WO2015008349A1 - 波長選択スイッチ - Google Patents

波長選択スイッチ Download PDF

Info

Publication number
WO2015008349A1
WO2015008349A1 PCT/JP2013/069405 JP2013069405W WO2015008349A1 WO 2015008349 A1 WO2015008349 A1 WO 2015008349A1 JP 2013069405 W JP2013069405 W JP 2013069405W WO 2015008349 A1 WO2015008349 A1 WO 2015008349A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
input
axis
port
Prior art date
Application number
PCT/JP2013/069405
Other languages
English (en)
French (fr)
Inventor
昌輝 鈴木
英久 田澤
節文 大塚
井上 武
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2013/069405 priority Critical patent/WO2015008349A1/ja
Priority to US14/905,039 priority patent/US9482822B2/en
Priority to CN201380078227.1A priority patent/CN105408798B/zh
Priority to JP2015527101A priority patent/JP6191693B2/ja
Priority to JP2015527140A priority patent/JP5991436B2/ja
Priority to PCT/JP2013/081542 priority patent/WO2015008403A1/ja
Priority to US14/333,231 priority patent/US9326050B2/en
Priority to CN201410342601.0A priority patent/CN104297856B/zh
Publication of WO2015008349A1 publication Critical patent/WO2015008349A1/ja
Priority to US14/994,670 priority patent/US9606296B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3534Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being diffractive, i.e. a grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3542Non-blocking switch, e.g. with multiple potential paths between multiple inputs and outputs, the establishment of one switching path not preventing the establishment of further switching paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to a wavelength selective switch.
  • Patent Document 1 discloses an invention related to a wavelength selective switch.
  • the wavelength selective switch includes a plurality of light input / output units, a light dispersion unit, a light collecting element, and a light deflection element array.
  • the plurality of light input / output units are arranged in an array in the first direction, and include a light input unit and a light output unit.
  • the light dispersion means separates the wavelength multiplexed light input from the input unit into each wavelength component.
  • the condensing element condenses the separated wavelength components toward the optical deflection element array.
  • the optical deflection element array deflects each wavelength component in the first direction so as to switch each wavelength component condensed by the condensing element to a desired output unit.
  • the input / output units are divided into m groups (m is an integer), and m light deflection element arrays are arranged in the first direction so as to correspond to the m groups of input / output units.
  • the light dispersion means is common to m groups of input / output units.
  • the wavelength selective switch there is a form in which the light input / output parts are divided into two or more groups, and the light deflecting parts of the light deflecting elements corresponding to the incoming / outgoing light of each group are arranged side by side in a direction crossing the spectral direction, for example. Yes (see, for example, Patent Document 1). By adopting such a form, it becomes possible to separate (or combine) more wavelength components as compared with the conventional wavelength selective switch.
  • An object of the present invention is to provide a wavelength selective switch capable of separating (or combining) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • a wavelength selective switch is a wavelength selective switch including a light input / output unit, a spectroscopic element, and a light deflection element arranged side by side on a predetermined axis
  • the optical input / output unit includes three or more first optical input / output ports including a first optical input port and a first optical output port, and a first axis that intersects a predetermined axis with respect to a predetermined axis.
  • Three or more second light sources including a first portion for entering / exiting the first light input / output port with an optical axis inclined in the direction of, and a second light input port and a second light output port.
  • a second portion that has an optical input / output port and that enters and exits the second optical input / output port with an optical axis inclined in a first direction with respect to the predetermined axis, with the predetermined axis as a reference
  • the incident / exit angle of the first optical input / output port is different from the incident / exit angle of the second optical input / output port.
  • the spectroscopic element is provided in common to the first and second light input / output ports, and the optical axes of the input and output light of the first and second light input / output ports are set to a predetermined axis and the first light input / output port.
  • a light deflecting element that changes light in a direction crossing the direction at an angle according to the wavelength, and directs light from the first light input port that has passed through the spectroscopic element to the first light output port; And a second light deflecting unit that directs light from the second light input port that has passed through the spectroscopic element to the second light output port.
  • the wavelength selective switch of the present invention it is possible to provide a wavelength selective switch capable of separating (or coupling) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • FIG. 1 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of the wavelength selective switch according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the light input / output unit viewed from the z-axis direction.
  • FIG. 4 is a side view showing the configuration of the light input / output unit viewed from the y-axis direction.
  • FIG. 5 is a front view of the light deflection element viewed from the z-axis direction.
  • FIG. 6 is a side view schematically showing the configuration of the light input / output unit according to the first modification.
  • FIG. 7 is a side view schematically showing the configuration of the light input / output unit according to the second modification.
  • FIG. 1 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of the wavelength selective switch according to the first embodiment
  • FIG. 8 is a side view schematically showing the configuration of the light input / output unit according to the third modification.
  • FIG. 9 is a side view schematically showing the configuration of the light input / output unit according to the fourth modification.
  • FIG. 10 is a side view schematically showing the configuration of the light input / output unit according to the fifth modification.
  • FIG. 11 is a side view schematically showing the configuration of the light input / output unit according to the fifth modification.
  • FIG. 12 is a side view schematically showing the configuration of the light input / output unit according to the sixth modification.
  • FIG. 13 is a side view schematically showing the configuration of the light input / output unit according to the sixth modification.
  • FIG. 14 is a side view schematically showing the configuration of the light input / output unit according to the sixth modification.
  • FIG. 14 is a side view schematically showing the configuration of the light input / output unit according to the sixth modification.
  • FIG. 15 is a side view schematically showing the configuration of the light input / output unit according to the sixth modification.
  • FIG. 16 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the second embodiment.
  • FIG. 17 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the second embodiment.
  • FIG. 18 is a diagram illustrating a configuration of the light input / output unit viewed from the z-axis direction.
  • FIG. 19 is a diagram schematically illustrating the configuration of the light input / output unit.
  • FIG. 20 is a diagram for explaining the reason why the spectroscopic element is tilted with respect to a predetermined axis.
  • FIG. 21 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the third embodiment.
  • FIG. 21 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the third embodiment.
  • FIG. 22 is a schematic diagram illustrating a configuration of a wavelength selective switch according to the third embodiment.
  • FIG. 23 is a diagram illustrating a configuration of the light input / output unit viewed from the z-axis direction.
  • FIG. 24 is a diagram schematically illustrating the configuration of the light input / output unit.
  • FIG. 25 is a diagram illustrating a modification of the second embodiment.
  • FIG. 26 is a diagram illustrating a modification of the third embodiment.
  • FIG. 1 and 2 are schematic diagrams illustrating the configuration of a wavelength selective switch 1A according to the first embodiment.
  • an orthogonal coordinate system S is shown.
  • FIG. 1 is a side view of the wavelength selective switch 1A as viewed from the y-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1A in a plane including the x-axis and the z-axis.
  • FIG. 2 is a top view of the wavelength selective switch 1A viewed from the x-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1A in a plane including the y-axis and the z-axis.
  • the wavelength selective switch 1A includes an optical input / output unit 10, a spectroscopic element 20, and an optical deflection element 30.
  • the light input / output unit 10, the spectroscopic element 20, and the light deflection element 30 are arranged side by side on a predetermined axis C.
  • the predetermined axis C is an axis extending in the z-axis direction, for example. 1 and 2, the predetermined axis C is drawn in a straight line, but the predetermined axis C may be bent, for example, by arranging a reflecting mirror or the like in the middle.
  • FIG. 3 is a diagram illustrating a configuration of the light input / output unit 10 viewed from the direction of the predetermined axis C (z-axis direction).
  • FIG. 4 is a side view showing the configuration of the light input / output unit 10 viewed from the y-axis direction.
  • the optical input / output unit 10 includes a first portion 10a and a second portion 10b.
  • the first portion 10a and the second portion 10b are arranged side by side in a first direction (in the present embodiment, the x-axis direction) intersecting the predetermined axis C shown in FIGS. Yes.
  • the first portion 10 a includes three or more first optical input / output ports 11. In the present embodiment, these optical input / output ports 11 are aligned in the x-axis direction. These optical input / output ports 11 include one or more first optical input ports 11a and one or more first optical output ports 11b. As an example, FIGS. 3 and 4 show one optical input port 11a and a plurality of optical output ports 11b. In this case, the optical input port 11a emits, for example, light L11 that is wavelength multiplexed light into the wavelength selective switch 1A. The light output port 11b receives the wavelength component L12 deflected by the light deflection element 30, for example.
  • the first portion 10a has an optical axis inclined with respect to a predetermined axis C in a first direction (in this embodiment, the x-axis direction) intersecting the predetermined axis C.
  • Incoming and outgoing of the optical input / output port 11 (that is, emission of the light L11 from the optical input port 11a and incidence of the wavelength component L12 to the optical output port 11b) is performed.
  • the angle range of the incident / exit angle ⁇ 1 of the light input / output port 11 with respect to the predetermined axis C is, for example, 0 ° ⁇ 1 ⁇ 5 °, and more preferably 0 ° when the predetermined axis C is 0 °. ⁇ 1 ⁇ 3 °.
  • the second portion 10b includes three or more second optical input / output ports 12. In the present embodiment, these optical input / output ports 12 are aligned in the x-axis direction. These optical input / output ports 12 include one or more second optical input ports 12a and one or more second optical output ports 12b. As an example, FIG. 3 and FIG. 4 show one optical input port 12a and a plurality of optical output ports 12b. In this case, the optical input port 12a emits, for example, light L21, which is wavelength multiplexed light, into the wavelength selective switch 1A. The optical output port 12b receives the wavelength component L22 deflected by the optical deflection element 30, for example.
  • the light input / output port 12 enters and exits with the optical axis inclined in the x-axis direction (that is, the light L21 emitted from the light input port 12a and the light output).
  • the wavelength component L22 is incident on the port 12b.
  • the incident / exit angle of the light input / output port 12 with respect to the predetermined axis C is different from the incident / exit angle ⁇ 1 of the light input / output port 11, for example, ⁇ 1.
  • Each light input / output port 11 includes an optical fiber 11c and a condensing element (condensing lens) 11d. Each condensing element 11d is provided on a one-to-one basis with respect to each optical fiber 11c, and is optically coupled to the end face of the corresponding optical fiber 11c.
  • each light input / output port 12 includes an optical fiber 12c and a condensing element (condensing lens) 12d. Each condensing element 12d is provided on a one-to-one basis with respect to each optical fiber 12c, and is optically coupled to the end face of the corresponding optical fiber 12c.
  • each optical fiber 11c and each condensing element 11d corresponding to each optical fiber 11c are shifted from each other.
  • the optical axis of the condensing element 11d is deviated by ⁇ (> 0) with respect to the optical axis of the optical fiber 11c, and the deviation amount ⁇ is in three or more optical input / output ports 11. Equal to each other.
  • a uniform positive incident / exit angle ⁇ 1 is given to three or more light input / output ports 11.
  • the three or more optical fibers 11c are arranged at regular intervals with an interval ⁇ , and the three or more condensing elements 11d corresponding thereto are also equidistant from each other with an interval ⁇ . Is arranged.
  • the optical axes of the optical fibers 12c and the condensing elements 12d corresponding to the optical fibers 12c are also shifted from each other in the x-axis direction.
  • the amount of deviation is different from the amount of deviation of the condensing element 11d, for example, - ⁇ .
  • the deviation amount ⁇ is equal to each other in the three or more optical input / output ports 12.
  • a uniform negative incident / exit angle - ⁇ 1 is given to the three or more light input / output ports 12.
  • the three or more optical fibers 12c are arranged at equal intervals with an interval ⁇ , and the corresponding three or more condensing elements 12d are also equally spaced with each other at an interval ⁇ . Is arranged.
  • the optical input / output unit 10 further includes an alignment port 13 in addition to the optical input / output ports 11 and 12.
  • the alignment port 13 is a port for entering / exiting the alignment light L3 with an optical axis along a predetermined axis C.
  • the alignment port 13 also includes an optical fiber 13c and a condensing element 13d optically coupled to the end face of the optical fiber 13c.
  • the optical axis of the optical fiber 13c and the optical axis of the condensing element 13d coincide with each other. Therefore, the light L3 incident / exited at the alignment port 13 propagates along the predetermined axis C.
  • Such an alignment port 13 may be provided in common with respect to the first portion 10a and the second portion 10b as shown in FIGS. 3 and 4, or the first portion 10a and At least one second portion 10b may be provided. In the present embodiment, one alignment port 13 is disposed between the first portion 10a and the second portion 10b.
  • the optical fibers 11c and 12c adjacent to the optical fiber 13c and the optical fiber 13c are arranged with an interval ⁇ therebetween.
  • the condensing elements 11d and 12d adjacent to the condensing element 13d and the condensing element 13d are arranged with an interval ⁇ + ⁇ .
  • the optical axis deviation amount ⁇ between the optical fiber 11c and the condensing element 11d and the optical axis deviation amount ⁇ between the optical fiber 12c and the condensing element 12d are realized.
  • the optical fibers 11c, 12c, and 13c are arranged at equal pitches, and the light collecting elements 11d, 12d, and 13d are arranged at unequal pitches.
  • the position of the condensing element 11d is shifted to one side (the positive side of the x axis) in the arrangement direction with respect to the optical fiber 11c, and the position of the condensing element 12d is in the arrangement direction with respect to the optical fiber 12c. Is shifted to the other side (the negative side of the x-axis).
  • the wavelength selective switch 1A further includes a relay optical system 41 and an anamorphic optical system 42 as a pre-stage optical system disposed on a predetermined axis C between the light input / output unit 10 and the spectroscopic element 20.
  • the relay optical system 41 includes two lenses 41 a and 41 b provided in common for the light input / output ports 11 and 12.
  • the lens 41a is, for example, a convex spherical lens having optical power in the x-axis direction and the y-axis direction.
  • the lens 41a is arranged in front of the lens 41b, and the front focal point of the lens 41a is arranged so as to substantially coincide with the rear focal point of the condensing elements 11d to 13d (see FIG. 4). That is, the lens 41a is disposed at a position separated from the light condensing elements 11d and 12d by the focal length f1 of the light converging elements 11d to 13d and the focal distance f2 of the lens 41a.
  • the lens 41a is light that has passed through the lens 41a in the x-axis direction and the y-axis direction as compared with the beam sizes at the beam waist positions of the light L11 and the light L21 that are incident on the lens 41a from the light input / output unit 10. It is preferable to relatively increase the beam size at the beam waist position of L11 and light L21. In this way, for example, when optical control is performed via the relay optical system 41 and the anamorphic optical system 42 in the wavelength selective switch 1A, an increase in loss at the optical input / output ports 11 and 12 of the optical input / output unit 10 is increased. Can be suppressed.
  • the lens 41b has optical power at least in the x-axis direction.
  • the lens 41b is, for example, a cylindrical lens having optical power only in the x-axis direction.
  • the lens 41b has optical power only in the x-axis direction. For this reason, the beam sizes of the light L11 and the light L21 are relatively small with respect to the y-axis direction in the x-axis direction, and are relatively enlarged in the y-axis direction.
  • the front focal point of the lens 41b is disposed so as to substantially coincide with the rear focal point of the lens 41a.
  • the rear focal point of the lens 41b is arranged so as to substantially coincide with the front focal point of a condenser lens 43 described later.
  • the lens 41b is positioned away from the lens 41a by the focal length f2 of the lens 41a and the focal length f3 of the lens 41b, and by the focal length f3 of the lens 41b and the focal length f4 of the condenser lens 43. It is arranged at a position away from the condenser lens 43.
  • the lenses 41a and 41b are not limited to the light transmission type as shown in FIGS. 1 and 2, but may be a reflection type such as a mirror.
  • the anamorphic optical system 42 is provided in common with respect to the optical input / output ports 11 and 12, and is disposed before or after the relay optical system 41.
  • FIGS. 1 and 2 show a configuration in which an anamorphic optical system 42 is disposed after the relay optical system 41.
  • the anamorphic optical system 42 receives the lights L11 and L21 emitted from the lens 41b of the relay optical system 41, and expands the beam sizes of the lights L11 and L21 in the y-axis direction.
  • the anamorphic optical system 42 only needs to have a function of converting and outputting the aspect ratio of the input beam, and may be configured to reduce the light in the x-axis direction.
  • the anamorphic optical system 42 can be configured by a prism pair, a cylindrical lens, a cylindrical mirror, or the like alone or in combination. In the present embodiment, for example, a pair of prisms 42a and 42b is illustrated.
  • the spectroscopic element 20 is provided in common to the light input / output ports 11 and 12, and the optical axis of the incident / exit light of the light input / output ports 11 and 12 intersects the predetermined axis C and the x-axis direction, For example, it is changed at an angle corresponding to the wavelength in the y-axis direction.
  • the spectroscopic element 20 splits the light L11, L21 into a plurality of wavelength components. In FIG. 1 and FIG. 2, only certain wavelength components L12 and L22 out of a plurality of wavelength components are shown as representatives for easy understanding.
  • a diffraction grating can be used as the spectroscopic element 20.
  • a condensing lens (condensing element) 43 is disposed on a predetermined axis C between the spectroscopic element 20 and the light deflection element 30.
  • the condensing lens 43 is incident on the wavelength components L12 and L22 emitted by being split by the spectroscopic element 20 and is coupled onto the light deflection element 30.
  • the light magnified at the predetermined magnification in the y-axis direction in the anamorphic optical system 42 is reduced in the y-axis direction at the magnification in the condenser lens 43 (or x in the anamorphic optical system 42).
  • the light reduced in the axial direction at a predetermined magnification is expanded in the x-axis direction at the magnification by the condenser lens 43), so that the beam size in the x-axis direction in the light deflection element 30 becomes the beam size in the y-axis direction. It is comprised so that it may become larger.
  • the condenser lens 43 for example, a rotationally symmetric lens such as a convex spherical lens having optical power in the x-axis direction and the y-axis direction is used.
  • the light deflection element 30 is arranged at the rear focal point of the condenser lens 43.
  • the light deflection element 30 receives the wavelength component L12 collected by the condenser lens 43 from the light input port 11a through the spectroscopic element 20, and deflects the wavelength component L12 toward a predetermined light output port 11b according to the wavelength. To do.
  • the light deflection element 30 receives the wavelength component L21 collected by the condenser lens 43 from the light input port 12a through the spectroscopic element 20, and toward the predetermined light output port 12b corresponding to the wavelength. L22 is deflected.
  • the light deflection element 30 has a plurality of light deflection regions arranged two-dimensionally in a plane intersecting with a predetermined axis C.
  • the light deflection element 30 receives the corresponding wavelength components L21 and L22 in each light deflection region and independently deflects the wavelength components L12 and L22 toward the light output ports 11b and 12b.
  • FIG. 5 is a front view of the light deflection element 30 viewed from the direction of the predetermined axis C.
  • the light deflection element 30 includes a first light deflection unit 31 and a second light deflection unit 32 arranged in the x-axis direction.
  • the first light deflection unit 31 includes a plurality of light deflection regions 31 a arranged in the y-axis direction (spectral direction), and each wavelength component from the light input port 11 a that has passed through the spectroscopic element 20 corresponds to the light deflection region 31 a. And directs these wavelength components to the optical output port 11b.
  • the second light deflecting unit 32 includes a plurality of light deflecting regions 32a arranged in the y-axis direction (spectral direction), and each wavelength component from the light input port 12a that has passed through the spectroscopic element 20 corresponds to the light deflection. Receiving in the region 32a, these wavelength components are directed to the optical output port 12b.
  • phase modulation element such as LCOS (Liquid Cristal On Silicon) is preferably used.
  • LCOS Liquid Cristal On Silicon
  • Such a phase modulation element has a plurality of pixels that perform phase modulation, and deflects the optical path of incident light by presenting a diffraction grating-like phase modulation pattern.
  • various elements such as a MEMS (Micro Electro Mechanical Systems) element can be used as the light deflection element 30.
  • the optical axis may be orthogonal to the modulation surface of the phase modulation element.
  • the input / output angles ⁇ 1, ⁇ of the light input / output ports 11 and 12 with respect to a predetermined axis C are set so that the optical axes of the wavelength components L12 and L22 are orthogonal to the modulation plane in the xz plane.
  • the upstream optical system (relay optical system 41 and anamorphic optical system 42) and the condensing lens 43 are arranged so that the optical axes of the wavelength components L12 and L22 are orthogonal to the modulation plane in the xz plane.
  • the optical path of light from the input / output ports 11 and 12 may be changed.
  • the central optical axes of the upstream optical system (relay optical system 41 and anamorphic optical system 42) and the condensing lens 43 in the x-axis direction coincide with each other.
  • the optical axes of the incoming / outgoing lights L11 and L12 of the optical input / output port 11 and the optical axes of the incoming and outgoing lights L21 and L22 of the optical input / output port 12 are symmetric with respect to a predetermined axis C.
  • the predetermined axis C is an in-plane (in the xz plane) including the predetermined axis C and the x-axis direction when the light emitted along the predetermined axis C reaches the modulation surface of the phase modulation element. ) In which the optical axis of the light is orthogonal to the modulation surface of the phase modulation element.
  • the wavelength components L12 and L22 deflected by the light deflection element 30 reach predetermined light output ports 11b and 12b via the condenser lens 43, the spectroscopic element 20, the anamorphic optical system 42, and the relay optical system 41. Are output to the outside of the wavelength selective switch 1A.
  • the wavelength selective switch 1A of the present embodiment having the above configuration.
  • lenses corresponding to each of two or more groups of the light input / output units are arranged, and by this lens, for each group with respect to the optical axis of the incoming and outgoing light.
  • the number of parts is increased, and the optical path length is increased by the amount of the lens, which is a factor that hinders the downsizing of the wavelength selective switch.
  • each of the first light input / output port 11 and the second light input / output port 12 of the light input / output unit 10 is used without using such a lens.
  • a predetermined angle is given to the optical axis of the incoming and outgoing light. Therefore, according to the wavelength selective switch 1A of this embodiment, it is possible to separate (or combine) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • the optical input / output ports 11 and 12 are provided one-to-one with respect to the optical fibers 11c and 12c and the optical fibers 11c and 12c, and are optically coupled to the end faces of the optical fibers 11c and 12c.
  • the condensing elements 11d and 12d may be included.
  • the input and output angles ⁇ 1 and ⁇ 1 at the light input / output ports 11 and 12 can be easily made with a simple configuration by shifting the optical axes of the optical fibers 11c and 12c and the optical axes of the condensing elements 11d and 12d.
  • the optical input / output ports 11 and 12 can ensure a sufficient effective diameter, so that the absolute values of the incident and outgoing angles ⁇ 1 and ⁇ 1 can be obtained even when the wavelength selective switch 1A is downsized. It can be made sufficiently large.
  • the light input / output unit 10 adjusts the light L3 for alignment with the optical axis along a predetermined axis C separately from the light input / output ports 11 and 12.
  • a core port 13 may be further provided.
  • the light input / output ports 11 and 12 are difficult to use for alignment because the incident / outgoing light is inclined. However, by preparing such an alignment port 13 separately, alignment can be easily performed. it can.
  • FIG. 6 is a side view schematically showing the configuration of the light input / output unit 10A according to a modification of the first embodiment, and shows a form of the light input / output unit 10A viewed from the y-axis direction. .
  • the optical axis of the condensing element 11d is shifted by ⁇ with respect to the optical axis of the optical fiber 11c. This deviation amount ⁇ is equal to each other in the three or more optical input / output ports 11. As a result, a uniform negative incident / exit angle ⁇ 1 is given to the three or more light input / output ports 11.
  • the optical axis of the condensing element 12d is shifted by ⁇ in the positive direction with respect to the optical axis of the optical fiber 12c.
  • the shift amount ⁇ is equal in the three or more optical input / output ports 12.
  • a uniform positive incident / exit angle ⁇ 1 is given to the three or more light input / output ports 12.
  • the optical fibers 11c, 12c, and 13c are arranged at equal pitches, and the light collecting elements 11d, 12d, and 13d are arranged at unequal pitches.
  • the position of the condensing element 11d is shifted to one side (the negative side of the x axis) in the arrangement direction with respect to the optical fiber 11c, and the position of the condensing element 12d is in the arrangement direction with respect to the optical fiber 12c. Is shifted to the other side (the positive side of the x-axis).
  • the light input / output angle at the light input / output port 11 is negative ( ⁇ 1), and the light input / output angle at the light input / output port 12 positioned on the negative side of the x-axis with respect to the light input / output port 11 is positive ( ⁇ 1). Therefore, the incoming / outgoing light of the light input / output port 11 and the incoming / outgoing light of the light input / output port 12 cross each other. Even if it is such a form, the effect of the said 1st Embodiment can be show
  • FIG. 7 is a side view schematically showing a configuration of an optical input / output unit 10B according to another modification of the first embodiment, and shows a configuration in which the optical input / output unit 10B is viewed from the y-axis direction. Yes.
  • the distance between the optical fibers 11c and 12c adjacent to the optical fiber 13c and the optical fiber 13c is ⁇ . ing.
  • the distance between the light collecting elements 13d and 12c adjacent to the light collecting element 13d and the light collecting element 13d is ⁇ .
  • the optical axis of the optical fiber 11c is shifted by ⁇ with respect to the optical axis of the condensing element 11d
  • the optical axis of the optical fiber 12c is shifted by ⁇ with respect to the optical axis of the condensing element 12d.
  • the light collecting elements 11d, 12d, and 13d are arranged at an equal pitch, and the optical fibers 11c, 12c, and 13c are arranged at an unequal pitch.
  • the position of the optical fiber 11c is shifted to one side (the negative side of the x axis) in the arrangement direction with respect to the light condensing element 11d, and the position of the optical fiber 12c is in the arrangement direction with respect to the light condensing element 12d. Is shifted to the other side (the positive side of the x-axis).
  • the incident / exit angle at the optical input / output port 11 is ⁇ 1
  • the incident / exit angle at the optical input / output port 12 is ⁇ 1. Therefore, the operational effects of the first embodiment can be suitably achieved.
  • FIG. 8 is a side view schematically showing a configuration of a light input / output unit 10C according to still another modification of the first embodiment, and shows a form of the light input / output unit 10C viewed from the y-axis direction. ing.
  • the optical axis of the optical fiber 11c is ⁇ in the positive direction with respect to the optical axis of the light collecting element 11d. It is only shifted. Note that the shift amount ⁇ is equal among the three or more optical input / output ports 11. As a result, a uniform negative incident / exit angle ⁇ 1 is given to the three or more light input / output ports 11.
  • the optical axis of the optical fiber 12c is shifted by ⁇ with respect to the optical axis of the condensing element 12d.
  • the shift amount ⁇ is equal in the three or more optical input / output ports 12.
  • a uniform positive incident / exit angle ⁇ 1 is given to the three or more light input / output ports 12.
  • the light collecting elements 11d, 12d, and 13d are arranged at an equal pitch, and the optical fibers 11c, 12c, and 13c are arranged at an unequal pitch.
  • the position of the optical fiber 11c is shifted to one side (the positive side of the x-axis) in the arrangement direction with respect to the condensing element 11d, and the position of the optical fiber 12c is in the arrangement direction with respect to the condensing element 12d. Is shifted to the other side (the negative side of the x-axis).
  • the light input / output angle at the light input / output port 11 is negative ( ⁇ 1), and the light input / output angle at the light input / output port 12 positioned on the negative side of the x-axis with respect to the light input / output port 11 is positive ( ⁇ 1). Therefore, the incoming / outgoing light of the light input / output port 11 and the incoming / outgoing light of the light input / output port 12 cross each other. Even if it is such a form, the effect of the said 1st Embodiment can be suitably show
  • FIG. 9 is a side view schematically showing a configuration of a light input / output unit 10D according to still another modification of the first embodiment, and shows a form of the light input / output unit 10D viewed from the y-axis direction. ing.
  • the first optical input / output port 11 and the second optical input / output port 12 are alternately arranged in the x-axis direction. Are arranged side by side.
  • the optical fiber 11c and the condensing element 11d constituting the light input / output port 11 and the optical fiber 12c and the condensing element 12d constituting the light input / output port 12 are alternately arranged in the x-axis direction.
  • the optical fibers 11c, 12c, and 13c are arranged at equal pitches (interval ⁇ ), while the condensing element 11d and the condensing element 12d adjacent to the condensing element 11d on the x-axis positive side are spaced apart.
  • the light collecting element 12d and the light collecting element 11d adjacent to the light collecting element 12d on the positive side of the x-axis are arranged with an interval ( ⁇ + 2 ⁇ ).
  • the optical fibers 11c, 12c, and 13c are arranged at equal pitches, and the light collecting elements 11d, 12d, and 13d are arranged at unequal pitches.
  • the position of the condensing element 11d is shifted to one side (the positive side of the x axis) in the arrangement direction with respect to the optical fiber 11c
  • the position of the condensing element 12d is the light It is shifted to the other side (the negative side of the x axis) in the arrangement direction with respect to the fiber 12c.
  • the incident / exit angle at the optical input / output port 11 is positive ( ⁇ 1)
  • the incident / exit angle at the optical input / output port 12 is negative ( ⁇ 1).
  • the light input / output ports 11 and 12 are alternately arranged in this modification, the light input / output light of the light input / output port 11 and the light input / output light of the light input / output port 12 intersect each other. . Even if it is such a form, the effect of the said 1st Embodiment can be show
  • FIG. 10 and 11 are side views schematically showing configurations of the light input / output units 10E and 10F according to still another modified example of the first embodiment, in which the light input / output units 10E and 10F are arranged on the y axis. The form seen from the direction is shown.
  • the optical input / output units 10E and 10F according to this modification unlike the first embodiment (see FIG. 4), the optical input / output port 11 of the first portion 10c and the optical input / output of the second portion 10d.
  • the optical axes of the optical fibers 11c and 12c and the optical axes of the condensing elements 11d and 12d coincide with each other.
  • the optical axes of the optical fiber 11c and the condensing element 11d of the light input / output port 11 are inclined with respect to the predetermined axis C in the x-axis direction.
  • the optical axes of the optical fiber 11c and the condensing element 11d are inclined in the x-axis positive direction.
  • the optical axes of the optical fiber 11c and the condensing element 11d are inclined in the negative x-axis direction.
  • the input / output of the light input / output port 11 (that is, the emission of the light L11 from the light input port 11a and the wavelength component to the light output port 11b). L12 incidence) is performed.
  • the optical axes of the optical fiber 12c and the condensing element 12d of the light input / output port 12 are also inclined in the x-axis direction with respect to the predetermined axis C.
  • the optical axes of the optical fiber 12c and the condensing element 12d are inclined in the negative x-axis direction.
  • the optical axes of the optical fiber 12c and the condensing element 12d are inclined in the negative x-axis direction.
  • the input / output of the light input / output port 12 that is, the emission of the light L12 from the light input port 12a and the wavelength component to the light output port 12b). L21 is incident).
  • each optical fiber 11c and 12c and each condensing element 11d and 12d can be arranged at equal pitch, and these optical axes can be made to correspond, optical design and manufacture are easy. is there.
  • (Sixth Modification) 12 to 15 are side views schematically showing configurations of the light input / output units 10G to 10J according to still another modified example of the first embodiment, in which the light input / output units 10G to 10J are connected to the y-axis. The form seen from the direction is shown.
  • the optical input / output units 10G to 10J according to this modification unlike the first embodiment (see FIG. 4), the optical input / output ports 11 of the first portions 10e and 10g and the second portions 10f and 10h.
  • the normal lines of the end faces of the optical fibers 11e and 12e are inclined in the x direction with respect to the optical axis of the optical fibers 11e and 12e (that is, the central axis of the core of the optical fibers 11e and 12e). is doing.
  • the end faces of the optical fibers 11e and 12e are inclined in the x direction with respect to a plane perpendicular to the optical axis of the optical fibers 11e and 12e.
  • the optical axes of the incoming and outgoing lights L11, L12, L21, and L22 of the optical fibers 11e and 12e have a certain refraction angle in the xz plane with respect to the optical axes of the optical fibers 11e and 12e.
  • the core regions (that is, the light incident / exit points) of the end faces of the optical fibers 11e and 12e are arranged side by side on a straight line orthogonal to a predetermined axis C (in this modification, a straight line along the x axis).
  • the angle of the end face of the optical fiber 11e of the first portions 10e and 10g is ⁇ a
  • the incident and outgoing light L11 and the optical fiber 11e L12 is refracted in a direction approaching the incident light L21 and L22 of the second portions 10f and 10h.
  • the angle of the end face of the optical fiber 12e of the second portions 10f and 10h is ⁇ a
  • the incident / exit lights L21 and L22 of the optical fiber 12e are incident on the incident / exit lights L11 and L12 of the first portions 10e and 10g. Refracts in the approaching direction.
  • the optical axes of the light beams L11 and L12 incident or emitted on the end face of the optical fiber 11e of the light input / output port 11 and the end face of the optical fiber 12e of the light input / output port 12 are incident or emitted.
  • the optical axes of the lights L21 and L22 are directed toward each other by refraction at the end faces of the optical fibers 11e and 12e.
  • the optical axes of the light condensing elements 11f and 12f may be parallel to a predetermined axis C.
  • the effect of the said 1st Embodiment can be show
  • the optical axes of the lights L11 and L12 incident or emitted on the end faces of the optical fibers 11e and 12e are relative to the optical axes of the condensing elements 11f and 12f. Is inclined.
  • the light L11 and L21 emitted from the light input / output ports 11 and 12 are reflected by the optical components (such as the relay optical system 41) constituting the preceding optical system, and the return light is generated by the light input / output ports 11 and 12. It is possible to prevent stray light from being combined.
  • the emission directions of the light emitted from the light input / output ports 11 and 12 can be made uniform, and the optical path length to the preceding optical system can be made equal, so that the optical path control accuracy in the wavelength selective switch 1A can be improved. And the occurrence of light loss can be suppressed.
  • the angle ( ⁇ a) at which the optical axis of the optical fiber 12e inclines with respect to the optical axis of the condensing element 12f at 10h is different from each other.
  • the relative positional relationship between the optical fiber 11e and the condensing element 11f is such that the light L11 and L12 incident or emitted in each optical fiber 11e pass through the optical axis of the condensing element 11f in the condensing element 11f.
  • the light input / output units 10G and 10H suppress the optical paths of the light L11, L12, L21 and L22 incident or emitted in the optical fibers 11e and 12e from being changed in the condensing elements 11f and 12f, Lights L11, L12, L21, and L22 can be incident or emitted. Thereby, alignment with the optical fiber 11e and the condensing element 11f and alignment with the optical fiber 12e and the condensing element 12f can be performed easily.
  • the optical axis of the optical fiber 11e is inclined in the x direction by ⁇ b with respect to the predetermined axis C.
  • the optical axis of the optical fiber 12e is inclined in the x direction by ⁇ b with respect to the predetermined axis C.
  • the optical axes of the optical fibers 11e and 12e are along a predetermined axis C.
  • the optical axis directions of the optical fibers 11e and 12e may be inclined with respect to the predetermined axis C, or may be along the predetermined axis C.
  • the optical axes of the light L11 and L12 incident or emitted on the optical fiber 11e and the optical axes of the lights L21 and L22 incident or emitted on the optical fiber 12e are close to each other.
  • the inclination angles of the end faces of the optical fibers 11e and 12e are set.
  • the light condensing elements 11f and 12f a lens array in which a plurality of lenses are arranged at an equal pitch (interval ⁇ ) can be used. Furthermore, since the optical input / output unit 10G is disposed so that the optical fibers 11e and 12e are away from each other on the opposite side of the light collecting elements 11f and 12f, the optical fibers 11e and 12e can be prevented from interfering with each other. As described above, the configuration of the optical input / output units 10G and 10H is simplified, so that the cost can be reduced.
  • FIG. 14 is a diagram showing another form of this modification.
  • the difference between the light input / output unit 10I shown in FIG. 14 and the light input / output unit 10G shown in FIG. 12 is the relative positional relationship between the optical fibers 11e and 12e and the condensing elements 11f and 12f.
  • the light L11 and L12 incident or emitted in the optical fiber 11e of the first portion 10i is changed from the optical axis of the condensing element 11f in the condensing element 11f.
  • the relative positional relationship between the optical fiber 11e and the condensing element 11f is set so as to pass through a position shifted by a predetermined distance toward the second portion 10j.
  • the optical axes of the light beams L11 and L12 are bent in a direction away from the incident / exited light beams L21 and L22 in the condensing element 11f.
  • the light L21 and L22 incident or emitted in the optical fiber 12e of the first portion 10j is shifted by a predetermined distance from the optical axis of the condensing element 21f toward the first portion 10i in the condensing element 21f.
  • the relative positional relationship between the optical fiber 21e and the condensing element 21f is set so as to pass through the position.
  • the optical axes of the lights L21 and L22 are bent in the direction away from the incident / exited lights L11 and L12 in the condensing element 12f.
  • the light L11, L12, L21, and L22 incident or emitted in the optical fibers 11e and 12e are collected in the light collecting elements 11f and 12f. It may pass through a position deviated from the optical axis. Thereby, the angle of the optical axis of the light L11, L12, L21, L22 incident or emitted in the optical fibers 11e, 12e can be adjusted to a desired angle by the condensing elements 11f, 12f. Further, as in the light input / output unit 10I illustrated in FIG.
  • the lights L11 and L12 pass through a position shifted toward the second portion 10j from the optical axis of the light collecting element 11f, and the lights L21 and L22 are
  • the light input / output unit 10I can be reduced in size by passing through a position shifted from the optical axis of the condensing element 12f toward the first portion 10i.
  • a lens array in which a plurality of lenses are arranged at an equal pitch (interval ⁇ ) can be used as the light condensing elements 11f and 12f.
  • the optical input / output unit 10I is arranged so that the optical fibers 11e and 12e are away from each other on the opposite side of the light collecting elements 11f and 12f, the optical fibers 11e and 12e can be prevented from interfering with each other.
  • the configuration of the optical input / output unit 10I is simplified, so that the cost can be reduced.
  • the effect of the said 1st Embodiment can be show
  • FIG. 15 is a diagram showing still another form of the present modification.
  • the configuration of the first portion 10i of the optical input / output unit 10J illustrated in FIG. 15 is the same as the configuration of the first portion 10i of the optical input / output unit 10I illustrated in FIG.
  • the configuration of the second portion 10k of the light input / output unit 10J is such that the inclination directions of the lights L21 and L22 are reversed in the second portion 10g of the light input / output unit 10G shown in FIG. . That is, in the second portion 10k of the optical input / output unit 10J, the normal line of the end face of the optical fiber 12e is inclined by ⁇ a in the x direction with respect to the optical axis of the optical fiber 12e.
  • the end face of the optical fiber 12e of the second portion 10k is inclined by the same angle ⁇ a in the same direction as the end face of the optical fiber 11e of the first portion 10i.
  • the optical axis of the optical fiber 12e is inclined with respect to a predetermined axis C by the same angle ( ⁇ b) in the same direction as the optical axis of the optical fiber 11e.
  • the optical fiber 12e and the light condensing element so that the light L21 and L22 incident or emitted in each optical fiber 12e pass through the optical axis of the light condensing element 12f in the light condensing element 12f.
  • a relative positional relationship with 12f is set. Accordingly, the optical paths of the lights L21 and L22 are not changed in the condensing element 12f. Accordingly, the optical axes of the lights L21 and L22 extend in a direction away from the lights L11 and L12. That is, in the optical input / output unit 10J, the optical axes of the lights L11 and L12 and the optical axes of the lights L21 and L22 are directed away from each other.
  • the optical fiber 11e of the first portion 10i and the optical fiber 12e of the second portion 10k may be inclined by the same angle ( ⁇ b). Good. Even in such a case, for example, the relative positions of the condensing elements 11f and 12f with respect to the optical fibers 11e and 12e (the shift amounts of the light L11, L12, L21, and L22 with respect to the optical axis of the condensing elements 11f and 12f). By adjusting, the angles of the lights L11 and L12 and the angles of the lights L21 and L22 can be suitably varied. And the effect of the said 1st Embodiment can be show
  • FIG. 16 and 17 are schematic views showing the configuration of the wavelength selective switch 1B according to the second embodiment.
  • FIG. 16 is a side view of the wavelength selective switch 1B viewed from the y-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1B in a plane including the x-axis and the z-axis.
  • FIG. 17 is a top view of the wavelength selective switch 1B viewed from the x-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1B in a plane including the y-axis and the z-axis.
  • the wavelength selective switch 1B includes an optical input / output unit 10L, a relay optical system 41, an anamorphic optical system 42, a spectroscopic element 20, which are arranged side by side on a predetermined axis C.
  • a condenser lens 43 and a light deflection element 30 are provided.
  • the predetermined axis C is drawn in a straight line, but the predetermined axis C may be bent, for example, by arranging a reflecting mirror or the like in the middle.
  • FIG. 18 is a diagram illustrating the configuration of the light input / output unit 10L viewed from the direction of the predetermined axis C (z-axis direction).
  • FIG. 19 is a diagram schematically illustrating the configuration of the light input / output unit 10L viewed from the y-axis direction.
  • the optical input / output unit 10L includes a first portion 10m including three or more first optical input / output ports 11 and three or more second optical input / output ports. And a second portion 10n including 12.
  • Ports are arranged side by side in a direction (for example, the y-axis direction) intersecting the predetermined axis C and the x-axis direction.
  • the first portion 10m and the second portion 10n are arranged side by side in the y-axis direction.
  • the optical input / output port 11 of the first portion 10m is included in the first row 15 aligned in the x-axis direction.
  • the optical input / output ports 12 of the second portion 10n are included in the second row 16 aligned in the x-axis direction.
  • the second row 16 is arranged side by side in the y-axis direction with respect to the first row 15.
  • the detailed configuration of the optical input / output ports 11 and 12 is the same as that of the first embodiment, the first modification, the second modification, or the third modification described above.
  • the light L11 from the light input port 11a, the wavelength component L12 directed from the light deflection element 30 to the light output port 11b, the light L21 from the light input port 12a, and The wavelength component L22 directed from the light deflection element 30 to the light output port 12b passes through the same position (position P1 in the drawing) of the spectroscopic element 20 in the y-axis direction.
  • the light L11 and the wavelength component L12 (or the light L21 and the wavelength component L22) follow the same optical path as viewed from the x-axis direction, so that the optical input port 11a and the light included in the first column 15 Light can be transmitted and received suitably between the output port 11b (or between the optical input port 12a and the optical output port 12b).
  • the optical power such that the light L11 and the wavelength component L12, and the light L21 and the wavelength component L22 pass through the position P1 is changed to the preceding optical system (relay optical system 41 and anamorphic optical system 42). Is preferably realized in the y-axis direction.
  • each of the first optical input / output port 11 and the second optical input / output port 12 of the optical input / output unit 10L is similar to the wavelength selective switch 1A of the first embodiment.
  • a predetermined angle is given to the optical axis of the incoming and outgoing light. Therefore, according to the wavelength selective switch 1B of the present embodiment, it becomes possible to separate (or combine) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • some of the optical input / output ports 11 and 12 (first row 15) and the remaining optical input / output ports (second row 16) are connected to the y-axis. They are arranged side by side.
  • the interval between the optical input / output ports located at both ends in the x-axis direction can be shortened.
  • the required maximum deflection angle can be suppressed.
  • the optical deflection element 30 is an LCOS type phase modulation element, the accuracy of the deflection angle can be increased.
  • all the optical input / output ports 11 are included in the partial optical input / output ports, and all the optical input / output ports 12 are included in the remaining optical input / output ports.
  • the light L11 and L12, and the light L21 and the light L22 pass through the same position P1 of the spectroscopic element 20 in the y-axis direction.
  • the spectroscopic element 20 may be inclined about the x axis with respect to the predetermined axis C.
  • FIG. 20A is a front view of the light deflection element 30 viewed from the direction of the predetermined axis C.
  • FIG. 20B is a side view showing a state in which light L11 and L21 are incident on the spectroscopic element 20.
  • the light beams L11 and L21 from the first column 15 and the second column 16 that are aligned in the y-axis direction are the same position P1 in the y-axis direction. Is incident on. Therefore, the incident angles of the lights L11 and L21 with respect to the spectroscopic element 20 in the yz plane may be slightly different. Since the spectral characteristics of the spectroscopic element 20 depend on the incident angle in the spectroscopic plane (in the yz plane in the present embodiment), as a result, even after the light having the same wavelength, the light after the spectroscopic analysis with the lights L11 and L21. The shaft angle will be different. That is, as shown in FIG. 20A, the first light deflection unit 31 and the second light deflection unit 32 are shifted by, for example, ⁇ y in the y-axis direction.
  • the spectroscopic element 20 is an element having a diffraction grating structure
  • the incident angle of light to the spectroscopic element 20 in the yz plane is ⁇
  • the emission angle ⁇ of the wavelength component emitted from the spectroscopic element 20 is It is expressed by a formula.
  • sin ⁇ ⁇ m ⁇ / (d ⁇ cos ⁇ ) ⁇ ⁇ sin ⁇
  • m is the diffraction order of the spectroscopic element 20
  • d is the pitch of the diffraction grating of the spectroscopic element
  • is the wavelength of light incident on the spectroscopic element 20
  • is to the spectroscopic element 20 in the xz plane. Is the incident angle of light.
  • the emission angle ⁇ depends not only on the incident angle ⁇ in the yz plane but also on the cosine of the incident angle ⁇ in the xz plane.
  • the cosine of the incident angle ⁇ increases or decreases according to the increase or decrease of the absolute value of ⁇ regardless of whether ⁇ is positive or negative. That is, as shown in FIG. 20B, when the spectroscopic element 20 is tilted in the xz plane, the incident angle ⁇ 1 of one light (for example, the light L11) increases and its cosine decreases. Based on this, the emission angle ⁇ of the wavelength component increases.
  • the incident angle ⁇ 2 of the other light decreases and its cosine increases, the emission angle ⁇ of the wavelength component decreases based on the above formula. As a result, it is possible to reduce the deviation amount ⁇ y shown in FIG.
  • the spectroscopic element 20 is not tilted with respect to the predetermined axis C.
  • the position where the light of the same wavelength is combined can be moved away, so that the cross Talk can be reduced.
  • FIG. 21 and 22 are schematic views showing the configuration of the wavelength selective switch 1C according to the third embodiment.
  • FIG. 21 is a side view of the wavelength selective switch 1C as viewed from the y-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1C in a plane including the x-axis and the z-axis.
  • FIG. 22 is a top view of the wavelength selective switch 1C as viewed from the x-axis direction of the orthogonal coordinate system S, and shows a schematic configuration of the wavelength selective switch 1C in a plane including the y-axis and the z-axis.
  • the wavelength selective switch 1C includes an optical input / output unit 10M arranged on a predetermined axis C, a relay optical system 41, an anamorphic optical system 42, a spectroscopic element 20, A condenser lens 43 and a light deflection element 30 are provided.
  • the predetermined axis C is drawn in a straight line, but the predetermined axis C may be bent by arranging a reflecting mirror or the like, for example.
  • FIG. 23 is a diagram illustrating the configuration of the light input / output unit 10M viewed from the direction of the predetermined axis C (z-axis direction).
  • FIG. 24 is a diagram schematically illustrating the configuration of the light input / output unit 10M viewed from the y-axis direction.
  • the optical input / output unit 10M includes a first portion 10p including three or more first optical input / output ports 11 and three or more second optical input / output ports 12. And a second portion 10q. Then, some of the three or more optical input / output ports 11 and three or more optical input / output ports 12 are partially input / output ports (in this embodiment, the optical input port 11a and the optical output port 12b), and the remaining light.
  • the input / output ports (light input port 12a and light output port 11b in this embodiment) are arranged side by side in a direction (for example, the y-axis direction) intersecting the predetermined axis C and the x-axis direction.
  • the optical input port 12a and the optical output port 11b are included in the first row 17 aligned in the x-axis direction.
  • the optical input port 11a and the optical output port 12b are included in the second row 18 aligned in the x-axis direction.
  • the second row 18 is arranged in the y-axis direction with respect to the first row 17.
  • the detailed configurations of the optical input ports 11a and 12a and the optical output ports 11b and 12b are the same as those in the first embodiment, the first modified example, the second modified example, or the third modified example.
  • the light component L11 from the light input port 11a and the wavelength component L12 directed from the light deflection element 30 to the light output port 11b are different from each other in the y-axis direction. It passes the position (positions P3 and P4 in the figure). Similarly, the light L21 from the light input port 12a and the wavelength component L22 directed from the light deflection element 30 to the light output port 12b are different positions (positions P4 and P3 in the figure) in the y-axis direction. ).
  • the light L11 and the wavelength component L12 (or the light L21 and the wavelength component L22) follow different optical paths when viewed from the x-axis direction, and therefore between the optical input port 11a and the optical output port 11b (or Light can be transmitted and received suitably between the optical input port 12a and the optical output port 12b.
  • the positions P3 and P4 in the spectroscopic element 20 are desirably set as follows. That is, in the y-axis direction, the distance from the optical axis of the condensing lens 43 to the position P3 is y 3 , the distance from the optical axis of the condensing lens 43 to the position P4 is y 4 , and the first from the optical axis of the lens 41a
  • the optical power such that the light L11 and the wavelength component L22 pass through the position P3 and the light L21 and the wavelength component L12 pass through the position P4 is changed to the preceding optical system (relay optical system 41 and anamorphic).
  • This is preferably realized by having the optical system 42) in the y-axis direction.
  • such a configuration is such that the wavelength component L12 from the optical input port 11a reaches the optical output port 11b, and the wavelength component L22 from the optical input port 12a reaches the optical output port 12b.
  • the angle of incidence on the light deflecting element 30 is set by the condenser lens 43, which is preferably realized.
  • the incoming and outgoing light is respectively input to the optical input ports 11a and 11b and the optical output ports 11b and 12b of the optical input / output unit 10M.
  • a predetermined angle is given to the optical axis. Therefore, according to the wavelength selective switch 1C of the present embodiment, it becomes possible to separate (or combine) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • some of the optical input / output ports 11 and 12 (first row 17) and the remaining optical input / output ports (second row 18) are connected to the y-axis. They are arranged side by side.
  • the interval between the optical input / output ports located at both ends in the x-axis direction can be shortened.
  • the required maximum deflection angle can be suppressed.
  • the optical deflection element 30 is an LCOS type phase modulation element, the accuracy of the deflection angle can be increased.
  • the spectroscopic element 20 may be inclined in the x-axis direction with respect to the predetermined axis C as in the second embodiment. Thereby, the shift amount ⁇ y in the y-axis direction between the first light deflection unit 31 and the second light deflection unit 32 of the light deflection element 30 can be adjusted.
  • FIG. 25 and 26 are diagrams showing a modification of the second embodiment and the third embodiment.
  • FIG. 25 is a diagram illustrating a configuration of the light input / output unit 10N of the present modification viewed from the direction of the predetermined axis C (z-axis direction).
  • FIG. 26 is a diagram illustrating a configuration of the light input / output unit 10P of the present modification as viewed from the direction of the predetermined axis C (z-axis direction).
  • Each of the optical input / output units 10N and 10P further includes an alignment port 13 in addition to the configurations of the second and third embodiments.
  • the alignment port 13 is a port for entering / exiting alignment light with an optical axis along a predetermined axis C.
  • the internal configuration of the alignment port 13 is the same as that of the first embodiment described above.
  • optical input / output units 10N and 10P a part of the three or more optical input / output ports 11 and the three or more optical input / output ports 12 (first row 15 and 17),
  • the optical input / output ports (second rows 16 and 18) are arranged side by side in the y-axis direction. It is preferable that at least one alignment port 13 is provided for each of these part and the remaining light input / output ports. In this modification, one alignment port 13 is provided in the first rows 15 and 17, and one alignment port 13 is provided in the second rows 16 and 18.
  • the light input / output units 10L and 10M according to the second and third embodiments are aligned with an optical axis along a predetermined axis C separately from the light input / output ports 11 and 12. It may further have an alignment port 13 for entering and exiting the light for use.
  • the light input / output ports 11 and 12 are difficult to use for alignment because the incident / outgoing light is inclined. However, by preparing such an alignment port 13 separately, alignment can be easily performed. it can.
  • the wavelength selective switch according to each embodiment and each modification described above can be variously modified.
  • the light input / output port has been described as including an optical fiber and a condenser lens, but the light input / output port is not limited to such a form.
  • the case where the light input / output unit has two parts (first and second parts) having different incident / exit angles has been described. You may have three or more parts from which an output angle differs mutually.
  • the present invention can be used as a wavelength selective switch capable of separating (or coupling) more wavelength components without reducing the number of components and excessively increasing the optical path length.
  • 1A, 1B, 1C Wavelength selective switch, 10, 10A to 10P: Optical input / output unit, 10a, 10c, 10e, 10g ... First part, 10b, 10d, 10f, 10h ... Second part, 11, 12 Optical input / output port, 11a, 12a ... Optical input port, 11b, 12b ... Optical output port, 11c, 12c ... Optical fiber, 11d, 12d ... Condensing element, 13 ... Alignment port, 13c ... Optical fiber, 13d ... Light condensing element, 15 and 17... First row, 16 and 18. Second row, 20... Spectral element, 30... Light deflection element, 31 and 32. 41: Relay optical system, 42: Anamorphic optical system, 43: Condensing lens, C: Predetermined axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 波長選択スイッチ1Aは、所定の軸線C上に並んで配置された光入出力部10、分光素子20、及び光偏向素子30を備える。光入出力部10は、所定の軸線Cに対して傾斜した光軸でもって光入出力ポート11の入出射を行う第1の部分10aと、所定の軸線Cに対して傾斜した光軸でもって光入出力ポート12の入出射を行う第2の部分10bとを有する。所定の軸線Cを基準とする光入出力ポート11の入出射角と光入出力ポート12の入出射角とは、互いに異なる。

Description

波長選択スイッチ
 本発明は、波長選択スイッチに関するものである。
 特許文献1には、波長選択スイッチに関する発明が開示されている。この波長選択スイッチは、複数の光入出力部と、光分散手段と、集光要素と、光偏向素子アレイとを備えている。複数の光入出力部は、第1方向にアレイ状に並んでおり、光入力部と光出力部とを含む。光分散手段は、入力部から入力された波長多重光を、各波長成分に分離する。集光要素は、分離された各波長成分を光偏向素子アレイへ向けて集光する。光偏向素子アレイは、集光要素により集光されたそれぞれの各波長成分を所望の出力部にスイッチングさせるよう第1方向に各波長成分を偏向させる。入出力部はm個(mは整数)のグループに分かれており、光偏向素子アレイは、入出力部のm個のグループに対応するように第1方向にm個配列されている。光分散手段は、入出力部のm個のグループに対して共通である。
特開2011-248000号公報 米国特許第7725027号明細書 米国特許第7397980号明細書 国際公開第2012/125390号 特開2011-064721号公報 国際公開第2013/016758号
 波長選択スイッチの一形態として、光入出力部を二以上のグループに分け、各グループの入出射光に対応する光偏向素子の光偏向部を、例えば分光方向と交差する方向に並べて配置する形態がある(例えば特許文献1を参照)。このような形態を採用することにより、従来の波長選択スイッチと比較して更に多くの波長成分を分離(若しくは結合)することが可能となる。
 特許文献1に記載された波長選択スイッチでは、光入出力部の二以上のグループそれぞれに対応するレンズが配置され、このレンズによって、入出射光の光軸に対して各グループ毎に異なる角度が付与されている。しかしながら、このような構成では部品点数が多くなり、また、上記レンズの分だけ光路長が長くなってしまい波長選択スイッチの小型化を妨げる一因となる。
 本発明は、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能な波長選択スイッチを提供することを目的とする。
 上述した課題を解決するために、一実施形態に係る波長選択スイッチは、所定の軸線上に並んで配置された光入出力部、分光素子、及び光偏向素子を備える波長選択スイッチであって、光入出力部は、第1の光入力ポートと第1の光出力ポートとを含む3個以上の第1の光入出力ポートを有し、所定の軸線に対し所定の軸線と交差する第1の方向に傾斜した光軸でもって第1の光入出力ポートの入出射を行う第1の部分と、第2の光入力ポートと第2の光出力ポートとを含む3個以上の第2の光入出力ポートを有し、所定の軸線に対し第1の方向に傾斜した光軸でもって第2の光入出力ポートの入出射を行う第2の部分とを備え、所定の軸線を基準とする第1の光入出力ポートの入出射角と第2の光入出力ポートの入出射角とが互いに異なり、分光素子は、第1及び第2の光入出力ポートに対して共通に設けられており、第1及び第2の光入出力ポートの入出射光の光軸を、所定の軸線および第1の方向と交差する方向へ波長に応じた角度で変化させ、光偏向素子は、分光素子を経た第1の光入力ポートからの光を第1の光出力ポートへ向ける第1の光偏向部と、分光素子を経た第2の光入力ポートからの光を第2の光出力ポートへ向ける第2の光偏向部とを有する。
 本発明による波長選択スイッチによれば、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能な波長選択スイッチを提供できる。
図1は、第1実施形態に係る波長選択スイッチの構成を示す模式図である。 図2は、第1実施形態に係る波長選択スイッチの構成を示す模式図である。 図3は、z軸方向から見た光入出力部の構成を示す図である。 図4は、y軸方向から見た光入出力部の構成を示す側面図である。 図5は、z軸方向から見た光偏向素子の正面図である。 図6は、第1変形例に係る光入出力部の構成を模式的に示す側面図である。 図7は、第2変形例に係る光入出力部の構成を模式的に示す側面図である。 図8は、第3変形例に係る光入出力部の構成を模式的に示す側面図である。 図9は、第4変形例に係る光入出力部の構成を模式的に示す側面図である。 図10は、第5変形例に係る光入出力部の構成を模式的に示す側面図である。 図11は、第5変形例に係る光入出力部の構成を模式的に示す側面図である。 図12は、第6変形例に係る光入出力部の構成を模式的に示す側面図である。 図13は、第6変形例に係る光入出力部の構成を模式的に示す側面図である。 図14は、第6変形例に係る光入出力部の構成を模式的に示す側面図である。 図15は、第6変形例に係る光入出力部の構成を模式的に示す側面図である。 図16は、第2実施形態に係る波長選択スイッチの構成を示す模式図である。 図17は、第2実施形態に係る波長選択スイッチの構成を示す模式図である。 図18は、z軸方向から見た光入出力部の構成を示す図である。 図19は、光入出力部の構成を模式的に示す図である。 図20は、分光素子を所定の軸線に対して傾ける理由を説明するための図である。 図21は、第3実施形態に係る波長選択スイッチの構成を示す模式図である。 図22は、第3実施形態に係る波長選択スイッチの構成を示す模式図である。 図23は、z軸方向から見た光入出力部の構成を示す図である。 図24は、光入出力部の構成を模式的に示す図である。 図25は、第2実施形態の一変形例を示す図である。 図26は、第3実施形態の一変形例を示す図である。
 以下、添付図面を参照しながら一実施形態に係る波長選択スイッチを詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1の実施の形態)
図1及び図2は、第1実施形態に係る波長選択スイッチ1Aの構成を示す模式図である。なお、以下の図面には直交座標系Sが示されている。図1は、直交座標系Sのy軸方向から見た波長選択スイッチ1Aの側面図であり、x軸及びz軸を含む平面における波長選択スイッチ1Aの模式的な構成を示している。図2は、直交座標系Sのx軸方向から見た波長選択スイッチ1Aの上面図であり、y軸及びz軸を含む平面における波長選択スイッチ1Aの模式的な構成を示している。
 図1及び図2に示されるように、波長選択スイッチ1Aは、光入出力部10、分光素子20、及び光偏向素子30を備えている。光入出力部10、分光素子20、及び光偏向素子30は、所定の軸線C上に並んで配置されている。所定の軸線Cは、例えばz軸方向に延びる軸線である。なお、図1及び図2では所定の軸線Cが一直線状に描かれているが、例えば反射鏡等が中途に配置されることにより所定の軸線Cが屈曲していてもよい。
 図3は、所定の軸線Cの方向(z軸方向)から見た光入出力部10の構成を示す図である。また、図4は、y軸方向から見た光入出力部10の構成を示す側面図である。図3及び図4に示されるように、光入出力部10は、第1の部分10aと第2の部分10bとを有している。第1の部分10aと第2の部分10bとは、図1及び図2に示された所定の軸線Cと交差する第1の方向(本実施形態では、x軸方向)に並んで配置されている。
 第1の部分10aは、3個以上の第1の光入出力ポート11を含む。本実施形態では、これらの光入出力ポート11はx軸方向に整列されている。これらの光入出力ポート11には、一又は複数の第1の光入力ポート11aと、一又は複数の第1の光出力ポート11bとが含まれている。例示として、図3及び図4には、一つの光入力ポート11aと、複数の光出力ポート11bとが示されている。この場合、光入力ポート11aは、例えば波長多重光である光L11を波長選択スイッチ1Aの内部へ出射する。光出力ポート11bは、例えば、光偏向素子30によって偏向された波長成分L12を受ける。
 図4に示されるように、この第1の部分10aでは、所定の軸線Cに対し所定の軸線Cと交差する第1の方向(本実施形態では、x軸方向)に傾斜した光軸でもって光入出力ポート11の入出射(すなわち、光入力ポート11aからの光L11の出射および光出力ポート11bへの波長成分L12の入射)が行われる。所定の軸線Cを基準とする光入出力ポート11の入出射角θ1の角度範囲は、所定の軸線Cを0°としたとき例えば0°<θ1<5°であり、更に好適には0°<θ1<3°である。
 第2の部分10bは、3個以上の第2の光入出力ポート12を含む。本実施形態では、これらの光入出力ポート12はx軸方向に整列されている。これらの光入出力ポート12には、一又は複数の第2の光入力ポート12aと、一又は複数の第2の光出力ポート12bとが含まれている。例示として、図3及び図4には、一つの光入力ポート12aと、複数の光出力ポート12bとが示されている。この場合、光入力ポート12aは、例えば波長多重光である光L21を波長選択スイッチ1Aの内部へ出射する。光出力ポート12bは、例えば、光偏向素子30によって偏向された波長成分L22を受ける。
 図4に示されるように、この第2の部分10bでは、x軸方向に傾斜した光軸でもって光入出力ポート12の入出射(すなわち、光入力ポート12aからの光L21の出射および光出力ポート12bへの波長成分L22の入射)が行われる。所定の軸線Cを基準とする光入出力ポート12の入出射角は、光入出力ポート11の入出射角θ1とは異なっており、例えば-θ1である。
 各光入出力ポート11は、光ファイバ11c及び集光素子(集光レンズ)11dを含んで構成されている。各集光素子11dは、各光ファイバ11cに対して一対一で設けられ、対応する光ファイバ11cの端面に光結合されている。同様に、各光入出力ポート12は、光ファイバ12c及び集光素子(集光レンズ)12dを含んで構成されている。各集光素子12dは、各光ファイバ12cに対して一対一で設けられ、対応する光ファイバ12cの端面に光結合されている。
 図4に示されるように、各光ファイバ11cと、各光ファイバ11cそれぞれに対応する各集光素子11dとの光軸は互いにずれている。具体的には、集光素子11dの光軸は光ファイバ11cの光軸に対してΔα(>0)だけずれており、また、そのずれ量Δαは、3個以上の光入出力ポート11において互いに等しい。これによって、3個以上の光入出力ポート11に均一な正の入出射角θ1が付与されている。なお、本実施形態では、3個以上の光ファイバ11cは間隔αでもって互いに等間隔に配置されており、これらに対応する3個以上の集光素子11dもまた、間隔αでもって互いに等間隔に配置されている。
 一方、各光ファイバ12cと、各光ファイバ12cそれぞれに対応する各集光素子12dとの光軸もまた、x軸方向に互いにずれている。但し、そのずれ量は集光素子11dのずれ量とは異なっており、例えば-Δαである。また、そのずれ量-Δαは、3個以上の光入出力ポート12において互いに等しい。これによって、3個以上の光入出力ポート12に均一な負の入出射角-θ1が付与されている。また、本実施形態では、3個以上の光ファイバ12cは間隔αでもって互いに等間隔に配置されており、これらに対応する3個以上の集光素子12dもまた、間隔αでもって互いに等間隔に配置されている。
 また、本実施形態では、光入出力部10が、光入出力ポート11,12とは別に、調芯用ポート13を更に有している。調芯用ポート13は、所定の軸線Cに沿った光軸でもって調芯用の光L3の入出射を行うためのポートである。この調芯用ポート13もまた、光ファイバ13cと、光ファイバ13cの端面に光結合された集光素子13dとを含んでいる。但し、光ファイバ13cの光軸と集光素子13dの光軸とは、互いに一致している。従って、調芯用ポート13において入出射される光L3は、所定の軸線Cに沿って伝搬する。
 このような調芯用ポート13は、図3及び図4に示されるように第1の部分10a及び第2の部分10bに対して共通に設けられてもよく、或いは、第1の部分10a及び第2の部分10bそれぞれに少なくとも一つずつ設けられていてもよい。本実施形態では、第1の部分10aと第2の部分10bとの間に一つの調芯用ポート13が配置されている。
 光ファイバ13cに隣り合う光ファイバ11c及び12cと光ファイバ13cとは、互いに間隔αをあけて配置されている。一方、集光素子13dに隣り合う集光素子11d及び12dと集光素子13dとは、互いに間隔α+Δαをあけて配置されている。このような構成によって、前述した光ファイバ11cと集光素子11dとの光軸のずれ量Δα、及び光ファイバ12cと集光素子12dとの光軸のずれ量-Δαが実現されている。換言すれば、本実施形態では、光ファイバ11c、12c及び13cが互いに等ピッチで配列され、集光素子11d、12d及び13dが互いに不等ピッチで配列されている。そして、集光素子11dの位置が、光ファイバ11cに対して配列方向の一方の側(x軸の正側)にずれており、集光素子12dの位置が、光ファイバ12cに対して配列方向の他方の側(x軸の負側)にずれている。
 再び図1及び図2を参照する。波長選択スイッチ1Aは、光入出力部10と分光素子20との間の所定の軸線C上に配置された前段光学系として、リレー光学系41及びアナモルフィック光学系42を更に備えている。リレー光学系41は、光入出力ポート11,12に対して共通に設けられた2つのレンズ41a及び41bを含む。レンズ41aは、例えば、x軸方向及びy軸方向に光パワーを有する凸状の球面レンズである。レンズ41aは、レンズ41bよりも前段に配置され、レンズ41aの前側焦点は集光素子11d~13d(図4を参照)の後側焦点と略一致するように配置されている。つまり、レンズ41aは、光入出力部10が有する集光素子11d~13dの焦点距離f1及びレンズ41aの焦点距離f2の分だけ集光素子11d,12dから離れた位置に配置されている。
 レンズ41aは、x軸方向及びy軸方向について、光入出力部10から当該レンズ41aに入射する光L11および光L21のビームウエスト位置におけるビームサイズと比較して、当該レンズ41aを通過後の光L11および光L21のビームウエスト位置におけるビームサイズを相対的に大きくすることが好ましい。このようにすると、例えば波長選択スイッチ1Aにおいてリレー光学系41及びアナモルフィック光学系42を介して光制御を行う場合に、光入出力部10の光入出力ポート11,12におけるロスの増加を抑制することができる。
 レンズ41bは、少なくともx軸方向に光パワーを有する。レンズ41bは、例えば、x軸方向のみに光パワーを有するシリンドリカルレンズである。レンズ41bは、x軸方向のみ光パワーを有している。このため、光L11および光L21のビームサイズがx軸方向についてはy軸方向に対して相対的に小さくなり、y軸方向に相対的に拡大される。レンズ41bの前側焦点は、レンズ41aの後側焦点と略一致するように配置されている。また、レンズ41bの後側焦点は、後述する集光レンズ43の前側焦点と略一致するように配置されている。つまり、レンズ41bは、レンズ41aの焦点距離f2及びレンズ41bの焦点距離f3の分だけレンズ41aから離れた位置であって、レンズ41bの焦点距離f3及び集光レンズ43の焦点距離f4の分だけ集光レンズ43から離れた位置に配置されている。なお、レンズ41a,41bは、図1及び図2に示されたような光透過型のものに限られず、ミラーのような反射型のものであってもよい。
 アナモルフィック光学系42は、光入出力ポート11,12に対して共通に設けられており、リレー光学系41の前段若しくは後段に配置されている。図1及び図2には、リレー光学系41の後段にアナモルフィック光学系42が配置された形態が示されている。アナモルフィック光学系42は、リレー光学系41のレンズ41bから出射された光L11,L21を入射すると共に、その光L11,L21のビームサイズをy軸方向に拡大して出射する。アナモルフィック光学系42は、入力されたビームのアスペクト比を変換して出力する機能を有するものであれば良く、光をx軸方向に縮小するように構成しても良い。アナモルフィック光学系42は、プリズムペアやシリンドリカルレンズ、シリンドリカルミラー等を単独又は組み合わせて構成され得る。本実施形態では、例えば1対のプリズム42a,42bを例示する。
 分光素子20は、光入出力ポート11,12に対して共通に設けられており、光入出力ポート11,12の入出射光の光軸を、所定の軸線Cおよびx軸方向と交差する方向、例えばy軸方向へ波長に応じた角度で変化させる。分光素子20は、光入力ポート11a,12aからの光L11,L21が波長多重光である場合には、光L11,L21を複数の波長成分に分光する。図1及び図2では、理解の容易のため、複数の波長成分のうちの或る波長成分L12,L22のみを代表して図示する。分光素子20としては、例えば回折格子を用いることができる。
 分光素子20と光偏向素子30との間の所定の軸線C上には、集光レンズ(集光要素)43が配置されている。集光レンズ43は、分光素子20によって分光されて出射された波長成分L12,L22を入射し、光偏向素子30上に結合する。このとき、アナモルフィック光学系42においてy軸方向に所定倍率で拡大された光は、集光レンズ43においては当該倍率でy軸方向に縮小される(または、アナモルフィック光学系42においてx軸方向に所定倍率で縮小された光は、集光レンズ43においては当該倍率でx軸方向に拡大される)ことにより、光偏向素子30においてx軸方向のビームサイズがy軸方向のビームサイズよりも大きくなるように構成されている。集光レンズ43としては、例えば、x軸方向及びy軸方向に光パワーを有する凸状の球面レンズといった回転対称レンズが用いられる。
 光偏向素子30は、集光レンズ43の後側焦点に配置されている。光偏向素子30は、光入力ポート11aから分光素子20を経て集光レンズ43によって集光された波長成分L12を受け、その波長に応じた所定の光出力ポート11bに向けて波長成分L12を偏向する。同様に、光偏向素子30は、光入力ポート12aから分光素子20を経て集光レンズ43によって集光された波長成分L21を受け、その波長に応じた所定の光出力ポート12bに向けて波長成分L22を偏向する。そのために、光偏向素子30は、所定の軸線Cと交差する平面内にて二次元状に配列された複数の光偏向領域を有している。光偏向素子30は、各光偏向領域において対応する波長成分L21,L22を受け、波長成分L12,L22のそれぞれを独立して光出力ポート11b,12bに向けて偏向する。
 図5は、所定の軸線Cの方向から見た光偏向素子30の正面図である。図5に示されるように、光偏向素子30は、x軸方向に並ぶ第1の光偏向部31および第2の光偏向部32を有している。第1の光偏向部31は、y軸方向(分光方向)に並ぶ複数の光偏向領域31aを含んでおり、分光素子20を経た光入力ポート11aからの各波長成分を対応する光偏向領域31aにおいて受け、これらの波長成分を光出力ポート11bへ向ける。また、第2の光偏向部32は、y軸方向(分光方向)に並ぶ複数の光偏向領域32aを含んでおり、分光素子20を経た光入力ポート12aからの各波長成分を対応する光偏向領域32aにおいて受け、これらの波長成分を光出力ポート12bへ向ける。
 光偏向素子30としては、例えばLCOS(Liquid Cristal On Silicon)といった位相変調素子が好適に用いられる。このような位相変調素子は、位相変調を行う複数の画素を有し、回折格子状の位相変調パターンを呈示することにより入射光の光路を偏向する。なお、光偏向素子30としては、位相変調素子以外にも、例えばMEMS(Micro Electro Mechanical Systems)素子といった種々の素子を用いることができる。
 光偏向素子30としてLCOS型の位相変調素子が用いられる場合、所定の軸線Cおよびx軸方向を含む面内(すなわちxz平面内)において、光入力ポート11a,12aから到達する波長成分L12,L22の光軸が位相変調素子の変調面に対して直交するとよい。これにより、更に精緻な偏向制御が可能となる。このような形態は、例えば、xz平面内において波長成分L12,L22の光軸が変調面に対して直交するように、所定の軸線Cに対する光入出力ポート11,12の入出射角θ1,-θ1が設定されることにより好適に実現され得る。この場合、前段光学系(リレー光学系41及びアナモルフィック光学系42)及び集光レンズ43は、xz平面内において波長成分L12,L22の光軸が変調面に対して直交するように、光入出力ポート11,12からの光の光路を変更するとよい。また、この場合、x軸方向における前段光学系(リレー光学系41及びアナモルフィック光学系42)並びに集光レンズ43の中心光軸が、互いに一致していると更に好適である。また、この場合、光入出力ポート11の入出射光L11,L12の光軸と、光入出力ポート12の入出射光L21,L22の光軸とは、所定の軸線Cに対して互いに対称であるとよい。なお、所定の軸線Cは、仮に該所定の軸線Cに沿って出射された光が位相変調素子の変調面に到達した場合に、所定の軸線Cおよびx軸方向を含む面内(xz平面内)において、該光の光軸が位相変調素子の変調面に対して直交するような軸線である。
 光偏向素子30によって偏向された波長成分L12,L22は、集光レンズ43、分光素子20、アナモルフィック光学系42、及びリレー光学系41を介して所定の光出力ポート11b,12bに到達し、波長選択スイッチ1Aの外部へ出力される。
 以上の構成を備える本実施形態の波長選択スイッチ1Aによって得られる効果について説明する。前述したように、特許文献1に記載された波長選択スイッチでは、光入出力部の二以上のグループそれぞれに対応するレンズが配置され、このレンズによって、入出射光の光軸に対して各グループ毎に異なる角度が付与されている。しかしながら、このような構成では部品点数が多くなり、また、上記レンズの分だけ光路長が長くなってしまい波長選択スイッチの小型化を妨げる一因となる。これに対し、本実施形態の波長選択スイッチ1Aでは、そのようなレンズを利用せずに、光入出力部10の第1の光入出力ポート11および第2の光入出力ポート12のそれぞれにおいて入出射光の光軸に所定の角度を付与している。したがって、本実施形態の波長選択スイッチ1Aによれば、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能となる。
 また、本実施形態のように、光入出力ポート11,12は、光ファイバ11c,12cと、光ファイバ11c,12cに対して一対一で設けられ、該光ファイバ11c,12cの端面に光結合された集光素子11d,12dとを含んでもよい。この場合、光ファイバ11c,12cの光軸と集光素子11d,12dの光軸とを互いにずらすことによって、光入出力ポート11,12における入出射角θ1,-θ1を簡素な構成でもって容易に設定することができる。また、このような形態により、光入出力ポート11,12が十分な有効径を確保できるので、波長選択スイッチ1Aが小型化された場合であっても入出射角θ1,-θ1の絶対値を十分に大きくすることが可能となる。
 また、本実施形態のように、光入出力部10は、光入出力ポート11,12とは別に、所定の軸線Cに沿った光軸でもって調芯用の光L3の入出射を行う調芯用ポート13を更に有してもよい。光入出力ポート11,12は入出射光が傾斜しているため調芯に使用し難いが、このような調芯用ポート13を別に用意しておくことによって、調芯作業を容易に行うことができる。
 (第1の変形例)
図6は、上記第1実施形態の一変形例に係る光入出力部10Aの構成を模式的に示す側面図であって、光入出力部10Aをy軸方向から見た形態を示している。本変形例に係る光入出力部10Aでは、上記実施形態(図4を参照)とは異なり、集光素子11dの光軸が、光ファイバ11cの光軸に対して-Δαだけずれている。なお、このずれ量-Δαは、3個以上の光入出力ポート11において互いに等しい。これによって、3個以上の光入出力ポート11に均一な負の入出射角-θ1が付与される。
 一方、集光素子12dの光軸は、光ファイバ12cの光軸に対して正の方向にΔαだけずれている。なお、ずれ量Δαは、3個以上の光入出力ポート12において互いに等しい。これによって、3個以上の光入出力ポート12に均一な正の入出射角θ1が付与される。
 このように、本変形例では、光ファイバ11c、12c及び13cが互いに等ピッチで配列され、集光素子11d、12d及び13dが互いに不等ピッチで配列されている。そして、集光素子11dの位置が、光ファイバ11cに対して配列方向の一方の側(x軸の負側)にずれており、集光素子12dの位置が、光ファイバ12cに対して配列方向の他方の側(x軸の正側)にずれている。従って、光入出力ポート11において入出射角が負(-θ1)となり、光入出力ポート11に対してx軸の負側に位置する光入出力ポート12において入出射角が正(θ1)となるので、光入出力ポート11の入出射光と、光入出力ポート12の入出射光とが互いに交差することとなる。このような形態であっても、上記第1実施形態の作用効果を好適に奏することができる。
 (第2の変形例)
図7は、上記第1実施形態の別の変形例に係る光入出力部10Bの構成を模式的に示す側面図であって、光入出力部10Bをy軸方向から見た形態を示している。本変形例に係る光入出力部10Bでは、上記実施形態(図4を参照)とは異なり、光ファイバ13cに隣り合う光ファイバ11c及び12cと光ファイバ13cとの間隔が、α-Δαとなっている。一方、集光素子13dに隣り合う集光素子13d及び12cと集光素子13dとの間隔はαとなっている。すなわち、光ファイバ11cの光軸が集光素子11dの光軸に対して-Δαだけずれており、光ファイバ12cの光軸が集光素子12dの光軸に対してΔαだけずれている。
 このように、本変形例では、集光素子11d、12d及び13dが互いに等ピッチで配列され、光ファイバ11c、12c及び13cが互いに不等ピッチで配列されている。そして、光ファイバ11cの位置が、集光素子11dに対して配列方向の一方の側(x軸の負側)にずれており、光ファイバ12cの位置が、集光素子12dに対して配列方向の他方の側(x軸の正側)にずれている。このような構成によって、上記第1実施形態と同様に、本変形例においても、光入出力ポート11における入出射角がθ1となり、光入出力ポート12における入出射角が-θ1となる。従って、上記第1実施形態の作用効果を好適に奏することができる。
 (第3の変形例)
図8は、上記第1実施形態の更に別の変形例に係る光入出力部10Cの構成を模式的に示す側面図であって、光入出力部10Cをy軸方向から見た形態を示している。本変形例に係る光入出力部10Cでは、上記第2変形例(図7を参照)とは異なり、光ファイバ11cの光軸が、集光素子11dの光軸に対して正の方向にΔαだけずれている。なお、このずれ量Δαは、3個以上の光入出力ポート11において互いに等しい。これによって、3個以上の光入出力ポート11に均一な負の入出射角-θ1が付与される。
 一方、光ファイバ12cの光軸は、集光素子12dの光軸に対して-Δαだけずれている。なお、ずれ量Δαは、3個以上の光入出力ポート12において互いに等しい。これによって、3個以上の光入出力ポート12に均一な正の入出射角θ1が付与される。
 このように、本変形例では、集光素子11d、12d及び13dが互いに等ピッチで配列され、光ファイバ11c、12c及び13cが互いに不等ピッチで配列されている。そして、光ファイバ11cの位置が、集光素子11dに対して配列方向の一方の側(x軸の正側)にずれており、光ファイバ12cの位置が、集光素子12dに対して配列方向の他方の側(x軸の負側)にずれている。従って、光入出力ポート11において入出射角が負(-θ1)となり、光入出力ポート11に対してx軸の負側に位置する光入出力ポート12において入出射角が正(θ1)となるので、光入出力ポート11の入出射光と、光入出力ポート12の入出射光とが互いに交差することとなる。このような形態であっても、第2変形例と同様に、上記第1実施形態の作用効果を好適に奏することができる。
 (第4の変形例)
図9は、上記第1実施形態の更に別の変形例に係る光入出力部10Dの構成を模式的に示す側面図であって、光入出力部10Dをy軸方向から見た形態を示している。本変形例に係る光入出力部10Dでは、上記実施形態(図4を参照)とは異なり、第1の光入出力ポート11と第2の光入出力ポート12とが、x軸方向に交互に並んで配置されている。
 具体的には、光入出力ポート11を構成する光ファイバ11c及び集光素子11dと、光入出力ポート12を構成する光ファイバ12c及び集光素子12dとが、x軸方向に交互に並んで配置されている。そして、光ファイバ11c、12c及び13cが互いに等ピッチ(間隔α)で配列される一方、集光素子11dと、集光素子11dに対してx軸正側に隣り合う集光素子12dとが間隔(α-2Δα)をあけて配置され、集光素子12dと、集光素子12dに対してx軸正側に隣り合う集光素子11dとが間隔(α+2Δα)をあけて配置されている。
 このように、本変形例では、光ファイバ11c、12c及び13cが互いに等ピッチで配列され、集光素子11d、12d及び13dが互いに不等ピッチで配列されている。そして、上記実施形態と同様に、集光素子11dの位置が、光ファイバ11cに対して配列方向の一方の側(x軸の正側)にずれており、集光素子12dの位置が、光ファイバ12cに対して配列方向の他方の側(x軸の負側)にずれている。従って、光入出力ポート11において入出射角が正(θ1)となり、光入出力ポート12において入出射角が負(-θ1)となる。そして、本変形例では光入出力ポート11,12が交互に並んで配置されているので、光入出力ポート11の入出射光と、光入出力ポート12の入出射光とが互いに交差することとなる。このような形態であっても、上記第1実施形態の作用効果を好適に奏することができる。
 (第5の変形例)
図10及び図11は、上記第1実施形態の更に別の変形例に係る光入出力部10E及び10Fの構成を模式的に示す側面図であって、光入出力部10E及び10Fをy軸方向から見た形態を示している。本変形例に係る光入出力部10E及び10Fでは、第1実施形態(図4を参照)とは異なり、第1の部分10cの光入出力ポート11、及び第2の部分10dの光入出力ポート12それぞれにおいて、光ファイバ11c,12cの光軸と集光素子11d,12dの光軸とが互いに一致している。
 また、本変形例では、光入出力ポート11の光ファイバ11c及び集光素子11dの光軸は、所定の軸線Cに対してx軸方向に傾斜している。例えば、図10に示される光入出力部10Eでは、光ファイバ11c及び集光素子11dの光軸が、x軸正方向に傾斜している。また、図11に示される光入出力部10Fでは、光ファイバ11c及び集光素子11dの光軸が、x軸負方向に傾斜している。これにより、所定の軸線Cに対しx軸方向に傾斜した光軸でもって、光入出力ポート11の入出射(すなわち、光入力ポート11aからの光L11の出射および光出力ポート11bへの波長成分L12の入射)が行われる。
 光入出力ポート12の光ファイバ12c及び集光素子12dの光軸もまた、所定の軸線Cに対してx軸方向に傾斜している。例えば、図10に示される光入出力部10Eでは、光ファイバ12c及び集光素子12dの光軸が、x軸負方向に傾斜している。また、図11に示される光入出力部10Fでは、光ファイバ12c及び集光素子12dの光軸が、x軸負方向に傾斜している。これにより、所定の軸線Cに対しx軸方向に傾斜した光軸でもって、光入出力ポート12の入出射(すなわち、光入力ポート12aからの光L12の出射および光出力ポート12bへの波長成分L21の入射)が行われる。
 本変形例のような形態であっても、上記第1実施形態の作用効果を好適に奏することができる。また、本変形例によれば、各光ファイバ11c及び12c、並びに各集光素子11d及び12dを等ピッチで配列し、これらの光軸を一致させることができるので、光学設計および製造が容易である。
 (第6の変形例)
図12~図15は、上記第1実施形態の更に別の変形例に係る光入出力部10G~10Jの構成を模式的に示す側面図であって、光入出力部10G~10Jをy軸方向から見た形態を示している。本変形例に係る光入出力部10G~10Jでは、第1実施形態(図4を参照)とは異なり、第1の部分10e,10gの光入出力ポート11、及び第2の部分10f,10hの光入出力ポート12それぞれにおいて、光ファイバ11e,12eの端面の法線が、当該光ファイバ11e,12eの光軸(すなわち光ファイバ11e,12eのコアの中心軸線)に対してx方向に傾斜している。言い換えれば、光ファイバ11e,12eの端面が、当該光ファイバ11e,12eの光軸に垂直な平面に対してx方向に傾斜している。したがって、光ファイバ11e,12eの入出射光L11、L12、L21及びL22の光軸は、当該光ファイバ11e,12eの光軸に対し、xz平面内において或る屈折角を有する。なお、光ファイバ11e,12eの端面のコア領域(すなわち光入出射点)は、所定の軸線Cに対して直交する直線(本変形例ではx軸に沿った直線)上に並んで配置されている。
 例えば、図12及び図13に示された光入出力部10G,10Hでは、第1の部分10e,10gの光ファイバ11eの端面の角度がθaとなっており、光ファイバ11eの入出射光L11及びL12は、第2の部分10f,10hの入出射光L21及びL22に近づく方向に屈折する。一方、第2の部分10f,10hの光ファイバ12eの端面の角度が-θaとなっており、光ファイバ12eの入出射光L21及びL22は、第1の部分10e,10gの入出射光L11及びL12に近づく方向に屈折する。すなわち、本変形例では、光入出力ポート11の光ファイバ11eの端面において入射若しくは出射される光L11,L12の光軸と、光入出力ポート12の光ファイバ12eの端面において入射若しくは出射される光L21,L22の光軸とが、光ファイバ11e,12eの端面における屈折によって、互いに近づく方向へ向けられている。
 また、光入出力部10G,10Hでは、xz平面内において、光ファイバ11e,12eの端面に入射若しくは出射される光L11,L12,L21及びL22の光軸が所定の軸線Cに対して成す角度(-θ及びθ)と、集光素子11f,12fの光軸が所定の軸線Cに対して成す角度とが互いに異なる。なお、一実施例では、集光素子11f,12fの光軸は所定の軸線Cに対して平行であってもよい。
 本変形例のような形態であっても、上記第1実施形態の作用効果を好適に奏することができる。加えて、本変形例に係る光入出力部10G,10Hでは、光ファイバ11e,12eの端面において入射若しくは出射される光L11,L12の光軸が、集光素子11f,12fの光軸に対して傾斜している。これにより、光入出力ポート11,12から出射された光L11,L21が前段光学系を構成する光学部品(リレー光学系41等)において反射して生じる戻り光が、光入出力ポート11,12に結合して迷光となることを防止することができる。また、光入出力ポート11,12から出射された光の出射方向を揃えることができるとともに、前段光学系に至るまでの光路長を等しくすることができるので、波長選択スイッチ1Aにおける光路制御精度を向上させ、光損失の発生を抑制できる。
 また、光入出力部10G,10Hでは、第1の部分10e,10gにおいて光ファイバ11eの光軸が集光素子11fの光軸に対して傾斜する角度(+θa)と、第2の部分10f,10hにおいて光ファイバ12eの光軸が集光素子12fの光軸に対して傾斜する角度(-θa)とは互いに異なる。更に、各光ファイバ11eにおいて入射若しくは出射される光L11及びL12が、集光素子11f内において集光素子11fの光軸を通るように、光ファイバ11eと集光素子11fとの相対位置関係が設定されている。同様に、各光ファイバ12eにおいて入射若しくは出射される光L21及びL22が、集光素子12f内において集光素子12fの光軸を通るように、光ファイバ12eと集光素子12fとの相対位置関係が設定されている。
 これにより、光入出力部10G,10Hは、光ファイバ11e,12eにおいて入射若しくは出射される光L11,L12,L21及びL22の光路が集光素子11f,12fにおいて変更されることを抑制しつつ、光L11,L12,L21及びL22を入射若しくは出射することができる。これにより、光ファイバ11eと集光素子11fとの調芯、および光ファイバ12eと集光素子12fとの調芯を容易に行うことができる。
 なお、図12に示された光入出力部10Gでは、光ファイバ11eの光軸は、所定の軸線Cに対して-θbだけx方向に傾斜している。また、光ファイバ12eの光軸は、所定の軸線Cに対してθbだけx方向に傾斜している。一方、図13に示された光入出力部10Hでは、光ファイバ11e,12eの光軸は、所定の軸線Cに沿っている。これらのように、光ファイバ11e,12eの光軸方向は、所定の軸線Cに対して傾斜していてもよく、所定の軸線Cに沿っていてもよい。
 また、光入出力部10G及び10Hでは、光ファイバ11eにおいて入射若しくは出射される光L11及びL12の光軸と、光ファイバ12eにおいて入射若しくは出射される光L21及びL22の光軸とが互いに近づくように、光ファイバ11e及び12eの端面傾斜角が設定されている。これにより、第1の部分10e,10gの集光素子11fと第2の部分10f,10hの集光素子12fとをより近づけることができるので、光入出力部10G,10Hを小型化できる。また、集光素子11f,12fとして、複数のレンズが等ピッチ(間隔α)で配列されたレンズアレイを用いることもできる。さらに、光入出力部10Gは、光ファイバ11e,12eが集光素子11f,12fの反対側において互いに遠ざかるように配置されるので、光ファイバ11e,12eが互いに干渉することを防止できる。このように光入出力部10G,10Hの構成が簡易となるので、低コスト化が可能となる。
 図14は、本変形例の別の形態を示す図である。図14に示される光入出力部10Iと図12に示された光入出力部10Gとの相違点は、光ファイバ11e,12eと集光素子11f,12fとの相対位置関係である。すなわち、図14に示される光入出力部10Iでは、第1の部分10iの光ファイバ11eにおいて入射若しくは出射される光L11及びL12が、集光素子11f内において集光素子11fの光軸から第2の部分10j寄りに所定距離だけずれた位置を通過するように、光ファイバ11eと集光素子11fとの相対位置関係が設定されている。これにより、光L11及びL12の光軸は、集光素子11fにおいて、入出射光L21及びL22から離れる方向に屈曲する。同様に、第1の部分10jの光ファイバ12eにおいて入射若しくは出射される光L21及びL22が、集光素子21f内において集光素子21fの光軸から第1の部分10i寄りに所定距離だけずれた位置を通過するように、光ファイバ21eと集光素子21fとの相対位置関係が設定されている。これにより、光L21及びL22の光軸は、集光素子12fにおいて、入出射光L11及びL12から離れる方向に屈曲する。
 例えば図14に示される光入出力部10Iのように、光ファイバ11e,12eにおいて入射若しくは出射される光L11,L12,L21,L22は、集光素子11f,12f内において集光素子11f,12fの光軸からずれた位置を通過してもよい。これにより、光ファイバ11e,12eにおいて入射若しくは出射される光L11,L12,L21,L22の光軸の角度を、集光素子11f,12fによって所望の角度に調整することができる。また、図14に示される光入出力部10Iのように、光L11及びL12が、集光素子11fの光軸から第2の部分10j寄りにずれた位置を通過し、光L21及びL22が、集光素子12fの光軸から第1の部分10i寄りにずれた位置を通過することによって、光入出力部10Iを小型化できる。更に、集光素子11f,12fとして、複数のレンズが等ピッチ(間隔α)で配列されたレンズアレイを用いることもできる。さらに、光入出力部10Iは、光ファイバ11e,12eが集光素子11f,12fの反対側において互いに遠ざかるように配置されるので、光ファイバ11e,12eが干渉することを防止できる。このように、光入出力部10Iの構成が簡易となるので、低コスト化が可能となる。なお、光入出力部10Iのような形態であっても、上記第1実施形態の作用効果を好適に奏することができる。
 図15は、本変形例の更に別の形態を示す図である。図15に示される光入出力部10Jの第1の部分10iの構成は、図14に示された光入出力部10Iの第1の部分10iの構成と同じである。また、光入出力部10Jの第2の部分10kの構成は、図12に示された光入出力部10Gの第2の部分10gにおいて光L21,L22の傾斜方向を逆方向としたものである。すなわち、光入出力部10Jの第2の部分10kでは、光ファイバ12eの端面の法線が、当該光ファイバ12eの光軸に対してx方向にθaだけ傾斜している。言い換えれば、第2の部分10kの光ファイバ12eの端面は、第1の部分10iの光ファイバ11eの端面と同じ方向に同じ角度θaだけ傾斜している。更に、光ファイバ12eの光軸は、所定の軸線Cに対し、光ファイバ11eの光軸と同じ方向に同じ角度(-θb)だけ傾斜している。
 但し、第2の部分10kでは、各光ファイバ12eにおいて入射若しくは出射される光L21及びL22が、集光素子12f内において集光素子12fの光軸を通るように、光ファイバ12eと集光素子12fとの相対位置関係が設定されている。従って、光L21及びL22の光路は、集光素子12fにおいて変更されない。従って、光L21及びL22の光軸は、光L11及びL12から離れる方向に延びる。すなわち、光入出力部10Jでは、光L11,L12の光軸と、光L21,L22の光軸とが、互いに離れる方向へ向けられている。
 図15に示された光入出力部10Jのように、第1の部分10iの光ファイバ11eと第2の部分10kの光ファイバ12eとは、互いに同じ角度(-θb)だけ傾斜していてもよい。このような場合であっても、例えば、光ファイバ11e,12eに対する集光素子11f,12fの相対位置(集光素子11f,12fの光軸に対する光L11,L12,L21及びL22のずれ量)を調整することによって、光L11,L12の角度と光L21及びL22の角度とを好適に異ならせることができる。そして、上記第1実施形態の作用効果を好適に奏することができる。
 (第2の実施の形態)
図16及び図17は、第2実施形態に係る波長選択スイッチ1Bの構成を示す模式図である。図16は、直交座標系Sのy軸方向から見た波長選択スイッチ1Bの側面図であり、x軸及びz軸を含む平面における波長選択スイッチ1Bの模式的な構成を示している。図17は、直交座標系Sのx軸方向から見た波長選択スイッチ1Bの上面図であり、y軸及びz軸を含む平面における波長選択スイッチ1Bの模式的な構成を示している。
 図16及び図17に示されるように、波長選択スイッチ1Bは、所定の軸線C上に並んで配置された光入出力部10L、リレー光学系41、アナモルフィック光学系42、分光素子20、集光レンズ43、及び光偏向素子30を備えている。なお、図16及び図17では所定の軸線Cが一直線状に描かれているが、例えば反射鏡等が中途に配置されることにより所定の軸線Cが屈曲していてもよい。
 図18は、所定の軸線Cの方向(z軸方向)から見た光入出力部10Lの構成を示す図である。また、図19は、y軸方向から見た光入出力部10Lの構成を模式的に示す図である。図18及び図19に示されるように、光入出力部10Lは、3個以上の第1の光入出力ポート11を含む第1の部分10mと、3個以上の第2の光入出力ポート12を含む第2の部分10nとを有している。そして、3個以上の光入出力ポート11及び3個以上の光入出力ポート12のうち一部の光入出力ポート(本実施形態では全ての光入出力ポート11)と、残部の光入出力ポート(本実施形態では全ての光入出力ポート12)とが、所定の軸線Cおよびx軸方向と交差する方向(例えばy軸方向)に並んで配置されている。換言すれば、第1の部分10mと第2の部分10nとが、y軸方向に並んで配置されている。
 第1の部分10mの光入出力ポート11は、x軸方向に整列された第1の列15に含まれている。また、第2の部分10nの光入出力ポート12は、x軸方向に整列された第2の列16に含まれている。第2の列16は、第1の列15に対してy軸方向に並んで配置されている。光入出力ポート11,12の詳細な構成は、前述した第1実施形態、第1変形例、第2変形例、又は第3変形例と同様である。
 再び図17を参照すると、本実施形態では、光入力ポート11aからの光L11、及び光偏向素子30から光出力ポート11bへ向けられた波長成分L12と、光入力ポート12aからの光L21、及び光偏向素子30から光出力ポート12bへ向けられた波長成分L22とが、y軸方向において分光素子20の同じ位置(図中の位置P1)を通過している。このような構成によって、x軸方向から見て光L11と波長成分L12と(若しくは光L21と波長成分L22と)が同じ光路を辿るので、第1の列15に含まれる光入力ポート11aと光出力ポート11bとの間(若しくは光入力ポート12aと光出力ポート12bとの間)で光の送受を好適に行うことができる。このような構成は、例えば、光L11及び波長成分L12と、光L21及び波長成分L22とが位置P1を通過するような光パワーを前段光学系(リレー光学系41及びアナモルフィック光学系42)がy軸方向において有することにより、好適に実現される。
 本実施形態の波長選択スイッチ1Bによれば、第1実施形態の波長選択スイッチ1Aと同様に、光入出力部10Lの第1の光入出力ポート11および第2の光入出力ポート12のそれぞれにおいて入出射光の光軸に所定の角度を付与する。したがって、本実施形態の波長選択スイッチ1Bによれば、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能となる。
 また、本実施形態では、光入出力ポート11,12のうち一部の光入出力ポート(第1の列15)と、残部の光入出力ポート(第2の列16)とが、y軸方向に並んで配置されている。これにより、第1実施形態のように光入出力ポート11,12が一列に並ぶ場合と比較してx軸方向の両端に位置する光入出力ポートの間隔を短くできるので、光偏向素子30に要求される最大偏向角を抑えることができる。これにより、例えば光偏向素子30がLCOS型の位相変調素子である場合に、偏向角の精度を高めることができる。
 また、本実施形態では、全ての光入出力ポート11が上記一部の光入出力ポートに含まれ、全ての光入出力ポート12が上記残部の光入出力ポートに含まれている。これにより、光入力ポート11aから光出力ポート11bまでの光路と、光入力ポート12aから光出力ポート12bまでの光路とを完全に分離することができ、クロストークを低減することができる。
 また、本実施形態では、光L11及びL12と、光L21及び光L22とが、y軸方向において分光素子20の同じ位置P1を通過している。このような場合には、分光素子20が所定の軸線Cに対してx軸回りに傾いていても良い。その理由について、図20を参照しながら以下に説明する。図20(a)は、所定の軸線Cの方向から見た光偏向素子30の正面図である。図20(b)は、分光素子20に光L11,L21が入射する様子を示す側面図である。
 本実施形態では、互いにy軸方向に並ぶ(すなわち、y軸方向の位置が互いに異なる)第1の列15および第2の列16それぞれからの光L11,L21が、y軸方向において同じ位置P1に入射する。したがって、分光素子20に対する光L11,L21のyz面内での入射角が僅かに相違することがある。分光素子20の分光特性は分光面内(本実施形態ではyz面内)での入射角に依存するので、その結果、同じ波長の光であっても、光L11とL21とで分光後の光軸の角度が異なってしまう。つまり、図20(a)に示されるように、第1の光偏向部31と第2の光偏向部32とが、y軸方向に例えばΔyだけずれてしまう。
 ここで、分光素子20が回折格子構造を有する素子である場合、yz面内における分光素子20への光の入射角をαとすると、分光素子20から出射される波長成分の出射角βは次式で表される。
sinβ={mλ/(d・cosε)}-sinα
但し、mは分光素子20の回折次数であり、dは分光素子20の回折格子のピッチであり、λは分光素子20への入射光の波長であり、εはxz面内における分光素子20への光の入射角である。この数式から明らかなように、出射角βは、yz面内での入射角αだけでなく、xz面内での入射角εの余弦にも依存する。入射角εの余弦は、εの正負に関わらず、εの絶対値の増減に従って増減する。つまり、図20(b)に示されるようにxz面内において分光素子20を傾けると、一方の光(例えば光L11)の入射角α1は大きくなり、その余弦は小さくなるので、上の数式に基づき波長成分の出射角βが大きくなる。また、他方の光(例えば光L21)の入射角α2は小さくなり、その余弦は大きくなるので、上の数式に基づき波長成分の出射角βは小さくなる。その結果、図20(a)に示されたずれ量Δyを小さくすることが可能となる。
 なお、分光素子20を所定の軸線Cに対して傾けない形態も可能である。この場合、第1の光偏向部31において反射される光L12と、第2の光偏向部32において反射される光L22において、同一波長の光が結合される位置を遠ざけることができるので、クロストークを低減することができる。
 (第3の実施の形態)
図21及び図22は、第3実施形態に係る波長選択スイッチ1Cの構成を示す模式図である。図21は、直交座標系Sのy軸方向から見た波長選択スイッチ1Cの側面図であり、x軸及びz軸を含む平面における波長選択スイッチ1Cの模式的な構成を示している。図22は、直交座標系Sのx軸方向から見た波長選択スイッチ1Cの上面図であり、y軸及びz軸を含む平面における波長選択スイッチ1Cの模式的な構成を示している。
 図21及び図22に示されるように、波長選択スイッチ1Cは、所定の軸線C上に並んで配置された光入出力部10M、リレー光学系41、アナモルフィック光学系42、分光素子20、集光レンズ43、及び光偏向素子30を備えている。なお、図21及び図22では所定の軸線Cが一直線状に描かれているが、例えば反射鏡等が中途に配置されることにより所定の軸線Cが屈曲していてもよい。
 図23は、所定の軸線Cの方向(z軸方向)から見た光入出力部10Mの構成を示す図である。また、図24は、y軸方向から見た光入出力部10Mの構成を模式的に示す図である。図23に示されるように、光入出力部10Mは、3個以上の第1の光入出力ポート11を含む第1の部分10pと、3個以上の第2の光入出力ポート12を含む第2の部分10qとを有している。そして、3個以上の光入出力ポート11及び3個以上の光入出力ポート12のうち一部の光入出力ポート(本実施形態では光入力ポート11a及び光出力ポート12b)と、残部の光入出力ポート(本実施形態では光入力ポート12a及び光出力ポート11b)とが、所定の軸線Cおよびx軸方向と交差する方向(例えばy軸方向)に並んで配置されている。
 また、光入力ポート12a及び光出力ポート11bは、x軸方向に整列された第1の列17に含まれている。また、光入力ポート11a及び光出力ポート12bは、x軸方向に整列された第2の列18に含まれている。第2の列18は、第1の列17に対してy軸方向に並んで配置されている。光入力ポート11a,12a及び光出力ポート11b,12bの詳細な構成は、前述した第1実施形態、第1変形例、第2変形例、又は第3変形例と同様である。
 再び図22を参照すると、本実施形態では、光入力ポート11aからの光L11と、光偏向素子30から光出力ポート11bへ向けられた波長成分L12とが、y軸方向において分光素子20の異なる位置(図中の位置P3,P4)を通過している。同様に、光入力ポート12aからの光L21と、光偏向素子30から光出力ポート12bへ向けられた波長成分L22とが、y軸方向において分光素子20の異なる位置(図中の位置P4,P3)を通過している。このような構成によって、x軸方向から見て光L11と波長成分L12と(若しくは光L21と波長成分L22と)が異なる光路を辿るので、光入力ポート11aと光出力ポート11bとの間(若しくは光入力ポート12aと光出力ポート12bとの間)で光の送受を好適に行うことができる。
 ここで、分光素子20における位置P3及びP4は、次のように設定されることが望ましい。すなわち、y軸方向において、集光レンズ43の光軸から位置P3までの距離をy、集光レンズ43の光軸から位置P4までの距離をy、レンズ41aの光軸から第1の列17の光入出力ポートの中心軸線までの距離をy、レンズ41aの光軸から第2の列18の光入出力ポートの中心軸線までの距離をyとしたとき、y:y=y:yとなるように位置P3及びP4が設定されるとよい。
 このような構成は、例えば、光L11及び波長成分L22が位置P3を通過し、光L21及び波長成分L12が位置P4を通過するような光パワーを前段光学系(リレー光学系41及びアナモルフィック光学系42)がy軸方向において有することにより、好適に実現される。また、このような構成は、光入力ポート11aからの波長成分L12が光出力ポート11bに到達し、光入力ポート12aからの波長成分L22が光出力ポート12bに到達するように、y軸方向における光偏向素子30への入射角が集光レンズ43によって設定されていることにより、好適に実現される。
 本実施形態の波長選択スイッチ1Cによれば、第1実施形態の波長選択スイッチ1Aと同様に、光入出力部10Mの光入力ポート11a及び11b、並びに光出力ポート11b及び12bのそれぞれにおいて入出射光の光軸に所定の角度を付与する。したがって、本実施形態の波長選択スイッチ1Cによれば、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能となる。
 また、本実施形態では、光入出力ポート11,12のうち一部の光入出力ポート(第1の列17)と、残部の光入出力ポート(第2の列18)とが、y軸方向に並んで配置されている。これにより、第1実施形態のように光入出力ポート11,12が一列に並ぶ場合と比較してx軸方向の両端に位置する光入出力ポートの間隔を短くできるので、光偏向素子30に要求される最大偏向角を抑えることができる。これにより、例えば光偏向素子30がLCOS型の位相変調素子である場合に、偏向角の精度を高めることができる。
 なお、本実施形態においても、第2実施形態と同様に、分光素子20が所定の軸線Cに対してx軸方向に傾いていてもよい。これにより、光偏向素子30の第1の光偏向部31と第2の光偏向部32とのy軸方向におけるずれ量Δyを調整することができる。
 (第7の変形例)
図25及び図26は、上記第2実施形態および第3実施形態の一変形例を示す図である。図25は、所定の軸線Cの方向(z軸方向)から見た本変形例の光入出力部10Nの構成を示す図である。また、また、図26は、所定の軸線Cの方向(z軸方向)から見た本変形例の光入出力部10Pの構成を示す図である。
 光入出力部10N及び10Pそれぞれは、第2実施形態及び第3実施形態それぞれの構成に加えて、調芯用ポート13を更に有している。調芯用ポート13は、所定の軸線Cに沿った光軸でもって調芯用の光の入出射を行うためのポートである。なお、調芯用ポート13の内部構成は、前述した第1実施形態と同様である。
 光入出力部10N及び10Pでは、3個以上の光入出力ポート11及び3個以上の光入出力ポート12のうち一部の光入出力ポート(第1の列15,17)と、残部の光入出力ポート(第2の列16,18)とが、y軸方向に並んで配置されている。調芯用ポート13は、これら一部及び残部の光入出力ポートのそれぞれに対して少なくとも一つずつ設けられるとよい。本変形例では、第1の列15,17に一つの調芯用ポート13が設けられ、第2の列16,18に一つの調芯用ポート13が設けられている。
 本変形例のように、第2及び第3の実施形態に係る光入出力部10L及び10Mは、光入出力ポート11,12とは別に、所定の軸線Cに沿った光軸でもって調芯用の光の入出射を行う調芯用ポート13を更に有してもよい。光入出力ポート11,12は入出射光が傾斜しているため調芯に使用し難いが、このような調芯用ポート13を別に用意しておくことによって、調芯作業を容易に行うことができる。
 上述した各実施形態および各変形例による波長選択スイッチは、他に様々な変形が可能である。例えば、上記各実施形態および各変形例では、光入出力ポートが光ファイバ及び集光レンズを含むものとして説明したが、光入出力ポートはこのような形態に限られない。また、上記各実施形態および各変形例では、入出射角が互いに異なる2つの部分(第1及び第2の部分)を光入出力部が有する場合について説明したが、光入出力部は、入出射角が互いに異なる3つ以上の部分を有しても良い。
 本発明は、部品点数を抑え、光路長を過度に長くすることなく、より多くの波長成分を分離(若しくは結合)することが可能な波長選択スイッチとして利用可能である。
 1A,1B,1C…波長選択スイッチ、10,10A~10P…光入出力部、10a,10c,10e,10g…第1の部分、10b,10d,10f,10h…第2の部分、11,12…光入出力ポート、11a,12a…光入力ポート、11b,12b…光出力ポート、11c,12c…光ファイバ、11d,12d…集光素子、13…調芯用ポート、13c…光ファイバ、13d…集光素子、15,17…第1の列、16,18…第2の列、20…分光素子、30…光偏向素子、31,32…光偏向部、31a,32a…光偏向領域、41…リレー光学系、42…アナモルフィック光学系、43…集光レンズ、C…所定の軸線。

Claims (23)

  1.  所定の軸線上に並んで配置された光入出力部、分光素子、及び光偏向素子を備える波長選択スイッチであって、
     前記光入出力部は、
     第1の光入力ポートと第1の光出力ポートとを含む3個以上の第1の光入出力ポートを有し、前記所定の軸線に対し前記所定の軸線と交差する第1の方向に傾斜した光軸でもって前記第1の光入出力ポートの入出射を行う第1の部分と、
     第2の光入力ポートと第2の光出力ポートとを含む3個以上の第2の光入出力ポートを有し、前記所定の軸線に対し前記第1の方向に傾斜した光軸でもって前記第2の光入出力ポートの入出射を行う第2の部分と
     を備え、前記所定の軸線を基準とする前記第1の光入出力ポートの入出射角と前記第2の光入出力ポートの入出射角とが互いに異なり、
     前記分光素子は、前記第1及び第2の光入出力ポートに対して共通に設けられており、前記第1及び第2の光入出力ポートの入出射光の光軸を、前記所定の軸線および前記第1の方向と交差する方向へ波長に応じた角度で変化させ、
     前記光偏向素子は、
     前記分光素子を経た前記第1の光入力ポートからの光を前記第1の光出力ポートへ向ける第1の光偏向部と、
     前記分光素子を経た前記第2の光入力ポートからの光を前記第2の光出力ポートへ向ける第2の光偏向部と
     を有する、波長選択スイッチ。
  2.  前記第1及び第2の光入出力ポートが、光ファイバと、該光ファイバに対して一対一で設けられ、該光ファイバの端面に光結合された集光素子とを含む、請求項1に記載の波長選択スイッチ。
  3.  前記光ファイバの光軸と前記集光素子の光軸とが互いにずれており、
     前記3個以上の第1の光入出力ポートにおける前記光ファイバの光軸と前記集光素子の光軸とのずれ量が互いに等しく、
     前記3個以上の第2の光入出力ポートにおける前記光ファイバの光軸と前記集光素子の光軸とのずれ量が互いに等しく、
     前記第1の光入出力ポートにおける前記ずれ量と、前記第2の光入出力ポートにおける前記ずれ量とが互いに異なる、請求項2に記載の波長選択スイッチ。
  4.  前記光ファイバの端面に入射若しくは出射される光の光軸が前記所定の軸線に対して成す角度と、前記集光素子の光軸が前記所定の軸線に対して成す角度とが互いに異なり、
     前記光ファイバの端面の法線が前記光ファイバの光軸に対して傾斜しており、
     前記光ファイバの端面のコア領域が、前記所定の軸線に対して直交する直線上に並んで配置されている、請求項2に記載の波長選択スイッチ。
  5.  前記第1の光入出力ポートの前記光ファイバの端面において入射若しくは出射される光の光軸と、前記第2の光入出力ポートの前記光ファイバの端面において入射若しくは出射される光の光軸とが、互いに近づく方向へ向けられている、請求項4に記載の波長選択スイッチ。
  6.  前記第1の光入出力ポートと前記第2の光入出力ポートとが前記第1の方向に交互に並んで配置されている、請求項3に記載の波長選択スイッチ。
  7.  前記光ファイバ及び前記集光素子のうち一方が等ピッチで配列され、他方が不等ピッチで配列されており、
     前記第1の光入出力ポートにおいて不等ピッチで配列された前記光ファイバまたは前記集光素子それぞれの位置が、前記第1の光入出力ポートにおいて等ピッチで配列された前記光ファイバまたは前記集光素子それぞれに対して配列方向の一方の側にずれており、
     前記第2の光入出力ポートにおいて不等ピッチで配列された前記光ファイバまたは前記集光素子それぞれの位置が、前記第2の光入出力ポートにおいて等ピッチで配列された前記光ファイバまたは前記集光素子それぞれに対して配列方向の他方の側にずれている、請求項3または6に記載の波長選択スイッチ。
  8.  前記第1及び第2の光入出力ポートのうち一部の光入出力ポートと残部の光入出力ポートとが、前記所定の軸線および前記第1の方向と交差する第2の方向に並んで配置されている、請求項1~5のいずれか一項に記載の波長選択スイッチ。
  9.  前記第1の光入出力ポートが、前記第1の方向に整列された第1の列に含まれており、
     前記第2の光入出力ポートが、前記第1の方向に整列され前記第1の列に対して前記第2の方向に並ぶ第2の列に含まれている、請求項8に記載の波長選択スイッチ。
  10.  前記光入出力部と前記分光素子との間の前記所定の軸線上に配置された前段光学系と、
     前記分光素子と前記光偏向素子との間の前記所定の軸線上に配置された集光要素と
    を更に備え、
     前記前段光学系は、前記第1の光入力ポートの入出射光と前記第2の光入力ポートの入出射光とが前記第2の方向において前記分光素子の同じ位置を通過するように、前記第2の方向において光パワーを有する、請求項9に記載の波長選択スイッチ。
  11.  前記第1の光出力ポートと前記第2の光入力ポートとが、前記第1の方向に整列された第1の列に含まれており、
     前記第1の光入力ポートと前記第2の光出力ポートとが、前記第1の方向に整列され前記第1の列に対して前記第2の方向に並ぶ第2の列に含まれている、請求項8に記載の波長選択スイッチ。
  12.  前記光入出力部と前記分光素子との間の前記所定の軸線上に配置された前段光学系と、
     前記分光素子と前記光偏向素子との間の前記所定の軸線上に配置された集光要素と
    を更に備え、
     前記前段光学系は、前記第1の光入力ポートからの光と前記第1の光出力ポートへ向けられた光とが前記第2の方向において前記分光素子の異なる位置を通過し、前記第2の光入力ポートからの光と前記第2の光出力ポートへ向けられた光とが前記第2の方向において前記分光素子の異なる位置を通過するように、前記第2の方向において光パワーを有する、請求項11に記載の波長選択スイッチ。
  13.  前記第1の光入力ポートからの光が前記第1の光出力ポートに到達し、前記第2の光入力ポートからの光が前記第2の光出力ポートに到達するように、前記第2の方向における前記光偏向素子への入射角が前記集光要素によって設定されている、請求項12に記載の波長選択スイッチ。
  14.  前記分光素子が前記所定の軸線に対して前記第1の方向に傾いている、請求項8~13のいずれか一項に記載の波長選択スイッチ。
  15.  前記光入出力部が、前記第1及び第2の光入出力ポートとは別に、前記所定の軸線に沿った光軸でもって調芯用の光の入出射を行う調芯用ポートを更に有する、請求項1~14のいずれか一項に記載の波長選択スイッチ。
  16.  前記調芯用ポートが、光ファイバと、該光ファイバの端面に光結合された集光素子とを含んでおり、
     前記光ファイバの光軸と前記集光素子の光軸とが互いに一致している、請求項15に記載の波長選択スイッチ。
  17.  前記調芯用ポートが、前記第1及び第2の部分それぞれに少なくとも一つずつ設けられている、請求項15または16に記載の波長選択スイッチ。
  18.  前記第1及び第2の部分に対し共通の前記調芯用ポートが設けられている、請求項15または16に記載の波長選択スイッチ。
  19.  前記光入出力部が、前記第1及び第2の光入出力ポートとは別に、前記所定の軸線に沿った光軸でもって調芯用の光の入出射を行う調芯用ポートを更に有し、
     前記第1及び第2の光入出力ポートのうち一部の光入出力ポートと残部の光入出力ポートとが、前記所定の軸線および前記第1の方向と交差する第2の方向に並んで配置されており、前記調芯用ポートが、前記一部及び残部の光入出力ポートのそれぞれに対して少なくとも一つずつ設けられている、請求項1~5のいずれか一項に記載の波長選択スイッチ。
  20.  前記光偏向素子が、位相変調を行う複数の画素を有し、回折格子状の位相変調パターンを呈示することにより入射光の光路を偏向する位相変調素子であり、
     前記所定の軸線および前記第1の方向を含む面内において、前記第1及び第2の光入力ポートから到達する光の光軸が前記位相変調素子の変調面に対して直交するように、前記所定の軸線に対する前記第1及び第2の光入出力ポートの入出射角が設定されている、請求項1~8のいずれか一項に記載の波長選択スイッチ。
  21.  前記光入出力部と前記分光素子との間の前記所定の軸線上に配置された前段光学系と、
     前記分光素子と前記光偏向素子との間の前記所定の軸線上に配置された集光要素と
    を更に備え、
     前記前段光学系及び前記集光要素が、前記所定の軸線および前記第1の方向を含む面内において、前記第1及び第2の光入力ポートから到達する光の光軸が前記位相変調素子の変調面に対して直交するように、前記第1及び第2の光入力ポートからの光の光路を変更する、請求項20に記載の波長選択スイッチ。
  22.  前記第1の方向における前記前段光学系及び前記集光要素の中心光軸が互いに一致する、請求項21に記載の波長選択スイッチ。
  23.  前記第1の光入出力ポートの入出射光の光軸と前記第2の光入出力ポートの入出射光の光軸とが所定の軸線に対して対称であり、
     前記所定の軸線は、該所定の軸線に沿って出射された光が前記位相変調素子の変調面に到達した場合に、前記所定の軸線および前記第1の方向を含む面内において該光の光軸が前記位相変調素子の変調面に対して直交する軸線である、請求項22に記載の波長選択スイッチ。
PCT/JP2013/069405 2013-07-17 2013-07-17 波長選択スイッチ WO2015008349A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2013/069405 WO2015008349A1 (ja) 2013-07-17 2013-07-17 波長選択スイッチ
US14/905,039 US9482822B2 (en) 2013-07-17 2013-07-17 Wavelength selector switch
CN201380078227.1A CN105408798B (zh) 2013-07-17 2013-07-17 波长选择开关
JP2015527101A JP6191693B2 (ja) 2013-07-17 2013-07-17 波長選択スイッチ
JP2015527140A JP5991436B2 (ja) 2013-07-17 2013-11-22 光路制御装置
PCT/JP2013/081542 WO2015008403A1 (ja) 2013-07-17 2013-11-22 光路制御装置
US14/333,231 US9326050B2 (en) 2013-07-17 2014-07-16 Wavelength selective switch and method of manufacturing same
CN201410342601.0A CN104297856B (zh) 2013-07-17 2014-07-17 波长选择开关及其制造方法
US14/994,670 US9606296B2 (en) 2013-07-17 2016-01-13 Optical path control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069405 WO2015008349A1 (ja) 2013-07-17 2013-07-17 波長選択スイッチ

Publications (1)

Publication Number Publication Date
WO2015008349A1 true WO2015008349A1 (ja) 2015-01-22

Family

ID=52345845

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/069405 WO2015008349A1 (ja) 2013-07-17 2013-07-17 波長選択スイッチ
PCT/JP2013/081542 WO2015008403A1 (ja) 2013-07-17 2013-11-22 光路制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081542 WO2015008403A1 (ja) 2013-07-17 2013-11-22 光路制御装置

Country Status (4)

Country Link
US (2) US9482822B2 (ja)
JP (2) JP6191693B2 (ja)
CN (1) CN105408798B (ja)
WO (2) WO2015008349A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156015A (ja) * 2013-12-31 2015-08-27 サンテック株式会社 波長選択スイッチアレイ
WO2017008208A1 (zh) * 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9661406B2 (en) 2015-02-09 2017-05-23 Nistica, Inc. Multipoint, contentionless wavelength selective switch (WSS)
US9521473B2 (en) * 2015-02-10 2016-12-13 Nistica, Inc. Wavelength selective switch with increased frequency separation to avoid crosstalk
US11846779B2 (en) * 2018-03-15 2023-12-19 Meta Platforms Technologies, Llc Display device with varifocal optical assembly
CN115278409A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种光交换装置、光交换方法、光交换节点以及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224824A (ja) * 2007-03-09 2008-09-25 Ntt Electornics Corp 波長選択スイッチ
JP2011248000A (ja) * 2010-05-25 2011-12-08 Olympus Corp 波長選択スイッチ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781730B2 (en) * 2002-03-11 2004-08-24 Pts Corporation Variable wavelength attenuator for spectral grooming and dynamic channel equalization using micromirror routing
US7397980B2 (en) 2004-06-14 2008-07-08 Optium Australia Pty Limited Dual-source optical wavelength processor
US20070237451A1 (en) 2006-04-06 2007-10-11 Paul Colbourne Multi-unit planar lightwave circuit wavelength dispersive device
JP2010509639A (ja) 2006-11-07 2010-03-25 オリンパス株式会社 ビーム案内素子及び関連するマニホールド光ファイバスイッチ方法及びモニタリング方法
US8000568B2 (en) 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
JP4729473B2 (ja) 2006-11-30 2011-07-20 富士通株式会社 光スイッチ
US8705960B2 (en) 2007-02-08 2014-04-22 Jds Uniphase Corporation M×N wavelength selective switch (WSS)
JP4458494B2 (ja) 2007-05-29 2010-04-28 独立行政法人産業技術総合研究所 導波路型波長選択スイッチ
US8190025B2 (en) 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation
JP2011064721A (ja) 2009-09-15 2011-03-31 Olympus Corp 光スイッチ
JP5192501B2 (ja) 2010-01-14 2013-05-08 日本電信電話株式会社 波長選択スイッチ
WO2011100605A1 (en) 2010-02-12 2011-08-18 Oclaro Technology Limited Wavelength selective switch with multiple input/output ports
JP5563855B2 (ja) * 2010-03-19 2014-07-30 ジェイディーエス ユニフェイズ コーポレーション 波長選択スイッチ
US8300995B2 (en) * 2010-06-30 2012-10-30 Jds Uniphase Corporation M X N WSS with reduced optics size
US8611742B2 (en) 2011-03-15 2013-12-17 Capella Photonics, Inc. Wavelength switch system using angle multiplexing optics
WO2012172968A1 (ja) 2011-06-17 2012-12-20 住友電気工業株式会社 光学装置
US9288559B2 (en) 2011-08-01 2016-03-15 Finisar Corporation Multi directional multiplexer
CN202171659U (zh) * 2011-08-24 2012-03-21 福州高意通讯有限公司 一种波长选择开关
JP5840176B2 (ja) * 2012-09-07 2016-01-06 古河電気工業株式会社 光スイッチ
JP6427869B2 (ja) 2013-03-15 2018-11-28 住友電気工業株式会社 波長選択スイッチ
CN103197388B (zh) * 2013-04-19 2015-09-16 武汉邮电科学研究院 C+l波段波长选择开关及其实现方法和处理单元
US9326050B2 (en) 2013-07-17 2016-04-26 Sumitomo Electric Industries, Ltd. Wavelength selective switch and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224824A (ja) * 2007-03-09 2008-09-25 Ntt Electornics Corp 波長選択スイッチ
JP2011248000A (ja) * 2010-05-25 2011-12-08 Olympus Corp 波長選択スイッチ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156015A (ja) * 2013-12-31 2015-08-27 サンテック株式会社 波長選択スイッチアレイ
WO2017008208A1 (zh) * 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
US10133005B2 (en) 2015-07-10 2018-11-20 Huawei Technologies Co., Ltd. Wavelength selective switch, reconfigurable optical add/drop multiplexer, and wavelength selection method

Also Published As

Publication number Publication date
US20160216452A1 (en) 2016-07-28
JP6191693B2 (ja) 2017-09-06
CN105408798A (zh) 2016-03-16
CN105408798B (zh) 2018-06-19
US20160124152A1 (en) 2016-05-05
US9482822B2 (en) 2016-11-01
JPWO2015008349A1 (ja) 2017-03-02
JPWO2015008403A1 (ja) 2017-03-02
JP5991436B2 (ja) 2016-09-14
WO2015008403A1 (ja) 2015-01-22
US9606296B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
JP6191693B2 (ja) 波長選択スイッチ
JP6427869B2 (ja) 波長選択スイッチ
US8849077B2 (en) Wavelength selective switch
JP5840176B2 (ja) 光スイッチ
KR101858306B1 (ko) 광학 장치
WO2012172968A1 (ja) 光学装置
EP2299309B1 (en) Wavelength selection switch
US9326050B2 (en) Wavelength selective switch and method of manufacturing same
WO2014034144A1 (ja) 光信号処理装置
JP5935465B2 (ja) 光学装置
JP2015031787A (ja) 波長選択スイッチ及びその製造方法
JP2011064721A (ja) 光スイッチ
US8659812B2 (en) Wavelength selective switch
JP5192501B2 (ja) 波長選択スイッチ
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JP2012181497A (ja) 波長選択スイッチ
JP2006039304A (ja) 光スイッチ
JP5508368B2 (ja) 波長選択スイッチ
US6823114B2 (en) Optical signal processing apparatus
JP2006133298A (ja) 波長選択スイッチ
JP2012168290A (ja) 波長選択スイッチ
JP2013011718A (ja) 波長選択スイッチ
JP2013125036A (ja) 波長選択スイッチ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078227.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889676

Country of ref document: EP

Kind code of ref document: A1