WO2015006952A1 - 车辆空调系统过热度控制方法及车辆空调系统 - Google Patents

车辆空调系统过热度控制方法及车辆空调系统 Download PDF

Info

Publication number
WO2015006952A1
WO2015006952A1 PCT/CN2013/079585 CN2013079585W WO2015006952A1 WO 2015006952 A1 WO2015006952 A1 WO 2015006952A1 CN 2013079585 W CN2013079585 W CN 2013079585W WO 2015006952 A1 WO2015006952 A1 WO 2015006952A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
electronic expansion
superheat
degree
compressor
Prior art date
Application number
PCT/CN2013/079585
Other languages
English (en)
French (fr)
Inventor
唐立
张荣荣
斯坦科爱德文·约翰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to PCT/CN2013/079585 priority Critical patent/WO2015006952A1/zh
Priority to KR1020167003850A priority patent/KR101919846B1/ko
Priority to US14/905,066 priority patent/US10391833B2/en
Priority to EP13889688.1A priority patent/EP3023276B1/en
Publication of WO2015006952A1 publication Critical patent/WO2015006952A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00978Control systems or circuits characterised by failure of detection or safety means; Diagnostic methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1393Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3267Cooling devices information from a variable is obtained related to the operation of an expansion valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3282Cooling devices output of a control signal related to an evaporating unit to control the air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit

Definitions

  • Vehicle air conditioning system superheat control method and vehicle air conditioning system
  • the present invention relates to a superheat control method for a vehicle air conditioning system and a vehicle air conditioning system, and more particularly to controlling an electronic device by using front feedback information of a compressor and/or an evaporator fan, and actual superheat degree and preset superheat degree.
  • the vehicle air conditioning system superheat control method and the vehicle air conditioning system of the opening degree of the expansion valve belong to the technical field of automobile air conditioning.
  • the automobile air conditioning system mainly comprises a compressor, a condenser, a throttling element and an evaporator, and the high temperature and high pressure refrigerant gas from the compressor is condensed by the condenser to become a refrigerant liquid, and the refrigerant liquid passes through the throttling element.
  • the throttle After the throttle is depressurized, it enters the evaporator, and the air in the evaporator is exchanged with the air outside the evaporator, and the refrigerant gas is returned to the compressor, thereby completing a refrigeration cycle, and the air cooled by the evaporator enters the vehicle.
  • Room if the temperature inside the vehicle compartment is lower or higher than the set temperature in the vehicle interior, the superheat degree is controlled by controlling the opening of the throttle element.
  • the electronic expansion valve can be adjusted according to various parameters in the air conditioning system, and the corresponding control strategy can be adjusted according to different working conditions to achieve the purpose of improving the efficiency of the refrigeration system, energy saving and environmental protection; the superheat degree of the electronic expansion valve is compared with the thermal expansion
  • the valve is smoother, which makes the outlet temperature more stable and improves comfort.
  • the present invention provides a vehicle air conditioning system superheat degree control method and a vehicle air conditioning system, using an electronic expansion valve as a throttling element, except that the actual superheat degree is used as an input parameter.
  • the opening of the electronic expansion valve is controlled by the pre-feedback information that affects the actual superheat change, and the response speed is fast and the control superheat is more stable.
  • a vehicle air conditioning system superheat control method includes: real-time acquisition of actual superheat, preset superheat, and pre-feedback information that affects actual superheat change; according to actual superheat obtained, preset superheat, and pre-feedback The information adjusts the opening of the electronic expansion valve in real time to control the superheat of the vehicle air conditioning system.
  • the preset superheat degree here does not mean only a certain fixed value, and the preset superheat degree may be corresponding.
  • the value corresponding to the interval, or a table that can find the corresponding value according to the corresponding working condition or the formula that can be obtained according to the fitting, etc., each system is solidified in the control system according to the test, analysis or fitting result.
  • the real-time acquisition of the actual superheat degree refers to the acquisition and control frequency greater than or equal to the inherent sampling frequency of the system, such as 1 Hz.
  • the acquisition and control frequencies should be equal or the control frequency is an integer multiple of the real-time acquisition frequency.
  • real-time adjustment of the opening degree of the electronic expansion valve means that the amount of adjustment required to reach (ie, is greater than or equal to) the minimum value set by the program, the control signal is output to adjust the opening degree of the electronic expansion valve, and when needed When the amount of adjustment is less than 4 min, the electronic expansion valve does not operate; the minimum value of the program setting may vary with the opening interval of the electronic expansion valve.
  • the pre-feedback information may include: a rotational speed of the compressor and/or a displacement change amount; and/or an amount of change in the rotational speed of the evaporator fan.
  • the specific control method of “adjusting the opening degree of the electronic expansion valve in real time according to the actual superheat degree, the preset superheat degree and the front feedback information to control the superheat degree of the vehicle air conditioning system” includes: comparing the actual superheat degree obtained and Presetting the superheat degree, obtaining a superheat difference value, and obtaining a corresponding first electronic expansion valve opening degree adjustment amount according to the superheat degree difference; according to the compressor rotation speed and or displacement change information, and/or the The rotation speed change information of the evaporator fan acquires the second adjustment amount of the corresponding electronic expansion valve opening degree; the opening degree of the electronic expansion valve is adjusted according to the first adjustment amount of the electronic expansion valve opening degree and the second adjustment amount of the electronic expansion valve opening degree.
  • the first adjustment amount U of the electronic expansion valve opening degree can be obtained by the following calculation:
  • V out i Kp X e + Kj X + Ki X dt + C , where e is the superheat difference between the actual superheat and the preset superheat, ⁇ ⁇ is the proportional coefficient, is the differential coefficient, is the integral coefficient, C is the correction factor;
  • the electronic expansion valve opening degree is a second adjustment amount V.
  • "' 2 is the first part of the second adjustment of the electronic expansion valve openingroy, 21, the second part of the electronic expansion valve opening second adjustmentiser, 22, or a combination of the two, of which
  • the first adjustment of the expansion valve opening degree, the first partchel, 21 is obtained by the following calculation: dCS ⁇ ⁇ dCD _ ⁇ dCS T , dCD electronic expansion valve opening degree second adjustment amount second partchel, 22 is calculated by the following dBS
  • V ⁇ 22 K B x
  • cs is the compressor speed feedback coefficient, which is the compressor speed
  • is the evaporator fan speed, and is the evaporator fan feedback coefficient
  • CD is the compressor displacement
  • OT is the compressor displacement feedback coefficient
  • the electronic expansion valve opening degree first adjustment amount U and the electronic expansion valve opening degree second adjustment amount ⁇ "' 2 obtained after the addition degree adjustment amount is smaller than the current electronic expansion valve set in the control system
  • the electronic expansion valve remains inactive; when the opening adjustment amount is greater than or equal to the minimum number of operating steps in the opening range of the current electronic expansion valve set in the control system, the electronic expansion valve is performed. Action, so as to reduce the disturbance to the system.
  • the electronic expansion valve opening degree first adjustment amount U and the electronic expansion valve opening degree second adjustment amount V are less than or equal to the maximum rate of change of the opening degree of the electronic expansion valve, or the amount of change in opening degree that the electronic expansion valve can operate within a fixed adjustment period.
  • the vehicle air conditioning system superheat degree control method may further include:
  • the control system When the judgment result is in a fault state, the control system outputs a control signal to the execution control mechanism, and the execution control mechanism controls to adjust parameters of the device in the vehicle air conditioning system that affect the actual superheat degree change to adjust the superheat degree of the vehicle air conditioning system.
  • the parameters of the device affecting the actual superheat change in the vehicle air conditioning system include the rotational speed of the compressor and or the displacement C ⁇ , and/or the rotational speed c 2 of the evaporator fan.
  • the present invention also provides a vehicle air conditioning system including a compressor set and a throttle element, the compressor set including a compressor, a condenser, a condenser fan, an evaporator, and an evaporator fan, the throttle element including An electronic expansion valve; the vehicle air conditioning system further includes a second acquisition module, a second controller, and an execution control mechanism;
  • the first obtaining module is configured to acquire actual superheat degree in real time, and obtain pre-feedback information that affects the actual superheat degree change in real time;
  • the first controller is configured to store the preset superheat degree and receive the actual superheat degree and the front feedback information, and adjust the opening degree of the electronic expansion valve in real time according to the actual superheat degree, the preset superheat degree, and the front feedback information.
  • the pre-feedback information includes: a rotational speed of the compressor and a displacement change amount; and/or an amount of change in the rotational speed of the evaporator fan.
  • the first controller communicates with the electronic expansion valve through a vehicle CAN bus or a LIN bus; the first acquisition module communicates with the first controller via a vehicle CAN bus or a LIN bus.
  • the first controller includes a PID control module, a front feedback control module, and an execution control module;
  • the PID control module is configured to store the preset superheat degree, compare the received actual superheat degree with the preset superheat degree, obtain a superheat difference value, and obtain a corresponding electronic expansion according to the superheat degree difference and the change thereof.
  • the front feedback control module is configured to be based on the received rotational speed of the compressor and the amount of displacement change, And/or the amount of change in the rotational speed of the evaporator fan to obtain a second adjustment of the corresponding electronic expansion valve opening
  • the inner PID control module to acquire a first electronic expansion valve opening degree of the adjustment amount calculated by ⁇ ⁇ : Where e is the difference in superheat, which is the proportional coefficient, ⁇ is the differential coefficient, ⁇ is the integral coefficient, and C is the correction factor;
  • the electronic control valve opening degree second adjustment amount ⁇ 2 is obtained by the following calculation in the front feedback control module, and the electronic expansion valve opening degree second adjustment amount 2 is the electronic expansion valve opening degree second adjustment amountionat, 21, the second adjustment of the second expansion amount of the electronic expansion valve admir, 22, or a sum of the two, wherein the electronic expansion valve opening degree second adjustment amount first part ⁇ 21 passes the following Calculated: dCS ⁇ 7 dCD _ ⁇ dCS T , dCD at at at electronic expansion valve opening second adjustment amount second partchel, 22 is calculated by: dBS
  • V n personally l 22 K K - dt
  • cs is the compressor speed feedback coefficient, which is the compressor speed
  • is the evaporator fan speed
  • s is the evaporator fan feedback coefficient
  • CD is the compressor displacement
  • OT is Compressor displacement feedback coefficient
  • the second adjustment amount V is opened by the first expansion amount U of the electronic expansion valve and the electronic expansion valve.
  • "' 2 adds the control signal to adjust the opening to the control end of the electronic expansion valve.
  • the vehicle air conditioning system further includes:
  • a second acquiring module configured to acquire an opening degree of the electronic expansion valve in real time;
  • a second controller configured to obtain an actual superheat degree, a preset superheat degree, and an electronic
  • an execution control mechanism configured to receive a first control signal sent by the second controller, and control, according to the first control signal, a parameter of a device that affects an actual superheat degree change in the vehicle air conditioning system, where vehicle air conditioning system changes affect the actual superheat parameters include the speed or displacement device C x, and / or evaporator fan speed compressor C 2.
  • the beneficial effects of the present invention are: the vehicle air conditioning system superheat degree control method and the vehicle air conditioning system of the present invention, using an electronic expansion valve as a throttling element, according to the change of the automobile air conditioning working condition, the compressor speed and the evaporator fan speed Frequent adjustment and other characteristics, in addition to the actual superheat as an input parameter to adjust the opening of the electronic expansion valve, but also through the feedback information of the compressor speed change, and / or the evaporator fan speed change amount to control the electronic
  • the opening degree of the expansion valve has the advantages of fast response speed, smoother control superheat, more stable outlet air temperature, and improved comfort.
  • FIG. 1 is a flow chart showing a method for controlling superheat degree of a vehicle air conditioning system according to the present invention
  • FIG. 2 is a flow chart showing a specific embodiment of a superheat degree control method for a vehicle air conditioning system according to the present invention
  • FIG. 3 is a diagram showing relationship between superheat degree and control time obtained by comparing the superheat degree control method of the vehicle air conditioning system of the present invention with a conventional technique;
  • FIG. 4 is a flow chart showing a fourth embodiment of a superheat degree control method for a vehicle air conditioning system according to the present invention.
  • FIG. 5 is a flow chart showing a fault diagnosis process in a fourth embodiment of the superheat control method for a vehicle air conditioning system according to the present invention.
  • FIG. 6 is a flow chart showing a fault control mode in a fourth embodiment of a superheat control method for a vehicle air conditioning system according to the present invention.
  • FIG. 7 is a block diagram showing the structure of a first embodiment of the vehicle air conditioning system of the present invention
  • 8 is a block diagram showing the structure of a second embodiment of the vehicle air conditioning system of the present invention
  • the thick solid line in the figure indicates the refrigerant cycle.
  • an electronic expansion valve as a throttling element is generally only applied to a household or commercial air conditioning system.
  • the opening degree of the electronic expansion valve generally only uses the actual superheat degree as an input parameter for PID control, and sometimes there is a response speed. Slow, easy to overshoot and other issues.
  • the method of the present invention adopts a pre-feedback control strategy to control the opening degree of the electronic expansion valve of the automobile air conditioning system, that is, in addition to adopting the actual superheat degree as the PID input parameter, the electronic control is also performed according to the pre-feedback information acquired in real time.
  • the opening of the expansion valve, the response speed is fast, and the control superheat is more stable.
  • the pre-feedback means that the control output of the system is no longer simply related to the change of the parameter of the controlled object, but also related to the disturbance factor that affects the parameter change of the controlled object, for example:
  • the opening control of the expansion valve is not only related to the change of the actual superheat degree, but also related to other parameters in the vehicle air conditioning system that affect the actual superheat change and react more timely than the actual superheat when the working condition changes. Therefore, through the pre-feedback control strategy, the system can be adjusted before the operating conditions change, but before the affected object (actual superheat) is affected, to achieve better control quality.
  • the speed or displacement of the compressor, the speed of the evaporator fan changes, or a slight delay but
  • a method for controlling superheat of a vehicle air conditioning system of the present invention includes the following steps:
  • the preset superheat degree does not refer to a certain fixed value, and the preset superheat degree may be a value corresponding to the corresponding interval, or a table capable of detecting the corresponding value according to the corresponding working condition or according to the fitting.
  • the formula that can be drawn, etc. Each system may vary and may be solidified in the control system based on test, analysis or fit results. For a specific refrigeration system, if you need to develop a corresponding electronic expansion valve control strategy, you first need to conduct a large number of system performance tests to understand the system to which the expansion valve needs to be opened to achieve optimal system performance under certain conditions. After obtaining the data, it is necessary to perform fitting to obtain the superheat corresponding to the optimal COP under various working conditions. Thereby the preset superheat in the relevant working conditions is obtained and solidified in the control system.
  • the vehicle air conditioning system mainly includes a compressor, a condenser, a throttle element, and an evaporator, when the vehicle air conditioning system is in a stable condition.
  • the compressor speed, displacement, evaporator fan speed, vehicle outside temperature, interior temperature and opening of the electronic expansion valve are all relatively stable.
  • the external environment exerts a disturbance on the vehicle air conditioning system, for example: when the car is driven from the shade or the tunnel to the sun, the working conditions change, causing the temperature inside the vehicle to suddenly rise, and the temperature of the evaporator rises.
  • the evaporation pressure rises.
  • the compressor speed is gradually increased, and the evaporator fan speed is gradually increased.
  • the electronic expansion valve opening degree remains unchanged, the evaporation pressure will decrease.
  • the cooling capacity does not rise much, the phenomenon is that the actual superheat is too high.
  • the speed (displacement) of the compressor increases, and the speed of the evaporator fan increases, which will increase the actual superheat, and vice versa.
  • the electronic expansion valve opening is required to continue to increase, so that the actual superheat returns to the set value.
  • the front feedback information in the present invention is preferably: for the variable displacement compressor, the front feedback information includes the rotational speed and the displacement of the compressor, and for the fixed displacement compressor, the front feedback information includes the rotational speed of the compressor; / or, the speed change information of the evaporator fan.
  • the front feedback information may also include: the speed of the condenser fan and the like.
  • FIG. 2 is a flowchart of three embodiments of a method control method according to the present invention.
  • the first adjustment amount U can be calculated according to the following:
  • V 0 K p xe + K d x— + ⁇ , ⁇ ⁇ edt + C
  • is the proportional coefficient
  • K d is the differential coefficient
  • C is the correction coefficient
  • the coefficient C and the integral coefficient may be coefficients obtained by empirical or experimental calibration or fitting.
  • V t 2 K r x ⁇ - at , where J ⁇ is the compressor feedback coefficient and is the rotational speed of the compressor; wherein the compressor feedback coefficient K cs is a coefficient obtained by empirical or experimental calibration.
  • the control system increases the electronic expansion valve opening degree first adjustment amount U and the electronic expansion valve opening degree second adjustment amount v .
  • the control signal for adjusting the opening degree is output to the control end of the electronic expansion valve to control the opening degree of the electronic expansion valve, that is, the adjustment amount of the electronic expansion valve opening degree ⁇ ' can be obtained by the following calculation: de " , ⁇ appetizer dCS
  • e is the superheat difference between the actual superheat and the preset superheat
  • is the proportional coefficient
  • s is the compressor feedback coefficient
  • C is the correction factor
  • the amount of change in the number of revolutions of the compressor is correspondingly the number of revolutions of the compressor plus the amount of displacement change.
  • the second embodiment of the method of the present invention is described below.
  • the difference between the first embodiment and the first embodiment is that the front feedback information is the speed change information of the evaporator fan.
  • the specific steps are as follows:
  • the first adjustment amount U of the expansion valve opening can be calculated according to the following:
  • V 0 K p xe + K d x— + x [ edt + C
  • e the difference in superheat between the actual superheat and the preset superheat
  • ⁇ ⁇ the proportional coefficient
  • K d the differential coefficient
  • C the correction coefficient
  • the proportional coefficient ⁇ , the differential coefficient Ka and the integral coefficient are coefficients obtained by empirical or experimental calibration and fitting.
  • is the evaporator fan speed and s is the evaporator fan feedback coefficient; where, the evaporator fan feedback coefficient is the coefficient obtained by empirical or experimental calibration and fitting.
  • the proportional coefficient ⁇ ⁇ , the differential coefficient K a and the integral coefficient, K′ can be obtained by empirical, experimental calibration or model fitting.
  • a third embodiment of the present invention is provided below, which differs from the first and second embodiments in that the front feedback information includes the speed change information of the evaporator fan and the speed change information of the compressor, and the specific control steps. as follows:
  • the first adjustment amount U of the electronic expansion valve opening degree can be calculated according to the following:
  • V 0 J K p xe + K d x— + x [ edt + C
  • e is the difference in superheat between the actual superheat and the preset superheat
  • ⁇ ⁇ is the proportional coefficient
  • K d is the differential coefficient
  • the integral coefficient, C is the correction coefficient; wherein, the proportional coefficient ⁇ , the differential coefficient and the integral coefficient, and the correction coefficient C are coefficients obtained according to empirical or experimental calibration or model fitting methods.
  • the electronic expansion valve opening degree is a second adjustment amount V. "' 2 can be calculated by the following calculations:
  • V out 2 K cs x—— + K BS x— - dt dt , where s is the compressor feedback coefficient and is the compressor speed, where ⁇ is the evaporator wind Machine speed, S is the feedback coefficient of the evaporator fan; Compressor feedback coefficient ⁇ , The evaporator fan feedback coefficient is the coefficient obtained by empirical or experimental calibration or fitting.
  • the control system adds the first adjustment amount U of the electronic expansion valve opening degree to the second adjustment amount of the electronic expansion valve opening degree ⁇ , and outputs a control signal for adjusting the opening degree to the control end of the electronic expansion valve.
  • the electronic expansion valve opening adjustment amount ⁇ "" can be obtained by the following calculations: de T , r f . complicating dCS T , dBS
  • the proportional coefficient, the differential coefficient, the integral coefficient 'and the compressor feedback coefficient s evaporator fan feedback coefficient ⁇ « can also be obtained by empirical or experimental calibration or model fitting.
  • the front feedback information may also include information on the speed change of the evaporator fan, the speed and displacement change information of the compressor fan, and may also include the fan change information of the condenser.
  • the specific information selected as the pre-feedback information can be obtained by experiments and the like according to the specific system.
  • the system controls the opening degree of the electronic expansion valve immediately after the change of the rotation speed or the displacement of the compressor, and the response speed is greatly improved compared with the opening degree of the electronic expansion valve after the actual superheat degree signal is obtained. System fluctuations are also smaller.
  • FIG. 3 is a diagram showing a relationship between a superheat degree and a control time of a system obtained by using only a control method of controlling the opening degree of an electronic expansion valve using an actual superheat degree as a comparison method, compared with the method of the present invention.
  • the a curve represents the relationship between the degree of superheat of the method of the present invention and the control time
  • the curve of b represents the relationship between the degree of superheat of the control method and the control time.
  • the pre-feedback control strategy in the method of the present invention can immediately obtain the magnitude and direction of the disturbance when the system compressor or the fan speed changes, thereby predicting the change of the actual superheat degree in advance, compared with the conventional one.
  • the control method waits for the actual superheat of the system to change and then controls accordingly.
  • the system fluctuates less and the actual superheat returns to the preset superheat value takes less time.
  • valve movement mode of the electronic expansion valve is different from that of the thermal expansion valve, which uses a stepping motor to drive the valve needle to rotate along the thread, and the valve needle can be raised or lowered by one pitch per rotation. , to achieve the purpose of moving the valve needle to control its opening. Since the speed of the stepping motor is limited by the performance of the wire package and the controller, the moving speed of the thermal expansion valve is generally not achieved. Assuming that the speed of the stepper motor is 80 pps and the entire stroke of the valve pack is 480 steps, the electronic expansion valve takes 6 seconds to open from the fully closed state to the fully open state.
  • the compressor in the case where the compressor is an electric compressor, the rate of change of the rotational speed of the compressor and the evaporator fan cannot be too fast; in the case where the compressor is a variable displacement compressor, The displacement of the compressor should not be changed too fast, so that the rate of change of the opening degree of the electronic expansion valve cannot be kept up, the superheat of the vehicle air conditioning system is deviated, and the loss of the corresponding energy efficiency is reduced.
  • the adjustment amount of the opening of the electronic expansion valve should not exceed the maximum rate of change of the opening degree of the electronic expansion valve, that is, when the rotation speed of the compressor or the fan speed of the evaporator changes, the feedback value corresponding to the change speed is not Exceeding the speed of the electronic expansion valve.
  • the opening degree of the electronic expansion valve a plurality of regions are set at the full opening degree, and there is a corresponding minimum number of action steps in each region, and the minimum number of action steps corresponding to each region may be different, and the current calculation result requires an electron.
  • the electronic expansion valve remains stationary until the required action value is greater than the minimum number of operating steps.
  • the smaller the opening of the electronic expansion valve the smaller the number of steps in the area. The smaller it should be, the less the disturbance to the system.
  • a pressure sensor can be used to obtain the rotational speed of the compressor or the rotational speed of the evaporator fan. After the vehicle air conditioning system stops running for a long time, the system is still activated for the first time. Without entering the stable operating condition, since the reaction speed of the pressure sensor is faster than that of the temperature sensor, the pressure will drop faster than the temperature, so the superheat will show a sharp rise at the beginning of the operation, and it is possible that the calculated opening of the electronic expansion valve is larger than the actual one. The required opening causes the system to flow too much and the compressor current is too large to overload.
  • the compressor speed is not more than 50% of the maximum speed when restarting, and the opening of the electronic expansion valve is not more than 50 of the maximum opening degree.
  • a fixed value of % which lasts for a fixed time, such as 15s, before normal control is resumed. That is, the method of the present invention is generally applicable to the control of a vehicle air conditioning system under normal operating conditions, and can be specifically set by a control program.
  • the superheat control method of the vehicle air conditioning system of the present invention is further optimized based on the above several embodiments.
  • the control method of the present invention performs the electronic expansion valve fault diagnosis processing while controlling the superheat degree by the pre-feedback control strategy, and the electronic expansion valve fault diagnosis processing specifically includes the following steps:
  • Execution control mechanism controls to adjust the actual superheat degree change in the vehicle air conditioning system The parameters of the equipment to adjust the superheat of the vehicle air conditioning system.
  • the opening degree of the electronic expansion valve is referred to herein as a theoretical opening degree, such as when the software part of the control system is in the vehicle controller, and the communication mode (CAN/LIN) can communicate with the electronic expansion valve, and When the electronic expansion valve can feed back the position information, the electronic expansion valve opening refers to the opening degree returned by the electronic expansion valve.
  • the scope of the fault diagnosis only includes the electronic expansion valve; for example, when the electronic expansion valve cannot provide feedback information, the electronic expansion valve opens.
  • Degree refers to the degree to which the software program output command in the control system requires the electronic expansion valve to operate.
  • the scope of the fault diagnosis includes the expansion valve and the communication program.
  • the electronic expansion valve opening refers to the command position of the program output during the direct control action.
  • the scope of the fault diagnosis only includes the expansion valve.
  • the above-described diagnostic processing program may be performed simultaneously with the superheat control, or may be a part of the over-control program.
  • the parameters of the device affecting the actual superheat change in the vehicle air conditioning system include the rotational speed of the compressor and/or the displacement c 1 and/or the rotational speed c 2 of the evaporator fan.
  • step S02 is a process of performing fault diagnosis based on the relationship between the actual superheat degree and the preset superheat degree and the opening degree of the electronic expansion valve, and the fault state determination processing.
  • the process includes the following:
  • step S024 if the number of errors n of the electronic expansion valve is less than the preset number N by the first time length t1, the operation is not performed, and the next fault diagnosis cycle is entered. [0109] That is to say, when the preset superheat degree is greater than the actual superheat degree, the valve performs an action of decreasing the opening degree to increase the actual superheat degree to a preset superheat degree.
  • steps S021, S022 can determine the superheat degree control when the preset superheat degree is greater than the actual superheat degree first fixed value wl, and when the valve opening degree has reached the minimum value and the continuous N beats are maintained. An error occurred and entered the fault control mode.
  • the valve performs an action of increasing the opening degree to lower the actual superheat degree to reach the preset superheat degree.
  • the preset superheat degree is greater than the actual superheat degree second fixed value w2
  • the valve opening degree has reached the maximum value, and the continuous N beats are maintained
  • the superheat degree control error is determined, and the fault control is entered. mode.
  • S025. Determine the actual superheat degree - whether the preset superheat degree is greater than the second fixed value w2, and if yes, execute step S026; if not, execute step S05, that is, the corresponding error is an external factor influence or interference, and the process parameter is accumulated. The number of errors n is cleared and the next fault diagnosis cycle is entered.
  • step S026 Determine whether the opening degree of the electronic expansion valve reaches a maximum value, and if yes, execute step S023, and the number of valve errors n is increased by 1; the number of times of the two types of errors n is greater than or equal to the preset number in the first time length t1.
  • step S03 is executed, and a control signal is outputted to the actuator according to the result of the determination, and S05 is executed at the same time, and the cumulative number of errors n is cleared. If no, step S05 is executed, that is, the corresponding error is caused by external factors or interference, and the accumulated error count n is cleared to enter the next fault diagnosis cycle.
  • step S0 as to whether or not to handle the limit operating condition range may be added before step S01. Specifically as shown in Figure 5.
  • step S03 and S04 of the fourth embodiment when the result of the determination is that the electronic expansion valve and the communication with the electronic expansion valve are in a fault state, as shown in FIG. 6, the specific control steps are as follows: [0116] S031, determining whether the actual superheat degree is less than the second preset auxiliary superheat degree, and if so, executing step S041, and if not, executing step S032;
  • the first preset auxiliary superheat degree and the second preset auxiliary superheat degree may be set according to actual conditions.
  • the specific control steps are as follows:
  • step S0313 it is determined whether the compressor speed or displacement is at the highest value C lmax - A 3 , and if so, step S0314 is performed, otherwise, step S0411 is performed;
  • step S0321 determine whether the speed or displacement of the compressor ⁇ is at a minimum value C lmm + A 1 If yes, then step S0322 is performed, otherwise, step S0421 is performed;
  • step S0423 it is determined whether the speed C 2 of the evaporator fan is at a minimum value C 2mm + A 2 , and if so, step S0423 is performed, otherwise, step S0422 is performed;
  • ⁇ 2 > 0, and the value of ⁇ 2 can be set according to the actual situation to ensure safe operation of the compressor and the evaporator fan.
  • the superheat can only be increased by increasing the speed of the evaporator fan; if not, because the change of the speed of the evaporator fan will affect the comfort of the cabin, the compressor should be prioritized.
  • the cooling capacity generated by the vehicle air conditioning system may be greater than the actual requirement, and the excess cooling amount may pass through the heating core. Or the heat dissipation of the PTC heater; when the current opening degree of the electronic expansion valve is blocked is less than the actual required opening degree, the cooling capacity generated by the vehicle air conditioning system will be lower than the required cooling capacity, and the system continues the fault handling process.
  • step S0423 may be to turn off the compressor, or to continue the operation while selecting the corresponding alarm, and to select it manually or not.
  • the present invention also provides a vehicle air conditioning system including a compressor unit and a throttle unit, the compressor unit including a compressor, a condenser, a condenser fan, an evaporator, and an evaporator fan.
  • the throttle element uses an electronic expansion valve, and the thick solid line in the figure indicates the refrigerant cycle.
  • the vehicle air conditioning system also includes:
  • the first obtaining module 1 is configured to acquire actual superheat degree in real time, and obtain pre-feedback information that affects actual superheat degree change in real time;
  • the first controller 2 is configured to store the preset superheat degree and receive the actual superheat degree and the pre-feedback information, and adjust the opening degree of the electronic expansion valve in real time according to the actual superheat degree, the preset superheat degree, and the pre-feedback information.
  • the vehicle air conditioning system of the present invention controls the opening degree of the electronic expansion valve by the actual superheat degree and the pre-feedback information, and can directly obtain the magnitude and direction of the disturbance when the system is disturbed, compared with the prior art.
  • the change in the degree of superheat is predicted in advance. Compared with the conventional air conditioning system that waits for the superheat of the system to change and then controls accordingly, the system fluctuates less and the time required for the superheat to return to the control point is shorter.
  • the pre-feedback information acquired by the first acquisition module 1 includes: a rotational speed of the compressor and/or a displacement change amount; and/or an amount of change in the rotational speed of the evaporator fan.
  • the first obtaining module 1 includes an acquisition module for acquiring compressor rotation speed (displacement) change information and/or evaporator fan rotation speed change information, and a temperature sensor for acquiring the evaporator inlet and outlet temperature, wherein
  • the acquisition module can select a speed sensor or a pressure sensor.
  • the first controller 2 communicates with the electronic expansion valve through the vehicle CAN bus or the LIN bus; the first acquisition module 1 passes through the vehicle CAN bus, or the LIN bus and the first controller 2 Communicate.
  • the first controller 2 includes:
  • the PID control module 21 is configured to store the preset superheat and compare the actual overheat received Degree and preset superheat degree, obtaining a superheat difference value, and obtaining a corresponding first electronic expansion valve opening degree adjustment amount according to the superheat degree difference;
  • the front feedback control module 22 is configured to acquire a corresponding second adjustment amount of the electronic expansion valve opening according to the received rotation speed of the compressor and the displacement change amount, and/or the rotation speed change amount of the evaporator fan; as well as,
  • the execution control module 23 is configured to control the opening degree of the electronic expansion valve according to the electronic expansion valve opening degree first adjustment amount and the electronic expansion valve opening degree second adjustment amount.
  • V out ⁇ K p xe + K d x - + K i x) n edt + C
  • e the superheat difference, which is the proportional coefficient
  • the differential coefficient
  • the integral coefficient
  • c the correction factor
  • the second electronic expansion valve * 'T out value ⁇ is obtained in the front feedback control module 22 by the following calculation.
  • ' 2 is the first part of the second adjustment amount of the electronic expansion valve openingroy, 21, the second adjustment part of the electronic expansion valve opening degreecet , 22 of either or both, wherein the first portion of the electronic expansion valve opening second adjustment amount ⁇ 21 is obtained by the following calculation:
  • the second part Mi 22 is obtained by the following calculation: dBS
  • V ⁇ 22 K ⁇ x-dt
  • cs is the compressor speed feedback coefficient, which is the compressor speed
  • is the evaporator fan speed, and is the evaporator fan feedback coefficient
  • CD is the compressor displacement.
  • the vehicle air conditioning system further includes:
  • the second obtaining module 3 is configured to acquire an opening degree of the electronic expansion valve in real time
  • the second controller 4 is configured to determine, according to the obtained actual superheat degree, the preset superheat degree, and the opening degree of the electronic expansion valve, whether the electronic expansion valve is in a fault state, and when the judgment result is that the electronic expansion valve is in a fault state, , generating a first control signal according to the obtained actual superheat degree;
  • the execution control mechanism 5 is configured to receive a first control signal sent by the second controller 4, and control, according to the first control signal, a parameter of the device that affects the actual superheat degree change in the vehicle air conditioning system, where the vehicle air conditioner
  • the parameters of the equipment affecting the actual superheat change in the system include the rotational speed and or displacement of the compressor, and/or the rotational speed c 2 of the evaporator fan.
  • the second acquiring module 3 communicates with the first controller 2 through the vehicle CAN bus or the LIN bus; the second controller 4 and the electronic expansion valve communicate through the vehicle CAN bus or the LIN bus. .
  • the execution control mechanism 5 is an in-vehicle controller ECU.
  • the second controller 4 includes:
  • the determining module 41 is configured to determine, according to the actual superheat degree, the preset superheat degree, and the opening degree of the electronic expansion valve, whether the electronic expansion valve is in a fault state, and generate a first when the judgment result is that the electronic expansion valve is in a fault state. control commands;
  • the first control module 42 is configured to receive the first control command sent by the determining module 41, and when the actual superheat degree is greater than the first preset auxiliary superheat degree, the control execution control mechanism 5 performs to reduce the compressor speed or displacement.
  • C 1 either reduces the evaporator fan speed C 2 or commands to shut down the compressor;
  • the second control module 43 is configured to receive the first control command sent by the determining module 41, and when the actual superheat degree is less than the second preset auxiliary superheat degree, the control execution control mechanism 5 performs to increase the speed or the row of the compressor.
  • the amount C 1 is either increasing the speed of the evaporator fan C 2 or the command to shut down the compressor;
  • the third control module 44 is configured to receive the first control command sent by the determining module 41, and control when the actual superheat degree is greater than or equal to the second preset auxiliary superheat degree and less than or equal to the first preset auxiliary superheat degree.
  • the execution control mechanism 5 executes a command to maintain the rotational speed or displacement C 1 of the compressor or to maintain the rotational speed C 2 of the evaporator fan or to rotate or discharge the compressor, or to steam
  • the speed of the fan of the generator is c 2 3 ⁇ 4 into a properly adjusted state.
  • the first control module 42 includes:
  • the first command module 421 is configured to: when the speed or displacement of the compressor is greater than a minimum value C lmm + ⁇ i , the control execution control mechanism 5 executes a command to reduce the compressor speed or the displacement C x ; [0168] a second command module 422, configured to achieve a minimum in the speed or displacement C i of the compressor And when the speed C 2 of the evaporator fan is greater than the minimum value C 2mm + A 2 , the control execution control mechanism 5 executes a command to reduce the evaporator fan speed C 2 ;
  • the third command module 423 is configured to achieve a minimum speed or displacement of the compressor And when the speed C 2 of the evaporator fan reaches the minimum value C 2mm + A 2 , the control execution control mechanism 5 executes a command to close the compressor;
  • the second control module 43 includes:
  • the fourth command module 431 is configured to control when the low pressure alarm value of the vehicle air conditioning system is higher than the low pressure alarm value, the high pressure is lower than the high pressure alarm value, and the speed or displacement C 1 of the compressor is less than the maximum value C lmax .
  • the execution control mechanism 5 executes a command to increase the rotational speed or displacement of the compressor;
  • a fifth command module 432 for lowering the low pressure alarm value or the high pressure higher than the high pressure alarm value in the vehicle air conditioning system, and the evaporator fan When the rotational speed C 2 is less than the maximum value C 2max - A 4 , the control execution control mechanism 5 executes a command to increase the rotational speed C 2 of the evaporator fan;
  • the sixth command module 433 is configured to control execution control when the low pressure alarm value of the vehicle air conditioning system is lower than the low pressure alarm value or the high pressure is higher than the high pressure alarm value, and the speed C 2 of the evaporator fan reaches the maximum value C 2max ⁇ A 4
  • the mechanism 5 executes a command to turn off the compressor.
  • the first obtaining module 1, the second obtaining module 3, the second controller 4, and the first controller 2 may be integrated on one chip, such as uniformly solidified in the MCU, or may be multiple chips. Assemble. Further, in the present invention, the electronic expansion valve opening degree first adjustment amount U and the electronic expansion valve opening degree second adjustment amount V are performed . "' The steps of 2 addition can be performed by the execution control module or the execution control mechanism, and can also be performed by other modules of the control system. In addition, it should be noted that the second controller 4 can also have hardware fault diagnosis. The hardware diagnostic module is used to detect the driving current and voltage, and to obtain fault information such as open circuit, short circuit, and out of synchronization.

Abstract

一种车辆空调系统过热度控制方法及车辆空调系统,该方法包括:实时获取实际过热度、预设过热度以及影响实际过热度变化的前反馈信息;根据获取的实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度。

Description

车辆空调系统过热度控制方法及车辆空调系统
技术领域
[0001] 本发明涉及一种车辆空调系统过热度控制方法及车辆空调系统, 尤其涉及一种通过压缩机和 /或蒸发器风机的前反馈信息、 以及实际过热 度、 预设过热度来控制电子膨胀阀的开度的车辆空调系统过热度控制方 法及车辆空调系统, 属于汽车空调技术领域。
背景技术
[0002] 汽车空调系统主要包括压缩机、 冷凝器、 节流元件和蒸发器, 从 压缩机出来的高温高压制冷剂气体, 经冷凝器冷凝后变为制冷剂液体, 制冷剂液体经节流元件节流降压后进入蒸发器, 在蒸发器内与蒸发器外 的空气进行热交换, 变为制冷剂气体又回到压缩机, 从而完成一个制冷 循环, 而经蒸发器冷却后的空气进入车室, 若车室内的温度低于或高于 车室内设定温度, 则通过控制调节节流元件的开度控制过热度。
[0003] 传统的发动机汽车空调系统的压缩机和发动机直接使用皮带相 连, 无法控制压缩机的转速, 随着节能环保的混合动力和电动汽车的逐 渐普及, 越来越多的车型采用电动压缩机取代传统的皮带轮驱动压缩机 作为空调制冷循环的动力。 而现有的汽车空调系统主要使用热力膨胀阀 作为节流元件, 热力膨胀阀在应用于电动压缩机系统时, 存在以下问题:
[0004] 由于热力膨胀阀阀针的动作是由阀上温包对应饱和压力和管路内 压力差值驱动, 完全由机械力决定, 所以无法快速正确应对压缩机或者 蒸发器风机的工况快速变化; 无法根据系统各参数决策相应开度, 过热 度控制不够稳定, 而影响出风温度的舒适性; 目前的新能源车多数需要 空调系统不只用于冷却车厢, 还需要冷却电池和变频器, 这种双蒸发器 的空调系统使用热力膨胀阀时, 由于热力膨胀阀在系统运行时无法关死, 使得空调系统在只有蒸发器或换热器工作时, 另一侧仍有流量通过, 影 响效率, 同时, 大量液体聚集在未工作一侧的低压管路内, 导致系统充 注量提高, 系统需使用相对较大的集液器, 提高成本。 [0005] 在采用电动压缩机的空调系统中使用电子膨胀阀取代热力膨胀阀 作为节流元件, 具有如下优势:
[0006] 电子膨胀阀可以根据空调系统中的各参数进行调节, 并根据不同 工况即时调整相应控制策略, 达到提高制冷系统效率、 节能环保的目的; 电子膨胀阀的控制过热度相比热力膨胀阀更为平稳, 从而使出风温度更 为稳定, 提高舒适度。
[0007] 目前的家用商用空调上是采用电子膨胀阀作为节流元件, 由于家 用商用空调工况较稳定, 制冷系统负荷变化很小, 其通常是仅使用过热 度作为 PID输入参数来控制电子膨胀阀的开度, 以控制制冷量即可。 而 汽车空调与家用商用空调不同, 汽车空调工况变化非常快, 单纯使用过 热度调节电子膨胀阀开度会存在响应速度慢、 容易过调等问题。
[0008] 在已经公布的专利中(如申请号为 200510021304.7的专利),提及 一种采用电子膨胀阀作为节流元件的电动汽车的空调系统控制方法, 其 是通过车厢内的温度传感器来调整压缩机转速和电子膨胀阀开度的, 但 是, 该空调系统控制方法没有考虑蒸发器风机速度和系统温度压力等参 数, 在工况发生变化时, 可能导致系统效率降低, 压缩机液击等多种问 题。
发明内容
[0009] 为了解决上述现有技术中所存在的问题, 本发明提供了一种车辆 空调系统过热度控制方法及车辆空调系统, 采用电子膨胀阀作为节流元 件, 除了采用实际过热度作为输入参数来调节电子膨胀阀的开度之外, 还通过影响实际过热度变化的前反馈信息来控制电子膨胀阀的开度, 响 应速度快、 控制过热度更平稳。
[0010] 本发明所提供的技术方案为:
[0011] 一种车辆空调系统过热度控制方法, 包括: 实时获取实际过热度、 预设过热度以及影响实际过热度变化的前反馈信息; 根据获取的实际过 热度、 预设过热度以及前反馈信息实时调整电子膨胀阀的开度, 以控制 车辆空调系统的过热度。
[0012] 这里预设过热度并不单指某一固定值, 预设过热度可以是相对应 区间所对应的值、 或根据相对应工况能查出对应值的一张表或根据拟合 所能得出的公式等, 每个系统根据试验、 分析或拟合结果固化在控制系 统中。 这里实际过热度的实时获取, 实时指的是大于或等于系统固有采 样频率如 1Hz的采集及控制频率, 对于同一程序, 采集和控制频率应相 等或控制频率为实时采集频率的整数倍。 这里 "实时调整电子膨胀阀的 开度" 的实时, 指的是需要调节的量达到 (即大于等于)程序设定的最 小值后, 会输出控制信号调节电子膨胀阀的开度, 而在需要调节的量 4艮 小即小于程序设定的最小值时, 电子膨胀阀不动作; 程序设定的最小值 可以随电子膨胀阀所在的开度区间而变化。
[0013] 所述前反馈信息可以包括: 压缩机的转速和或排量变化量; 和 /或, 蒸发器风机的转速变化量。
[0014] 所述 "根据实际过热度、 预设过热度以及前反馈信息实时调整电 子膨胀阀的开度, 以控制车辆空调系统的过热度" 的具体控制方法包括: 比较获取的实际过热度与预设过热度, 得到一过热度差值, 并根据所述 过热度差值获取对应的电子膨胀阀开度第一调节量; 根据压缩机的转速 和或排量变化信息、 和 /或所述蒸发器风机的转速变化信息获取对应的电 子膨胀阀开度第二调节量; 根据电子膨胀阀开度第一调节量和电子膨胀 阀开度第二调节量对电子膨胀阀的开度进行调整。
[0015] 所述电子膨胀阀开度第一调节量 U可以通过以下计算得到:
Figure imgf000004_0001
Vout i = Kp X e + Kj X + Ki X dt + C , 式中, e为实际过热度和预设过热度的过热度差值, ^ ^为比例系数, 为 微分系数, 为积分系数, C为修正系数;
[0016] 电子膨胀阀开度第二调节量 V。"'2为电子膨胀阀开度第二调节量第 一部份 „,21、电子膨胀阀开度第二调节量第二部份 „, 22两者其中之一或 两者之和, 其中电子膨胀阀开度第二调节量第一部份 „, 21通过以下计算 得到: dCS Ύ Τ dCD _ τ dCS T, dCD 电子膨胀阀开度第二调节量第二部份 „, 22通过以下计算得到 dBS
V^ 22 = KB x
dt 式中, cs为压缩机转速反馈系数, 为压缩机转速, ^为蒸发器风机 转速, 为蒸发器风机反馈系数; CD为压缩机排量, OT为压缩机排量 反馈系数;
[0017] 以及,在根据电子膨胀阀开度第一调节量 U和电子膨胀阀开度第 二调节量 V。" 2对电子膨胀阀的开度进行调整时, 将电子膨胀阀开度第一 调节量 U与电子膨胀阀开度第二调节量^ ^相加后输出调节开度的控 制信号至电子膨胀阀的控制端。
[0018] 所述电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二调节 量^"'2相加后得到的开度调节量小于控制系统中设定的目前电子膨胀阀 所在开度区间的最小动作步数时, 电子膨胀阀保持不动作; 当开度调节 量大于等于控制系统中设定的目前电子膨胀阀所在开度区间的最小动作 步数时, 电子膨胀阀才进行动作, 这样以减少对系统的扰动。
[0019] 并且,所述电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二 调节量 V。"'2相加后得到的开度调节量小于等于电子膨胀阀的开度的最大 变化速率, 或者说小于等于在固定调节周期内电子膨胀阀能够动作的开 度变化量。
[0020] 所述的车辆空调系统过热度控制方法还可以包括:
[0021] 获取电子膨胀阀的开度, 并根据获取的实际过热度、 预设过热度 故障状态; 这里 获耳:电子膨胀阀的开度"一指的是其理论开度。 、
[0022] 当判断结果为处于故障状态时, 控制系统输出控制信号至执行控 制机构, 执行控制机构控制调整该车辆空调系统中影响实际过热度变化 的设备的参数, 以调整车辆空调系统的过热度, 其中, 所述车辆空调系 统中影响实际过热度变化的设备的参数包括压缩机的转速和或排量 C χ、 和 /或蒸发器风机的转速 c 2
[0023] 另外, 在判断结:
状态的前提下: [0024] 当实际过热度大于第一预设辅过热度, 输出控制信号至执行控制 机构, 执行控制机构控制降低压缩机转速或排量 C 1 或者降低蒸发器风 机转速 c 2、 或者关闭压缩机;
[0025] 当实际过热度小于第二预设辅过热度, 输出控制信号至执行控制 机构, 执行控制机构控制提高压缩机的转速或排量 C 1 或者提高蒸发器 风机的转速 C 2、 或者关闭压缩机;
[0026] 当实际过热度大于等于第二预设辅过热度、 且小于等于第一预设 辅过热度时, 输出控制信号至执行控制机构, 执行控制机构控制压缩机 的转速或排量 C x以及蒸发器风机的转速 C 2保持不变。 [0027] 本发明还提供了一种车辆空调系统, 包括压缩机组和节流元件, 所述压缩机组包括压缩机、 冷凝器、 冷凝器风机、 蒸发器和蒸发器风机, 所述节流元件包括电子膨胀阀; 所述车辆空调系统还包括第二获取模块、 第二控制器与执行控制机构;
[0028] 第一获取模块用于实时获取实际过热度、 以及实时获取影响所述 实际过热度变化的前反馈信息;
[0029] 第一控制器用于存储预设过热度以及接收实际过热度和前反馈信 息, 并根据实际过热度、 预设过热度以及前反馈信息实时调整所述电子 膨胀阀的开度。
[0030] 所述前反馈信息包括: 所述压缩机的转速和或排量变化量; 和 /或, 所述蒸发器风机的转速变化量。
[0031] 所述第一控制器与电子膨胀阀通过车辆 CAN总线、或 LIN总线进 行通讯; 所述第一获取模块通过车辆 CAN总线、或 LIN总线与所述第一 控制器进行通讯。
[0032] 所述第一控制器包括 PID控制模块, 前反馈控制模块, 执行控制 模块;
[0033] PID控制模块用于存储预设过热度,并比较接收的实际过热度与预 设过热度, 得到一过热度差值, 并根据所述过热度差值及其变化获取对 应的电子膨胀阀开度第一调节量;
[0034] 前反馈控制模块用于根据接收的压缩机的转速和或排量变化量、 和 /或所述蒸发器风机的转速变化量获取对应的电子膨胀阀开度第二调节
[0035] 执行控制模块用于根据所述电子膨胀阀开度第一调节量和所述电 子膨胀阀开度第二调节量来控制调整所述电子膨胀阀的开度。
[0036] 所述 PID控制模块内通过以下计算来获取电子膨胀阀开度第一调 节量 Μίι:
Figure imgf000007_0001
式中, e为过热度差值, 为比例系数, Λ 为微分系数, ^为积分系数, C为修正系数;
[0037] 所述前反馈控制模块内通过以下计算来获取电子膨胀阀开度第二 调节量 Μί 2 ,电子膨胀阀开度第二调节量 2为电子膨胀阀开度第二调节 量第一部份 „,21、 电子膨胀阀开度第二调节量第二部份 „,22两者其中之 一或两者之和, 其中电子膨胀阀开度第二调节量第一部份 Μί21通过以下 计算得到: dCS Ύ7 dCD _ τ dCS T, dCD at at at at 电子膨胀阀开度第二调节量第二部份 „,22通过以下计算得到: dBS
Vnl22 = KK - dt 式中, cs为压缩机转速反馈系数, 为压缩机转速, ^为蒸发器风机 转速, s为蒸发器风机反馈系数; CD为压缩机排量, OT为压缩机排 量反馈系数;
[0038] 所述执行控制模块内通过将电子膨胀阀开度第一调节量 U与电 子膨胀阀开度第二调节量 V。"'2相加后输出调节开度的控制信号至电子膨 胀阀的控制端。
[0039] 进一步的, 所述车辆空调系统还包括:
[0040] 第二获取模块, 用于实时获取电子膨胀阀的开度; [0041] 第二控制器, 用于根据获取的实际过热度、 预设过热度以及电子
则根^获取的实际过热度生成第二控制信号; ' 、
[0042] 执行控制机构, 用于接收第二控制器发送的第一控制信号, 并根 据所述第一控制信号控制调整该车辆空调系统中影响实际过热度变化的 设备的参数, 其中, 所述车辆空调系统中影响实际过热度变化的设备的 参数包括压缩机的转速或排量 C x、 和 /或蒸发器风机的转速 C 2
[0043] 本发明的有益效果为: 本发明的车辆空调系统过热度控制方法及 车辆空调系统, 采用电子膨胀阀作为节流元件, 根据汽车空调工况变化 快、 压缩机转速和蒸发器风机转速经常调整等特点, 除了采用实际过热 度作为输入参数来调节电子膨胀阀的开度之外, 还通过压缩机的转速变 化量、 和 /或蒸发器风机的转速变化量等前反馈信息来控制电子膨胀阀的 开度, 具有响应速度快、 控制过热度更平稳、 出风温度更稳定、 提高舒 适度等优点。
附图说明
[0044] 图 1表示本发明车辆空调系统过热度控制方法的流程框图;
[0045] 图 2表示本发明车辆空调系统过热度控制方法具体实施例的流程 框图;
[0046] 图 3表示本发明车辆空调系统过热度控制方法与常规技术相比得 到的过热度与控制时间关系图;
[0047] 图 4表示本发明车辆空调系统过热度控制方法第四种实施例的流 程框图;
[0048] 图 5表示本发明车辆空调系统过热度控制方法第四种实施例中故 障诊断过程的流程框图;
[0049] 图 6表示本发明车辆空调系统过热度控制方法第四种实施例中故 障控制模式下的流程框图;
[0050] 图 7表示本发明的车辆空调系统第一种实施例的结构框图; [0051] 图 8表示本发明的车辆空调系统第二种实施例的结构框图;
[0052] 图中的粗实线表示制冷剂循环。
具体实施方式 [0053] 以下结合附图对本发明的原理和特征进行描述, 所举实施例只用 于解释本发明, 并非用于限定本发明的范围。
[0054] 现有技术中, 采用电子膨胀阀作为节流元件一般只应用于家用或 商用空调系统中, 电子膨胀阀的开度一般仅通过实际过热度作为输入参 数进行 PID控制, 有时存在响应速度慢、 容易过调等问题。 本发明的方 法中采用前反馈控制策略来对汽车空调系统的电子膨胀阀的开度进行控 制, 即: 除了采用实际过热度作为 PID输入参数之外, 还根据实时获取 的前反馈信息来控制电子膨胀阀的开度, 响应速度快、 控制过热度更平 稳。
[0055] 在此, 首先对前反馈进行如下说明: 前反馈是指系统的控制输出 不再单纯和被控对象参数的变化相关, 还与影响被控对象参数变化的扰 动因素有关, 例如: 电子膨胀阀的开度控制不光和实际过热度的变化有 关, 还与影响实际过热度变化、 并在工况发生变化时比实际过热度更为 及时地做出反应的车辆空调系统中的其他参数有关, 因此, 通过前反馈 控制策略可使系统在工况发生变化时, 但还没有对被控对象(实际过热 度)产生影响前就进行调节, 来达到更好的控制品质。 如在压缩机的转 速或排量、 蒸发器风机的转速变化的同时, 或略微延迟一定时间, 而在
[0056] 请参图 1 , 本发明车辆空调系统过热度控制方法包括以下步骤:
[0057] S1. 实时获取实际过热度、预设过热度、 以及影响实际过热度变化 的前反馈信息;
[0058] S2. 根据获取的实际过热度、预设过热度、 以及前反馈信息, 实时 调整电子膨胀阀的开度, 以控制车辆空调系统的过热度。
[0059] 这里预设过热度并不单指某一固定值, 预设过热度可以是相对应 区间所对应的值、 或根据相对应工况能查出对应值的一张表或根据拟合 所能得出的公式等。 每个系统可能会有不同, 具体可根据试验、 分析或 拟合结果固化在控制系统中。 针对一个特定制冷系统, 如果需要开发对 应的电子膨胀阀控制策略, 首先需要进行大量的系统性能测试, 了解系 统在特定情况下, 膨胀阀需要打开至何种状态来达到最优的系统性能。 获得数据后, 需要进行拟合获得各个工况下最优 COP对应的过热度。 从 而得出相关工况下的预设过热度并固化在控制系统中。
[0060] 针对车辆空调系统中影响实际过热度变化的前反馈信息, 通常, 车辆空调系统主要包括压缩机、 冷凝器、 节流元件和蒸发器, 当车辆空 调系统处于一稳定工况的情况下, 压缩机的转速、 排量、 蒸发器风机的 转速、 车辆外界温度、 车内温度以及电子膨胀阀的开度均处于相对稳定 状态。 某一时刻, 外界环境对车辆空调系统施加一扰动时, 例如: 车子 从树荫或隧道中开到太阳下等情况, 工况发生变化, 导致车内温度突然 升高, 则蒸发器温度升高, 蒸发压力上升, 为了达到设定的出风温度, 压缩机的转速则逐渐提高, 蒸发器风机转速逐渐提高, 在此情况下, 若 电子膨胀阀开度保持不变, 则会出现蒸发压力下降、 但制冷量上升不多 的情况, 在现象上则表现为实际过热度过高。 筒单的讲, 在工况发生变 化时, 压缩机的转速(排量)提高, 蒸发器风机转速提高, 会使实际过 热度提高, 反之亦然, 而为了使制冷系统有更大的流量, 需要电子膨胀 阀开度持续加大, 使得实际过热度回到设定值。
[0061] 由上述的整个过程中可知, 工况发生变化后, 蒸发器风机的转速、 压缩机转速或排量在提高一段时间 (一般为 5~10秒, 根据用于获取实际 过热度的温度传感器和压力传感器的灵敏度而定)后, 用于获取实际过 热度的温度传感器和压力传感器才能获知实际过热度提高, 进而开始调 节电子膨胀阀的开度。
[0062] 因此, 本发明中前反馈信息优选为: 针对变排量压缩机, 前反馈 信息包括压缩机的转速和排量, 针对定排量压缩机, 前反馈信息包括压 缩机的转速; 和 /或, 蒸发器风机的转速变化信息。 当然, 根据上述整个 过程, 并结合空调系统的工作原理可知, 前反馈信息还可以包括: 冷凝 器风机的转速等。
[0063] 请参见图 2, 图 2为本发明的方法控制方法三种实施例的流程图。
[0064] 如图 2所示, 前反馈信息为压缩机的转速变化量时, 该车辆空调 系统过热度控制方法具体步骤如下:
[0065] S11. 实时获取实际过热度、 预设过热度以及压缩机的转速变化信 息;
[0066] S21. 比较获取的实际过热度与预设过热度, 得到一过热度差值, 并根据所述过热度差值获取对应的电子膨胀阀开度第一调节量 U ,电子 膨胀阀开度第一调节量 U 可根据以下计算得到:
V0 = Kp x e + Kd x— + Κ, χ { edt + C
dt
式中, e为实际过热度与预设过热度的过热度差值, ^为比例系数, Kd 为微分系数, 为积分系数, C为修正系数; 其中, 比例系数^、 微分 系数 Kd、 修正系数 C和积分系数 可以是根据经验或者实验标定或拟合 得到的系数。
[0067] S22. 根据获取的压缩机的转速变化信息, 获取对应的电子膨胀阀 开度第二调节量^ 具体地说, 通过压缩机的转速变化信息对电子膨 胀阀的开度进行调整时, 其控制原理类似微分环节, 压缩机的转速随着 时间变化有相应函数 c^W , 某一时刻 θ的微分值为 j |t=tQ , 则电子膨 胀阀开度第二调节量 v。"'2可以通过以下计算得到: t
V t 2 = Kr x ^- at , 式中, J ^为压缩机反馈系数, 为压缩机的转速; 其中, 压缩机反馈 系数 Kcs是根据经验或者实验标定得到的系数。
[0068] S23. 控制系统将电子膨胀阀开度第一调节量 U与电子膨胀阀开 度第二调节量 v。w 2相加后, 输出调节开度的控制信号至电子膨胀阀的控 制端, 以控制电子膨胀阀的开度, 即电子膨胀阀开度调节量 ^'可以通过 以下计算得到: de " , ^ „ dCS
out = Kp x e + Kd x— + Ki x \ edt + C + Kcs x
dt in dt 式中, e为实际过热度和预设过热度的过热度差值, ^为比例系数, 为微分系数, 为积分系数, s为压缩机反馈系数, 为压缩机转速, C为修正系数。
[0069] 需要说明的是, 压缩机为变排量压缩机时, 上述控制方法中, 压 缩机的转速变化量相应地即为压缩机的转速加上排量变化量。
[0070] 下面介绍本发明方法的第二种实施例, 与第一种实施例不同的是, 本实施例中前反馈信息为蒸发器风机的转速变化信息, 具体步骤如下:
[0071] Sir. 实时获取实际过热度、预设过热度以及蒸发器风机的转速变 化信息;
[0072] S21'. 比较获取的实际过热度与预设过热度, 得到一过热度差值, 并根据所述过热度差值获取对应的电子膨胀阀开度第一调节量 具体 地说, 电子膨胀阀开度第一调节量 U 可以根据以下计算得到:
V0 = Kp x e + Kd x— + x [ edt + C 式中, e为实际过热度和预设过热度的过热度差值, ^ ^为比例系数, Kd 为微分系数, 为积分系数, C为修正系数; 其中, 比例系数 ^、 微分 系数 Ka和积分系数 是根据经验或者实验标定、 拟合得到的系数。
[0073] S22'. 根据获取的蒸发器风机的转速变化信息,获取对应的电子膨 胀阀开度第二调节量 V。"'2 ;具体地说, 电子膨胀阀开度第二调节量 V。"'2可 以通过以下计算得到:
式中, ^为蒸发器风机转速, s为蒸发器风机反馈系数; 其中, 蒸发 器风机反馈系数 是根据经验或者实验标定、 拟合得到的系数。
[0074] S23, . 将电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二调 节量^ ^相加后, 输出调节开度的控制信号至电子膨胀阀的控制端, 以 控制电子膨胀阀的开度, 即电子膨胀阀开度调节量 ν。"'可以通过以下计算 得到: y t = Kp x e + Kd x— + C + Ki x \ + ^ χ 。
dt Jn dt
[0075] 其中, 上述步骤中, 比例系数 Κρ、微分系数 Ka和积分系数 、 K' 可以通过经验、 实验标定或模型拟合的方法得到。
[0076] 此外,对于上述步骤 S22, 中根据实验调试得到蒸发器风机反馈系 数 的具体方法进行以下说明:
[0077] 以下提供本发明的第三种实施例, 其与第一、 第二种实施例不同 的是, 前反馈信息包括蒸发器风机的转速变化信息和压缩机的转速变化 信息, 具体控制步骤如下:
[0078] S11". 实时获取实际过热度、预设过热度、蒸发器风机的转速变化 信息、 以及压缩机的转速变化信息;
[0079] S21". 比较获取的实际过热度与预设过热度, 得到一过热度差值, 并根据所述过热度差值, 获取对应的电子膨胀阀开度第一调节量 U;
[0080] 具体地说, 电子膨胀阀开度第一调节量 U 可以根据以下计算得 到:
V0J = Kp x e + Kd x— + x [ edt + C 式中, e为实际过热度和预设过热度的过热度差值, ^ ^为比例系数, Kd 为微分系数, 为积分系数, C为修正系数; 其中, 比例系数 ^、 微分 系数 和积分系数 、 修正系数 C是根据经验或者实验标定或模型拟合 方法得到的系数。
[0081] S22". 根据获取的压缩机、 蒸发器风机的转速变化信息, 获取对 应的电子膨胀阀开度第二调节量 ν。"' 2
[0082] 具体地说, 电子膨胀阀开度第二调节量 V。"'2可以通过以下计算得 到:
T/ v dCS v dBS
Vout 2 = Kcs x—— + KBS x— - dt dt , 式中, s为压缩机反馈系数, 为压缩机转速, 其中, ^为蒸发器风 机转速, S为蒸发器风机反馈系数; 压缩机反馈系数 Λ 、 蒸发器风机 反馈系数 是根据经验或实验标定或拟合得到的系数。
[0083] S23 " . 控制系统将电子膨胀阀开度第一调节量 U与电子膨胀阀 开度第二调节量^ ^相加后, 输出调节开度的控制信号至电子膨胀阀的 控制端, 以控制电子膨胀阀的开度, 即电子膨胀阀开度调节量 ν。"'可以通 过以下计算得到: de T, rf . „ „ dCS T, dBS
— + !· x I edt + C + Kcs x + KBS x
dt J" dt dt
[0084] 其中, 上述步骤中, 比例系数 、 微分系数 、 积分系数 '以及 压缩机反馈系数 s蒸发器风机反馈系数^ «同样可以通过经验或者实验 标定或模型拟合的方法得到。 另外, 前反馈信息还可以同时包括蒸发器 风机的转速变化信息、 压缩机风机的转速与排量变化信息; 另外还可以 包括冷凝器的风机变化信息。 而具体选用哪些信息作为前反馈信息则可 以根据具体的系统通过试验等方法得到。
[0085] 以下举一具体例子说明本发明控制方法的工作过程: [0086] 当汽车在行进过程中, 从隧道进入阳光曝晒下, 导致车内温度突 然升高, 进而使蒸发器温度升高, 蒸发压力上升, 根据设定的出风温度, 压缩机的转速提高, 控制器立刻获取压缩机的转速变化信息, 并立刻对 电子膨胀阀的开度进行预调节; 压缩机的转速提高, 会使得实际过热度 提高, 控制器获取实际过热度, 过热度差值 e发生变化, 而对电子膨胀 阀开度再进行调节; 从而, 电子膨胀阀开度开大, 给系统带来更多的制 冷剂流量, 制冷量逐渐提高, 则车厢内的温度逐渐下降, 回到预设过热 度附近, 扰动被消除, 压缩机的转速也不再提高, 趋于某一转速, 电子 膨胀阀开度也不再开大, 逐渐趋于某一开度。
[0087] 即系统在压缩机的转速或排量发生变化后立刻控制调节电子膨胀 阀的开度, 与获得实际过热度信号后再调节电子膨胀阀的开度相比, 响 应速度大为提高, 系统波动也更小。
[0088] 同样的, 当蒸发器的风机速度提高, 使得蒸发器的换热效率提高, 使制冷剂温度上升, 同样使实际过热度提高, 在蒸发器风机的转速发生 变化后立即调节电子膨胀阀的开度, 与压力传感器和温度传感器获得实 际过热度信号后再调节电子膨胀阀的开度相比, 响应速度大为提高, 且 系统波动更小。
[0089] 图 3表示, 仅采用实际过热度控制电子膨胀阀开度的控制方法作 为对照方法, 与本发明中的方法相比较, 而得到的系统的过热度与控制 时间关系图, 其其中, a曲线表示本发明的方法的过热度与控制时间关系 曲线, b曲线表示对照方法的过热度与控制时间关系曲线。
[0090] 由图 3中的 a曲线和 b曲线可知, 本发明的方法控制过热度时, 实际过热度的波动幅度小, 且控制时间短, 而采用对照方向控制过热度 时, 实际过热度的波动幅度大, 且控制时间长。 也就是说, 本发明的方 法中采用前反馈控制策略能够在系统压缩机或者风机转速发生变化时, 立即获得扰动的大小、 变化方向, 从而提前对实际过热度的变化发生预 计, 相比传统的控制方法等待系统实际过热度发生变化再进行相应控制, 系统波动更小, 实际过热度回到预设过热度值所需时间更短。
[0091] 另外, 需要说明的是, 电子膨胀阀的阀针动作方式与热力膨胀阀 不同, 其是采用步进电机驱动阀针沿螺纹转动, 每转动一周就可以使阀 针上升或者下降一个螺距, 来达到移动阀针控制其开度的目的。 由于步 进电机的转速受到线包、 控制器性能的制约, 一般无法达到热力膨胀阀 的移动速度。 假设步进电机的速度为 80pps, 阀线包整个行程为 480步, 则电子膨胀阀需要 6秒钟从全关状态开至全开状态。 因此, 为了优化系 统对过热度的控制, 在压缩机为电动压缩机的情况下, 使压缩机和蒸发 器风机的转速变化速率不能过快; 在压缩机为变排量压缩机的情况下, 使压缩机的排量变化不要太快, 以免导致电子膨胀阀的开度变化速率无 法跟上, 使车辆空调系统的过热度失调, 减少相应能效的损耗。 因此, 针对电子膨胀阀开度的调节量应不超过电子膨胀阀的开度的最大变化速 率, 也就是说, 压缩机的转速或蒸发器的风机转速变化时, 其变化速度 对应的反馈值不超过电子膨胀阀动作速度。
[0092] 另外根据电子膨胀阀开度, 在全开度设置若干个区域, 在每个区 域有对应的最小动作步数, 每个区域对应的最小动作步数可能不相同, 当前计算结果需要电子膨胀阀的动作步数小于所在区域对应的最小动作 步数时, 电子膨胀阀保持不动, 直至该需要动作值大于最小动作步数为 止。 一般来说, 电子膨胀阀的开度越小, 所在区域的最小动作步数也相 应越小, 这样可以减少对系统的扰动。
[0093] 此外, 还需要说明的是, 本发明的方法中可以采用压力传感器获 取压缩机的转速或蒸发器风机的转速, 车辆空调系统在长时间停止运行 后, 第一次启动初期, 系统还没有进入稳定运行工况, 由于压力传感器 的反应速度快于温度传感器, 压力较温度会更快下降, 因此显示过热度 会在运行初期急剧上升, 有可能计算得到的电子膨胀阀的开度大于实际 所需要的开度, 导致系统流量过大, 压缩机电流过大而过载。 因此, 在 汽车空调系统刚启动或在压缩机停机超过一定时间如 5分钟的情况下, 重新启动时压缩机速度不大于最大转速的 50 % , 电子膨胀阀的开度不大 于最大开度的 50%的一个定值,持续固定时间如 15s, 然后才恢复正常控 制。 即本发明的方法一般适用于车辆空调系统在正常运行情况下的控制, 具体可以通过控制程序中设置。 以上对压缩机的转速和蒸发器风机的转 速变化速度的限制、 以及系统在开机时对压缩机的限制, 可以更好的保 护车辆空调系统, 提高控制精度。
[0094] 另外, 现有技术中当电子膨胀阀出现堵转故障, 卡在某处无法动 区间时, 目前的车辆空调系统不能做出相应的故障处理对策, 可能会使 空调系统造成损害。 针对上述缺陷, 本发明车辆空调系统过热度控制方 法, 在上述几种实施方案的基础上进行了进一步的优化。 请参见图 4, 本 实施例中本发明的控制方法在通过前反馈控制策略控制过热度的同时, 还进行电子膨胀阀故障诊断处理, 电子膨胀阀故障诊断处理具体包括以 下步骤:
[0095] S01. 实时获取电子膨胀阀的开度、 实际过热度以及预设过热度; [0096] S02. 根据实际过热度、 预设过热度以及电子膨胀阀的开度判断电 子膨胀阀是否处于故障状态, 在过热度控制过程中实时针对电子膨胀阀 及与电子膨胀阀的通讯进行有效的故障诊断;
态时, 输出 Ϊ空制信号至执行控制机构; 一 、 、
[0098] S04. 执行控制机构控制调整该车辆空调系统中影响实际过热度变 化的设备的参数, 以调整车辆空调系统的过热度。
[0099] 这里获取电子膨胀阀的开度指的是理论开度, 如当控制系统中的 软件部份处于车载控制器内, 且有通信方式(CAN/LIN )可以和电子膨 胀阀通信, 且电子膨胀阀可以反馈位置信息时, 电子膨胀阀开度指电子 膨胀阀反馈回来的开度, 这时故障诊断的范围只包括电子膨胀阀; 如在 电子膨胀阀不能反馈信息时, 电子膨胀阀开度指控制系统中的软件程序 输出指令要求电子膨胀阀运行到的开度, 这时故障诊断的范围包括膨胀 阀以及通信程序。 而当控制系统中的软件部份处于电子膨胀阀内时, 直 接控制动作时, 电子膨胀阀开度指程序输出的指令位置, 这时故障诊断 的范围只包括膨胀阀。 另外, 上述诊断处理程序可以是与过热度控制同 时进行, 也可以是过度控制程序中设置的一部份。
[0100] 其中, 车辆空调系统中影响实际过热度变化的设备的参数包括压 缩机的转速和或排量 c 1 和 /或蒸发器风机的转速 c2
[0101] 在本实施例中, 如图 5所示, 步骤 S02是根据实际过热度与预设 的过热度之间的关系以及电子膨胀阀的开度进行故障诊断的过程, 故障 状态的判断处理过程包括如下:
[0102] S01.获取电子膨胀阀的开度、 实际过热度及预设的过热度;
[0103] S021.判断预设的过热度-实际过热度是否大于第一定值 wl , 若 是, 则执行步骤 S022; 若否, 则执行步骤 S025;
[0104] S022.判断电子膨胀阀的开度是否达到最小值, 若是, 则执行步骤 S023; 若否, 则执行步骤 S025;
[0105] S023.阀出错次数 n加 1;
[0106] S024.判断第一时间长度 tl内累计出错次数 n是否大于或等于预设 次数 N; 若是, 则确定当前电子膨胀阀或与电子膨胀阀的通讯处于故障 状态, 执行 S03, 同时执行 S05, 累计出错次数 n清零; 另外, 这里累计 出错次数 n也可以不清零, 直到判断正常状态才清零;
[0107] S03.根据该判断结果输出控制信号至控制执行机构;
[0108] 其中, 步骤 S024中,若以第一时间长度 tl为周期累计电子膨胀阀 的出错次数 n小于预设次数 N, 则不操作, 并进入下一故障诊断周期。 [0109] 也就是说, 当预设的过热度大于实际过热度时, 阀执行开度减小 趋势的动作以提高实际过热度达到预设的过热度。显然,上述步骤 S021、 S022可在预设的过热度大于实际过热度第一定值 wl ,而此时阀的开度已 经达到最小值, 且连续 N个节拍都保持时, 则判定过热度控制出错, 而 进入故障控制模式。
[0110] 反之, 当实际过热度大于预设的过热度时, 阀执行开度增大趋势 的动作以降低实际过热度从而达到预设的过热度。 同样, 当预设的过热 度大于实际过热度第二定值 w2, 而此时阀的开度已经达到最大值, 且连 续 N个节拍都保持时, 则判定过热度控制出错, 而进入故障控制模式。 具体按照以下步骤进行:
[0111] S025.判断实际过热度 -预设的过热度是否大于第二定值 w2, 若 是, 则执行步骤 S026; 若否, 执行步骤 S05, 即相应报错属于外部因素 影响或干扰, 过程参数累计出错次数 n清零, 并进入下一故障诊断周期。
[0112] S026.判断电子膨胀阀的开度是否达到最大值, 若是, 则执行步骤 S023 , 阀出错次数 n加 1; 两种出错次数 n在第一时间长度 tl内累计次 数大于或等于预设次数 N, 则执行步骤 S03,根据该判断结果输出控制信 号至执行机构, 同时执行 S05, 累计出错次数 n清零。 若否, 则执行步骤 S05, 即相应报错属于外部因素影响或干扰, 累计出错次数 n清零, 进入 下一故障诊断周期。
[0113] 此外, 汽车需要在制冷系统设计的极限工况范围内工作, 例如, 工作在车室外温度超出该车制冷系统设计的极限温度等特殊工况。 受上 述特殊工况的影响, 制冷系统的工作参数往往会出现前述报错现象, 显 然, 各种极限工况范围外的外界因素干扰, 将直接影响本方案所述控制 方法当中故障诊断的精准度。 为此, 可以在步骤 S01之前增加关于是否 处理极限工况范围内的判断步骤 S0。 具体如图 5所示。
[0114] SO.判断电子膨胀阀是否处于极限工况范围。若否,则执行步骤 S01 进行故障诊断; 若是, 则进入下一故障诊断周期, 即停止执行后续故障 诊断步骤, 以避免非常态下报错的问题出现。
[0115] 在第四实施例的步骤 S03、 S04中, 当判断结果为电子膨胀阀及与 电子膨胀阀的通讯处于故障状态时, 如图 6所示, 具体控制步骤如下: [0116] S031、 判断实际过热度是否小于第二预设辅过热度, 若是, 则执 行步骤 S041, 若否, 则执行步骤 S032;
[0117] S032、 判断实际过热度是否大于第一预设辅过热度, 若是, 则执 行步骤 S042, 若否, 则执行步骤 S043;
[0118] S041、 提高压缩机的转速或排量 Cl 或者, 提高蒸发器风机的转 速 c2, 或者, 关闭压缩机;
[0119] S042、 降低压缩机转速或排量 Cl 或者,降低蒸发器风机转速 C2, 或者, 关闭压缩机;
[0120] S043、压缩机的转速或排量 以及蒸发器风机的转速 C2不进行调
[0121] 其中, 在上述步骤中, 可根据实际情况对第一预设辅过热度、 第 二预设辅过热度进行设定。 如图 6所示, 在上述步骤 S031中, 实际过热 度小于第二预设辅过热度时, 具体控制步骤如下:
[0122] S0310、 判断实际过热度是否小于第二预设辅过热度, 若是, 则执 行步骤 S0311, 若否, 则执行步骤 S0320;
[0123] S0311、 判断低压是否低于低压报警值, 若是, 则执行步骤 S0314; 否, 则执行步骤 S0312;
[0124] S0312、判断高压是否高于高压报警值, 若是, 则执行步骤 S0314, 否, 则执行步骤 S0313;
[0125] S0313、判断压缩机转速或排量 是否处于最高值 Clmax—A3,若是, 则执行步骤 S0314, 否, 则执行步骤 S0411;
[0126] S0314、判断蒸发器风机的转速 C2是否处于最大值 C2max—A4,若是, 则执行步骤 S0413, 否, 则执行 S0412;
[0127] S0411、 提高压缩机转速或排量 C1;
[0128] S0412、 提高蒸发器风机转速 C2;
[0129] S0413 、 关闭压缩机。
[0130] 在上述步骤中, Δ3>0、 Δ4>0, 且 Δ3、 Δ4的值可根据实际情况 进行设置, 以保证压缩机和蒸发器风机安全运行。 [0131] 如图 6所示, 在上述步骤 S032中, 实际过热度大于第一预设辅过 热度时, 具体控制步骤如下:
[0132] S0320、 判断实际过热度是否大于第一预设辅过热度, 若是, 则执 行步骤 S0321 , 若否, 则执行步骤 S043;
[0133] S0321、 判断压缩机的转速或排量 <^是否处于最小值 C lmm+ A 1 若是, 则执行步骤 S0322, 否, 则执行步骤 S0421;
[0134] S0322、 判断蒸发器风机的转速 C 2是否处于最小值 C 2mm+ A 2, 若 是, 则执行步骤 S0423, 否, 则执行步骤 S0422;
[0135] S0421、 降低压缩机的转速或排量 C 1 ;
[0136] S0422、 降低蒸发器风机的转速 C2;
[0137] S0423、 关闭压缩机。
[0138] 在上述步骤中, Δ 2 > 0, 且 Δ 2的值可根据实际情况 进行设置, 以保证压缩机和蒸发器风机安全运行。
[0139] 下面举例说明上述故障处理过程。 假设在电子膨胀阀开度为 50 % 时出现堵转的情况, 而此时系统需要的流量小于电子膨胀阀开度所能提 供的流量, 则出现实际过热度小于预设过热度的情况, 因此, 首先判断 系统低压是否低于报警值、 是否高压高于报警值, 如果出现这两种情况, 则不能通过提高压缩机转速(或排量) 来控制过热度, 因为提高压缩机 的转速(或排量)会进一步降低低压和提高高压, 则只能通过提高蒸发 器风机的转速来使过热度提高; 如果不是, 因为蒸发器风机的转速的改 变会影响车厢内舒适度, 应优先提高压缩机的转速(或排量) 来提高过 热度。
[0140] 另外, 在进行故障处理过程中, 如果电子膨胀阀堵转时当前的开 度大于实际需要的开度, 则车辆空调系统产生的制冷量会大于实际需要, 多余冷量可通过加热芯或者 PTC加热器的热量中和; 当电子膨胀阀堵转 时当前的开度小于实际需要开度, 则车辆空调系统产生的制冷量会低于 需要制冷量, 系统继续进行故障处理过程。
[0141] 本发明的方法中的故障处理过程, 当电子膨胀阀及与电子膨胀阀 的通讯出现故障时, 可以通过调整压缩机和蒸发器风机转速, 使系统在 保持合理过热度下, 继续以正常性能或者降低性能的方式运行, 使车厢 里仍然能够有制冷效果, 电池仍然能够得到冷却, 而不至于由于过低过 高的过热度对系统造成损害。 另外, 处理步骤可根据需要进行调整, 如 步骤 S0423可以是关闭压缩机, 也可以在选择相应报警的同时, 继续运 行, 而是否关闭则由人为选择。
[0142] 如图 7所示, 本发明还提供了一种车辆空调系统, 包括压缩机组 和节流元件, 所述压缩机组包括压缩机、 冷凝器、 冷凝器风机、 蒸发器 和蒸发器风机, 其中, 节流元件采用电子膨胀阀, 图中的粗实线表示制 冷剂循环。 该车辆空调系统还包括:
[0143] 第一获取模块 1 , 用于实时获取实际过热度、 以及实时获取影响实 际过热度变化的前反馈信息;
[0144] 第一控制器 2,用于存储预设过热度以及接收实际过热度和前反馈 信息, 并根据实际过热度、 预设过热度以及前反馈信息实时调整电子膨 胀阀的开度。
[0145] 本发明的车辆空调系统通过实际过热度和前反馈信息对电子膨胀 阀开度进行控制, 与现有技术相比, 能够在系统发生扰动时, 立即获得 扰动的大小、 变化方向, 从而提前对过热度的变化发生预计, 相比传统 的采用等待系统过热度发生变化再进行相应控制的空调系统, 系统波动 更小, 过热度回到控制点所需时间更短。
[0146] 优选的, 第一获取模块 1 获取的前反馈信息包括: 压缩机的转速 和或排量变化量; 和 /或, 蒸发器风机的转速变化量。
[0147] 其中, 第一获取模块 1 包括用于获取压缩机转速(排量) 变化信 息和 /或蒸发器风机转速变化信息的采集模块、 以及用于获取蒸发器进出 口温度的温度传感器, 其中, 采集模块可以选择转速传感器或者压力传 感器等。
[0148] 本实施例中, 优选的, 第一控制器 2与电子膨胀阀通过车辆 CAN 总线、 或 LIN总线进行通讯; 第一获取模块 1通过车辆 CAN总线、 或 LIN总线与第一控制器 2进行通讯。
[0149] 如图 7所示, 第一控制器 2包括:
PID控制模块 21 , 用于存储预设过热度, 并比较接收的实际过热 度与预设过热度, 得到一过热度差值, 并根据所述过热度差值获取对应 的电子膨胀阀开度第一调节量;
[0151] 前反馈控制模块 22, 用于根据接收的压缩机的转速和或排量变化 量、 和 /或所述蒸发器风机的转速变化量获取对应的电子膨胀阀开度第二 调节量; 以及,
[0152] 执行控制模块 23, 用于根据所述电子膨胀阀开度第一调节量和所 述电子膨胀阀开度第二调节量来控制调整所述电子膨胀阀的开度。
[0153] 其中, PID控制模块 21内通过以下计算来获取电子膨胀阀开度第 一调节量
Vout\ = Kp xe + Kd x— + Ki x)nedt + C 式中, e为过热度差值, 为比例系数, Λ 为微分系数, ^为积分系数, c为修正系数;
[0154] 所述前反馈控制模块 22内通过以下计算来获取第二电子膨胀阀 * 'T 出值 ν。"' 2:电子膨胀阀开度第二调节量 ν。"' 2为电子膨胀阀开度第二调节量 第一部份 „,21、 电子膨胀阀开度第二调节量第二部份 „,22两者其中之一 或两者之和, 其中电子膨胀阀开度第二调节量第一部份 Μί21通过以下计 算得到:
ΎΤ ^ dCS _ τ, ^ dCD _ τ, ^ dCS ^ dCD at at at at 电子膨胀阀开度第二调节量第二部份 Mi22通过以下计算得到: dBS
V^22 = K^ x- dt 式中, cs为压缩机转速反馈系数, 为压缩机转速, ^为蒸发器 风机转速, 为蒸发器风机反馈系数; CD为压缩机排量, 。为压缩机 排量反馈系数; 执行控制模块 23 内通过将电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二调节量^ ^相加后输出调节开度的控制信号 至电子膨胀阀。 [0155] 本实施例中, 如图 8所示, 车辆空调系统还包括:
[0156] 第二获取模块 3, 用于实时获取电子膨胀阀的开度;
[0157] 第二控制器 4, 用于根据获取的实际过热度、预设过热度以及电子 膨胀阀的开度, 判断电子膨胀阀是否处于故障状态, 当判断结果为电子 膨胀阀处于故障状态时, 则根据获取的实际过热度生成第一控制信号;
[0158] 执行控制机构 5, 用于接收第二控制器 4发送的第一控制信号, 并 根据第一控制信号控制调整该车辆空调系统中影响实际过热度变化的设 备的参数, 其中, 车辆空调系统中影响实际过热度变化的设备的参数包 括压缩机的转速和或排量 、 和 /或蒸发器风机的转速 c2。 [0159] 本实施例中, 第二获取模块 3通过车辆 CAN总线、或 LIN总线与 第一控制器 2进行通讯; 第二控制器 4与电子膨胀阀均通过车辆 CAN总 线、 或 LIN总线进行通讯。
[0160] 本实施例中, 优选的, 执行控制机构 5为车载控制器 ECU。
[0161] 其中, 第二控制器 4包括:
[0162] 判断模块 41 , 用于根据实际过热度、 预设过热度以及电子膨胀阀 的开度判断电子膨胀阀是否处于故障状态, 并在判断结果为电子膨胀阀 处于故障状态时, 生成第一控制命令;
[0163] 第一控制模块 42, 用于接收判断模块 41发送的第一控制命令, 并 在实际过热度大于第一预设辅过热度时, 控制执行控制机构 5执行降低 压缩机转速或排量 C 1 或者降低蒸发器风机转速 C2、 或者关闭压缩机的 命令;
[0164] 第二控制模块 43 , 用于接收判断模块 41发送的第一控制命令, 并 在实际过热度小于第二预设辅过热度时, 控制执行控制机构 5执行提高 压缩机的转速或排量 C 1 或者提高蒸发器风机的转速 C2、 或者关闭压缩 机的命令;
[0165] 第三控制模块 44, 用于接收判断模块 41发送的第一控制命令, 并 在实际过热度大于等于第二预设辅过热度、 且小于等于第一预设辅过热 度时, 控制执行控制机构 5执行保持压缩机的转速或排量 C 1 或者保持 蒸发器风机的转速 C2不变的命令或者使压缩机的转速或排量 、 或者蒸 发器风机的转速 c2 ¾入适当调整的状态。 [0166] 其中, 第一控制模块 42包括:
[0167] 第一命令模块 421 , 用于在压缩机的转速或排量 大于最小值 C lmm + Δ i时,控制执行控制机构 5执行降低压缩机转速或排量 C x的命令; [0168] 第二命令模块 422, 用于在压缩机的转速或排量 C i达到最小值
Figure imgf000024_0001
且蒸发器风机的转速 C2大于最小值 C2mm+ A 2时, 控制执行控 制机构 5执行降低蒸发器风机转速 C2的命令;
[0169] 第三命令模块 423 , 用于在压缩机的转速或排量 达到最小值
Figure imgf000024_0002
且蒸发器风机的转速 C2达到最小值 C2mm+ A 2时, 控制执行控 制机构 5执行关闭压缩机的命令;
[0170] 其中, 第二控制模块 43包括:
[0171] 第四命令模块 431 , 用于在车辆空调系统低压高于低压报警值、 高 压低于高压报警值、 且压缩机的转速或排量 C 1小于最大值 C lmax. Δ 3时, 控制执行控制机构 5执行提高压缩机的转速或排量 的命令; [0172] 第五命令模块 432,用于在车辆空调系统低压低于低压报警值或高 压高于高压报警值、 且蒸发器风机的转速 C2小于最大值 C2max- A 4时, 控 制执行控制机构 5执行提高蒸发器风机的转速 C2的命令;
[0173] 第六命令模块 433 ,用于在车辆空调系统低压低于低压报警值或高 压高于高压报警值、 且蒸发器风机的转速 C2达到最大值 C2max- A 4时, 控 制执行控制机构 5执行关闭压缩机的命令。
[0174] 本实施例中, 第一获取模块 1、 第二获取模块 3、 第二控制器 4 与第一控制器 2可以集成在一个芯片上如统一固化于 MCU, 另外也可以 是多个芯片进行组装。还有本发明中执行电子膨胀阀开度第一调节量 U 与电子膨胀阀开度第二调节量 V。"'2相加的步骤可以由执行控制模块或执 行控制机构进行, 另外也可以由控制系统的其他模块进行。 另外, 需要 说明的是, 第二控制器 4 内还可以具有用于硬件故障诊断的硬件诊断模 块, 用于对驱动电流、 电压进行检测, 获知开路、 短路、 失步等故障信 息。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出 若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1. 一种车辆空调系统过热度控制方法, 其特征在于, 控制方法包括 以下步骤:
控制系统实时获取实际过热度、 预设过热度以及影响实际过热度变 化的前反馈信息;
根据获取的实际过热度、 预设过热度以及前反馈信息实时调整电子 膨胀阀的开度, 以控制车辆空调系统的过热度。
2. 根据权利要求 1所述的车辆空调系统过热度控制方法, 其特征在 于, 所述前反馈信息包括:
压缩机的转速和或排量变化量; 和 /或, 所述蒸发器风机的转速变化 量。
3. 根据权利要求 2所述的车辆空调系统过热度控制方法, 其特征在 于, 所述 "根据实际过热度、 预设过热度以及前反馈信息实时调整电子 膨胀阀的开度, 以控制车辆空调系统的过热度" 包括:
比较获取的实际过热度与预设过热度, 得到一过热度差值, 并根据 所述过热度差值获取对应的电子膨胀阀开度第一调节量;
根据压缩机的转速和或排量变化信息、 和 /或所述蒸发器风机的转速 变化信息获取对应的电子膨胀阀开度第二调节量; 以及, 根据电子膨胀 阀开度第一调节量和电子膨胀阀开度第二调节量对电子膨胀阀的开度进 行调整。
4. 根据权利要求 3所述的车辆空调系统过热度控制方法, 其特征在 于, 所述电子膨胀阀开度第一调节量 U通过以下计算得到:
p
Vout l = Kp x e + Kd x— + Ki x l edt + C , 式中, e为实际过热度和预设过热度的过热度差值, ^ ^为比例系数, 为微分系数, 为积分系数, C为修正系数;
电子膨胀阀开度第二调节量 2为电子膨胀阀开度第二调节量第一 部份 V。Mi21、电子膨胀阀开度第二调节量第二部份 „,22两者其中之一或两 者之和, 其中电子膨胀阀开度第二调节量第一部份 „, 21通过以下计算得 到:
dCS _ τ dCD _ T dCS T, dCD V t 2l = Kr, x 、 ¾y f 2l = Krn x 、 ¾y f 2l = Kr, x + Krn
at at at at 电子膨胀阀开度第二调节量第二部份 Mi 22通过以下计算得到: dBS
.., 22 = 。C
dt 式中, cs为压缩机转速反馈系数, 为压缩机转速, ^为蒸发器 风机转速, 为蒸发器风机反馈系数; CD为压缩机排量, 。为压缩机 排量反馈系数;
以及,在根据电子膨胀阀开度第一调节量 U和电子膨胀阀开度第二 调节量 v。"'2对电子膨胀阀的开度进行调整时, 将电子膨胀阀开度第一调 节量 U与电子膨胀阀开度第二调节量^ 相加后输出调节开度的控制 信号至电子膨胀阀的控制端。
5. 根据权利要求 4所述的车辆空调系统过热度控制方法, 其特征在 于: 所述电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二调节量 V。"'2相加后得到的开度调节量小于等于所述电子膨胀阀的开度的最大变 化速率。
6. 根据权利要求 4所述的车辆空调系统过热度控制方法, 其特征在 于: 所述电子膨胀阀开度第一调节量 U与电子膨胀阀开度第二调节量 相加后得到的开度调节量小于控制系统中设定的目前电子膨胀阀所 在开度区间的最小动作步数时, 电子膨胀阀保持不动作; 当开度调节量 大于等于控制系统中设定的目前电子膨胀阀所在开度区间的最小动作步 数时, 电子膨胀阀动作, 以减少对系统的扰动。
7.根据权利要求 1至 6任一项所述的车辆空调系统过热度控制方法, 其特征在于, 所述的方法还包括:
控制系统获取电子膨胀阀的开度, 并根据获取的实际过热度、 预设 否处于故障状态; 控制系统输出控制信号至执行控制机构, 执行控制机构控制调整该车辆 空调系统中影响实际过热度变化的设备的参数, 以调整车辆空调系统的 过热度, 其中, 所述车辆空调系统中影响实际过热度变化的设备的参数 包括压缩机的转速和或排量 C 1 和 /或蒸发器风机的转速 c 2
8. 根据权利要求 7所述的车辆空调系统过热度控制方法, 其特征在
提下,
当实际过热度大于第一预设辅过热度, 控制系统输出控制信号至执 行控制机构, 执行控制机构控制降低压缩机转速或排量 、 或者降低蒸 发器风机转速 c 2、 或者关闭压缩机;
当实际过热度小于第二预设辅过热度, 控制系统输出控制信号至执 行控制机构, 执行控制机构控制提高压缩机的转速或排量 、 或者提高 蒸发器风机的转速 C 2、 或者关闭压缩机; 以及,
当实际过热度大于等于第二预设辅过热度、 且小于等于第一预设辅 过热度时, 控制系统输出控制信号至执行控制机构, 执行控制机构控制 压缩机的转速或排量 C x以及蒸发器风机的转速 C 2保持不变。
9. 一种车辆空调系统, 其特征在于, 包括压缩机组和节流元件, 所 述压缩机组包括压缩机、 冷凝器、 蒸发器和蒸发器风机, 所述节流元件 包括电子膨胀阀;
所述车辆空调系统还包括:
第一获取模块, 用于实时获取实际过热度、 以及实时获取影响所述 实际过热度变化的前反馈信息;
第一控制器, 用于存储预设过热度以及接收实际过热度和前反馈信 息, 并根据实际过热度、 预设过热度以及前反馈信息实时调整所述电子 膨胀阀的开度; 所述前反馈信息包括: 所述压缩机的转速和或排量变化 量; 和 /或, 所述蒸发器风机的转速变化量。
10. 根据权利要求 9所述的车辆空调系统, 其特征在于: 所述第一 控制器与电子膨胀阀通过车辆 CAN总线、或 LIN总线进行通讯; 所述第 一获取模块通过车辆 CAN总线、或 LIN总线与所述第一控制器进行通讯。
11. 根据权利要求 10所述的车辆空调系统, 其特征在于, 所述第一 控制器包括: PID控制模块, 前反馈控制模块, 执行控制模块;
PID控制模块用于存储预设过热度,并比较接收的实际过热度与预设 过热度, 得到一过热度差值, 并根据所述过热度差值获取对应的电子膨 胀阀开度第一调节量;
前反馈控制模块用于根据接收的压缩机的转速或排量变化量、 和 /或 所述蒸发器风机的转速变化量获取对应的电子膨胀阀开度第二调节量; 执行控制模块用于根据所述电子膨胀阀开度第一调节量和所述电子 膨胀阀开度第二调节量来控制调整所述电子膨胀阀的开度。
12. 根据权利要求 11所述的车辆空调系统, 其特征在于, 所述 PID 控制模块通过以下计算来获取电子膨胀阀开度第一调节量
Figure imgf000029_0001
式中, e为过热度差值, ^ ^为比例系数, 为微分系数, 为积分 系数, c为爹正系数;
所述前反馈控制模块通过以下计算来获取电子膨胀阀开度第二调节 量 ^2,电子膨胀阀开度第二调节量 为电子膨胀阀开度第二调节量第 一部份 „,21、电子膨胀阀开度第二调节量第二部份 „,22两者其中之一或 两者之和, 其中电子膨胀阀开度第二调节量第一部份 Μί21通过以下计算 得到:
dCS _ τ dCD _ T dCS T, dCD V t2l = Kr, x 、 ¾y f2l = Krnx 、 ¾y f2l = Kr,x +Krn
at at at at 电子膨胀阀开度第二调节量第二部份 Mi22通过以下计算得到: dBS
..,22 = 。C χ.
dt 式中, cs为压缩机转速反馈系数, 为压缩机转速, ^为蒸发器 风机转速, 为蒸发器风机反馈系数; CD为压缩机排量, 。为压缩 机排量反馈系数;
所述执行控制模块通过将电子膨胀阀开度第一调节量 U与电子膨 胀阀开度第二调节量 V。"'2相加后输出调节开度的控制信号至电子膨胀阀 的控制端。
13.根据权利要求 9至 12任一项所述的车辆空调系统,其特征在于, 所述车辆空调系统还包括第二获取模块、 第二控制器与执行控制机构; 第二获取模块用于实时获取电子膨胀阀的开度;
第二控制器用于根据获取的实际过热度、 预设过热度以及电子膨胀 当判断结果为电子膨胀阀处于故障状态时, 则根据获取的实际过热度生 成第一控制信号;
执行控制机构用于接收第二控制器发送的第一控制信号, 并根据所 述第一控制信号控制调整该车辆空调系统中影响实际过热度变化的设备 的参数, 其中, 所述车辆空调系统中影响实际过热度变化的设备的参数 包括压缩机的转速和或排量 c1 和 /或蒸发器风机的转速 c2
PCT/CN2013/079585 2013-07-18 2013-07-18 车辆空调系统过热度控制方法及车辆空调系统 WO2015006952A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/079585 WO2015006952A1 (zh) 2013-07-18 2013-07-18 车辆空调系统过热度控制方法及车辆空调系统
KR1020167003850A KR101919846B1 (ko) 2013-07-18 2013-07-18 차량 공기 조화 시스템의 과열도를 제어하기 위한 방법 및 차량 공기 조화 시스템
US14/905,066 US10391833B2 (en) 2013-07-18 2013-07-18 Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system
EP13889688.1A EP3023276B1 (en) 2013-07-18 2013-07-18 Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079585 WO2015006952A1 (zh) 2013-07-18 2013-07-18 车辆空调系统过热度控制方法及车辆空调系统

Publications (1)

Publication Number Publication Date
WO2015006952A1 true WO2015006952A1 (zh) 2015-01-22

Family

ID=52345715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079585 WO2015006952A1 (zh) 2013-07-18 2013-07-18 车辆空调系统过热度控制方法及车辆空调系统

Country Status (4)

Country Link
US (1) US10391833B2 (zh)
EP (1) EP3023276B1 (zh)
KR (1) KR101919846B1 (zh)
WO (1) WO2015006952A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704814B2 (en) 2015-03-09 2020-07-07 Carrier Corporation Expansion valve control
CN113291128A (zh) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN113899124A (zh) * 2021-10-12 2022-01-07 珠海格力电器股份有限公司 压力调节控制方法、装置、电子设备和制冷设备
CN114688689A (zh) * 2022-03-31 2022-07-01 安徽奥克斯智能电气有限公司 一种电子膨胀阀的开度调节方法、装置及多联式空调器
CN114963632A (zh) * 2021-09-27 2022-08-30 青岛海尔新能源电器有限公司 电子膨胀阀的控制方法、装置、设备及存储介质

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023716B1 (en) * 2013-07-18 2022-05-18 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
WO2017212631A1 (ja) * 2016-06-10 2017-12-14 三菱電機株式会社 車両用空調装置及び車両用空調装置の異常検知システム
CN106871486B (zh) * 2017-04-24 2020-02-14 大连中星科技开发有限公司 电子膨胀阀控制方法及空气源热泵系统
CN110469926B (zh) * 2018-05-11 2022-05-24 开利公司 用于空调系统的水循环系统及其控制方法
CN109084421B (zh) * 2018-08-03 2020-08-18 广东美的暖通设备有限公司 空调器的控制方法、控制装置及空调器
FR3085623B1 (fr) * 2018-09-12 2020-08-07 Valeo Systemes Thermiques Procede de gestion d'un dispositif de chauffage a pompe a chaleur de vehicule automobile
US11493225B1 (en) * 2019-07-11 2022-11-08 Trane International Inc. Systems and methods for controlling superheat in a climate control system
CN110986253B (zh) * 2019-11-15 2022-04-29 珠海格力电器股份有限公司 一种电子膨胀阀控制方法、压缩机控制系统和空调
US11512884B2 (en) * 2020-05-07 2022-11-29 Hill Phoenix, Inc. Expansion valve performance monitoring in refrigeration system
CN111981656B (zh) * 2020-09-07 2024-04-09 珠海格力电器股份有限公司 热交换系统及其控制方法、装置、空调器
FR3115733B1 (fr) 2020-10-30 2023-01-06 Renault Sas Procédé de régulation d’un détendeur électronique d’un système de climatisation et système de climatisation associé
FR3117955B1 (fr) * 2020-12-18 2023-06-02 Renault Sas Système de refroidissement et système de gestion thermique pour un véhicule automobile.
FR3121203B1 (fr) * 2021-03-23 2023-02-10 Psa Automobiles Sa Dispositif de climatisation reversible pour vehicule automobile et procede de fonctionnement d’un tel dispositif
US11738623B2 (en) * 2021-03-31 2023-08-29 Thermo King Llc Transport climate control remote management
CN113446193B (zh) * 2021-06-23 2022-10-28 珠海横琴能源发展有限公司 一种集控制冷系统的控制方法、装置及集控制冷系统
CN113858910B (zh) * 2021-08-26 2023-08-29 浙江智马达智能科技有限公司 一种电池板式换热器的电子膨胀阀开度控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826529B1 (en) * 1996-08-26 2003-01-02 Sanden Corporation Air conditioning system for automotive vehicles
CN102720651A (zh) * 2012-06-28 2012-10-10 惠州市德赛西威汽车电子有限公司 空调变排量压缩机的控制装置和控制方法
CN103033004A (zh) * 2011-09-29 2013-04-10 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法
CN103033006A (zh) * 2011-09-29 2013-04-10 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218419B2 (ja) 1994-08-19 2001-10-15 株式会社日立製作所 空気調和機
JPH09210518A (ja) 1996-02-06 1997-08-12 Mitsubishi Heavy Ind Ltd 冷凍装置
US6321549B1 (en) 2000-04-14 2001-11-27 Carrier Corporation Electronic expansion valve control system
AU2712301A (en) * 2000-06-07 2001-12-17 Samsung Electronics Co., Ltd. Control system of degree of superheat of air conditioner and control method thereof
US6711911B1 (en) * 2002-11-21 2004-03-30 Carrier Corporation Expansion valve control
JP4259891B2 (ja) 2003-03-10 2009-04-30 株式会社テージーケー 過熱度制御方法
JP4758705B2 (ja) * 2005-08-05 2011-08-31 サンデン株式会社 車両用空調装置
JP3988780B2 (ja) * 2005-09-09 2007-10-10 ダイキン工業株式会社 冷凍装置
FR2913102B1 (fr) * 2007-02-28 2012-11-16 Valeo Systemes Thermiques Installation de climatisation equipee d'une vanne de detente electrique
KR100922222B1 (ko) 2007-12-24 2009-10-20 엘지전자 주식회사 공기조화 시스템
KR101402158B1 (ko) * 2008-01-28 2014-06-27 엘지전자 주식회사 공기조화 시스템
KR100927072B1 (ko) 2009-01-29 2009-11-13 정석권 가변속 냉동시스템의 과열도 및 용량 제어 장치
WO2011044711A1 (en) * 2009-10-14 2011-04-21 Carrier Corporation Receiver with flow metering device
JP5688961B2 (ja) 2010-12-13 2015-03-25 シャープ株式会社 空気調和機、膨張弁の開度制御方法およびプログラム
WO2014203364A1 (ja) * 2013-06-20 2014-12-24 三菱電機株式会社 ヒートポンプ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826529B1 (en) * 1996-08-26 2003-01-02 Sanden Corporation Air conditioning system for automotive vehicles
CN103033004A (zh) * 2011-09-29 2013-04-10 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法
CN103033006A (zh) * 2011-09-29 2013-04-10 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法
CN102720651A (zh) * 2012-06-28 2012-10-10 惠州市德赛西威汽车电子有限公司 空调变排量压缩机的控制装置和控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3023276A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704814B2 (en) 2015-03-09 2020-07-07 Carrier Corporation Expansion valve control
CN113291128A (zh) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN114963632A (zh) * 2021-09-27 2022-08-30 青岛海尔新能源电器有限公司 电子膨胀阀的控制方法、装置、设备及存储介质
CN114963632B (zh) * 2021-09-27 2023-07-14 青岛海尔新能源电器有限公司 电子膨胀阀的控制方法、装置、设备及存储介质
CN113899124A (zh) * 2021-10-12 2022-01-07 珠海格力电器股份有限公司 压力调节控制方法、装置、电子设备和制冷设备
CN113899124B (zh) * 2021-10-12 2022-06-14 珠海格力电器股份有限公司 压力调节控制方法、装置、电子设备和制冷设备
CN114688689A (zh) * 2022-03-31 2022-07-01 安徽奥克斯智能电气有限公司 一种电子膨胀阀的开度调节方法、装置及多联式空调器
CN114688689B (zh) * 2022-03-31 2023-08-11 安徽奥克斯智能电气有限公司 一种电子膨胀阀的开度调节方法、装置及多联式空调器

Also Published As

Publication number Publication date
KR101919846B1 (ko) 2018-11-19
EP3023276A1 (en) 2016-05-25
EP3023276A4 (en) 2017-04-12
KR20160033159A (ko) 2016-03-25
US10391833B2 (en) 2019-08-27
EP3023276B1 (en) 2020-01-01
US20160159198A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015006952A1 (zh) 车辆空调系统过热度控制方法及车辆空调系统
WO2015006955A1 (zh) 车辆空调系统的控制方法及车辆空调系统
CN103423835B (zh) 车辆空调系统的控制方法及车辆空调系统
CN103423836B (zh) 车辆空调系统过热度控制方法及车辆空调系统
CN107848364B (zh) 用于对车辆进行空气调节的控制系统
CN103245154B (zh) 一种汽车空调系统电子膨胀阀的控制方法
RU2714797C2 (ru) Способ предотвращения повреждения компрессора в транспортном средстве (варианты) и транспортное средство
CN103033004B (zh) 一种汽车空调系统电子膨胀阀的控制方法
WO2017167232A1 (zh) 空调系统、该空调系统的控制系统及控制方法
CN103033006B (zh) 一种汽车空调系统电子膨胀阀的控制方法
WO2021254165A1 (zh) 基于温控模块的暖机方法、车辆及存储介质
CN113586223A (zh) 电控硅油风扇的转速控制方法及装置、车辆
CN108116183B (zh) 一种热管理系统的控制方法
CN103033008B (zh) 一种汽车空调系统电子膨胀阀的控制方法
WO2017135223A1 (ja) 車両用空調装置、それを備える車両及び車両用グリル装置の制御方法
WO2013027495A1 (ja) エンジンの冷却制御装置
US20220055451A1 (en) Cooling system
CN113898603A (zh) 一种整车风扇控制系统及方法
US11577737B2 (en) Heat management device, system, method, and program product for vehicle
CN103033007B (zh) 一种汽车空调系统电子膨胀阀的控制方法
JP2011230659A (ja) 車両用空調システム及びその制御方法
CN106705249B (zh) 窗式空调器及其控制方法
CN116619983B (zh) 一种车辆一体化融合热管理系统及方法
JP2006064363A (ja) エンジン駆動式空気調和装置及びその制御方法
JP2010137664A (ja) 車両用空調制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14905066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167003850

Country of ref document: KR

Kind code of ref document: A