multi-layer antireflection coating was applied to the surface of the waveguide by vapor deposition to make the transmittance of light entering the dielectric layer in the waveguide greater than 95%.
  • the waveguide is sequentially transferred to a corresponding process on a conveyor belt or drum.
  • the dielectric layer is divided into five sections.
  • the liquid photosensitive medium 0, 2, 4 is coated on the first group of sections 0, 2, 4 by the doctor blades 0, 2, 4, respectively. It forms a dielectric layer having a thickness of about 5 um.
  • the waveguide is transferred to the exposure machine, and after the automatic positioning, the mask masking sections 1, 3 are exposed, and the parallel light of 320-400 nm is used for exposure to cure the sections 0, 2, 4. After curing, it is transferred to the third process, and the excess liquid medium which is not uncured at the edges of the sections 0, 2, and 4 is washed out, and then transferred to the fourth process after drying, using the doctor blades 1, 3 in the second group section 1 respectively. 3, the liquid photosensitive medium 1, 3 is coated to form a dielectric layer having a thickness of about 5 um.
  • the waveguide is transferred to the exposure machine, and after the automatic positioning, the mask shielding sections 0, 2, and 4 are exposed, and the parallel light of 320-400 nm is used for exposure to cure the sections 1, 3. After curing, it is transferred to the third process to wash away the excess liquid medium that is not cured on the waveguide surface.
  • the above-mentioned pipeline can use a closed environment, and can realize some special environmental requirements of the dielectric material during the coating and exposure process, such as temperature requirements, an oxygen-free environment (flushing nitrogen) and the like.
  • the manufacturing method of the present invention can also be used to separately manufacture a screen area, and the additionally manufactured conductive area is folded to the back of the screen by the optical commutation member.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种平面波导装置的制造方法,包括以下步骤:a.在波导(201)的表面上形成第一组膜层区段(202),该第一组膜层区段(202)中的相邻区段之间彼此隔开;b.使用掩膜(204)对该第一组膜层区段(202)进行曝光,以固化该第一组膜层区段(202)的所需部分(205);c.去除该第一组膜层区段(202)中未经固化的边缘部分(206);d.在该第一组膜层区段(202)中的至少部分相邻区段之间形成第二组膜层区段(207);以及e.使用掩膜(208)对该第二组膜层区段(207)进行曝光,以固化该第二组膜层区段(207)。

Description

一种平面波导装置的制造方法 技术领域
本发明涉及一种光学器件的制造方法,尤其涉及一种平面波导装置的制造方法。
背景技术
大屏幕显示器广泛应用在各种商业和日用领域中。例如,在本案申请人已提出的中国专利申请第201210172215.2号中报道了一种平面波导显示器面板,如图8所示。该平面波导显示器面板800主要包括平直波导,来自投影系统803的光入射到该平直波导一端的光线以全反射的方式进行传播,沿光从传导区域801进入屏幕区域802的光路的方向在屏幕区域802中划分出多个区段(例如图8中的区段1、2、3、4);传播到被选中的像素点后,该像素点将该平直波导内的光线从该位置发射出去,但,这类平直波导显示器面板的问题在于:其表面各区段制造较为困难,区段交接处易出现接缝影响显示效果,或工艺复杂,不利于大批量生产。
发明内容
针对现有技术的上述技术障碍,本案发明人创新地在平面波导装置上应用了光刻技术来制造波导表面上涂布多区段膜层的平面波导装置。
具体地,本发明提供了一种平面波导装置的制造方法,包括以下步骤:
a.在波导的表面上形成第一组膜层区段,该第一组膜层区段中的相邻区段之间彼此隔开;
b.使用掩膜对该第一组膜层区段进行曝光,以固化该第一组膜层区段的所需部分;
c.去除该第一组膜层区段中未经固化的边缘部分;
d.在该第一组膜层区段中的至少部分相邻区段之间形成第二组膜层区段;以及
e.使用掩膜对该第二组膜层区段进行曝光,以固化该第二组膜层区段。
较佳地,在上述的制造方法中,在该步骤e之后还包括:
f.去除该第一组膜层区段和该第二组膜层区段的交接处的突出部分。
较佳地,在上述的制造方法中,在该步骤f之后,该制造方法还包括:
在该第一组膜层区段中的其余相邻区段之间形成至少一组附加膜层区段,以使该第一组膜层区段、该第二组膜层区段和该至少一组附加膜层区段构成第一层膜层;
使用掩膜对该至少一组附加膜层区段进行曝光,以固化该至少一组附加膜层区段;以及
去除该至少一组附加膜层区段两侧的交接处的突出部分。
较佳地,在上述的制造方法中,在该步骤a和步骤d中的形成包括:
直接粘贴固态的膜层材料;
利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态的膜层材料;或者
通过印刷的方式印刷膜层材料于该波导的表面上。
较佳地,在上述的制造方法中,在该步骤a中的第一组膜层区段中的不同区段是分批形成的,且在该步骤d中的第二组或至少一组附加膜层区段中的不同区段是分批形成的。
较佳地,在上述的制造方法中,在该步骤a之前还包括:在波导表面制作一初始膜层的步骤,该步骤进一步包括:直接粘贴固态的初始膜层材料;利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态或固态的初始膜层材料;或者通过印刷的方式印刷初始膜层材料于该波导的表面上。
较佳地,在上述的制造方法中,在该步骤f之后还包括:
g.在该第一层膜层上形成第二层膜层,其中在该步骤g中的形成包括:
直接粘贴固态的膜层材料;
利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态的膜层材料;或者
通过印刷的方式印刷膜层材料于该波导的表面上。
较佳地,在上述的制造方法中,在该第一层膜层上进一步制造增透膜,且该制造方法进一步包括在该增透膜上进一步黏贴或涂覆扩散膜、微棱镜膜和/或光增 强膜。
较佳地,在上述的制造方法中,在该步骤b和步骤e中,该曝光的曝光光线相对于该波导的表面呈一预设角度。
较佳地,在上述的制造方法中,在该步骤b和步骤e进一步包括:在曝光的同时通过压印在该第一组膜层区段、该第二组膜层区段或该至少一组附加膜层区段上形成微结构,其中该压印包括将透明压印模具压印于该第一组膜层区段、该第二组膜层区段或该至少一组附加膜层区段上,同时将曝光光线照射至该第一组膜层区段、该第二组膜层区段或该至少一组附加膜层区段。
较佳地,在上述的制造方法中,该压印模具和该掩模是一体的。
较佳地,在上述的制造方法中,在形成该微结构的同时或者之后,还包括将具有散射或反射功能的功能材料或膜层直接注入或者粘贴至该微结构上。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图说明
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1示出了根据本发明的只有两组膜层区段的平面波导装置的制造方法的基本步骤的流程图。
图2a-图2h示出了根据图1所示的制造方法的各个阶段的结构示图。
图3示出了涂布两层增透膜的实施例。
图4示出了本发明的平面波导装置的另一实施例。
图5a-图5b示出了在膜层区段上形成微结构的一个实施例。
图6a-图6b示出了在膜层区段上形成微结构的另一实施例。
图7a-图7c示出了在微结构上形成功能膜层的过程。
图8示出了适于采用本发明的制造方法的平面波导装置。
具体实施方式
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
图1示出了根据本发明的只有两组膜层区段的平面波导装置的制造方法的基本步骤的流程图。以下结合图2a-图2h来详细讨论图1所示的该平面波导装置的制造方法100。
首先,根据步骤101,在图2a所示的波导201的表面上形成第一组膜层区段202。其中,该第一组膜层区段202中的相邻区段(例如图2a中的区段0、区段2和区段4)之间彼此隔开。较佳地,可以用刮涂刀203将第一组膜层区段202涂布于波导201的表面。例如,可以使用专用刮涂机,包含数把刮涂刀,每把刮涂刀装有不同介质材料,负责在不同区段同时涂覆不同介质(一般刮涂的介质厚度在0.5-50um之间视具体应用确定)。
较佳地,步骤101中的第一组膜层区段202可以通过在波导201的表面上直接粘贴固态的膜层材料的方式,利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态或非液态的膜层材料的方式,或者通过印刷(例如丝网印刷)的方式印刷膜层材料于该波导的表面上的方式而形成。
接着,根据步骤102,使用掩膜204对该第一组膜层区段202进行曝光,以固化该第一组膜层区段202的所需部分205,如图2b和图2c所示。
根据步骤103,去除该第一组膜层区段202中未经固化的边缘部分206,如图2c所示,以得到图2d所示的结构。
接着,根据步骤104,在图2d所示的结构的基础上,进一步在该第一组膜层区段202中的相邻区段之间形成第二组膜层区段207,诸如图2d中的区段1和区段3。例如,在图2e所示的优选实施例中,可以使用刮涂刀203将第二组膜层区 段207涂布于波导201的表面。
与以上第一组膜层区段202相类似的,步骤104中的第二组膜层区段207也可以通过在波导201的表面上直接粘贴固态的膜层材料的方式,利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态或非液态的膜层材料的方式,或者通过印刷(例如丝网印刷)的方式印刷膜层材料于该波导的表面上的方式而形成。
另一方面,在上述的步骤101中,第一组膜层区段202中的不同区段(例如区段0、区段2、区段4)可以是同步形成,也可以是分批形成的。步骤104中的第二组膜层区段207中的不同区段也是如此。
最后,根据步骤105,使用掩膜208对该第二组膜层区段207进行曝光,以固化该第二组膜层区段207,如图2f所示。最终得到的如图2g或图2h所示的结构。其中,图2h所示即为本发明所期望制造的平面波导装置的结构。而,实际操作中也可能由于加工环境或者工艺控制的问题形成图2g所示的结构,即在第一组膜层区段202和第二组膜层区段207的交接处形成不期望的突出部分209。对于这种情况,由于该突出部分209同样未经过步骤105的曝光固化,因此可以比较容易地去除,例如刮除或者洗去,以最终得到图2h所示的剖面结构。
本发明并不限于以上图2所示的实施例。特别是,本发明可以不限于图2所示的两组膜层区段(即第一层膜层仅由第一组膜层区段和第二组膜层区段构成)的实现方式。特别是,在有更多区段的膜层(比如合计10以上个区段)的应用中,可以分别形成n组膜层区段。在这种实施例中,可以先在第一组膜层区段中的部分相邻区段之间形成第二组膜层区段,随后用掩膜曝光固化以及去除突出部分;随后,在第一组膜层区段中的其余相邻区段之间形成至少一组附加膜层区段(比如第三组、第四组…第n组附加膜层区段),然后同样的实施掩膜曝光固化以及去除突出部分等处理步骤,以使该第一组膜层区段、该第二组膜层区段和该至少一组附加膜层区段共同构成第一层膜层。
另一方面,在上述图1至图2h所示的实施例中,可以在步骤101之前还包括:在波导的表面上制作一初始膜层的步骤。该步骤可以进一步包括:直接粘贴固态的初始膜层材料;利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态或非液态的初始膜层材料;或者通过印刷(如丝网印刷)的方式印刷初始膜层材料 于该波导的表面上。
现在转到图3,该图示出了涂布两层膜层的实施例。其中,第一层膜层包括有区段1、区段2、区段3和区段4,例如上述图2所示实施例中的第一组膜层区段和第二组膜层区段所构成的第一层膜层,该第一层膜层上可以再增加制造一层增透膜,制造增透膜的目的是增加光从波导进入上层介质层区段时的透射率。增透膜可以使用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法等方法制造。这些区段1-4可以用上述实施例中的制造方法来形成,但上述制造方法中的用于限位的区段0已被去除。在此之后,在区段1、区段2、区段3和区段4的上表面上进一步成第二层膜层210,即图3中的区段5。该第二层膜层210的形成可以包括:直接粘贴固态的膜层材料;利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态的膜层材料;或者通过印刷(例如丝网印刷)的方式印刷膜层材料于该波导的表面上。较佳地,该第二层膜层210可以是扩散膜、微棱镜膜和/或光增强膜。
根据本发明的另一优选实施例,如图4所示,第一组膜层区段202的所需部分的至少一个侧边相对于波导201的表面成一预设角度。这种结构是通过在上述的曝光步骤(例如步骤102和步骤105)中使得曝光光线相对于波导201的表面呈一预设角度而得到的。使得相邻区段的交界处互相形成一定角度可以消除可能产生于该交界处的图像断带。
图5a-图5b示出了在膜层区段上形成微结构的一个实施例。如图所示,可以在上述的步骤102和步骤105中进一步包括以下步骤:在曝光的同时通过压印在该第一组膜层区段(图5a)或该第二组膜层区段(图5b)上形成微结构212(例如用于实现部分或全部上层膜层的功能的微棱镜结构),其中该压印包括将透明压印模具211压印于该第一组膜层区段202或该第二组膜层区段207上,同时将曝光光线(图中的箭头表示曝光光线的照射方向)照射至该第一组膜层区段202和该第二组膜层区段207。
图6a-图6b示出了在膜层区段上形成微结构的另一实施例。与图5a-图5b所示的实施例相比,图6a-图6b所示的实施例更优选地将透明压印模具211同掩膜204形成为一体,以进一步提高处理效率和操作精度。
较佳地,如图7a-图7c所示,还可以在微结构212上形成功能膜层213的过 程。该功能膜层213可以在形成该微结构212的同时或者之后通过直接注入的方式(参考图7a)或者粘贴的方式(参考图7b)形成于该微结构212上。
以下描述一个制造示例以便于更清楚地理解本发明。首先,使用19mm厚浮法玻璃作为波导材料,使用蒸镀的方法在波导表面镀上多层增透膜层使波导中进入介质层的光的透射率大于95%。该波导在传送带或滚筒上依次传送至相应工序。介质层分为5个区段,在第一道工序中,由刮涂刀0、2、4分别在第一组区段0、2、4上涂覆液态光敏介质0、2、4,使其形成厚度约5um介质层。在第二道工序中,波导传送至曝光机,进行自动定位后掩膜遮蔽区段1、3,使用320-400nm的平行光进行曝光,固化区段0、2、4。固化后传送至第三道工序,清洗掉区段0、2、4边缘未固化的多余液态介质,干燥后传送至第四道工序,使用刮涂刀1、3分别在第二组区段1、3上涂覆液态光敏介质1、3使其形成厚度约5um的介质层。第五道工序中波导传送至曝光机,进行自动定位后掩膜遮蔽区段0、2、4,使用320-400nm的平行光进行曝光,固化区段1、3。固化后传送至第三道工序,清洗掉波导表面未固化的多余液态介质。在通过传送带传送至3和4中相关涂覆增透膜和上层膜层的工艺。上述的流水线可以使用封闭环境,并可实现一些介质材料在涂覆及曝光过程中的一些特殊环境要求,如温度要求,无氧环境(冲氮气)等。
此外,根据中国专利申请第201210172215.2号,本发明的制造方法也可用于单独制造屏幕区域,通过光换向部件将另外制造的传导区域折叠至屏幕背后。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (12)

  1. 一种平面波导装置的制造方法,其特征在于,包括以下步骤:
    a.在波导的表面上形成第一组膜层区段,所述第一组膜层区段中的相邻区段之间彼此隔开;
    b.使用掩膜对所述第一组膜层区段进行曝光,以固化所述第一组膜层区段的所需部分;
    c.去除所述第一组膜层区段中未经固化的边缘部分;
    d.在所述第一组膜层区段中的至少部分相邻区段之间形成第二组膜层区段;以及
    e.使用掩膜对所述第二组膜层区段进行曝光,以固化所述第二组膜层区段。
  2. 如权利要求1所述的制造方法,其特征在于,在所述步骤e之后还包括:
    f.去除所述第一组膜层区段和所述第二组膜层区段的交接处的突出部分。
  3. 如权利要求2所述的制造方法,其特征在于,在所述步骤f之后,该制造方法还包括:
    在所述第一组膜层区段中的其余相邻区段之间形成至少一组附加膜层区段,以使所述第一组膜层区段、所述第二组膜层区段和所述至少一组附加膜层区段构成第一层膜层;
    使用掩膜对所述至少一组附加膜层区段进行曝光,以固化所述至少一组附加膜层区段;以及
    去除所述至少一组附加膜层区段两侧的交接处的突出部分。
  4. 如权利要求1所述的制造方法,其特征在于,在所述步骤a和步骤d中的形成包括:
    直接粘贴固态的膜层材料;
    利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态的膜层材料;或者
    通过印刷的方式印刷膜层材料于所述波导的表面上。
  5. 如权利要求2或3所述的制造方法,其特征在于,在所述步骤a中的第一组膜层区段中的不同区段是分批形成的,且在所述步骤d中的第二组或至少一组附加膜层区段中的不同区段是分批形成的。
  6. 如权利要求1所述的制造方法,其特征在于,在所述步骤a之前还包括:在波导表面制作一初始膜层的步骤,该步骤进一步包括:直接粘贴固态的初始膜层材料;利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态或固态的初始膜层材料;或者通过印刷的方式印刷初始膜层材料于所述波导的表面上。
  7. 如权利要求2或3所述的制造方法,其特征在于,在所述步骤f之后还包括:
    g.在所述第一层膜层上形成第二层膜层,其中在所述步骤g中的形成包括:
    直接粘贴固态的膜层材料;
    利用提拉法、旋涂法、喷涂法、刮涂法、蒸渡法或溅射法涂覆液态的膜层材料;或者
    通过印刷的方式印刷膜层材料于所述波导的表面上。
  8. 如权利要求2或3所述的制造方法,其特征在于,在所述第一层膜层上进一步制造增透膜,且该制造方法进一步包括在该增透膜上进一步黏贴或涂覆扩散膜、微棱镜膜和/或光增强膜。
  9. 如权利要求1所述的制造方法,其特征在于,在所述步骤b和步骤e中,所述曝光的曝光光线相对于所述波导的表面呈一预设角度。
  10. 如权利要求3所述的制造方法,其特征在于,在所述步骤b和步骤e进一步包括:在曝光的同时通过压印在所述第一组膜层区段、所述第二组膜层区段或所述至少一组附加膜层区段上形成微结构,其中所述压印包括将透明压印模具压印于 所述第一组膜层区段、所述第二组膜层区段或所述至少一组附加膜层区段上,同时将曝光光线照射至所述第一组膜层区段、所述第二组膜层区段或所述至少一组附加膜层区段。
  11. 如权利要求10所述的制造方法,其特征在于,所述压印模具和所述掩模是一体的。
  12. 如权利要求10所述的制造方法,其特征在于,在形成所述微结构的同时或者之后,还包括将具有散射或反射功能的功能材料或膜层直接注入或者粘贴至所述微结构上。
PCT/CN2015/095750 2015-04-02 2015-11-27 一种平面波导装置的制造方法 WO2016155344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510155452.1A CN106154417B (zh) 2015-04-02 2015-04-02 一种平面波导装置的制造方法
CN201510155452.1 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016155344A1 true WO2016155344A1 (zh) 2016-10-06

Family

ID=57005435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095750 WO2016155344A1 (zh) 2015-04-02 2015-11-27 一种平面波导装置的制造方法

Country Status (2)

Country Link
CN (1) CN106154417B (zh)
WO (1) WO2016155344A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200604610A (en) * 2004-07-26 2006-02-01 Eternal Chemical Co Ltd Method for producing planar optical waveguide device
US20070054222A1 (en) * 2005-09-02 2007-03-08 Gorczyca Thomas B Self-forming polymer waveguide and waveguide material with reduced shrinkage
CN102004282A (zh) * 2010-10-26 2011-04-06 上海理工大学 一种平面波导叠加型光栅的制作方法
CN102483491A (zh) * 2009-08-25 2012-05-30 株式会社藤仓 具有光栅结构的平面光波导装置的制造方法
CN103454847A (zh) * 2012-05-29 2013-12-18 杨文君 平面波导显示器和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200604610A (en) * 2004-07-26 2006-02-01 Eternal Chemical Co Ltd Method for producing planar optical waveguide device
US20070054222A1 (en) * 2005-09-02 2007-03-08 Gorczyca Thomas B Self-forming polymer waveguide and waveguide material with reduced shrinkage
CN102483491A (zh) * 2009-08-25 2012-05-30 株式会社藤仓 具有光栅结构的平面光波导装置的制造方法
CN102004282A (zh) * 2010-10-26 2011-04-06 上海理工大学 一种平面波导叠加型光栅的制作方法
CN103454847A (zh) * 2012-05-29 2013-12-18 杨文君 平面波导显示器和系统

Also Published As

Publication number Publication date
CN106154417B (zh) 2018-12-14
CN106154417A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
KR101453418B1 (ko) 컬러필터 기판 및 그 제조방법
JP2006337985A (ja) ハイサグレンズの製作方法及びこれを利用し製作されたレンズ
WO2016095393A1 (zh) 薄膜图案化的方法
JP2008096779A5 (zh)
WO2014194634A1 (zh) 显示屏的制作方法
WO2016187987A1 (zh) 一种显示面板及其制作方法、显示装置
TW201205528A (en) Electronic apparatus and method of fabricating the same
WO2015010605A1 (zh) 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法
CN109605970A (zh) 立体logo制备方法
WO2015054905A1 (zh) 固化框胶用遮光罩的制作方法
WO2018000491A1 (zh) 黑色矩阵光罩、制备黑色矩阵的方法及其应用
WO2013104216A1 (zh) 导光板网点、导光板制作方法及背光模组、显示装置
TWI592741B (zh) 光罩及光罩的製造方法
TWI464838B (zh) 觸控面板的製造方法
CN107479118B (zh) 多部件透镜系统中的气隙区的制造
TW571158B (en) Substrate having colored layers and method for producing the same
WO2016155344A1 (zh) 一种平面波导装置的制造方法
CN104779145B (zh) 掩膜板及其制备方法
US20160223901A1 (en) Uv curing mask plate and a fabricating method thereof and a display device
WO2016101350A1 (zh) 彩色滤光片的制作方法
US20160070039A1 (en) Method of manufacturing a liquid crytal display panel and color filter, and equipment of manufacturing thereof
WO2004033189A1 (en) Apparatus and method for continuously forming the micro pattern structure and method for fabricating a drum-type stamper used in the same
KR960035098A (ko) 액정 디스플레이(lcd)용 칼라필터 및 그 제조방법
US20160107926A1 (en) Manufacturing method of flexible substrate
CN117631144A (zh) 一种基于局部压印制备光波导的方法及光波导

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15887297

Country of ref document: EP

Kind code of ref document: A1