WO2015001230A2 - Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante - Google Patents

Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante Download PDF

Info

Publication number
WO2015001230A2
WO2015001230A2 PCT/FR2014/051627 FR2014051627W WO2015001230A2 WO 2015001230 A2 WO2015001230 A2 WO 2015001230A2 FR 2014051627 W FR2014051627 W FR 2014051627W WO 2015001230 A2 WO2015001230 A2 WO 2015001230A2
Authority
WO
WIPO (PCT)
Prior art keywords
recess
thermal insulation
insulating
cover panel
pillar
Prior art date
Application number
PCT/FR2014/051627
Other languages
English (en)
Other versions
WO2015001230A3 (fr
Inventor
Thomas CREMIERE
Benoît MOREL
Nicolas THENARD
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN201480035723.3A priority Critical patent/CN105378368B/zh
Priority to EP14749890.1A priority patent/EP3017234B1/fr
Priority to AU2014286010A priority patent/AU2014286010B2/en
Priority to KR1020167000951A priority patent/KR102206805B1/ko
Priority to JP2016522708A priority patent/JP6415550B2/ja
Publication of WO2015001230A2 publication Critical patent/WO2015001230A2/fr
Publication of WO2015001230A3 publication Critical patent/WO2015001230A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0325Aerogel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • F17C2250/0452Concentration of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to the field of the construction of heat insulating elements for producing an insulating modular wall, in particular a tank wall for storing or transporting a cold liquid, in particular in a membrane tank for liquefied natural gas.
  • heat insulating elements are used to transmit the hydrodynamic loading of the cargo from the waterproof membrane to the double hull, which implies a compressive strength function, and to isolate the cargo from the hull of the ship, to limit the heat flow causing the evaporation of the cargo, but also to protect the hull of cryogenic temperatures.
  • FR-A-2877638 discloses a sealed and thermally insulated tank having a vessel wall attached to the hull of a floating structure.
  • the tank wall has successively, in the thickness direction from the inside to the outside of said tank, a primary watertight barrier, a primary insulating barrier, a secondary watertight barrier and a secondary insulating barrier.
  • the insulating barriers essentially consist of juxtaposed heat insulating elements.
  • Each heat insulating element includes a bottom panel, a cover panel and a thermal insulation liner disposed in the form of a layer parallel to the vessel wall. Bearing elements rise through the thickness of said thermal insulation lining to take up the compressive forces.
  • the elements carrying a heat insulating element include pillars of small cross section relative to the dimensions of the heat insulating element in a plane parallel to the tank wall.
  • An idea underlying the invention is to provide a heat-insulating element relatively easy to manufacture, having good thermal performance and wherein the thermal insulation lining can be made of a material likely to contract more than its environment when cold, for example in a low density non-structural polyurethane foam.
  • Certain aspects of the invention start from the idea of producing the thermal insulation lining with a single block of such material. Some aspects of the invention start from the idea of limiting the establishment of heat-induced stresses in the thermal insulation lining, when cold setting of the wall. Certain aspects of the invention start from the idea of providing a thermal insulation lining retained with the possibility of sliding relative to the supporting elements and a panel or several flat panels, to allow thermal contractions of different amplitude depending on the constituent materials of these elements.
  • the invention provides a heat-insulating element suitable for producing an insulating barrier in a sealed and insulating tank, the heat-insulating element comprising a flat cover panel, a thermal insulation lining arranged parallel to the panel. cover and load-bearing members which extend through the thickness of said thermal insulation liner from the cover panel to take up compressive forces, the load-bearing members having a plurality of rigid pillars of small cross section relative to the dimensions of the cover panel engaged in recesses of the thermal insulation liner and attached to the cover panel, wherein, at normal temperature, a cross-sectional dimension of the pillar is for at least one of said pillars, or for each of said pillars , smaller than a corresponding dimension of the recess in which the pillar is engaged, from my to provide a gap between the pillar and the wall of the recess.
  • such a heat-insulating element may comprise one or more of the following characteristics.
  • the heat-insulating element further comprises a stuffing element of flexible material disposed in the gap between the pillar and the wall of the recess.
  • the stuffing element is made of a material much less rigid than the thermal insulation lining so as to absorb itself most of the deformations induced by the different thermal contraction between the rigid structure and thermal insulation lining.
  • the stuffing element is made of a material chosen from very low density polymer foams, manufactured glass wool, bulk glass wool, melamine foams, aerogels, polystyrene, polyester wadding in mattresses or in bulk.
  • the pillars comprise a first pillar engaged in a first recess located in a central zone of the thermal insulation lining and a second pillar engaged in a second recess of the thermal insulation lining situated at a distance from the central zone of the thermal insulation liner, and wherein a cross-sectional dimension of the second recess is larger than a corresponding dimension of the first recess to allow differential thermal contraction between the thermal insulation liner and the cover panel, and wherein a stuffing member of flexible material is disposed in the second recess and no stuffing member of flexible material is disposed in the first recess.
  • the pillars comprise a first pillar engaged in a first recess of the thermal insulation lining and a second pillar identical to the first pillar engaged in a second recess of the thermal insulation lining, the second recess being located at a greater distance from the center of the heat-insulating liner than the first recess, and wherein a cross-sectional dimension of the second recess is larger than a corresponding dimension of the first recess to allow for differential thermal contraction between the liner. thermal insulation and cover panel.
  • all the recesses in which identical pillars are engaged have an increasing cross-sectional dimension, for example proportionally, with the distance between the recess and the center of the thermal insulation lining.
  • one or each pillar is disposed in the recess so as to be closer to a wall of the recess facing towards the center of the thermal insulation lining than to a wall of the recess turned away from the center of the thermal insulation lining.
  • the heat insulating element further comprises a flat bottom panel parallel to the flat cover panel, in which the thermal insulation lining is disposed between the bottom panel and the cover panel, the load-bearing elements extending through the thickness of said thermal insulation liner to the bottom panel, the cross section of the pillars being further small relative to the dimensions of the bottom panel and the pillars further being secured to the bottom panel.
  • the pillars can be made with various shapes and orientations. According to one embodiment, the pillars extend perpendicularly to the cover panel and, where appropriate, to the bottom panel. Oblique pillars can also be used.
  • one or each pillar may have a uniform section, which facilitates the realization and implementation of the pillar.
  • one or each pillar may have a dimension in variable section along the thickness of said heat insulating liner, the sectional dimension being decreasing in the direction of the lid panel. Because the cover panel corresponds in use to the side facing the interior of the tank where the temperature is coldest, this arrangement leaves more room for the contraction of the thermal insulation liner where its amplitude tends to be the highest.
  • the recesses can be made with various shapes and orientations.
  • one or each recess has a uniform section, which facilitates the realization of the recess.
  • one or each recess has a dimension in variable section along the thickness of said heat insulating liner, the sectional dimension being increasing in the direction of the cover panel. This arrangement also allows to leave more space for the contraction of the thermal insulation liner where its amplitude tends to be the highest.
  • the thermal insulation lining comprises a block of polymer foam, in particular polyurethane.
  • the thermal insulation liner has a relaxation slot extending in the thickness of the polymer foam block.
  • the cover panel and the bottom panel may be made of various materials, for example plywood, composite material or other material capable of transmitting the forces while maintaining acceptable thermal properties.
  • the thermal insulation liner is retained by the carrier elements with a possibility of sliding relative to the carrier elements and the cover panel.
  • the invention also provides a sealed and insulating tank disposed in a supporting structure, the vessel having a vessel wall attached to the carrier structure, said vessel wall having successively, in the direction of thickness since the interior to the exterior of said vessel, a primary watertight barrier, a primary insulating barrier, a secondary watertight barrier and a secondary insulating barrier, at least one of the primary insulating barrier and the secondary insulating barrier having a juxtaposition of a plurality of the above-mentioned heat-insulating elements.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a ship, in which a product is conveyed. cold liquid through isolated pipelines from or to a floating or land storage facility to or from the vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • FIG. 1 is a perspective view of a rigid structure suitable for producing a rectangular parallelepiped-shaped heat insulating box.
  • Figure 2 is a sectional view in a plane parallel to the cover panel of a heat insulating box, in a state at a normal temperature.
  • Figure 3 is a view similar to Figure 2, showing the heat insulating box in a state at a cold temperature.
  • FIG. 4 is an enlarged view of the area IV of FIG.
  • FIGS. 5 to 10 are perspective views of a recess that can be used in the thermal insulation liner of FIG. 2, showing different geometries of the recess.
  • FIG. 11 is a view similar to FIG. 2, showing a thermal insulation lining according to another embodiment.
  • FIG. 12 is a view similar to FIG. 2, partially showing a thermal insulation lining according to another embodiment, in a state at normal temperature and in a state at cold temperature.
  • Figure 13 is a schematic cutaway representation of a tank of LNG carrier having an insulating barrier and a loading / unloading terminal of the tank.
  • FIG. 14 is a perspective view of a rectangular parallelepiped-shaped heat insulating box.
  • FIG. 1 there is shown a parallelepiped heat insulating box 1, the insulating gasket has been omitted to reveal only the rigid structure.
  • Such heat insulating boxes may be juxtaposed in a regular pattern to produce the primary insulation layer and / or the secondary insulation layer, so that the heat insulating boxes thus form a substantially flat surface capable of carrying a sealed membrane.
  • the rigid structure of the box 1 has a flat rectangular cover panel 2, a flat rectangular bottom panel 3 parallel to the cover panel and pillars 4 disposed between the cover panel 2 and the bottom panel 3 and extending perpendicular to them.
  • the pillars are arranged in the form of a plurality of rows, in which each row of pillars 4 is supported on the bottom panel 3 by means of a batten 5 disposed between the bottom panel 3 and the end lower pillars of the row.
  • the assembly of the pillars 4, slats 5 and panels 2 and 3 is made using fasteners, for example staples, nails or screws.
  • the pillars 4 allow in particular the transmission of the stresses exerted on the cover panel 2 and therefore have a compressive strength function.
  • a heat-insulating lining is disposed between the bottom panel 3 and the lid panel 2 and fills the space between the pillars 4.
  • the pillars can be arranged in different ways.
  • the successive rows of pillars are offset relative to each other. More specifically, the pillars 4 of a row are spaced according to a spacing regular and two successive rows are offset in the direction of their length by half a spacing. Such an arrangement allows a good compromise between the number of pillars 4 in the box 1 and the good distribution of the load.
  • the rows of pillars are instead aligned. Other provisions of pillars 4 are still possible.
  • the cover panel 2 of Figure 1 is a reinforced cover panel which has an upper panel 6 and a lower panel 7 which are spaced apart by a series of parallel solid beams 8.
  • the beams 8 extend parallel to the longitudinal sides of the box 1.
  • a beam 8 is each time positioned along and above a row of pillars 4.
  • the beams 8 have a rectangular section.
  • the beams 8 and the panels 6 and 7 are rigidly connected, for example by gluing or stapling.
  • Such a reinforced lid panel structure provides good rigidity and effective load distribution in case of localized stress.
  • Each beam 8 is spaced apart from the other beams 8 so as to define spaces 9 between the beams 8 and between the panels 6 and 7.
  • These spaces 9 form channels parallel to the longitudinal sides of the box 1, which can for example be used for the circulation of a fluid between the two sides of the heat insulating box.
  • the juxtaposition of heat insulating boxes thus makes it possible to form a circuit in a wall of the tank in which it is possible to inject a neutral gas to neutralize the wall of the tank and thus avoid any risk of explosion in case of leakage in the presence of 'oxygen.
  • the rigid structure that has just been described can be made of wood or composite materials, for example polymer resin with or without reinforcing fibers.
  • the cover panel 2 may be made differently, for example in the form of a solid panel.
  • the bottom panel 3 and / or the slats 5 can be deleted.
  • Figure 2 shows schematically a sectional view of a heat insulating box in a plane intersecting the pillars 4 at mid-height.
  • a thermal insulation lining of the box consists of a block of insulating material 10, for example made of polyurethane foam, having a rectangular parallelepipedal shape whose dimensions substantially correspond to the space between the bottom panel and cover panel of a box.
  • the box has a rigid structure similar to that of Figure 1, with a modified position of the pillars 4.
  • FIG. 2 shows that the block of insulating material 10 is pierced with a plurality of square section cylindrical recesses 11 whose axis is parallel to the pillars 4 and which each receive one of the pillars 4.
  • the sectional dimensions of the recesses 11 are each greater than the corresponding dimensions of the pillar 4, which leaves a clearance space 12 to facilitate the insertion of the pillar and especially allow a differential thermal contraction between the block of insulating material 10 and the lid panel 2 to which the pillars 4 are fixed. This point will be explained by comparing Figures 2 and 3.
  • FIG. 2 represents the box in a state of normal temperature, representative of the manufacturing conditions, namely for example an ambient temperature of between 10 ° C. and 30 ° C.
  • FIG. 3 shows the box in a state of cryogenic use temperature, for example between 0 ° C. and about -100 ° C. if the box is used in the secondary barrier of an LNG tank and between about -100 ° C. and -160 ° C if the box is used in the primary barrier of an LNG tank.
  • the contour 100 schematically represents the dimensions of the block of insulating material at the normal temperature while the contour 10 represents the block of insulating material at the cryogenic use temperature.
  • the recesses 11 have retracted more than the pillars 4, so that the clearance spaces 12 are greatly reduced (they are no longer visible in Figure 3).
  • the dimensions and the positions of the recesses 11 in FIG. 2 have been defined as follows:
  • each recess 11 has dimensions in section greater than the corresponding dimensions of the pillar 4.
  • the sectional dimensions of a recess 11 are larger as the recess is removed from the center of the block of insulating material 10, represented here by the point of intersection 13. Indeed, the overall thermal contraction of the insulation is towards the center 13 of the insulating block 10.
  • the difference between the face of the pillar and the face of the insulating material vis-à-vis -vis is compensated cold by the contraction of the insulating block.
  • the internal faces of the holes of the insulating block will come into contact with the pillar or come close to it without causing any stress in this block, or at least the constraints of an acceptable level allowing the insulating material to remain intact for a long life.
  • the longitudinal axis of the box is called x and the rows of pillars perpendicular to this axis are numbered by the index m, so that m varies from 1 to 5 in the box of FIG. 2.
  • it is called y the lateral axis of the box and numbered by the index n the rows of pillars perpendicular to this axis, so that n varies from 1 to 4 in the box of Figure 2.
  • P mn a pillar located at the intersection of rows m and n, this pillar having a rectangular section of dimensions L mn and i mn along the x and y axes respectively.
  • C mn the center pillar P min and X min and Y min is called the c mn coordinate considered relative to the center 13 of the housing.
  • the coefficients of thermal expansion of the insulating material 10 in the directions x and y respectively are called a x and ⁇ respectively.
  • called ⁇ ⁇
  • the variation in temperature between the manufacturing temperature and the operating temperature for a point of the insulation situated at a height h of the heat insulating box is called AT h .
  • This temperature variation is substantially invariant in the x, y plane.
  • the temperature variation for a point in the pillar at the bottom of the heat insulating box where the temperature variation is the lowest is called AT chaU d.
  • V p The overall manufacturing tolerance on pillar 4 is called V p , including the abutment positioning tolerance as well as the dimensional tolerance on the pillar section.
  • the overall manufacturing tolerance on the block of insulating material 10 is called V, including the positioning tolerance of the recess 11 as well as the dimensional tolerance on the section of the recess 11.
  • Dx mn and Dy mn are the dimensions of the recess 11 for a pillar
  • C min is the center of the section of the recess 11 for a pillar P mn and XC mn , YC mn the coordinates of C min considered with respect to the center 13 of the box in the directions x and y respectively.
  • These quantities also depend on the h-coordinate in the direction of the height in the case where the section of the recess is variable along this direction.
  • Dx m n maXh ((Xmn, h + L m n, h / 2) AT h + Vp + Vi + L mn , h - [(X m n, + L m n, h / 2) * apx * AT c haud])
  • Dy m n max h ((Y mn , h + i m n, h / 2) * a Y * AT h ) + Vp + Vi + i mn , h - [(Y m n, h + imn, h / 2) * apY * hot AT]
  • the block of insulating material 10 is a non-fiber-filled polyurethane foam with a density of 50 kg / m 3.
  • the coefficient of expansion heat of this foam is typically between 40.10 "6 K" 1 and 60.10 "6 K -1.
  • the sectional shape of the recesses 11 may be designed in different ways depending on the dimensions of the caissons, in particular length and width, and the size, shape and number of the pillars 4.
  • FIGS. 5 to 10 there is shown a portion the block of insulating material 10 with each time a recess 11 and a pound 4 to show several possible forms of the recesses.
  • the recess 11 has a uniform section over its entire height, of square shape.
  • the recess 11 has a continuously increasing section over its entire height, of square shape, resulting in a general shape of pyramid with a square base.
  • the recess 11 has several successive stages in the direction of height, increasing section and square shape.
  • the recess 11 has a uniform section over its entire height, circular in shape.
  • the recess 11 has a continuously variable section over its entire height, circular in shape, resulting in a general shape of truncated cone.
  • the recess 11 has several successive stages in the direction of height, increasing section and circular shape.
  • the widest section is placed on the colder side, ie on the side of the cover panel in an LNG tank wall application.
  • the principle described above is reversed by making recesses 11 of constant section in the insulating material and by varying the section of the pillar 4.
  • This solution has the advantage of facilitating the cutting of the insulating material avoiding complex geometries difficult to implement.
  • This solution can be particularly suitable in the case of composite pillars.
  • the block of insulating material 20 comprises several vertical relaxation slots 21, which makes it possible to segment the block 20 into several portions able to contract independently of one another, and thus to limit the size recesses 11.
  • a lining of flexible material 30 is inserted to fill the clearance space 12 between the pillar 11 and the block of insulating material 10, in order to suppress or limit the convective movements of gas in this area. space.
  • the lining of flexible material 30 must be sufficiently flexible to absorb the decrease in distance between the pillar 4 and the wall of the recess 11 or compensate for the increase in this distance during variations. temperature. This point is illustrated in FIG. 12, which represents in superposition the pillar 4, the recess 11 and the insulating block 10 in broken lines in the state of use at low temperature and in continuous line in the state at normal temperature. .
  • the materials that can be used to produce the lining 30 include, in particular, very low density polymer foams, manufactured glass wool, bulk glass wool, melamine foams, aerogels, polystyrene, mattress polyester wadding or in bulk.
  • the insulation block 10 can be cut or pierced with suitable tools and machines, for example by punch, by rotating machine or by waterjet cutting.
  • the die cut consists of punching the foam with sharpened steel tools in the shape of a tube or blade.
  • the foam can be held on a cutting table which optionally incorporates additional female fingerprints tools to facilitate cutting. Several passes may be necessary, possibly with different tools, to arrive at the desired geometry of the recesses 11.
  • the water jet cutting allows the realization of any type of geometry by the free programming of the trajectory of the nozzles of cutting.
  • Assembly procedure A Introduction of the pillars in the block of insulating material pierced
  • Fixing the bottom panel on the pillars by techniques such as stapling, screwing, gluing, heat sealing.
  • FIG. 14 shows in perspective a parallelepiped heat insulating box 101 whose insulating lining has been omitted to reveal the rigid structure as in FIG. 1.
  • the elements that are similar or identical to those of the preceding figures bear the same figure of FIG. reference increased by 100.
  • the heat insulating box 101 has a rigid structure built on a flat rectangular bottom panel 103.
  • the pillars 104 are arranged in the form of thirteen transverse rows regularly spaced along the length direction of the box 101.
  • the number of pillars 104 per row transversely is: 6, 5, 6, 7, 6, 7, 6, 7, 6, 5, and 6.
  • Each transverse row of pillars 104 is supported on the bottom panel 103.
  • the cover panel 102 extends parallel to the bottom panel 103 and bears on the upper end of the pillars 104 which are arranged perpendicularly to the panels 102 and 103.
  • the cover panel 102 is a reinforced cover panel which includes a panel upper 106 and a lower panel 107 which are spaced by a series of solid beams 108.
  • Beams 108 extend in a direction width of the box 101 and are located at the right of each transverse row of rigid pillars 104. There are also thirteen in the box 101.
  • a beam 108 is thus each time positioned along and above a transverse row of pillars 104.
  • the beams 108 have for example a square section.
  • the beams 108 and the panels 106 and 107 are rigidly connected, for example by gluing or stapling.
  • the upper panel 106 may have two parallel grooves not shown to receive two welding supports adapted to retain a waterproof membrane consisting of flat strakes with raised edges, according to the known technique.
  • the pillars 104 shown have a square section and each pillar 104 is entirely surrounded by a sheath 130 of flexible insulating material, which has for example a circular outer shape.
  • the section of pillar 104 could have other shapes.
  • An insulating polymer foam block not shown in FIG. 14 has a shape complementary to the structure visible in FIG. 1, so as to fill substantially all the space between the panels 103 and 102.
  • the block of insulating polymer foam is a rectangular parallelepiped pierced with a series of identical circular holes passing through the foam block to receive each time a pillar 104 surrounded by the sheath 130.
  • the diameter of a circular hole of the insulating foam block is larger the diagonal of the section of the pillar 104 and, for example, substantially equal to or slightly less than the outer diameter of the sheath 130 at rest, so that the sheath 130 inserted into the hole each time is slightly compressed against its wall.
  • the sheath 130 makes it possible to absorb the relative displacements between the foam block and the pillars, taking into account the greater amplitude thermal contraction affecting the polymer foam, while avoiding the convective movements in the holes of the insulating foam block.
  • the pillars 104 disposed on the peripheral edges of the box 101 are received in holes that open laterally onto the peripheral side surface of the block of insulating polymer foam not shown.
  • a modified sheath 230 is provided, which does not completely surround the pillar 104 but is interrupted at the right of the peripheral lateral surface of the block of insulating polymer foam, that is to say at the right of the lateral surface subwoofer device 101.
  • the sheath 130 is removed for the pillars 104 which are arranged in a central zone 113 of the box, that is to say in an area where the overall thermal shrinkage of the foam block causes smaller displacements. relative to the pillars 1 04.
  • This zone 1 13 may for example cover about 10 to 20% of the area of the box 101.
  • the holes of the foam block may optionally be made with a smaller in diameter than other holes outside the central zone 1 13.
  • a heat insulating box 1.2 m long, 1 m wide comprises 7 rows of pillars distributed along its length and 13 rows of pillars distributed along its width.
  • the pillars have a square section of 21 mm.
  • the square recesses have at room temperature a section between 21 mm and 23 mm depending on their position relative to the center of the box.
  • the thickness of the box is 230mm for the primary and 300mm for the secondary.
  • the cover panel is 60mm thick in the primary and 48mm in the secondary.
  • the bottom panel is made of plywood 9mm thick.
  • the heat insulated casings of rectangular parallelepiped general shape described above can also be made with other contour shapes, for example any regular polygonal shape or not. Furthermore, according to a variant not shown, several sets of pillars having different properties, including shape and / or dimension, can be used in the same box.
  • the technique described above for producing a heat-insulating element can be used in various types of tanks, for example to constitute the primary or secondary insulating barrier of an LNG tank in a land installation or in a floating structure such as a LNG tanker or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the fence Primary watertight and secondary watertight barrier and between secondary watertight barrier and double hull 72.
  • the primary watertight barrier and the secondary watertight barrier consist of parallel invar strakes with raised edges, which are alternately arranged with elongated welding supports, also in invar. More specifically, the solder supports extend perpendicularly to the wall and are retained each time at the underlying insulation layer, for example by being housed in inverted T-shaped grooves in the cover panels of the caissons. The raised edges of the strakes are welded along the weld supports.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 10 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Abstract

Un élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante, l'élément calorifuge comportant un panneau de couvercle plan, une garniture d'isolation thermique (10) disposée parallèlement au panneau de couvercle et des éléments porteurs qui s'étendent à travers l'épaisseur de ladite garniture d'isolation thermique depuis le panneau de couvercle pour reprendre des efforts de compression, les éléments porteurs comportant une pluralité de piliers (4) de petite section transversale par rapport aux dimensions du panneau de couvercle engagés dans des évidements (11) de la garniture d'isolation thermique et fixés au panneau de couvercle, dans lequel, à une température normale, une dimension en section du pilier est à chaque fois plus petite qu'une dimension correspondante de l'évidement dans lequel le pilier est engagé. Application à la fabrication d'une paroi de cuve à membrane pour le stockage ou le transport de GNL.

Description

ELEMENT CALORIFUGE CONVENANT POUR LA REALISATION D'UNE BARRIERE ISOLANTE DANS UNE CUVE ETANCHE ET ISOLANTE
Domaine technique
L'invention se rapporte au domaine de la construction d'éléments calorifuges permettant de réaliser une paroi modulaire isolante, en particulier une paroi de cuve pour stocker ou transporter un liquide froid, notamment dans une cuve à membrane pour du gaz naturel liquéfié.
Arrière-plan technologique
Dans une cuve à membrane pour du gaz naturel liquéfié, des éléments calorifuges sont employés pour transmettre le chargement hydrodynamique de la cargaison depuis la membrane étanche vers la double coque, ce qui implique une fonction de résistance à la compression, et pour isoler la cargaison de la coque du navire, afin de limiter le flux thermique entraînant l'évaporation de la cargaison, mais aussi de protéger la coque des températures cryogéniques.
On connaît par FR-A-2877638 une cuve étanche et thermiquement isolée comportant une paroi de cuve fixée à la coque d'un ouvrage flottant. La paroi de cuve présente successivement, dans le sens de l'épaisseur depuis l'intérieur vers l'extérieur de ladite cuve, une barrière étanche primaire, une barrière isolante primaire, une barrière étanche secondaire et une barrière isolante secondaire. Les barrières isolantes sont essentiellement constituées d'éléments calorifuges juxtaposés. Chaque élément calorifuge inclut un panneau de fond, un panneau de couvercle et une garniture d'isolation thermique disposée sous la forme d'une couche parallèle à la paroi de cuve. Des éléments porteurs s'élèvent à travers l'épaisseur de ladite garniture d'isolation thermique pour reprendre les efforts de compression. Les éléments porteurs d'un élément calorifuge incluent des piliers de petite section transversale par rapport aux dimensions de l'élément calorifuge dans un plan parallèle à la paroi de cuve.
Résumé Une idée à la base de l'invention est de fournir un élément calorifuge relativement facile à fabriquer, présentant de bonnes performances thermiques et dans lequel la garniture d'isolation thermique puisse être réalisée dans un matériau susceptible de se contracter d'avantage que son environnement lors de la mise en froid, par exemple dans une mousse polyuréthane non structurelle de faible densité.
Certains aspects de l'invention partent de l'idée de réaliser la garniture d'isolation thermique avec un unique bloc d'un tel matériau. Certains aspects de l'invention partent de l'idée de limiter l'établissement de contraintes d'origine thermique dans la garniture d'isolation thermique, lors de la mise en froid de la paroi. Certains aspects de l'invention partent de l'idée de prévoir une garniture d'isolation thermique retenue avec possibilité de glissement par rapport à des éléments porteurs et un panneau ou plusieurs panneaux plans, pour autoriser des contractions thermiques d'amplitude différentes en fonction des matériaux constitutifs de ces éléments.
Selon un mode de réalisation, l'invention fournit un élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante, l'élément calorifuge comportant un panneau de couvercle plan, une garniture d'isolation thermique disposée parallèlement au panneau de couvercle et des éléments porteurs qui s'étendent à travers l'épaisseur de ladite garniture d'isolation thermique depuis le panneau de couvercle pour reprendre des efforts de compression, les éléments porteurs comportant une pluralité de piliers rigides de petite section transversale par rapport aux dimensions du panneau de couvercle engagés dans des évidements de la garniture d'isolation thermique et fixés au panneau de couvercle, dans lequel, à une température normale, une dimension en section du pilier est pour au moins un desdits piliers, ou pour chacun desdits piliers, plus petite qu'une dimension correspondante de l'évidement dans lequel le pilier est engagé, de manière à ménager un interstice entre le pilier et la paroi de l'évidement.
Selon des modes de réalisation, un tel élément calorifuge peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, l'élément calorifuge comporte en outre un élément de bourrage en matière souple disposé dans l'interstice entre le pilier et la paroi de l'évidement. L'élément de bourrage est réalisé dans un matériau beaucoup moins rigide que la garniture d'isolation thermique de manière à absorber lui-même l'essentiel des déformations induites par la contraction thermique différente entre la structure rigide et garniture d'isolation thermique.
Selon des modes de réalisation, l'élément de bourrage est réalisé dans un matériau choisi parmi les mousses polymères à très basse densité, la laine de verre manufacturée, la laine de verre en vrac, les mousses de mélamine, les aérogels, le polystyrène, la ouate de polyester en matelas ou en vrac.
Selon un mode de réalisation, les piliers comportent un premier pilier engagé dans un premier évidement situé dans une zone centrale de la garniture d'isolation thermique et un deuxième pilier engagé dans un deuxième évidement de la garniture d'isolation thermique situé à distance de la zone centrale de la garniture d'isolation thermique, et dans lequel une dimension en section du deuxième évidement est plus grande qu'une dimension correspondante du premier évidement pour autoriser une contraction thermique différentielle entre la garniture d'isolation thermique et le panneau de couvercle, et dans lequel un élément de bourrage en matière souple est disposé dans le deuxième évidement et aucun élément de bourrage en matière souple n'est disposé dans le premier évidement.
Selon un mode de réalisation, les piliers comportent un premier pilier engagé dans un premier évidement de la garniture d'isolation thermique et un deuxième pilier identique au premier pilier engagé dans un deuxième évidement de la garniture d'isolation thermique, le deuxième évidement étant situé à une plus grande distance du centre de la garniture d'isolation thermique que le premier évidement, et dans lequel une dimension en section du deuxième évidement est plus grande qu'une dimension correspondante du premier évidement pour autoriser une contraction thermique différentielle entre la garniture d'isolation thermique et le panneau de couvercle.
Ces caractéristiques dimensionnelles des évidements peuvent être appliquées au niveau de certains piliers ou au niveau de tous les piliers. Selon un mode de réalisation, tous les évidements dans lesquels des piliers identiques sont engagés présentent une dimension en section variant de manière croissante, par exemple de manière proportionnelle, avec la distance entre l'évidement et le centre de la garniture d'isolation thermique. Selon un mode de réalisation, à la température normale, un ou chaque pilier est disposé dans l'évidement de manière à être plus proche d'une paroi de l'évidement tournée vers le centre de la garniture d'isolation thermique que d'une paroi de l'évidement tournée à l'opposé du centre de la garniture d'isolation thermique.
Selon un mode de réalisation, l'élément calorifuge comporte en outre un panneau de fond plan parallèle au panneau de couvercle plan, dans lequel la garniture d'isolation thermique est disposée entre le panneau de fond et le panneau de couvercle, les éléments porteurs s'étendant à travers l'épaisseur de ladite garniture d'isolation thermique jusqu'au panneau de fond, la section transversale des piliers étant en outre petite par rapport aux dimensions du panneau de fond et les piliers étant en outre fixés au panneau de fond.
Les piliers peuvent être réalisés avec diverses formes et orientations. Selon un mode de réalisation, les piliers s'étendent perpendiculairement au panneau de couvercle et, le cas échéant, au panneau de fond. Des piliers obliques peuvent aussi être employés.
Dans un mode de réalisation, un ou chaque pilier peut présenter une section uniforme, ce qui facilite la réalisation et la mise en place du pilier.
Selon un mode de réalisation, un ou chaque pilier peut présenter une dimension en section variable le long de l'épaisseur de ladite garniture d'isolation thermique, la dimension en section étant décroissante en direction du panneau de couvercle. Du fait que le panneau de couvercle correspond en utilisation au côté tourné vers l'intérieur de la cuve où la température est la plus froide, cette disposition laisse plus d'espace pour la contraction de la garniture d'isolation thermique là où son amplitude tend à être la plus élevée.
Les évidements peuvent être réalisés avec diverses formes et orientations. Dans un mode de réalisation, un ou chaque évidement présente une section uniforme, ce qui facilite la réalisation de l'évidement.
Selon un mode de réalisation, un ou chaque évidement présente une dimension en section variable le long de l'épaisseur de ladite garniture d'isolation thermique, la dimension en section étant croissante en direction du panneau de couvercle. Cette disposition permet aussi de laisser plus d'espace pour la contraction de la garniture d'isolation thermique là où son amplitude tend à être la plus élevée.
Selon un mode de réalisation, la garniture d'isolation thermique comporte un bloc de mousse polymère, notamment de polyuréthane.
Selon un mode de réalisation, la garniture d'isolation thermique comporte une fente de relaxation s'étendant dans l'épaisseur du bloc de mousse polymère.
Le panneau de couvercle et le panneau de fond peuvent être faits de divers matériaux, par exemple en bois contreplaqué, en matériau composite ou autre matériau susceptible de transmettre les efforts tout en conservant des propriétés thermiques acceptables.
Selon un mode de réalisation, la garniture d'isolation thermique est retenue par les éléments porteurs avec une possibilité de glissement par rapport aux éléments porteurs et au panneau de couvercle.
Selon un mode de réalisation, l'invention fournit aussi une cuve étanche et isolante disposée dans une structure porteuse, la cuve comportant une paroi de cuve fixée à la structure porteuse, ladite paroi de cuve présentant successivement, dans le sens de l'épaisseur depuis l'intérieur vers l'extérieur de ladite cuve, une barrière étanche primaire, une barrière isolante primaire, une barrière étanche secondaire et une barrière isolante secondaire, au moins l'une parmi la barrière isolante primaire et la barrière isolante secondaire comportant une juxtaposition d'une pluralité des éléments calorifuges susmentionnés.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
« La figure 1 est une vue en perspective d'une structure rigide convenant pour réaliser un caisson calorifuge en forme de parallélépipède rectangle.
• La figure 2 est une vue en coupe dans un plan parallèle au panneau de couvercle d'un caisson calorifuge, dans un état à une température normale.
• La figure 3 est une vue analogue à la figure 2, montrant le caisson calorifuge dans un état à une température froide.
• La figure 4 est une vue agrandie de la zone IV de la figure 2.
• Les figures 5 à 10 sont des vues en perspectives d'un évidement pouvant être utilisé dans la garniture d'isolation thermique de la figure 2, montrant différentes géométries de l'évidement.
• La figure 1 1 est une vue analogue à la figure 2, montrant une garniture d'isolation thermique selon un autre mode de réalisation.
• La figure 12 est une vue analogue à la figure 2, montrant partiellement une garniture d'isolation thermique selon un autre mode de réalisation, dans un état à la température normale et dans un état à la température froide.
• La figure 13 est une représentation schématique écorchée d'une cuve de navire méthanier comportant une barrière isolante et d'un terminal de chargement/déchargement de cette cuve.
• La figure 14 est une vue en perspective d'un caisson calorifuge en forme de parallélépipède rectangle.
Description détaillée de modes de réalisation
En référence à la figure 1 , on a représenté un caisson calorifuge parallélépipédique 1 , dont la garniture isolante a été omise pour laisser apparaître seulement la structure rigide. De tels caissons calorifuges peuvent être juxtaposés selon un motif régulier pour réaliser la couche d'isolation primaire et/ou la couche d'isolation secondaire, de sorte que les caissons calorifuges forment ainsi une surface sensiblement plane apte à porter une membrane étanche.
La structure rigide du caisson 1 présente un panneau de couvercle rectangulaire plan 2, un panneau de fond rectangulaire plan 3 parallèle au panneau de couvercle et des piliers 4 disposés entre le panneau de couvercle 2 et le panneau de fond 3 et s'étendant perpendiculairement à ceux-ci. Les piliers sont disposés sous la forme d'une pluralité de rangées, dans laquelle chaque rangée de piliers 4 s'appuie sur le panneau de fond 3 par l'intermédiaire d'une latte 5 disposée entre le panneau de fond 3 et l'extrémité inférieure des piliers de la rangée. L'assemblage des piliers 4, lattes 5 et panneaux 2 et 3 est réalisé à l'aide d'éléments de fixation, par exemple agrafes, clous ou vis.
Les piliers 4 permettent notamment la transmission des contraintes exercées sur le panneau de couvercle 2 et ont donc une fonction de résistance à la compression. Une garniture calorifuge, non représentée sur la figure 1 , est disposée entre le panneau de fond 3 et le panneau de couvercle 2 et remplit l'espace entre les piliers 4.
Les piliers peuvent être agencés de différentes manières. Sur la figure 1 , les rangées successives de piliers sont décalées les unes par rapport aux autres. Plus précisément, les piliers 4 d'une rangée sont espacés selon un espacement régulier et deux rangées successives sont décalées dans le sens de leur longueur d'un demi-espacement. Une telle disposition permet un bon compromis entre le nombre de piliers 4 dans le caisson 1 et la bonne répartition de la charge. Sur la figure 2, les rangées de piliers sont au contraire alignées. D'autres dispositions des piliers 4 sont encore possibles.
Le panneau de couvercle 2 de la figure 1 est un panneau de couvercle renforcé qui comporte un panneau supérieur 6 et un panneau inférieur 7 qui sont espacés par une série de poutres pleines 8 parallèles. En particulier, les poutres 8 s'étendent parallèlement aux côtés longitudinaux du caisson 1. Une poutre 8 est à chaque fois positionnée le long et au-dessus d'une rangée de piliers 4. Les poutres 8 présentent une section rectangulaire. Les poutres 8 et les panneaux 6 et 7 sont liés rigidement, par exemple par collage ou agrafage. Une telle structure de panneau de couvercle renforcé permet d'obtenir une bonne rigidité et une répartition efficace de la charge en cas de contrainte localisée.
Chaque poutre 8 est espacée des autres poutres 8 de manière à délimiter des espaces 9 entre les poutres 8 et entre les panneaux 6 et 7. Ces espaces 9 forment des canaux parallèles aux côtés longitudinaux du caisson 1 , pouvant par exemple servir a la circulation d'un fluide entre les deux côtés du caisson calorifuge. La juxtaposition des caissons calorifuges permet ainsi de former un circuit dans une paroi de la cuve dans lequel il est possible d'injecter un gaz neutre pour neutraliser la paroi de la cuve et ainsi éviter tout risque d'explosion en cas de fuite en présence d'oxygène.
La structure rigide qui vient d'être décrite peut être réalisée en bois ou en des matériaux composites, par exemple en résine polymère avec ou sans fibres de renforcement. Selon d'autres modes de réalisation, le panneau de couvercle 2 peut être réalisé de manière différente, par exemple sous la forme d'un panneau plein. Selon d'autres modes de réalisation, le panneau de fond 3 et/ou les lattes 5 peuvent être supprimés.
La figure 2 représente schématiquement une vue en coupe d'un caisson calorifuge dans un plan coupant les piliers 4 à mi-hauteur. Une garniture d'isolation thermique du caisson est constituée d'un bloc de matière isolante 10, par exemple en mousse de polyuréthane, présentant une forme de parallélépipède rectangle dont les dimensions correspondent sensiblement à l'espace compris entre le panneau de fond et le panneau de couvercle d'un caisson. Le caisson comporte une structure rigide similaire à celle de la figure 1 , avec une position modifiée des piliers 4.
La figure 2 montre que le bloc de matière isolante 10 est percé d'une pluralité d'évidements cylindriques à section carrée 11 dont l'axe est parallèle aux piliers 4 et qui reçoivent chacun un des piliers 4. Les dimensions en section des évidements 11 sont à chaque fois supérieures aux dimensions correspondantes du pilier 4, ce qui laisse un espace de dégagement 12 pour faciliter l'insertion du pilier et surtout autoriser une contraction thermique différentielle entre le bloc de matière isolante 10 et le panneau de couvercle 2 auquel les piliers 4 sont fixés. Ce point sera expliqué en comparant les figures 2 et 3.
La figure 2 représente le caisson dans un état de température normal, représentatif des conditions de fabrication, à savoir par exemple une température ambiante comprise entre 10°C et 30°C. La figure 3 représente le caisson dans un état de température d'utilisation cryogénique, par exemple entre 0°C et environ -100°C si le caisson est employé dans la barrière secondaire d'une cuve de GNL et entre environ -100°C et -160°C si le caisson est employé dans la barrière primaire d'une cuve de GNL.
Sur la figure 3, le contour 100 représente schématiquement les dimensions du bloc de matière isolante à la température normale tandis que le contour 10 représente le bloc de matière isolante à la température d'utilisation cryogénique. On voit que dans cet état froid, les évidements 11 se sont rétractés d'avantage que les piliers 4, de sorte que les espaces de dégagement 12 sont fortement réduits (ils ne sont plus visibles sur la figure 3). Pour cela, les dimensions et les positions des évidements 11 sur la figure 2 ont été définis de la manière suivante :
pour tenir compte de la contraction thermique locale du bloc 10, chaque évidement 11 présente des dimensions en section supérieures aux dimensions correspondantes du pilier 4.
pour tenir compte de la contraction thermique globale du bloc 10, les dimensions en section d'un évidement 11 sont d'autant plus grandes que l'évidement est éloigné du centre du bloc de matière isolante 10, représenté ici par le point d'intersection des diagonales 13. En effet la contraction thermique globale de l'isolant se fait en direction du centre 13 du bloc isolant 10.
En outre, pour que les espaces de dégagement 12 soient sensiblement supprimés dans l'état contracté de la figure 3, on voit que la position du centre de l'évidement 11 est initialement décalée par rapport au centre du pilier, de sorte que le pilier 4 se trouve à chaque fois proche des parois de l'évidement 1 1 qui sont tournées vers le centre 13 du bloc de matière isolante 10.
En d'autres termes, en définissant des trous de perçages du bloc isolant dont les géométries à température ambiante sont plus larges que le pilier lui-même, l'écart entre la face du pilier et la face de la matière isolante en vis-à-vis se trouve compensé à froid par la contraction du bloc isolant. Sous chargement thermique, les faces internes des trous du bloc isolant vont venir en contact avec le pilier ou s'en rapprocher fortement sans que cela n'engendre de contraintes dans ce bloc, ou du moins des contraintes d'un niveau acceptable permettant à la matière isolante de rester intacte pendant une longue durée de vie.
Pour mettre en œuvre ce principe, des règles de dimensionnement plus précises sont proposées ci-dessous, à titre d'exemple, en faisant référence aux figures 2 et 4.
On appelle x l'axe longitudinal du caisson et on numérote par l'indice m les rangées de piliers perpendiculaires à cet axe, de sorte que m varie de 1 à 5 dans le caisson de la figure 2. De la même manière, on appelle y l'axe latéral du caisson et on numérote par l'indice n les rangées de piliers perpendiculaires à cet axe, de sorte que n varie de 1 à 4 dans le caisson de la figure 2.
On appelle Pmn un pilier situé à l'intersection des rangées m et n, ce pilier ayant une section rectangulaire de dimensions Lmn et imn selon les axes x et y respectivement. On appelle cmn le centre du pilier Pmn et Xmn et Ymn les coordonnées de cmn considérées par rapport au centre 13 du caisson. Ces quantités dépendent en outre de la coordonnée h dans le sens de la hauteur dans le cas où la section du pilier est variable le long de cette direction.
On appelle ax et αγ les coefficients d'expansion thermique de la matière isolante 10 dans les directions x et y respectivement. On appelle αρχ et αργ les coefficients d'expansion thermique du matériau utilisé pour la structure rigide du caisson et les piliers 4 dans les directions x et y respectivement.
On appelle ATh la variation de température entre la température de fabrication et la température d'utilisation pour un point de l'isolant situé à une hauteur h du caisson calorifuge. Cette variation de température est sensiblement invariante dans le plan x, y.
On appelle ATchaUd la variation de température pour un point dans le pilier en partie inférieure du caisson calorifuge où la variation de température est la plus faible.
On appelle ATfr0id la variation de température pour un point situé dans le pilier partie supérieure du caisson calorifuge où la variation de température est la plus importante.
On appelle Vp la tolérance de fabrication globale sur le pilier 4, incluant la tolérance de positionnement du pilier ainsi que la tolérance dimensionnelle sur la section du pilier.
On appelle V, la tolérance de fabrication globale sur le bloc de matière isolante 10, incluant la tolérance de positionnement de l'évidement 11 ainsi que la tolérance dimensionnelle sur la section de l'évidement 11.
On appelle Dxmn et Dymn les dimensions de l'évidement 11 pour un pilier
Pmn dans les directions x et y respectivement. On appelle Cmn le centre de la section de l'évidement 11 pour un pilier Pmn et XCmn, YCmn les coordonnées de Cmn considérées par rapport au centre 13 du caisson dans les directions x et y respectivement. Ces quantités dépendent en outre de la coordonnée h dans le sens de la hauteur dans le cas où la section de l'évidement est variable le long de cette direction.
• Cas de trous de passage à section rectangulaire avec αχ» αρχ et αγ» αργ Pour des évidements 11 à section variable, on pourra utiliser la règli suivante pour le positionnement et les dimensions du trou de passage :
Dxmn,h=(Xmn+Lmn/2)*ax*ATh+Vp+Vi+Lmn
Dymn,h=(Ymn+imn/2)*aY*ATh+Vp+Vi+ in
Figure imgf000014_0001
Pour des évidements 11 à section constante, on pourra utiliser la règle suivante pour le positionnement et les dimensions de l'évidement :
Dxmn=maxh (Dxmn,h)
Dymn=maxh (Dymn,h)
Figure imgf000014_0002
• Cas ou les coefficients d'expansion thermique de l'isolant et du matériau utilisé pour la structure rigide du caisson sont assez proches :
Pour des évidements 11 et des piliers 4 à section variable, on pourra utiliser la règle suivante pour le positionnement et les dimensions de l'évidement :
Dxmn,h=(Xmn,h+Lmn,h/2)*ax*ATh+Vp+Vi+Lmn,h-
Figure imgf000014_0003
Dymn,h=(Ymn,h+imn,h/2)*aY*ATh+Vp+Vi+imn,h-
[(Ymn,h+fmn,h/2)*apY*ATchaud)+(Ymn,h+lmn,h/2)*apY*(ATfroid-ATchaud)*h/H]
Figure imgf000014_0004
Pour des évidements 11 à section constante, on pourra utiliser la règle suivante pour le positionnement et les dimensions de l'évidement :
Dxmn=maXh((Xmn,h+Lmn,h/2) ATh+Vp+Vi+Lmn,h-[(Xmn, +Lmn,h/2)*apx*ATchaud]) Dymn=maxh((Ymn,h+imn,h/2)*aY*ATh)+Vp+Vi+imn,h-[(Ymn,h+imn,h/2)*apY*ATchaud]
Figure imgf000014_0005
Dans un exemple de réalisation, le bloc de matière isolante 10 est une mousse polyuréthane non fibrée de densité 50kg/m3. Le coefficient d'expansion thermique de cette mousse est typiquement compris entre 40.10"6 K"1 et 60.10"6 K~1. Pour un bloc de dimensions 1.2m x 1 m, on obtient un retrait maximal de l'ordre de 3,3 mm à 5 mm. Pour une structure rigide en contreplaqué, la contraction dans les mêmes conditions est de l'ordre de 0.7mm au maximum.
La forme en sections des évidements 1 1 peut être conçue de différentes manières selon les dimensions des caissons, notamment longueur et largeur, et la dimension, la forme et le nombre des piliers 4. Sur les figures 5 à 10, on a représenté une portion du bloc de matière isolante 10 avec à chaque fois un évidement 11 et un piler 4 pour montrer plusieurs formes possibles des évidements.
Sur la figure 5, l'évidement 11 présente une section uniforme sur toute sa hauteur, de forme carrée. Sur la figure 6, l'évidement 11 présente une section continûment croissante sur toute sa hauteur, de forme carrée, résultant en une forme générale de pyramide à base carrée. Sur la figure 7, l'évidement 11 présente plusieurs étages successifs dans le sens de la hauteur, de section croissante et de forme carrée. Sur la figure 8, l'évidement 11 présente une section uniforme sur toute sa hauteur, de forme circulaire. Sur la figure 9, l'évidement 11 présente une section continûment variable sur toute sa hauteur, de forme circulaire, résultant en une forme générale de tronc de cône. Sur la figure 10, l'évidement 11 présente plusieurs étages successifs dans le sens de la hauteur, de section croissante et de forme circulaire.
Dans les cas où la section de l'évidement 11 est variable selon la hauteur, la section la plus large est placée du côté le plus froid, à savoir du côté du panneau de couvercle dans une application de paroi de cuve de GNL.
Dans une variante de réalisation, le principe décrit ci-dessus est inversé en faisant des évidements 11 à section constante dans la matière isolante et en faisant varier la section du pilier 4. Cette solution présente l'avantage de faciliter la découpe de la matière isolante en évitant les géométries complexes difficiles à mettre en œuvre. Cette solution peut être particulièrement adaptée dans le cas de piliers en composites.
Dans les cas où la section du pilier 4 est variable selon la hauteur, la section la plus étroite est placée du côté le plus froid, à savoir du côté du panneau de couvercle dans une application de paroi de cuve de GNL. Dans le mode de réalisation de la figure 11 le bloc de matière isolante 20 comporte plusieurs fentes de relaxation verticales 21 , ce qui permet de segmenter le bloc 20 en plusieurs portions aptes à se contracter indépendamment les unes des autres, et donc de limiter la taille des évidements 11.
Dans le mode de réalisation de la figure 12, on insère une garniture en matériau souple 30 pour combler l'espace de dégagement 12 entre le pilier 11 et le bloc de matière isolante 10, afin de supprimer ou limiter les mouvements convectifs de gaz dans cet espace. En plus d'être anti-convective et isolante, la garniture en matériau souple 30 doit être suffisamment souple pour absorber la diminution de distance entre le pilier 4 et la paroi de l'évidement 11 ou compenser l'augmentation de cette distance lors des variations de température. Ce point est illustré sur la figure 12, qui représente en superposition le pilier 4, l'évidement 11 et le bloc isolant 10 en trait interrompus dans l'état d'utilisation à basse température et en trait continu dans l'état à température normale.
Les matériaux pouvant servir à réaliser la garniture 30 comportent notamment les mousses polymères à très basse densité, la laine de verre manufacturée, la laine de verre en vrac, les mousses de mélamine, les aérogels, le polystyrène, la ouate de polyester en matelas ou en vrac.
Pour la fabrication d'un tel caisson calorifuge, le bloc d'isolant 10 peut être découpé ou percé avec des outils et machines adéquats, par exemple par emporte- pièce, par machine tournante ou par découpe au jet d'eau. La découpe par emporte-pièce consiste à poinçonner la mousse avec des outils affûtés en acier en forme de tube ou de lame. La mousse peut être maintenue sur une table de découpe qui intègre éventuellement des empreintes femelles complémentaires des outils pour faciliter la découpe. Plusieurs passes peuvent être nécessaires, éventuellement avec des outils différents, pour arriver à la géométrie souhaitée des évidements 11. Par ailleurs, la découpe au jet d'eau permet la réalisation de tout type de géométrie par la libre programmation de la trajectoire des buses de découpe.
Différents ordres de montage sont possibles pour assembler le caisson calorifuge incluant la structure rigide et le bloc de matière isolante 10. Deux solutions de mise en œuvre sont :
Procédure de montage A : Introduction des piliers dans le bloc de matière isolante percée
Fixation du panneau de fond sur les piliers par des techniques telles que l'agrafage, le vissage, le collage, le thermosoudage.
Procédure de montage B :
- Fixation du panneau de fond sur les piliers par des techniques telles que l'agrafage, le vissage, le collage, le thermosoudage
Enfilement du bloc de matière isolante percée sur les piliers
Pour le mode de réalisation de la figure 12 où les espaces entre l'isolant et les piliers sont comblés, deux solutions de mise en œuvre sont :
- Préfabrication de piliers enroulés dans, enrobés de, enfilés dans ou moulés avec la garniture de matière souple 30, ou
Montage ultérieur de la garniture de matière souple 30 par enfilement, par projection ou par injection de matière dans les espaces de dégagement 12
Ces solutions sont peuvent être intégrées aux deux procédures de montages A et B décrites précédemment.
Sur la figure 14, on a représenté en perspective un caisson calorifuge parallélépipédique 101 , dont la garniture isolante a été omise pour laisser apparaître la structure rigide comme sur la figure 1. Les éléments analogues ou identiques à ceux des figures précédentes portent le même chiffre de référence augmenté de 100.
Le caisson calorifuge 101 comporte une structure rigide bâtie sur un panneau de fond rectangulaire plan 103. Les piliers 104 sont disposés sous la forme de treize rangées transversales espacées régulièrement le long de la direction de longueur du caisson 101. Le nombre de piliers 104 par rangée transversale est successivement : 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 5 et 6. Chaque rangée transversale de piliers 104 s'appuie sur le panneau de fond 103.
Le panneau de couvercle 102 s'étend parallèlement au panneau de fond 103 et prend appui sur l'extrémité supérieure des piliers 104 qui sont disposés perpendiculairement aux panneaux 102 et 103. Le panneau de couvercle 102 est un panneau de couvercle renforcé qui comporte un panneau supérieur 106 et un panneau inférieur 107 qui sont espacés par une série de poutres pleines 108. Les poutres 108 s'étendent selon une direction de largeur du caisson 101 et sont situées au droit de chaque rangée transversale de piliers rigides 104. Elles sont également au nombre de treize dans le caisson 101. Une poutre 108 est ainsi à chaque fois positionnée le long et au-dessus d'une rangée transversale de piliers 104. Les poutres 108 présentent par exemple une section carrée. Les poutres 108 et les panneaux 106 et 107 sont liés rigidement, par exemple par collage ou agrafage.
Le panneau supérieur 106 peut présenter deux rainures parallèles non représentées pour recevoir deux supports de soudure aptes à retenir une membrane étanche constituée de virures planes à bords relevés, selon la technique connue.
Les piliers 104 représentés présentent une section carrée et chaque pilier 104 est entièrement entouré d'une gaine 130 de matériau souple isolante, qui présente par exemple une forme extérieure circulaire. La section du pilier 104 pourrait avoir d'autres formes. Un bloc de mousse polymère isolante non représenté sur la figure 14 présente une forme complémentaire de la structure visible sur la figure 1 , de sorte à remplir sensiblement tout l'espace entre les panneaux 103 et 102. En d'autres termes, le bloc de mousse polymère isolante est un parallélépipède rectangle percé d'une série de trous circulaires identiques traversant le bloc de mousse pour recevoir à chaque fois un pilier 104 entouré de la gaine 130. Le diamètre d'un trou circulaire du bloc de mousse isolante est plus grand que la diagonale de la section du pilier 104 et, par exemple, sensiblement égal ou légèrement inférieur au diamètre extérieur de la gaine 130 au repos, de sorte que la gaine 130 insérée à chaque fois dans le trou est légèrement comprimée contre sa paroi. La gaine 130 permet d'absorber les déplacements relatifs entre le bloc de mousse et les piliers, compte tenu de la contraction thermique de plus grande amplitude affectant la mousse polymère, tout en évitant les mouvements convectifs dans les trous du bloc de mousse isolante.
Les piliers 104 disposés sur les bords périphériques du caisson 101 sont reçus dans des trous qui débouchent latéralement sur la surface latérale périphérique du bloc de mousse polymère isolante non représenté. A ces endroits, une gaine 230 modifiée est prévue, qui n'entoure pas complètement le pilier 104 mais est interrompue au droit de la surface latérale périphérique du bloc de mousse polymère isolante, c'est-à-dire au droit de la surface latérale périphérique du caisson 101. Dans une variante de réalisation, la gaine 130 est supprimée pour les piliers 104 qui sont disposés dans une zone centrale 113 du caisson, c'est-à-dire dans une zone où la rétraction thermique globale du bloc de mousse provoque de plus faibles déplacements par rapport aux piliersl 04. Cette zone 1 13 peut couvrir par exemple environ 10 à 20% de la superficie du caisson 101. Dans la zone centrale 113 où la gaine 130 est absente, les trous du bloc de mousse peuvent éventuellement être réalisés avec un plus petit diamètre que les autres trous situé en dehors de la zone centrale 1 13.
A titre d'exemple, un caisson calorifuge de longueur 1.2m, de largeur 1 m comporte 7 rangées de piliers réparties le long de sa longueur et 13 rangées de piliers réparties le long de sa largeur. Les piliers ont une section carrée de 21 mm. Les évidements carrés ont à la température ambiante une section comprise entre 21 mm et 23 mm selon leur position par rapport au centre du caisson. L'épaisseur du caisson est 230mm pour le primaire et 300mm pour le secondaire. Le panneau de couvercle fait une épaisseur de 60mm au primaire et 48mm au secondaire. Le panneau de fond est réalisé en contreplaqué de 9mm d'épaisseur.
Les caissons calorifuges de forme générale parallélépipédique rectangle décrits ci-dessus peuvent aussi être réalisés avec d'autres formes de contour, par exemple toute forme polygonale régulière ou non. Par ailleurs, selon une variante non représentée, plusieurs séries de piliers ayant des propriétés différentes, notamment de forme et/ou de dimension, peuvent être employées dans un même caisson.
La technique décrite ci-dessus pour réaliser un élément calorifuge peut être utilisée dans différents types de réservoirs, par exemple pour constituer la barrière isolante primaire ou secondaire d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 10, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
Selon la technique connue, la barrière étanche primaire et la barrière étanche secondaire sont constituées de virures en invar parallèles à bords relevés, qui sont disposées alternativement avec des supports de soudure allongés, également en invar. Plus précisément, les supports de soudure s'étendent perpendiculairement à la paroi et sont retenus à chaque fois à la couche d'isolation sous-jacente, par exemple en étant logés dans des rainures en forme de T inversé ménagées dans les panneaux de couvercle des caissons. Les bords relevés des virures sont soudés le long des supports de soudures.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 10 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Elément calorifuge (1 , 101 ) convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante, l'élément calorifuge comportant un panneau de couvercle plan (2, 102), une garniture d'isolation thermique (10, 20) disposée parallèlement au panneau de couvercle et des éléments porteurs qui s'étendent à travers l'épaisseur de ladite garniture d'isolation thermique depuis le panneau de couvercle pour reprendre des efforts de compression, les éléments porteurs comportant une pluralité de piliers rigides (4, 104) de petite section transversale par rapport aux dimensions du panneau de couvercle engagés dans des évidements (1 1 ) de la garniture d'isolation thermique et fixés au panneau de couvercle (2, 102),
dans lequel, à une température normale, pour au moins un desdits piliers, une dimension en section du pilier est plus petite qu'une dimension correspondante de l'évidement dans lequel le pilier est engagé de manière à ménager un interstice (12) entre le pilier (4, 104) et la paroi de l'évidement, l'élément calorifuge comportant en outre un élément de bourrage (30, 130) disposé dans l'interstice (12) entre le pilier (4, 104) et la paroi de l'évidement, l'élément de bourrage (30, 130) étant en matière plus souple que la garniture d'isolation thermique.
2. Elément calorifuge selon la revendication 1 , dans lequel l'élément de bourrage (30, 130) est réalisé dans un matériau choisi parmi les mousses polymères à très basse densité, la laine de verre manufacturée, la laine de verre en vrac, les mousses de mélamine, les aérogels, le polystyrène, la ouate de polyester en matelas ou en vrac.
3. Elément calorifuge selon l'une des revendications 1 à 2, dans lequel les piliers comportent un premier pilier (104) engagé dans un premier évidement (11 ) situé dans une zone centrale (1 3) de la garniture d'isolation thermique et un deuxième pilier (104) engagé dans un deuxième évidement (1 1 ) de la garniture d'isolation thermique situé à distance de la zone centrale (1 13) de la garniture d'isolation thermique, et dans lequel une dimension en section (Dx, Dy) du deuxième évidement est plus grande qu'une dimension correspondante (Dx, Dy) du premier évidement pour autoriser une contraction thermique différentielle entre la garniture d'isolation thermique (10, 20) et le panneau de couvercle (102), et dans lequel un élément de bourrage (30, 130) en matière souple est disposé dans le deuxième évidement et aucun élément de bourrage (30, 130) en matière souple n'est disposé dans le premier évidement.
4. Elément calorifuge selon l'une des revendications 1 à 3, dans lequel les piliers comportent un premier pilier (4) engagé dans un premier évidement (11 ) de la garniture d'isolation thermique et un deuxième pilier (4) identique au premier pilier engagé dans un deuxième évidement (11 ) de la garniture d'isolation thermique, le deuxième évidement étant situé à une plus grande distance du centre (13) de la garniture d'isolation thermique que le premier évidement, et dans lequel une dimension en section (Dx, Dy) du deuxième évidement est plus grande qu'une dimension correspondante (Dx, Dy) du premier évidement pour autoriser une contraction thermique différentielle entre la garniture d'isolation thermique (10, 20) et le panneau de couvercle (2).
5. Elément calorifuge selon la revendication 4, dans lequel tous les évidements (11 ) dans lesquels des piliers identiques sont engagés présentent une dimension en section (Dx, Dy) variant de manière croissante avec la distance entre l'évidement et le centre de la garniture d'isolation thermique.
6. Elément calorifuge selon l'une des revendications 1 à 5, dans lequel à la température normale, un ou chaque pilier (4) est disposé dans l'évidement (11 ) de manière à être plus proche d'une paroi de l'évidement tournée vers le centre (13) de la garniture d'isolation thermique que d'une paroi de l'évidement tournée à l'opposé du centre de la garniture d'isolation thermique.
7. Elément calorifuge selon l'une des revendications 1 à 6, comportant en outre un panneau de fond (3, 103) plan parallèle au panneau de couvercle plan, dans lequel la garniture d'isolation thermique (10, 20) est disposée entre le panneau de fond et le panneau de couvercle, les éléments porteurs s'étendant à travers l'épaisseur de ladite garniture d'isolation thermique jusqu'au panneau de fond, la section transversale des piliers (4, 104) étant en outre petite par rapport aux dimensions du panneau de fond (3, 103) et les piliers étant en outre fixés au panneau de fond.
8. Elément calorifuge selon l'une des revendications 1 à 7, dans lequel les piliers s'étendent perpendiculairement au panneau de couvercle (2, 102).
9. Elément calorifuge selon l'une des revendications 1 à 8, dans lequel un ou chaque pilier présente une dimension en section variable le long de l'épaisseur de ladite garniture d'isolation thermique, la dimension en section étant décroissante en direction du panneau de couvercle.
10. Elément calorifuge selon l'une des revendications 1 à 9, dans lequel un ou chaque évidement (11 ) présente une dimension en section variable le long de l'épaisseur de ladite garniture d'isolation thermique, la dimension en section étant croissante en direction du panneau de couvercle.
11. Elément calorifuge selon l'une des revendications 1 à 10, dans lequel la garniture d'isolation thermique comporte un bloc de mousse polymère (10, 20).
12. Elément calorifuge selon la revendication 11 , dans lequel la garniture d'isolation thermique (20) comporte une fente de relaxation (21 ) s'étendant dans l'épaisseur du bloc de mousse polymère.
13. Elément calorifuge selon l'une des revendications 1 à 12, dans lequel le panneau de couvercle (2, 102) est en bois contreplaqué.
14. Elément calorifuge selon l'une des revendications 1 à 13, dans lequel la garniture d'isolation thermique (10, 20) est retenue par les éléments porteurs (4, 104) avec une possibilité de glissement par rapport aux éléments porteurs et au panneau de couvercle (2, 102).
15. Cuve étanche et isolante (71 ) disposée dans une structure porteuse, la cuve comportant une paroi de cuve fixée à la structure porteuse, ladite paroi de cuve présentant successivement, dans le sens de l'épaisseur depuis l'intérieur vers l'extérieur de ladite cuve, une barrière étanche primaire, une barrière isolante primaire, une barrière étanche secondaire et une barrière isolante secondaire, au moins l'une parmi la barrière isolante primaire et la barrière isolante secondaire comportant une juxtaposition d'une pluralité des éléments calorifuges (1 , 101 ) selon l'une des revendications 1 à 14.
16. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon la revendication 15 disposée dans la double coque.
17. Utilisation d'un navire (70) selon la revendication 16, dans laquelle on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ) pour charger ou décharger la cuve du navire.
18. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 16, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
PCT/FR2014/051627 2013-07-02 2014-06-26 Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante WO2015001230A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480035723.3A CN105378368B (zh) 2013-07-02 2014-06-26 适于形成密封和隔离容器中的隔离阻挡部的防护元件
EP14749890.1A EP3017234B1 (fr) 2013-07-02 2014-06-26 Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante
AU2014286010A AU2014286010B2 (en) 2013-07-02 2014-06-26 Lagging element suited to the creation of an insulating barrier in a sealed and insulating tank
KR1020167000951A KR102206805B1 (ko) 2013-07-02 2014-06-26 밀봉된 단열 탱크의 단열 배리어의 생성에 적합한 래깅 요소
JP2016522708A JP6415550B2 (ja) 2013-07-02 2014-06-26 密封及び断熱されたタンク内の断熱障壁の作成に適する断熱要素

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356440 2013-07-02
FR1356440A FR3008163B1 (fr) 2013-07-02 2013-07-02 Element calorifuge convenant pour la realisation d'une barriere isolante dans une cuve etanche et isolante

Publications (2)

Publication Number Publication Date
WO2015001230A2 true WO2015001230A2 (fr) 2015-01-08
WO2015001230A3 WO2015001230A3 (fr) 2015-04-09

Family

ID=49111464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051627 WO2015001230A2 (fr) 2013-07-02 2014-06-26 Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante

Country Status (7)

Country Link
EP (1) EP3017234B1 (fr)
JP (1) JP6415550B2 (fr)
KR (1) KR102206805B1 (fr)
CN (1) CN105378368B (fr)
AU (1) AU2014286010B2 (fr)
FR (1) FR3008163B1 (fr)
WO (1) WO2015001230A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207524A1 (fr) 2015-06-24 2016-12-29 Gaztransport Et Technigaz Procede et dispositif de decoupe de matiere isolante fibreuse ou alveolaire
WO2021058822A1 (fr) * 2019-09-27 2021-04-01 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
WO2023198637A1 (fr) * 2022-04-15 2023-10-19 Gaztransport Et Technigaz Paroi pour une cuve étanche et thermiquement isolante

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300035B2 (ja) 2017-04-03 2023-06-28 株式会社ジャムコ 座席ユニット及びその取付け方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1112136A (en) * 1965-08-23 1968-05-01 Linde Ag Improvements in or relating to containers for liquefied gases
US4117947A (en) * 1977-08-01 1978-10-03 Frigitemp Corporation Internal insulation for liquefied gas tank
CN85105351B (zh) * 1985-07-13 1988-04-13 日本钢管株式会社 液化气储运罐的绝热方法和系统
FR2586082B1 (fr) * 1985-08-06 1988-07-08 Gaz Transport Cuve etanche et thermiquement isolante et navire la comportant
JPH059349Y2 (fr) * 1985-08-23 1993-03-08
JPS6455399U (fr) * 1987-10-01 1989-04-05
FR2691520B1 (fr) * 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
NO310319B1 (no) * 1998-10-12 2001-06-18 Norconsult As Anlegg for lagring av flytendegjort gass
FR2877638B1 (fr) * 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
JP5737920B2 (ja) * 2010-12-13 2015-06-17 三菱重工業株式会社 独立タンクの支持構造
FR2973098B1 (fr) * 2011-03-22 2014-05-02 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante
FR2989291A1 (fr) * 2012-09-20 2013-10-18 Gaztransp Et Technigaz Remplissage d'un caisson avec une matiere isolante fibreuse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207524A1 (fr) 2015-06-24 2016-12-29 Gaztransport Et Technigaz Procede et dispositif de decoupe de matiere isolante fibreuse ou alveolaire
WO2021058822A1 (fr) * 2019-09-27 2021-04-01 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
WO2023198637A1 (fr) * 2022-04-15 2023-10-19 Gaztransport Et Technigaz Paroi pour une cuve étanche et thermiquement isolante
FR3134571A1 (fr) * 2022-04-15 2023-10-20 Gaztransport Et Technigaz Paroi pour une cuve étanche et thermiquement isolante

Also Published As

Publication number Publication date
FR3008163B1 (fr) 2015-11-13
KR20160026990A (ko) 2016-03-09
FR3008163A1 (fr) 2015-01-09
EP3017234A2 (fr) 2016-05-11
JP2016529168A (ja) 2016-09-23
KR102206805B1 (ko) 2021-01-22
AU2014286010B2 (en) 2019-01-03
JP6415550B2 (ja) 2018-10-31
CN105378368B (zh) 2018-01-30
EP3017234B1 (fr) 2017-03-22
CN105378368A (zh) 2016-03-02
AU2014286010A1 (en) 2016-01-28
WO2015001230A3 (fr) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2017103500A1 (fr) Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
EP3679289B1 (fr) Cuve étanche et thermiquement isolante à élément de remplissage anti-convectif
EP3710742B1 (fr) Procédé de fabrication d'une barrière d'isolation thermique d'une paroi d'une cuve et barrière d'isolation thermique ainsi obtenue
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
FR3110951A1 (fr) Dispositif d’ancrage destine a retenir des blocs isolants
WO2020030871A1 (fr) Structure d'angle pour une cuve etanche et thermiquement isolante
FR3058498A1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage
EP3004718B1 (fr) Caisse autoporteuse pour l'isolation thermique d'une cuve de stockage d'un fluide et procede de fabrication d'une telle caisse
EP3017234B1 (fr) Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante
FR3070746A1 (fr) Cuve etanche et thermiquement isolante comportant une plaque de remplissage anti-convective
WO2015001240A2 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
EP2986885B1 (fr) Cuve étanche et thermiquement isolante
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
FR3090810A1 (fr) Système d’ancrage pour cuve étanche et thermiquement isolante
FR2991660A1 (fr) Element calorifuge de cuve etanche et thermiquement isolee comportant un panneau de couvercle renforce
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2021239432A1 (fr) Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche
WO2022152794A1 (fr) Installation de stockage pour gaz liquefie
WO2019145633A1 (fr) Cuve etanche et thermiquement isolante
WO2021013856A9 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016522708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014749890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014749890

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167000951

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014286010

Country of ref document: AU

Date of ref document: 20140626

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749890

Country of ref document: EP

Kind code of ref document: A2