WO2015003552A1 - 无极变速装置 - Google Patents

无极变速装置 Download PDF

Info

Publication number
WO2015003552A1
WO2015003552A1 PCT/CN2014/080418 CN2014080418W WO2015003552A1 WO 2015003552 A1 WO2015003552 A1 WO 2015003552A1 CN 2014080418 W CN2014080418 W CN 2014080418W WO 2015003552 A1 WO2015003552 A1 WO 2015003552A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure plate
planetary gear
gear
gear train
elastic
Prior art date
Application number
PCT/CN2014/080418
Other languages
English (en)
French (fr)
Inventor
郎静明
郎韡晨
Original Assignee
Lang Jingming
Lang Weichen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lang Jingming, Lang Weichen filed Critical Lang Jingming
Publication of WO2015003552A1 publication Critical patent/WO2015003552A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/721Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with an energy dissipating device, e.g. regulating brake or fluid throttle, in order to vary speed continuously
    • F16H3/722Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with an energy dissipating device, e.g. regulating brake or fluid throttle, in order to vary speed continuously with a fluid throttle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion

Definitions

  • the present invention relates to gear transmission technology, and more particularly to an infinitely variable transmission device, which belongs to the field of mechanical technology. Background technique
  • the shifting device is mainly used in power plants such as machine tools, vehicles or ships for changing the output speed and torque to adjust the speed and driving force of the power unit.
  • the power of the automobile engine is transmitted to the wheels through the clutch, the shifting device, the universal joint and the transmission shaft, and the speed and torque of the power source are changed by the shifting device to ensure the normal operation of the vehicle under various working conditions. travel.
  • the existing shifting device mainly includes a pole shifting device and a stepless shifting device.
  • the existing stepless variable speed device includes a driving wheel, a driven wheel and a driving belt having a variable working diameter.
  • the driving belt is sleeved on the driving wheel and the driven wheel, and the shifting speed is changed by changing the contact radius of the driving belt on the driving wheel and the driven wheel.
  • the existing infinitely variable transmission device transmits power by using a transmission belt or a friction disc
  • the transmission belt and the friction disc are easily damaged and cannot bear a large load, so the output of the existing infinitely variable transmission device is small, the application range is small; and the structure is complicated.
  • the transmission efficiency is low.
  • the invention provides an infinitely variable transmission device for solving the technical defect that the output of the infinitely variable transmission device in the prior art is small, and the structure is complicated and the transmission efficiency is low.
  • the invention provides an infinitely variable transmission device, comprising a planetary gear train, a casing, a plurality of sets of elastic friction plates and a hydraulic control device;
  • the planetary gear train has a gear cavity, and a gear of the planetary gear train is mounted in the gear cavity;
  • the plurality of sets of elastic friction plates are respectively disposed in gear intervals of the gears, and an outer contour of each set of elastic friction sheets is matched with a tooth profile of the gears;
  • Each set of elastic friction plates comprises two elastic pieces matching the shape of the gear spacing, two The two ends of the elastic piece are butted to form an oil storage cavity, and the butt joint has a gap;
  • the housing inner cavity is filled with hydraulic oil and the planetary gear train is installed in the housing, and the hydraulic control device is used for controlling oil pressure in the oil storage chamber to control each set of elastic friction plates and the The frictional force between the gears controls the relative rotational speed of the gears of the planetary gear train to adjust the gear ratio of the planetary gear train.
  • the infinitely variable transmission device mounts a gear of a planetary gear train in a gear cavity, closes a planetary gear train through an elastic friction plate and a pressure plate, and controls the planetary gear train and the elastic friction plate by a pressure plate control device
  • the oil pressure in the gap and simultaneously control the friction of the planetary gear train, the elastic friction plate and the gear tooth tip can simultaneously change the oil pressure in the meshing hydraulic chamber and the relationship between the planetary gear train, the elastic friction plate and the pressure plate
  • the frictional force adjusts the transmission ratio of the planetary gear train.
  • the infinitely variable transmission has high strength and large output torque due to the gear transmission used, and is suitable for high-power stepless speed change, compared with the prior art.
  • FIG. 1 is a front elevational view of an infinitely variable transmission device according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a schematic structural view of a set of elastic friction plates shown in Figure 2;
  • FIG. 4 is a front view of a slider base according to an embodiment of the present invention.
  • Figure 5 is a top plan view of the slider base of Figure 4.
  • FIG. 1 is a front view of a continuously variable transmission according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1
  • FIG. 3 is a set of elastic friction plates of FIG. Schematic.
  • the infinitely variable transmission device of the present embodiment includes a planetary gear train, a housing 1, a plurality of sets of elastic friction plates 2, and a hydraulic control device.
  • the planetary gear train has a gear cavity, and the gear of the planetary gear train is installed in the gear cavity and between the gear cavity Gap fit; a plurality of sets of elastic friction plates 2 are respectively installed in the gear interval of the planetary gear train, and the shape and size of each set of elastic friction plates 2 are matched with corresponding gear intervals, and the outer contour and the top profile of each set of elastic friction plates 2 Clearance fit.
  • Each set of elastic friction plates 2 includes two elastic pieces matched with the gear spacing shape, which are a first elastic piece 21 and a second elastic piece 22, respectively, and the first elastic piece 21 and the second elastic piece 22 are butted at both ends to form an oil storage.
  • the cavity 23 has a gap 24 at the butt joint.
  • the inner cavity of the casing 1 is filled with hydraulic oil and the planetary gear train is installed in the casing 1.
  • the hydraulic control device is used for controlling the oil pressure in the oil storage chamber 23 to control the friction between each set of elastic friction plates 2 and the gears. Size, controlling the relative rotational speed of each gear of the planetary gear train to adjust the gear ratio of the planetary gear train.
  • the planetary gear train may include a sun gear 3, a planetary gear 4 and a ring 52;
  • the hydraulic control device may include a first pressure plate 71 and a second pressure plate 72, and the planetary gear 4 is mounted on the first through the planetary axle A platen 71 and a second platen 72 are engaged with the sun gear 3.
  • the first pressure plate 71 and the second pressure plate 72 are coaxially spaced apart, and the ring 52 is sleeved outside the planetary gear train to form a gear cavity.
  • the sun gear 3 and the planetary gear 4 are mounted in the gear cavity and are matched with the gear cavity. .
  • the middle portions of the first elastic piece 21 and the second elastic piece 22 are fixed to the first pressure plate 71, and the first pressure plate 71 and the second pressure plate 72 are movable in the axial direction of the planetary gear train to adjust the inside of the oil reservoir chamber 23. Oil pressure.
  • the first elastic piece 21 and the second elastic piece 22 may be provided with mounting holes, and the first pressure plate 71 may be provided with a threaded hole, and the first elastic piece 21 and the second elastic piece 22 are fixed to the first pressure plate by screws. 71.
  • first platen 71 and the second platen 72 may be axially disposed along the planetary gear train by the driving device. Thrust and tension to drive the first platen 71 and the second platen 72 to move axially. Adjusting the oil pressure in the oil reservoir 23 by adjusting the relative distance between the first platen 71 and the second platen 72 to adjust the friction between each set of the elastic friction plates 2 and the planetary gears, and the first pressure The friction between the disk 71 and the second platen 72 and the end face of the planetary gear train.
  • the planetary gear 4 is rotatable about the axis of the planetary wheel shaft, and the sun gear 3 is rotatable about the axis of the sun gear shaft 31.
  • the thickness of the sun gear 3 is equal to the thickness of the planetary gear 4, and the thickness of the sun gear 3 and the planetary gear 4 can be determined according to actual needs. Number of teeth.
  • both end faces of the sun gear 3 and the planetary gear 4 are clearance-fitted with the inner wall of the first pressure plate 71, and the outer tooth profile of the planetary gear 4 and the inner wall of the ring 52
  • each set of elastic friction plates 2 is matched with the outer tooth contours of the sun gear 3 and the planetary gear 4, and the thickness of the elastic friction plate 2 is the same as the thickness of the sun gear 3 and the planetary gear 4, the ring 52, the first pressure
  • the disk 71 and the second platen 72 enclose the sun gear 3 and the planet gears 4 in the gear chamber.
  • the ring 52 can also be a ring gear, the internal teeth of the ring gear meshing with the external teeth of the planet gear 4.
  • the matching accuracy of the outer tooth profile of the planetary gear 4 with the inner wall of the ring 52 and the matching accuracy of the inner walls of the first pressure plate 71 and the second pressure plate 72 with the sun wheel 3 and the side faces of the planetary gear 4 should be satisfied in the planetary gear 4
  • the inner wall of the ring 52 and the first platen 71 have no friction or little friction to the planet gear 4, and at the same time, the size of the gap is not allowed to pass the hydraulic oil, that is, The normal rotation of the sun gear 3 and the planetary gear 4 can be satisfied, and the above gap does not leak oil.
  • the clearance between the elastic friction plate 2 and the sun gear 3 and the planetary gear 4 should also satisfy the normal rotation of the sun gear 3 and the planetary gear 4.
  • the source power can be input from the sun gear 3, the sun gear shaft 31 is used as the power input shaft, the driving force is output from the first pressure plate 71, and the first pressure plate 71 is powered.
  • the output shaft 54 can also form the power output shaft 54 and the first pressure plate 71 into a single structure.
  • the power output shaft 54 and the first pressure plate 71 can also be separated structures, and the power output shaft can be respectively processed. After 54 and the first platen 71, they are assembled again.
  • the sun gear 3 drives the planetary gear 4 to rotate counterclockwise while the sun gear 3 and the sun gear 3
  • the meshing force of the planetary gear 4 drives the first pressure plate 71 to rotate clockwise; under such conditions, the rotational speed of the first pressure plate 71 is smaller than the rotational speed of the sun gear 3, which is a reduction gear.
  • the oil pressure in the oil reservoir 23 of the elastic friction plate 2 is controlled, and the oil pressure in the oil reservoir 23 is gradually increased.
  • the first elastic piece 21 and the second elastic piece 22 are deformed by the oil pressure, thereby increasing the friction between the first elastic piece 21 and the second elastic piece 22 and the planetary gear train, and at the same time, the first The frictional force between the pressure plate 71 and the second pressure plate 72 and the end faces of the planetary gear train also increases.
  • the sun gear 3 has no relative to the planetary gear 4.
  • the first platen 71 rotates with the sun gear 3 at the same speed.
  • the sun gear 3 The gear ratio of the first platen 71 is gradually increased from a small value to a one-to-one, and the stepless speed change device realizes infinite speed increase.
  • the driving force is output from the sun gear 3, and under such conditions, the rotational speed of the sun gear 3 is greater than the rotational speed of the first platen 71, which is a speed increasing device.
  • the oil pressure in the oil reservoir 23 of the elastic friction plate 2 is controlled, and the oil pressure in the oil reservoir 23 is gradually increased.
  • the first elastic piece 21 and the second elastic piece 22 are deformed by the oil pressure, thereby increasing the friction between the first elastic piece 21 and the second elastic piece 22 and the planetary gear train, and at the same time, the first The frictional force between the pressure plate 71 and the second pressure plate 72 and the end faces of the planetary gear train also increases.
  • the sun gear 3 has no relative to the planetary gear 4.
  • the first platen 71 rotates with the sun gear 3 at the same speed.
  • the transmission ratio of the first platen 71 to the sun gear 3 is gradually reduced from a large value to a one-to-one, and the stepless transmission realizes the stepless deceleration and can increase the output torque.
  • the infinitely variable transmission device installs the gear of the planetary gear train in the gear cavity, closes the planetary gear train through the elastic friction plate and the pressure plate, and controls the planetary gear train and the elastic friction by the pressure plate control device.
  • the oil pressure in the gap of the sheet and the frictional force of the planetary gear train, the elastic friction plate and the gear tooth tip can be controlled at the same time, and the oil pressure in the meshing hydraulic chamber and the planetary gear train, the elastic friction plate and the pressure plate can be changed simultaneously.
  • the frictional force adjusts the transmission ratio of the planetary gear train.
  • the infinitely variable transmission has high strength and large output torque due to the gear transmission used, and is suitable for high-power infinitely variable speed, compared with the prior art.
  • the transmission efficiency of the infinitely variable transmission device is higher due to the friction and hydraulic double-twist adjustment system.
  • the adjustment system of the infinitely variable transmission device is simpler and more compact than the prior art. It is easier to adjust the transmission ratio.
  • the hydraulic control device further includes a driving device capable of driving the first pressure plate 71 and the second pressure plate 72 to slide on the sun gear shaft 31 to adjust the oil pressure in the oil reservoir chamber 23 to adjust the elasticity of each group.
  • a driving device capable of driving the first pressure plate 71 and the second pressure plate 72 to slide on the sun gear shaft 31 to adjust the oil pressure in the oil reservoir chamber 23 to adjust the elasticity of each group.
  • the drive means can be implemented in a variety of forms, for example, the second platen 72 can be driven to slide along the sun gear shaft 31 by hydraulic, electric or mechanical manual means.
  • the hydraulic oil in the inner chamber 11 of the casing 1 passes through the first pressure plate 71 and the second pressure plate 72.
  • a gap with one side of the planetary gear train flows into the oil reservoir chamber 23.
  • the gap between the first platen 71, the second platen 72 and the planetary gear train is controlled by the driving device to control the oil pressure therein.
  • the first pressure plate 71 and the second pressure plate 72 seal the gear end faces of the planetary gear train, and thus the elastic friction plate 2 is stored.
  • the oil pressure in the oil chamber 23 is increased, the first elastic piece 21 and the second elastic piece 22 are deformed, the frictional force with the tooth top of each gear in the planetary gear train is increased, and the first pressure plate 71 and the second pressure plate are increased.
  • the frictional force between the 72 and the gear end faces in the planetary gear train also increases, so that the meshing force of the sun gear 3 and the planetary gear 4 gradually increases, and the rotational speed of the first pressure plate 71 is gradually increased, when the oil pressure increases to a certain value.
  • the first pressure plate 71 rotates with the sun gear 3 at the same speed.
  • the driving device 73 includes a slider 731, a slider base 732, a stopper 733, a link 734, a compression bearing sleeve 735, and a lever 736.
  • the slider base 732 is fixed on the outer side surface of the second pressure plate 72.
  • the slider base 732 has an inclined sliding slot 7321.
  • the slider 731 has an inclined surface adapted to the inclined sliding slot 7321, and the slider 731 is slidably disposed on the inclined surface. In the chute 7321, the outer end surface of the slider 731 abuts against the stopper 733, and the stopper 733 is fixed to the inner wall of the casing 1.
  • the lower end of the slider 731 is hinged with the upper end of the connecting rod 734, the lower end of the connecting rod 734 is hinged with the front end of the pressing bearing sleeve 735, the pressing bearing sleeve 735 is slidably disposed on the sun gear shaft 31, and the lower end of the operating rod 736 is hinged to the lower part of the housing 1, the joystick
  • the middle portion of the 736 is sleeved on the sun gear shaft 31 and abuts against the rear end of the compression bearing sleeve 735, and the upper portion of the operating rod 736 protrudes from the upper portion of the casing 1.
  • the slider base 732 can be fixed on the outer end surface of the second pressure plate 72 by screws.
  • the slider 731 can be a triangular block, and the vertical surface of the slider 731 abuts on the stopper 733, and the inclined surface of the slider 731 It is attached to the inclined bottom surface of the inclined chute 7321.
  • a support block may be disposed at a position near the inside of the casing 1 , and a lower portion of the joystick 736 is hinged to the support block.
  • a joystick link may be hinged on the upper portion of the joystick 736, and the joystick 736 is controlled by the joystick link. The joystick 736 is controlled.
  • the driving device realizes the driving device by mechanical means, has a simple structure and is convenient to control.
  • the infinitely variable transmission device is applicable not only to a single-row planetary gear train, but also to a two-row planetary gear train or a multi-row planetary gear train. In addition, it is also applicable to a two-stage planetary gear train or multiple stages. Planetary trains, and the number of planet wheels in each planetary gear train can be varied. Two or more planetary gears mean that the output of the primary planetary gear train is the input of the other pole planetary gear train. . Of course, the greater the number of gears in the planetary gear train, the lower the hydraulic control device needs to adjust the pressure, which can increase the adjustment accuracy of the hydraulic control device. Further, the number and shape of the elastic friction plates 2 also depend on the number and size of the gears in the planetary gear train, and the outer shape of the elastic friction plate 2 can be designed according to the actual situation.
  • the infinitely variable transmission device in the above embodiment can have a plurality of power output modes, that is, the power output shaft and the power output shaft mounting manner have various options, such as the power input shaft is mounted on the sun gear 3, and the power output shaft is mounted on the power output shaft.
  • the power input shaft is mounted on the sun gear 3
  • the power output shaft is mounted on the power output shaft.
  • the input shaft is mounted on the first platen 71
  • the output shaft is mounted on the sun gear 3
  • the power input shaft is mounted on the sun gear 3
  • the power take-off shaft is mounted on the first platen 71 and/or the ring 52
  • other specific installation methods are not described here.
  • the oil seal is installed at the joint of the casing 1 with the power input shaft and the power output shaft to prevent the oil leakage of the casing 1.
  • the air pressure in the upper portion of the casing 1 is such that the air pressure in the casing 1 is the same as the external air pressure. , is conducive to the circulation of hydraulic oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Transmission Devices (AREA)

Abstract

一种无极变速装置包括行星轮系、壳体(1)、多组弹性摩擦片(2)和液压控制装置;所述行星轮系具有齿轮腔,所述行星轮系的齿轮安装在所述齿轮腔内;所述多组弹性摩擦片(2)分别设置在所述齿轮的齿轮间隔内,每组弹性摩擦片(2)的外轮廓与所述齿轮的齿顶轮廓间隙配合;每组弹性摩擦片(2)包括两个与所述齿轮间隔形状相匹配的弹性片,两个弹性片两端对接形成储油腔(23),且对接处具有间隙(24);所述壳体(1)内腔中充满液压油且所述行星轮系安装在所述壳体(1)内,所述液压控制装置用于控制所述储油腔(23)内的油压,以控制每组弹性摩擦片(2)与所述齿轮之间摩擦力大小,控制所述行星轮系各齿轮相对转动速度,以调节所述行星轮系的传动比。

Description

无极变速装置
技术领域
本发明涉及齿轮传动技术, 尤其涉及一种无极变速装置, 属于机械技 术领域。 背景技术
变速装置主要应用在机床、 车辆或轮船等动力装置中, 用于改变的输出 转速和扭矩, 以调节动力装置的运动速度和驱动力。
以汽车为例, 汽车发动机的动力通过离合器、 变速装置、 万向节和传动 轴等装置传递到给车轮, 通过变速装置改变动力源的转速和扭矩, 保证汽车 在各种工况条件下的正常行驶。
现有的变速装置主要包括有极变速装置和无极变速装置。 现有的无极变 速装置包括工作直径可变的主动轮、 从动轮和传动带, 传动带套设在主动轮 和从动轮上, 通过改变主动轮与从动轮上传动带的接触半径进行变速。
由于现有的无极变速装置采用传动带或摩擦盘传递动力, 传动带和摩擦 盘容易损坏、不能承受较大的载荷, 因而现有无极变速装置输出的扭矩较小, 应用范围较小; 且结构复杂、 传动效率低。 发明内容
本发明提供一种无极变速装置, 用于解决现有技术中无极变速装置输 出的扭矩较小, 且结构复杂、 传动效率低的技术缺陷。
本发明提供一种无极变速装置, 包括行星轮系、 壳体、 多组弹性摩擦 片和液压控制装置;
所述行星轮系具有齿轮腔, 所述行星轮系的齿轮安装在所述齿轮腔 内;
所述多组弹性摩擦片分别设置在所述齿轮的齿轮间隔内, 每组弹性摩 擦片的外轮廓与所述齿轮的齿顶轮廓间隙配合;
每组弹性摩擦片包括两个与所述齿轮间隔形状相匹配的弹性片, 两个 弹性片两端对接形成储油腔, 且对接处具有间隙;
所述壳体内腔中充满液压油且所述行星轮系安装在所述壳体内, 所述 液压控制装置用于控制所述储油腔内的油压, 以控制每组弹性摩擦片与所 述齿轮的之间摩擦力大小, 控制所述行星轮系各齿轮相对转动速度, 以调 节所述行星轮系的传动比。
本发明提供的无极变速装置, 将行星轮系的齿轮安装在齿轮腔内, 通 过弹性摩擦片和压盘将行星轮系封闭, 通过压盘控制装置控制所述行星轮 系与所述弹性摩擦片间隙内的油压并同时控制所述行星轮系、 弹性摩擦片 和齿轮齿顶端的摩擦力, 可同歩改变啮合液压腔内的油压和行星轮系、 弹 性摩擦片和压盘之间的摩擦力, 进而调节行星轮系的传动比, 与现有技术 相比, 由于采用的齿轮传动, 因而该无极变速装置强度高且输出扭矩大, 适用大功率无极变速, 与现有技术相比, 由于采用摩擦力和液压双重同歩 调节系统, 因而该无极变速装置的传动效率更高, 与现有技术相比, 由于 采用压盘控制装置, 因而该无极变速装置的调节系统结构更简单紧凑, 调 节传动比更容易。 附图说明 图 1为本发明实施例提供的无极变速装置的主视图;
图 2为沿图 1中 A-A方向的剖视图;
图 3为图 2所示的一组弹性摩擦片的结构示意图;
图 4为本发明实施例提供的滑块底座的主视图;
图 5为图 4所述滑块底座的俯视图。
具体实施方式
参考图 1-3,图 1为本发明第一实施例提供的无极变速装置的主视图; 图 2为沿图 1中 A-A方向的剖视图; 图 3为图 2所示的一组弹性摩擦片的 结构示意图。
如图 1-3所示, 本实施例提供的无极变速装置包括行星轮系、壳体 1、 多组弹性摩擦片 2和液压控制装置。
行星轮系具有齿轮腔, 行星轮系的齿轮安装在齿轮腔内且与齿轮腔间 隙配合; 多组弹性摩擦片 2分别安装在行星轮系的齿轮间隔内, 各组弹性 摩擦片 2的形状和大小与相应的齿轮间隔匹配, 每组弹性摩擦片 2的外轮 廓与齿顶轮廓间隙配合。
每组弹性摩擦片 2包括两个与齿轮间隔形状相匹配的弹性片, 分别为 第一弹性片 21和第二弹性片 22, 第一弹性片 21和第二弹性片 22两端对 接形成储油腔 23, 且对接处具有间隙 24。
壳体 1内腔中充满液压油且行星轮系安装在壳体 1内, 液压控制装置 用于控制储油腔 23内的油压, 以控制每组弹性摩擦片 2与齿轮的之间摩 擦力大小, 控制行星轮系各齿轮相对转动速度, 以调节所述行星轮系的传 动比。
在本实施例中, 行星轮系可以包括太阳轮 3、 行星轮 4和圆环 52 ; 液 压控制装置可以包括第一压盘 71和第二压盘 72, 行星轮 4通过行星轮轴 就安装在第一压盘 71和第二压盘 72上且与太阳轮 3啮合。 第一压盘 71 和第二压盘 72同轴间隔布置, 圆环 52套设在行星轮系外部, 以形成齿轮 腔, 太阳轮 3和行星轮 4安装在齿轮腔内且与齿轮腔间隙配合。
第一弹性片 21和第二弹性片 22的中部固定在第一压盘 71上, 第一 压盘 71和第二压盘 72能够沿行星轮系的轴向移动, 以调节储油腔 23内 的油压。 第一弹性片 21和第二弹性片 22上可以设置有安装孔, 第一压盘 71上可以设置有螺纹孔,通过螺钉将第一弹性片 21和第二弹性片 22固定 在第一压盘 71上。
驱动第一压盘 71和第二压盘 72沿行星轮系的轴向移动的方式可以有 多种, 可以通过驱动装置向第一压盘 71和第二压盘 72沿行星轮系轴向的 推力和拉力, 以驱动第一压盘 71和第二压盘 72轴向移动。 通过调节第一 压盘 71和第二压盘 72相对距离调节所述储油腔 23内的油压, 以调节每 组弹性摩擦片 2与行星轮系齿轮的之间摩擦力, 以及第一压盘 71和第二 压盘 72与行星轮系侧端面的摩擦力。
行星轮 4能够绕行星轮轴的轴线转动, 太阳轮 3能够绕太阳轮轴 31 的轴线转动, 太阳轮 3与行星轮 4的厚度相等, 可以根据实际需要确定太 阳轮 3与行星轮 4的厚度和齿数。 具体地, 太阳轮 3和行星轮 4的两侧端 面均与第一压盘 71的内壁间隙配合, 行星轮 4的外齿轮廓与圆环 52内壁 间隙配合, 每组弹性摩擦片 2均与太阳轮 3、 行星轮 4的外齿轮廓间隙配 合, 弹性摩擦片 2的厚度与太阳轮 3、 行星轮 4的厚度相同, 圆环 52、 第 一压盘 71和第二压盘 72将太阳轮 3、 行星轮 4封闭在齿轮腔内。 圆环 52 也可以为齿圈, 齿圈的内齿与行星轮 4的外齿啮合。
行星轮 4的外齿轮廓与圆环 52内壁的配合精度以及第一压盘 71和第 二压盘 72的内壁与太阳轮 3和行星轮 4侧端面的配合精度, 应满足在行 星轮 4在正常转动 (非变速工况) 时, 圆环 52和第一压盘 71的内壁对行 星轮 4没有摩擦力或具有很小的摩擦力, 同时配合间隙的大小尽量不使液 压油通过, 也就是能够满足太阳轮 3和行星轮 4的正常转动, 同时上述间 隙也不漏油。
同样, 不需要变速时, 弹性摩擦片 2与太阳轮 3、 行星轮 4配合间隙 的大小, 也应满足太阳轮 3和行星轮 4的正常转动。
本实施例提供的无极变速装置, 在实际应用中, 源动力可以从太阳轮 3输入, 将太阳轮轴 31作为动力输入轴, 驱动力从第一压盘 71输出, 第 一压盘 71上具有动力输出轴 54, 也可以将动力输出轴 54与第一压盘 71 制成一体结构, 为了降低制造难度, 动力输出轴 54与第一压盘 71也可以 为分体结构,分别加工出动力输出轴 54和第一压盘 71后,再组装在一起。
下面具体说明无极变速装置工作原理和过程:
若源动力 (电机、 发动机或其他动力) 通过太阳轮轴 31输入给太阳 轮 3, 假设太阳轮轴 31驱动太阳轮 3顺时针旋转, 则太阳轮 3驱动行星轮 4逆时针旋转,同时太阳轮 3与行星轮 4的啮合力驱动第一压盘 71顺时针 旋转; 在这种工况下, 第一压盘 71的转速小于太阳轮 3的转速, 该无极 变速装置为减速装置。
当需要变速时, 通过控制第一压盘 71和第二压盘 72之间的距离, 以 控制弹性摩擦片 2的储油腔 23内的油压, 当储油腔 23内的油压逐渐增大 时, 第一弹性片 21和第二弹性片 22在油压的作用下发生形变, 进而增大 了第一弹性片 21和第二弹性片 22与行星轮系的摩擦力, 同时, 第一压盘 71和第二压盘 72与行星轮系端面的摩擦力也增大,当第一压盘 71和第二 压盘 72的距离减小到一定值时, 太阳轮 3与行星轮 4无相对运动, 第一 压盘 71与太阳轮 3同歩转动、 转速相同。 上述变速过程中, 太阳轮 3与 第一压盘 71的传动比从较小值逐渐增大至一比一, 该无极变速装置实现 无极增速。
若源动力从第一压盘 71输入, 驱动力从太阳轮 3输出, 在这种工况 下, 太阳轮 3的转速大于第一压盘 71的转速, 该无极变速装置为增速装 置。
当需要变速时, 通过控制第一压盘 71和第二压盘 72之间的距离, 以 控制弹性摩擦片 2的储油腔 23内的油压, 当储油腔 23内的油压逐渐增大 时, 第一弹性片 21和第二弹性片 22在油压的作用下发生形变, 进而增大 了第一弹性片 21和第二弹性片 22与行星轮系的摩擦力, 同时, 第一压盘 71和第二压盘 72与行星轮系端面的摩擦力也增大,当第一压盘 71和第二 压盘 72的距离减小到一定值时, 太阳轮 3与行星轮 4无相对运动, 第一 压盘 71与太阳轮 3同歩转动、 转速相同。 上述变速过程中, 第一压盘 71 与太阳轮 3的传动比从较大值逐渐减小至一比一, 该无极变速装置实现无 极减速并可以增加输出扭矩。
本实施例提供的无极变速装置, 将行星轮系的齿轮安装在齿轮腔内, 通过弹性摩擦片和压盘将行星轮系封闭, 通过压盘控制装置控制所述行星 轮系与所述弹性摩擦片间隙内的油压并同时控制所述行星轮系、 弹性摩擦 片和齿轮齿顶端的摩擦力, 可同歩改变啮合液压腔内的油压和行星轮系、 弹性摩擦片和压盘之间的摩擦力, 进而调节行星轮系的传动比, 与现有技 术相比, 由于采用的齿轮传动,因而该无极变速装置强度高且输出扭矩大, 适用大功率无极变速, 与现有技术相比, 由于采用摩擦力和液压双重同歩 调节系统, 因而该无极变速装置的传动效率更高, 与现有技术相比, 由于 采用压盘控制装置, 因而该无极变速装置的调节系统结构更简单紧凑, 调 节传动比更容易。
进一歩地, 液压控制装置还包括驱动装置, 该驱动装置能够驱动第一 压盘 71和第二压盘 72在太阳轮轴 31上滑动, 调节储油腔 23内的油压, 以调节每组弹性摩擦片 2与齿轮的之间摩擦力, 以及第一压盘 71和第二 压盘 72与述行星轮系侧端面的摩擦力。
驱动装置可以有多种实现形式, 例如可以采用液压、 电动或机械手动 等方式驱动第二压盘 72沿太阳轮轴 31上滑动。 在实际应用中, 以源动力从太阳轮 3输入为例, 当太阳轮 3和行星轮 4旋转时, 壳体 1的内腔 11中的液压油通过第一压盘 71、 第二压盘 72与 行星轮系一侧的间隙流入储油腔 23。 当需要变速时, 通过驱动装置控制第 一压盘 71、 第二压盘 72与行星轮系的间隙大小以控制其内油压。
当驱动装置带动第一压盘 71和第二压盘 72压向行星轮系时, 第一压 盘 71和第二压盘 72将行星轮系内各齿轮端面密封, 因而弹性摩擦片 2的 储油腔 23内油压增大, 第一弹性片 21和第二弹性片 22产生变形, 与行 星轮系中的各齿轮的齿顶摩擦力增大, 并且第一压盘 71和第二压盘 72与 行星轮系内各齿轮端面的摩擦力也增大, 使得太阳轮 3与行星轮 4的啮合 力逐渐增大, 驱动第一压盘 71的转速逐渐增大, 当油压增大到一定值时, 第一压盘 71与太阳轮 3同歩转动、 转速相同。
图 4为本发明实施例提供的滑块底座的主视图; 图 5为图 4所述滑块 底座的俯视图。 如图 4和 5所示, 在上述实施例的基础上, 具体地, 驱动 装置 73包括滑块 731、 滑块底座 732、 挡块 733、 连杆 734、 压紧轴承套 735和操纵杆 736。
滑块底座 732固设在第二压盘 72的外侧面上, 滑块底座 732上具有 倾斜滑槽 7321,滑块 731具有与倾斜滑槽 7321相适应的倾斜面,滑块 731 滑设在倾斜滑槽 7321内, 滑块 731的外端面与挡块 733抵接, 挡块 733 固定在壳体 1内壁上。
滑块 731下端与连杆 734上端铰接, 连杆 734下端与压紧轴承套 735 前端铰接, 压紧轴承套 735滑设在太阳轮轴 31上, 操纵杆 736下端与壳 体 1下部铰接, 操纵杆 736中部套设在太阳轮轴 31上且抵接在压紧轴承 套 735后端, 操纵杆 736上部从壳体 1上部伸出。
具体地, 滑块底座 732可以通过螺钉固定在第二压盘 72外端面上, 滑块 731可以为三角块, 滑块 731的竖直面抵接在挡块 733上, 滑块 731 的倾斜面与倾斜滑槽 7321的倾斜底面贴合。 可以在壳体 1内部靠近下方 的位置设置一个支撑块, 操纵杆 736的下部与支撑块铰接, 另外可以在操 纵杆 736上部铰接一个操纵杆连杆, 通过操纵杆连杆控制操纵杆 736, 便 于控制操纵杆 736。
需要变速时, 扳动操纵杆 736, 操纵杆 736中部推动压紧轴承套 735 在太阳轮轴 31上滑动, 通过连杆 734带动滑块 731在倾斜滑槽 7321内滑 动, 以调节第二压盘 72与行星轮系侧端的压力。 本实施例提供的驱动装 置, 通过机械方式实现驱动装置, 结构简单, 控制方便。
需要说明的是, 本发明提供的无极变速装置不仅适用于单排行星轮 系, 同样也适用于两排行星轮系或多排行星轮系, 此外, 还适用于两级行 星轮系或多级行星轮系, 且每种行星轮系中行星轮的数量可以有多种选 择, 其中两级或多级行星轮系指的是, 一级行星轮系的输出为另一极行星 轮系的输入。 当然, 行星轮系中的齿轮数量越多, 则液压控制装置需要调 节压力越低, 可以增大液压控制装置的调节精度。 此外, 弹性摩擦片 2的 数量和形状也取决于行星轮系中齿轮的数量和尺寸, 可以根据实际情况设 计弹性摩擦片 2的外形结构。
另外, 上述实施例中的无极变速装置可以有多种功率输出方式, 也就 是动力输出轴和动力输出轴安装方式有多种选择, 如动力输入轴安装在太 阳轮 3上, 动力输出轴安装在第一压盘 71上。 或输入轴安装在第一压盘 71上, 输出轴安装在太阳轮 3上; 或者动力输入轴安装在太阳轮 3上, 动 力输出轴安装在所述第一压盘 71和 /或圆环 52上, 其他具体安装方式不 再赘述。
最后需要说明的是, 壳体 1与动力输入轴和动力输出轴的配合处安装 有油封, 防止壳体 1漏油, 壳体 1上部开设有气孔, 使得壳体 1内的气压 与外部气压相同, 有利于液压油循环流动。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种无极变速装置, 其特征在于, 包括行星轮系、 壳体、 多组弹 性摩擦片和液压控制装置;
所述行星轮系具有齿轮腔, 所述行星轮系的齿轮安装在所述齿轮腔 内;
所述多组弹性摩擦片分别设置在所述齿轮的齿轮间隔内, 每组弹性摩 擦片的外轮廓与所述齿轮的齿顶轮廓间隙配合;
每组弹性摩擦片包括两个与所述齿轮间隔形状相匹配的弹性片, 两个 弹性片两端对接形成储油腔, 且对接处具有间隙;
所述壳体内腔中充满液压油且所述行星轮系安装在所述壳体内, 所述 液压控制装置用于控制所述储油腔内的油压, 以控制每组弹性摩擦片与所 述齿轮的之间摩擦力大小, 控制所述行星轮系各齿轮相对转动速度, 以调 节所述行星轮系的传动比。
2、 根据权利要求 1 所述的无极变速装置, 其特征在于, 所述行星轮 系包括太阳轮、 行星轮和圆环, 所述液压控制装置包括第一压盘和第二压 盘; 所述行星轮通过行星轮轴安装在所述第一压盘和第二压盘上且与所述 太阳轮啮合;
所述第一压盘和第二压盘同轴间隔布置, 所述圆环套设在所述行星轮 系外部上, 以形成所述齿轮腔;
每组弹性摩擦片中的弹性片的中部固定在所述第一压盘上, 所述第一 压盘和第二压盘能够沿所述行星轮系的轴向移动, 调节所述储油腔内的油 压, 以调节每组弹性摩擦片与所述齿轮的之间摩擦力, 以及所述第一压盘 和第二压盘与所述行星轮系侧端面的摩擦力。
3、 根据权利要求 2所述的无极变速装置, 其特征在于, 所述弹性片 上设置有安装孔, 所述第一压盘上设置有螺纹孔, 通过螺钉将所述弹性片 固定在所述第一压盘上。
4、 根据权利要求 2所述的无极变速装置, 其特征在于, 所述液压控 制装置还包括驱动装置;
所述第一压盘滑太阳轮轴上且设在所述行星轮系两侧;
所述驱动装置能够驱动所述第一压盘和第二压盘在所述太阳轮轴上 滑动。
5、 根据权利要求 4所述的无极变速装置, 其特征在于, 所述驱动装 置包括滑块、 滑块底座、 挡块、 连杆、 压紧轴承套和操纵杆;
所述滑块底座固设在所述第二压盘的外侧面上, 所述滑块底座上具有 倾斜滑槽, 所述滑块具有与所述倾斜滑槽相适应的倾斜面, 所述滑块滑设 在所述倾斜滑槽内, 所述滑块的外端面与所述挡块抵接, 所述挡块固定在 所述壳体内壁上;
所述滑块下端与所述连杆上端铰接, 所述连杆下端与所述压紧轴承套 前端铰接, 所述压紧轴承套滑设在所述太阳轮轴上, 所述操纵杆下端与所 述壳体下部铰接, 所述操纵杆中部套设在所述太阳轮轴上且抵接在所述压 紧轴承套后端, 所述操纵杆上部从所述壳体上部伸出;
扳动所述操纵杆, 所述操纵杆中部推动所述压紧轴承套在所述太阳轮 轴上滑动, 通过所述连杆带动所述滑块在所述倾斜滑槽内滑动, 以调节所 述第二压盘与所述行星轮系侧端的压力和间隙。
6、 根据权利要求 2-5任一所述的无极变速装置, 其特征在于, 所述 圆环具体为齿圈, 所述齿圈的内齿与所述行星轮的外齿啮合。
7、 根据权利要求 2-5任一项所述的无极变速装置, 其特征在于, 所 述行星轮为两排或多排行星轮。
8、 根据权利要求 2-5任一项所述的无极变速装置, 其特征在于, 所 述行星轮系的动力输入轴安装在所述太阳轮上, 所述行星轮系的动力输出 轴安装在所述第一压盘上。
PCT/CN2014/080418 2013-07-12 2014-06-20 无极变速装置 WO2015003552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310293843.0A CN103557301B (zh) 2013-07-12 2013-07-12 无级变速装置
CN201310293843.0 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015003552A1 true WO2015003552A1 (zh) 2015-01-15

Family

ID=50011627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080418 WO2015003552A1 (zh) 2013-07-12 2014-06-20 无极变速装置

Country Status (2)

Country Link
CN (1) CN103557301B (zh)
WO (1) WO2015003552A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557301B (zh) * 2013-07-12 2016-09-14 郎静明 无级变速装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2050506U (zh) * 1989-03-29 1990-01-03 姚一中 无级变速器
US5971880A (en) * 1998-08-07 1999-10-26 Keiser; Fred Infinitely variable ratio transmission
US20030032517A1 (en) * 1998-08-07 2003-02-13 Fred Keiser Infinitely variable ratio transmission five piston variator
CN101956788A (zh) * 2010-09-09 2011-01-26 江苏泰隆减速机股份有限公司 内置停车制动器行走减速机
CN102320528A (zh) * 2011-06-20 2012-01-18 康少松 起重机用双速加快放装置的起升机构
CN202326936U (zh) * 2011-11-25 2012-07-11 宁波德辰液压科技有限公司 行走驱动装置
CN102635677A (zh) * 2012-05-09 2012-08-15 北京理工大学 一种牵引传动无级变速器
CN103557301A (zh) * 2013-07-12 2014-02-05 郎静明 无极变速装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB465363A (en) * 1935-11-26 1937-05-06 Edmund Paul Jerrard Improvements in and relating to rotary motors, pumps and the like
AT311179B (de) * 1970-04-27 1973-11-12 Deckel Ag Friedrich Zahnradmotor bzw. -pumpe
CN1194344A (zh) * 1996-10-12 1998-09-30 张玉良 液控行星轮式无级变速传动方法
DE102010056106B4 (de) * 2010-12-23 2012-07-19 Magna Powertrain Ag & Co. Kg Getriebeeinheit
CN102155526B (zh) * 2011-04-12 2013-05-08 江苏大学 一种机械-液粘复合式无级调速装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2050506U (zh) * 1989-03-29 1990-01-03 姚一中 无级变速器
US5971880A (en) * 1998-08-07 1999-10-26 Keiser; Fred Infinitely variable ratio transmission
US20030032517A1 (en) * 1998-08-07 2003-02-13 Fred Keiser Infinitely variable ratio transmission five piston variator
CN101956788A (zh) * 2010-09-09 2011-01-26 江苏泰隆减速机股份有限公司 内置停车制动器行走减速机
CN102320528A (zh) * 2011-06-20 2012-01-18 康少松 起重机用双速加快放装置的起升机构
CN202326936U (zh) * 2011-11-25 2012-07-11 宁波德辰液压科技有限公司 行走驱动装置
CN102635677A (zh) * 2012-05-09 2012-08-15 北京理工大学 一种牵引传动无级变速器
CN103557301A (zh) * 2013-07-12 2014-02-05 郎静明 无极变速装置

Also Published As

Publication number Publication date
CN103557301B (zh) 2016-09-14
CN103557301A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
TWI615294B (zh) 具有雙離合器的電動車用兩速變速箱
JP6028507B2 (ja) 電気自動車用駆動装置
US20190078672A1 (en) Four-Speed Transaxle for Electric Vehicle
TWI607899B (zh) 電動車用兩速變速箱
JP2013108619A5 (zh)
CN108591381B (zh) 一种新型锥轮传动无级变速系统
WO2018045128A2 (en) Electric axle transmission with a ball variator continuously variable planetary transmission with and without torque vectoring for electric and hybrid electric vehicles
KR102258744B1 (ko) 하이브리드 차량의 견인 시스템
KR20140047053A (ko) 두 개의 서로 다른 기어단을 구비하여 전기 모터의 로터에 통합된 기어박스
CN110985625B (zh) 一种调速部件内置的无级变速装置
JP5093536B2 (ja) 無段変速機アセンブリ
CN103899728B (zh) 一种气控式双行星轮制动离合器
CN205534053U (zh) 自动变速器
WO2015003552A1 (zh) 无极变速装置
CN102758896A (zh) 行星齿轮机械式无级变速驱动桥
CN209511040U (zh) 电动汽车用电动滚轮式无级变速总成
CN102673310A (zh) 内控棘爪变速电动轮毂
CN107107734A (zh) 具有包括双周转齿轮系的可变速度传递装置的用于驱动机动车辆的动力系、尤其是用于混合型车辆的动力系
KR20130063795A (ko) 차량용 인휠구동 시스템
JP5975750B2 (ja) 動力伝達装置
CN201970791U (zh) 内控棘爪变速电动轮毂
CN110762173B (zh) 一种齿轮传动的三轴调速锥盘式无级变速器
CN110762172B (zh) 一种三轴调速的锥盘式无级变速器
KR100587554B1 (ko) 무단변속기
CN201141409Y (zh) 一种新型车用自动离合器的制动反转装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14823703

Country of ref document: EP

Kind code of ref document: A1