WO2015001975A1 - ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置 - Google Patents

ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置 Download PDF

Info

Publication number
WO2015001975A1
WO2015001975A1 PCT/JP2014/066317 JP2014066317W WO2015001975A1 WO 2015001975 A1 WO2015001975 A1 WO 2015001975A1 JP 2014066317 W JP2014066317 W JP 2014066317W WO 2015001975 A1 WO2015001975 A1 WO 2015001975A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
wafer support
inclined surface
holder
support
Prior art date
Application number
PCT/JP2014/066317
Other languages
English (en)
French (fr)
Inventor
啓介 深田
賢治 百瀬
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2015001975A1 publication Critical patent/WO2015001975A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present invention relates to a wafer support and a chemical vapor deposition apparatus using the support.
  • a chemical vapor deposition method is used as an industrial method for forming a layer on a substrate such as a manufacturing process of a semiconductor or a semiconductor element.
  • Semiconductors fabricated using this chemical vapor deposition method are used in many industrial fields.
  • silicon carbide (SiC) has excellent physical properties such as a band gap of about 3 times, a breakdown electric field strength of about 10 times, and a thermal conductivity of about 3 times that of silicon (Si). Therefore, semiconductor devices using silicon carbide are expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like.
  • a SiC epitaxial wafer is usually used for manufacturing such a SiC semiconductor device.
  • the SiC epitaxial wafer is manufactured by epitaxially growing a SiC single crystal thin film (SiC epitaxial layer) on the surface of a SiC single crystal substrate (SiC wafer) manufactured using a sublimation recrystallization method or the like.
  • the SiC epitaxial layer functions as an active region in the SiC semiconductor device.
  • a chemical vapor deposition (CVD) apparatus is used in which a SiC epitaxial layer is deposited and grown on the surface of a heated SiC wafer while supplying a source gas into the chamber.
  • the epitaxial growth of SiC is performed at a high temperature of 1500 ° C. or higher.
  • CVD method used for epitaxial growth of SiC there are various forms such as a method of flowing a gas in the horizontal direction and a method of flowing a gas in the vertical direction.
  • the horizontal hot wall method described in Patent Document 1 and Patent Document 2 and the self-revolving CVD apparatus described in Patent Document 3 are typical.
  • epitaxial growth is performed by circulating a material gas on a SiC substrate maintained at a high temperature.
  • the film thickness of epitaxial growth may change between the upstream side and the downstream side of the gas, or the doping concentration may change. Therefore, in a recent apparatus, a SiC substrate is rotated during crystal growth by rotating a wafer support (susceptor) on which a wafer is placed (see Patent Document 2).
  • the wafer is placed on a wafer support.
  • a circular concave countersunk portion is provided on the wafer support so that the wafer does not move due to rotation. It is possible to suppress the movement of the wafer by placing the SiC wafer on the countersunk portion.
  • a ring-shaped wafer holder made of a member separate from the wafer support base may be provided in the periphery of the wafer mounting surface on which the wafer of the wafer support base is placed. By providing the wafer holder, it is possible to prevent the wafer from moving due to rotation.
  • a self-revolving type apparatus is used as an apparatus for simultaneously epitaxially growing a plurality of wafers (see Patent Document 3).
  • the self-revolving type device is a device having a mechanism in which a mounting plate on which a plurality of wafer support bases are mounted rotates (revolves), and the wafer support base itself rotates (spins).
  • an SiC wafer is mounted on a wafer support (substrate holder) and epitaxial growth is performed.
  • the substrate holder is accommodated in a rotatable state in the plurality of concave accommodating portions of the mounting plate.
  • a cover plate for covering the wafer is disposed between the wafer placed on the susceptor (wafer support) and the sealing (top plate) facing the susceptor. ing.
  • This cover plate can prevent deposits (particles) deposited on the ceiling from dropping and adhering to the wafer surface.
  • deposits deposited on the ceiling can be prevented from falling onto the wafer surface, but deposits deposited on other members cannot be prevented from flying back onto the wafer surface.
  • An object of the present invention is to provide a wafer support that can stably deposit and grow a thick layer on the surface of the wafer, and a chemical vapor deposition apparatus equipped with such a wafer support.
  • a wafer support used in a chemical vapor deposition apparatus for forming a layer on a wafer wherein the wafer support has a wafer mounting surface at the center of the upper surface and a wafer at the periphery.
  • a support portion, and the wafer support portion has a wafer support side surface that surrounds and rises around the side surface of the wafer to be placed, and further surrounds the wafer support side surface from the upper end of the wafer support side surface.
  • a wafer support having a peripheral upper surface including a lower inclined surface that descends radially outward.
  • the peripheral upper surface has a flat surface parallel to the wafer mounting surface between the wafer support side surface and the lower inclined surface, according to any one of (1) to (5).
  • the wafer support according to 1. The wafer support base according to (6), wherein a width of the flat surface is 5 mm or less.
  • the wafer support base according to the present invention has a wafer support side surface that surrounds and rises around the side surface of the wafer to be placed, and further radially outward so as to surround the wafer support side surface from the upper end of the wafer support side surface. And a peripheral upper surface including a downwardly inclined surface that descends downward. For this reason, even if the crystal deposited and grown on the lower inclined surface of the wafer support part is peeled off, it easily falls to the outside of the wafer support table.
  • the particles are present at a position lower than the upper end of the wafer support side surface, and therefore do not have a downwardly inclined surface. Compared to the case, it is possible to prevent particles from flying again on the wafer surface.
  • the crystal growth of the layer deposited and grown by the chemical vapor deposition method becomes non-uniform, and the quality of the layer grown and deposited significantly decreases.
  • the wafer support portion having the peripheral upper surface can prevent the separated crystal fragments and particles from adhering to the wafer surface, thereby forming a high-quality layer.
  • the wafer support portion and the wafer support base can be formed of different materials.
  • the material of the wafer holder can be freely selected.
  • the wafer holder can be made of the same material as the layer formed by the chemical vapor deposition apparatus. If the material of the wafer holder is the same material as the layer formed by the chemical vapor deposition apparatus, it is possible to prevent the crystals deposited and grown on the wafer holder from being separated due to the difference in thermal expansion coefficient. Moreover, the effect which prevents a crystal
  • the wafer to be placed becomes a wall, and the separated crystal fragments and particles existing on the lower inclined surface are on the wafer surface. It is possible to suppress the re-flying.
  • the wafer support side surface that surrounds and rises around the wafer support portion and the wafer support side surface that surrounds the wafer support side surface from the upper end of the wafer support side surface is just to have the downward inclined surface which descend
  • the wafer support according to the present invention is not particularly limited to an apparatus, but can be applied to a chemical vapor deposition apparatus that forms a film while the wafer rotates. This is because in the method of forming a film while the wafer rotates, it is necessary to fix the position of the wafer with the wafer support portion. You may apply to the system in which a wafer is planetary (self-revolving).
  • FIG. 1 It is a cross-sectional schematic diagram which shows another example of the wafer support stand to which this invention is applied, (a) is a cross-sectional schematic diagram in which a downward inclined surface consists of a curved surface, (b) is a downward inclined surface consisting of a plane and a curved surface. It is a cross-sectional schematic diagram. It is a cross-sectional schematic diagram which shows an example in case the wafer support stand to which this invention is applied has a flat surface. It is a cross-sectional schematic diagram which shows an example in case the wafer support stand to which this invention is applied has an outer peripheral surface.
  • FIG. 1 It is a schematic diagram showing an example of a wafer holder to which the present invention is applied, (a) is a plan view, (b) is a sectional view taken along line BB of (a). It is a cross-sectional schematic diagram which shows another example of the wafer holder to which this invention is applied, (a) is a cross-sectional schematic diagram in which the upper surface of the wafer holder is a curved surface, and (b) is a cross-section in which the upper surface of the wafer holder is a flat surface and a curved surface. It is a schematic diagram. It is a cross-sectional schematic diagram which shows an example in case the wafer holder to which this invention is applied has a flat surface. It is a cross-sectional schematic diagram which shows an example in case the wafer holder to which this invention is applied has an outer peripheral surface.
  • FIG. 1 is a schematic cross-sectional view of a chemical vapor deposition apparatus provided with a wafer support that is an embodiment to which the present invention is applied.
  • FIG. 2 is a schematic plan view showing an example of a mounting plate for accommodating a wafer support that is an embodiment to which the present invention is applied.
  • 3A and 3B are schematic views showing an example of a wafer support that is an embodiment to which the present invention is applied.
  • FIG. 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. is there.
  • a chemical vapor deposition apparatus including a wafer support that is an embodiment to which the present invention is applied is, for example, a CVD (chemical vapor deposition) apparatus 1 as shown in FIG.
  • a layer (not shown) is deposited and grown on the surface of the heated wafer W while supplying the source gas G into a chamber (film formation chamber) that can be evacuated under reduced pressure (not shown).
  • the source gas G may be one containing silane (SiH 4 ) as the Si source and propane (C 3 H 8 ) as the carbon (C) source, and hydrogen ( Those containing H 2 ) can be used.
  • the CVD apparatus 1 includes a mounting plate 2 on which a plurality of wafers W are placed inside a chamber, and an upper surface of the mounting plate 2 so as to form a reaction space K between the mounting plate 2. And a peripheral wall 4 that is positioned outside the mounting plate 2 and the ceiling 3 so as to surround the periphery of the reaction space K.
  • the mounting plate 2 includes a disk-shaped rotary table 5 and a rotary shaft 6 attached to the central part of the rotary table lower surface 5b.
  • the turntable 5 is rotatably supported integrally with the rotating shaft 6.
  • a plurality of concave accommodating portions 8 for accommodating a disk-shaped wafer support base (substrate holder) 7 on which the wafer W is placed are provided.
  • the accommodating portions 8 have a circular shape in plan view (viewed from the turntable upper surface 5a side), and are provided in a plurality at equal intervals in the circumferential direction (rotation direction) of the turntable 5. In FIG. 2, the case where the six accommodating parts 8 are provided along with equal intervals is illustrated.
  • the wafer support 7 has a wafer mounting surface 7a and a wafer support 7b.
  • the wafer mounting surface 7 a is substantially horizontal when the wafer support 7 is accommodated in the mounting plate 2.
  • the wafer support base 7 has an outer diameter that is slightly smaller than the inner diameter of the accommodating portion 8 of the turntable 5, and is supported from below by a pin-like small protrusion (not shown) at the center of the bottom surface of the accommodating portion 8. It is done. With these pin-shaped small protrusions, the wafer support 7 is supported by the accommodating portion 8 of the turntable 5 so as to be rotatable around each central axis.
  • the wafer support portion 7b surrounds the side surface of the wafer to be placed and rises downward.
  • the wafer support portion 7b is inclined downward toward the outside in the radial direction so as to surround the wafer support side surface from the upper end of the wafer support side surface.
  • the wafer support portion in the present invention refers to a portion of the wafer support base that is located on the upper side and includes a wafer support side surface and a peripheral upper surface including a downward inclined surface.
  • the wafer support portion is a portion corresponding to a ring-shaped wafer holder according to a second embodiment to be described later.
  • the downward inclined surface 7b2 of the wafer support portion 7b only needs to be lowered outward in the radial direction so as to surround the wafer support side surface from the upper end of the wafer support side surface.
  • the shape of the downward inclined surface 7b2 may be a flat surface, a curved surface, or a mixed shape thereof, and is not limited.
  • the downward inclined surface 7b2 When the downward inclined surface 7b2 includes a flat surface (FIG. 3B), the downward inclined surface 7b2 preferably has an inclination of 3 ° to 45 ° with respect to the wafer mounting surface 7a. Further, it preferably has an inclination of 10 ° or more and 30 ° or less. If the inclination angle of the lower inclined surface 7b2 with respect to the wafer mounting surface 7a is less than 3 °, the effect of dropping the deposited crystal fragments and particles toward the outer periphery is reduced, and the re-flight on the wafer surface is sufficiently suppressed. Can not.
  • the wafer surface side of the wafer support portion has a sharp shape (the angle between the wafer support side surface 7b1 and the lower inclined surface 7b2 becomes steep), Crystals are likely to grow in that part.
  • the crystals deposited on this portion have a small grounding surface and are unstable, so that they are more easily peeled off, and it is difficult to suppress dropping on the wafer surface.
  • the downward inclined surface 7b2 of the wafer support portion 7b only needs to descend radially outward so as to surround the wafer support side surface from the upper end of the wafer support side surface, and the downward inclined surface 7b2 may include a curved surface.
  • the downward inclined surface 7b2 is a curved surface (FIG. 4A)
  • the tangent planes at all points on the curved surface have an inclination of 3 ° to 45 ° with respect to the wafer mounting surface 7a. Is preferred. Further, it preferably has an inclination of 10 ° or more and 30 ° or less.
  • the angle of inclination of the tangential plane with respect to the wafer mounting surface 7a at all points of the lower inclined surface 7b2 is less than 3 °, the effect of dropping the deposited crystal fragments and particles toward the outer periphery is reduced, and the effect is reduced on the wafer surface. It will not be possible to sufficiently suppress flying.
  • the inclination angle of the tangential plane with respect to the wafer mounting surface 7a at all points of the downward inclined surface 7b2 is larger than 45 °, the wafer surface side of the wafer support portion has a sharp shape (the angle between the wafer support side surface 7b1 and the downward inclined surface 7b2). And the crystal grows easily in that portion. Crystals deposited on this portion are more easily peeled off because the ground contact surface is smaller and more unstable, and it is difficult to suppress the fall on the wafer surface.
  • FIG. 4A shows an example of an upward projection
  • the tangent plane at all points on the curved surface which is convex downward or includes irregularities, is as described above with respect to the wafer mounting surface 7a. Any material that satisfies the inclination may be used.
  • the downward inclined surface 7b2 only needs to include a curved surface, and may have a shape in which a plane and a curved surface are mixed as shown in FIG. Also in this case, it is preferable that the tangent plane at all points of the curved surface and the plane has an inclination of 3 ° or more and 45 ° or less with respect to the wafer mounting surface 7a. Further, it preferably has an inclination of 10 ° or more and 30 ° or less.
  • the width of the lower inclined surface 7b2 of the wafer support portion 7b when viewed in plan is 10 mm or more.
  • the width of the downward inclined surface is narrow, and it becomes difficult to sufficiently suppress the crystal fragments and particles deposited on the downward inclined surface 7b2 from re-flighting on the wafer surface.
  • the peripheral upper surface may have a flat surface 7b3 parallel to the wafer mounting surface between the wafer support side surface 7b1 and the downward inclined surface 7b2 (FIG. 5).
  • the width of the flat surface 7b3 is preferably 5 mm or less. This is because if the width of the flat surface 7b3 is larger than 5 mm, crystal fragments and particles deposited on the flat surface 7b3 re-fly on the wafer surface.
  • the peripheral upper surface only needs to have the above-described shape, and may have, for example, an outer peripheral surface 7b4 extending from the outer edge of the downward inclined surface 7b2 toward the outer periphery (FIG. 6). Any shape may be sufficient as the shape of the outer peripheral surface 7b4, and arbitrary shapes can be selected.
  • the upper end of the wafer support side surface 7b1 is at a position lower than the upper surface of the wafer W after the wafer is placed. Since the upper end of the wafer support side surface 7b1 is at a position lower than the upper surface of the wafer W after the wafer is placed, the wafer side surface becomes a wall. Therefore, it is possible to further suppress the crystal fragments and particles deposited on the lower inclined surface 7b2 on which the wafer support portion is inclined from re-flying on the wafer W.
  • the upper surface of the wafer W after placing the wafer is on the same surface as the upper surface 5a of the turntable or on the lower side thereof.
  • the wafer W is higher than the turntable upper surface 5a, the flow of the raw material gas (turbulence in the laminar flow) tends to occur at the edge of the wafer.
  • the flow of the raw material gas is disturbed, there is a case where the characteristics of the film formed on the edge of the wafer are different from the inside.
  • the wafer mounting surface 7a of the wafer support 7 is preferably circular.
  • the wafer mounting surface 7a may have a linear portion corresponding to the OF in a shape similar to the wafer. If there is a portion not covered by the wafer on the wafer mounting surface 7a of the wafer support base 7, crystals will also be deposited on that portion. This deposit may cause the wafer to float with respect to the wafer mounting surface 7a. Therefore, by providing a straight portion on the wafer placement surface 7a, it is possible to prevent unnecessary crystals from being deposited on the wafer placement surface 7a outside the OF.
  • the mounting plate 2 adopts a so-called planetary (automatic revolution) system.
  • the rotation shaft 6 is rotationally driven by the drive motor (not shown)
  • the mounting plate 2 is rotationally driven around its central axis.
  • the plurality of wafer support bases 7 are rotationally driven around their respective central axes when a driving gas different from the source gas is supplied between the lower surface of each wafer support base 7 and the accommodating portion. (Not shown).
  • film formation can be performed uniformly on each wafer W placed on the plurality of wafer support tables 7.
  • the ceiling 3 is a disk-shaped member having a diameter substantially coincident with the turntable 5 of the mounting plate 2.
  • the ceiling 3 forms a flat reaction space K with the mounting plate 2 while facing the upper surface of the turntable 5.
  • the peripheral wall 4 is a ring-shaped member that surrounds the outer periphery of the mounting plate 2 and the ceiling 3.
  • the CVD apparatus 1 includes an induction coil 10 for heating the mounting plate 2 and the ceiling 3 by high-frequency induction heating as a heating means for heating the wafer W placed on the wafer support 7.
  • the induction coil 10 is disposed to face the lower surface of the mounting plate 2 (the turntable 5) and the upper surface of the ceiling 3 in a state of being close to each other.
  • the mounting plate 2 (the rotary table 5 and the wafer support table 7) and the ceiling 3 are heated by high frequency induction heating.
  • the wafer W placed on the wafer support 7 can be heated by radiation from the mounting plate 2 and the ceiling 3, heat conduction from the wafer support 7, or the like.
  • the mounting plate 2 (the rotary table 5 and the wafer support table 7) and the ceiling 3 are made of a graphite (carbon) material having excellent heat resistance and good thermal conductivity as a material suitable for high-frequency induction heating. Can do. In order to prevent generation of particles or the like from graphite (carbon), a material whose surface is coated with SiC, TaC or the like can be suitably used.
  • the heating means for the wafer W is not limited to the above-described high-frequency induction heating, but may be resistance heating or the like.
  • the heating means is not limited to the configuration disposed on the lower surface side of the mounting plate 2 (the turntable 5) and the upper surface side of the ceiling 3, but may be configured only on either one of these.
  • the CVD apparatus 1 includes a gas introduction pipe (gas introduction port) 11 for introducing the source gas G into the reaction space K from the center of the upper surface of the ceiling 3 as gas supply means for supplying the source gas G into the chamber.
  • the gas introduction pipe 11 is formed in a cylindrical shape and passes through a circular opening 12 provided at the center of the ceiling 3, and its tip (lower end) faces the inside of the reaction space K. Is arranged in.
  • the flange part 11a which protruded in the diameter expansion direction is provided in the front-end
  • the source gas G is supplied in parallel to the plane of the wafer W by causing the source gas G released from the gas introduction pipe 11 to flow radially from the inside to the outside of the reaction space K. Is possible. Gas that is no longer necessary in the chamber can be discharged out of the chamber through an exhaust port (not shown) provided outside the peripheral wall 4.
  • the ceiling 3 is heated by the induction coil 10 at a high temperature.
  • the gas introduction pipe 11 is set to a low temperature.
  • the inner peripheral part of the sealing (the central part where the opening 12 is formed) and the gas introduction pipe 11 are not in contact with each other.
  • the sealing 3 is supported vertically upward by placing the inner peripheral portion thereof on a support ring (support member) 13 attached to the outer peripheral portion of the gas introduction pipe 11. The ceiling 3 can be moved in the vertical direction.
  • the CVD apparatus 1 includes a shielding plate 14 disposed close to the lower surface of the ceiling 3.
  • the shielding plate 14 is made of a disk-shaped graphite (carbon) substrate whose surface is covered with a SiC film or the like.
  • the shielding plate 14 is detachably attached in the chamber. Specifically, the shielding plate 14 is supported vertically upward by placing the outer peripheral portion thereof on a support portion 15 provided so as to protrude from the inner peripheral surface of the peripheral wall 4. By supporting only the outer peripheral portion of the shielding plate 14, contact between the gas introduction pipe 11 and the inner peripheral portion of the shielding plate 14 can be avoided.
  • the shielding plate 14 is heated by the induction coil 10 to a high temperature, and the gas introduction pipe 11 is at a low temperature for introducing the raw material gas G.
  • the shielding plate 14 can prevent deposits from the reaction space from depositing on the lower surface of the ceiling 3 and deposit deposits on the lower surface thereof.
  • the support portion 15 is a shielding plate support portion provided on the inner peripheral surface of the peripheral wall 4 over the entire circumference, and the outer peripheral portion of the shielding plate 14 is placed on the shielding plate support portion. Since the outer peripheral portion of the shielding plate 14 is in contact with the support portion 15 over the entire circumference, it is possible to prevent gas from flowing from the outer peripheral portion side of the shielding plate 14 toward the ceiling 3. is there.
  • a cylindrical sleeve portion 16 protrudes from the center of the lower surface of the ceiling 3 so as to be positioned inside the shielding plate 14.
  • the sleeve portion 16 can make it difficult for gas to flow from the inner peripheral side of the shielding plate 14 toward the ceiling 3.
  • the shielding plate 14 may not be provided, and the sealing 3 may be disposed to face the upper surface of the mounting plate 2 without the shielding plate 14 being interposed.
  • the wafer support base 7 is supported by the accommodating part 8 of the turntable 5 and used to support the wafer W on the wafer placement surface 7a of the wafer support base 7.
  • the wafer support portion 7b has a peripheral upper surface including a downward inclined surface 7b2 that descends radially outward so as to surround the wafer support side surface from the upper end of the wafer support side surface 7b1. Therefore, it is possible to suppress the crystal fragments and particles deposited on the wafer support portion 7b from flying again onto the surface of the wafer W, thereby forming a high-quality layer.
  • FIG. 7A and 7B are schematic views showing an example of a wafer support to which the present invention is applied.
  • FIG. 7A is a plan view
  • FIG. 7B is a cross-sectional view taken along line BB in FIG.
  • the second embodiment is different from the first embodiment in that the wafer support portion 7b is configured by a ring-shaped wafer holder 9 that is a separate member.
  • Other components are the same as those in the first embodiment.
  • the wafer holder 9 surrounds the side surface of the wafer to be placed, and rises downward in the radial direction so as to surround the wafer holder side surface 9b1 from the upper end of the wafer holder side surface 9b1 and the wafer holder side surface 9b1. And an upper surface of the wafer holder including the inclined surface 9b2.
  • the wafer holder 9 surrounds the side surface of the wafer to be placed and rises up, and the lower side descends radially outward from the upper end of the wafer holder side surface 9b1 so as to surround the wafer holder side surface 9b1. And an upper surface of the wafer holder including the inclined surface 9b2.
  • the width of the lower inclined surface 9b2 of the wafer holder 9 when viewed from above is preferably 10 mm or more. When the width is less than 10 mm, the inclination width of the lower inclined surface 9b2 is narrow, and it becomes difficult to sufficiently suppress the crystal fragments and particles deposited on the lower inclined surface 9b2 from flying back onto the wafer surface. .
  • the downward inclined surface 9b2 When the downward inclined surface 9b2 includes a flat surface (FIG. 7b), the downward inclined surface 9b2 preferably has an inclination of 3 ° or more and 45 ° or less with respect to the wafer mounting surface 7a. Further, it preferably has an inclination of 10 ° or more and 30 ° or less. If the inclination angle of the lower inclined surface 9b2 with respect to the wafer mounting surface 7a is less than 3 °, the effect of dropping the deposited crystal fragments and particles toward the outer periphery is reduced, and the re-flight on the wafer surface is sufficiently suppressed. become unable.
  • the wafer surface side of the wafer holder has a sharp shape (the angle between the wafer holder side surface 9b1 and the lower inclined surface 9b2 becomes steep), Crystals are likely to grow in the part. Crystals deposited on this portion are more easily peeled off because the ground contact surface is smaller and more unstable, and it is difficult to suppress the fall on the wafer surface.
  • the downward inclined surface 9b2 includes a curved surface (FIG. 8a)
  • the tangent planes at all points on the curved surface have an inclination of 3 ° to 45 ° with respect to the wafer mounting surface 7a. Further, it preferably has an inclination of 10 ° or more and 30 ° or less. If the tilt angle with respect to the wafer mounting surface 7a is less than 3 ° on this tangential plane, the effect of dropping the deposited crystal fragments and particles toward the outer periphery is reduced, and it is possible to sufficiently suppress re-flighting on the wafer surface. Disappear.
  • the wafer surface side of the wafer holder has a sharp shape (the angle between the wafer holder side surface 9b1 and the lower inclined surface 9b2 becomes steep), This makes it easier for crystals to grow. Crystals deposited on this portion are more easily peeled off because the ground contact surface is smaller and more unstable, and it is difficult to suppress the fall on the wafer surface.
  • FIG. 8A shows an example of an upward projection
  • the tangent plane at all points on the curved surface has the above-described relationship with respect to the wafer mounting surface 7a.
  • the downward inclined surface 9b2 only needs to include a curved surface, and may have a shape in which a plane and a curved surface are mixed as shown in FIG.
  • the tangent plane at all points of the curved surface and the plane has an inclination of 3 ° or more and 45 ° or less with respect to the wafer mounting surface 7a. Further, it preferably has an inclination of 10 ° or more and 30 ° or less.
  • the upper surface of the wafer holder may have a flat surface 9b3 parallel to the wafer mounting surface between the wafer holder side surface 9b1 and the downward inclined surface 9b2 (FIG. 9).
  • the width of the flat surface 9b3 is preferably 5 mm or less. If this width is larger than 5 mm, crystal fragments and particles deposited on the flat surface 9b3 re-fly on the wafer surface.
  • the upper surface of the wafer holder only needs to have the above-described shape, and may have, for example, an outer peripheral surface 9b4 that spreads from the outer edge of the lower inclined surface 9b2 toward the outer periphery.
  • the shape of the outer edge surface 9b4 may be any shape, and an arbitrary shape can be selected.
  • the upper end of the wafer holder side surface 9b1 is preferably lower than the upper surface of the wafer W after the wafer is placed. Since the upper end of the wafer holder side surface 9b1 is at a low position of the wafer W after the wafer is placed, the wafer side surface becomes a wall, and crystal fragments and particles deposited on the lower inclined surface 9b2 are formed on the wafer W surface. Can be prevented from flying again.
  • the material of the wafer holder 9 is not limited, it is desirable that the material be the same as the layer to be grown. If the materials are the same, there is no difference in the coefficient of thermal expansion due to the difference in materials, so that the crystals deposited on the wafer holder 9 can be prevented from peeling off.
  • the wafer holder 9 is superior in that a material different from that of the wafer support 7 can be used.
  • a material different from that of the wafer support 7 can be used.
  • the wafer support portion corresponding to the wafer support portion 7b in the first embodiment
  • the SiC on the wafer support 7 is sublimated by heating the wafer, which adversely affects the back surface of the wafer.
  • the wafer support portion is formed of TaC that is generally used as a material for the wafer support base 7
  • a SiC layer is deposited on the TaC film, and the deposited SiC is easily peeled off due to a difference in thermal expansion from the TaC film.
  • the wafer holder 9 when the wafer holder 9 is used, different materials can be used for the wafer support 7 and TaC, and for the wafer holder 9 and SiC, respectively.
  • a wafer holder 9 made of a SiC wafer and SiC is placed on the wafer support 7. Therefore, the chamber inner side of the wafer support 7 is covered with SiC, and there is no substance that inhibits epitaxial growth.
  • the back surface of the SiC wafer is TaC, sublimation of carbon can be reduced, and roughening of the back surface can be suppressed.
  • the wafer holder 9 is excellent in that an appropriate material can be selected for each member.
  • the wafer holder 9 also has an effect of preventing crystals from growing on the member under the wafer holder 9. Since the surface of the wafer support 7 is covered with the wafer W and the wafer holder 9 during film formation, the wafer support 7 is always maintained in an initial clean state by removing the wafer W and the wafer holder 9 after film formation. be able to.
  • the outer side in the radial direction is formed so as to surround the wafer holder side surface 9b1 from the upper end of the wafer holder side surface 9b1.
  • 1 CVD (chemical vapor deposition) apparatus 2 mounting plate, 3 ceiling, 4 peripheral wall, 5 rotating table, 5a rotating table upper surface, 5b rotating table lower surface, 6 rotating shaft, 7 wafer support table, 7a wafer mounting surface, 7b Wafer support portion, 7b1 Wafer support side surface, 7b2 Downward inclined surface, 7b3 Flat surface, 7b4 Outer peripheral surface, 8 Housing portion, 9 Wafer holder, 9b1 Wafer holder side surface, 9b2 Downward inclined surface, 9b3 Flat surface, 9b4 Outer peripheral surface, 10 Induction coil, 11 gas introduction pipe, 11a flange, 12 opening, 13 support ring, 14 shielding plate, 15 support, 16 sleeve, K reaction space, W wafer, G source gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

ウェハWに層を形成するCVD装置(1)に用いられるウェハ支持台(7)において、ウェハ支持台(7)は、その上面の中央部にウェハ載置面(7a)を有するとともに、周辺部にウェハ支持部(7b)を有し、ウェハ支持部(7b)は、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面(7b1)を有し、さらに、そのウェハ支持側面の上端からそのウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面(7b2)を含む周辺上面を有する。

Description

ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置
 本発明は、ウェハ支持台、およびその支持台が用いられてなる化学的気相成長装置に関する。本願は、2013年7月5日に、日本に出願された特願2013-142005に基づき優先権を主張し、その内容をここに援用する。
 一般に半導体や半導体素子の製造工程などの基板上に層を形成する工業的手法として、化学的気相成長法が用いられている。この化学的気相成長法を用いて作製された半導体は、産業上多くの分野で利用されている。
 例えば、炭化珪素(SiC)は、シリコン(Si)に対してバンドギャップが約3倍、絶縁破壊電界強度が約10倍、熱伝導度が約3倍という優れた物性を有している。そのため、炭化珪素を用いた半導体デバイスは、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。
 このようなSiC半導体デバイスの製造には、通常、SiCエピタキシャルウェハが用いられる。SiCエピタキシャルウェハは、昇華再結晶法等を用いて作製されたSiC単結晶基板(SiCウェハ)の面上に、SiC単結晶薄膜(SiCエピタキシャル層)をエピタキシャル成長させることで作製される。SiCエピタキシャル層は、SiC半導体デバイスにおいて活性領域として機能する。
 エピタキシャルウェハの製造装置としては、チャンバ内に原料ガスを供給しながら、加熱されたSiCウェハの面上にSiCエピタキシャル層を堆積成長させる化学的気相成長(CVD)装置が用いられる。
 SiCのエピタキシャル成長は、1500℃以上の高温で行われる。SiCのエピタキシャル成長に用いられるCVD法としては、横方向にガスを流す方法や縦方向にガスを流す方法等、種々の形態が挙げられる。特許文献1や特許文献2に記載されている横型のホットウォール法や特許文献3に記載されている自公転型のCVD装置は、その典型的なものである。いずれの方法においても、高温度に保持されたSiC基板上に材料ガスを流通させてエピタキシャル成長が行われる。その際、ガスの上流側と下流側でエピタキシャル成長の膜厚が変化したり、ドーピング濃度が変化したりすることがある。そのため、最近の装置では、ウェハを載置したウェハ支持台(サセプター)を回転させることにより、結晶成長中にSiC基板を回転させている(特許文献2参照)。
 これらの装置において、ウェハはウェハ支持台の上に載置されている。このウェハが回転により移動しないように、ウェハ支持台に円形凹状の座繰り加工部を設けられている。座繰り加工部にSiCウェハが載置されることで、ウェハが移動することを抑制できる。座繰り加工部の代わりに、ウェハ支持台のウェハを載置するウェハ載置面の周辺部に、ウェハ支持台と別個の部材からなるリング状のウェハホルダーを設けてもよい。ウェハホルダーを設けることで、ウェハが回転により移動することを抑制することができる。
 複数枚のウェハを同時にエピタキシャル成長させる装置では、自公転型のものが用いられる(特許文献3参照)。自公転型の装置とは、複数のウェハ支持台を乗せた搭載プレートが回転(公転)し、さらにウェハ支持台自体が回転(自転)する機構を有する装置を言う。
 自公転型のCVD装置では、ウェハ支持台(基板ホルダ)上にSiCウェハが搭載されてエピタキシャル成長が行われる。基板ホルダは、搭載プレートの複数の凹状の収容部に自転可能な状態で収容されている。
 ところで、CVD装置では、成膜中にチャンバ内に原料ガスを供給しながら堆積成長させる。そのため、ウェハ面上以外の部分にも結晶の堆積成長が生じてしまう問題があった。成膜を繰り返すと、ウェハ面上以外の部分に堆積した堆積物が剥がれて、ウェハ面上に落下することがある。この場合、ウェハ面上に付着した堆積物によって、成膜される層の質を著しく低下させることになる。このような問題は、成膜を繰り返す量産型のCVD装置において特に顕著なものとなる。
 そこで、下記特許文献4に記載の発明では、サセプター(ウェハ支持台)に載置されたウェハと、サセプターに対向したシーリング(天板)との間に、ウェハを覆うためのカバープレートが配置されている。このカバープレートにより、シーリングに堆積した堆積物(パーティクル)が脱落してウェハ面上に付着するのを阻止することができる。
 しかしこの場合、シーリングに堆積した堆積物がウェハ面上に落下するのを防ぐことができるが、その他の部材に堆積した堆積物がウェハ面上に再飛来することを防ぐことはできなかった。
 そのため、その他の部材(特に、成膜されるウェハの近傍に存在するウェハ支持部)に堆積した堆積物がウェハ面上に飛来しないようにすることが望まれていた。
特開2008-270682号公報 特開2011-18772号公報 特表2004-507619号公報 特開2009-164162号公報
 本発明は、このような従来の事情に鑑みて提案されたものであり、載置されたウェハの周辺部材上に堆積した堆積物をウェハ面上に再飛来させないようにすることによって、高品質な層をウェハの面上に安定して堆積成長させることを可能としたウェハ支持台、および、そのようなウェハ支持台を備えた化学的気相成長装置を提供することを目的とする。
 本発明は、以下の手段を提供する。
(1)ウェハ上に層を形成する化学的気相成長装置に用いられるウェハ支持台であって、前記ウェハ支持台は、その上面の中央部にウェハ載置面を有するとともに、周辺部にウェハ支持部を有し、前記ウェハ支持部は、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面を有し、さらに、ウェハ支持側面の上端からそのウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面を含む周辺上面を有することを特徴とするウェハ支持台。
(2)前記ウェハ支持部の下方傾斜面は平面を含み、その平面が、ウェハ載置面に対して、3°以上45°以下の傾きを有することを特徴とする(1)に記載のウェハ支持台。
(3)前記下方傾斜面は曲面を含むことを特徴とする(1)または(2)のいずれかに記載のウェハ支持台。 
(4)前記曲面は、その曲面上の全ての点における接平面が、ウェハ載置面に対して、3°以上45°以下の傾きを有することを特徴とする(3)に記載のウェハ支持台。
(5)前記ウェハ支持部の下方傾斜面を、平面視した幅が10mm以上であることを特徴とする(1)に記載のウェハ支持台。
(6)前記周辺上面は、前記ウェハ支持側面と前記下方傾斜面の間にウェハ載置面に対して平行な平坦面を有することを特徴とする(1)~(5)のいずれか一項に記載のウェハ支持台。
(7)前記平坦面の幅が5mm以下であることを特徴とする(6)に記載のウェハ支持台。
(8)前記ウェハ支持側面の上端が、載置されるウェハの上面より低い位置にあることを特徴とする(1)~(7)のいずれか一項に記載のウェハ支持台。
(9)前記ウェハ支持部が、前記ウェハを載置可能とする開口部を有するリング状のウェハホルダーからなることを特徴とする(1)~(8)のいずれか一項に記載のウェハ支持台。
(10)前記ウェハホルダーが、前記層と同じ材料からなることを特徴とする(1)~(9)のいずれか一項に記載のウェハ支持台。
(11)前記ウェハホルダーが、SiCからなることを特徴とする(10)に記載のウェハ支持台。
(12)(1)~(11)のいずれか一項に記載のウェハ支持台が用いられてなる化学的気相成長装置。
 本発明に係るウェハ支持台では、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面を有し、さらに、ウェハ支持側面の上端からそのウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面を含む周辺上面を有する。そのため、ウェハ支持部の下方傾斜面上に堆積成長した結晶が剥離しても、ウェハ支持台の外側へ落下しやすくなる。また、装置のシーリングや内壁から下方傾斜面上に落下したパーティクルが原料ガスの供給により再飛散した場合でも、パーティクルはウェハ支持側面の上端より低い位置に存在するため、下方傾斜面を備えていない場合と比較して、ウェハ面上にパーティクルが再飛来するのを抑制することができる。この剥離した結晶の破片及びパーティクルがウェハ面上に付着すると、化学的気相法によって堆積成長する層の結晶成長を不均一にし、堆積成長する層の質を著しく低下させてしまう。そのため、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面と、そのウェハ支持側面の上端からウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面を含む周辺上面を有するウェハ支持部により、剥離した結晶の破片及びパーティクルがウェハ面上に付着するのを防ぎ、高品質な層を形成することができる。
 ウェハ支持部をリング状のウェハホルダーで構成することによって、ウェハ支持部とウェハ支持台とを別の材質で形成することができる。これによりウェハホルダーの材質を自由に選択することが可能となる。例えばウェハホルダーを、化学的気相成長装置で形成する層と同じ材質にすることができる。ウェハホルダーの材質が化学的気相成長装置で形成する層と同じ材料であれば、ウェハホルダー上に堆積成長した結晶が熱膨張率差により剥離するのを抑制することができる。また、ウェハホルダーによって、ウェハホルダーの下の部材に結晶が堆積するのを防止する効果を得ることもできる。
 ウェハ支持側面の上端を、載置されるウェハの上面より低い位置にすることで、載置されるウェハが壁となり、下方傾斜面上に存在する剥離した結晶の破片及びパーティクルがウェハ面上に再飛来するのをより抑えることができる。
 本発明に係るウェハ支持台では、ウェハ支持部が載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面と、そのウェハ支持側面の上端からウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面を有していればよい。下方傾斜面は、どのような形状を有していても、剥離した結晶の破片及びパーティクルがウェハ面上に飛来するのを抑制することが可能である。
 本発明に係るウェハ支持台は、特に装置の限定をするものではないが、特にウェハが自転しながら成膜する方式の化学的気相成長装置に適用することができる。これは、ウェハが自転しながら成膜する方式では、よりウェハの位置をウェハ支持部で固定する必要があるためである。ウェハがプラネタリ(自公転)する方式に適用してもよい。
本発明を適用した化学的気相成長装置の一実施形態を示す断面模式図である。 本発明を適用した化学的気相成長装置の一実施形態を構成する搭載プレートの一例を示す平面模式図である。 本発明を適用したウェハ支持台の一例を示す模式図であり、(a)は平面図、(b)は(a)のA-A線に沿う断面図である。 本発明を適用したウェハ支持台のその他の一例を示す断面模式図であり、(a)は下方傾斜面が曲面からなる断面模式図であり、(b)は下方傾斜面が平面と曲面からなる断面模式図である。 本発明を適用したウェハ支持台が平坦面を有する場合の一例を示す断面模式図である。 本発明を適用したウェハ支持台が外周面を有する場合の一例を示す断面模式図である。 本発明を適用したウェハホルダーの一例を示す模式図であり、(a)は平面図、(b)は(a)のB-B線に沿う断面図である。 本発明を適用したウェハホルダーのその他の一例を示す断面模式図であり、(a)はウェハホルダー上面が曲面からなる断面模式図であり、(b)はウェハホルダー上面が平面と曲面からなる断面模式図である。 本発明を適用したウェハホルダーが平坦面を有する場合の一例を示す断面模式図である。 本発明を適用したウェハホルダーが外周面を有する場合の一例を示す断面模式図である。
 以下、本発明を適用したウェハ支持台及びそれを備えた化学的気相成長装置について、図面を参照して詳細に説明する。本実施形態では、自公転する成膜装置の一例を基に説明を行うが、本発明は当該成膜装置に限定するものではない。
 以下の説明で用いる図面は、特徴を分かり易くするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(ウェハ支持台及びそれを備えた化学的気相成長装置:第一の実施形態)
 図1は、本発明を適用した一実施形態であるウェハ支持台を備えた化学的気相成長装置の断面模式図である。図2は、本発明を適用した一実施形態であるウェハ支持台を収容する搭載プレートの一例を示す平面模式図である。図3は、本発明を適用した一実施形態であるウェハ支持台の一例を示す模式図であり、(a)は平面図、(b)は(a)のA-A線に沿う断面図である。
 本発明を適用した一実施形態であるウェハ支持台を備える化学的気相成長装置は、例えば、図1に示すようなCVD(化学的気相成長)装置1である。CVD装置1では、図示を省略する減圧排気可能なチャンバ(成膜室)内に、原料ガスGを供給しながら、加熱されたウェハWの面上に層(図示せず。)を堆積成長させる。例えば、SiCをエピタキシャル成長させる場合、原料ガスGには、Si源にシラン(SiH)、炭素(C)源にプロパン(C)を含むものを用いることができ、キャリアガスとして水素(H)を含むものを用いことができる。
 具体的に、このCVD装置1は、チャンバの内部において、複数のウェハWが載置される搭載プレート2と、この搭載プレート2との間で反応空間Kを形成するように搭載プレート2の上面に対向して配置されたシーリング(天板)3と、搭載プレート2およびシーリング3の外側に位置して反応空間Kの周囲を囲むように配置された周壁4とを備えている。
 搭載プレート2は、円盤状の回転台5と、この回転台下面5b中央部に取り付けられた回転軸6とを有する。回転台5は、この回転軸6と一体に回転自在に支持されている。
 回転台上面5a側には、ウェハWが載置される円盤状のウェハ支持台(基板ホルダ)7を収容する複数の凹状の収容部8が設けられている。
 収容部8は、平面視(回転台上面5a側から見て)円形状をなし、回転台5の周方向(回転方向)に等間隔に複数並んで設けられている。図2では、収容部8が等間隔に6個並んで設けられている場合を例示する。
 ウェハ支持台7は、ウェハ載置面7aと、ウェハ支持部7bとを有する。ウェハ載置面7aは、ウェハ支持台7が搭載プレート2に収容されたときにほぼ水平になる。
ウェハ支持台7は、回転台5の収容部8の内径よりも僅かに小さい外径を有し、収容部8の底面の中央部にあるピン状の小突起(図示せず)によって下から支えられる。このピン状の小突起により、ウェハ支持台7は、回転台5の収容部8に各々の中心軸周りに回転自在に支持されている。
 ウェハ支持部7bは、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面7b1とウェハ支持側面の上端からウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面7b2を含む周辺上面とを有する。係る構成を備えることにより、ウェハ支持部の下方傾斜面7b2上に堆積した結晶が剥離しても、剥離した結晶の破片が下方に傾斜する下方傾斜面に沿ってウェハWの存在しない外周に向かって落下しやすくなる。また、装置のシーリングや内壁から下方傾斜面7b2上に落下したパーティクルが、原料ガスの供給により再飛散した場合でも、径方向外方に向けて下降する下方傾斜面7b2を備えていない場合と比較して、ウェハ面上にパーティクルが再飛来するのを抑制することができる。これは、下方傾斜面7b2に再飛来したパーティクルは、ウェハ支持側面の上端より低い位置に存在するためである。
 ここで、本発明におけるウェハ支持部とは、ウェハ支持台のうち、上部側に位置する部分であって、ウェハ支持側面と下方傾斜面を含む周辺上面とを含む部分を指す。またウェハ支持部は、後述する第2の実施形態のリング状のウェハホルダーに相当する部分である。
 ウェハ支持部7bの下方傾斜面7b2は、ウェハ支持側面の上端からウェハ支持側面を囲むように、径方向外方に向けて下降していればよい。下方傾斜面7b2の形状は、平面でも、曲面でも、それらの混ざり合った形状でもよく制限はない。
 下方傾斜面7b2が平面を含む場合(図3(b))には、下方傾斜面7b2がウェハ載置面7aに対して3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。下方傾斜面7b2のウェハ載置面7aに対する傾斜角が3°未満では、堆積した結晶の破片やパーティクルを外周に向けて落下させる効果が小さくなり、ウェハ面上に再飛来することを十分に抑制できない。下方傾斜面7b2のウェハ載置面7aに対する傾斜角が45°より大きくなると、ウェハ支持部のウェハ面側が尖った形状(ウェハ支持側面7b1と下方傾斜面7b2との角度が急峻になる)となり、その部分に結晶が成長しやすくなる。この部分に堆積した結晶は、接地面が小さく、不安定なためより剥離しやすく、ウェハ面上に落下するのを抑制することが難しくなる。
 ウェハ支持部7bの下方傾斜面7b2は、ウェハ支持側面の上端からウェハ支持側面を囲むように、径方向外方に向けて下降していればよく、下方傾斜面7b2が曲面を含むものでもよい。下方傾斜面7b2が曲面である場合(図4(a))には、その曲面上の全ての点における接平面が、ウェハ載置面7aに対して3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。下方傾斜面7b2のすべての点における接平面のウェハ載置面7aに対する傾斜角が3°未満では、堆積した結晶の破片やパーティクルを外周に向けて落下させる効果が小さくなり、ウェハ面上に再飛来することを十分に抑制できなくなる。下方傾斜面7b2のすべての点における接平面のウェハ載置面7aに対する傾斜角が45°より大きくなると、ウェハ支持部のウェハ面側が尖った形状(ウェハ支持側面7b1と下方傾斜面7b2との角度が急峻になる)となり、その部分に結晶が成長しやすくなる。この部分に堆積した結晶は、接地面が小さくより不安定なためより剥離しやすく、ウェハ面上に落下するのを抑制することが難しくなる。
 図4(a)では上に凸の例を示しているが、下に凸でも、凹凸を含むものでも、その曲面上の全ての点における接平面がウェハ載置面7aに対して、上述の傾きを満たすものであればよい。下方傾斜面7b2は曲面を含むものであればよく、図4(b)のように平面と曲面が混在した形状でもよい。この場合も、曲面および平面の全ての点における接平面が、ウェハ載置面7aに対して3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。
 ウェハ支持部7bの下方傾斜面7b2を平面視した幅が、10mm以上であることが好ましい。この幅が10mm未満であると、下方傾斜面の幅が狭く、下方傾斜面7b2上に堆積した結晶の破片やパーティクルが、ウェハ面上に再飛来することを十分に抑制することが難しくなる。
 周辺上面は、ウェハ支持側面7b1と下方傾斜面7b2の間に、ウェハ載置面に対して平行な平坦面7b3を有していてもよい(図5)。この平坦面7b3の幅は、5mm以下であることが好ましい。平坦面7b3の幅が5mmより大きいと、平坦面7b3上に堆積した結晶の破片やパーティクルが、ウェハ面上に再飛来してしまうためである。
 また周辺上面は、上述の形状を有するものであればよく、例えば下方傾斜面7b2の外縁から外周に向かって広がる外周面7b4を有していてもよい(図6)。外周面7b4の形状はどのような形状をしてもよく、任意の形状を選択することができる。
 ウェハ支持側面7b1の上端は、ウェハ載置後のウェハWの上面より低い位置にあることが好ましい。ウェハ支持側面7b1の上端が、ウェハ載置後のウェハWの上面より低い位置にあることで、ウェハ側面が壁となる。そのためウェハ支持部の傾斜する下方傾斜面7b2上に堆積した結晶の破片及びパーティクルが、ウェハW上に再飛来するのをより抑制することができる。
 ウェハ載置後のウェハW上面は、回転台上面5aと同一面か、それよりも下側にあることが好ましい。ウェハWが回転台上面5aより高い場合、ウェハ端部で原料ガスの流れの乱れ(層流の乱れ)が生じやすくなる。原料ガスの流れの乱れが生じると、ウェハ端部の成膜された膜の特性が内側と差が生じてしまう場合がある。
 ウェハ支持台7のウェハ載置面7aは、円形であることが望ましい。ウェハにオリエーテンションフラット(OF)がついている場合は、ウェハ載置面7aは、ウェハと相似形でOFに対応する直線部があってもよい。ウェハ支持台7のウェハ載置面7a上に、ウェハに覆われていない部分があると、その部分にも結晶が堆積する。この堆積物によりウェハが、ウェハ載置面7aに対し浮く場合がある。そこで、ウェハ載置面7aに直線部を設けることにより、OFの外側のウェハ載置面7aに不要な結晶が堆積することを防止できる。
 搭載プレート2は、いわゆるプラネタリ(自公転)方式を採用している。搭載プレート2は、図示を省略する駆動モータにより回転軸6が回転駆動されると、回転台5がその中心軸周りに回転駆動される。複数のウェハ支持台7は、原料ガスとは別の駆動用ガスが各々のウェハ支持台7の下面と収容部との間に供給されることにより、各々の中心軸周りに回転駆動される仕組みとなっている(図示せず)。これにより、複数のウェハ支持台7に載置された各ウェハWに対して均等に成膜を行うことができる。
 シーリング3は、搭載プレート2の回転台5と略一致した径を有する円盤状の部材である。シーリング3は、回転台5の上面と相対向しながら、搭載プレート2との間で扁平状の反応空間Kを形成している。周壁4は、搭載プレート2およびシーリング3の外周部を取り囲むリング状の部材である。
 CVD装置1は、ウェハ支持台7に載置されたウェハWを加熱する加熱手段として、高周波誘導加熱により搭載プレート2およびシーリング3を加熱するための誘導コイル10を備えている。この誘導コイル10は、搭載プレート2(回転台5)の下面およびシーリング3の上面に、それぞれ近接した状態で対向配置されている。
 CVD装置1では、図示を省略する高周波電源から誘導コイル10に高周波電流が供給されると、搭載プレート2(回転台5およびウェハ支持台7)およびシーリング3が高周波誘導加熱により加熱される。これら搭載プレート2およびシーリング3からの輻射や、ウェハ支持台7からの熱伝導等により、ウェハ支持台7に載置されたウェハWを加熱することができる。
 搭載プレート2(回転台5およびウェハ支持台7)およびシーリング3には、高周波誘導加熱に適した材料として、耐熱性に優れ、かつ熱伝導率の良いグラファイト(カーボン)材料からなるものを用いることができる。グラファイト(カーボン)からのパーティクル等の発生を防ぐためには、表面がSiCやTaC等で被覆されたものを好適に用いることができる。ウェハWの加熱手段としては、上述した高周波誘導加熱によるものに限らず、抵抗加熱よるもの等を用いてもよい。加熱手段は、搭載プレート2(回転台5)の下面側およびシーリング3の上面側に配置された構成に限らず、これらのいずれか一方側のみに配置された構成とすることも可能である。
 CVD装置1は、チャンバ内に原料ガスGを供給するガス供給手段として、シーリング3の上面中央部から反応空間K内に原料ガスGを導入するガス導入管(ガス導入口)11を備えている。このガス導入管11は、円筒状に形成されて、シーリング3の中央部に設けられた円形状の開口部12を貫通した状態で、その先端部(下端部)が反応空間Kの内側に臨んで配置されている。
 ガス導入管11の先端部(下端部)には、拡径方向に突出されたフランジ部11aが設けられている。このフランジ部11aは、ガス導入管11の下端部から鉛直下向きに放出された原料ガスGを、その対向する回転台5との間で水平方向に放射状に流すためのものである。
 CVD装置1では、ガス導入管11から放出された原料ガスGを反応空間Kの内側から外側に向かって放射状に流すことで、ウェハWの面内に対して平行に原料ガスGを供給することが可能となっている。チャンバ内で不要になったガスは、周壁4の外側に設けられた排気口(図示せず。)からチャンバの外へと排出することが可能となっている。
 ここで、シーリング3は、誘導コイル10により高温で加熱される。これに対し、原料ガスGを導入するためにガス導入管11低温とされている。シーリングの内周部(開口部12が形成された中央部)とガス導入管11とは非接触とされている。シーリング3は、ガス導入管11の外周部に取り付けられた支持リング(支持部材)13の上に、その内周部が載置されることによって、鉛直上向きに支持されている。またシーリング3は、上下方向に移動させることが可能となっている。
 CVD装置1は、シーリング3の下面に近接して配置された遮蔽板14を備えている。この遮蔽板14は、表面がSiC膜等で被覆された円盤状のグラファイト(カーボン)基板からなる。
 遮蔽板14は、チャンバ内に着脱自在に取り付けられている。具体的には、この遮蔽板14は、周壁4の内周面から突出して設けられた支持部15の上に、その外周部が載置されることによって、鉛直上向きに支持されている。遮蔽板14の外周部のみを支持することによって、ガス導入管11とこの遮蔽板14の内周部との接触を回避することができる。ここで、遮蔽板14は、誘導コイル10により加熱されて高温となっており、ガス導入管11は、原料ガスGを導入するために低温とされている。
 遮蔽板14は、シーリング3の下面に反応空間からの堆積物が堆積するのを阻止し、その下面に堆積物を堆積させることができる。そして、遮蔽板を交換するといった簡便なメンテナンス作業を行うだけで、シーリング下面から落下して膜内に入り込むダウンフォールの低減を図ることが可能である。すなわち、従来のようなシーリングの下面に堆積した堆積物を除去するといった面倒なクリーニング作業を行う必要がない。
 支持部15は、周壁4の内周面に全周に亘って設けられた遮蔽板支持部であり、この遮蔽板支持部上に遮蔽板14の外周部が載置されている。遮蔽板14の外周部が支持部15と全周に亘って接触した状態となるため、この遮蔽板14の外周部側からシーリング3との間に向かってガスが流れ込むのを防ぐことが可能である。
 一方、シーリング3の下面中央部には、遮蔽板14の内側に位置するように、円筒状のスリーブ部16が突出して設けられている。スリーブ部16は、遮蔽板14の内周部側からシーリング3との間に向かってガスを流れ込み難くすることができる。
 CVD装置1では、遮蔽板14が設けられていなくてもよく、遮蔽板14を介さずに、搭載プレート2の上面に対向してシーリング3が配置されていてもよい。
 以上のような構造を有するCVD装置1では、ウェハ支持台7を回転台5の収容部8に支持するとともに、ウェハWをウェハ支持台7のウェハ載置面7a上に支持するために用いられるウェハ支持部7bにおいて、ウェハ支持側面7b1の上端からウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面7b2を含む周辺上面を有する。そのため、ウェハ支持部7b上に堆積した結晶の破片及びパーティクルがウェハWの面上に再飛来するのが抑制され、高品質な層を形成することが可能である。
(ウェハ支持台及びそれを備えた化学的気相成長装置:第二の実施形態)
図7は、本発明を適用したウェハ支持台の一例を示す模式図であり、(a)は平面図、(b)は(a)のB-B線に沿う断面図である。
第二の実施形態は、第一の実施形態と比べて、ウェハ支持部7bが別個の部材であるリング状のウェハホルダー9で構成されている点で異なる。その他の構成部については、第1の実施形態と同様である。
 ウェハホルダー9は、載置されるウェハの側面を囲むと共に起立してなるウェハホルダー側面9b1とウェハホルダー側面9b1の上端からウェハホルダー側面9b1を囲むように、径方向外方に向けて下降する下方傾斜面9b2を含むウェハホルダー上面とを有する。かかる構成を備えることにより、下方傾斜面9b2に堆積した結晶が剥離しても、下方傾斜面9b2の傾斜面に沿って、剥離した結晶の破片がウェハWの存在しない外周に向かって落下しやすくなる。また装置のシーリングや内壁から下方傾斜面9b2上に落下したパーティクルが、原料ガスの供給により再飛散した場合でも、径方向外方に向けて下降する下方傾斜面9b2を備えていない場合と比較して、ウェハ面上にパーティクルが再飛来するのを抑えることができる。これは、パーティクルが再飛散した下方傾斜面9b2は、ウェハホルダー側面の上端より低い位置に存在するためである。
 ウェハホルダー9は、載置されるウェハの側面を囲むと共に起立してなるウェハホルダー側面9b1と、ウェハホルダー側面9b1の上端からウェハホルダー側面9b1を囲むように径方向外方に向けて下降する下方傾斜面9b2を含むウェハホルダー上面とを有する。ウェハホルダー9の下方傾斜面9b2を上から平面視した幅は、10mm以上であることが好ましい。この幅が10mm未満であると、下方傾斜面9b2の傾斜幅が狭く、下方傾斜面9b2上に堆積した結晶の破片やパーティクルがウェハ面上に再飛来することを十分に抑制することが難しくなる。
 下方傾斜面9b2が平面を含む場合(図7b)には、下方傾斜面9b2がウェハ載置面7aに対して、3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。下方傾斜面9b2のウェハ載置面7aに対する傾斜角が3°未満では、堆積した結晶の破片やパーティクルを外周に向けて落下させる効果が小さくなり、ウェハ面上に再飛来することを十分に抑制できなくなる。下方傾斜面9b2のウェハ載置面7aに対する傾斜角が45°より大きいと、ウェハホルダーのウェハ面側が尖った形状(ウェハホルダー側面9b1と下方傾斜面9b2との角度が急峻になる)となり、その部分に結晶が成長しやすくなる。この部分に堆積した結晶は、接地面が小さくより不安定なためより剥離しやすく、ウェハ面上に落下するのを抑制することが難しくなる。
 下方傾斜面9b2が曲面を含む場合(図8a)には、その曲面上の全ての点における接平面がウェハ載置面7aに対して、3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。この接平面にウェハ載置面7aに対する傾斜角が3°未満では、堆積した結晶の破片やパーティクルを外周に向けて落下させる効果が小さくなり、ウェハ面上に再飛来することを十分に抑制できなくなる。この接平面にウェハ載置面7aに対する傾斜角が45°より大きいと、ウェハホルダーのウェハ面側が尖った形状(ウェハホルダー側面9b1と下方傾斜面9b2との角度が急峻になる)となり、その部分に結晶が成長しやすくなる。この部分に堆積した結晶は、接地面が小さくより不安定なためより剥離しやすく、ウェハ面上に落下するのを抑制することが難しくなる。
 図8(a)では上に凸の例を示しているが、下に凸でも、凹凸を含むものでも、その曲面上の全ての点における接平面が、ウェハ載置面7aに対して、上述の傾きを満たすものであればよい。下方傾斜面9b2は曲面を含むものであればよく、図8(b)のように平面と曲面が混在した形状でもよい。この場合も、曲面および平面の全ての点における接平面がウェハ載置面7aに対して、3°以上45°以下の傾きを有することが好ましい。また10°以上30°以下の傾きを有することがより好ましい。
 ウェハホルダー上面は、ウェハホルダー側面9b1と下方傾斜面9b2の間に、ウェハ載置面に対して平行な平坦面9b3を有していてもよい(図9)。この平坦面9b3の幅は5mm以下であることが好ましい。この幅が5mmより大きいと、平坦面9b3上に堆積した結晶の破片やパーティクルが、ウェハ面上に再飛来してしまう。
 ウェハホルダー上面は、上述の形状を有するものであればよく、例えば下方傾斜面9b2の外縁から外周に向かって広がる外周面9b4を有していてもよい。外縁面9b4の形状はどのような形状をしてもよく、任意の形状を選択することができる。
 ウェハホルダー側面9b1の上端は、ウェハ載置後のウェハWの上面より低い位置にあることが好ましい。ウェハホルダー側面9b1の上端が、ウェハ載置後のウェハWの低い位置にあることで、ウェハ側面が壁となって、下方傾斜面9b2上に堆積した結晶の破片及びパーティクルが、ウェハW面上に再飛来するのを防ぐことができる。
 ウェハホルダー9は材質を問わないが、成長させる層と同じ材質であることが望ましい。材質が同じであれば、材質の違いによる熱膨張率の差は生じないため、ウェハホルダー9上に堆積した結晶が剥離するのを抑えることができる。
 ウェハホルダー9は、ウェハ支持台7と材質を異なるものを利用できる点で優れている。例えば、SiCをエピタキシャル成長させる場合、ウェハ支持部(第一の実施形態におけるウェハ支持部7bに対応)がSiCで形成されていることが望ましい。しかしながら、ウェハ支持台7をウェハ支持部と同一のSiCで形成した場合、ウェハ支持台7のSiCがウェハ加熱により昇華しウェハの裏面を荒らすという悪影響を生じる。一方でウェハ支持部を一般にウェハ支持台7の材質として利用されるTaCで形成した場合、TaC被膜上にSiC層が堆積し、TaC被膜との熱膨張の差により、堆積したSiCが剥離しやすくなる。
 これに対し、ウェハホルダー9を用いると、ウェハ支持台7をTaC、ウェハホルダー9をSiCと、それぞれ異なる材質を利用することができる。この場合、ウェハ支持台7の上には、SiCウェハとSiCからなるウェハホルダー9が載置される。そのため、ウェハ支持台7のチャンバ内部側はSiCでカバーされた状態となり、エピタキシャル成長を阻害する物質は存在しなくなる。またSiCウェハの裏面はTaCとなるため、カーボンの昇華は少なくすることができ、裏面を荒らすことを抑制することができる。
 このように、部材ごとに適切な材料を選ぶことができる点で、ウェハホルダー9は優れている。
 ウェハホルダー9は、ウェハホルダー9の下の部材に結晶が成長するのを防ぐ効果も有している。ウェハ支持台7の表面は、成膜時にウェハWとウェハホルダー9によりカバーされているため、成膜後にウェハWとウェハホルダー9を取り外せば、常にウェハ支持台7を初期のきれいな状態で維持することができる。
 以上のように、ウェハWをウェハ支持台7のウェハ載置面7a上に支持するために用いられるウェハホルダー9において、ウェハホルダー側面9b1の上端からウェハホルダー側面9b1を囲むように、径方向外方に向けて下降する下方傾斜面9b2を含むウェハホルダー上面を有することにより、ウェハホルダー9上に堆積した結晶が、パーティクルとしてウェハWの面上に再飛来しにくくなり、高品質な層を形成することが可能である。
1 CVD(化学的気相成長)装置、2 搭載プレート、3 シーリング、4 周壁、5 回転台、5a 回転台上面、5b 回転台下面、6 回転軸、7 ウェハ支持台、7a ウェハ載置面、7b ウェハ支持部、7b1 ウェハ支持側面、7b2 下降傾斜面、7b3 平坦面、7b4 外周面、8 収容部、9 ウェハホルダー、9b1 ウェハホルダー側面、9b2 下方傾斜面、9b3 平坦面、9b4 外周面、10 誘導コイル、11 ガス導入管、11a フランジ部、12 開口部、13 支持リング、14 遮蔽板、15 支持部、16 スリーブ部、K 反応空間、W ウェハ、G 原料ガス

Claims (12)

  1.  ウェハ上に層を形成する化学的気相成長装置に用いられるウェハ支持台であって、
     前記ウェハ支持台は、その上面の中央部にウェハ載置面を有するとともに、周辺部にウェハ支持部を有し、
     前記ウェハ支持部は、載置されるウェハの側面を囲むと共に起立してなるウェハ支持側面を有し、さらに、ウェハ支持側面の上端からそのウェハ支持側面を囲むように、径方向外方に向けて下降する下方傾斜面を含む周辺上面を有することを特徴とするウェハ支持台。
  2.  前記ウェハ支持部の下方傾斜面は平面を含み、その平面が、ウェハ載置面に対して、3°以上45°以下の傾きを有することを特徴とする請求項1に記載のウェハ支持台。
  3.  前記下方傾斜面は曲面を含むことを特徴とする請求項1または請求項2のいずれかに記載のウェハ支持台。 
  4.  前記曲面は、その曲面上の全ての点における接平面が、ウェハ載置面に対して、3°以上45°以下の傾きを有することを特徴とする請求項3に記載のウェハ支持台。
  5.  前記ウェハ支持部の下方傾斜面を、平面視した幅が10mm以上であることを特徴とする請求項1に記載のウェハ支持台。
  6.  前記周辺上面は、前記ウェハ支持側面と前記下方傾斜面の間にウェハ載置面に対して平行な平坦面を有することを特徴とする請求項1~5のいずれか一項に記載のウェハ支持台。
  7.  前記平坦面の幅が5mm以下であることを特徴とする請求項6に記載のウェハ支持台。
  8.  前記ウェハ支持側面の上端が、載置されるウェハの上面より低い位置にあることを特徴とする請求項1~7のいずれか一項に記載のウェハ支持台。
  9.  前記ウェハ支持部が、前記ウェハを載置可能とする開口部を有するリング状のウェハホルダーからなることを特徴とする請求項1~8のいずれか一項に記載のウェハ支持台。
  10.  前記ウェハホルダーが、前記層と同じ材料からなることを特徴とする請求項1~9のいずれか一項に記載のウェハ支持台。
  11.  前記ウェハホルダーが、SiCからなることを特徴とする請求項10に記載のウェハ支持台。
  12.  請求項1~11のいずれか一項に記載のウェハ支持台が用いられてなる化学的気相成長装置。
PCT/JP2014/066317 2013-07-05 2014-06-19 ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置 WO2015001975A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142005A JP6078428B2 (ja) 2013-07-05 2013-07-05 ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置
JP2013-142005 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001975A1 true WO2015001975A1 (ja) 2015-01-08

Family

ID=52143553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066317 WO2015001975A1 (ja) 2013-07-05 2014-06-19 ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置

Country Status (2)

Country Link
JP (1) JP6078428B2 (ja)
WO (1) WO2015001975A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475635A (zh) * 2015-12-21 2018-08-31 昭和电工株式会社 晶片支承机构、化学气相沉积装置和外延晶片的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074705A (ja) * 1996-07-12 1998-03-17 Applied Materials Inc 高温サセプタ
JPH11329974A (ja) * 1998-05-12 1999-11-30 Fuji Electric Co Ltd 炭化けい素のエピタキシャル成長方法
JP2004146437A (ja) * 2002-10-22 2004-05-20 Matsushita Electric Ind Co Ltd 半導体製造装置に用いる石英ガラス製絶縁体および石英ガラス製絶縁体の再生方法
JP2004221266A (ja) * 2003-01-14 2004-08-05 Ngk Insulators Ltd 半導体製造装置用リング部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191096A (ja) * 1995-01-09 1996-07-23 Sumitomo Metal Ind Ltd 半導体用治具
JP5604907B2 (ja) * 2010-02-25 2014-10-15 信越半導体株式会社 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074705A (ja) * 1996-07-12 1998-03-17 Applied Materials Inc 高温サセプタ
JPH11329974A (ja) * 1998-05-12 1999-11-30 Fuji Electric Co Ltd 炭化けい素のエピタキシャル成長方法
JP2004146437A (ja) * 2002-10-22 2004-05-20 Matsushita Electric Ind Co Ltd 半導体製造装置に用いる石英ガラス製絶縁体および石英ガラス製絶縁体の再生方法
JP2004221266A (ja) * 2003-01-14 2004-08-05 Ngk Insulators Ltd 半導体製造装置用リング部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475635A (zh) * 2015-12-21 2018-08-31 昭和电工株式会社 晶片支承机构、化学气相沉积装置和外延晶片的制造方法
US11427929B2 (en) 2015-12-21 2022-08-30 Showa Denko K.K. Wafer supporting mechanism, chemical vapor deposition apparatus, and epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
JP6078428B2 (ja) 2017-02-08
JP2015015399A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6018909B2 (ja) ウェハホルダーおよびエピタキシャルウェハの製造装置
JP5933202B2 (ja) エピタキシャルウェハの製造装置及び製造方法
JP5865625B2 (ja) エピタキシャルウェハの製造装置及び製造方法
US20120231615A1 (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holder
JP6101591B2 (ja) エピタキシャルウェハの製造装置および製造方法
WO2017043282A1 (ja) SiCエピタキシャルウェハの製造方法及びSiCエピタキシャルウェハの製造装置
US20130255578A1 (en) Chemical vapor deposition apparatus having susceptor
JP2009164162A (ja) 気相成長装置および単結晶薄膜の成長方法
CN109841541B (zh) SiC外延生长装置
JP6562546B2 (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
JP6986872B2 (ja) ウェハ支持台、化学気相成長装置、及び、SiCエピタキシャルウェハの製造方法
KR940011099B1 (ko) 기상반응장치
JP2019169743A (ja) SiCエピタキシャルウェハの製造方法
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
WO2015001975A1 (ja) ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置
CN111349908A (zh) SiC化学气相沉积装置
JP5867913B2 (ja) 炭化珪素膜のcvd装置
JP6335683B2 (ja) SiCエピタキシャルウェハの製造装置
JP6372310B2 (ja) 化学気相成長装置に用いられるサセプタおよびそれを備えた化学気相成長装置
JP2010034337A (ja) 気相成長装置用のサセプタ
JP6587354B2 (ja) サセプタ
JP6748549B2 (ja) SiCエピタキシャルウェハの製造方法及びSiCエピタキシャルウェハの製造装置
JP2022095138A (ja) サセプタ、基板処理装置および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819658

Country of ref document: EP

Kind code of ref document: A1