WO2015008334A1 - プラスチックフィルムおよびその製造方法 - Google Patents
プラスチックフィルムおよびその製造方法 Download PDFInfo
- Publication number
- WO2015008334A1 WO2015008334A1 PCT/JP2013/069319 JP2013069319W WO2015008334A1 WO 2015008334 A1 WO2015008334 A1 WO 2015008334A1 JP 2013069319 W JP2013069319 W JP 2013069319W WO 2015008334 A1 WO2015008334 A1 WO 2015008334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plastic film
- film
- heat
- syndiotactic polystyrene
- thermal expansion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/16—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2025/00—Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
- B29K2025/04—Polymers of styrene
- B29K2025/06—PS, i.e. polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
Definitions
- the present invention relates to a plastic film, particularly a heat-resistant plastic film, and a method for producing the same.
- the plastic film is required to have good heat distortion resistance so that the plastic film is not melted and deformed by heat when the metal foil is laminated. Furthermore, even if it has good heat distortion resistance, if the plastic film undergoes dimensional variation (thermal expansion and / or thermal shrinkage) due to heat, the laminate will be warped as a whole, which is good for the plastic film. There is also a need for excellent heat-resistant dimensional stability.
- Patent Document 1 discloses that mechanical strength and heat shrinkage in the longitudinal direction and the transverse direction are performed by performing specific sequential biaxial stretching on an unstretched amorphous film made of a syndiotactic polystyrene film.
- a technique for producing a syndiotactic polystyrene film having an excellent balance of rates is disclosed.
- An object of the present invention is to provide a plastic film which is sufficiently excellent in heat-resistant dimensional stability and heat-resistant deformation and has a good tensile elongation and a method for producing the same.
- the present invention is a biaxially oriented plastic film containing a syndiotactic polystyrene resin,
- the coefficient of thermal expansion when the temperature is raised from 50 ° C. to 100 ° C. under conditions of a tensile load of 5 gf / 2 mm and a temperature increase rate of 10 ° C./min is 80 ppm / ° C. or less
- the present invention relates to a plastic film having an absolute value of heat shrinkage at 180 ° C. of 3.0% or less.
- the present invention also relates to a method for producing a plastic film, in which a precursor film containing a syndiotactic polystyrene resin is produced, and then a simultaneous biaxial stretching process including at least a heat treatment process is performed on the precursor film.
- the plastic film of the present invention is sufficiently excellent in heat-resistant dimensional stability and heat-resistant deformation and has a good tensile elongation. For this reason, when the plastic film of the present invention is used as a process film at the time of press molding, the uneven shape and the planar shape of the mold forming surface can be transferred with sufficient accuracy.
- the plastic film according to the present invention is a biaxially oriented film containing a syndiotactic polystyrene resin.
- Biaxial orientation means that the polymer molecules constituting the film are oriented mainly in two directions different from each other in the in-plane direction of the film, preferably in two directions substantially perpendicular to each other. For example, it can be achieved by simultaneous biaxial stretching described later.
- a film containing a syndiotactic polystyrene resin is converted into a biaxially oriented film by simultaneous biaxial stretching, thereby comparing with a film that is not biaxially oriented and a biaxially oriented film by sequential biaxial stretching. Sufficiently excellent heat-resistant dimensional stability and heat-resistant deformation can be exhibited, and the tensile elongation can be improved.
- the heat-resistant dimensional stability means a film characteristic in which expansion and contraction of the film are sufficiently prevented even when the film is heated.
- the heat-resistant deformation property means a film characteristic that can sufficiently prevent melt deformation of the film even when the film is heated.
- the syndiotactic polystyrene resin (hereinafter simply referred to as “SPS resin”) contained in the plastic film of the present invention is a styrene polymer having a so-called syndiotactic structure.
- the syndiotactic structure is a syndiotactic structure, that is, a three-dimensional structure in which phenyl groups or substituted phenyl groups that are side chains with respect to the main chain formed from carbon-carbon bonds are alternately located in opposite directions. It means structure.
- the tacticity (stereoregularity) of the SPS resin can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
- the tacticity of the SPS resin measured by the 13 C-NMR method is the ratio of the presence of a plurality of consecutive structural units, for example, a dyad for two, a triad for three, a pentad for five.
- the SPS resin in the present invention is usually 75% or more, preferably 85% or more, racemic triad, 60% or more, preferably 75% or more, or 30% or more, preferably 50%, racemic pentad. It is a styrenic polymer having the above syndiotacticity.
- styrenic polymers as SPS resins include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (vinyl benzoate), These hydrogenated polymers and the like and mixtures thereof, or copolymers containing these as main components can be mentioned.
- Poly (alkyl styrene) includes poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (tertiary butyl styrene), poly (phenyl styrene), poly (vinyl naphthalene), poly (vinyl styrene) ) And the like.
- Examples of poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like.
- Examples of poly (halogenated alkylstyrene) include poly (chloromethylstyrene).
- poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene).
- the weight average molecular weight of the SPS resin constituting the plastic film according to the present invention is 10,000 to 3,000,000, preferably 30,000 to 1,500,000, particularly preferably 50,000 to 500,000. It is.
- the glass transition temperature of the SPS resin is 60 to 140 ° C., preferably 70 to 130 ° C.
- the melting point of the SPS resin is 200 to 320 ° C., preferably 220 to 280 ° C.
- values measured in accordance with JIS K7121 are used for the glass transition temperature and melting point of the resin.
- the SPS resin can be obtained as a commercial product or can be produced by a known method.
- the SPS resin can be obtained, for example, as “Zarek” (142ZE, 300ZC, 130ZC, 90ZC) manufactured by Idemitsu Kosan Co., Ltd.
- the SPS resin contains two or more types of SPS resins having different tacticity (racemic dyad, racemic triad or racemic pentad), type, glass transition temperature and / or melting point within the above-mentioned range. Also good.
- the plastic film of the present invention may contain other polymers in addition to the SPS resin as long as it does not adversely affect heat-resistant dimensional stability, heat-resistant deformation and film-forming properties.
- polystyrene resins such as polystyrene resins other than the SPS resins, styrene-butadiene block copolymers (SBR), hydrogenated styrene-butadiene-styrene block copolymers (SEBS), and the like.
- Synthetic rubber such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate; polyphenylene sulfite; polyarylate; polyether sulfone; polyphenylene ether .
- the polystyrene resin other than the SPS resin includes a so-called isotactic polystyrene resin and an atactic polystyrene resin.
- the content ratio of the SPS resin to the total polymer component in the plastic film is preferably 60% by weight or more, more preferably 80% by weight or more, and most preferably, from the viewpoint of further improving the heat-resistant dimensional stability and heat-resistant deformation. Is 100% by weight. When two or more kinds of SPS resins are contained, the total ratio thereof may be within the above range.
- the plastic film may contain additives such as antioxidants, ultraviolet absorbers, light stabilizers, lubricants, antistatic agents, inorganic fillers, colorants, crystal nucleating agents and flame retardants.
- any pigment and dye used in the plastic film field can be used.
- the content of the colorant is not particularly limited as long as the object of the present invention is achieved, and for example, 1 to 30% by weight with respect to the polymer component is preferable.
- the plastic film of the present invention can be produced by the following method. For example, after preparing the precursor film by mixing the SPS and other polymers and additives that are optionally contained in a predetermined ratio, and melting and kneading, at least a heat treatment step is performed on the obtained precursor film. Including a biaxial stretching step.
- a known method can be adopted as a method for producing the precursor film. For example, a mixture composed of desired components may be melted and kneaded with an extruder, the kneaded material is extruded from a T die, and then cooled.
- the thickness of the precursor film is not particularly limited, and is, for example, 20 to 2000 ⁇ m, preferably 30 to 1000 ⁇ m.
- the biaxial stretching step is a step of performing heat treatment after performing biaxial stretching.
- the glass transition temperature of the film can be increased, the thermal expansion coefficient can be decreased, or the absolute value of the thermal shrinkage ratio can be decreased.
- Biaxial stretching is performed in the MD direction and the TD direction.
- the stretching method includes a sequential biaxial stretching method and a simultaneous biaxial stretching method, and a simultaneous biaxial stretching method is performed.
- simultaneous biaxial stretching instead of simultaneous biaxial stretching, after performing stretching in one of the MD and TD directions, and then performing sequential biaxial stretching in which stretching is performed in the other direction, thermal expansion in the direction in which stretching was performed first The rate of decrease in the rate becomes smaller, the thermal shrinkage rate becomes worse, and the heat-resistant dimensional stability is lowered.
- uniaxial stretching is performed instead of biaxial stretching, the coefficient of thermal expansion in the non-stretched direction is not reduced, and the heat-resistant dimensional stability is lowered.
- the MD direction is a so-called flow direction, and means the direction (longitudinal direction) of the precursor film taken from the extruder.
- the TD direction is a so-called width direction and means a direction orthogonal to the MD direction.
- the stretching ratio, stretching temperature, and stretching speed are not particularly limited as long as the object of the present invention is achieved, but are within the following ranges. This is because the heat-resistant dimensional stability and the heat shrinkage rate are further improved.
- the draw ratio is within a range in which breakage of 2.0 times or more does not occur in both the MD direction and the TD direction, and is particularly preferably 2.0 to 5.0, and more preferably 2.2 to 4.0 times.
- the draw ratios in the MD direction and the TD direction are preferably approximated. Specifically, when the draw ratio in the MD direction is P MD and the draw ratio in the TD direction is P TD , “P TD ⁇ P MD ” is preferably ⁇ 0.6 to +0.6, more preferably ⁇ 0 .3 to +0.3.
- the draw ratio of MD direction is a ratio based on MD direction length just before extending
- the stretching ratio in the TD direction is a ratio based on the length in the TD direction immediately before stretching.
- the amount of decrease in the coefficient of thermal expansion can be controlled by adjusting the draw ratio within the above range. For example, when the draw ratio in a predetermined direction is increased, the range of decrease in the coefficient of thermal expansion in that direction is increased.
- the stretching temperature is Tg P or higher and Tg P + 30 ° C. or lower when the glass transition temperature of the polymer component constituting the film is Tg P (° C.), and preferably Tg from the viewpoint of further improving the heat-resistant dimensional stability.
- the stretching temperature is the atmospheric temperature at which stretching is performed.
- the Tg P of the polymer component is the sum of values obtained by multiplying the glass transition temperature of each polymer by the content ratio of the polymer.
- the amount of decrease in the coefficient of thermal expansion can be controlled by adjusting the stretching temperature within the above range. For example, when the stretching temperature is lowered, the range of decrease in the thermal expansion coefficient is increased.
- the stretching speed is 50 to 10,000% / min in both the MD direction and the TD direction, preferably 100 to 5000% / min, and more preferably 100 to 3000% / min.
- the stretching speed is a value calculated by ⁇ (dimension after stretching / dimension before stretching) -1 ⁇ ⁇ 100 (%) / stretching time.
- the amount of decrease in the coefficient of thermal expansion can be controlled by adjusting the stretching speed within the above range. For example, when the stretching speed is increased, the reduction width of the thermal expansion coefficient is increased.
- the heat treatment is a process for fixing the orientation of the polymer molecules by holding the stretched film at a temperature equal to or higher than the stretching temperature.
- the heat treatment temperature is Tg P + 70 ° C. or higher and Tm P or lower, when the glass transition temperature of the polymer component constituting the film is Tg P (° C.) and the melting point is Tm P (° C.). From the viewpoint of further improving the heat distortion resistance, Tg P + 75 ° C. or higher and Tm P ⁇ 20 ° C. or lower are preferable.
- the heat treatment temperature is an ambient temperature for holding the film.
- Tm P of the polymer component is the sum of values obtained by multiplying the melting point of each polymer by the content ratio of the polymer.
- the absolute value of heat shrinkage can be controlled by adjusting the heat treatment temperature within the above range. For example, when the heat treatment temperature is increased, the absolute value of the heat shrinkage rate is decreased.
- the heat treatment may be a tension heat treatment in which the heat treatment is performed while maintaining the tension during the biaxial stretching treatment, or a relaxation heat treatment in which the tension is relaxed and the heat treatment is performed simultaneously with the treatment.
- a composite heat treatment may be performed in which the tension is relaxed and the heat treatment (second heat treatment) is performed.
- relaxation heat treatment is performed.
- the heat treatment temperature is set within the above range.
- the relaxation magnification is set in the MD direction and the TD direction from the viewpoint of reducing the absolute value of the heat shrinkage rate, further improving the heat-resistant dimensional stability and heat-resistant deformation property, and flatness of the film. Both are preferably 0.8 to 1.00 times, more preferably 0.85 to 1.00 times, and most preferably 0.90 to 0.98 times.
- the relaxation magnifications in the MD direction and the TD direction are preferably approximated.
- Q MD is the relaxation factor in the MD direction
- Q TD is the relaxation factor in the TD direction
- “Q TD ⁇ Q MD ” is preferably ⁇ 0.1 to +0.1, more preferably ⁇ 0.
- the relaxation magnification in the MD direction is a magnification based on the MD direction length immediately after stretching.
- the relaxation magnification in the TD direction is a magnification based on the length in the TD direction immediately after stretching.
- the absolute value of the heat shrinkage rate can be controlled by adjusting the relaxation magnification within the above range. For example, if the relaxation magnification in a predetermined direction is reduced, the amount of decrease in the absolute value of the heat shrinkage rate in that direction increases.
- the thickness of the plastic film of the present invention is not particularly limited, and is, for example, 10 to 150 ⁇ m, preferably 12 to 125 ⁇ m.
- the plastic film of the present invention exhibits remarkably excellent heat-resistant dimensional stability and heat-resistant deformation. As a result, even when the plastic film of the present invention is used as a heat-resistant film and laminated on the film under high temperature conditions, warping and melt deformation can be sufficiently prevented.
- the plastic film of the present invention has, for example, a thermal expansion coefficient and a thermal contraction ratio in specific ranges, respectively.
- the coefficient of thermal expansion when the temperature is raised from 50 ° C. to 100 ° C. under conditions of a tensile load of 5 gf / 2 mm and a temperature increase rate of 10 ° C./min is 80 ppm / ° C. or less, preferably 70 ppm / ° C. Below, more preferably 60 ppm / ° C. or less, most preferably 50 ppm / ° C. or less.
- the coefficient of thermal expansion is within the above range for both the MD direction and the TD direction. If the coefficient of thermal expansion is too large, the heat-resistant dimensional stability is lowered, and warping during lamination cannot be sufficiently prevented.
- the thermal expansion coefficient of the plastic film of the present invention is usually 1 to 80 ppm / ° C., preferably 5 to 70 ppm / ° C., more preferably 10 to 60 ppm / ° C., and most preferably 15 to 50 ppm / ° C.
- the absolute value of the difference between the MD direction and the TD direction of the thermal expansion coefficient is preferably 50 ppm / ° C. or less, more preferably 40 ppm / ° C. Hereinafter, it is more preferably 20 ppm / ° C. or less.
- the coefficient of thermal expansion is determined by suspending a test piece (2 mm ⁇ 25 mm) so that the longitudinal direction is a vertical direction, applying a tensile load of 5 gf / 2 mm width to the lower end of the test piece, Is a coefficient of thermal expansion when the temperature is raised from 50 ° C. to 100 ° C. at a rate of temperature increase of 10 ° C./min.
- the coefficient of thermal expansion is measured when the tensile direction is the MD direction and when the tensile direction is the TD direction, and is specifically measured by the method described later.
- a positive value means expansion
- a negative value means contraction.
- the absolute value of the heat shrinkage rate at 180 ° C. is 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
- the absolute value of the heat shrinkage rate is within the above range for both the MD direction and the TD direction. If the absolute value of the heat shrinkage rate is too large, the heat-resistant dimensional stability is lowered, and warping during lamination cannot be sufficiently prevented. In particular, when used as a press molding process film, the molding surface of the mold cannot be sufficiently transferred.
- the absolute value of the difference between the direction and the TD direction is 2.5% or less, more preferably 2.0% or less, still more preferably 1.0% or less, and most preferably 0.5% or less.
- the heat shrinkage rate is a heat shrinkage rate in each of the MD direction and the TD direction when the test piece (200 mm ⁇ 200 mm) is left at an ambient temperature of 180 ° C. for 30 minutes, and will be described in detail later. Measured by the method.
- a positive value means shrinkage
- a negative value means expansion.
- the glass transition temperature of the plastic film of the present invention is 150 ° C. or higher, preferably 160 ° C. or higher, more preferably 170 ° C. or higher.
- the plastic film of the present invention has a glass transition temperature of 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher before and after the biaxial stretching step including the heat treatment described above, in the production process. It is rising.
- the glass transition temperature of the plastic film of this invention is to about 250 degreeC, it is not specifically limited to it. Further, the rising temperature range of the glass transition temperature is up to about 120 ° C., but is not particularly limited thereto.
- the glass transition temperature of the plastic film is a value measured based on JIS C6481: 1996 “5.17.1 TMA method”.
- the plastic film of the present invention has a good tensile elongation.
- the tensile elongation of the plastic film of the present invention is 10% or more, particularly 15% or more, and preferably 20% or more.
- the upper limit of the tensile elongation in the plastic film of the present invention is usually 300%, particularly 200%.
- the tensile elongation is a value measured based on JIS K7127.
- the plastic film of the present invention is useful as a heat resistant film.
- the heat resistant film is, for example, used under a high temperature condition of 80 ° C. or higher, particularly 150 ° C. or higher. Therefore, heat resistance such as heat resistant dimensional stability and heat distortion resistance is required even under the high temperature condition. It is a film.
- the heat-resistant film include a heat-resistant film for lamination, a heat-resistant film for release, a heat-resistant film for sticking, and the like.
- a heat-resistant film for lamination is a film that is used by laminating and integrating other layers on its surface, and is a film that requires heat resistance because it is exposed to high temperature conditions during lamination. Examples of other layers include a metal layer, a ceramic layer, and a resin layer.
- the heat-resistant film for lamination is useful, for example, as a base film used when manufacturing a flexible printed circuit board such as an electronic device, a flexible solar cell, and a solar cell backsheet.
- the plastic film of the present invention when used as a base film for a printed circuit board, a high temperature condition of, for example, 80 to 200 ° C. is applied on the film by a dry lamination method, a vapor deposition method, a sputtering method, or the like. A wiring metal layer is formed below. Even in such applications, the plastic film of the present invention is sufficiently prevented from dimensional variation and deformation, so that the laminate can be sufficiently prevented from warping and the film can be sufficiently prevented from peeling off from the metal layer.
- a heat-resistant film for mold release is a film called a so-called process film, and is used for the purpose of protecting a material to be processed or supporting another material in a predetermined processing process, but is finally peeled and removed. It is.
- a heat-resistant film for mold release is used as a protective layer for a molding material by interposing the film between a mold and a molding material during hot press molding.
- the heat-release film for release is used as a support layer for the layer by forming a layer on the film. Since heat is applied to the heat-release film for mold release in the press molding step, the layer forming step, and the subsequent steps, heat resistance is required to prevent dimensional variation and deformation.
- the heat release film for release is useful as, for example, a press molding process film, a resin film forming process film, a ceramic thin film forming process film, a metal thin film forming process film, and the like.
- the mold and the molding material are fused by interposing the film between the mold and the molding material. While preventing, the molding surface of the mold can be accurately transferred.
- the press molding process film of the present invention is sufficiently prevented from dimensional variation and deformation, so that the molding surface can be accurately transferred even when the mold molding surface has irregularities with a depth of 1 mm.
- the type of plastic constituting the molding material is not particularly limited, and for example, epoxy resin, phenol resin, melamine resin, urea resin, alkyd resin, polyimide resin, polyester resin, polyurethane resin, acrylic resin, and the like can be used.
- Conditions known in the field of plastic molding can be used for the mold temperature, pressure, and processing time during pressing.
- the mold temperature during pressing is usually 80 to 200 ° C.
- the press pressure is usually 1 to 150 kg / cm 2 .
- the pressing time is usually 0.5 to 60 minutes.
- the plastic film of the present invention when used as a process film for forming a metal thin film, on the film, for example, at a temperature of 80 to 200 ° C., as in the case of using as a base film of a printed board.
- a metal layer is formed under high temperature conditions.
- the plastic film of the present invention is sufficiently prevented from dimensional variation and deformation, and can sufficiently prevent warping of the laminate, so that a metal layer having a sufficiently uniform thickness can be formed at the time of forming the metal layer. Can be formed.
- the heat-resistant film for sticking is useful as a base film of an adhesive tape used under a high temperature condition of, for example, 80 to 200 ° C.
- the plastic film of the present invention is sufficiently prevented from dimensional variation, strength reduction and deformation. Warp and peeling of the adhesive tape can be sufficiently prevented.
- Examples / Comparative Examples The components described in Table 1 and Table 2 were melt extruded from a T die at a resin temperature of 280 ° C. with an extruder, and then cooled to obtain a precursor film.
- the precursor film was stretched and heat-treated under the conditions described in Tables 1 and 2.
- the heat treatment was a relaxation heat treatment at a predetermined temperature and a relaxation magnification.
- Simultaneous biaxial stretching was performed simultaneously in the MD direction and the TD direction.
- Sequential biaxial stretching was performed in the MD direction and then in the TD direction. Uniaxial stretching was performed only in the MD direction.
- Comparative Example 1 neither stretching treatment nor heat treatment was performed.
- Comparative Example 2 only the heat treatment was performed without performing the stretching treatment.
- syndiotactic polystyrene “Zarek 142ZE” manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature 95 ° C., melting point 247 ° C. was used.
- thermomechanical measuring device Q400EM; TA INSTRUMENTS
- suspend the test piece film; 2 mm x 25 mm
- a tensile load of 5 gf / 2 mm width was applied.
- the ambient temperature was raised at a rate of temperature rise of 10 ° C./min
- the dimensional change from 50 ° C. to 100 ° C. was converted into the amount of change per 1 ° C.
- the thermal expansion coefficient R 1 was measured.
- the coefficient of thermal expansion was measured when the tensile direction was the MD direction and the TD direction.
- a positive value for the coefficient of thermal expansion R 1 means that it has expanded.
- R 1 ⁇ 60 ppm / ° C. (best); ⁇ : 60 ppm / ° C. ⁇ R 1 ⁇ 70 ppm / ° C. (good); ⁇ : 70 ppm / ° C. ⁇ R 1 ⁇ 80 ppm / ° C. (no problem in practical use); ⁇ : 80 ppm / ° C. ⁇ R 1 (practical problem).
- the obtained film was used as a process film.
- a film 4 is interposed between the flake 1 and the molds 2, 3.
- the film 4 was held and fixed outside the mold. Concave portions and convex portions are formed on the molding surfaces of the molds 2 and 3, respectively, and the concave portions and the convex portions are fitted during pressing.
- the press conditions were as follows.
- A The concave and convex shape and the planar shape of the mold were transferred as they were on the transfer surface; ⁇ : The uneven shape and / or the planar shape transferred to the transfer surface was not perfect, but was within a range where there was no practical problem; X: The uneven shape and / or the planar shape transferred to the transfer surface was not sufficient, and wrinkle transfer was observed, causing a problem in practical use.
- Tensile elongation The tensile elongation was measured according to JIS K7127. When the tensile elongation was less than 10%, breakage occurred when the release film was evaluated. A: 20% ⁇ tensile elongation (best); ⁇ : 15% ⁇ tensile elongation ⁇ 20% (good); ⁇ : 10% ⁇ tensile elongation ⁇ 15% (no problem in practical use); and ⁇ : tensile elongation ⁇ 10%.
- TMA Glass transition temperature
- a test piece (film; 2 mm ⁇ 25 mm) was heated with a thermomechanical measuring apparatus (Q400EM; TA INSTRUMENTS) under the conditions of a tensile load of 5 gf / 2 mm width and a heating rate of 10 ° C./min.
- Tg was measured in the case where the tensile direction was the MD direction and the TD direction, and was shown as an average value thereof.
- the measurement of Tg was performed on the finally obtained film and the film just before stretching, and the increase width (° C.) was obtained.
- ⁇ Tg of the finally obtained film A 170 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
耐熱寸法安定性および耐熱変形性に十分に優れたシンジオタクチックポリスチレン系樹脂含有プラスチックフィルムおよびその製造方法を提供する。シンジオタクチックポリスチレン系樹脂を含有する二軸配向プラスチックフィルムであって、引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で50℃から100℃まで昇温したときの熱膨張率が80ppm/℃以下であり、180℃での熱収縮率の絶対値が3.0%以下であるプラスチックフィルム。シンジオタクチックポリスチレン系樹脂を含有する前駆体フィルムを製造した後、該前駆体フィルムに対して少なくとも熱処理工程を含む同時二軸延伸工程を実施するプラスチックフィルムの製造方法。
Description
本発明はプラスチックフィルム、特に耐熱性プラスチックフィルム、およびその製造方法に関する。
近年、電子機器、半導体、太陽電池等の分野において、プラスチックフィルムと金属箔との積層技術、プラスチックフィルムへの蒸着技術やスパッタリング技術、プラスチックフィルムとセラミックとの積層技術、プラスチックフィルムへの各種樹脂のコーティング技術や積層技術といった複合化技術が盛んであり、複雑化の傾向にある。得られた積層品等の複合体は、そのまま製品として用いられる場合もあれば、当該複合体からプラスチックフィルムを、いわゆる工程フィルム(離型フィルム)として剥離・除去して得られたものが製品として用いられる場合もある。このようにプラスチックフィルムの用途は多岐にわたっている。
プラスチックフィルムには一般的に熱が付与される場合が多く、より高い温度が付与される場合が増えている。さらに近年の高性能化ニーズに伴い、プラスチックフィルムに求められる耐熱性は厳しくなっている。具体的には、例えば金属箔の積層時において熱によりプラスチックフィルムに溶融変形が起こらないように、プラスチックフィルムには良好な耐熱変形性が求められている。さらに、たとえ良好な耐熱変形性を有していても、熱によりプラスチックフィルムに寸法変動(熱膨張および/または熱収縮)が起こると、積層体に全体として反りが生じるため、プラスチックフィルムには良好な耐熱寸法安定性も求められている。
また例えば、プラスチックフィルムを工程フィルムとしてプレス成形時の融着防止のために金型と被成形材料との間に介在させて使用する場合、当該フィルムに寸法変動が起こると、金型成形面の凹凸が十分に転写されないため、当該工程フィルムには特に良好な耐熱寸法安定性が求められている。この場合、当該工程フィルムの伸び率が悪いと、工程フィルムがプレス成形時に被成形材料の変形に追随できず、破れが起こり、金型と被成形材料との融着を有効に防止できないため、良好な引張伸び率も求められている。
寸法安定性に優れたプラスチックフィルムの一例として、シンジオタクチックポリスチレン系フィルムが知られている。例えば、特許文献1には、シンジオタクチックポリスチレン系フィルムよりなる未延伸非晶のフィルムに対して、特定の逐次二軸延伸を行うことにより、縦方向と横方向における、機械的強度や熱収縮率のバランスに優れたシンジオタクチックポリスチレン系フィルムを製造する技術が開示されている。
しかしながら、上記の技術では、十分な耐熱寸法安定性を達成することができず、例えば得られたフィルムを工程フィルムとしてプレス成形時に使用した場合、金型成形面の凹凸を精度よく転写できなかった。
本発明は、耐熱寸法安定性および耐熱変形性に十分に優れ、良好な引張伸び率を有するプラスチックフィルムおよびその製造方法を提供することを目的とする。
本発明は、シンジオタクチックポリスチレン系樹脂を含有する二軸配向プラスチックフィルムであって、
引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で50℃から100℃まで昇温したときの熱膨張率が80ppm/℃以下であり、
180℃での熱収縮率の絶対値が3.0%以下であるプラスチックフィルムに関する。
引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で50℃から100℃まで昇温したときの熱膨張率が80ppm/℃以下であり、
180℃での熱収縮率の絶対値が3.0%以下であるプラスチックフィルムに関する。
本発明はまた、シンジオタクチックポリスチレン系樹脂を含有する前駆体フィルムを製造した後、該前駆体フィルムに対して少なくとも熱処理工程を含む同時二軸延伸工程を実施するプラスチックフィルムの製造方法に関する。
本発明のプラスチックフィルムは耐熱寸法安定性および耐熱変形性に十分に優れ、良好な引張伸び率を有する。このため、本発明のプラスチックフィルムを特に工程フィルムとしてプレス成形時に使用した場合、金型成形面の凹凸形状、平面形状を十分に精度よく転写できる。
本発明に係るプラスチックフィルムはシンジオタクチックポリスチレン系樹脂を含有する二軸配向フィルムである。二軸配向とは、当該フィルムを構成するポリマー分子が当該フィルムの面内方向において、主として、互いに異なる2方向、好ましくは略直角をなす2方向で配向していることを意味するものであり、例えば後述する同時二軸延伸により達成することができる。本発明においてはシンジオタクチックポリスチレン系樹脂を含有するフィルムを同時二軸延伸で二軸配向フィルムとすることにより、二軸配向していないフィルムおよび逐次二軸延伸による二軸配向フィルムと比較して、十分に優れた耐熱寸法安定性および耐熱変形性が発現し、引張伸び率を向上させることができる。
本明細書中、耐熱寸法安定性とは、フィルムを加熱しても、フィルムの膨張および収縮が十分に防止されるフィルム特性を意味するものとする。
耐熱変形性とは、フィルムを加熱しても、フィルムの溶融変形が十分に防止されるフィルム特性を意味するものとする。
耐熱変形性とは、フィルムを加熱しても、フィルムの溶融変形が十分に防止されるフィルム特性を意味するものとする。
<シンジオタクチックポリスチレン系樹脂>
本発明のプラスチックフィルムに含有されるシンジオタクチックポリスチレン系樹脂(以下、単に「SPS系樹脂」という)は、いわゆるシンジオタクチック構造を有するスチレン系ポリマーである。シンジオタクチック構造とは、立体化学構造がシンジオタクチック構造、即ち、炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基または置換フェニル基が交互に反対方向に位置する立体構造を意味するものである。
本発明のプラスチックフィルムに含有されるシンジオタクチックポリスチレン系樹脂(以下、単に「SPS系樹脂」という)は、いわゆるシンジオタクチック構造を有するスチレン系ポリマーである。シンジオタクチック構造とは、立体化学構造がシンジオタクチック構造、即ち、炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基または置換フェニル基が交互に反対方向に位置する立体構造を意味するものである。
SPS系樹脂のタクティシティー(立体規則性)は同位体炭素による核磁気共鳴法(13C-NMR法)により定量することができる。13C-NMR法により測定されるSPS系樹脂のタクティシティーは、連続する複数個の構成単位の存在割合、例えば、2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドによって示すことができる。本発明におけるSPS系樹脂は、通常、ラセミダイアッドで75%以上、好ましくは85%以上、若しくはラセミトリアッドで60%以上、好ましくは75%以上、若しくはラセミペンタッドで30%以上、好ましくは50%以上のシンジオタクティシティーを有するスチレン系ポリマーである。
SPS系樹脂としてのスチレン系ポリマーの種類としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体等及びこれらの混合物、又はこれらを主成分とする共重合体が挙げられる。
ポリ(アルキルスチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(ターシャリーブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、ポリ(ビニルスチレン)等が挙げられる。
ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)等が挙げられる。
ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等が挙げられる。
ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)等が挙げられる。
ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)等が挙げられる。
ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等が挙げられる。
ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)等が挙げられる。
本発明に係るプラスチックフィルムを構成するSPS系樹脂の重量平均分子量は、10,000~3,000,000、好ましくは30,000~1,500,000、特に好ましくは50,000~500,000である。SPS系樹脂のガラス転移温度は60~140℃、好ましくは70~130℃である。SPS系樹脂の融点は200~320℃、好ましくは220~280℃である。
本明細書中、樹脂のガラス転移温度および融点はJIS K7121に従って測定された値を用いている。
SPS系樹脂は市販品として入手することもできるし、公知の方法によって製造することもできる。
SPS系樹脂は例えば、出光興産(株)社製「ザレック」(142ZE、300ZC、130ZC、90ZC)等として入手できる。
SPS系樹脂は例えば、出光興産(株)社製「ザレック」(142ZE、300ZC、130ZC、90ZC)等として入手できる。
プラスチックフィルム中、SPS系樹脂は上記した範囲内で、タクティシティー(ラセミダイアッド、ラセミトリアッドまたはラセミペンタッド)、種類、ガラス転移温度および/または融点が異なる2種類以上のSPS系樹脂が含有されてもよい。
本発明のプラスチックフィルムは、耐熱寸法安定性、耐熱変形性および製膜性に悪影響を与えない範囲で、上記SPS系樹脂以外に、他のポリマーを含有してもよい。
他のポリマーの具体例としては、例えば、前記SPS系樹脂以外のポリスチレン系樹脂、スチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)等のポリスチレン系合成ゴム;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート等のポリエステル樹脂;ポリフェニレンサルファイト;ポリアリレート;ポリエーテルサルホン;ポリフェニレンエーテル等が挙げられる。
前記SPS系樹脂以外のポリスチレン系樹脂とは、いわゆるアイソタクチックポリスチレン系樹脂およびアタクチックポリスチレン系樹脂を包含して意味するものである。
プラスチックフィルム中の全ポリマー成分に対するSPS系樹脂の含有割合は、耐熱寸法安定性および耐熱変形性のさらなる向上の観点から、60重量%以上が好ましく、より好ましくは80重量%以上であり、最も好ましくは100重量%である。2種類以上のSPS系樹脂が含有される場合、それらの合計割合が上記範囲内であればよい。
<添加剤>
プラスチックフィルムは上記したポリマー以外に、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、無機フィラー、着色剤、結晶核剤、難燃剤等の添加剤を含有してもよい。
プラスチックフィルムは上記したポリマー以外に、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、無機フィラー、着色剤、結晶核剤、難燃剤等の添加剤を含有してもよい。
着色剤はプラスチックフィルムの分野で使用される任意の顔料および染料が使用できる。着色剤の含有割合は本発明の目的が達成される限り特に制限されず、例えば、ポリマー成分に対して1~30重量%が好適である。
<プラスチックフィルムの製造方法>
本発明のプラスチックフィルムは以下の方法により製造できる。
例えば、前記SPSならびに所望により含有される他のポリマーおよび添加剤を所定の割合で混合し、溶融・混練して前駆体フィルムを製造した後、得られた前駆体フィルムに対して少なくとも熱処理工程を含む二軸延伸工程を実施する。
本発明のプラスチックフィルムは以下の方法により製造できる。
例えば、前記SPSならびに所望により含有される他のポリマーおよび添加剤を所定の割合で混合し、溶融・混練して前駆体フィルムを製造した後、得られた前駆体フィルムに対して少なくとも熱処理工程を含む二軸延伸工程を実施する。
前駆体フィルムの製造方法は公知の方法を採用できる。例えば、所望の成分からなる混合物を押出機により溶融・混練し、混練物をTダイより押し出した後、冷却すればよい。
前駆体フィルムの厚みは特に制限されるものではなく、例えば、20~2000μmであり、好ましくは30~1000μmである。
二軸延伸工程は、二軸延伸を行った後、熱処理を行う工程である。このような二軸延伸工程によって、フィルムのガラス転移温度を上昇させたり、熱膨張率を減少させたり、熱収縮率の絶対値を減少させることができる。
二軸延伸は、MD方向およびTD方向について延伸を行う。延伸方式は、逐次二軸延伸方式と同時二軸延伸方式があるが、同時二軸延伸方式を行う。同時二軸延伸の代わりに、MD方向もしくはTD方向のうち一方の方向に延伸を行った後、他方の方向に延伸を行う逐次二軸延伸を行うと、最初に延伸を行った方向の熱膨張率の減少幅が小さくなり、かつ熱収縮率も悪くなり耐熱寸法安定性が低下する。二軸延伸の代わりに、一軸延伸を行うと、延伸していない方向の熱膨張率が減少せず、耐熱寸法安定性が低下する。本明細書中、MD方向とは、いわゆる流れ方向であって、押出機からの前駆体フィルムの引き取り方向(縦方向)を意味するものとする。TD方向とは、いわゆる幅方向であって、当該MD方向に対する直交方向を意味するものとする。
二軸延伸を行うに際して、延伸倍率、延伸温度および延伸速度は本発明の目的が達成される限り特に制限されるものではないが、以下の範囲とする。耐熱寸法安定性、熱収縮率がより一層、向上するためである。
延伸倍率は、MD方向およびTD方向ともに2.0倍以上の破断が起こらない範囲内であり、特に2.0~5.0が好ましく、より好ましくは2.2~4.0倍である。MD方向およびTD方向の延伸倍率は近似していることが好ましい。具体的には、MD方向の延伸倍率をPMD、TD方向の延伸倍率をPTDとしたとき、「PTD-PMD」は-0.6~+0.6が好ましく、より好ましくは-0.3~+0.3である。なお、MD方向の延伸倍率は延伸直前のMD方向長さに基づく倍率である。TD方向の延伸倍率は延伸直前のTD方向長さに基づく倍率である。
延伸倍率を上記範囲内で調整することにより熱膨張率の減少幅を制御することができる。例えば、所定方向の延伸倍率を増大させると、当該方向の熱膨張率の減少幅は大きくなる。
延伸温度は、当該フィルムを構成するポリマー成分のガラス転移温度をTgP(℃)としたとき、TgP以上、TgP+30℃以下であり、耐熱寸法安定性のさらなる向上の観点から好ましくはTgP℃以上、TgP+25℃以下である。なお、延伸温度は、延伸を行う雰囲気温度である。ポリマー成分が2種類以上のポリマーからなる場合、ポリマー成分のTgPは、各ポリマーのガラス転移温度に当該ポリマーの含有比率を乗じた値の和である。
延伸温度を上記範囲内で調整することにより熱膨張率の減少幅を制御することができる。例えば、延伸温度を低くすると、熱膨張率の減少幅は大きくなる。
延伸速度は、MD方向およびTD方向ともに50~10000%/分であり、好ましくは100~5000%/分、より好ましくは100~3000%/分である。
延伸速度とは、{(延伸後寸法/延伸前寸法)-1}×100(%)/延伸時間で算出される値である。
延伸速度とは、{(延伸後寸法/延伸前寸法)-1}×100(%)/延伸時間で算出される値である。
延伸速度を上記範囲内で調整することにより熱膨張率の減少幅を制御することができる。例えば、延伸速度を大きくすると、熱膨張率の減少幅は大きくなる。
熱処理は、延伸フィルムを延伸温度以上の温度で保持することにより、ポリマー分子の配向を固定する処理である。熱処理温度は、当該フィルムを構成するポリマー成分のガラス転移温度をTgP(℃)、融点をTmP(℃)としたとき、TgP+70℃以上、TmP以下であり、耐熱寸法安定性および耐熱変形性のさらなる向上の観点から好ましくはTgP+75℃以上、TmP-20℃以下である。なお、熱処理温度は、フィルム保持を行う雰囲気温度である。ポリマー成分が2種類以上のポリマーからなる場合、ポリマー成分のTmPは、各ポリマーの融点に当該ポリマーの含有比率を乗じた値の和である。
熱処理温度を上記範囲内で調整することにより熱収縮率絶対値を制御することができる。例えば、熱処理温度を高くすると、熱収縮率絶対値は小さくなる。
熱処理は、二軸延伸処理時の張力を維持したまま熱処理を行う緊張式熱処理を実施してもよいし、当該処理と同時に当該張力を弛緩させて熱処理を行う弛緩式熱処理を実施してもよいし、または当該張力を維持して熱処理(第1熱処理)を行った後、当該張力を弛緩させて熱処理(第2熱処理)を行う複合式熱処理を実施してもよい。好ましくは弛緩式熱処理を実施する。熱処理を上記いずれの方式で実施するに際しても、熱処理温度は前記範囲内に設定される。
熱処理を上記した弛緩式または複合式で行う場合、熱収縮率の絶対値の低減、耐熱寸法安定性および耐熱変形性のさらなる向上、フィルムの平坦性の観点から、弛緩倍率はMD方向およびTD方向ともに0.8~1.00倍が好ましく、より好ましくは0.85~1.00倍、最も好ましくは0.90~0.98倍である。MD方向およびTD方向の弛緩倍率は近似していることが好ましい。具体的には、MD方向の弛緩倍率をQMD、TD方向の弛緩倍率をQTDとしたとき、「QTD-QMD」は-0.1~+0.1が好ましく、より好ましくは-0.05~+0.05であり、最も好ましくは-0.02~+0.02である。なお、MD方向の弛緩倍率は延伸直後のMD方向長さに基づく倍率である。TD方向の弛緩倍率は延伸直後のTD方向長さに基づく倍率である。
弛緩倍率を上記範囲内で調整することにより熱収縮率絶対値を制御することができる。例えば、所定方向の弛緩倍率を低減すると、当該方向の熱収縮率絶対値の減少幅は大きくなる。
<プラスチックフィルム>
本発明のプラスチックフィルムの厚みは特に制限されるものではなく、例えば、10~150μmであり、好ましくは12~125μmである。
本発明のプラスチックフィルムの厚みは特に制限されるものではなく、例えば、10~150μmであり、好ましくは12~125μmである。
本発明のプラスチックフィルムには著しく優れた耐熱寸法安定性および耐熱変形性が発現する。その結果、本発明のプラスチックフィルムを耐熱フィルムとして使用し、例えば当該フィルム上に高温条件下で積層を行った場合においても、反りや溶融変形を十分に防止することができる。
耐熱寸法安定性について詳しくは、本発明のプラスチックフィルムは、例えば、熱膨張率および熱収縮率がそれぞれ特定の範囲内である。
具体的には、引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で50℃から100℃まで昇温したときの熱膨張率は80ppm/℃以下であり、好ましくは70ppm/℃以下、より好ましくは60ppm/℃以下、最も好ましくは50ppm/℃以下である。熱膨張率は、MD方向およびTD方向のいずれの方向についても、上記範囲内である。熱膨張率が大きすぎると、耐熱寸法安定性が低下し、積層時の反りを十分に防止できない。特にプレス成形用工程フィルムとして使用された場合、金型の成形面を十分に転写させることができない。本発明のプラスチックフィルムの熱膨張率は通常は、1~80ppm/℃、好ましくは5~70ppm/℃、より好ましくは10~60ppm/℃、最も好ましくは15~50ppm/℃である。
熱膨張率について、積層時の反りをより一層十分に防止する観点から好ましくは、熱膨張率のMD方向とTD方向との差の絶対値は50ppm/℃以下であり、より好ましくは40ppm/℃以下、さらに好ましくは20ppm/℃以下である。
本明細書中、熱膨張率は、試験片(2mm×25mm)を長手方向が鉛直方向になるように吊り下げて、該試験片の下端に5gf/2mm幅の引張荷重を印加し、雰囲気温度を昇温速度10℃/分で50℃から100℃まで昇温したときの熱膨張率である。熱膨張率は、引張方向がMD方向の場合およびTD方向の場合について測定され、具体的には後述する方法により測定される。熱膨張率の値は正の値が膨張を意味し、負の値が収縮を意味する。
180℃での熱収縮率の絶対値は3.0%以下であり、好ましくは2.5%以下、より好ましくは2.0%以下である。熱収縮率の絶対値は、MD方向およびTD方向のいずれの方向についても、上記範囲内である。熱収縮率の絶対値が大きすぎると、耐熱寸法安定性が低下し、積層時の反りを十分に防止できない。特にプレス成形用工程フィルムとして使用された場合、金型の成形面を十分に転写させることができない。
熱収縮率について、積層時の反りをより一層十分に防止したり、プレス成形用工程フィルムとして使用された場合、金型の成形面を十分に転写させるという観点から好ましくは、熱収縮率のMD方向とTD方向との差の絶対値は2.5%以下であり、より好ましくは2.0%以下、さらに好ましくは1.0%以下、最も好ましくは0.5%以下である。
本明細書中、熱収縮率は、試験片(200mm×200mm)を雰囲気温度180℃で30分間放置したときのMD方向およびTD方向の各方向における熱収縮率であり、具体的には後述する方法により測定される。熱収縮率の値は正の値が収縮を意味し、負の値が膨張を意味する。
耐熱変形性について具体的には、本発明のプラスチックフィルムのガラス転移温度は150℃以上、好ましくは160℃以上、より好ましくは170℃以上である。
本発明のプラスチックフィルムはその製造過程において、特に前記した熱処理工程を含む二軸延伸工程の前後で、フィルムのガラス転移温度が50℃以上上昇し、好ましくは60℃以上、より好ましくは70℃以上上昇している。
なお、本発明のプラスチックフィルムのガラス転移温度は、250℃程度までであるが、特にそれに限定されない。また、ガラス転移温度の上昇温度幅は120℃程度までであるが、特にそれに限定されるものではない。
本明細書中、プラスチックフィルムのガラス転移温度はJIS C6481:1996「5.17.1 TMA法」に基づいて測定された値を用いている。
本発明のプラスチックフィルムはその製造過程において、特に前記した熱処理工程を含む二軸延伸工程の前後で、フィルムのガラス転移温度が50℃以上上昇し、好ましくは60℃以上、より好ましくは70℃以上上昇している。
なお、本発明のプラスチックフィルムのガラス転移温度は、250℃程度までであるが、特にそれに限定されない。また、ガラス転移温度の上昇温度幅は120℃程度までであるが、特にそれに限定されるものではない。
本明細書中、プラスチックフィルムのガラス転移温度はJIS C6481:1996「5.17.1 TMA法」に基づいて測定された値を用いている。
また本発明のプラスチックフィルムは良好な引張伸び率を有する。具体的には本発明のプラスチックフィルムの引張伸び率は10%以上、特に15%以上であり、好ましくは20%以上である。本発明のプラスチックフィルムにおける引張伸び率の上限値は通常、300%、特に200%である。
本明細書中、引張伸び率はJIS K7127に基づいて測定された値を用いている。
本発明のプラスチックフィルムは耐熱フィルムとして有用である。
耐熱フィルムとは、例えば80℃以上、特に150℃以上の高温条件下で使用されるために、当該高温条件下であっても、耐熱寸法安定性および耐熱変形性等の耐熱性が要求されるフィルムである。耐熱フィルムとして、例えば、積層用耐熱フィルム、離型用耐熱フィルム、貼着用耐熱フィルム等が挙げられる。
耐熱フィルムとは、例えば80℃以上、特に150℃以上の高温条件下で使用されるために、当該高温条件下であっても、耐熱寸法安定性および耐熱変形性等の耐熱性が要求されるフィルムである。耐熱フィルムとして、例えば、積層用耐熱フィルム、離型用耐熱フィルム、貼着用耐熱フィルム等が挙げられる。
積層用耐熱フィルムとは、自己の表面に他の層が積層・一体化されて使用されるフィルムであって、積層時に高温条件に曝されるために耐熱性を要するフィルムである。他の層としては、例えば、金属層、セラミックス層、樹脂層等が挙げられる。
積層用耐熱フィルムは、例えば、電子機器等のフレキシブルプリント基板、フレキシブル太陽電池、太陽電池用バックシートを製造する際に使用される基材フィルム等として有用である。
積層用耐熱フィルムは、例えば、電子機器等のフレキシブルプリント基板、フレキシブル太陽電池、太陽電池用バックシートを製造する際に使用される基材フィルム等として有用である。
具体的には、例えば本発明のプラスチックフィルムをプリント基板の基材フィルムとして使用する場合、当該フィルムの上には、ドライラミネート法、蒸着法またはスパッタリング法等により、例えば80~200℃の高温条件下で配線用金属層が形成される。このような用途においても、本発明のプラスチックフィルムは、寸法変動および変形が十分に防止されるので、積層体の反りを十分に防止でき、当該フィルムと金属層との剥離も十分に防止できる。
離型用耐熱フィルムは、いわゆる工程フィルムとも呼ばれるフィルムであり、所定の処理工程で被処理材料の保護または別材料の支持を目的として利用される一方で、最終的には剥離・除去されるフィルムである。例えば、離型用耐熱フィルムは、当該フィルムを熱プレス成形時に金型と被成形材料との間に介在させることにより、被成形材料の保護層として利用される。また例えば、離型用耐熱フィルムは、当該フィルムの上に層を形成することにより、当該層の支持層として利用される。離型用耐熱フィルムは、プレス成形工程、層の形成工程およびその後の工程において熱が付与されるので、寸法変動および変形を防止するために耐熱性が必要とされる。離型用耐熱フィルムは、例えば、プレス成形用工程フィルム、樹脂膜形成用工程フィルム、セラミック薄膜形成用工程フィルム、金属薄膜形成用工程フィルム等として有用である。
具体的には、本発明のプラスチックフィルムをプレス成形用工程フィルムとして使用する場合、当該フィルムを金型と被成形材料との間に介在させることにより、金型と被成形材料との融着を防止しながらも、金型の成形面を精度よく転写させることができる。特に本発明のプレス成形用工程フィルムは寸法変動および変形が十分に防止されるので、例えば金型成形面に深さ1mmの凹凸がある場合でも、当該成形面を精度よく転写させることができる。
被成形材料を構成するプラスチックの種類は特に制限されず、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等が使用可能である。
プレス時の金型温度、圧力および処理時間はプラスチック成形の分野で公知の条件が使用可能である。例えば、プレス時の金型温度は通常、80~200℃である。プレス圧は通常、1~150kg/cm2である。プレス時間は通常、0.5~60分間である。
プレス時の金型温度、圧力および処理時間はプラスチック成形の分野で公知の条件が使用可能である。例えば、プレス時の金型温度は通常、80~200℃である。プレス圧は通常、1~150kg/cm2である。プレス時間は通常、0.5~60分間である。
また具体的には、本発明のプラスチックフィルムを金属薄膜形成用工程フィルムとして使用する場合、当該フィルムの上には、プリント基板の基材フィルムとして使用する場合と同様に、例えば80~200℃の高温条件下で金属層が形成される。このような用途においても、本発明のプラスチックフィルムは、寸法変動および変形が十分に防止され、積層体の反りを十分に防止できるので、金属層の形成時において十分に均一な厚みの金属層を形成できる。
貼着用耐熱フィルムは、例えば80~200℃の高温条件下で使用される粘着テープの基材フィルムとして有用である。
具体的には、例えば本発明のプラスチックフィルムを耐熱用粘着テープの基材フィルムとして使用する場合、本発明のプラスチックフィルムは寸法変動、強度低下および変形が十分に防止されるので、貼り合わせ品の反りや、粘着テープの剥離を十分に防止できる。
具体的には、例えば本発明のプラスチックフィルムを耐熱用粘着テープの基材フィルムとして使用する場合、本発明のプラスチックフィルムは寸法変動、強度低下および変形が十分に防止されるので、貼り合わせ品の反りや、粘着テープの剥離を十分に防止できる。
実施例/比較例
表1および表2に記載の成分を押出機により樹脂温度280℃でTダイより溶融押し出した後、冷却し、前駆体フィルムを得た。前駆体フィルムを、表1および表2に記載の条件で延伸および熱処理を行った。熱処理は所定の温度および弛緩倍率にて弛緩式熱処理を行った。
同時二軸延伸は、MD方向およびTD方向について同時に延伸した。
逐次二軸延伸は、MD方向で延伸した後、TD方向で延伸した。
一軸延伸は、MD方向のみについて延伸した。
比較例1では、延伸処理も熱処理も行わなかった。
比較例2では、延伸処理は行わず、熱処理のみを行った。
表1および表2に記載の成分を押出機により樹脂温度280℃でTダイより溶融押し出した後、冷却し、前駆体フィルムを得た。前駆体フィルムを、表1および表2に記載の条件で延伸および熱処理を行った。熱処理は所定の温度および弛緩倍率にて弛緩式熱処理を行った。
同時二軸延伸は、MD方向およびTD方向について同時に延伸した。
逐次二軸延伸は、MD方向で延伸した後、TD方向で延伸した。
一軸延伸は、MD方向のみについて延伸した。
比較例1では、延伸処理も熱処理も行わなかった。
比較例2では、延伸処理は行わず、熱処理のみを行った。
SPSはシンジオタクチックポリスチレン「ザレック142ZE」(出光興産(株)社製、ガラス転移温度95℃、融点247℃)を使用した。
熱膨張率
熱機械測定装置(Q400EM;TA INSTRUMENTS社)を用い、試験片(フィルム;2mm×25mm)を、該試験片の長手方向が鉛直方向になるように吊り下げ、該試験片の下端に5gf/2mm幅の引張荷重を印加した。その後、雰囲気温度を昇温速度10℃/分で昇温し、50℃から100℃までの寸法変化を1℃あたりの変化量に換算し、熱膨張率R1を測定した。熱膨張率は引張方向がMD方向およびTD方向の場合について測定した。熱膨張率R1について正の値は膨張したことを意味する。
◎;R1≦60ppm/℃(最良);
○;60ppm/℃<R1≦70ppm/℃(良);
△;70ppm/℃<R1≦80ppm/℃(実用上問題なし);
×;80ppm/℃<R1(実用上問題あり)。
熱機械測定装置(Q400EM;TA INSTRUMENTS社)を用い、試験片(フィルム;2mm×25mm)を、該試験片の長手方向が鉛直方向になるように吊り下げ、該試験片の下端に5gf/2mm幅の引張荷重を印加した。その後、雰囲気温度を昇温速度10℃/分で昇温し、50℃から100℃までの寸法変化を1℃あたりの変化量に換算し、熱膨張率R1を測定した。熱膨張率は引張方向がMD方向およびTD方向の場合について測定した。熱膨張率R1について正の値は膨張したことを意味する。
◎;R1≦60ppm/℃(最良);
○;60ppm/℃<R1≦70ppm/℃(良);
△;70ppm/℃<R1≦80ppm/℃(実用上問題なし);
×;80ppm/℃<R1(実用上問題あり)。
熱収縮率
まず、長さ150mmの2本の直線をそれぞれ、MD方向およびTD方向に対して平行に、かつ互いに中点で交わるように、試験片(フィルム;200mm×200mm)上に描いた。この試験片を、標準状態(温度23℃×湿度50%)に2時間放置し、その後試験前の直線の長さを測定した。続いて180℃の雰囲気に設定された熱風循環式オーブン内で一角を支持した宙吊り状態にて30分間放置した後、取り出して、標準状態に2時間放置冷却した。その後各方向の直線の長さを測定し、試験前の長さからの変化量を求め、当該試験前の長さに対する変化量の割合として熱収縮率R2を求めた。熱収縮率R2について正の値は収縮したことを意味する。
◎;R2の絶対値≦2.0%(最良);
○;2.0%<R2の絶対値≦2.5%(良);
△;2.5%<R2の絶対値≦3.0%(実用上問題なし);
×;3.0%<R2の絶対値(実用上問題あり)。
まず、長さ150mmの2本の直線をそれぞれ、MD方向およびTD方向に対して平行に、かつ互いに中点で交わるように、試験片(フィルム;200mm×200mm)上に描いた。この試験片を、標準状態(温度23℃×湿度50%)に2時間放置し、その後試験前の直線の長さを測定した。続いて180℃の雰囲気に設定された熱風循環式オーブン内で一角を支持した宙吊り状態にて30分間放置した後、取り出して、標準状態に2時間放置冷却した。その後各方向の直線の長さを測定し、試験前の長さからの変化量を求め、当該試験前の長さに対する変化量の割合として熱収縮率R2を求めた。熱収縮率R2について正の値は収縮したことを意味する。
◎;R2の絶対値≦2.0%(最良);
○;2.0%<R2の絶対値≦2.5%(良);
△;2.5%<R2の絶対値≦3.0%(実用上問題なし);
×;3.0%<R2の絶対値(実用上問題あり)。
離型用フィルム評価
エポキシ樹脂フレークを熱プレス成形するに際し、得られたフィルムを工程フィルムとして用いた。
詳しくは、図1に示すように、エポキシ樹脂フレーク1を上下金型2,3により熱プレス成形するに際し、フレーク1と金型2,3との間にフィルム4を介在させた。フィルム4は金型より外側で把持し固定した。金型2,3の成形面にはそれぞれ凹部と凸部が形成されており、当該凹部と凸部とがプレス時において嵌合するようになっていた。プレス時において、金型2,3の接近はスペーサー5により制限された。プレス条件は以下の通りであった。金型2,3の温度;150℃、プレス圧;100kg/cm2、プレスクリアランス2mm、プレス時間;10分間、凹部の深さ(凸部の高さ);1mm。
プレス成形後、成形体を取り出し、放置冷却した後、フィルム4を成形体から剥離した。成形体の表面に転写された転写面を目視により観察し、転写性について評価した。
◎;転写面には金型の凹凸形状および平面形状がそのまま良好に転写されていた;
△;転写面に転写された凹凸形状および/または平面形状が完全ではないものの、実用上問題のない範囲内であった;
×;転写面に転写された凹凸形状および/または平面形状は十分でなく、シワの転写も見られ、実用上問題があった。
エポキシ樹脂フレークを熱プレス成形するに際し、得られたフィルムを工程フィルムとして用いた。
詳しくは、図1に示すように、エポキシ樹脂フレーク1を上下金型2,3により熱プレス成形するに際し、フレーク1と金型2,3との間にフィルム4を介在させた。フィルム4は金型より外側で把持し固定した。金型2,3の成形面にはそれぞれ凹部と凸部が形成されており、当該凹部と凸部とがプレス時において嵌合するようになっていた。プレス時において、金型2,3の接近はスペーサー5により制限された。プレス条件は以下の通りであった。金型2,3の温度;150℃、プレス圧;100kg/cm2、プレスクリアランス2mm、プレス時間;10分間、凹部の深さ(凸部の高さ);1mm。
プレス成形後、成形体を取り出し、放置冷却した後、フィルム4を成形体から剥離した。成形体の表面に転写された転写面を目視により観察し、転写性について評価した。
◎;転写面には金型の凹凸形状および平面形状がそのまま良好に転写されていた;
△;転写面に転写された凹凸形状および/または平面形状が完全ではないものの、実用上問題のない範囲内であった;
×;転写面に転写された凹凸形状および/または平面形状は十分でなく、シワの転写も見られ、実用上問題があった。
引張伸び率
JIS K7127に従って引張伸び率を測定した。引張伸び率が10%未満では、離型用フィルムの評価時において破断が発生した。
◎:20%≦引張伸び率(最良);
○:15%≦引張伸び率<20%(良);
△:10%≦引張伸び率<15%(実用上問題なし);および
×:引張伸び率<10%。
JIS K7127に従って引張伸び率を測定した。引張伸び率が10%未満では、離型用フィルムの評価時において破断が発生した。
◎:20%≦引張伸び率(最良);
○:15%≦引張伸び率<20%(良);
△:10%≦引張伸び率<15%(実用上問題なし);および
×:引張伸び率<10%。
ガラス転移温度(TMA)
JIS C6481:1996「5.17.1 TMA法」に従ってガラス転移温度を測定した。詳しくは、熱機械測定装置(Q400EM;TA INSTRUMENTS社)により、試験片(フィルム;2mm×25mm)を、引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で昇温し、Tgを測定した。Tgは引張方向がMD方向およびTD方向の場合について測定し、それらの平均値で示した。Tgの測定は、最終的に得られたフィルムおよび延伸直前のフィルムについて行い、上昇幅(℃)を求めた。
・最終的に得られたフィルムのTg
◎:170℃≦Tg(最良);
○:160≦Tg<170℃(良);
△:150≦Tg<160℃(実用上問題なし);および
×:Tg<150℃。
・上昇幅
◎:70℃≦上昇幅(最良);
○:60≦上昇幅<70℃(良);
△:50≦上昇幅<60℃(実用上問題なし);および
×:上昇幅<50℃。
JIS C6481:1996「5.17.1 TMA法」に従ってガラス転移温度を測定した。詳しくは、熱機械測定装置(Q400EM;TA INSTRUMENTS社)により、試験片(フィルム;2mm×25mm)を、引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で昇温し、Tgを測定した。Tgは引張方向がMD方向およびTD方向の場合について測定し、それらの平均値で示した。Tgの測定は、最終的に得られたフィルムおよび延伸直前のフィルムについて行い、上昇幅(℃)を求めた。
・最終的に得られたフィルムのTg
◎:170℃≦Tg(最良);
○:160≦Tg<170℃(良);
△:150≦Tg<160℃(実用上問題なし);および
×:Tg<150℃。
・上昇幅
◎:70℃≦上昇幅(最良);
○:60≦上昇幅<70℃(良);
△:50≦上昇幅<60℃(実用上問題なし);および
×:上昇幅<50℃。
耐熱変形性
150℃の雰囲気に設定された熱風循環式オーブン内にフィルム(100mm×100mm)を10分間放置し、そのとき、フィルムに起こる変形を目視で判断した。
◎:変形は全く認められなかった;
△:変形がわずかに認められたものの実用上問題なかった;および
×:変形が明らかに認められた。
150℃の雰囲気に設定された熱風循環式オーブン内にフィルム(100mm×100mm)を10分間放置し、そのとき、フィルムに起こる変形を目視で判断した。
◎:変形は全く認められなかった;
△:変形がわずかに認められたものの実用上問題なかった;および
×:変形が明らかに認められた。
Claims (10)
- シンジオタクチックポリスチレン系樹脂を含有する二軸配向プラスチックフィルムであって、
引張荷重5gf/2mm幅および昇温速度10℃/分の条件下で50℃から100℃まで昇温したときの熱膨張率が80ppm/℃以下であり、
180℃での熱収縮率の絶対値が3.0%以下であるプラスチックフィルム。 - 熱膨張率が70ppm/℃以下であり、
熱収縮率の絶対値が2.5%以下である請求項1に記載のプラスチックフィルム。 - 熱膨張率のMD方向とTD方向との差の絶対値が50ppm/℃以下であり、
熱収縮率のMD方向とTD方向との差の絶対値が2.0%以下である請求項1または2に記載のプラスチックフィルム。 - 二軸配向プラスチックフィルムが、前記シンジオタクチックポリスチレン系樹脂を含有するフィルムを、同時二軸延伸処理の後、熱処理を行う工程に供してなる請求項1~3のいずれかに記載のプラスチックフィルム。
- 10%以上の引張伸び率を有する請求項1~4のいずれかに記載のプラスチックフィルム。
- 150℃以上のガラス転移温度を有する請求項1~5のいずれかに記載のプラスチックフィルム。
- 耐熱フィルムとして使用される請求項1~6のいずれかに記載のプラスチックフィルム。
- シンジオタクチックポリスチレン系樹脂がシンジオタクチックポリスチレンである請求項1~7のいずれかに記載のプラスチックフィルム。
- 請求項1~8のいずれかに記載のプラスチックフィルムの製造方法であって、
シンジオタクチックポリスチレン系樹脂を含有する前駆体フィルムを製造した後、該前駆体フィルムに対して少なくとも熱処理工程を含む同時二軸延伸工程を実施するプラスチックフィルムの製造方法。 - 前記同時二軸延伸工程の前後でフィルムのガラス転移温度を50℃以上、上昇させる請求項9に記載のプラスチックフィルムの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069319 WO2015008334A1 (ja) | 2013-07-16 | 2013-07-16 | プラスチックフィルムおよびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069319 WO2015008334A1 (ja) | 2013-07-16 | 2013-07-16 | プラスチックフィルムおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008334A1 true WO2015008334A1 (ja) | 2015-01-22 |
Family
ID=52345830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069319 WO2015008334A1 (ja) | 2013-07-16 | 2013-07-16 | プラスチックフィルムおよびその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015008334A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113010932A (zh) * | 2021-02-10 | 2021-06-22 | 肖锋 | 一种成形极限应变云图的后处理方法 |
CN114163939A (zh) * | 2021-11-12 | 2022-03-11 | 东莞澳中新材料科技股份有限公司 | 一种耐高温高溶胀倍率的定向聚苯乙烯溶胀胶带及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01110122A (ja) * | 1987-10-23 | 1989-04-26 | Asahi Chem Ind Co Ltd | シンジオタクチツクポリスチレン系フイルムの製造方法 |
JPH02279731A (ja) * | 1989-04-21 | 1990-11-15 | Asahi Chem Ind Co Ltd | シンジオタクチックポリスチレン系透明フィルム |
JP2011094268A (ja) * | 2009-10-30 | 2011-05-12 | Idemitsu Kosan Co Ltd | 合成皮革製造用剥離フィルム |
JP2013146902A (ja) * | 2012-01-18 | 2013-08-01 | Kurabo Ind Ltd | プラスチックフィルムおよびその製造方法 |
-
2013
- 2013-07-16 WO PCT/JP2013/069319 patent/WO2015008334A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01110122A (ja) * | 1987-10-23 | 1989-04-26 | Asahi Chem Ind Co Ltd | シンジオタクチツクポリスチレン系フイルムの製造方法 |
JPH02279731A (ja) * | 1989-04-21 | 1990-11-15 | Asahi Chem Ind Co Ltd | シンジオタクチックポリスチレン系透明フィルム |
JP2011094268A (ja) * | 2009-10-30 | 2011-05-12 | Idemitsu Kosan Co Ltd | 合成皮革製造用剥離フィルム |
JP2013146902A (ja) * | 2012-01-18 | 2013-08-01 | Kurabo Ind Ltd | プラスチックフィルムおよびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113010932A (zh) * | 2021-02-10 | 2021-06-22 | 肖锋 | 一种成形极限应变云图的后处理方法 |
CN114163939A (zh) * | 2021-11-12 | 2022-03-11 | 东莞澳中新材料科技股份有限公司 | 一种耐高温高溶胀倍率的定向聚苯乙烯溶胀胶带及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5918604B2 (ja) | 離型フィルムを用いた転写フィルム | |
JP5896753B2 (ja) | 離型フィルムの製造方法 | |
JP2013216779A (ja) | 転写フィルム | |
KR102218811B1 (ko) | 이형 필름 | |
WO2019049922A1 (ja) | フラットケーブル用基材フィルムおよびそれを用いたフラットケーブル用絶縁フィルム | |
JP2013103368A (ja) | 多層フィルム | |
JP6207268B2 (ja) | ポリスチレン系フィルムおよびその製造方法 | |
WO2015008334A1 (ja) | プラスチックフィルムおよびその製造方法 | |
WO2015178365A1 (ja) | 離形フィルム | |
TWI744412B (zh) | 聚苯乙烯系膜及多層膜 | |
WO2019235556A1 (ja) | 離型フィルムおよび離型フィルム製造方法 | |
JP6508884B2 (ja) | 粗面を有するポリスチレン系離型フィルムおよびその製造方法 | |
JP6404604B2 (ja) | 粗面を有するポリスチレン系フィルムおよびその製造方法 | |
JP2015067683A (ja) | プラスチックフィルムおよびその製造方法 | |
KR102397408B1 (ko) | 폴리에스테르 다층필름 및 이의 제조방법 | |
WO2014162606A1 (ja) | プラスチックフィルムおよびその製造方法 | |
WO2010064606A1 (ja) | フレキシブルプリント配線板補強用シート及びそれを用いたフレキシブルプリント配線板 | |
KR101335665B1 (ko) | 성형성이 우수한 인몰드 장식용 폴리에스테르 필름 | |
TW201813802A (zh) | 聚酯多層膜及其製造方法 | |
CN114683592B (zh) | 一种高平整度耐热聚酯薄膜的制备方法及聚酯薄膜 | |
WO2015190386A1 (ja) | 粗面を有するポリスチレン系離型フィルムおよびその製造方法 | |
JP2005111798A (ja) | 剥離性フィルム | |
TW202222566A (zh) | 電子電路基板用積層體 | |
JP2023083928A (ja) | 銅張積層板 | |
JP2024072480A (ja) | 電子回路基板用積層体およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13889486 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13889486 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |