WO2015005257A1 - 糖化ヘモグロビンの測定方法 - Google Patents

糖化ヘモグロビンの測定方法 Download PDF

Info

Publication number
WO2015005257A1
WO2015005257A1 PCT/JP2014/068010 JP2014068010W WO2015005257A1 WO 2015005257 A1 WO2015005257 A1 WO 2015005257A1 JP 2014068010 W JP2014068010 W JP 2014068010W WO 2015005257 A1 WO2015005257 A1 WO 2015005257A1
Authority
WO
WIPO (PCT)
Prior art keywords
fpox
seq
artificial sequence
description
amino acid
Prior art date
Application number
PCT/JP2014/068010
Other languages
English (en)
French (fr)
Inventor
徳之 小川
芙美 楳原
豪秀 木村
幸作 村田
渉 橋本
Original Assignee
協和メデックス株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和メデックス株式会社, 国立大学法人京都大学 filed Critical 協和メデックス株式会社
Priority to JP2015526317A priority Critical patent/JP6623488B2/ja
Priority to US14/897,907 priority patent/US10006923B2/en
Priority to CN201480039190.6A priority patent/CN105431545B/zh
Priority to EP14823357.0A priority patent/EP3020825B1/en
Publication of WO2015005257A1 publication Critical patent/WO2015005257A1/ja
Priority to HK16108867.5A priority patent/HK1220738A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/725Haemoglobin using peroxidative activity

Definitions

  • the present invention relates to a method for measuring glycated hemoglobin in a sample.
  • Glycated protein is contained in body fluids such as blood and biological samples such as hair.
  • the concentration of glycated protein present in blood depends on the concentration of saccharides such as glucose dissolved in serum.
  • HbA1c hemoglobin A1c
  • the concentration measurement of Non-Patent Document 1 is used for diabetes diagnosis and monitoring.
  • an instrumental analytical method using high performance liquid chromatography (HPLC) Non-Patent Document 2
  • an immunoassay method using an antigen-antibody reaction for example, Non-Patent Document 3
  • enzymatic measurement methods have been developed. For example, a method using a protease and a glycated peptide oxidase (Patent Document 1) has been developed. Enzymatic measurement methods can be applied to versatile automatic analyzers, and their operation is simple.
  • the glycated peptide oxidase used in the enzymatic measurement method has a CN bond in the ketose derivative produced by the Amadori rearrangement of glucosylamine produced by the reaction of the hemiacetal of glucose with the N-terminal amino group of the peptide. It is an enzyme that catalyzes a reaction that is oxidatively cleaved in the presence of oxygen molecules to produce sugar oxone ( ⁇ -ketoaldehyde form), peptide, and hydrogen peroxide.
  • HbA1c is first decomposed with a protease to produce ⁇ -glycated valylhistidine (hereinafter referred to as ⁇ -FVH) from the N-terminus of the ⁇ chain of hemoglobin.
  • ⁇ -FVH ⁇ -glycated valylhistidine
  • a quinone dye is produced in the presence of peroxidase by the produced hydrogen peroxide, and the amount produced is colorimetrically determined with a spectrophotometer Is known (Patent Document 1).
  • a glycated peptide to which a conventionally known glycated peptide oxidase (for example, Patent Documents 2, 3, 4, 5 and Non-Patent Document 4) can act is usually a dipeptide, and at most a hexapeptide (Patent Document 6). 7), and a glycated peptide oxidase that acts on a glycated peptide or a glycated protein having a longer amino acid chain length is not known.
  • An object of the present invention is to provide a method for measuring glycated hemoglobin, in which a glycated hemoglobin is directly oxidized and a produced substance or a consumed substance is measured without causing a protease to act on the glycated hemoglobin. There is to do.
  • the present invention relates to the following (1) to (4).
  • a method for measuring glycated hemoglobin in a sample which comprises directly oxidizing glycated hemoglobin in a sample and measuring a produced substance or a consumed substance.
  • a method for measuring glycated hemoglobin which directly oxidizes glycated hemoglobin present in a sample and measures a produced substance or a consumed substance.
  • Method for measuring glycated hemoglobin of the present invention measures glycated hemoglobin by directly oxidizing glycated hemoglobin and measuring the substance produced or consumed.
  • the glycated hemoglobin in the present invention HbA1c is preferable.
  • a method for directly oxidizing glycated hemoglobin any method that can directly oxidize glycated hemoglobin may be used, but a method of oxidizing using an enzyme is preferable.
  • the measuring method of the present invention will be described.
  • the sample used in the measurement method of the present invention is not particularly limited as long as it is a sample containing glycated hemoglobin.
  • whole blood, plasma, serum, blood cells, cell samples, urine, spinal fluid, sweat, tears, saliva examples include biological samples such as skin, mucous membrane, and hair.
  • whole blood, plasma, serum, blood cells and the like are preferable, and whole blood, blood cells and the like are particularly preferable.
  • the whole blood includes a sample in which plasma is mixed with a blood cell fraction derived from whole blood. These samples may be subjected to pretreatment such as hemolysis, separation, dilution, concentration and purification.
  • Hemoglobin is a heme protein having a molecular weight of 64,000, each having two types of subunits, ⁇ chain and ⁇ chain.
  • the N-terminal 3 amino acid sequence of the ⁇ chain of hemoglobin is valine-leucine-serine, and the N-terminal 3 amino acid sequence of the ⁇ chain is valine-histidine-leucine.
  • HbA1c is specifically defined as a glycated N-terminal valine residue of the ⁇ chain, but hemoglobin is known to have multiple glycation sites in the molecule including the N terminus of the ⁇ chain ( The Journal of Biological Chemistry (1980), 256, 3120-3127).
  • the measurement of the glycated hemoglobin to be measured in the sample of the present invention can be performed, for example, by sequentially performing the following steps (i) to (ii). (i) a step of oxidizing glycated hemoglobin by causing an enzyme to act on glycated hemoglobin in the sample; (ii) A step of measuring the substance produced or consumed in the above step (i).
  • the enzyme used in the step (i) may be any enzyme that can directly oxidize glycated hemoglobin.
  • the following enzymes can be used.
  • a protein having an amino acid sequence represented by any of SEQ ID NOs: 3 to 34 FPOX-18A, FPOX-18B, FPOX-18C, FPOX-18D, FPOX-19, FPOX-20, FPOX-21, respectively) FPOX-22, FPOX-23, FPOX-24, FPOX-25, FPOX-26, FPOX-27, FPOX-28, FPOX-29, FPOX-30, FPOX-31, FPOX-32, FPOX-33, FPOX- 34, FPOX-35, FPOX-36, FPOX-37, FPOX-38, FPOX-39, FPOX-40, FPOX-41, FPOX-42, FPOX-43, FPOX-44, FPOX-45, FPOX-46 ) [2] A protein having an
  • glycated hemoglobin oxidase a protein having glycated hemoglobin oxidase activity is referred to as glycated hemoglobin oxidase.
  • glycated hemoglobin oxidases may be used alone or in combination of two or more.
  • the homology with the amino acid sequence represented by any of SEQ ID NOs: 3 to 34 is 90% or more, preferably 94% or more, more preferably Is desirable to have a homology of 96% or more, more preferably 98% or more, and particularly preferably 99% or more.
  • the above steps (i) to (ii) can also be performed in an aqueous medium.
  • the aqueous medium is not particularly limited as long as it is an aqueous medium that enables the measurement method of the present invention, and examples thereof include deionized water, distilled water, and a buffer solution.
  • a buffer solution is preferable.
  • the buffer used in the buffer include tris (hydroxymethyl) aminomethane buffer (Tris buffer), phosphate buffer, borate buffer, Good's buffer, and the like.
  • Good buffering agents include, for example, 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminodiacetic acid (ADA) Piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) ), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfone Acid (TES), 2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanes Lufonic
  • a glycated hemoglobin denaturant or an oxidizing agent may coexist. Moreover, you may process the sample containing glycated hemoglobin with the said denaturant or the said oxidizing agent previously.
  • the modifier is not particularly limited as long as it is a modifier that enables the measurement method of the present invention, and examples thereof include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Can be mentioned.
  • the oxidizing agent is not particularly limited as long as it is an oxidizing agent that enables the measurement method of the present invention, and examples thereof include potassium iodate, potassium periodate, and potassium bromate.
  • the reaction temperature of the reaction in each step is, for example, 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is 1 second to 120 minutes, preferably 1 to 90 minutes, particularly preferably 1 to 60 minutes. It is.
  • examples of products generated in the reaction solution by the reaction of glycated hemoglobin and enzyme include hydrogen peroxide, sugar osone ( ⁇ -ketoaldehyde form), hemoglobin and the like.
  • examples of the substance consumed by the reaction between glycated hemoglobin and the enzyme include oxygen molecules.
  • the oxygen molecules consumed in the step (i) are measured by, for example, an electrochemical measurement method using an oxygen electrode.
  • glycated hemoglobin is directly oxidized by allowing glycated hemoglobin oxidase to act on glycated hemoglobin in the sample, and the generated hydrogen peroxide is measured to measure glycated hemoglobin in the sample.
  • the hydrogen peroxide produced in step (i) of the present invention can be measured using, for example, an optical technique or an electrochemical technique.
  • the optical method include an absorbance method and a luminescence method.
  • Specific examples include an optical measurement method using a hydrogen peroxide measurement reagent, an electrochemical measurement method using a hydrogen peroxide electrode, and the like.
  • the hydrogen peroxide measuring reagent is a reagent for converting the generated hydrogen peroxide into a detectable substance.
  • the detectable substance include a dye and light, but a dye is preferable.
  • the hydrogen peroxide measurement reagent contains an oxidative coloring type chromogen and a peroxidase active substance such as peroxidase.
  • the oxidative coloring chromogen include an oxidative coupling chromogen described later and a leuco chromogen described later.
  • the hydrogen peroxide measurement reagent includes a chemiluminescent substance.
  • the chemiluminescent substance includes a bioluminescent substance, and examples thereof include luminol, isoluminol, lucigenin, acridinium ester, and oxalate ester.
  • a reagent containing an oxidative coloring type chromogen and a peroxidase active substance such as peroxidase as a hydrogen peroxide measuring reagent
  • hydrogen peroxide is oxidized in the presence of the peroxidation active substance. Hydrogen peroxide can be measured by reacting with the body to produce a pigment and measuring the pigment produced.
  • hydrogen peroxide can be measured by reacting hydrogen peroxide with the chemiluminescent substance to generate photons and measuring the generated photons. it can.
  • An oxidative coupling type chromogen is a chromogen that reacts with hydrogen peroxide in the presence of a peroxidase active substance such as peroxidase to produce a dye by an oxidative coupling reaction.
  • a peroxidase active substance such as peroxidase
  • Specific examples of the oxidative coupling type chromogen include couplers such as 4-aminoantipyrine and phenolic or aniline hydrogen donors.
  • a coupler and a phenol-based or aniline-based hydrogen donor compound are oxidatively coupled in the presence of hydrogen peroxide and a peroxide active substance to form a dye.
  • Examples of the coupler include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazone.
  • Examples of the phenolic hydrogen donor include phenol, 4-chlorophenol, 3-methylphenol, 3-hydroxy-2,4,6-triiodobenzoic acid (HTIB) and the like.
  • N- (3-sulfopropyl) aniline N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- ( 2-hydroxy-3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl -N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methyl Aniline, N, N-di (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3-meth
  • the leuco chromogen is a chromogen that reacts with hydrogen peroxide in the presence of a peroxidase active substance such as peroxidase to produce a pigment alone.
  • a peroxidase active substance such as peroxidase to produce a pigment alone.
  • CCAP 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine
  • MCDP 10-N-methylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine
  • DA-64 N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium salt
  • DA-67 10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) Phenothiazine sodium salt
  • DA-67 4,4′-bis (dimethylamin
  • the concentration of the peroxide active substance is not particularly limited as long as it is suitable for the measurement, but when peroxidase is used as the peroxide active substance, 1 to 100 U / mL is preferable, 2 to 50 ⁇ U / mL is more preferable.
  • the concentration of the oxidative coloring type chromogen is not particularly limited as long as it is suitable for measurement, but is preferably 0.01 to 10 g / L, and more preferably 0.02 to 5 g / L.
  • the electrode to be used is not particularly limited as long as it is a material that exchanges electrons with hydrogen peroxide. Examples thereof include platinum, gold, and silver. .
  • known methods such as amperometry, potentiometry, coulometry, and the like can be used.
  • An electron carrier can be interposed in the reaction between the oxidase or substrate and the electrode, and the resulting oxidation, reduction current, or electric quantity thereof can be measured.
  • any substance having an electron transfer function can be used, and examples thereof include substances such as ferrocene derivatives and quinone derivatives.
  • the oxidation, reduction current, or the amount of electricity obtained by interposing an electron carrier between hydrogen peroxide generated by the oxidase reaction and the electrode can be measured.
  • step (i) sugar oxone ( ⁇ -ketoaldehyde form) is produced together with hydrogen peroxide. Therefore, by measuring the produced sugar oxone ( ⁇ -ketoaldehyde form), HbA1c in the sample is also measured. Can be measured. By measuring together hydrogen peroxide produced by the action of glucose oxidase on the ⁇ -ketoaldehyde compound, it can be measured with high sensitivity (Japanese Patent Laid-Open No. 2000-333696).
  • FPOX-18A having the amino acid sequence represented by SEQ ID NO: 3 and FPOX having the amino acid sequence represented by SEQ ID NO: 4 by introducing a site-specific amino acid substitution into pTrc-FPOX-15 by the same method as described above -18B
  • FPOX-18C having the amino acid sequence represented by SEQ ID NO: 5
  • FPOX-18D having the amino acid sequence represented by SEQ ID NO: 6
  • FPOX-19 having the amino acid sequence represented by SEQ ID NO: 7, represented by SEQ ID NO: 8
  • An expression plasmid for each glycated hemoglobin oxidase of FPOX-20 having an amino acid sequence is constructed.
  • each of FPOX-21 to 46 having the amino acid sequence represented by SEQ ID NOs: 9 to 34
  • An expression plasmid for glycated hemoglobin oxidase is constructed.
  • the constructed glycated hemoglobin oxidase expression plasmid is transformed into an E. coli strain to produce a recombinant glycated hemoglobin oxidase-expressing E. coli strain.
  • the recombinant glycated hemoglobin oxidase-expressing E. coli strain is inoculated into Luria-Bertani (hereinafter referred to as LB) medium containing 50-100 mg / L ampicillin and cultured at 37 ° C. with shaking.
  • LB Luria-Bertani
  • IPTG isopropyl- ⁇ -thiogalactoside
  • the bacterial cells obtained above are suspended in a buffer solution, sonicated for 1 to 10 minutes, and centrifuged to obtain a crude enzyme extract.
  • a purified enzyme is prepared by techniques such as ammonium sulfate precipitation and anion exchange column chromatography using the enzyme activity and the color tone of the coenzyme flavin adenine dinucleotide (hereinafter referred to as FAD) possessed by the enzyme as an index.
  • FAD coenzyme flavin adenine dinucleotide
  • the concentration of the purified enzyme was determined by measuring the absorbance at a wavelength of 452 nm derived from FAD which is a coenzyme of the protein, and the obtained absorbance was determined based on the glycated hemoglobin oxidase concentration and absorbance prepared in advance using glycated peptide oxidase with known activity. Determined against a calibration curve showing the relationship between
  • the glycated hemoglobin oxidase activity can be measured, for example, by the following method.
  • the enzyme reaction is carried out by heating for 120 minutes, and the absorbance of the resulting solution is measured at 660 nm (main wavelength) / 750 nm (subwavelength), and the change in absorbance before and after the enzyme reaction is measured.
  • the same measurement was performed using distilled water instead of the D solution, the change in absorbance before and after the enzyme reaction was taken as a blank, and the enzyme reaction was performed by subtracting the blank from the change in absorbance before and after the enzyme reaction in the measurement using the D solution.
  • the absorbance at can be measured and used as an index of the activity of glycated hemoglobin oxidase.
  • Steps (i) and (ii) above may be performed in an aqueous medium.
  • an aqueous medium the above-mentioned aqueous medium etc. are mentioned, for example, A buffer solution is preferable.
  • the buffer solution concentration include the aforementioned buffer solution concentration.
  • the reaction temperature of the reaction in each step is, for example, 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is 1 second to 120 minutes, preferably 1 to 90 minutes, particularly preferably 1 to 60 minutes. It is.
  • all prior art documents cited in this specification are incorporated in this specification as a reference.
  • Example 1 Construction of a protein having glycated hemoglobin oxidase activity by site-specific amino acid substitution introduction 50 mg of the glycated peptide oxidase FPOX-9-expressing E. coli strain XL1-Blue MRF 'deposited at deposit number FERM BP-11026 Inoculated into 3 mL of LB medium containing / L ampicillin and cultured with shaking at 37 ° C. overnight. The cells were collected by centrifuging the culture solution at 8,000 rpm for 2 minutes.
  • the glycated peptide oxidase FPOX-9 having the amino acid sequence represented by SEQ ID NO: 2 is expressed, and the base sequence represented by SEQ ID NO: 36
  • the expression plasmid pTrc-FPOX-9 containing DNA consisting of was extracted.
  • pTrc-FPOX-15 containing DNA consisting of the base sequence represented by SEQ ID NO: 35 is prepared from pTrc-FPOX-9, and this is expressed as E. coli DH5 ⁇ .
  • a glycated peptide oxidase FPOX-15-expressing Escherichia coli strain having the amino acid sequence represented by SEQ ID NO: 1 was produced.
  • the strain was inoculated into 3 mL of LB medium containing 50 mg / L ampicillin and cultured with shaking at 37 ° C. overnight. The cells were collected by centrifuging the culture at 8,000 rpm for 2 minutes. From the obtained cells, FPOX-15 expression plasmid pTrc-FPOX-15 was extracted using “Wizard Plus SV SV Minipreps DNA Purification” manufactured by Promega.
  • PCR was performed under the following reagent composition and PCR conditions to obtain a PCR product (expression plasmid containing a mutation).
  • template DNA, forward primer, and reverse primer were used at concentrations of 1 to 2 mg / L, 0.3 ⁇ mol / L, and 0.3 ⁇ mol / L, respectively, in the reaction solution.
  • Reagent composition ⁇ Reaction buffer ⁇ Template DNA 1-2 ng / ⁇ L ⁇ Forward primer 0.3 ⁇ mol / L ⁇ Reverse primer 0.3 ⁇ mol / L ⁇ DNTP mixture 0.2 mmol / L each ⁇ MgSO 4 1 mmol / L ⁇ DNA polymerase 0.02 U / ⁇ L ⁇ The volume was adjusted to 50 ⁇ L by adding sterile water.
  • PCR conditions 1. 94 °C 2 minutes 2. 98 °C 15 seconds 3. 60 °C 30 seconds 4. 68 °C 6 minutes 5. Repeat 2-4 (total 30 cycles) 6. 68 °C 10 minutes
  • a primer having a DNA consisting of the base sequence represented by SEQ ID NO: 71, which is the 530-548th base sequence of the base sequence of FPOX-15 having the base sequence represented by SEQ ID NO: 35 was used.
  • each site-specific amino acid substitution shown in Table 1 was introduced into the pTrc-FPOX-15 expression plasmid to construct glycated hemoglobin oxidase.
  • Each site-specific amino acid substitution of Nos. 1 to 19 was performed using a primer pair having a DNA consisting of the base sequence represented by the SEQ ID NO.
  • Plasmid pTrc-FPOX- expressing FPOX-18A having the amino acid sequence represented by SEQ ID NO: 3 by stepwise introducing the site-specific amino acid substitutions No. 1 to No. 4 in Table 1 into pTrc-FPOX-15 18A was created.
  • pTrc-FPOX-18A includes DNA consisting of a base sequence encoding FPOX-18A represented by SEQ ID NO: 37.
  • the FPOX-18B expression plasmid pTrc- having the amino acid sequence represented by SEQ ID NO: 4 FPOX-18B was created.
  • pTrc-FPOX-18B includes DNA consisting of a base sequence encoding FPOX-18B represented by SEQ ID NO: 38.
  • an FPOX-18C expression plasmid pTrc-FPOX-18C having the amino acid sequence represented by SEQ ID NO: 5 was constructed.
  • pTrc-FPOX-18C includes DNA consisting of the base sequence encoding FPOX-18C represented by SEQ ID NO: 39.
  • pTrc-FPOX-18D includes DNA consisting of the base sequence encoding FPOX-18D represented by SEQ ID NO: 40.
  • pTrc-FPOX-19 contains DNA consisting of the base sequence encoding FPOX-19 represented by SEQ ID NO: 41.
  • pTrc-FPOX-20 contains DNA consisting of a base sequence encoding FPOX-20 represented by SEQ ID NO: 42.
  • glycated hemoglobin oxidase-expressing E. coli strains obtained above, glycated peptides described in International Publication No. 2010/041715, using FPOX-19, FPOX-20, FPOX-32 and FPOX-42 protein-expressing E. coli strains According to the expression and purification method of oxidase, glycated hemoglobin oxidase was purified and used in the method for measuring glycated hemoglobin of the present invention. The protein concentration in purified glycated hemoglobin oxidase was determined by the following method based on FAD possessed by glycated hemoglobin oxidase.
  • glycated peptide oxidase FPOX-CE (manufactured by Kikkoman Corporation) is diluted with 10 mmol / L phosphate buffer (pH 7.0), and each concentration of 0.7, 1.4, 2.8, 5.6 and 11.2 mg / mL is obtained.
  • FPOX-CE solution was prepared. Using the GE Healthcare spectrophotometer “Ultrospec 2100 pro”, the absorbance of each prepared FPOX-CE solution was measured at 452 nm (primary wavelength) / 600 nm (subwavelength), and FPOX-CE A calibration curve showing the relationship between concentration and absorbance was created.
  • the absorbance of the purified protein was measured by the same method except that purified glycated hemoglobin oxidase was used as a sample instead of the aforementioned FPOX-CE.
  • the protein concentration in the purified glycated hemoglobin oxidase was determined by comparing the absorbance obtained by the measurement with the calibration curve.
  • Example 2 Correlation between the glycated hemoglobin measurement method of the present invention and the glycated hemoglobin measurement method using the HPLC method (KO500 method) and the hemoglobin-SLS method
  • an enzyme FPOX-19 obtained in Example 1
  • FPOX-20, FPOX-32, and FPOX-42 the following reagents and the following reagents were used as specimens, using a human blood cell-derived hemolyzed sample in which the HbA1c concentration was determined by the HPLC method (KO500 method) and the hemoglobin-SLS method: The change in absorbance with respect to each sample was measured by the measurement procedure.
  • hemoglobin B-Test Wako manufactured by Wako Pure Chemical Industries, Ltd.
  • Solution E 5 g / L potassium iodate and 50% (v / v) amphital 20N aqueous solution
  • Solution F 40 mg / mL glycated hemoglobin oxidase (FPOX-19, FPOX-20, FPOX-32 and FPOX-42 variants) in 10 mmol / L phosphate buffer (pH 7.0)
  • HbA1c concentrations hemoglobin concentrations of 10 mg / mL, HbA1c concentrations of 9.82 ⁇ mol / L and 24.2 ⁇ mol / L, respectively
  • HbA1c A calibration curve showing the relationship between the concentration and the change in reaction absorbance ⁇ 'Abs (reaction) was prepared.
  • the HbA1c concentration in each human blood cell-derived hemolyzed sample was determined by comparing the reaction absorbance ⁇ ′Abs (reaction) for each human blood cell-derived hemolyzed sample with the calibration curve.
  • the HbA1c concentration thus determined was compared with the HbA1c concentration determined by the HPLC method (KO500 method) and the control method using the hemoglobin-SLS method.
  • the present invention provides a method for measuring glycated hemoglobin useful for diagnosis of lifestyle-related diseases such as diabetes.

Abstract

試料中の糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法;酵素を用いて試料中の糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法を提供する。本発明の糖化ヘモグロビンの測定方法は、糖尿病等の生活習慣病の診断に有用である。

Description

糖化ヘモグロビンの測定方法
 本発明は、試料中の糖化ヘモグロビンの測定方法に関する。
 糖化蛋白質は、生体内の血液等の体液や毛髪等の生体試料中に含まれている。血液中に存在する糖化蛋白質の濃度は、血清中に溶解しているグルコース等の糖類の濃度に依存しており、最近、臨床診断分野において、血液中の糖化蛋白質であるヘモグロビンA1c(以下HbA1c、非特許文献1)の濃度の測定が、糖尿病の診断やモニタリングに用いられている。このHbA1cを測定する方法としては、高速液体クロマトグラフィー(HPLC)を用いる機器分析的方法(非特許文献2)、抗原抗体反応を用いる免疫測定法(例えば、非特許文献3)等が知られていたが、近年、酵素的測定法が開発されており、例えば、プロテアーゼと糖化ペプチドオキシダーゼとを用いる方法(特許文献1)が開発されている。酵素的測定法は、汎用性のある自動分析装置への適用が可能であり、また、操作も簡便なことから開発が盛んになっている。
 酵素的測定法で用いられる糖化ペプチドオキシダーゼは、グルコースのヘミアセタールとペプチドのN末端のアミノ基とが反応して生成されるグルコシルアミンがアマドリ転位して生成されるケトース誘導体におけるC-N結合を、酸素分子の存在下で酸化的に開裂し、糖オソン(α-ケトアルデヒド体)、ペプチド及び過酸化水素を生成させる反応を触媒する酵素である。
 酵素的測定法の場合、まずHbA1cをプロテアーゼで分解し、ヘモグロビンのβ鎖のN末端からα-糖化バリルヒスチジン(以下、α-FVHと記す)を生成させる。次に、生成されたα-FVHに糖化ペプチドオキシダーゼを作用させ、生成される過酸化水素によりパーオキシダーゼの存在下でキノン系色素を生成させ、その生成量を分光光度計で比色定量する方法が知られている(特許文献1)。
 しかしながら、従来知られている糖化ペプチドオキシダーゼ(例えば、特許文献2、3、4、5、非特許文献4)が作用可能な糖化ペプチドは、通常ジペプチドであって、最大でもヘキサペプチド(特許文献6、7)であり、それよりも長いアミノ酸鎖長を有する糖化ペプチドや糖化蛋白質に作用する糖化ペプチドオキシダーゼは知られていない。従って、酵素的測定方法においては、上記の通り、糖化蛋白質にプロテアーゼを作用させて、生成された糖化ペプチドに対して、糖化ペプチドオキシダーゼを作用させて、生成された過酸化水素を測定する方法しか報告されていない。
 糖化ヘモグロビンにプロテアーゼを作用させ、生成された糖化ペプチドに糖化ペプチドオキシダーゼを作用させて、生成された過酸化水素を測定するこの方法は、自動分析装置等により糖化ヘモグロビンの測定以外の測定を同時に行う場合は、糖化ヘモグロビン測定試薬中のプロテアーゼが他試薬に作用し、測定値に影響を及ぼすおそれがある。
特開2001-95598号公報 国際公開第2004/104203号パンフレット 特開2003-235585号公報 国際公開第2004/038033号パンフレット 国際公開第2010/041715号パンフレット 国際公開第2004/038034号パンフレット 国際公開第2008/108385号パンフレット
Clin Chem Lab Med, 第36巻,p.299-308 (1998) Diabetes, Vol. 27(2), p. 102-107 (1978) 日本臨床検査自動化学会会誌、第18巻、第4号、p.620 (1993) Appl Microbiol Biotechnol, 第78巻、第5号、p.775-781 (2008)
 本発明の目的は、糖化ヘモグロビンの測定方法において、糖化ヘモグロビンにプロテアーゼを作用させることなく、糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定する糖化ヘモグロビンの測定方法を提供することにある。
 本発明は、以下の(1)~(4)に関する。
 (1)試料中の糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
 (2)酵素を用いて糖化ヘモグロビンを直接酸化する、(1)記載の測定方法。
 (3)生成された物質が過酸化水素である、(1)又は(2)記載の測定方法。
 (4)糖化ヘモグロビンがHbA1cである、(1)~(3)記載の測定方法。
 本発明により、試料中に存在する糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定する糖化ヘモグロビンの測定方法が提供される。
FPOX-19によりHbA1cを直接酸化する、本発明のHbA1c測定方法により決定されたHbA1c濃度と、HPLC法(KO500法)及びヘモグロビン-SLS法を用いるHbA1c測定方法により決定されたHbA1c濃度との相関性を示すグラフである。 FPOX-20によりHbA1cを直接酸化する、本発明のHbA1c測定方法により決定されたHbA1c濃度と、HPLC法(KO500法)及びヘモグロビン-SLS法を用いるHbA1c測定方法により決定されたHbA1c濃度との相関性を示すグラフである。 FPOX-32によりHbA1cを直接酸化する、本発明のHbA1c測定方法により決定されたHbA1c濃度と、HPLC法(KO500法)及びヘモグロビン-SLS法を用いるHbA1c測定方法により決定されたHbA1c濃度との相関性を示すグラフである。 FPOX-42によりHbA1cを直接酸化する、本発明のHbA1c測定方法により決定されたHbA1c濃度と、HPLC法(KO500法)及びヘモグロビン-SLS法を用いるHbA1c測定方法により決定されたHbA1c濃度との相関性を示すグラフである。
1.本発明の糖化ヘモグロビンの測定方法
 本発明の測定方法は、糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定することにより、糖化ヘモグロビンを測定する。本発明における糖化ヘモグロビンとしては、HbA1cが好ましい。糖化ヘモグロビンを直接酸化する方法としては、糖化ヘモグロビンを直接酸化することができる方法であればいずれでもよいが、酵素を用いて酸化する方法が好ましい。
 以下、本発明の測定方法について説明する。
(試料及び測定対象物)
 本発明の測定方法に用いられる試料としては、糖化ヘモグロビンを含む試料であれば特に制限はなく、例えば全血液、血漿、血清、血球、細胞試料、尿、髄液、汗、涙液、唾液、皮膚、粘膜、毛髪等の生体試料等が挙げられる。試料としては、全血液、血漿、血清、血球等が好ましく、全血液、血球等が特に好ましい。なお、全血液には、全血液由来の血球画分に血漿が混合している試料も含まれる。これらの試料は、溶血、分離、希釈、濃縮、精製等の前処理を施したものを用いてもよい。
 ヘモグロビンは、α鎖及びβ鎖の2種類のサブユニットを各々2つ持つ、分子量64,000のヘム蛋白質である。ヘモグロビンのα鎖のN末端の3アミノ酸配列はバリン-ロイシン-セリンであり、β鎖のN末端の3アミノ酸配列はバリン-ヒスチジン-ロイシンである。HbA1cは、特にβ鎖のN末端バリン残基が糖化されたものと定義されているが、ヘモグロビンはα鎖のN末端を含め、分子内に複数の糖化部位を有することが知られている(The Journal of Biological Chemistry (1980), 256, 3120-3127)。
(測定方法)
 本発明の、試料中の測定すべき糖化ヘモグロビンの測定は、例えば、下記(i)~(ii)の工程を順次行うことによって行うことができる。
(i)試料中の糖化ヘモグロビンに酵素を作用させて糖化ヘモグロビンを酸化する工程、
(ii)上記工程(i)で生成された物質、又は、消費された物質を測定する工程。
 工程(i)において用いられる酵素としては、糖化ヘモグロビンを直接酸化できるものであればいずれでもよいが、例えば、下記の酵素を用いることができる。
[1]配列番号3~34のいずれかで表わされるアミノ酸配列を有する蛋白質(それぞれ、FPOX-18A、FPOX-18B、FPOX-18C、FPOX-18D、FPOX-19、FPOX-20、FPOX-21、FPOX-22、FPOX-23、FPOX-24、FPOX-25、FPOX-26、FPOX-27、FPOX-28、FPOX-29、FPOX-30、FPOX-31、FPOX-32、FPOX-33、FPOX-34、FPOX-35、FPOX-36、FPOX-37、FPOX-38、FPOX-39、FPOX-40、FPOX-41、FPOX-42、FPOX-43、FPOX-44、FPOX-45、FPOX-46と称する)、
[2]配列番号3~34のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘモグロビンを直接酸化する活性(以下、糖化ヘモグロビンオキシダーゼ活性という)を有する蛋白質等が挙げられる。以下、糖化ヘモグロビンオキシダーゼ活性を有する蛋白質を糖化ヘモグロビンオキシダーゼという。これらの糖化ヘモグロビンオキシダーゼは1種類で用いても、2種類以上を組み合わせて用いてもよい。
 本発明の方法に用いられる蛋白質が糖化ヘモグロビンオキシダーゼ活性を有するためには、配列番号3~34のいずれかで表されるアミノ酸配列との相同性が90%以上、好ましくは94%以上、より好ましくは96%以上、さらに好ましくは98%以上、特に好ましくは99%以上の相同性を有していることが望ましい。
 アミノ酸配列や塩基配列の相同性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63 (1990)]を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J. Mol. Biol., 215, 403(1990)]。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。
 上記工程(i)~(ii)は、水性媒体中で行うこともできる。水性媒体としては、本発明の測定方法を可能とする水性媒体であれば特に制限はなく、例えば脱イオン水、蒸留水、緩衝液等が挙げられるが、緩衝液が好ましい。緩衝液に用いる緩衝剤としては、例えばトリス(ヒドロキシメチル)アミノメタン緩衝剤(トリス緩衝剤)、リン酸緩衝剤、ホウ酸緩衝剤、グッドの緩衝剤等が挙げられる。
 グッドの緩衝剤としては、例えば2-モルホリノエタンスルホン酸(MES)、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-N,N'-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-モルホリノ-2-ヒドロキシプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパンスルホン酸(MOPS)、N-〔トリス(ヒドロキシメチル)メチル〕-2-アミノエタンスルホン酸(TES)、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸(HEPES)、3-〔N,N-ビス(2-ヒドロキシエチル)アミノ〕-2-ヒドロキシプロパンスルホン酸(DIPSO)、N-〔トリス(ヒドロキシメチル)メチル〕-2-ヒドロキシ-3-アミノプロパンスルホン酸(TAPSO)、ピペラジン-N,N'-ビス(2-ヒドロキシ-3-プロパンスルホン酸)(POPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕-2-ヒドロキシプロパンスルホン酸(HEPPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕プロパンスルホン酸〔(H)EPPS〕、N-〔トリス(ヒドロキシメチル)メチル〕グリシン(Tricine)、N,N-ビス(2-ヒドロキシエチル)グリシン(Bicine)、N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(TAPS)、N-シクロヘキシル-2-アミノエタンスルホン酸(CHES)、N-シクロヘキシル-3-アミノ-2-ヒドロキシプロパンスルホン酸(CAPSO)、N-シクロヘキシル-3-アミノプロパンスルホン酸(CAPS)等が挙げられる。
 緩衝液の濃度は測定に適した濃度であれば特に制限はされないが、0.001~2.0 mol/Lが好ましく、0.005~1.0 mol/Lがより好ましい。
 上記工程(i)において糖化ヘモグロビンの変性剤、又は、酸化剤を共存させてもよい。また、糖化ヘモグロビンを含む試料を予め、当該変性剤、又は、当該酸化剤で処理してもよい。変性剤としては、本発明の測定方法を可能とする変性剤であれば特に制限はなく、例えば非イオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤等が挙げられる。また、酸化剤としては、本発明の測定方法を可能とする酸化剤であれば特に制限はなく、例えばヨウ素酸カリウム、過ヨウ素酸カリウム、臭素酸カリウム等が挙げられる。
 各工程の反応の反応温度としては、例えば10~50℃、好ましくは20~40℃であり、反応時間としては、1秒間~120分間、好ましくは1~90分間、特に好ましくは1~60分間である。
 工程(i)において、糖化ヘモグロビンと酵素との反応により反応液中に生じる生成物としては、過酸化水素、糖オソン(α-ケトアルデヒド体)、ヘモグロビン等が挙げられる。また、工程(i)において、糖化ヘモグロビンと酵素との反応により消費される物質としては、例えば酸素分子等が挙げられる。工程(i)において消費される酸素分子は、例えば酸素電極を用いた電気化学的測定法により測定される。
 本発明の糖化ヘモグロビンの測定方法においては、試料中の糖化ヘモグロビンに糖化ヘモグロビンオキシダーゼを作用させて、糖化ヘモグロビンを直接酸化し、生成された過酸化水素を測定することにより試料中の糖化ヘモグロビンを測定する方法が好ましい。本発明の工程(i)において生成される過酸化水素は、例えば光学的手法又は電気化学的手法を用いて測定することができる。光学的手法としては、例えば吸光度法、発光法等が挙げられる。具体的には、過酸化水素測定試薬を用いた光学的測定法、過酸化水素電極を用いた電気化学的測定法等が挙げられる。
 過酸化水素測定試薬は、生成された過酸化水素を検出可能な物質へ変換するための試薬である。検出可能な物質としては、例えば色素、光等が挙げられるが、色素が好ましい。
 検出可能な物質が色素の場合には、過酸化水素測定試薬は、酸化発色型色原体及びパーオキシダーゼ等の過酸化活性物質を含む。酸化発色型色原体としては、例えば後述の酸化カップリング型色原体や後述のロイコ型色原体が挙げられる。
 検出可能な物質が光の場合には、過酸化水素測定試薬は、化学発光物質を含む。化学発光物質としては、生物発光物質も含まれ、例えばルミノール、イソルミノール、ルシゲニン、アクリジニウムエステル、シュウ酸エステル等が挙げられる。
 過酸化水素測定試薬として、酸化発色型色原体及びパーオキシダーゼ等の過酸化活性物質を含む試薬を用いる場合には、過酸化水素を、過酸化活性物質の存在下にて酸化発色型色原体と反応させて色素を生成させ、生成された色素を測定することにより、過酸化水素を測定することができる。また、化学発光物質を含む過酸化水素測定試薬を用いる場合には、過酸化水素を、化学発光物質と反応させフォトンを生じ、生じたフォトンを測定することにより、過酸化水素を測定することができる。
 酸化カップリング型色原体は、パーオキシダーゼ等の過酸化活性物質の存在下、過酸化水素と反応し、酸化カップリング反応により色素を生成する色原体である。酸化カップリング型色原体の具体例は、4-アミノアンチピリン等のカプラー、及びフェノール系又はアニリン系水素供与体等が挙げられる。カプラーと、フェノール系又はアニリン系水素供与体化合物とは、過酸化水素及び過酸化活性物質の存在下、酸化カップリングし、色素を生成する。
 カプラーとしては、例えば4-アミノアンチピリン(4-AA)、3-メチル-2-ベンゾチアゾリノンヒドラゾン等が挙げられる。
 フェノール系水素供与体としては、フェノール、4-クロロフェノール、3-メチルフェノール、3-ヒドロキシ-2,4,6-トリヨード安息香酸(HTIB)等が挙げられる。
 アニリン系水素供与体としては、N-(3-スルホプロピル)アニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(DAOS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N,N-ジメチル-3-メチルアニリン、N,N-ジ(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(3-スルホプロピル)アニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメチルアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン、N-エチル-N-(3-メチルフェニル)-N'-サクシニルエチレンジアミン(EMSE)、N-エチル-N-(3-メチルフェニル)-N'-アセチルエチレンジアミン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-4-フルオロ-3,5-ジメトキシアニリン(F-DAOS)、N-[2-(サクシニルアミノ)エチル]-2-メトキシ-5-メチルアニリン(MASE)、N-エチル-N-[2-(サクシニルアミノ)エチル]-2-メトキシ-5-メチルアニリン(Et-MASE)等が挙げられる。
 ロイコ型色原体は、パーオキシダーゼ等の過酸化活性物質の存在下、過酸化水素と反応し、単独で色素を生成する色原体である。具体的には、10-N-カルボキシメチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(CCAP)、10-N-メチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(MCDP)、N-(カルボキシメチルアミノカルボニル)-4,4'-ビス(ジメチルアミノ)ジフェニルアミン ナトリウム塩(DA-64)、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジン ナトリウム塩(DA-67)、4,4'-ビス(ジメチルアミノ)ジフェニルアミン、ビス〔3-ビス(4-クロロフェニル)メチル-4-ジメチルアミノフェニル〕アミン(BCMA)、N,N,N',N',N'',N''-ヘキサ-3-スルホプロピル-4,4',4''-トリアミノトリフェニルメタン(TPM-PS)、ジアミノベンチジン、ヒドロキシフェニルプロピオン酸、テトラメチルベンチジン、オルトフェニレンジアミン等が挙げられる。
 過酸化水素の測定において、過酸化活性物質の濃度は、測定に適した濃度であれば特に制限はないが、過酸化活性物質としてパーオキシダーゼを用いる場合は、1~100 U/mLが好ましく、2~50 U/mLがより好ましい。また、酸化発色型色原体の濃度は、測定に適した濃度であれば特に制限はないが、0.01~10 g/Lが好ましく、0.02~5 g/Lがより好ましい。
 過酸化水素を過酸化水素電極を用いて測定する場合、使用する電極は、過酸化水素との間で電子を授受する材料である限り特に制限されないが、例えば白金、金若しくは銀等が挙げられる。測定方法としてはアンペロメトリー、ポテンショメトリー、クーロメトリー等の公知の方法を用いることができる。オキシダーゼ又は基質と電極との間の反応に電子伝達体を介在させ、得られる酸化、還元電流或いはその電気量を測定することもできる。
 電子伝達体としては、電子伝達機能を有する任意の物質が使用可能であり、例えばフェロセン誘導体、キノン誘導体等の物質が挙げられる。また、オキシダーゼ反応により生成される過酸化水素と電極の間に電子伝達体を介在させることによって得られる酸化、還元電流又はその電気量を測定することができる。
 工程(i)においては、過酸化水素と共に糖オソン(α-ケトアルデヒド体)が生成されるので、生成された糖オソン(α-ケトアルデヒド体)を測定することによっても、試料中のHbA1cを測定することができる。α-ケトアルデヒド体にグルコースオキシダーゼを作用させて生成される過酸化水素を併せて測定することにより、高感度に測定することができる(特開2000-333696)。
糖化ヘモグロビンオキシダーゼの製造方法
 本発明の方法に用いられる蛋白質である糖化ヘモグロビンオキシダーゼの製造方法の一例を以下に示す。
(プラスミド抽出)
 寄託番号FERM BP-11026として寄託されている、糖化ペプチドオキシダーゼFPOX-9発現大腸菌株XL1-Blue MRF'株より、市販のプラスミド抽出キットを使用して、配列番号2のアミノ酸配列で表わされる糖化ペプチドオキシダーゼFPOX-9の発現プラスミドpTrc-FPOX-9を抽出する。
(糖化ペプチドオキシダーゼ FPOX-15発現プラスミドの作製)
 pTrc-FPOX-9発現プラスミドをテンプレートDNAとして、標的アミノ酸位置に相当するコドンを、置換するアミノ酸に対応するコドンに入れ替えたプライマー対を用いたPCRにより、部位特異的にアミノ酸置換を導入し、配列番号1で表わされるアミノ酸配列を有する糖化ペプチドオキシダーゼFPOX-15の発現プラスミドpTrc-FPOX-15を造成する。
(部位特異的アミノ酸置換による糖化ヘモグロビンオキシダーゼの造成)
 上記と同様の方法により、pTrc-FPOX-15に部位特異的なアミノ酸置換を導入することにより、配列番号3で表わされるアミノ酸配列を有するFPOX-18A、配列番号4で表わされるアミノ酸配列を有するFPOX-18B、配列番号5で表わされるアミノ酸配列を有するFPOX-18C、配列番号6で表わされるアミノ酸配列を有するFPOX-18D、配列番号7で表わされるアミノ酸配列を有するFPOX-19、配列番号8で表わされるアミノ酸配列を有するFPOX-20の各糖化ヘモグロビンオキシダーゼの発現プラスミドを造成する。
 上記と同様の方法により、FPOX-19の発現プラスミドpTrc-FPOX-19に部位特異的なアミノ酸置換を導入することにより、配列番号9~34で表わされるアミノ酸配列を有するFPOX-21~46の各糖化ヘモグロビンオキシダーゼの発現プラスミドを造成する。
 造成した糖化ヘモグロビンオキシダーゼ発現プラスミドを大腸菌株に形質転換し、組換え糖化ヘモグロビンオキシダーゼ発現大腸菌株を作製する。組換え糖化ヘモグロビンオキシダーゼ発現大腸菌株を50~100mg/L アンピシリンを含有するLuria-Bertani(以下LBと記す)培地に植菌し、37℃で振盪培養する。OD600=0.4~0.8まで生育させた後、イソプロピル-β-チオガラクトシド(以下IPTGと記す)を終濃度0.1~1 mmol/Lとなるように添加し、引き続き37℃、5~24時間振盪培養する。培養後、8000 rpm、10~30分間遠心分離することで菌体を回収する。
 上記で得られた菌体を緩衝液に懸濁し、1~10分間超音波破砕し、遠心分離後に上清を分取することで酵素の粗抽出液を調製する。該粗抽出液より、酵素活性及び該酵素の持つ補酵素フラビンアデニンジヌクレオチド(以下、FADと記す)の呈する色調を指標に、硫安沈殿、陰イオン交換カラムクロマトグラフィー等の手法により精製酵素を調製する。
 精製酵素の濃度は、該蛋白質の補酵素であるFADに由来する波長452nmの吸光度を測定し、得られた吸光度を、活性が既知の糖化ペプチドオキシダーゼを用いて予め作成した糖化ヘモグロビンオキシダーゼ濃度と吸光度との関係を示す検量線に照らし合わせて決定する。
(糖化ヘモグロビンオキシダーゼ活性測定方法)
 本発明の測定方法において、糖化ヘモグロビンオキシダーゼ活性は、例えば以下の方法で測定することができる。
(活性測定用試薬)
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液:発色剤
 24 mmol/L DA-67のジメチルホルムアミド(DMF)溶液
C液:パーオキシダーゼ溶液
  1 kU/L パーオキシダーゼの10 mmol/Lリン酸緩衝液(pH7.0)溶液
D液:基質溶液
 10 g/Lヘモグロビン水溶液
E液: 変性液
 5 g/Lヨウ素酸カリウム及び、50%(v/v)界面活性剤(アンヒトール20N)の水溶液
F液: 酵素液
 0.5~1.0 U/mL 糖化ヘモグロビンオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)溶液
(測定手順)
 (i)D液40μLにE液4μLを混合し、37℃にて10分間インキュベートする。
 (ii)A液 10mLにB液12.6μL、C液 35μLを添加し、得られた溶液を1試料当たり190μLずつ96穴プレートの各ウェルに分注した後、D液とE液の混合液 40μL、F液20μLを加えて混合し、全自動マイクロプレートEIA分析装置により、混合直後の溶液の吸光度を660 nm(主波長)/750 nm(副波長)で測定し、次いで、37℃、60~120分間加温して酵素反応を行い、得られた溶液の吸光度を660 nm(主波長)/750 nm(副波長)で測定し、酵素反応前後の吸光度変化を測定する。また、D液の代わりに蒸留水を用いて同様の測定を行い、酵素反応前後の吸光度変化をブランクとし、D液を用いる測定における、酵素反応前後の吸光度変化からブランクを差し引くことにより、酵素反応における吸光度を測定し、糖化ヘモグロビンオキシダーゼの活性の指標とすることができる。
 上記工程(i)及び(ii)は、水性媒体中で行われても良い。水性媒体としては、例えば前述の水性媒体等が挙げられ、緩衝液が好ましい。緩衝液の濃度としては、例えば前述の緩衝液の濃度が挙げられる。
 各工程の反応の反応温度としては、例えば10~50℃、好ましくは20~40℃であり、反応時間としては、1秒間~120分間、好ましくは1~90分間、特に好ましくは1~60分間である。
 なお、本明細書において引用された全ての先行技術文献は、参照として本明細書内に組み入れられる。
 以下に、実施例を示すが、本発明は下記実施例に限定されるものではない。なお、本実施例においては、下記メーカーの試薬及び酵素を使用した。
 リン酸二水素カリウム(和光純薬工業)、リン酸一水素カリウム(和光純薬工業)、DA-67(和光純薬工業社製)、パーオキシダーゼ(東洋紡社製)、MOPS(同仁化学研究所社製)、ジメチルホルムアミド(和光純薬工業社製)、ヨウ素酸カリウム(和光純薬工業社製)、Luria-Bertani miller培地(LB培地)(ベクトンディキンソン社製)、KOD-plus-(DNAポリメラーゼ;東洋紡社製)、Dpn I(制限酵素;ニューイングランドバイオラボ社製)、Competent high DH5α(大腸菌コンピテントセル;東洋紡社製)、ヘモグロビンB-テスト ワコー(ヘモグロビン濃度測定用キット;和光純薬工業社製)。
〔実施例1〕 部位特異的アミノ酸置換導入による糖化ヘモグロビンオキシダーゼ活性を有する蛋白質の造成
 寄託番号FERM BP-11026として寄託されている糖化ペプチドオキシダーゼFPOX-9発現大腸菌株XL1-Blue MRF'株を、50mg/L アンピシリンを含有したLB培地 3mLに植菌し、37℃で終夜振盪培養した。培養液を8,000 rpm、2分間遠心分離することにより菌体を集めた。得られた菌体から、Promega社製「Wizard Plus SV Minipreps DNA Purification」を使用し、配列番号2で表わされるアミノ酸配列を有する糖化ペプチドオキシダーゼFPOX-9を発現する、配列番号36で表わされる塩基配列からなるDNAを含む発現プラスミドpTrc-FPOX-9を抽出した。
 国際公開公報2010/041715号パンフレットに記載された方法を用いて、pTrc-FPOX-9から、配列番号35で表わされる塩基配列からなるDNAを含むpTrc-FPOX-15を作製し、これを大腸菌DH5α株に形質転換することにより、配列番号1で表わされるアミノ酸配列を有する糖化ペプチドオキシダーゼFPOX-15発現大腸菌株を作製した。当該菌株を、50mg/L アンピシリンを含有したLB培地 3 mLに植菌し、37℃で終夜振盪培養した。培養液を8,000 rpmで2分間遠心分離することにより、菌体を集めた。得られた菌体から、Promega社製「Wizard Plus SV Minipreps DNA Purification」を使用してFPOX-15発現プラスミドpTrc-FPOX-15を抽出した。
 pTrc-FPOX-15をテンプレートDNAとし、変異の標的とするアミノ酸のコドンを、置換するアミノ酸に対応するコドンに入れ替えたプライマー、及び、東洋紡社製PCR用キットDNA polymerase「KOD-plus」を用いて、当該キットのプロトコルに基づき、以下の試薬組成及びPCR条件の下でPCRを行い、PCR産物(変異を含む発現プラスミド)を得た。なお、PCR反応においては、テンプレートDNA、フォワードプライマー及びリバースプライマーをそれぞれ、反応液中の濃度が1~2 mg/L、0.3μmol/L及び0.3μmol/Lとなる濃度で用いた。
(試薬組成)
・反応バッファー
・テンプレートDNA      1~2 ng/μL
・フォワードプライマー   0.3 μmol/L
・リバースプライマー    0.3 μmol/L
・dNTP 混合液        各0.2 mmol/L
・MgSO4           1 mmol/L
・DNA ポリメラーゼ     0.02 U/μL
・滅菌水添加により、50 μLとした。

(PCR条件)
1. 94℃ 2分
2. 98℃ 15秒
3. 60℃ 30秒
4. 68℃ 6分
5. 2~4の繰り返し(全30サイクル)
6. 68℃ 10分
 PCR産物50 μLにニューイングランドバイオラボ社製「制限酵素Dpn I」1μLを添加し、37℃、1時間インキュベートすることでテンプレートDNAを分解した。当該制限酵素処理したPCR産物をPromega社製「Wizard SV Gel and PCR Clean-Up System」を用いて精製し、一部試料を用いて東洋紡社製の大腸菌コンピテントセル「Competent high DH5α」に形質転換した。50 mg/L アンピシリンを含有したLB寒天培地上に生育したコロニーを選択し、Promega社製「Wizard Plus SV Minipreps DNA Purification」を使用してプラスミドを抽出し、DNAシークエンサーで配列解析することにより、目的としたアミノ酸置換が導入されたクローンを選択した。配列解析には、pTrc99aベクター(4,176-bp、ジーイーヘルスケアバイオサイエンス社製)のマルチクローニングサイト直前、直後の塩基配列を反映した配列番号69、70でそれぞれ表わされる塩基配列からなるDNAを有するプライマー及び、配列番号35で表わされる塩基配列を有するFPOX-15の塩基配列のうち530~548番目の塩基配列である、配列番号71で表わされる塩基配列からなるDNAを有するプライマーを使用した。
 上記の方法により、pTrc-FPOX-15発現プラスミドに、表1に示す各部位特異的アミノ酸置換を導入し、糖化ヘモグロビンオキシダーゼを造成した。No.1~19のそれぞれの部位特異的アミノ酸置換は、併記した配列番号で表わされる塩基配列からなるDNAを有するプライマー対を使用して実施した。
Figure JPOXMLDOC01-appb-T000001
 pTrc-FPOX-15に表1のNo.1~4の部位特異的アミノ酸置換を段階的に導入することにより、配列番号3で表わされるアミノ酸配列を有するFPOX-18Aを発現するプラスミドpTrc-FPOX-18Aを造成した。pTrc-FPOX-18Aには、配列番号37で表わされる、FPOX-18Aをコードする塩基配列からなるDNAが含まれている。pTrc-FPOX-15に表1のNo.1~3及びNo.5の部位特異的アミノ酸置換を段階的に導入することにより、配列番号4で表わされるアミノ酸配列を有するFPOX-18B発現プラスミドpTrc-FPOX-18Bを造成した。pTrc-FPOX-18Bには、配列番号38で表わされる、FPOX-18Bをコードする塩基配列からなるDNAが含まれている。pTrc-FPOX-18Bに表1のNo.6の部位特異的アミノ酸置換を導入することにより、配列番号5で表わされるアミノ酸配列を有するFPOX-18C発現プラスミドpTrc-FPOX-18Cを造成した。pTrc-FPOX-18Cには、配列番号39で表わされる、FPOX-18Cをコードする塩基配列からなるDNAが含まれている。pTrc-FPOX-18Bに表1のNo.7の部位特異的アミノ酸置換を導入することにより、配列番号6で表わされるアミノ酸配列を有するFPOX-18D発現プラスミドpTrc-FPOX-18Dを造成した。pTrc-FPOX-18Dには、配列番号40で表わされる、FPOX-18Dをコードする塩基配列からなるDNAが含まれている。pTrc-FPOX-18Dに表1のNo.8の部位特異的アミノ酸置換を導入することにより、配列番号7で表わされるアミノ酸配列を有するFPOX-19発現プラスミドpTrc-FPOX-19を造成した。pTrc-FPOX-19には、配列番号41で表わされる、FPOX-19をコードする塩基配列からなるDNAが含まれている。pTrc-FPOX-19に表1のNo.9の部位特異的アミノ酸置換を導入することにより、配列番号8で表わされるアミノ酸配列を有するFPOX-20発現プラスミドpTrc-FPOX-20を造成した。pTrc-FPOX-20には、配列番号42で表わされる、FPOX-20をコードする塩基配列からなるDNAが含まれている。
 さらに、pTrc-FPOX-19をテンプレートとし、表2に記載されるように、表1のNo.10~19の部位特異的変異を組み合わせで段階的に導入、蓄積することにより、配列番号9~34で表されるアミノ酸配列をそれぞれ有する変異体FPOX-21~FPOX-46をコードする塩基配列からなるDNAを含む発現プラスミドpTrc-FPOX-21~pTrc-FPOX-46の各プラスミドを造成した。
Figure JPOXMLDOC01-appb-T000002
上記の32種類の糖化ヘモグロビンオキシダーゼ発現プラスミド、すなわち、pTrc-FPOX-18A、pTrc-FPOX-18B、pTrc-FPOX-18C、pTrc-FPOX-18D、及び、pTrc-FPOX-19~pTrc-FPOX-46の各プラスミドを大腸菌DH5α株に導入して形質転換し、形質転換体である各糖化ヘモグロビンオキシダーゼ発現大腸菌株を作製した。
 上記で得られた糖化ヘモグロビンオキシダーゼ発現大腸菌株のうち、FPOX-19、FPOX-20、FPOX-32及びFPOX-42の各蛋白質発現大腸菌株を用い、国際公開第2010/041715号公報記載の糖化ペプチドオキシダーゼの発現、精製方法に従い、糖化ヘモグロビンオキシダーゼを精製し、本発明の糖化ヘモグロビンの測定方法に使用した。
 なお、精製糖化ヘモグロビンオキシダーゼにおける蛋白質濃度を、糖化ヘモグロビンオキシダーゼが有するFADに基づき、以下の方法により決定した。
 先ず、糖化ペプチドオキシダーゼFPOX-CE(キッコーマン社製)を、10 mmol/L リン酸緩衝液(pH7.0)を用いて希釈し、0.7、1.4、2.8、5.6及び11.2 mg/mLの各濃度のFPOX-CE溶液を調製した。調製した各濃度のFPOX-CE溶液について、GEヘルスケア社製分光光度計「Ultrospec 2100 pro」を用いて452 nm(主波長)/600 nm(副波長)での吸光度を測定し、FPOX-CE濃度と吸光度との間の関係を示す検量線を作成した。次いで、試料として、前述のFPOX-CEの代わりに、精製糖化ヘモグロビンオキシダーゼを用いる以外は同様の方法により、精製蛋白質の吸光度を測定した。測定により得られた吸光度を前記の検量線に照らし合わせることにより、精製糖化ヘモグロビンオキシダーゼにおける蛋白質濃度を決定した。
〔実施例2〕本発明の糖化ヘモグロビン測定方法と、HPLC法(KO500法)及びヘモグロビン-SLS法とを用いる糖化ヘモグロビン測定方法との相関性
 酵素として、実施例1で得られたFPOX-19、FPOX-20、FPOX-32及びFPOX-42を用いて、検体として、HPLC法(KO500法)及びヘモグロビン-SLS法によりHbA1c濃度が決定されているヒト血球由来溶血試料を用いて、以下の試薬及び測定手順により各試料に対する吸光度変化を測定した。なお、ヘモグロビン-SLS法によるヘモグロビン濃度の測定においては、ヘモグロビンB-テスト ワコー(和光純薬工業社製)を使用した。
(活性測定用試薬)
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10mmol/L リン酸緩衝液(pH7.0)溶液
D液: ヒト血球由来溶血試料[ヘモグロビン濃度が10 mg/mLで、HPLC法(KO500法)とヘモグロビン-SLS法からHbA1c濃度が9.8、11.1、12.3、13.3、14.5、15.4、17.9、23.3 μmol/Lと値付けされているもの。]
E液: 5 g/L ヨウ素酸カリウム及び50%(v/v)アンヒトール20Nの水溶液
F液: 40mg/mL 糖化ヘモグロビンオキシダーゼ(FPOX-19、FPOX-20、FPOX-32及びFPOX-42の各変異体)の10 mmol/L リン酸緩衝液(pH7.0) 溶液
(測定手順)
(i)D液40 μLにE液4 μLを混合し、37℃にて10分間インキュベートした。
(ii)A液10 mLにB液12.6 μL、C液 35 μLを添加した溶液を、1試料当たり190 μLずつ96穴マイクロプレートの各ウェルに分注した後、D液とE液の混合液40μL、F液20μLを加えて混合し、37℃で60分間反応させた。
 全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。
 HbA1c濃度が既知である2つのヒト血球由来溶血試料(ヘモグロビン濃度が10 mg/mLで、HbA1c濃度がそれぞれ9.82μmol/L、24.2μmol/Lである試料)を用いて同様の測定を行い、HbA1c濃度と反応吸光度変化Δ'Abs(反応)との間の関係を示す検量線を作成した。
 各ヒト血球由来溶血試料に対する反応吸光度Δ'Abs(反応)を前記の検量線に照らし合わせることにより、各ヒト血球由来溶血試料におけるHbA1c濃度を決定した。このようにして決定したHbA1c濃度を、HPLC法(KO500法)及びヘモグロビン-SLS法を用いる対照法により決定されたHbA1c濃度と比較した。
 図1~図4に示すように、本発明の測定方法により決定されたHbA1c濃度と、HPLC法(KO500法)及びヘモグロビン-SLS法を用いる対照法により決定されたHbA1c濃度との間に良好な相関性が認められた。従って、本発明の測定方法により、試料中のHbA1cを測定できることが分かった。
 本発明により、糖尿病等の生活習慣病の診断に有用な糖化ヘモグロビンの測定方法が提供される。
配列番号1-人工配列の説明:FPOX-15のアミノ酸配列
配列番号2-人工配列の説明:FPOX-9のアミノ酸配列
配列番号3-人工配列の説明:FPOX-18Aのアミノ酸配列
配列番号4-人工配列の説明:FPOX-18Bのアミノ酸配列
配列番号5-人工配列の説明:FPOX-18Cのアミノ酸配列
配列番号6-人工配列の説明:FPOX-18Dのアミノ酸配列
配列番号7-人工配列の説明:FPOX-19のアミノ酸配列
配列番号8-人工配列の説明:FPOX-20のアミノ酸配列
配列番号9-人工配列の説明:FPOX-21のアミノ酸配列
配列番号10-人工配列の説明:FPOX-22のアミノ酸配列
配列番号11-人工配列の説明:FPOX-23のアミノ酸配列
配列番号12-人工配列の説明:FPOX-24のアミノ酸配列
配列番号13-人工配列の説明:FPOX-25のアミノ酸配列
配列番号14-人工配列の説明:FPOX-26のアミノ酸配列
配列番号15-人工配列の説明:FPOX-27のアミノ酸配列
配列番号16-人工配列の説明:FPOX-28のアミノ酸配列
配列番号17-人工配列の説明:FPOX-29のアミノ酸配列
配列番号18-人工配列の説明:FPOX-30のアミノ酸配列
配列番号19-人工配列の説明:FPOX-31のアミノ酸配列
配列番号20-人工配列の説明:FPOX-32のアミノ酸配列
配列番号21-人工配列の説明:FPOX-33のアミノ酸配列
配列番号22-人工配列の説明:FPOX-34のアミノ酸配列
配列番号23-人工配列の説明:FPOX-35のアミノ酸配列
配列番号24-人工配列の説明:FPOX-36のアミノ酸配列
配列番号25-人工配列の説明:FPOX-37のアミノ酸配列
配列番号26-人工配列の説明:FPOX-38のアミノ酸配列
配列番号27-人工配列の説明:FPOX-39のアミノ酸配列
配列番号28-人工配列の説明:FPOX-40のアミノ酸配列
配列番号29-人工配列の説明:FPOX-41のアミノ酸配列
配列番号30-人工配列の説明:FPOX-42のアミノ酸配列
配列番号31-人工配列の説明:FPOX-43のアミノ酸配列
配列番号32-人工配列の説明:FPOX-44のアミノ酸配列
配列番号33-人工配列の説明:FPOX-45のアミノ酸配列
配列番号34-人工配列の説明:FPOX-46のアミノ酸配列
配列番号35-人工配列の説明:FPOX-15のDNA
配列番号36-人工配列の説明:FPOX-9のDNA
配列番号37-人工配列の説明:FPOX-18AのDNA
配列番号38-人工配列の説明:FPOX-18BのDNA
配列番号39-人工配列の説明:FPOX-18CのDNA
配列番号40-人工配列の説明:FPOX-18DのDNA
配列番号41-人工配列の説明:FPOX-19のDNA
配列番号42-人工配列の説明:FPOX-20のDNA
配列番号43-人工配列の説明:FPOX-21のDNA
配列番号44-人工配列の説明:FPOX-22のDNA
配列番号45-人工配列の説明:FPOX-23のDNA
配列番号46-人工配列の説明:FPOX-24のDNA
配列番号47-人工配列の説明:FPOX-25のDNA
配列番号48-人工配列の説明:FPOX-26のDNA
配列番号49-人工配列の説明:FPOX-27のDNA
配列番号50-人工配列の説明:FPOX-28のDNA
配列番号51-人工配列の説明:FPOX-29のDNA
配列番号52-人工配列の説明:FPOX-30のDNA
配列番号53-人工配列の説明:FPOX-31のDNA
配列番号54-人工配列の説明:FPOX-32のDNA
配列番号55-人工配列の説明:FPOX-33のDNA
配列番号56-人工配列の説明:FPOX-34のDNA
配列番号57-人工配列の説明:FPOX-35のDNA
配列番号58-人工配列の説明:FPOX-36のDNA
配列番号59-人工配列の説明:FPOX-37のDNA
配列番号60-人工配列の説明:FPOX-38のDNA
配列番号61-人工配列の説明:FPOX-39のDNA
配列番号62-人工配列の説明:FPOX-40のDNA
配列番号63-人工配列の説明:FPOX-41のDNA
配列番号64-人工配列の説明:FPOX-42のDNA
配列番号65-人工配列の説明:FPOX-43のDNA
配列番号66-人工配列の説明:FPOX-44のDNA
配列番号67-人工配列の説明:FPOX-45のDNA
配列番号68-人工配列の説明:FPOX-46のDNA
配列番号69-人工配列の説明:pTrc-F1プライマー
配列番号70-人工配列の説明:pTrc-Rプライマー
配列番号71-人工配列の説明:pTrc-F2プライマー
配列番号72-人工配列の説明:R61S-Fプライマー
配列番号73-人工配列の説明:R61S-Rプライマー
配列番号74-人工配列の説明:R63A-Fプライマー
配列番号75-人工配列の説明:R63A-Rプライマー
配列番号76-人工配列の説明:L62G-Fプライマー
配列番号77-人工配列の説明:L62G-Rプライマー
配列番号78-人工配列の説明:Y71C-Fプライマー
配列番号79-人工配列の説明:Y71C-Rプライマー
配列番号80-人工配列の説明:Y71S-Fプライマー
配列番号81-人工配列の説明:Y71S-Rプライマー
配列番号82-人工配列の説明:D115N-Fプライマー
配列番号83-人工配列の説明:D115N-Rプライマー
配列番号84-人工配列の説明:D115R-Fプライマー
配列番号85-人工配列の説明:D115R-Rプライマー
配列番号86-人工配列の説明:M108K-Fプライマー
配列番号87-人工配列の説明:M108K-Rプライマー
配列番号88-人工配列の説明:L75A-Fプライマー
配列番号89-人工配列の説明:L75A-Rプライマー
配列番号90-人工配列の説明:L75F-Fプライマー
配列番号91-人工配列の説明:L75F-Rプライマー
配列番号92-人工配列の説明:S34T-Fプライマー
配列番号93-人工配列の説明:S34T-Rプライマー
配列番号94-人工配列の説明:Y52H-Fプライマー
配列番号95-人工配列の説明:Y52H-Rプライマー
配列番号96-人工配列の説明:I57V-Fプライマー
配列番号97-人工配列の説明:I57V-Rプライマー
配列番号98-人工配列の説明:P66H-Fプライマー
配列番号99-人工配列の説明:P66H-Rプライマー
配列番号100-人工配列の説明:D95E-Fプライマー
配列番号101-人工配列の説明:D95E-Rプライマー
配列番号102-人工配列の説明:K105R-Fプライマー
配列番号103-人工配列の説明:K105R-R1プライマー
配列番号104-人工配列の説明:K105R-R2プライマー
配列番号105-人工配列の説明:K108R-Fプライマー
配列番号106-人工配列の説明:K108R-Rプライマー
配列番号107-人工配列の説明:A355S-Fプライマー
配列番号108-人工配列の説明:A355S-Rプライマー

Claims (4)

  1.  試料中の糖化ヘモグロビンを直接酸化して、生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
  2.  酵素を用いて糖化ヘモグロビンを直接酸化する、請求項1に記載の測定方法。
  3.  生成された物質が過酸化水素である、請求項1又は2に記載の測定方法。
  4.  糖化ヘモグロビンがヘモグロビンA1cである、請求項1~3のいずれかに記載の測定方法。
PCT/JP2014/068010 2013-07-09 2014-07-07 糖化ヘモグロビンの測定方法 WO2015005257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015526317A JP6623488B2 (ja) 2013-07-09 2014-07-07 糖化ヘモグロビンの測定方法
US14/897,907 US10006923B2 (en) 2013-07-09 2014-07-07 Method for measuring glycated hemoglobin
CN201480039190.6A CN105431545B (zh) 2013-07-09 2014-07-07 糖化血红蛋白的测定方法
EP14823357.0A EP3020825B1 (en) 2013-07-09 2014-07-07 Method for measuring glycated hemoglobin
HK16108867.5A HK1220738A1 (zh) 2013-07-09 2016-07-25 糖化血紅蛋白的測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-143276 2013-07-09
JP2013143276 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015005257A1 true WO2015005257A1 (ja) 2015-01-15

Family

ID=52279939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068010 WO2015005257A1 (ja) 2013-07-09 2014-07-07 糖化ヘモグロビンの測定方法

Country Status (6)

Country Link
US (1) US10006923B2 (ja)
EP (1) EP3020825B1 (ja)
JP (2) JP6623488B2 (ja)
CN (1) CN105431545B (ja)
HK (1) HK1220738A1 (ja)
WO (1) WO2015005257A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
WO2018101389A1 (ja) 2016-11-30 2018-06-07 東洋紡株式会社 ヘモグロビンの糖化率測定方法
WO2018221446A1 (ja) 2017-05-30 2018-12-06 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
EP3461908A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
JP2019062890A (ja) * 2017-10-02 2019-04-25 アークレイ株式会社 糖化蛋白質の測定
JPWO2018021530A1 (ja) * 2016-07-29 2019-05-23 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JP2020502512A (ja) * 2016-12-16 2020-01-23 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 液体アッセイの複数検体の同時測定
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693016B2 (en) 2018-11-29 2023-07-04 Polymer Technology Systems, Inc. Systems and methods for electrochemical point-of-care detection of hemoglobin
CN113075143B (zh) * 2021-03-31 2023-01-03 奥研生物科技(南京)有限公司 一种糖化血红蛋白检测试剂及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333696A (ja) 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2004029613A1 (ja) * 2002-09-26 2004-04-08 Koji Sode 糖化蛋白質測定方法
WO2004038034A1 (ja) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 新規なフルクトシルペプチドオキシダーゼとその利用
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
WO2008108385A1 (ja) 2007-03-05 2008-09-12 Kikkoman Corporation 糖化ヘキサペプチドの測定方法
JP2009544315A (ja) * 2006-07-25 2009-12-17 ジェネラル アトミクス 糖化ヘモグロビンのパーセントを定量するための方法
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372747A (en) * 1981-07-31 1983-02-08 Children's Hospital Medical Center Glycohemoglobin determination
USRE46105E1 (en) 2000-07-14 2016-08-16 Arkray, Inc. Method of selectively determining glycated hemoglobin
US7943385B2 (en) 2006-07-25 2011-05-17 General Atomics Methods for assaying percentage of glycated hemoglobin
JP2008125368A (ja) * 2006-11-16 2008-06-05 Amano Enzyme Inc 新規なジペプチド分解酵素及びその製造方法並びにジペプチド分解酵素を用いる糖化蛋白質等の測定方法及びそれに用いる試薬組成物
US9624522B2 (en) 2009-08-07 2017-04-18 Ohmx Corporation Single, direct detection of hemoglobin A1c percentage using enzyme triggered redox altering chemical elimination (e-trace) immunoassay
KR20130107268A (ko) 2010-08-11 2013-10-01 교와 메덱스 가부시키가이샤 당화 헤모글로빈의 측정 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333696A (ja) 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2004029613A1 (ja) * 2002-09-26 2004-04-08 Koji Sode 糖化蛋白質測定方法
WO2004038034A1 (ja) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 新規なフルクトシルペプチドオキシダーゼとその利用
WO2004038033A1 (ja) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 脱フルクトシル化方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
JP2009544315A (ja) * 2006-07-25 2009-12-17 ジェネラル アトミクス 糖化ヘモグロビンのパーセントを定量するための方法
WO2008108385A1 (ja) 2007-03-05 2008-09-12 Kikkoman Corporation 糖化ヘキサペプチドの測定方法
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
APPL MICROBIOL BIOTECHNOL, vol. 78, no. 5, 2008, pages 775 - 781
CLIN CHEM LAB MED, vol. 36, 1998, pages 299 - 308
DIABETES, vol. 27, no. 2, 1978, pages 102 - 107
J. MOL. BIOL., vol. 215, 1990, pages 403
KARLIN; ALTSHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
METHODS ENZYMOL., vol. 183, 1990, pages 63
NIHON RINSHO KENSA JIDOKA GAKKAI KAISHI, vol. 18, no. 4, 1993, pages 620
See also references of EP3020825A4 *
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 256, 1980, pages 3120 - 3127

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity
EP3447132A4 (en) * 2016-04-22 2019-10-02 Kikkoman Corporation HBA1C DEHYDROGENASE
CN109312312B (zh) * 2016-04-22 2023-06-02 龟甲万株式会社 HbA1c脱氢酶
CN109312312A (zh) * 2016-04-22 2019-02-05 龟甲万株式会社 HbA1c脱氢酶
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent
US11168349B2 (en) 2016-07-29 2021-11-09 Hitachi Chemical Diagnostics Systems Co., Ltd. Method for measuring glycated hemoglobin
JPWO2018021530A1 (ja) * 2016-07-29 2019-05-23 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JP7020413B2 (ja) 2016-07-29 2022-02-16 ミナリスメディカル株式会社 糖化ヘモグロビンの測定方法
WO2018101389A1 (ja) 2016-11-30 2018-06-07 東洋紡株式会社 ヘモグロビンの糖化率測定方法
US11668707B2 (en) 2016-12-16 2023-06-06 Siemens Healthcare Diagnostics Inc. Simultaneous measurement of multiple analytes of a liquid assay
JP2020502512A (ja) * 2016-12-16 2020-01-23 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 液体アッセイの複数検体の同時測定
WO2018221446A1 (ja) 2017-05-30 2018-12-06 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
CN109680036A (zh) * 2017-10-02 2019-04-26 爱科来株式会社 糖化蛋白质的测定
US11313863B2 (en) 2017-10-02 2022-04-26 Arkray, Inc. Measurement of glycoprotein
US10989714B2 (en) 2017-10-02 2021-04-27 Arkray, Inc. Measurement of glycoprotein
JP7226955B2 (ja) 2017-10-02 2023-02-21 アークレイ株式会社 糖化蛋白質の測定
EP3461908A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
JP2019062890A (ja) * 2017-10-02 2019-04-25 アークレイ株式会社 糖化蛋白質の測定

Also Published As

Publication number Publication date
CN105431545B (zh) 2021-06-18
CN105431545A (zh) 2016-03-23
US20160123999A1 (en) 2016-05-05
HK1220738A1 (zh) 2017-05-12
US10006923B2 (en) 2018-06-26
EP3020825A1 (en) 2016-05-18
JP6810874B2 (ja) 2021-01-13
JPWO2015005257A1 (ja) 2017-03-02
EP3020825A4 (en) 2017-01-11
JP6623488B2 (ja) 2019-12-25
JP2020031645A (ja) 2020-03-05
EP3020825B1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6810874B2 (ja) 糖化ヘモグロビンの測定方法
JP4341852B2 (ja) 糖化蛋白質測定用組成物
CN109563534B (zh) 糖化血红蛋白的测定方法
EP3020810B1 (en) Glycated hexapeptide oxidase and use thereof
WO2024051646A1 (zh) 诊断midd的方法和试剂盒
JP7020484B2 (ja) 糖化ヘモグロビンの測定方法
WO2021192466A1 (ja) ヘモグロビンの影響軽減方法、糖化ヘモグロビンの測定方法、糖化ヘモグロビン測定試薬、及び糖化ヘモグロビン測定キット
WO2021192465A1 (ja) 異常ヘモグロビン含有試料中の糖化ヘモグロビンの測定方法
JP4843781B2 (ja) グルコース結合蛋白質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039190.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897907

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014823357

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE