WO2015004931A1 - 非水電解液キット及び非水電解液の調製方法 - Google Patents

非水電解液キット及び非水電解液の調製方法 Download PDF

Info

Publication number
WO2015004931A1
WO2015004931A1 PCT/JP2014/052231 JP2014052231W WO2015004931A1 WO 2015004931 A1 WO2015004931 A1 WO 2015004931A1 JP 2014052231 W JP2014052231 W JP 2014052231W WO 2015004931 A1 WO2015004931 A1 WO 2015004931A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
electrolyte
carbonate
aqueous
kit
Prior art date
Application number
PCT/JP2014/052231
Other languages
English (en)
French (fr)
Inventor
安部 浩司
藤村 整
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to EP14823535.1A priority Critical patent/EP3021414A4/en
Priority to US14/903,885 priority patent/US20160164140A1/en
Publication of WO2015004931A1 publication Critical patent/WO2015004931A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a non-aqueous electrolyte kit and a method for preparing a non-aqueous electrolyte using the non-aqueous electrolyte kit.
  • the lithium secondary battery is mainly composed of a positive electrode containing a material capable of occluding and releasing lithium, a negative electrode, and a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent.
  • Organic solvents such as carbonates, chain carboxylic acid esters, lactones, and ethers are used.
  • Non-aqueous electrolyte is an important material that is indispensable in order to bring out the performance of lithium secondary batteries.
  • such a non-aqueous electrolyte is generally generally prepared by combining a plurality of non-aqueous solvents in an optimal composition. ing.
  • the preparation of such a non-aqueous electrolyte solution needs to be performed under non-aqueous conditions, and therefore needs to be performed under a well-equipped facility environment (see, for example, Patent Document 1).
  • it is necessary to dissolve a lithium salt as an electrolyte in a non-aqueous solvent during the preparation but this involves heat of dissolution of the lithium salt.
  • non-aqueous solvents generally used as non-aqueous solvents for lithium secondary batteries
  • non-aqueous solvents that are solid at room temperature (for example, ethylene carbonate)
  • such non-aqueous solvents that are solid at room temperature.
  • an organic additive or the like is generally added to the non-aqueous electrolyte.
  • the present invention provides a technique capable of preparing a desired nonaqueous electrolyte solution in a short time at any ratio in a short time without being a specialist in nonaqueous electrolyte preparation, and a material therefor. Is an issue.
  • non-aqueous electrolyte solution kit having a plurality of non-aqueous electrolyte solutions having different compositions, thereby providing a predetermined composition included in the non-aqueous electrolyte solution kit.
  • a non-aqueous electrolyte kit comprising a plurality of non-aqueous electrolytes and containers having different compositions
  • the non-aqueous electrolyte kit includes a base non-aqueous electrolyte in which an electrolyte salt is dissolved in at least a cyclic carbonate, a chain ester, and a mixture of a cyclic carbonate and a chain ester, and the base non-aqueous electrolyte.
  • a non-aqueous electrolyte for adjustment having a different composition A non-aqueous electrolyte kit, wherein at least one of the containers is capable of weighing its internal volume.
  • a method for preparing a non-aqueous electrolyte using the non-aqueous electrolyte kit according to (1) A method for preparing a non-aqueous electrolyte, comprising mixing the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte.
  • preparation means production
  • adjustment means an operation for properly adjusting to a certain standard.
  • a non-aqueous electrolyte prepared with a predetermined composition contained in the non-aqueous electrolyte kit of the present invention is one of the configurations of the present invention, even if it is not a specialist in non-aqueous electrolyte preparation.
  • non-aqueous electrolyte kit of the present invention it is possible to remarkably suppress the temperature change during preparation, and thereby, there is no change or composition change of the non-aqueous electrolyte and a non-aqueous solvent that is solid at room temperature.
  • ethylene carbonate having a melting point of 38 ° C. can also be used as a solution by mixing with another non-aqueous solvent.
  • moisture content and acid content of the non-aqueous electrolyte after preparation can be suppressed.
  • a non-aqueous electrolyte solution containing an additive can be prepared by combining a non-aqueous electrolyte solution in which an electrolyte salt different from the main salt and / or an organic additive is dissolved in a non-aqueous solvent.
  • the method for preparing a non-aqueous electrolyte of the present invention can be used to change the solvent composition of the non-aqueous electrolyte by fixing the concentration of the electrolyte salt, to change only the concentration of the electrolyte salt, or both. It is possible to perform the same operation only with a simple operation.
  • the non-aqueous electrolyte kit of the present invention is a non-aqueous electrolyte kit including a plurality of non-aqueous electrolytes and containers having different compositions, and the non-aqueous electrolyte kit includes at least a cyclic carbonate, a chain ester, and a cyclic A base non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent selected from a mixture of a carbonate and a chain ester, and a non-aqueous electrolyte for adjustment having a composition different from that of the base non-aqueous electrolyte.
  • At least one of the containers is a container whose internal volume can be measured.
  • a solution in which at least one additive is further dissolved can be used as the non-aqueous electrolyte for adjustment.
  • Nonaqueous solvent As the non-aqueous solvent used in the non-aqueous electrolyte kit of the present invention, cyclic carbonates, chain esters, or these can be used alone or in admixture of two or more.
  • chain ester is a concept including a chain carbonate and a chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Preferred examples include cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinylethylene carbonate (VEC), and the like. .
  • a cyclic carbonate selected from EC, PC, a cyclic carbonate having a fluorine atom, and a cyclic carbonate having a carbon-carbon double bond is preferable.
  • cyclic carbonate having a fluorine atom FEC or DFEC is preferable.
  • cyclic carbonate having a carbon-carbon double bond VC or VEC is preferable.
  • PC a melting point and the soluble viewpoint of electrolyte salt.
  • asymmetric chain carbonate such as methyl ethyl carbonate (MEC), methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, or ethyl propyl carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl Symmetrical chain carbonates such as carbonate or dibutyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, dimethyl oxalate, ethyl methyl oxalate Or a chain carboxylic acid ester such as diethyl oxalate.
  • DMC or DEC is preferable as the symmetric chain carbonate, and those having a methyl group are preferable as the asymmetric chain carbonate
  • cyclic carbonate and chain ester As a mixture of cyclic carbonate and chain ester, the above-mentioned cyclic carbonate, chain ester, or these can be used individually by 1 type or in mixture of 2 or more types. Preferable combinations of these include DMC and EC, MEC and EC, DEC and EC, DMC and FEC, MEC and FEC, or a combination of DEC and FEC.
  • the mixing ratio of the cyclic carbonate and the chain ester is not particularly limited, but it makes it easier to prepare a desired non-aqueous electrolyte solution, thereby facilitating the handling of the non-aqueous electrolyte kit.
  • the volume ratio is preferably 50:50.
  • the mixing ratio may be defined by the mass ratio of the cyclic carbonate and the chain ester.
  • the mixing ratio is not particularly limited, but similarly, the handling of the nonaqueous electrolyte kit can be facilitated. In view of this, a mass ratio of 50:50 is preferable.
  • electrolyte salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts. That is, inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , or Lithium salt containing a chain-like fluorinated alkyl group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, or (CF 2 ) 3 (SO 2 ) 2 NLi
  • Preferable examples include lithium salts having an acid complex as an anion.
  • LiPF 6 LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 is preferable, and LiPF 6 and at least one selected from LiBF 4 are more preferable.
  • the lower limit of the concentration when the electrolyte salt is used by being dissolved in a nonaqueous electrolytic solution is preferably 0.3M or more, more preferably 0.5M or more, and further preferably 0.8M or more.
  • the upper limit changes with kinds of electrolyte salt and the combination of a nonaqueous solvent, it can be used until the density
  • the upper limit is preferably 4M or less, more preferably 3M or less, and even more preferably 2M or less.
  • an additive may be further added to the non-aqueous electrolyte.
  • the non-aqueous electrolyte kit of the present invention may include a non-aqueous electrolyte obtained by dissolving a conventionally known additive in a non-aqueous solvent as a non-aqueous electrolyte for adjustment.
  • the nonaqueous electrolyte kit of the present invention includes a base non-aqueous electrolyte and an adjustment non-aqueous electrolyte.
  • the base non-aqueous electrolyte in the present application is a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent selected from a cyclic carbonate, a chain ester, and a mixture of a cyclic carbonate and a chain ester.
  • the adjusting nonaqueous electrolytic solution is at least one nonaqueous electrolytic solution having a composition different from that of the base nonaqueous electrolytic solution.
  • any non-aqueous solvent containing any of cyclic carbonate, chain ester, and a mixture of cyclic carbonate and chain ester may be used.
  • the non-aqueous solvent one containing propylene carbonate alone or one containing a mixture of cyclic carbonate and chain ester is preferable.
  • the mixture of cyclic carbonate and chain ester what contains cyclic carbonate and chain ester 1 type each is especially preferable.
  • the base non-aqueous electrolyte contains an electrolyte salt in addition to the non-aqueous solvent, and examples of the electrolyte salt include the lithium salts described above.
  • the non-aqueous electrolyte kit of the present invention may be provided with at least one type of base non-aqueous electrolyte, but has a plurality of types of base non-aqueous electrolyte from the viewpoint of supporting a wide range of compositions. It is preferable.
  • the non-aqueous electrolyte for adjustment may be at least one non-aqueous electrolyte having a composition different from that of the above-described base non-aqueous electrolyte, and is not particularly limited, but contains a non-aqueous solvent and an electrolyte salt. Those that do are preferred.
  • the non-aqueous solvent may be anything as long as it has a composition different from that of the above-described base non-aqueous electrolyte, but one or more of the same non-aqueous solvents as those of the above-described base non-aqueous electrolyte are used. be able to.
  • the adjustment non-aqueous electrolyte contains only one kind of chain ester similar to the chain ester contained in the above-described base non-aqueous electrolyte, and the base non-aqueous electrolyte contains the same. Those obtained by dissolving the same electrolyte salt at the same electrolyte salt concentration are preferred.
  • the non-aqueous electrolyte kit of the present invention includes a plurality of types of base non-aqueous electrolytes, the adjustment non-aqueous electrolyte corresponding to each base non-aqueous electrolyte is used. It is preferable to provide.
  • a nonaqueous electrolytic solution having a desired composition can be more easily prepared.
  • a 1.0 M LiPF 6 DMC electrolyte solution is prepared, and a non-aqueous electrolyte solution is prepared using the 1.0 M LiPF 6 DMC electrolyte solution.
  • the ratio of EC to DMC is calculated based on the volume of the EC. The ratio can be arbitrarily adjusted within a range of less than 50%.
  • nonaqueous electrolytic solution for adjustment examples include, for example, a 1.0 M LiPF 6 DMC electrolytic solution, a 1.0 M LiPF 6 MEC electrolytic solution, or a 1.0 M LiPF 6 DEC electrolytic solution.
  • the water content of the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte constituting the electrolyte kit of the present invention is preferably 50 ppm or less, preferably 30 ppm or less, more preferably 20 ppm or less, particularly preferably 10 ppm or less. It is.
  • the rise in acid content after 24 hours of preparation of the electrolytic solution is 15 ppm or less, preferably 10 ppm or less, more preferably 7 ppm or less, and particularly preferably 5 ppm or less.
  • the water content of the non-aqueous electrolyte can be measured with a Karl Fischer moisture measuring device.
  • the acid content of the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte constituting the electrolyte kit of the present invention is preferably 20 ppm or less, more preferably 15 ppm or less, and even more preferably 10 ppm or less in terms of hydrogen fluoride (HF). Especially preferably, it is 5 ppm or less.
  • the increase in acid content after 24 hours of preparation of the electrolytic solution is 10 ppm or less, preferably 7 ppm or less, more preferably 5 ppm or less, and particularly preferably 3 ppm or less.
  • the acid content of the non-aqueous electrolyte can be measured using, for example, an automatic titration apparatus (trade name: TS, manufactured by Hiranuma Sangyo Co., Ltd.) using a 0.01N-NaOH aqueous solution as a titration solution and bromothymol blue (BTB) solution as an indicator. -980), and the value obtained by converting the measured value to HF can be used as the acid content.
  • an automatic titration apparatus (trade name: TS, manufactured by Hiranuma Sangyo Co., Ltd.) using a 0.01N-NaOH aqueous solution as a titration solution and bromothymol blue (BTB) solution as an indicator. -980)
  • BTB bromothymol blue
  • APHA of the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte constituting the electrolyte kit of the present invention is preferably 100 or less, more preferably 50 or less, still more preferably 30 or less, and most preferably less than 10. is there.
  • the increase in Hazen unit color number (APHA) after 24 hours of preparation of the non-aqueous electrolyte is 30 or less, preferably 20 or less, more preferably 10 or less, and most preferably 5 or less.
  • APHA Hazen unit color number of non-aqueous electrolyte
  • the capacities of the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte constituting the electrolyte kit of the present invention are not particularly limited, but are preferably 10 to 200,000 mL, and preferably 20 to 30,000 mL from the viewpoint of handleability. Is more preferable, 50 to 1,000 mL is more preferable, and 100 to 500 mL is particularly preferable.
  • the body diameter of the container is not particularly limited, but is preferably 50 to 150 mm, and more preferably 60 to 100 mm from the viewpoint of handleability.
  • At least one of the containers constituting the electrolytic solution kit of the present invention is preferably a container described in the following (a) to (c) and capable of weighing the inner volume.
  • B A container in which the non-aqueous electrolyte for adjustment is stored.
  • C A container for preparing the base nonaqueous electrolytic solution and the adjusting nonaqueous electrolytic solution.
  • the ability to weigh the internal capacity is not particularly limited as long as the internal capacity can be weighed.
  • at least of the volume and mass of the non-aqueous electrolyte contained in the container It can be set as the aspect which one side can weigh.
  • a container capable of measuring the internal capacity can be visualized, so that the capacity of the non-aqueous electrolyte can be measured visually.
  • the container capable of visualizing such internal volume is preferably made of a transparent or semi-transparent material as a whole or part of the container.
  • Preferred examples of the material for the container include a resin selected from polyethylene, polypropylene, Teflon (registered trademark), PTFE, and the like. Of the above, polypropylene is preferable because of its excellent durability and practicality.
  • the container capable of measuring the internal volume has a scale in addition to that the internal volume can be visualized. Can be more easily weighed.
  • a scale attached to the container for example, a scale indicating a volume corresponding to the internal volume can be used, or a scale indicating a mass corresponding to the internal volume can be used. it can.
  • a single container may be provided with a plurality of types of scales, for example, a scale indicating a volume corresponding to the internal volume and a scale indicating a mass corresponding to the internal volume.
  • the specific gravity may vary, so depending on the type of non-aqueous electrolyte, a plurality of scales indicating the mass according to the internal capacity are attached. Also good.
  • a non-aqueous electrolyte solution having a desired composition can be prepared by simply adjusting the amount of reference without requiring a weighing operation, and the preparation time can be greatly shortened.
  • the scale of the container is used, for example, by displaying irregularities or colored lines on the outside or inside of the container side.
  • the scale is a scale in which the volume is accurately divided, and is preferably divided into 5 to 10 parts, and an auxiliary scale (also referred to as a secondary scale) obtained by dividing one scale into a plurality of parts is preferably attached.
  • an auxiliary scale also referred to as a secondary scale obtained by dividing one scale into a plurality of parts is preferably attached.
  • the capacity of the container constituting the electrolyte kit of the present invention is preferably 10 to 200,000 mL, more preferably 20 to 30,000 mL, further preferably 50 to 1,000 mL, from the viewpoint of handleability. 500 mL is particularly preferred.
  • the above-mentioned “(c) container for preparing the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte” is an electrolyte on a lab scale.
  • the volume is preferably 5000 to 5 mL, more preferably 1000 to 10 mL, and even more preferably 500 to 50 mL.
  • the container capable of measuring the internal volume may be provided with mass detection means such as a mass sensor, and the mass may be measured by the mass detection means.
  • the container whose inner volume can be weighed can be separated into two or more regions by partition walls, and the position or number of the partition walls is appropriately changed according to the desired volume ratio or mass ratio. Then, the non-aqueous electrolyte solution may be weighed using the region separated by the partition walls, and then mixed by removing the partition walls.
  • a container capable of weighing the internal volume it has a plurality of inlets with different opening areas and a plurality of inlet slits with different slit widths. Depending on the desired volume ratio or mass ratio, these inlets and The non-aqueous electrolyte solution may be weighed by using the input slit.
  • the adjustment of the non-aqueous electrolyte by mixing the base non-aqueous electrolyte and the adjusting non-aqueous electrolyte can be performed at a rate of 1,000 mL per second, preferably 500 mL per second, preferably 100 mL per second. More preferably it is performed. Mixing at a speed below the above is effective because there is no increase in the temperature of the non-aqueous electrolyte, there is no risk of decomposition of components due to temperature increase, and evaporation of the chain ester.
  • the non-aqueous electrolyte kit of the present invention may contain an additive-containing non-aqueous electrolyte solution obtained by dissolving an additive and an electrolyte salt used as necessary in a non-aqueous solvent,
  • an additive-containing non-aqueous electrolyte 5.0% by mass VC-containing 1.0M LiPF 6 DMC electrolyte, 5.0% by mass VC-containing 1.0M LiPF 6 MEC solution, 5.0% by mass VC contained 1.0M LiPF 6 DEC electrolyte, 5.0% PS containing 1.0M LiPF 6 DMC electrolyte, 5.0% PS containing 1.0M LiPF 6 MEC electrolyte, 5.0% PS containing 1. Examples include 0M LiPF 6 DEC electrolyte.
  • non-aqueous electrolyte kit of the present invention an aspect consisting of a basic 7-point kit, or a basic 7-point kit, an FEC option kit, an additive VC option kit, and an additive PS Examples include an embodiment including at least one option kit selected from option kits.
  • 1.0 M LiPF 6 EC / DMC 50/50 (volume ratio) electrolytic solution
  • 1.0 M LiPF 6 EC / MEC 50/50 (volume ratio) electrolytic solution
  • the MEC electrolytic solution and 1.0M LiPF 6 DEC electrolytic solution constitute a non-aqueous electrolytic solution for adjustment.
  • non-aqueous electrolyte prepared by the non-aqueous electrolyte kit of the present invention is further used as a base non-aqueous electrolyte or a non-aqueous electrolyte for adjustment, and used for preparing an electrolyte having a more complicated composition. Can do.
  • the non-aqueous electrolyte solution containing no EC is mixed in a desired volume ratio in the basic 7-point kit.
  • it can be prepared by mixing the EC-containing non-aqueous electrolyte and the EC-free non-aqueous electrolyte in a volume ratio so as to obtain the target composition after preparation.
  • the FEC-containing non-aqueous electrolyte selected from the FEC option kit and the non-aqueous electrolyte contained in the basic 7-point kit will be the target composition after preparation. It can be prepared by mixing at a volume ratio.
  • the additive-containing non-aqueous electrolyte selected from the additive VC option kit and additive PS option kit and the non-aqueous contained in the basic seven-point kit It can be prepared by mixing the electrolytic solution in a volume ratio so that the target composition is obtained after preparation.
  • the method for preparing the desired non-aqueous electrolyte is only to mix the electrolyte contained in the non-aqueous electrolyte kit using a container whose internal volume can be weighed,
  • the operation is very simple. Weighing and mixing must be carried out in a non-aqueous environment, but can be prepared with simple equipment such as a nitrogen glove box, vacuum line and Schlenk tube.
  • the electrolyte salt is already dissolved in each non-aqueous electrolyte solution constituting the non-aqueous electrolyte solution kit, and there is almost no heat generation when mixing the non-aqueous electrolyte solutions included in the non-aqueous electrolyte kit.
  • EC which is solid at room temperature is already in solution, handling is very easy.
  • the non-aqueous electrolyte prepared using the non-aqueous electrolyte kit of the present invention uses a lithium battery (lithium primary battery and lithium secondary battery), an electric double layer capacitor (electric double layer capacity between the electrolyte and electrode interface) Energy storage device), energy storage device using electrode doping / de-doping reaction, lithium ion capacitor (using lithium ion intercalation into carbon material such as graphite as negative electrode)
  • a lithium battery lithium primary battery and lithium secondary battery
  • an electric double layer capacitor electric double layer capacity between the electrolyte and electrode interface
  • Energy storage device energy storage device using electrode doping / de-doping reaction
  • lithium ion capacitor using lithium ion intercalation into carbon material such as graphite as negative electrode
  • it can be used as a nonaqueous electrolytic solution for an electricity storage device such as an electricity storage device for storing energy.
  • the 1st electrical storage device namely, for lithium batteries
  • a non-aqueous solvent containing propylene carbonate alone or a mixture containing a cyclic carbonate and a chain ester is also prepared.
  • the preferred non-aqueous electrolyte include those containing only one type of chain ester similar to the chain ester contained in the base non-aqueous electrolyte, but are particularly limited to such embodiments.
  • the electrolytic solution exemplified as the base nonaqueous electrolytic solution may be used as the adjusting nonaqueous electrolytic solution, or the electrolytic solution exemplified as the adjusting nonaqueous electrolytic solution may be used as the base nonaqueous electrolytic solution. It may be used as a water electrolyte.
  • the present invention is not limited to these examples.
  • 100 mL of the nonaqueous electrolyte solution having the target composition is prepared for convenience, but the amount may be increased or decreased depending on the desired amount of the nonaqueous electrolyte solution having the target composition.
  • the basic 7-point kit used in this experiment uses a 100 mL scale, and the water content of the non-aqueous electrolyte of the basic 7-point kit is 5 ppm, the acid content is 9 ppm, and the APHA is less than 10.
  • 1.0M LiPF 6 EC / MEC 30/70 (volume ratio) electrolyte solution
  • there are 10 equal scales (1 scale is 10 mL) and sub-scales (5 mL).
  • Lightly shaken to prepare 100 mL of 1.0 M LiPF 6 EC / MEC 30/70 (volume ratio) electrolyte.
  • the time required for the preparation was 10 minutes, and no temperature change of the electrolytic solution was observed before and after the preparation.
  • Table 1 shows the water content, acid content, and APHA of the nonaqueous electrolytic solution after 24 hours of preparation.
  • G-1 solution 1.0M LiPF 6 DEC electrolyte
  • Example 3 When adding solvent species (cyclic carbonate)]
  • Table 1 shows the water content, acid content, and APHA of the nonaqueous electrolytic solution
  • 10 scales (1 scale is 10 mL) and subscales (5 mL) are between each scale.
  • the B-7 solution 3 scale (30 mL)
  • B-2 solution 3 scale (of the 7 basic kits made of the non-aqueous electrolyte and the following salt concentration adjustment kit) 30 mL
  • F-2 solution 2 scale (20 mL
  • the time required for the preparation was 20 minutes, and no temperature change of the electrolytic solution was observed before and after the preparation.
  • the water content of the non-aqueous electrolyte before preparation was 5 ppm, the acid content was 10 ppm, and APHA was less than 10.
  • Table 1 shows the water content, acid content, and APHA of the non-aqueous electrolyte after 24 hours of preparation.
  • Salt concentration adjustment option kit This is an optional kit for the basic 7-point kit.
  • A-2 solution: 2.0M LiPF 6 EC / DMC 50/50 (volume ratio) electrolyte
  • B-2 solution: 2.0M LiPF 6 EC / MEC 50/50 (volume ratio) electrolyte
  • C-2 solution: 2.0M LiPF 6 EC / DEC 50/50 (volume ratio) electrolyte
  • Examples 5 to 13 In order to prepare the predetermined electrolytes shown in Table 1 using the basic seven-point kit comprising the above non-aqueous electrolyte, each was mixed in a nitrogen box using the same preparation container as in Examples 1 to 3, Nonaqueous electrolytes having the compositions shown in Table 1 were prepared. The time required for the preparation was 10 minutes in the case of using 2 liquids (Examples 5 and 7) as in Example 1, and 15 minutes in the case of using 3 liquids (Examples 6 and 8 to 10). When 4 liquids were used (Examples 11 to 13), it was 20 minutes. Moreover, in any example, the temperature change of electrolyte solution was not observed before and after preparation. In addition, Table 1 shows the water content, acid content, and APHA of the nonaqueous electrolytic solution after 24 hours of preparation.
  • Table 2 shows the moisture, acid content, and APHA of the non-aqueous electrolyte after 24 hours of preparation.
  • Examples 15 to 17 Among the basic 7-point kits and FEC option kits made of the above non-aqueous electrolytes, the prescribed electrolytes shown in Table 2 were used and mixed in the nitrogen box using the same preparation containers as in Examples I to III. A non-aqueous electrolyte solution having the composition shown in Table 2 was prepared. The time required for the preparation was 15 minutes when 3 liquids were used (Example 14), and 20 minutes when 4 liquids were used (Examples 15 and 16). Moreover, in any example, the temperature change of electrolyte solution was not observed before and after preparation. In addition, Table 2 shows the moisture, acid content, and APHA of the non-aqueous electrolyte after 24 hours of preparation.
  • the water content of the prepared non-aqueous electrolyte was 5 ppm, the acid content was 11 ppm, and the APHA was less than 10.
  • Liquid K 1.0M LiPF 6 DMC electrolyte containing 5.0% by weight VC
  • Liquid L 1.0M LiPF 6 MEC electrolyte containing 5.0% by weight
  • VC Liquid M 1.0M LiPF containing 5.0% by weight VC 6 DEC electrolyte
  • the measurement is added by heating to a temperature higher than the melting point. Therefore, it can be understood that the handling becomes complicated due to a further increase in the solution temperature. Further, when the temperature of the non-aqueous electrolyte rises during the preparation, the non-aqueous solvent having a high vapor pressure is evaporated and the final composition is highly likely to deviate from the desired composition. On the other hand, by using the non-aqueous electrolyte kit of the present invention, it is possible to prevent the occurrence of such problems, and it is possible to easily prepare a desired non-aqueous electrolyte in a short time. It becomes possible.
  • each non-aqueous electrolyte constituting the non-aqueous electrolyte kit a non-aqueous electrolyte having the same type of electrolyte salt was used, but each non-aqueous electrolyte constituting the non-aqueous electrolyte kit was used.
  • liquids containing different types of electrolyte salts or liquids having different concentrations of electrolyte salts were used.
  • the non-aqueous electrolyte kit of the present invention can easily and quickly prepare a non-aqueous electrolyte used for an electricity storage device such as a lithium secondary battery, a lithium secondary battery, etc. It is extremely useful for research and development applications aimed at improving the performance of energy storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

 組成の異なる複数の非水電解液と容器を備えた非水電解液キットであって、該非水電解液キットは、少なくとも環状カーボネート、鎖状エステル、並びに環状カーボネートと鎖状エステルの混合物から選ばれる非水溶媒に電解質塩を溶解したベース非水電解液と、該ベース非水電解液と組成の異なる調整用非水電解液とを含み、前記容器の少なくとも1つは内容量を秤量可能となっていることを特徴とする非水電解液キットを提供する。

Description

非水電解液キット及び非水電解液の調製方法
 本発明は、非水電解液キット及び該非水電解液キットを用いた非水電解液の調製方法に関する。
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等電子機器の電源、電気自動車の電源用や電力貯蔵用として広く使用されている。
 リチウム二次電池は、主にリチウムを吸蔵及び放出可能な材料を含む正極、負極及びリチウム塩と非水溶媒とからなる非水電解液から構成され、非水溶媒としては、環状カーボネート、鎖状カーボネート、鎖状カルボン酸エステル、ラクトン、エーテル等の有機溶媒が使用されている。非水電解液はリチウム二次電池の性能を引き出すために欠くことのできない重要素材である。
 このような非水電解液は、リチウム二次電池の使用用途や必要となる性能を満たすために、通常、複数の非水溶媒を適宜組み合わせて最適な組成に調製することが一般的に実施されている。しかしながら、このような非水電解液の調製は、非水条件下で実施する必要があり、そのため、整った設備環境の下で実施する必要があった(たとえば、特許文献1参照)。
 たとえば、非水電解液を調製する際には、調製の際に電解質としてリチウム塩を非水溶媒に溶解する必要があるが、リチウム塩の溶解熱を伴うこととなる。そして、このような発熱による非水電解液の変質・組成変化を抑制し、さらなる安全性を確保するためには、非水電解液を調製する際には、非水条件下で、かつ、非水電解液を冷却しながら、調製を行う必要がある。さらに、一般にリチウム二次電池用の非水溶媒として用いられる非水溶媒の中には、常温で固体の非水溶媒(たとえば、エチレンカーボネート等)もあり、このような常温で固体の非水溶媒を用いる場合には、それらを一旦融点以上に温めてから使用する必要がある。加えて、非水電解液には、電池性能を改善するために、有機添加剤などを添加することも一般的に行われている。すなわち、非水電解液の調製には数多くの工程を、非水条件下で行う必要があり、さらには、温度変化なども伴うものであるため、非水電解液調製の専門家でない者にとって、非水電解液を所望の組成で調製することは著しく困難であった。
 また、従来の非水電解液の調製方法(電解液に溶媒を追加して電解液組成を変更する方法)では、電解質塩の濃度のみを調製することは可能であっても、電解質塩の濃度を変更しないで溶媒組成のみを変更するのが簡便ではなかった。
特開2005-108531号公報
 これに対し、近年、リチウム二次電池の研究開発は、大学や公的研究機関、及び多くの企業(電池メーカー、化学メーカーのみならず、機械系メーカー、電池メーカー以外の電機系メーカー、住宅メーカー等)で幅広く実施されている。
 このような状況下、リチウム二次電池において、化学分野の専門知識や高度な設備・技術を必要としない電解液の調製手法が渇望されている。本発明は、非水電解液調製の専門家でなくとも簡便に、しかも、どのような割合でも短時間で所望の非水電解液を調製することができる手法とその為の材料を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、組成の異なる複数の非水電解液を有する非水電解液キットを提供することにより、該非水電解液キットに含まれる所定組成で調製済みの非水電解液を適宜秤量(非水電解液の体積または質量)して、混合するだけで、非水電解液調製の専門家でなくとも簡便に、しかも、どのような割合でも短時間で所望の非水電解液を調製することができると着想し、本発明を完成させるに至った。
 すなわち、本発明は、下記の(1)及び(2)を提供するものである。
(1)組成の異なる複数の非水電解液と容器を備えた非水電解液キットであって、
 該非水電解液キットは、少なくとも環状カーボネート、鎖状エステル、並びに環状カーボネートと鎖状エステルの混合物から選ばれる非水溶媒に電解質塩を溶解したベース非水電解液と、該ベース非水電解液と組成の異なる調整用非水電解液とを含み、
 前記容器のうち少なくとも1つが、内容量を秤量可能となっていることを特徴とする非水電解液キット。
(2)前記(1)に記載の非水電解液キットを用いて非水電解液を調製する方法であって、
 前記ベース非水電解液及び前記調整用非水電解液を混合することを特徴とする非水電解液の調製方法。
 本明細書において、「調製」とは製造を意味し、「調整」とはある基準に合わせて正しく整えるための操作を意味する。
 本発明によれば、非水電解液調製の専門家でなくとも、本発明の非水電解液キットに含まれる所定組成で調製済みの非水電解液を、本願発明の構成の一つである容器のうちの、少なくとも一つの内容量を秤量可能となっている容器を用い、適宜、非水電解液を秤量(非水電解液の体積または質量)して、混合するだけで、簡便にしかも、どのような割合でも短時間で所望の非水電解液を秤量誤差が極めて少なく、調製することができる。また、本発明の非水電解液キットを用いることにより、調製時の温度変化を著しく抑えることができ、これにより、非水電解液の変質・組成変化がなく、常温で固体である非水溶媒(たとえば、融点38℃のエチレンカーボネートなど)も他の非水溶媒と混合して溶液化したものを使用できる。また、調製後の非水電解液の水分および酸分の上昇や着色を抑えることができる。さらに非水溶媒に主塩と異なる電解質塩及び/または有機添加剤を溶解した非水電解液を組み合わせることで、添加剤を含む非水電解液を調製することも可能になる。
 また、本願発明の非水電解液の調製方法は、電解質塩の濃度を固定して非水電解液の溶媒組成の変更することも、電解質塩の濃度のみを変更することも、さらにはその両方を同じに行うことも簡便な操作のみで行うことが可能である。
 本発明の非水電解液キットは、組成の異なる複数の非水電解液および容器を備えた非水電解液キットであって、該非水電解液キットは、少なくとも環状カーボネート、鎖状エステル、並びに環状カーボネートと鎖状エステルとの混合物から選ばれる非水溶媒に電解質塩を溶解したベース非水電解液、ベース非水電解液と組成の異ななる調整用非水電解液を含み、前記容器のうち、少なくとも一つは内容量を秤量可能となっている容器であることを特徴とする。
 また、本発明においては、前記調整用非水電解液として、さらに添加剤を少なくとも1種以上溶解させたものを用いることもできる。
 まず、本発明の非水電解液キットを構成する各成分について説明する。
〔非水溶媒〕
 本発明の非水電解液キットに使用される非水溶媒としては、環状カーボネート、鎖状エステル、または、これらを1種単独で又は2種以上を混合して使用することができる。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念である。
〔環状カーボネート〕
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、またはビニルエチレンカーボネート(VEC)等が好適に挙げられる。
 これらの中でも、EC、PC、フッ素原子を有する環状カーボネート、及び炭素-炭素二重結合を有する環状カーボネートから選ばれる環状カーボネートが好ましく、フッ素原子を有する環状カーボネートとしては、FEC、またはDFECが好ましく、炭素-炭素二重結合を有する環状カーボネートとしては、VC、またはVECが好ましい。また、本発明の非水電解液キットを構成する非水溶媒として、環状カーボネートを1種単独で使用する場合には、融点及び電解質塩の溶解性の観点より、PCを用いることが望ましい。
〔鎖状エステル〕
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、またはエチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、またはジブチルカーボネート等の対称鎖状カーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ピバリン酸メチル、ピバリン酸ブチル、ピバリン酸ヘキシル、ピバリン酸オクチル、シュウ酸ジメチル、シュウ酸エチルメチル、またはシュウ酸ジエチル等の鎖状カルボン酸エステルが挙げられる。
 これらの中でも対称鎖状カーボネートしてはDMC、またはDECが好ましく、非対称鎖状カーボネートとしては、メチル基を有するものが好ましく、MECがより好ましい。
〔環状カーボネート及び鎖状エステルの混合物〕
 環状カーボネート及び鎖状エステルの混合物としては、前述の環状カーボネート、鎖状エステル、または、これらを1種単独で又は2種以上を混合して使用することができる。これらの好適な組み合わせとしてはDMCとEC、MECとEC、DECとEC、DMCとFEC、MECとFEC、またはDECとFEC等の組み合わせが好適に挙げられる。これらの環状カーボネートと鎖状エステルの混合割合は特に制限はないが、所望の非水電解液の調製を容易にし、これにより、非水電解液キットの取扱いを容易にすることができるという点より、体積比で50:50が好ましい。なお、混合割合は環状カーボネートと鎖状エステルの質量比で規定してもよく、この場合も混合割合は特に制限はないが、同様に、非水電解液キットの取扱いを容易にすることができるという点より、質量比で50:50が好ましい。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 すなわち、LiPF、LiPO、LiPOF、LiBF、LiClO等の無機リチウム塩、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、またはLiPF(iso-C7)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、または(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウムやジフルオロ[オキサレート-O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられる。これらの中でも、LiPF、LiPO、LiPOF、LiBF、LiN(SOCF及びLiN(SOから選ばれる少なくとも1種が好ましく、LiPF、及びLiBFから選ばれる少なくとも1種がより好ましい。
 電解質塩が非水電解液中に溶解されて使用される場合の濃度の下限は、0.3M以上が好ましく、0.5M以上がより好ましく、0.8M以上がさらに好ましい。また、その上限は、電解質塩の種類及び非水溶媒の組合せにより異なるが、非水溶媒に対し電解質塩の濃度が飽和に達するまで使用することができる。その上限は4M以下が好ましく、3M以下がより好ましく、2M以下がさらに好ましい。
〔添加剤〕
 また、本発明の非水電解液キットを用いて得られる電池の電気化学特性を改善させる目的で、非水電解液中に、さらに添加剤を加えることがあるが、このような目的のために、本発明の非水電解液キットには、調整用非水電解液として、非水溶媒に、従来知られている添加剤を溶解した非水電解液を含めてもよい。
〔非水電解液キット〕
 次いで、本発明の非水電解液キットについて詳細に説明する。
 上述したように、本発明の非水電解液キットは、ベース非水電解液と、調整用非水電解液とを備えるものである。本願におけるベース非水電解液とは、環状カーボネート、鎖状エステル、及び、環状カーボネートと鎖状エステルとの混合物から選ばれる非水溶媒に電解質塩を溶解した非水電解液である。一方、調整用非水電解液とは、ベース非水電解液と組成の異なる少なくとも1種の非水電解液である。
 ベース非水電解液としては、非水溶媒として、環状カーボネート、鎖状エステル、及び、環状カーボネートと鎖状エステルとの混合物のいずれかを含有するものであればよいが、非水電解液キットの取扱いを容易にすることができるという点より、非水溶媒として、プロピレンカーボネートを単独で含有するもの、または、環状カーボネートと鎖状エステルとの混合物を含有するものが好ましい。また、環状カーボネートと鎖状エステルとの混合物を含有するものとしては、環状カーボネートと、鎖状エステルとを1種類ずつ含有するものが特に好ましい。
 また、ベース非水電解液は、非水溶媒に加えて、電解質塩をも含有するものであり、電解質塩としては、上述したリチウム塩が挙げられる。
 ベース非水電解液の具体的な態様としては、たとえば、1.0M LiPF EC/DMC=50/50(体積比)電解液、1.0M LiPF EC/MEC=50/50(体積比)電解液、1.0M LiPF EC/DEC=50/50(体積比)電解液、1.0M LiPF FEC/DMC=50/50(体積比)電解液、1.0M LiPF FEC/MEC=50/50(体積比)電解液、1.0M LiPF FEC/DEC=50/50(体積比)電解液、または1.0M LiPF PC電解液などが好適に挙げられる。
 なお、本発明の非水電解液キットは、ベース非水電解液を少なくとも1種類備えるものであればよいが、幅広い組成に対応するという観点より、ベース非水電解液を複数種類備えるものであることが好ましい。
 また、調整用非水電解液としては、上述したベース非水電解液と組成の異なる少なくとも1種の非水電解液であればよく、特に限定されないが、非水溶媒と、電解質塩とを含有するものが好ましい。非水溶媒としては、上述したベース非水電解液と異なる組成を有するものであれば何でもよいが、上述したベース非水電解液と同様の非水溶媒を1種または2種以上混合して用いることができる。特に、本発明においては、調整用非水電解液としては、上述したベース非水電解液に含まれる鎖状エステルと同様の鎖状エステルを1種のみ含有し、これに、ベース非水電解液と同様の電解質塩濃度にて、同様の電解質塩を溶解してなるものが好ましい。また、この場合において、本発明の非水電解液キットが、複数種類のベース非水電解液を備えるものである場合には、それぞれのベース非水電解液に対応した調整用非水電解液を備えるものとすることが好ましい。特に、調整用非水電解液として、このような非水電解液を用いることにより、所望の組成を有する非水電解液をより簡便に調製することができる。一例を挙げると、本発明の非水電解液キットを、ベース非水電解液として、1.0M LiPF EC/DMC=50/50(体積比)電解液を、調整用非水電解液として、1.0M LiPF DMC電解液を備えるものとし、これを用いて非水電解液を調製することで、1.0M LiPF EC/DMC電解液において、ECとDMCとの割合を、ECの体積比50%未満の範囲で、任意に調整することができる。
 調整用非水電解液の具体的な態様としては、たとえば、1.0M LiPF DMC電解液、1.0M LiPF MEC電解液、または1.0M LiPF DEC電解液などが好適に挙げられる。
(非水電解液の水分)
 本発明の電解液キットを構成するベース非水電解液及び調整用非水電解液の水分含有量は、50ppm以下が好適であり、好ましくは30ppm以下、より好ましくは20ppm以下、特に好ましくは10ppm以下である。
 前記電解液の調製24時間経過後の酸分の上昇は、15ppm以下であり、好ましくは10ppm以下、更に好ましくは7ppm以下、特に好ましくは5ppm以下である。
 なお、非水電解液の水分はカールフィシャー水分測定装置で測定できる。
(非水電解液の酸分)
 本発明の電解液キットを構成するベース非水電解液及び調整用非水電解液の酸分は、フッ化水素(HF)換算で好ましくは20ppm以下、より好ましくは15ppm以下、更に好ましくは10ppm以下、特に好ましくは5ppm以下である。
 前記電解液の調製24時間経過後の酸分の上昇は、10ppm以下であり、好ましくは7ppm以下、更に好ましくは5ppm以下、特に好ましくは3ppm以下である。
 なお、非水電解液の酸分の測定は、0.01N-NaOH水溶液を滴定溶液、ブロモチモールブルー(BTB)液を指示薬とし、例えば、平沼産業株式会社製の自動滴定装置(商品名:TS-980)を用いて測定し、測定値をHF換算した値を酸分とすることができる。
(非水電解液のハーゼン単位色数(APHA))
 本発明の電解液キットを構成するベース非水電解液及び調整用非水電解液のAPHAは、好ましくは100以下であり、より好ましくは50以下、更に好ましくは30以下、最も好ましくは10未満である。
 前記非水電解液の調製24時間後のハーゼン単位色数(APHA)の上昇は、30以下であり、好ましくは20以下、更に好ましくは10以下、最も好ましくは5以下である。
 なお、APHAの測定は、JIS K-6901に準拠して、資料に最も近似した濃度の標準液を求め、その標準液番号をAPHA値とした。
 また、本発明の電解液キットを構成するベース非水電解液及び調整用非水電解液の容量は特に限定されないが、取扱い性の観点から、10~200,000mLが好ましく、20~30,000mLがより好ましく、50~1,000mLがさらに好ましく、100~500mLが特に好ましい。容器の胴径は特に限定されないが、取扱い性の観点から、50~150mmが好ましく、60~100mmがより好ましい。電解液キットを構成するベース非水電解液及び調整用非水電解液の容量を上記範囲とすることにより、ラボスケールでの使用を容易なものとすることができる。
 本発明の電解液キットを構成する容器のうち少なくとも1つは、下記(a)~(c)に記載されている容器であって、かつ、内容量を秤量可能となっている容器が好ましい。
 (a)該ベース非水電解液が保存されている容器。
 (b)該調整用非水電解液が保存されている容器。
 (c)該ベース非水電解液と該調整用非水電解液、を調製するための容器。
 本発明において、内容量を秤量可能とは、その内容量が秤量できるようなものであればよく、特に限定されないが、たとえば、容器内に入っている非水電解液の体積および質量のうち少なくとも一方が秤量できるような態様とすることができる。
 たとえば、内容量を秤量可能な容器を、内容量を可視化できるものとすることが好ましく、これにより、目視等にて非水電解液の容量を秤量できるものとすることができる。このような内容量を可視化できる容器は、容器全体あるいは一部が透明もしくは半透明な材質のものが好ましい。
 前記容器の材質としては、ポリエチレン、ポリプロピレン、テフロン(登録商標)、PTFEなどから選ばれる樹脂が好適に挙げられる。前記のうち、ポリプロピレンは耐久性及び実用性に優れ好ましい。
 また、本発明においては、内容量を秤量可能な容器を、内容量が可視化できるものとすることに加え、目盛りが付されているものとすることが好ましく、これにより、目視等によりその内容量をより容易に秤量できるものとすることができる。なお、この際において、容器に付される目盛りとしては、たとえば、その内容量に応じた体積を示す目盛りとすることもできるし、あるいは、その内容量に応じた質量を示す目盛りとすることもできる。あるいは、一つの容器に対して、複数種類の目盛りが付されたものとしてもよく、たとえば、内容量に応じた体積を示す目盛りと、内容量に応じた質量を示す目盛りとを付したものであってもよいし、あるいは、非水電解液の種類によっては、比重が異なる場合もあるため、非水電解液の種類によって、内容量に応じた質量を示す目盛りを複数付したものであってもよい。
 そして、このように、内容量を可視化でき、かつ目盛りが付されているものとすることにより、その目盛りを利用して、ベース非水電解液や該調整用非水電解液の質量を正確に秤量する操作を必要とせず、目分量で簡便に調整して所望の組成の非水電解液を調製することができ、調製時間の大幅な短縮を実現できる。
 前記容器の目盛りは、例えば容器側面の外部または内部に凹凸や着色線等を表示させることにより用いる。
 前記目盛りは容量を正確に等分した目盛りであり、5等分乃至10等分されていることが好ましく、さらに1目盛りを複数に分割した補助目盛り(副目盛りともいう)を付すことが好ましい。(例えば、容量が100mLの容器であれば10mL単位の主目盛りと5mL単位の補助目盛りを付して容器が好適も用いられる。)
 また、本発明の電解液キットを構成する容器の容量は、取扱い性の観点から、10~200,000mLが好ましく、20~30,000mLがより好ましく、50~1,000mLがさらに好ましく、100~500mLが特に好ましい。特に、本発明の電解液キットを構成する容器のうち、上記「(c)ベース非水電解液と該調整用非水電解液、を調製するための容器」については、ラボスケールでの電解液の調製を容易なものとするため、その容量は、5000~5mLが好ましく、1000~10mLがより好ましく、500~50mLがさらに好ましい。
 あるいは、内容量を秤量可能な容器としては、質量センサなどの質量検出手段を備えるものとし、その質量を、質量検出手段により秤量できるものとしてもよい。また、内容量を秤量可能な容器としては、その内部を隔壁により2以上の領域に分離できるようになっており、該隔壁の位置あるいは数を、所望の体積比あるいは質量比に応じて適宜変更し、隔壁により分離された領域を用いて、各非水電解液を秤量した後に、隔壁を取り外すことで、混合することができるようなものであってもよい。さらには、内容量を秤量可能な容器としては、開口面積の異なる複数の投入口や、スリット幅の異なる複数の投入スリットを有し、所望の体積比あるいは質量比に応じて、これら投入口や投入スリットを利用することで、各非水電解液を秤量できるようなものであってもよい。
 前記ベース非水電解液と調整用非水電解液の混合による非水電解液の調整は、毎秒1,000mLの速度で行うことが可能であるが、毎秒500mLで行うことが好ましく、毎秒100mLで行うことがさらに好ましい。上記速度以下で混合すれば、非水電解液の温度上昇がなく、温度上昇による成分の分解や鎖状エステルの蒸発のおそれがなく、有効である。
 さらに、本発明の非水電解液キットには、非水溶媒に添加剤と、必要に応じて用いられる電解質塩とを溶解してなる添加剤含有非水電解液が含まれていてもよく、添加剤含有非水電解液の態様としては、5.0質量%VC含有1.0M LiPF DMC電解液、5.0質量%VC含有1.0M LiPF MEC溶液、5.0質量%VC含有1.0M LiPF DEC電解液、5.0質量%PS含有1.0M LiPF DMC電解液、5.0質量%PS含有1.0M LiPF MEC電解液、5.0質量%PS含有1.0M LiPF DEC電解液等が挙げられる。
 なお、本発明の非水電解液キットの具体的態様としては下記のように、基本7点キットからなる態様や、基本7点キットに、FECオプションキット、添加剤VCオプションキット、及び添加剤PSオプションキットから選択される少なくとも一つのオプションキットを備える態様などが挙げられる。
〔基本7点キット〕
 1.0M LiPF EC/DMC=50/50(体積比)電解液
 1.0M LiPF EC/MEC=50/50(体積比)電解液
 1.0M LiPF EC/DEC=50/50(体積比)電解液
 1.0M LiPF PC電解液
 1.0M LiPF DMC電解液
 1.0M LiPF MEC電解液
 1.0M LiPF DEC電解液
〔FECオプションキット〕基本7点キットのオプションキットである。
 1.0M LiPF FEC/DMC=50/50(体積比)電解液
 1.0M LiPF FEC/MEC=50/50(体積比)電解液
 1.0M LiPF FEC/DEC=50/50(体積比)電解液
〔添加剤VCオプションキット〕基本7点キットのオプションキットである。
 5.0質量%VC含有1.0M LiPF DMC電解液
 5.0質量%VC含有1.0M LiPF MEC電解液
 5.0質量%VC含有1.0M LiPF DEC電解液
〔塩濃度調製オプションキット〕基本7点キットのオプションキットである。
 2.0M LiPF EC/DMC=50/50(体積比)電解液
 2.0M LiPF EC/MEC=50/50(体積比)電解液
 2.0M LiPF EC/DEC=50/50(体積比)電解液
 2.0M LiPF PC電解液
 2.0M LiPF DMC電解液
 2.0M LiPF MEC電解液
 2.0M LiPF DEC電解液
 なお、上記基本7点キットにおいて、1.0M LiPF EC/DMC=50/50(体積比)電解液、1.0M LiPF EC/MEC=50/50(体積比)電解液、1.0M LiPF EC/DEC=50/50(体積比)電解液、及び1.0M LiPF PC電解液は、ベース非水電解液を構成し、1.0M LiPF DMC電解液、1.0M LiPF MEC電解液、1.0M LiPF DEC電解液は、調整用非水電解液を構成するものである。
 なお、本願発明の非水電解液キットにより調製した非水電解液は、さらにそれをベース非水電解液あるいは調整用非水電解液として用い、さらに複雑な組成の電解液の調製に使用することができる。
〔非水電解液キットを用いた非水電解液の調製方法〕
 本発明の非水電解液キットを用いることで、EC以外からなる非水電解液を調製する場合は、基本7点キットにおいて、EC不含の非水電解液を所望の体積比率で混合することで調製でき、ECを含む場合はEC含有の非水電解液とEC不含の非水電解液を調製後に目的組成となるような体積比率で混合することで調製が可能である。
 また、FEC含有の非水電解液を調製する場合には、FECオプションキットから選ばれるFEC含有の非水電解液と基本7点キットに含まれる非水電解液を調製後に目的組成となるような体積比率で混合することで調製が可能である。
 さらに、添加剤を含有する非水電解液を調製する場合には、添加剤VCオプションキット、添加剤PSオプションキットから選ばれる添加剤含有の非水電解液と基本7点キットに含まれる非水電解液を調製後に目的組成となるような体積比率で混合することで調製が可能である。
 いずれの場合にも、所望の非水電解液を調製する方法は、非水電解液キットに含まれる電解液を、内容量を秤量可能となっている容器を利用して混合するだけであり、操作は非常に簡便である。また秤量・混合は非水環境下で実施する必要があるが、窒素グローブボックスや真空ラインとシュレンク管などのような簡易な設備での調製が可能である。また、非水電解液キットを構成する各非水電解液には、電解質塩が既に溶解されており、非水電解液キットに含まれる非水電解液どうしを混合する際の発熱はほとんどない。さらに、常温で固体であるECもすでに溶液化してあるため、取扱いが非常に簡便である。
〔非水電解液キットの用途〕
 本発明の非水電解液キットを用いて調製される非水電解液は、リチウム電池(リチウム一次電池及びリチウム二次電池)、電気二重層キャパシタ(電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイス)、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイス、リチウムイオンキャパシタ(負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイス)等の蓄電デバイス用の非水電解液として使用することができる。これらの中でも第1の蓄電デバイス用(即ち、リチウム電池用)として用いることが好ましく、リチウム二次電池用として用いることが最も適している。
 なお、上記においては、ベース非水電解液の好ましい態様として、非水溶媒として、プロピレンカーボネートを単独で含有するもの、または、環状カーボネートと鎖状エステルとの混合物を含有するものを、また、調整用非水電解液の好ましい態様として、ベース非水電解液に含まれる鎖状エステルと同様の鎖状エステルを1種のみを含有するものを、それぞれ例示したが、このような態様に特に限定されるものではなく、さらには、ベース非水電解液として例示した電解液を、調整用非水電解液として用いてもよいし、あるいは、調整用非水電解液として例示した電解液を、ベース非水電解液として用いてもよい。
 以下に本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。また何れも便宜上目的組成の非水電解液の100mLを調製する例としているが、目的組成の非水電解液の所望量に応じて増減させてよい。
 本実験に用いた基本7点キットには100mLスケールを使用し、基本7点キットの非水電解液の水分はいずれも5ppm、酸分は9ppm、APHAは10未満である。
〔I:組成を変更する場合〕
(実施例1)
 1.0M LiPF EC/MEC=30/70(体積比)電解液の調製
 窒素ボックス中で、10等分の目盛り(1目盛りは10mL)及び各目盛り間に副目盛り(副目盛りは5mL)が付された調製用の半透明の容器に、下記非水電解液からなる基本7点キットの内、B-1液6目盛り(60mL)とF-1液4目盛り(40mL)を注ぎ、容器を軽く振とうさせて、1.0M LiPF EC/MEC=30/70(体積比)電解液100mLを調製した。調製に要した時間は10分であり、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔基本7点キット〕
 A-1液:1.0M LiPF EC/DMC=50/50(体積比)電解液
 B-1液:1.0M LiPF EC/MEC=50/50(体積比)電解液
 C-1液:1.0M LiPF EC/DEC=50/50(体積比)電解液
 D-1液:1.0M LiPF PC電解液
 E-1液:1.0M LiPF DMC電解液
 F-1液:1.0M LiPF MEC電解液
 G-1液:1.0M LiPF DEC電解液
〔II:〔溶媒種(鎖状エステル)を追加する場合〕
(実施例2)
 1.0M LiPF EC/DMC/MEC=30/35/35(体積比)電解液の調製
 窒素ボックス中で、10等分の目盛り(1目盛りは10mL)及び各目盛り間に副目盛り(副目盛りは5mL)が付された調製用の半透明の容器に、前記非水電解液からなる基本7点キットの内、A-1液3目盛り(30mL)、B-1液3目盛り(30mL)、E-1液2目盛り(20mL)、F液2目盛り(20mL)を注ぎ、容器を軽く振とうさせて、1.0M LiPF EC/DMC/MEC=30/35/35(体積比)電解液100mLを調製した。調製に要した時間は20分であり、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔III:溶媒種(環状カーボネート)を追加する場合〕
(実施例3)
1.0M LiPF EC/PC/MEC=15/15/70(体積比)電解液の調製
 窒素ボックス中で、10等分の目盛り(1目盛りは10mL)及び各目盛り間に副目盛り(副目盛りは5mL)が付された調製用の半透明の容器に、前記非水電解液からなる基本7点キットの内、B-1液3目盛り(30mL)、D-1液1目盛り及び1副目盛り(15mL)、F-1液5目盛り及び1副目盛り(55mL)を注ぎ、容器を軽く振とうさせて、1.0M LiPFEC/PC/MEC=15/15/70(体積比)電解液100mLを調製した。調製に要した時間は15分であり、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔IV:塩濃度を変更する場合〕
(実施例4)
1.5M LiPF EC/MEC=30/70(体積比)電解液の調製
 窒素ボックス中で、10等分の目盛り(1目盛りは10mL)及び各目盛り間に副目盛り(副目盛りは5mL)が付された調製用の半透明の容器に、前記非水電解液からなる基本7点キット及び下記塩濃度調整用キットの内、B-1液3目盛り(30mL)、B-2液3目盛り(30mL)、F-1液2目盛り(20mL)、F-2液2目盛り(20mL)を注ぎ、容器を軽く振とうさせて、1.5M LiPF EC/MEC=30/70(体積比)電解液100mLを調整した。調製に要した時間は20分であり、調製前後において電解液の温度変化は観測されなかった。なお、調製前の非水電解液の水分は5ppm、酸分は10ppm、APHAは10未満であり、調製24時間経過後の非水電解液の水分、酸分、およびAPHAは表1に示す。
〔塩濃度調整オプションキット〕基本7点キットのオプションキットである。
 A-2液:2.0M LiPF EC/DMC=50/50(体積比)電解液
 B-2液:2.0M LiPF EC/MEC=50/50(体積比)電解液
 C-2液:2.0M LiPF EC/DEC=50/50(体積比)電解液
 D-2液:2.0M LiPF PC電解液
 E-2液:2.0M LiPF DMC電解液
 F-2液:2.0M LiPF MEC電解液
 G-2液:2.0M LiPF DEC電解液
〔実施例5~13〕
 上記非水電解液からなる基本7点キットを用い、表1に示す所定の電解液を調製するために、それぞれ窒素ボックス中、実施例1~3と同様の調製用容器を用いて混合し、表1に示す組成を有する非水電解液を調製した。調製に要した時間は、2液を用いた場合(実施例5,7)は実施例1と同様に10分であり、3液を用いた場合(実施例6,8~10)は15分であり、4液を用いた場合(実施例11~13)は20分であった。また、いずれの例においても、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
Figure JPOXMLDOC01-appb-T000001
〔実施例14〕
 1.0M LiPF FEC/EC/MEC=10/20/70(体積比)電解液の調製
 実施例1で用いた基本7点セット及び下記非水電解液からなるFECオプションキットの内、B液:40mLと、F液:40mLと、I液:20mLとをそれぞれ窒素ボックス中、実施例I~IIIと同様の調製用容器を用いて混合し、1.0M LiPF FEC/EC/MEC=10/20/70(体積比)電解液100mLを調製した。調製に要した時間は15分であり、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表2に示す。
〔FECオプションキット〕
 H液:1.0M LiPF FEC/DMC=50/50(体積比)電解液
 I液:1.0M LiPF FEC/MEC=50/50(体積比)電解液
 J液:1.0M LiPF FEC/DEC=50/50(体積比)電解液
〔実施例15~17〕
 上記非水電解液からなる基本7点キット及びFECオプションキットの内、表2に示す所定の電解液を使用し、それぞれ窒素ボックス中、実施例I~IIIと同様の調製用容器を用いて混合し、表2に示す組成を有する非水電解液を調製した。調製に要した時間は、3液を用いた場合(実施例14)は15分であり、4液を用いた場合(実施例15,16)は20分であった。また、いずれの例においても、調製前後において電解液の温度変化は観測されなかった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表2に示す。
Figure JPOXMLDOC01-appb-T000002
〔実施例18〕
 1.0質量%VC含有1.0M LiPF EC/MEC=30/70(体積比)電解液の調製
 実施例1で用いた基本7点セット及び下記非水電解液からなる添加剤VCオプションキットの内、B液:60mLと、F液:20mLと、L液:20mLとをそれぞれ窒素ボックス中、秤取して混合し、1.0質量%VC含有1.0M LiPF EC/MEC=30/70(体積比)電解液100mLを調製した。調製に要した時間は15分であり、調製前後において電解液の温度変化は観測されなかった。また、調製後の非水電解液の水分は5ppm、酸分は11ppm、APHAは10未満であった。
〔添加剤VCオプションキット〕
 K液:5.0質量%VC含有1.0M LiPF DMC電解液
 L液:5.0質量%VC含有1.0M LiPF MEC電解液
 M液:5.0質量%VC含有1.0M LiPF DEC電解液
 〔比較例1〕
 1.0M LiPF EC/MEC=30/70(体積比)電解液の調製(1)
 窒素ボックス中、MEC 56.1gを秤取し、50℃に加温して液化させたEC 31.4g(融点38℃)を加え、続いて、LiPF 12.5gを秤取して少量ずつ加えて撹拌し溶解させることにより、1.0M LiPF EC/MEC=30/70(体積比)電解液を調製した。この際、電解液の温度は10℃上昇した。得られた溶液の体積は100mLであり、調製に要した時間は1時間であった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔比較例2〕
 1.0M LiPF EC/MEC=30/70(体積比)電解液の調製(2)
 窒素ボックス中、ECとMECの混合溶媒(体積比:50/50)とMECをメスシリンダーに、それぞれ57.7mL、38.5mLずつ秤量し、目盛りを付さない容器に入れ、容器を軽く振とうさせて、EC/MEC=30/70の混合溶媒を調製した。続いて、LiPF 15.2gを秤取して少量ずつ加えて撹拌し溶解させることにより、1.0M LiPF EC/MEC=30/70(体積比)電解液を調製した。この際、電解液の温度は10℃上昇した。得られた溶液の体積は99.2mLであり、約0.8%程度の誤差が生じ(MECを約0.8mLロス)、所望の電解液組成よりもECが約1.2%過剰な組成の電解液となった。調製に要した時間は1時間であった。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔比較例3〕
 1.0M LiPF EC/MEC=30/70(体積比)電解液の調製
 窒素ボックス中、2.0M LiPF EC/MEC=30/70(体積比)電解液54.5gを目盛りを付さない容器に秤取し、続いて、EC/MEC=30/70(体積比)45.5gを秤取して前記容器に加え、容器を軽く振とうさせて、1.0M LiPF PC/MEC=30/70(体積比)電解液を調製した。得られた溶液の体積は100mLであった。調製前後において電解液の温度変化は観測されなかった。
 ただし、この調製方法では、電解質塩の濃度のみを調製することは可能であるが、電解質塩の濃度を変更しないで溶媒組成のみを変更することができず、簡便な非水電解液の調製が困難である。また、調製24時間経過後の非水電解液の水分、酸分、およびAPHAを表1に示す。
〔評価〕
 比較例1~3から明らかなように、従来のように非水電解液を構成する非水溶媒及び電解質塩を混合することにより、非水電解液を調製する方法では、用いる非水溶媒の比重が異なること、また、電解質塩を加えることで非水電解液の体積が非水溶媒のみの時から増大することを加味して、その都度比重による必要重量の算出が必要であること、さらには、電解質塩を溶解する際に発熱すること、またこれにより添加に時間がかかること、加えて、ECなど融点が高い非水溶媒を用いる場合には融点以上に加温して測定添加を実施する必要があり、そのため、溶液温度がさらに上がることなどにより、取扱いが煩雑になることが理解できる。また、調製の際に、非水電解液の温度上昇が起こると、蒸気圧の高い非水溶媒の蒸発を招き、最終的に得られる組成が、所望の組成から逸脱する可能性も高い。
 これに対して、本発明の非水電解液キットを用いることで、このような不具合の発生を防止することができ、簡便に、しかも、短時間で所望の非水電解液を調製することが可能となる。
 なお、本実施例においては、非水電解液キットを構成する各非水電解液として、電解質塩の種類が同じ非水電解液を用いたが、非水電解液キットを構成する各非水電解液として、異なる種類の電解質塩を含有するものや、電解質塩の濃度が異なるものを用いることももちろん可能である。
 本発明の非水電解液キットは、リチウム二次電池等の蓄電デバイスに用いる非水電解液を、簡便に、しかも、短時間での調製を可能とすることができるため、リチウム二次電池等の蓄電デバイスの高性能化を目的とした研究開発用途に極めて有用である。

Claims (15)

  1.  組成の異なる複数の非水電解液と容器を備えた非水電解液キットであって、
     該非水電解液キットは、少なくとも環状カーボネート、鎖状エステル、並びに環状カーボネートと鎖状エステルの混合物から選ばれる非水溶媒に電解質塩を溶解したベース非水電解液と、該ベース非水電解液と組成の異なる調整用非水電解液とを含み、
     前記容器の少なくとも1つは内容量を秤量可能となっていることを特徴とする非水電解液キット。
  2.  前記内容量を秤量可能な容器が、内容量を可視化できるように構成されていることを特徴とする請求項1に記載の非水電解液キット。
  3.  前記内容量を秤量可能な容器が、内容量を可視化でき、かつ目盛りが付されている容器であることを特徴とする請求項1または2に記載の非水電解液キット。
  4.  前記内容量を秤量可能な容器が、下記(a)~(c)のいずれかである請求項1~3のいずれかに記載の非水電解液キット。
    (a)該ベース非水電解液が保存されている容器。
    (b)該調整用非水電解液が保存されている容器。
    (c)該ベース非水電解液と該調整用非水電解液、を調製するための容器。
  5.  該非水電解液の酸分が、フッ化水素(HF)換算で20ppm以下である、請求項1~4のいずれかに記載の非水電解液キット。
  6.  該非水電解液のJIS K-6901に準拠したハーゼン単位色数(APHA)が100以下である、請求項1~5のいずれかに記載の非水電解液キット。
  7.  前記環状カーボネートがエチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネート及びビニルエチレンカーボネートからなる群から選ばれる少なくとも1種である請求項1~6のいずれかに記載の非水電解液キット。
  8.  前記鎖状エステルが、鎖状カーボネートあるいは鎖状カルボン酸エステルである請求項1~7のいずれかに記載の非水電解液キット。
  9.  前記鎖状カーボネートがジメチルカーボネート、ジエチルカーボネート及びメチルエチルカーボネートからなる群から選ばれる少なくとも一種である請求項8に記載の非水電解液キット。
  10.  前記鎖状カルボン酸エステルが酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル及びプロピオン酸エチルから選ばれる少なくとも1種である請求項8または9に記載の非水電解液キット。
  11.  前記ベース非水電解液が、環状カーボネートと鎖状エステルとの混合物に電解質塩を溶解して得られたものであり、前記ベース非水電解液における、非水溶媒の環状カーボネートと鎖状エステルの体積比が50:50であることを特徴とする請求項1~10のいずれかに記載の非水電解液キット。
  12.  前記調整用非水電解液における非水溶媒が、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート及びプロピオン酸メチルから選ばれる少なくとも1種であることを特徴とする請求項1~11のいずれかに記載の非水電解液キット。
  13.  前記電解質塩がLiPF及び/またはLiBFを含むものであることを特徴とする請求項1~12のいずれかに記載の非水電解液キット。
  14.  前記ベース非水電解液として、環状カーボネートと鎖状エステルとの混合物に電解質塩を溶解して得られたものを複数備えるとともに、前記調整用非水電解液として、前記複数の前記ベース非水電解液を構成する鎖状エステルと同じ鎖状エステルと、電解質塩とを備える非水電解液を複数備えることを特徴とする請求項1~13のいずれかに記載の非水電解液キット。
  15.  請求項1~14のいずれかに記載の非水電解液キットを用いて非水電解液を調製する方法であって、
     前記ベース非水電解液及び前記調整用非水電解液を混合することを特徴とする非水電解液の調製方法。
PCT/JP2014/052231 2013-07-09 2014-01-31 非水電解液キット及び非水電解液の調製方法 WO2015004931A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14823535.1A EP3021414A4 (en) 2013-07-09 2014-01-31 Nonaqueous electrolyte solution kit and method for preparing nonaqueous electrolyte solution
US14/903,885 US20160164140A1 (en) 2013-07-09 2014-01-31 Non-aqueous electrolytic solution kit and method of preparing non-aqueous electrolytic solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013143826A JP5418714B1 (ja) 2013-07-09 2013-07-09 非水電解液キット及び非水電解液の調製方法
JP2013-143826 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015004931A1 true WO2015004931A1 (ja) 2015-01-15

Family

ID=50287175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052231 WO2015004931A1 (ja) 2013-07-09 2014-01-31 非水電解液キット及び非水電解液の調製方法

Country Status (4)

Country Link
US (1) US20160164140A1 (ja)
EP (1) EP3021414A4 (ja)
JP (1) JP5418714B1 (ja)
WO (1) WO2015004931A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054427B (zh) * 2017-09-20 2020-06-09 中南大学 一种锂离子电池有机电解液的生产方法以及生产设备
CN114054110B (zh) * 2021-11-17 2022-10-11 芜湖天弋能源科技有限公司 一种测试电解液中hf含量的试剂盒及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146120A (ja) * 2002-10-22 2004-05-20 Mitsubishi Chemicals Corp 非水電解液の調合装置及びこれを用いた非水電解液の製造方法
JP2005108531A (ja) 2003-09-29 2005-04-21 Mitsubishi Chemicals Corp 非水電解液の調合装置及び非水電解液の製造方法
JP2010015904A (ja) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd 非水電解液二次電池
WO2013047342A1 (ja) * 2011-09-26 2013-04-04 富士フイルム株式会社 非水二次電池用電解液及び二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879252A4 (en) * 2005-04-19 2010-06-23 Panasonic Corp WATER-FREE ELECTROLYTE SOLUTION, ELECTROCHEMICAL ENERGY STORAGE DEVICE THEREFOR AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
US7638243B2 (en) * 2006-03-22 2009-12-29 Novolyte Technologies Inc. Stabilized nonaqueous electrolytes for rechargeable batteries
US9208955B2 (en) * 2007-05-17 2015-12-08 Daido Metal Company Ltd. Dye-sensitized solar cell fabricating kit, dye-sensitized solar cell and method of using the same
US20090045226A1 (en) * 2007-08-15 2009-02-19 Cody Munlin Fuel dispenser system
JP5199844B2 (ja) * 2008-11-21 2013-05-15 株式会社日立製作所 リチウム二次電池
JP5399188B2 (ja) * 2009-09-28 2014-01-29 三洋電機株式会社 非水電解質二次電池
EP2541665B1 (en) * 2010-02-22 2015-11-25 Toyota Jidosha Kabushiki Kaisha Non-aqueous liquid electrolyte secondary battery
JP5533321B2 (ja) * 2010-03-02 2014-06-25 ソニー株式会社 非水電解質および非水電解質電池
US9385397B2 (en) * 2011-08-19 2016-07-05 Nanotek Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146120A (ja) * 2002-10-22 2004-05-20 Mitsubishi Chemicals Corp 非水電解液の調合装置及びこれを用いた非水電解液の製造方法
JP2005108531A (ja) 2003-09-29 2005-04-21 Mitsubishi Chemicals Corp 非水電解液の調合装置及び非水電解液の製造方法
JP2010015904A (ja) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd 非水電解液二次電池
WO2013047342A1 (ja) * 2011-09-26 2013-04-04 富士フイルム株式会社 非水二次電池用電解液及び二次電池

Also Published As

Publication number Publication date
EP3021414A1 (en) 2016-05-18
US20160164140A1 (en) 2016-06-09
JP2015046227A (ja) 2015-03-12
EP3021414A4 (en) 2017-03-22
JP5418714B1 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
CN105006594B (zh) 一种高稳定性锂离子电池电解液
CN102414902B (zh) 电化学设备用电解质、使用其的电解液及非水电解液电池
CN108808091B (zh) 一种锂离子电池用高浸润性电解液及锂离子电池
CN102064344A (zh) 一种新型动力电池用电解液
CA3069973A1 (en) Phosphorus containing electrolytes
CN102064343B (zh) 一种新型的锂离子电池电解液
CN106946925A (zh) 氟代烷氧基三氟硼酸锂盐及其制备方法和应用
CN106252721A (zh) 一种高稳定的锂离子动力电池电解液
CN105186037B (zh) 一种磺酸酯类稳定剂和含该磺酸酯类稳定剂的非水电解液
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN106558728B (zh) 一种锂离子电池非水电解液和锂离子电池
CN106058319A (zh) 一类具有多阴离子官能团的电解质及其制备方法与应用
CN106025355A (zh) 一种阻燃型高安全非水电解液及其加工方法
JP5819653B2 (ja) 非引火性電解液
CN109841903A (zh) 一种高电压耐燃非水电解液
US20160149265A1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
JP5418714B1 (ja) 非水電解液キット及び非水電解液の調製方法
CN109142617A (zh) 锂离子电解液中游离hf的非水滴定测定法
CN108258309A (zh) 一种含氟代羧酸酯的锂离子电池电解液
CN109870490A (zh) 锂盐及其电解液中游离酸含量的测定方法
CN109473721A (zh) 一种高电压电解液添加剂,高电压电解液和锂离子电池
JP2018014334A (ja) 非水電解液キット及び非水電解液の調製方法
CN103236561B (zh) 六氟磷酸锂电解液中烷基硅氮烷类化合物的检测方法
CN103346351B (zh) 一种锂离子二次电池用新型硼酸酯溶剂
JP2015018787A (ja) 非水電解液キット及び非水電解液の調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903885

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823535

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP