WO2015001240A2 - Cuve etanche et thermiquement isolante de stockage d'un fluide - Google Patents

Cuve etanche et thermiquement isolante de stockage d'un fluide Download PDF

Info

Publication number
WO2015001240A2
WO2015001240A2 PCT/FR2014/051674 FR2014051674W WO2015001240A2 WO 2015001240 A2 WO2015001240 A2 WO 2015001240A2 FR 2014051674 W FR2014051674 W FR 2014051674W WO 2015001240 A2 WO2015001240 A2 WO 2015001240A2
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced
insulating block
cover panel
insulating
panel
Prior art date
Application number
PCT/FR2014/051674
Other languages
English (en)
Other versions
WO2015001240A3 (fr
Inventor
Florent OUVRARD
Sébastien COROT
Bruno Deletre
Thomas CREMIERE
Rémi BALLAIS
Fabrice Lombard
Sébastien DELANOE
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020167002286A priority Critical patent/KR102125733B1/ko
Priority to AU2014285934A priority patent/AU2014285934B2/en
Priority to CN201480035492.6A priority patent/CN105324600B/zh
Publication of WO2015001240A2 publication Critical patent/WO2015001240A2/fr
Publication of WO2015001240A3 publication Critical patent/WO2015001240A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0325Aerogel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a cryogenic fluid.
  • LNG liquefied natural gas
  • the document FR 2 877 638 describes a sealed and thermally insulating tank comprising a tank wall, fixed to the carrying structure of a floating structure and presenting successively, in the direction of the thickness, from the inside to the outside of the the vessel, a primary sealed barrier for contact with the liquefied natural gas, a primary insulating barrier, a secondary watertight barrier and a secondary insulating barrier anchored to the supporting structure.
  • the insulating barriers consist of a plurality of juxtaposed parallelepiped heat insulating boxes.
  • Each insulating body has an insulating foam block, a bottom panel and a cover panel disposed on either side of the insulating foam block and a plurality of bearing pillars rising across the thickness direction of the body. to resume compression efforts.
  • the walls of the tank are subjected to many stresses.
  • the walls are subjected to compressive forces due to the loading of the tank, to thermal stresses during cold setting and to forces due to dynamic shocks of the fluid contained in the tank.
  • efforts are exerted tangentially to the cover panels of the heat insulated boxes and are thus likely to cause the spill of the pillars of heat insulated boxes.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank for storing a fluid that has both good thermal insulation performance while having a good resistance to the forces and in particular the forces exerted tangentially. to the walls.
  • the invention provides a sealed and thermally insulating tank for storing a fluid comprising a thermal insulation barrier and a sealing membrane supported by the thermal insulation barrier, the thermal insulation barrier.
  • a sealed and thermally insulating tank for storing a fluid comprising a thermal insulation barrier and a sealing membrane supported by the thermal insulation barrier, the thermal insulation barrier.
  • having a plurality of juxtaposed parallelepiped insulating blocks having two main faces and four side faces and each comprising:
  • the cover panel having a support surface for receiving the sealing membrane
  • said plurality of insulating blocks comprising at least one reinforced insulating block equipped with at least one anti-spill reinforcing structure extending longitudinally along a reinforced lateral face of said reinforced insulating block, between the bottom panel and the panel of lid.
  • the anti-spill reinforcement structure has a shear stiffness, for a shear force exerted on the cover panel in a direction orthogonal to the planes of the side faces adjacent to said reinforced side face, greater than that of 'a pillar.
  • the anti-spill reinforcement structure has two diagonally X-shaped struts each extending between the bottom panel and the cover panel.
  • X structure makes it possible to obtain a shear stiffness, for a shear force exerted on the cover panel, in the longitudinal direction to the reinforced lateral face, which is particularly important while limiting the impact of the reinforcement structure on thermal insulation performance.
  • such a tank may comprise one or more of the following characteristics:
  • the two struts are formed integrally in a reinforcing web extending between the bottom panel and the cover panel,
  • the reinforcement web further comprises at least two supporting columns extending parallel in the thickness direction of the reinforced insulating block.
  • the pillars are aligned in a plurality of rows and the supporting columns are each arranged in alignment with a row of pillars,
  • the pillars are distributed equidistantly and the supporting columns are arranged equidistantly from the adjacent pillars. Thus, the distribution of the compression forces is balanced.
  • the cover panel has housing grooves of the welding supports and the reinforced insulating block comprises four anti-roll backing webs each extending along a side face of the reinforced insulating block, the reinforcing webs extending along lateral faces perpendicular to the grooves having a number of supporting columns greater than the reinforcing webs extending along the lateral faces parallel to the grooves.
  • the reinforcing web comprises an upper beam and a lower beam respectively extending against the cover panel and the bottom panel and a plurality of openings extending into the spaces formed between the struts, the load-bearing columns and the upper and lower beams.
  • the scope of the reinforcing web on the cover panel and on the bottom panel is optimal so that the reinforcing web has a high shear stiffness while limiting, by the presence of openings, the impact of the anti-spill reinforcement structure on thermal insulation performance.
  • the openings have connecting fillet at the intersections between the two struts.
  • stress concentrations are limited.
  • the openings have connecting fillet at the intersections between the upper and lower beams and the load-bearing columns and / or the struts.
  • edges of the reinforcing webs which are arranged opposite the cover panel and the bottom panel have a crenellated shape whose merlons fit into complementary shaped housings formed in the cover panel and the cover panel. background.
  • such a tank may comprise one or more of the following characteristics:
  • the struts are cables comprising a first end fixed to the cover panel and a second end attached to the bottom panel, and in which the anti-spill reinforcement structure comprises a device for mechanical tensioning of the cable (s) .
  • the device for mechanically tensioning a cable comprises an adjusting nut mounted on a threaded end of the cable and a coil spring mounted on said end of the cable and bearing, on the one hand, against a fixing body of said end of the cable; cable and, secondly against the adjusting nut, the device for mechanical tensioning of the cables comprises two parallel plates which are each provided with two orifices respectively allowing the passage of one and the other of the two cables and means for adjusting the distance between said parallel plates.
  • such a tank may comprise one or more of the following characteristics:
  • the legs of forces are formed by a strap subjected to a traction prestress in its longitudinal direction
  • the strap is made of steel.
  • the strap is mounted in a closed loop, on the one hand, around the bottom panel and on the other hand, around all or part of the cover panel, and arranged in the shape of X in the center of the side face of the block. insulating. the strap is twisted 180 ° at each of its two portions extending between the bottom panels and cover.
  • the strap is arranged in an open loop, the strap being mounted around all or part of the cover panel and its two ends being fixed to the bottom panel.
  • the bottom panel has grooves delimiting a central element and lateral elements, the strap being arranged, in a closed loop, and mounted on the one hand, around the panel of the central element of the bottom panel and on the other hand, around all or part of the cover panel, said strap being further X-shaped in the center of the side face of the insulating block.
  • the reinforcing structure comprises two closed-loop straps, each strap diagonally crossing each of the four lateral faces of the reinforced insulating block and passing alternatively on or through an angle zone of the cover panel and then over or through a zone of corner of the bottom panel.
  • the cover panel has at its four corner areas grooves passage strap.
  • such a tank may comprise one or more of the following characteristics:
  • the struts are metal bars having a first end attached to the cover panel and a second end attached to the bottom panel.
  • the metal bars are flat and arranged so that their slices are facing the bottom panel and the cover panel.
  • the metal bars carry, at their ends, threaded rods passing through a fixing body, integral with the bottom panel or the cover panel, and cooperating with a nut so as to enable the metal bars to be put under mechanical tension,
  • the metal bars are made of stainless steel.
  • such a tank may comprise one or more of the following characteristics:
  • the anti-spill reinforcement structure comprises two aligned reinforcing webs, extending along the reinforced side face, and arranged in the thickness direction of the reinforced insulating block between the bottom panel and the backboard. cover, said reinforcing webs being disposed on either side of a median plane orthogonal to the reinforced lateral face and each having a dimension, in the direction orthogonal to the two lateral faces adjacent to said reinforced lateral face, greater than one dimension of a pillar in this direction.
  • edges of the reinforcing webs which are arranged opposite the cover panel and the bottom panel have a crenellated shape whose merlons fit into complementary shaped housings formed in the cover panel and the cover panel. background.
  • the invention provides one or more of the following features:
  • the reinforced insulating block comprises two anti-spill reinforcing structures extending longitudinally along two opposite lateral faces.
  • the insulating block comprises only two anti-spill reinforcement structures, they are advantageously arranged along the two lateral faces perpendicular to the housing grooves of the welding supports of the sealing membrane.
  • the reinforced insulating block comprises four anti-spill reinforcement structures each extending along a lateral face.
  • the plurality of insulating blocks comprises a plurality of standard insulating blocks and a plurality of reinforced insulating blocks, said reinforced insulating blocks being distributed in a regular pattern.
  • the regular pattern of distribution of the reinforced insulating blocks is arranged in such a way that a shear force exerted on the cover panel of a standard insulating block is taken up on a neighboring reinforced insulating block before said standard insulating block discharges.
  • a tank as mentioned above can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG tanker, a floating storage unit and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • the tank may be intended for the transport of LNG or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • a vessel for transporting a fluid comprises a double hull and a said tank disposed in the double hull.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank of the vessel. ship.
  • the invention also provides a transfer system for a fluid, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating or ground storage facility. and a pump for driving fluid flow through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • Figure 1 is a perspective view, cut away, of a vessel wall according to one embodiment.
  • FIG. 2 is a perspective view of a standard insulating block.
  • FIG. 3 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure according to a first embodiment.
  • FIG. 4 is a detailed view of the anti-spill reinforcement structure of FIG.
  • FIGS. 5 and 6 are perspective views of a reinforced insulating block according to variants of the first embodiment.
  • FIG. 7 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure according to a second embodiment.
  • FIG. 8 is a perspective view of a reinforced insulating block according to a variant of the second embodiment.
  • Figure 9 is a detailed view of a method of assembly between a reinforcing web and the bottom and cover panels.
  • FIG. 10 is a perspective view of a reinforced insulating block equipped with a cable anti-spill reinforcement structure according to a third embodiment.
  • Figure 11 is a detailed view of Figure 10 illustrating means for attaching an end of a cable.
  • FIG. 12 is a detailed view of FIG. 10 illustrating fastening means and a device for mechanically tensioning an end of a cable.
  • Figure 13 is a perspective view of a reinforced insulating block equipped with a cable spill-proof reinforcement structure, according to a fourth embodiment.
  • FIGS. 14 and 15 are detailed views of FIG. 13 illustrating a device for tensioning the cables.
  • FIG. 16 is a detailed view of FIG. 13 illustrating means for fixing one end of a cable.
  • Figures 17 and 18 are detailed views of means for fixing an end of a cable according to alternative embodiments.
  • FIG. 19 is a perspective view of a reinforced insulating block equipped with a cable-based anti-spill reinforcement structure according to a fifth embodiment.
  • Figures 20 and 21 are detailed views of Figure 19 illustrating cable attachment means.
  • FIG. 22 is a side view of the reinforced insulating block of FIG. 19.
  • Figures 23 and 24 illustrate an alternative embodiment of a cable fixing means.
  • FIG. 25 is a perspective view of a reinforced insulating block equipped with a metal-bar anti-spill reinforcement structure, according to a sixth embodiment.
  • FIGS. 26 and 27 are detailed views of FIG. 25 illustrating fastening means and a device for tensioning a metal bar.
  • Figure 28 is a perspective view of a reinforced insulating block equipped with a strap anti-spill reinforcement structure, according to a seventh embodiment.
  • Figure 29 is a detail view of Figure 28 illustrating the cooperation of the strap with the cover panel, via a metal bracket.
  • Figure 30 is a side view of the insulating block of Figure 28.
  • FIG. 31 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with a strap, according to an eighth embodiment.
  • Figure 32 is a side view of the insulating block of Figure 31.
  • Fig. 33 is a detail view of Fig. 31 illustrating the association of the strap with the cover panel.
  • FIG. 34 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with a strap, according to a ninth embodiment.
  • Figure 35 is a side view of the insulating block of Figure 34.
  • Fig. 36 is a detail view of Fig. 34 showing the combination of the strap with the cover panel via metal brackets.
  • FIG. 37 is a perspective view of a reinforced insulating block equipped with anti-spill reinforcement structures, with straps, according to a tenth embodiment, schematically illustrating the passage of a strap.
  • Fig. 38 is a detail view of Fig. 37 illustrating a groove for passage of a strap formed in the cover panel at one of its corners.
  • FIG. 39 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with strap, according to an eleventh embodiment.
  • Figure 40 is a detail view of Figure 39 illustrating the association of the strap with the bottom panel.
  • FIG. 41 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with a strap, according to a twelfth embodiment.
  • Figures 42 and 43 are detailed views of Figure 41 illustrating the association of the strap with the bottom panel.
  • FIG. 44 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with a strap, according to a thirteenth embodiment.
  • Figures 45 and 46 illustrate a plating angle arranged to press a strap against the bottom panel, at the corners of said bottom panel.
  • Figure 47 is a perspective view of a reinforced insulating block equipped with a strap anti-spill reinforcement structure, according to a fourteenth embodiment.
  • Figures 48 and 49 are detailed views of Figure 47 illustrating the association of the strap with the bottom panel.
  • FIG. 50 is a perspective view of a reinforced insulating block equipped with an anti-spill reinforcement structure, with straps, according to a fifteenth embodiment.
  • Figure 51 is a perspective view, cut away, of a tank wall comprising reinforced insulating blocks equipped with strut anti-deforming reinforcement structures.
  • FIGS. 52 to 57 schematically illustrate alternative embodiments of thermally insulating barriers equipped with standard insulating blocks and reinforced insulating blocks.
  • Figure 58 is a partial perspective view in section of a vessel.
  • FIG. 59 is a cutaway schematic representation of a tank of a LNG carrier having a reinforced insulating block and a loading / unloading terminal of this tank. Detailed description of embodiments
  • FIG. 1 a wall of a sealed and thermally insulating tank is shown.
  • the general structure of such a tank is well known and has a polyhedral shape. It will therefore focus only to describe a wall zone of the tank, it being understood that all the walls of the tank may have a similar general structure.
  • the wall of the tank comprises, from the outside to the inside of the tank, a carrier structure 1, a secondary thermally insulating barrier 2 which is formed of insulating blocks 3 juxtaposed on the carrying structure 1 and anchored thereto by secondary holding members 4, a secondary sealing membrane 5 carried by the insulating blocks 3, a primary thermally insulating barrier 6 formed of insulating blocks 7 juxtaposed and anchored to the secondary sealing membrane 5 by primary retaining members 8 and a primary sealing membrane 9, carried by the insulating blocks 7 and intended to be in contact with the cryogenic fluid contained in the tank.
  • the supporting structure 1 may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties.
  • the supporting structure may in particular be formed by the hull or the double hull of a ship.
  • the carrying structure comprises a plurality of walls defining the general shape of the tank.
  • the primary 9 and secondary 5 waterproofing membranes are, for example, constituted by a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges to parallel welding supports held on the insulating blocks 3, 7
  • the metal strakes are, for example, made of Invar ®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 "6 and 2.10 " 6 K “1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7 ⁇ 10 -6 K -1 .
  • FIG. 2 illustrates the structure of an insulating block 3, 7.
  • the insulating block 3, 7 comprises a rectangular parallelepiped shape having two large faces, or principal faces, and four small faces, or lateral faces.
  • the insulating block 3, 7 comprises a bottom panel 10 and a cover panel 11 parallel, spaced in the direction of thickness of the insulating block 3, 7.
  • the bottom panel 0 and the cover panel 11 define the main faces of the insulation block 3, 7.
  • the cover panel 11 has an outer support surface for receiving the primary or secondary sealing membrane 9.
  • the cover panel 11 has, in addition, on its outer face, grooves 12 for the housing of the welding supports for welding the metal strakes of the primary 9 or secondary 5 waterproofing membranes.
  • Bearing pillars 13 extend in the thickness direction of the insulating block 3, 7 and are fixed on the one hand to the bottom panel 10 and on the other hand to the cover panel 11.
  • the pillars 13 are attached to the bottom panel 10 and the cover panel 11 by any suitable means, stapling and / or gluing for example.
  • the pillars 13 allow to resume compression efforts.
  • the pillars 13 are aligned in a plurality of rows and distributed in staggered rows. The distance between the pillars 13 is determined so as to allow a good distribution of compression forces. In one embodiment, the pillars are distributed equidistantly.
  • the pillars 13 have a solid section, of square shape.
  • the pillars 13 can be made in many materials. They may especially be made of wood or plastic, such as polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyethylene (PE), acrylonitrile-butadiene-styrene copolymer (ABS), polyurethane (PU) or polypropylene (PP), optionally reinforced with fibers.
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PE polyethylene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PU polyurethane
  • PP polypropylene
  • a heat-insulating lining extends in the spaces formed between the pillars 13.
  • the heat-insulating lining is, for example, glass wool, wadding, a polymer foam, such as polyurethane foam, foam polyethylene or polyvinyl chloride foam.
  • a polymer foam may be disposed between the pillars 13 by an injection operation during the manufacture of the insulating block 3, 7.
  • the bottom panels 10 and cover 11 are each made of a plywood plate.
  • the cover panel 11 has a "sandwich" structure and comprises a distribution plate 11a fixed on the pillars 13 and resting on the pillars 13, an upper plate 11b, parallel to the distribution plate 11a, and a plurality of beams 1 1c, extending parallel between the upper plate 11b and the distribution plate 11c.
  • Figures 3 to 50 illustrate insulating blocks 3, 7 reinforced according to several embodiments.
  • the reinforced insulating blocks have a structure substantially similar to that described in connection with Figure 2 but also comprises one or more anti-spill reinforcement structures.
  • FIG. 3 represents a reinforced insulating block 3, 7 equipped with anti-spill reinforcement structures 14 according to a first embodiment.
  • the anti-spill reinforcement structures 14 make it possible to increase the shear stiffness of the insulating block 3, 7 when a tangential shear force is exerted on the cover panel 11 in a lateral direction x.
  • an anti-spill structure 14 shown in detail in FIG. 4, consists of a reinforcing web 15, formed in one piece, extending between the bottom panel 10 and the panel of cover 11.
  • the reinforcing veil 15 extends along a lateral face of the insulating block 3, 7 and centered along it.
  • the reinforcing web 15 has a generally parallelepipedal shape having two large faces, one of which is facing the interior of the insulating block 3, 7 and the other is facing outwards, and four edges, two of which are arranged respectively vis-à-vis the cover panel 11 and the bottom panel 10.
  • the reinforcing web 15 is cut so as to form two legs of force 16a, 16b, forming an X when they are observed in an orthogonal direction at the side face.
  • the struts 16a, 16b extend along the diagonals of the large faces of the reinforcing veil 15.
  • the reinforcing web 15 furthermore comprises bearing columns 17a, 17b, 17c, of which there are three in FIG. 4, extending in the thickness direction of the insulating block 3, 7.
  • the supporting columns 17a, 17b , 17 thus make it possible to resume compression efforts.
  • the supporting columns 17a, 17b, 17c are each arranged in alignment with one of the rows of pillars 13 and, preferably, arranged equidistantly from the adjacent pillars 13.
  • the supporting columns 17a, 17b, 17c also have a stiffness in compression substantially equivalent to that of a pillar 13. Thus, the implantation of such a reinforcing web 15 does not alter the balanced distribution of compression forces.
  • the reinforcing veil 15 comprises an upper beam 18a and a lower beam 18b parallel and perpendicular to the thickness direction of the insulating block 3, 7.
  • the upper beam 18a extends against the cover panel 1 1 and the beam bottom 18b extends against the bottom panel 10.
  • the reinforcing web 15 has a plurality of openings 19 formed in each trilateral space extending between a supporting column 17a, 17b, a strut 16a, 16b and the other strut 16b, 16a or an upper beam 18a. or lower 18b.
  • the presence of such openings 19 limits the impact of the reinforcing web 15 on the thermal insulation performance.
  • the openings 19 have at the intersections between the struts 16a, 16b and / or between a strut 16a, 16b and a support column 17a, 17b, 17c and / or between a support column 17a, 17b, 17c and a upper beam 18a or lower 18b, holidays.
  • the openings 19 have a generally triangular shape whose corner areas have rounded connections. Such roundings or rounded connections make it possible to limit the concentrations of stresses.
  • the reinforcing veil 15 may be made of wood, for example, plywood, or composite material comprising a fiber reinforced plastic matrix.
  • the reinforcing web 15 may be attached to the bottom panel 10 and the cover panel 11 by any suitable means, such as stapling and / or gluing, for example.
  • the thickness of the reinforcing web 5 is between 9 and 30 millimeters.
  • a reinforced insulating block equipped with such reinforcing webs 15 has a stiffness in the face of a shear force exerted tangentially on the cover panel 11 which is about four times greater than the stiffness of a standard insulating block.
  • the reinforced insulating block 3, 7, illustrated in FIG. 5, is substantially similar to that illustrated in FIG. 3, but differs in that the load-bearing webs 15 have a longer length and comprise four supporting columns 17a, 17b, 17c, 17d.
  • the reinforced insulating block 3, 7, shown in FIG. 6, comprises four anti-spill structures 14 each extending along a respective lateral face.
  • the lateral forces exerted on the cover panel 11 perpendicular to the grooves 12 of the weld supports are greater than the lateral forces acting parallel to said grooves 12.
  • the reinforcing webs 15 extending along the lateral faces perpendicular to the grooves 12 have a greater length than the reinforcing webs 15 extending along the lateral faces parallel to the grooves 12.
  • the longer reinforcing webs 15 here have three supporting columns 17a, 17b, 17c whereas the shortest reinforcing webs 15 comprise only two supporting columns 17a, 17b.
  • the insulating block 3, 7 comprises at its corners pillars 20 having an L-shape whose horizontal lower bar forms a retaining surface adapted to cooperate with retaining members 4, 8.
  • the reinforced insulating block 3, 7, shown in FIG. 7, is equipped with two anti-spill structures 21, according to a second embodiment, extending along two opposite lateral faces.
  • Each anti-spill structure 21 comprises two reinforcing webs 22 aligned along a lateral face of the insulating block 3, 7.
  • the reinforcing webs 22 extend, in the thickness direction, between the bottom panel 10 and The cover panel 1 1.
  • the reinforcing webs 22 are arranged on either side of a median plane perpendicular to the lateral face along which they are aligned.
  • the reinforcing webs 22 extend here at the ends of the lateral faces of the insulating blocks 3, 7.
  • the reinforcing webs 15 have a dimension, in the direction orthogonal to the two lateral faces adjacent to said reinforced lateral face, greater than the dimension of the pillars in this direction. In one embodiment, this dimension is more than twice that of the pillars 13.
  • the reinforcing webs 22 give the insulating block 3, 7, a stiffness in the x direction.
  • a reinforced insulating block equipped with such reinforcing webs 22 may have a stiffness in the face of a shear force exerted tangentially on the cover panel 11 which is about three times greater than the stiffness of a standard insulating block.
  • the reinforced insulating block 3, 7, illustrated in FIG. 8, comprises four anti-spill structures 21 each comprising two reinforcing webs 22 and each equipping one of the lateral faces of the insulating block.
  • the anti-roll structures 21 are substantially similar to that described in relation to FIG. 7 and each comprise two reinforcing webs 22 aligned along each lateral face and arranged at their ends.
  • the reinforcing webs 22 furthermore have a recess formed in a lateral edge of the reinforcing web 22, adjacent to an angle of the insulating block 3, 7. This break in the reinforcing webs provides a tab 23 which carries a bearing surface adapted to cooperate with the retaining members 4, 8.
  • the reinforcing webs 22 may be made of wood or of composite material comprising a fiber-reinforced plastic matrix.
  • the reinforcing webs 22 may be attached to the bottom panel 10 and the cover panel 11 by any suitable means, such as stapling and / or gluing for example.
  • FIG. 10 illustrates a reinforced insulating block 3, 7 equipped with an anti-spill structure 25 according to a third embodiment.
  • the anti-spill structure 25 comprises two struts formed by X-shaped cables 26a, 26b each extending between the bottom panel 10 and the cover panel 11.
  • the cables 26a, 27b extend along a lateral face of the insulating block 3, 7 and unfold along its diagonals.
  • Each cable 26a, 26b has a first end attached to the cover panel 11 and a second end attached to the bottom panel 10.
  • the cables 26a, 26b are, for example, wire ropes.
  • the anti-spill structure 25 further comprises devices for mechanically tensioning the cables 26a, 26b.
  • Figure 1 1 shows means for fixing a cable 26a according to one embodiment.
  • the fastening means comprise a fastening body 27 having a passage opening of the cable 26a.
  • the fixing body 27 comprises a cylindrical rod and a retaining head 28.
  • the lid panel 1 1 has an orifice allowing the passage of the cylindrical rod of the fixing body 27 and having a counterbore for receiving the retaining head 28.
  • L end of the cable 26a cooperates with an end stop 28 to block the end of the cable 26a on the fixing body 27.
  • FIG. 12 represents a means of fixing a cable 26a cooperating with a device for mechanically tensioning said cable 26a.
  • the cable fixing means 26a is substantially similar to that described with reference to FIG. 11.
  • the cable fixing means 26a comprises a fastening body 27 which comprises a cylindrical rod received inside an orifice of the bottom panel 10 and a retaining head 28 received in a countersink formed in said passage opening of the cylindrical rod.
  • the energizing device comprises a helical spring 30 and a nut 29 for adjusting the tension.
  • the end of the cable 26a has a thread for receiving the nut 29.
  • the coil spring 30 is mounted on the end of the cable 26a bearing, on the one hand, against the fixing body 30 and on the other hand against the nut 29.
  • the coil spring 30 thus exerts a tensile force on the cable 26a.
  • the end of the cable 30 also carries a ball 31 ensuring the maintenance of the coil spring 30 and the nut 29 on the end of the cable 26a. Note that, in an alternative embodiment, not shown, it is possible to provide mechanical tensioning devices at each end of the cables 26a, 26b.
  • the reinforcing structure 25 comprises only a power-up device 32 arranged near the intersection between the two cables 26a, 26b and making it possible to turn on the power. simultaneously, the two cables 26a, 26b.
  • This powering device 32 is shown in detail in FIGS. 14 and 15.
  • the powering device 32 comprises two parallel plates 33a, 33b, each of which is provided with two orifices allowing the passage of the first and the second, respectively. other of the two cables 26a, 26b.
  • the distance between the two plates 33a, 33b is adjustable to ensure adequate tension of the cables 26a, 26b.
  • a threaded screw 34 is introduced through orifices in the plates 33a, 33b and thus allows them to be connected at a variable distance.
  • the receiving orifice of the threaded end of the screw 34, formed in the plate 33a is provided with a thread.
  • the rotation of the threaded screw 34 causes the reconciliation or removal of the plate 33a relative to the plate 33b.
  • the energizing device 32 also comprises a nut 35 to block the rotation of the screw 34 when the tension of the cables 26a, 26b is correctly adjusted.
  • Figures 16, 17 and 18 show several means for fixing an end of a cable 26a, 26b.
  • the fastening means comprise a fastener body 27 having a passage opening for the cable 27.
  • the end of the cable 26a cooperates with an abutment ball 31 for locking the end of the cable 26a on the body of the cable.
  • the fastening body 27 has a retaining head 28 and a threaded cylindrical rod 28.
  • the threaded cylindrical rod 28 passes through the bottom panel 10 or lid 11 through an orifice and cooperates with a nut 36.
  • the retaining head 28 is embedded in a countersink formed in the bottom panel 10 or lid 11.
  • the fixing of the end of the cable 26a is provided by a stirrup 37 comprising a U-shaped section extended on either side by tabs 38, 39 intended to rest against the internal face of the cover panel 11 or the bottom panel 10.
  • the U-shaped section forms a housing housing a thrust ball 31 secured to the end of the cable 26a.
  • the stirrup 37 has a slot 40 for the passage of the cable 26a. Orifices 41, 42 allowing the passage of fixing members, such as screws, not shown, are formed in the tab 39.
  • the fixing of the end of a cable 26a, equipped with an abutment ball 31, is provided by a fastening body 43 which acts as a housing for receiving the thrust ball 31.
  • the housing is defined by a cylindrical skirt 44 whose one end is extended by a retaining collar 45 and whose other end is closed by a bottom 46.
  • the bottom 46 has a passage opening of the cable 26a.
  • the fastener body 43 passes through a hole in the lid panel 11 or bottom plate 10.
  • the orifice formed in the lid panel 11 or the bottom panel 10 has a countersink in which the retaining flange 45 is received. .
  • FIGS. 20 and 21 show an insulating block 3, 7 reinforced according to another embodiment. This embodiment differs from that described in relation to FIG. 13 by the structure of the means for fixing the ends of the cables 26a, 26b. These fixing means are shown in detail in FIGS. 20 and 21.
  • the fastening means comprise a stirrup 46 having a U-shaped profile, extended by retaining wings 47a, 47b extending perpendicularly to the vertical bars.
  • the cover panel 11 or the bottom panel 10 has grooves opening onto the edge of said panel 11, 10 and into which the vertical bars 48a, 48b of the U can be slid.
  • the retaining wings 47a, 47b make it possible to retain the yoke 46 to the lid panel 11 or bottom 10.
  • the yoke 46 further comprises a circular orifice 49 allowing the passage of the thrust ball 31 carried by the end of the cable 26 and communicating with an oblong hole 50 allowing the passage of the cable 26a.
  • the oblong hole has a transverse dimension smaller than that of the thrust ball 31 in order to hold the end of the cable 26a to the stirrup 46.
  • FIG. 23 and 24 illustrate means for fixing an end of a cable 26a according to another embodiment.
  • the fastening means comprise an inner plate 50 and an outer plate 51 respectively disposed against the inner face and the outer face of the bottom panel 10 or the cover panel 11 and fixed to one another. through the bottom panel 10 or the cover 11 via a plurality of fasteners, such as rivets, for example, not shown, passing through the orifices 57.
  • the orifices 57 are formed in stamped zones 54, 55, 56 of the outer plate 51, protruding inside the cover panel 11 or bottom 10 and coming against the inner plate 50.
  • One of the stamped areas 56 has an oblong shape penetrating inside an oblong orifice, of complementary shape, formed in the bottom panel 10 or lid 11.
  • Such an oblong shape, extending perpendicular to the side face equipped with said cable reinforcement device, is particularly advantageous in when resuming the tensile forces exerted on the cables 26a, 26b.
  • the inner plate 50 has a circular orifice 52 allowing the passage of the thrust ball 31 carried by the end of the cable 26 and communicating with an oblong hole 53 allowing the passage of the cable 26a.
  • FIG. 25 illustrates a reinforced insulating block 3, 7 equipped with an anti-spill structure 58 according to another embodiment.
  • the anti-spill structure 58 comprises two struts formed by rigid metal bars 59a, 59b, arranged in the form of X.
  • the metal bars extend along a lateral face of the insulating block 3 , 7 and each extend between the bottom panel 10 and the cover panel 11.
  • they are flat and arranged so that their slices are turned with respect to the bottom panel 10 or the cover panel 11.
  • the said metal bars 59a, 59b carry at their ends threaded rods 60.
  • the threaded rods 60 pass through a fastening body 61 integral with the panel. bottom 10 or cover 11 and cooperate with a nut 62 for putting under mechanical tension the metal bars 59a, 59b.
  • the metal bars 59a, 59b are, for example, made of stainless steel.
  • FIGS. 28 to 51 illustrate reinforced insulating blocks 3, 7 equipped with reinforcement structures 63 with a strap.
  • the reinforcement structures 63 comprise two X-shaped force struts extending along a lateral edge of the insulating block 3, 7 which are formed by one or more straps subjected to tensile preload in their longitudinal direction.
  • Such straps are, for example, made of steel.
  • the reinforcing structure 63 is formed by a strap 64, in a closed loop, mounted on the one hand around the bottom panel 10, on the other hand, around the panel of cover 11 and arranged at X in the center of the side face of the insulating block 3, 7.
  • the strap 64 is arranged substantially in the shape of "8" whose upper loop is mounted around the cover panel 11 and the lower loop is mounted around the bottom panel 10.
  • the lid panels 11 and bottom 10 are cut at their adjacent angles at the side face equipped with such a spill-proof structure 63 with a strap.
  • the bottom panels 10 and cover 11 have, at each of its corner cutouts, one or more metal angles 65, as shown in Figure 29.
  • the metal brackets 65 can prevent the matting of the panels of bottom 10 and lid 11.
  • the strap 64 is twisted through 180 ° at each of its portions extending between the bottom panels 10 and cover 11 and forming the struts.
  • strap portions 64 extend against each other in a vertical plane.
  • the tensile forces urging the diagonal portions of the strap 64 are exerted exactly in the plane of the side face.
  • FIGS. 31 to 49 illustrate embodiments of reinforced insulating blocks 7 intended to be integrated with the primary thermal insulation barrier, in which the bottom panel 10 is provided with grooves 66. These grooves 66 are intended to allow the passage welding supports and raised edges of the metal strakes of the secondary sealing membrane 5.
  • the reinforcing structure 63 comprises an open strap 67.
  • the strap 67 is mounted around the distribution plate 11a of the cover panel 11 and sandwiched between the elements of the sandwich structure of the cover panel 11.
  • the two ends of the strap 67 are fixed against the outer face of the bottom panel 10, near its corners.
  • the strap 67 does not extend through the grooves 66 formed in the bottom panel 10.
  • cover panels 11 and bottom panels 10 are cut at their corners adjacent to the side face equipped with the strap 67, to provide a passage space for the strap 67.
  • the panels of cover 11 and bottom 10 have, at each of their corner cutouts, a metal angle 65, as shown in Figure 33.
  • the strap 67 is also twisted 180 ° at the of each of its portions extending between the bottom panels 10 and lid 11.
  • the insulating block 7 comprises an element 68 for guiding the strap 67.
  • the element 68 comprises a base which straddles the groove 66.
  • the base 68 is also provided with a slot 69 allowing the passage of the welding supports and the raised edges of the metal strakes of the secondary sealing membrane 5.
  • the base 68 carries an upper surface for guiding the strap 67 to prevent contact between the strap 67 and the welding support of the secondary membrane and two lateral wings 82a, 82b making it possible to maintain the strap 67 in the plane of the lateral face of the insulating block 7.
  • the guide element 68 is set up after the fixing of the two ends of the strap 67 on the bottom panel 10 and thus makes it possible to mechanically tension the strap 67.
  • the reinforcing structure 63 is formed by a strap 83, closed loop, arranged in the form of "8".
  • the strap 83 is, on the one hand, mounted around the distribution plate 11a of the cover panel 11 and sandwiched between the elements of the "sandwich” structure of the cover panel 11.
  • the strap 83 passes through the grooves 66 and is mounted around a central element 84 of the bottom panel 10, bordered by the two grooves 66.
  • the strap 83 is also twisted 180 ° at each of its portions extending between the bottom panel 10 and the cover panel 10, as shown in FIG. 35.
  • the sandwich structure of the cover panel 10 is provided at its corner with a set of two angles 65 for protecting respectively a lower edge and an upper edge of the cover panel 11, against matting.
  • the reinforcement structure 63 comprises two straps 87, closed loop, only one is shown.
  • Each strap 87 crosses, diagonally, each of the lateral faces and passes alternately on or through an angle zone of the cover panel 11 and then on or through an angle zone of the bottom panel 1 1.
  • the lid panel 11 has at its four corner areas grooves 88 web passage 87, opening on two side faces of the insulating block 7 adjacent.
  • the reinforcement structure 63 comprises an open strap 89.
  • the strap 89 is mounted around the distribution plate 11a of the cover panel 11 and taken in the structure of the cover panel 11.
  • the insulating block 7 comprises a beam 90 extending against the bottom panel 10, the along the reinforced longitudinal edge, equipped with said reinforcing structure 63.
  • the beams 90 are equipped, at the grooves 66 formed in the bottom panel 10, slots for the passage of the welding supports of the secondary membrane 5.
  • the strap 89 extends along the side members 92, 93, passes through the grooves 66 and is secured between the beam 90 and the inner surface of the side members 92, 93 of the bottom panel 10.
  • the use of a such beam 90 is particularly advantageous in that it makes it possible to secure the ends of the strap 89 while stiffening the bottom panel 10.
  • the anti-spill reinforcing structure 63 comprises a strap 94, in a closed loop.
  • the strap 94 is mounted around the distribution plate 11a of the cover panel 11 and taken in the structure of the cover panel 11.
  • the insulating block 7 comprises beams 95, 96, 97 extending along the reinforced longitudinal face, on each of the central 84 and lateral elements 93, 94 of the bottom panel 10.
  • the insulating block 7 further comprises devices 98 for guiding the strap 94 positioned at the grooves 66 of the bottom panel 10.
  • the strap guiding devices 98 comprise a base fixed to the bottom panel 10 bearing an axis cylindrical guide 99 of the strap and two lateral wings 100a, 100b to ensure the maintenance of the strap 94 in the plane of the side face of the insulating block 3.
  • the strap 94 along the outer surface of the side members 92, 93 and is guided towards the inner surface of the central element 84 of the bottom panel 10 by the cylindrical axis 99 of the guiding devices 98.
  • the insulating block 7 comprises a plating angle 101 arranged to press the strap 89 against the bottom panel 10 at the corners of the bottom panel 10.
  • This angle plating 102 also carries an upper plate 103 for receiving a bearing element of the primary retaining members 8.
  • the insulating block 7 comprises four anti-spill reinforcement structures 63 each extending along a lateral face of the insulating block 7.
  • the anti-spill reinforcement structures 63 extending along the lateral faces parallel to the grooves 12, 66 each comprise a strap 104, in a closed loop, arranged in the form of 8, which is on the one hand taken in the structure of the panel cover block 11 and on the other hand, mounted around the bottom panel 10.
  • the insulating block 7 further comprises beams 105 extending along the lateral faces perpendicular to the grooves 12, 66, against the bottom panel 10.
  • the bottom panel 10 has notches 108 allowing the strap 106 to pass therethrough.
  • the corner area 109 of the bottom panel 10 is arranged to form a retaining surface adapted to cooperate with a support element for primary retaining members 8.
  • the anti-spill reinforcement structures 63 extending along the lateral faces perpendicular to the grooves 12, 66 each comprise a strap 106, in a closed loop, arranged in the shape of 8.
  • the strap 106 is taken in the structure of the cover panel 11.
  • the strap 106 passes through the grooves 66 formed in the bottom panel 10 and is mounted around the central element 84 of the bottom panel 10.
  • the insulating block 7 here comprises a beam 107 extending along the edge of the central element 84.
  • the insulating block comprises a plurality of fixing bridges extending astride between a lateral element 92, 93 of the bottom panel 10 and the central element 84 and ensuring the fixing of the elements. 92, 93 to said central element 84.
  • the insulating block 3, 7 comprises four anti-spill reinforcement structures 63 each extending along their respective lateral faces.
  • the four reinforcing structures 63 are here identical and each comprise a strap 107, in a closed loop.
  • the strap 108 is arranged in the form of "8" and is, on the one hand, taken in the composite structure of the lid panel 11 and, on the other hand, mounted around the bottom panel 10.
  • FIG. 51 illustrates a tank wall equipped with reinforced insulating blocks 3, 7 equipped with anti-spill reinforcement structures 63 with a strap.
  • the insulating blocks 3 of the secondary thermally insulating barrier 2 rest on the carrier structure 1, by means of polymerizable resin elements 110 arranged in an ad hoc manner or in the form of strands.
  • the insulating blocks 7 are retained on the supporting structure 1 by secondary retaining members 4 disposed at the four corners of the insulating blocks 3.
  • the secondary retaining members 4 comprise a threaded insert 111 and a support element 112 which sandwich the corners of the bottom panel 10 of the insulating blocks 3.
  • the secondary holding members 4 carry a rod 113 extending in the thickness direction of the tank and at the end of which is mounted a metal plate 114.
  • Solder supports are positioned in the grooves formed on the cover panel 11 of the insulating blocks 7 and the raised edge metal strakes of the secondary sealing membrane 5 are welded to the welding supports and to the metal plates 114.
  • the plate 114 further carries a pin 115 for fixing a retaining plate 116 so as to press the corners of the insulating blocks 3 of the primary thermal insulation barrier 6 between the retaining plate 1 16 and the metal plate 1 14. These elements form the primary retaining members 8.
  • the straightened strakes of the primary waterproofing membrane 9 are then welded to solder supports positioned in grooves formed in the panel. cover 11 of insulating blocks 7.
  • panels 117, 118 are arranged vertically between the insulating blocks and make it possible to thermally isolate the gaps between adjacent insulating blocks 3, 7, in particular in order to limit the heat transfer by convection between the insulating blocks. 3, 7.
  • Such panels 117, 118 are made of glass wool, polystyrene or polymeric foam such as polyurethane foam, polyethylene foam or polyvinyl chloride foam.
  • FIGS. 52 to 57 schematically illustrate primary thermal insulation barrier walls 6 and / or secondary walls 2 comprising standard insulating blocks 119, as shown in FIG. 2, that is to say insulating blocks which are not equipped with an anti-spill reinforcement structure, and reinforced insulating blocks 120, as described in connection with one of the embodiments illustrated in FIGS. 3 to 50.
  • the insulating blocks reinforced 120 are hatched to distinguish them from standard insulating blocks 119.
  • the standard insulating 119 and reinforced 120 blocks are arranged in a checkerboard arrangement, the standard 119 and reinforced 120 blocks being alternately arranged, a standard block 1 19 succeeding a reinforced block 120.
  • the layout comprises an alternation of two types of columns C1, C2 and an alternation of two types of rows R1, R2.
  • the type C1 columns consist of an alternation of three standard insulating blocks 119 and a reinforced insulating block 120.
  • the type C2 columns consist of an alternation of a standard insulating block 119 and an insulating block Reinforced 120.
  • the rows of type R1 consist of an alternation of a standard insulating block 1 19 and a reinforced insulating block 120.
  • the rows of type R2 consist of an alternation of three standard insulation blocks 119 and a reinforced insulating block 120.
  • the reinforced insulating blocks 120 of the columns C1 also belong to the rows of type R2 while the reinforced insulating blocks 120 of the columns C2 also belong to the rows of type R1.
  • the layout comprises an alternation of a C1 type column and a C2 type column.
  • the type C1 columns comprise only standard insulating blocks 20.
  • the type C2 columns comprise an alternation of a standard insulating block 119 and a reinforced insulating block 120.
  • the layout comprises an alternation of a row of type R1 comprising only standard insulating blocks 119 and a row of type R2 comprising only reinforced insulating blocks 120.
  • the layout comprises an alternation of two rows of type R1 comprising only standard insulating blocks 119 and a row of type R2 comprising only reinforced insulating blocks 120.
  • the layout comprises an alternation of two rows of type R1 and of a row of type R2.
  • the rows of type R1 comprise an alternation of three standard insulating blocks 119 and a reinforced insulating block 120.
  • the reinforced insulating blocks of the R1-type rows are aligned in columns and form C1-type columns comprising only reinforced insulating blocks. 120.
  • R2-type rows contain only reinforced insulating blocks 120.
  • the arrangement of the standard insulating blocks 119 and the reinforced insulating blocks 120 according to one of the layout patterns described above allows a recovery of the tangential forces exerted on the cover panel of the standard insulating blocks on the reinforced insulating blocks.
  • the clearance between the standard insulating blocks 119 and the reinforced insulating blocks 120 is sufficiently small so that the lateral forces exerted on the cover panel of a standard insulating block 1 19 are taken up on a reinforced insulating block 120 neighbor before the pillars of the standard insulating block 119 do not spill.
  • the vessel has, in section along a vertical and / or transverse plane, an octagonal section.
  • the tank has a bottom wall 121 and a ceiling 122 horizontal, vertical walls 123 and inclined walls 124, 125 connecting the vertical walls 123 at the bottom wall 121 or at the ceiling 122.
  • the arrangement of the standard insulating blocks 119 and the reinforced insulating blocks 120 according to one of the layout patterns described above is used only for the realization of the walls which are the most subject to the effects of "sloshing" inducing dynamic shocks of fluid, that is to say the inclined walls 124, 125 and the ceiling 122.
  • the Vertical end walls 126 have an upper zone 128 and a lower zone 127 equipped with an arrangement according to one of the above-described layout patterns.
  • the upper zones 128 and lower 127 extend, for example, to tank heights equivalent to those of the inclined walls 124, 125.
  • thermal insulation barrier can be used in different types of tanks, for example to constitute a primary or secondary thermal insulation barrier of an LNG tank in a terrestrial installation or in a structure floating like a LNG carrier or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealing membrane intended to be in contact with the LNG contained in the tank, a secondary sealing membrane arranged between the primary waterproofing membrane and the double hull 72 of the vessel, and two thermally insulating barriers respectively arranged between the primary sealing membrane and the secondary sealing membrane and between the secondary sealing membrane and the double shell 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 59 represents an example of a marine terminal including a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges LNG carriers.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante de stockage d'un fluide comportant une barrière d'isolation thermique et une membrane d'étanchéité supportée par la barrière d'isolation thermique, la barrière d'isolation thermique comportant une pluralité de blocs isolants (3, 7) parallélépipédiques juxtaposés comprenant chacun : - un panneau de fond (10) et un panneau de couvercle (11), espacés selon une direction d'épaisseur du bloc isolant (3, 7); - une pluralité de piliers (13) interposés entre lesdits panneaux de fond (10) et de couvercle (11) et s'étendant dans la direction d'épaisseur; et - une garniture calorifuge disposée entre les piliers (13); ladite pluralité de blocs isolants (3, 7) comportant au moins un bloc isolant (3, 7) renforcé équipé d'au moins une structure de renfort anti-déversement (14) s'étendant longitudinalement le long d'une face latérale renforcée dudit bloc isolant (3, 7), renforcé, entre le panneau de fond (10) et le panneau de couvercle (11).

Description

CUVE ETANCHE ET THERMIQUEMENT ISOLANTE DE STOCKAGE D'UN
FLUIDE
Domaine technique
L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.
Des cuves étanches et thermiquement isolées à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant.
Arrière-plan technologique
Le document FR 2 877 638 décrit une cuve étanche et thermiquement isolante comprenant une paroi de cuve, fixée à la structure porteuse d'un ouvrage flottant et présentant successivement, dans le sens de l'épaisseur, depuis l'intérieur vers l'extérieur de la cuve, une barrière étanche primaire destinée à être en contact avec le gaz naturel liquéfié, une barrière isolante primaire, une barrière étanche secondaire et une barrière isolante secondaire, ancrée à la structure porteuse.
Les barrières isolantes sont constituées d'une pluralité de caisses calorifuges parallélépipédiques juxtaposées. Chaque caisse calorifuge comporte un bloc de mousse isolante, un panneau de fond et un panneau de couvercle disposés de part et d'autre du bloc de mousse isolante et une pluralité de piliers porteurs s'élevant à travers la direction d'épaisseur de la caisse afin de reprendre les efforts de compression.
En service, les parois de la cuve sont soumises à de nombreuses sollicitations. En particulier, les parois sont soumises à des efforts de compression dus au chargement de la cuve, à des contraintes thermiques lors de la mise à froid et à des efforts dus aux chocs dynamiques du fluide contenu dans la cuve. Aussi, des efforts s'exercent tangentiellement aux panneaux de couvercle des caisses calorifuges et sont ainsi susceptibles d'entraîner le déversement des piliers des caisses calorifuges. Résumé
Une idée à la base de l'invention est de proposer une cuve étanche et thermiquement isolante de stockage d'un fluide qui présente à la fois de bonnes performances d'isolation thermique tout en ayant une bonne résistance aux efforts et notamment aux efforts exercés tangentiellement aux parois.
Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante de stockage d'un fluide comportant une barrière d'isolation thermique et une membrane d'étanchéité supportée par la barrière d'isolation thermique, la barrière d'isolation thermique comportant une pluralité de blocs isolants parallélépipédiques juxtaposés présentant deux faces principales et quatre faces latérales et comprenant chacun :
- un panneau de fond et un panneau de couvercle, espacés selon une direction d'épaisseur du bloc isolant et définissant les faces principales du bloc isolant, le panneau de couvercle présentant une surface de support pour recevoir la membrane d'étanchéité ;
- une pluralité de piliers interposés entre lesdits panneaux de fond et de couvercle et s'étendant dans la direction d'épaisseur ; et
- une garniture calorifuge disposée entre les piliers ;
ladite pluralité de blocs isolants comportant au moins un bloc isolant renforcé équipé d'au moins une structure de renfort anti-déversement s'étendant longitudinalement le long d'une face latérale renforcée dudit bloc isolant renforcé, entre le panneau de fond et le panneau de couvercle.
Dans un mode de réalisation, la structure de renfort anti-déversement présente une raideur en cisaillement, pour un effort de cisaillement exercé sur le panneau de couvercle dans une direction orthogonale aux plans des faces latérales adjacentes à ladite face latérale renforcée, supérieure à celle d'un pilier.
Ainsi, la résistance du bloc isolant aux efforts s'exerçant tangentiellement au panneau de couvercle est augmentée et les risques de déversement des piliers sont diminués. En outre, l'impact d'une telle structure de renfort anti-déversement sur les performances d'isolation thermiques est limité. Dans un mode de réalisation, la structure de renfort anti-déversement comporte deux jambes de force disposées diagonalement, en forme de X, et s'étendant chacune entre le panneau de fond et le panneau de couvercle. Ainsi, une telle structure en X permet d'obtenir une raideur en cisaillement, pour un effort de cisaillement exercé sur le panneau de couvercle, dans la direction longitudinale à la face latérale renforcé, qui est particulièrement importante tout en limitant l'impact de la structure de renfort sur les performances d'isolation thermique.
Selon un premier groupe de modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :
- les deux jambes de force sont formées d'un seul tenant dans un voile de renfort s'étendant entre le panneau de fond et le panneau de couvercle,
le voile de renfort comporte, en outre, au moins deux colonnes porteuses s'étendant parallèlement dans la direction d'épaisseur du bloc isolant renforcé. Ainsi, la tenue en compression du bloc isolant renforcé n'est pas dégradée dans la zone d'implantation du voile de renfort.
les piliers sont alignés selon une pluralité de rangées et les colonnes porteuses sont chacune disposées dans l'alignement d'une rangée de piliers,
les piliers sont répartis de manière équidistante et les colonnes porteuses sont disposées de manière équidistante des piliers adjacents. Ainsi, la répartition des efforts de compression est équilibrée.
le panneau de couvercle présente des rainures de logement des supports de soudure et le bloc isolant renforcé comporte quatre voiles de renfort antidéversement s'étendant chacun le long d'une face latérale du bloc isolant renforcé, les voiles de renfort s'étendant le long de faces latérales perpendiculaires aux rainures présentant un nombre de colonnes porteuses supérieur aux voiles de renfort s'étendant le long des faces latérales parallèles aux rainures.
le voile de renfort comporte une poutre supérieure et une poutre inférieure s'étendant respectivement contre le panneau de couvercle et le panneau de fond et une pluralité d'ouvertures s'étendant dans les espaces formés entre les jambes de force, les colonnes porteuses et les poutres supérieure et inférieure. Ainsi, la portée du voile de renfort sur le panneau de couvercle et sur le panneau de fond est optimale de telle sorte que le voile de renfort présente une raideur en cisaillement importante tout en limitant, par la présence des ouvertures, l'impact de la structure de renfort anti-déversement sur les performances d'isolation thermique.
les ouvertures présentent des congés de liaison au niveau des intersections entre les deux jambes de force. Ainsi, les concentrations de contraintes sont limitées.
les ouvertures présentent des congés de liaison au niveau des intersections entre les poutres, supérieure et inférieure, et les colonnes porteuses et/ou les jambes de force.
les bords des voiles de renfort qui sont disposés en vis-à-vis du panneau de couvercle et du panneau de fond présentent une forme crénelée dont les merlons s'emboîtent dans des logements de forme complémentaire ménagés dans le panneau de couvercle et le panneau de fond.
Selon un second groupe de modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :
- les jambes de force sont des câbles comprenant une première extrémité fixée au panneau de couvercle et une seconde extrémité fixée au panneau de fond, et dans laquelle la structure de renfort anti-déversement comporte un dispositif de mise sous tension mécanique de câble(s).
le dispositif de mise sous tension mécanique d'un câble comporte un écrou de réglage monté sur une extrémité filetée du câble et un ressort hélicoïdal monté sur ladite extrémité du câble et en appui, d'une part contre un corps de fixation de ladite extrémité du câble et, d'autre part contre l'écrou de réglage, le dispositif de mise sous tension mécanique des câbles comporte deux plaques parallèles qui sont chacune pourvues de deux orifices permettant respectivement le passage de l'un et de l'autre des deux câbles et un moyen de réglage de la distance entre lesdites plaques parallèles.
Selon un troisième groupe de modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :
les jambes de forces sont formées par une sangle soumise à une précontrainte de traction selon sa direction longitudinale,
la sangle est réalisée en acier.
- la sangle est montée, en boucle fermée, d'une part, autour du panneau de fond et d'autre part, autour de tout ou partie du panneau de couvercle, et disposée en forme de X au centre de la face latérale du bloc isolant. la sangle est vrillée sur 180° au niveau de chacune de ses deux portions s'étendant entre les panneaux de fond et de couvercle.
la sangle est disposée en boucle ouverte, la sangle étant montée autour de tout ou partie du panneau de couvercle et ses deux extrémités étant fixées au panneau de fond.
le panneau de fond présente des rainures délimitant un élément central et des éléments latéraux, la sangle étant disposée, en boucle fermée, et montée d'une part, autour du panneau de l'élément central du panneau de fond et d'autre part, autour de tout ou partie du panneau de couvercle, ladite sangle étant, en outre, disposée en forme de X au centre de la face latérale du bloc isolant.
la structure de renfort comporte deux sangles, à boucle fermée, chaque sangle traversant en diagonale chacune des quatre faces latérales du bloc isolant renforcé et passant alternativement sur ou au travers une zone d'angle du panneau de couvercle puis sur ou au travers une zone d'angle du panneau de fond.
le panneau de couvercle présente au niveau de ses quatre zones d'angle des rainures de passage de sangle.
Selon un quatrième groupe de modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :
- les jambes de force sont des barres métalliques présentant une première extrémité fixée au panneau de couvercle et une seconde extrémité fixée au panneau de fond.
les barres métalliques sont planes et disposées de telle sorte que leurs tranches soient tournées en vis-à-vis du panneau de fond et du panneau de couvercle. - les barres métalliques portent à leurs extrémités des tiges filetées passant au travers d'un corps de fixation, solidaire du panneau de fond ou du panneau de couvercle, et coopérant avec un écrou de sorte à permettre une mise sous tension mécanique des barres métalliques,
les barres métalliques sont réalisées an acier inoxydable.
Selon un cinquième groupe de modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :
la structure de renfort anti-déversement comporte deux voiles de renfort alignés, s'étendant le long de la face latérale renforcée, et disposés dans la direction d'épaisseur du bloc isolant renforcé entre le panneau de fond et le panneau de couvercle, lesdits voiles de renfort étant disposés de part et d'autre d'un plan médian orthogonal à la face latérale renforcée et présentant chacun une dimension, dans la direction orthogonale aux deux faces latérales adjacentes à ladite face latérale renforcée, supérieure à une dimension d'un pilier dans cette direction.
les bords des voiles de renfort qui sont disposés en vis-à-vis du panneau de couvercle et du panneau de fond présentent une forme crénelée dont les merlons s'emboîtent dans des logements de forme complémentaire ménagés dans le panneau de couvercle et le panneau de fond.
Selon des modes de réalisation, l'invention fournit une ou plusieurs des caractéristiques suivantes :
le bloc isolant renforcé comporte deux structures de renfort anti-déversement s'étendant longitudinalement le long de deux faces latérales opposées.
lorsque le bloc isolant ne comporte que deux structures de renfort anti- déversement, elles sont avantageusement disposées le long des deux faces latérales perpendiculaires aux rainures de logement des supports de soudure de la membrane d'étanchéité.
le bloc isolant renforcé comporte quatre structures de renfort anti-déversement s'étendant chacune le long d'une face latérale.
- la pluralité de blocs isolants comporte une pluralité de blocs isolants standards et une pluralité de blocs isolants renforcés, lesdits blocs isolants renforcés étant répartis selon un motif régulier.
le motif régulier de répartition des blocs isolants renforcés est agencé de telle sorte qu'un effort de cisaillement exercé sur le panneau de couvercle d'un bloc isolant standard soit repris sur un bloc isolant renforcé voisin avant que ledit bloc isolant standard ne déverse.
Une cuve telle que mentionnée ci-dessus peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Dans le cas d'un ouvrage flottant, la cuve peut être destinée au transport de GNL ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l'ouvrage flottant. Selon un mode de réalisation, un navire pour le transport d'un fluide comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
• La figure 1 est une vue en perspective, écorchée, d'une paroi de cuve selon un mode de réalisation.
· La figure 2 est une vue en perspective d'un bloc isolant standard.
• La figure 3 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement selon un premier mode de réalisation.
• La figure 4 est une vue détaillée de la structure de renfort anti-déversement de la figure 3.
· Les figures 5 et 6 sont des vues en perspective d'un bloc isolant renforcé selon des variantes du premier mode de réalisation.
• La figure 7 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement selon un second mode de réalisation.
• La figure 8 est une vue en perspective d'un bloc isolant renforcé selon une variante du second mode de réalisation. • La figure 9 est une vue détaillée d'un mode d'assemblage entre un voile de renfort et les panneaux de fond et de couvercle.
• La figure 10 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à câbles, selon un troisième mode de réalisation.
• La figure 11 est une vue détaillée de la figure 10 illustrant des moyens de fixation d'une extrémité d'un câble.
• La figure 12 est une vue détaillée de la figure 10 illustrant des moyens de fixation et un dispositif de mise sous tension mécanique d'une extrémité d'un câble.
• La figure 13 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à câbles, selon un quatrième mode de réalisation.
• Les figures 14 et 15 sont des vues détaillées de la figure 13 illustrant un dispositif de mise sous tension des câbles.
• La figure 16 est une vue détaillée de la figure 13 illustrant des moyens de fixation d'une extrémité d'un câble.
• Les figures 17 et 18 sont des vues détaillées de moyens de fixation d'une extrémité d'un câble selon des variantes de réalisation.
· La figure 19 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à câbles, selon un cinquième mode de réalisation.
• Les figures 20 et 21 sont des vues détaillées de la figure 19 illustrant des moyens de fixation des câbles.
· La figure 22 est une vue latérale du bloc isolant renforcé de la figure 19.
• Les figures 23 et 24 illustrent une variante de réalisation d'un moyen de fixation d'un câble.
• La figure 25 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à barres métalliques, selon un sixième mode de réalisation. • Les figures 26 et 27 sont des vues détaillées de la figure 25 illustrant des moyens de fixation et un dispositif de mise sous tension d'une barre métallique.
• La figure 28 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un septième mode de réalisation.
• La figure 29 est une vue détaillée de la figure 28 illustrant la coopération de la sangle avec le panneau de couvercle, via une cornière métallique.
• La figure 30 est une vue latérale du bloc isolant de la figure 28.
• La figure 31 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un huitième mode de réalisation.
• La figure 32 est une vue latérale du bloc isolant de la figure 31.
• La figure 33 est une vue détaillée de la figure 31 illustrant l'association de la sangle avec le panneau de couvercle.
· La figure 34 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un neuvième mode de réalisation.
• La figure 35 est une vue latérale du bloc isolant de la figure 34.
• La figure 36 est une vue détaillée de la figure 34 illustrant l'association de la sangle avec le panneau de couvercle via des cornières métalliques.
• La figure 37 est une vue en perspective d'un bloc isolant renforcé équipé de structures de renfort anti-déversement, à sangles, selon un dixième mode de réalisation, illustrant de manière schématique le passage d'une sangle.
• La figure 38 est une vue détaillée de la figure 37 illustrant une rainure de passage d'une sangle formée dans le panneau de couvercle au niveau d'un de ses coins.
• La figure 39 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un onzième mode de réalisation. La figure 40 est une vue détaillée de la figure 39 illustrant l'association de la sangle avec le panneau de fond.
La figure 41 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un douzième mode de réalisation.
Les figures 42 et 43 sont des vues détaillées de la figure 41 illustrant l'association de la sangle avec le panneau de fond.
La figure 44 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un treizième mode de réalisation.
Les figures 45 et 46 illustrent une cornière de plaquage agencée pour plaquer une sangle contre le panneau de fond, au niveau des angles dudit panneau de fond.
La figure 47 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangle, selon un quatorzième mode de réalisation.
Les figures 48 et 49 sont des vues détaillées de la figure 47 illustrant l'association de la sangle avec le panneau de fond.
La figure 50 est une vue en perspective d'un bloc isolant renforcé équipé d'une structure de renfort anti-déversement, à sangles, selon un quinzième mode de réalisation.
La figure 51 est une vue en perspective, écorchée, d'une paroi de cuve comportant des blocs isolants renforcés équipés de structures de renfort antidéversement à sangles.
Les figures 52 à 57 illustrent, de manière schématique, des variantes de réalisation de barrières thermiquement isolantes équipées de blocs isolants standards et de blocs isolants renforcés.
La figure 58 est une vue partielle en perspective et en coupe d'une cuve.
La figure 59 est une représentation schématique écorchée d'une cuve de navire méthanier comportant un bloc isolant renforcé et d'un terminal de chargement/déchargement de cette cuve. Description détaillée de modes de réalisation
Sur la figure 1 , une paroi d'une cuve étanche et thermiquement isolante est représentée. La structure générale d'une telle cuve est bien connue et présente une forme polyédrique. On ne s'attachera donc qu'à décrire une zone de paroi de la cuve, étant entendu que toutes les parois de la cuve peuvent présenter une structure générale similaire.
La paroi de la cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une structure porteuse 1 , une barrière thermiquement isolante secondaire 2 qui est formée de blocs isolants 3 juxtaposés sur la structure porteuse 1 et ancrés à celle-ci par des organes de retenue secondaires 4, une membrane d'étanchéité secondaire 5 portée par les blocs isolants 3, une barrière thermiquement isolante primaire 6 formée de blocs isolants 7 juxtaposés et ancrés à la membrane d'étanchéité secondaire 5 par des organes de retenue primaires 8 et une membrane d'étanchéité primaire 9, portée par les blocs isolants 7 et destinée à être en contact avec le fluide cryogénique contenu dans la cuve.
La structure porteuse 1 peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse peut notamment être formée par la coque ou la double coque d'un navire. La structure porteuse comporte une pluralité de parois définissant la forme générale de la cuve.
Les membranes d'étanchéité primaire 9 et secondaire 5 sont, par exemple, constituées d'une nappe continue de virures métalliques à bords relevés, lesdites virures étant soudées par leurs bords relevés sur des supports de soudure parallèles maintenus sur les blocs isolants 3, 7. Les virures métalliques sont, par exemple, réalisées en Invar ® : c'est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10"6 et 2.10"6 K"1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l'ordre de 7.10"6 K"1.
Les blocs isolants 3 de la barrière thermiquement isolante secondaire 2 et les blocs isolants 7 de la barrière thermiquement isolante primaire 6 peuvent indifféremment présenter des structures identiques ou différentes et des dimensions égales ou différentes. La figure 2 illustre la structure d'un bloc isolant 3, 7. Le bloc isolant 3, 7 comporte une forme de parallélépipède rectangle présentant deux grandes faces, ou faces principales, et quatre petites faces, ou faces latérales. Le bloc isolant 3, 7 comporte un panneau de fond 10 et un panneau de couvercle 11 parallèles, espacés selon la direction d'épaisseur du bloc isolant 3, 7. Le panneau de fond 0 et le panneau de couvercle 11 définissent les faces principales du bloc isolant 3, 7.
Le panneau de couvercle 11 présente une surface extérieure de support permettant de recevoir la membrane d'étanchéité primaire 9 ou secondaire 5. Le panneau de couvercle 11 présente, en outre, sur sa face externe, des rainures 12 pour le logement des supports de soudure permettant de souder les virures métalliques des membranes d'étanchéité primaire 9 ou secondaire 5.
Des piliers 13 porteurs s'étendent dans la direction d'épaisseur du bloc isolant 3, 7 et sont fixés, d'une part, au panneau de fond 10 et, d'autre part, au panneau de couvercle 11. Les piliers 13 sont fixés au panneau de fond 10 et au panneau de couvercle 11 par tout moyen approprié, par agrafage et/ou collage par exemple. Les piliers 13 permettent de reprendre les efforts de compression. Les piliers 13 sont alignés selon une pluralité de rangés et répartis en quinconce. La distante entre les piliers 13 est déterminée de sorte à permettre une bonne répartition des efforts de compression. Dans un mode de réalisation, les piliers sont répartis de manière équidistante.
Dans le mode de réalisation représenté, les piliers 13 présentent une section pleine, de forme carrée. Les piliers 13 peuvent être réalisés dans de nombreuses matières. Ils peuvent notamment être réalisés en bois ou en matière plastique, tel que le polychlorure de vinyle (PVC), le polyéthylènetéréphtalate (PET), le polyéthylène (PE), le copolymère acrylonitrile-butadiène-styrène (ABS), le polyuréthane (PU) ou le polypropylène (PP), optionnellement renforcée par des fibres.
Une garniture calorifuge, non représentée, s'étend dans les espaces ménagés entre les piliers 13. La garniture calorifuge est par exemple de la laine de verre, de la ouate, une mousse polymère, telle que de la mousse de polyuréthane, de la mousse de polyéthylène ou de la mousse de polychlorure de vinyle. Une telle mousse polymère peut être disposée entre les piliers 13 par une opération d'injection lors de la fabrication du bloc isolant 3, 7. De manière alternative, il est possible de réaliser la garniture calorifuge en ménageant, dans un bloc pré-découpé de mousse polymère, de laine de verre ou d'ouate, des orifices pour accueillir les piliers 13.
Dans le mode de réalisation de la figure 2, les panneaux de fond 10 et de couvercle 11 sont chacun constitués d'une plaque de contreplaqué. Toutefois, dans d'autres modes de réalisation, tels que représentés par exemple sur les figure 6 ou 31 , le panneau de couvercle 11 présente une structure «sandwich » et comporte un plaque de répartition 11a fixée sur les piliers 13 et en appui sur les piliers 13, un plaque supérieure 11 b, parallèle à la plaque de répartition 11a, et une pluralité de poutres 1 1 c, s'étendant parallèlement entre la plaque supérieure 11 b et la plaque de répartition 11 c. Un tel agencement permet d'obtenir un panneau de couvercle 11 renforcé.
Les figures 3 à 50 illustrent des blocs isolants 3, 7 renforcés selon plusieurs modes de réalisation. Les blocs isolants renforcés , présentent une structure sensiblement similaire à celle décrite en relation avec la figure 2 mais comporte en outre une ou plusieurs structures de renfort anti-déversement.
La figure 3 représente un bloc isolant 3, 7 renforcé équipé de structures de renfort anti-déversement 14 selon un premier mode de réalisation. Les structures de renfort anti-déversement 14 permettent d'augmenter la raideur en cisaillement du bloc isolant 3, 7 lorsque l'on exerce un effort de cisaillement tangentiel sur le panneau de couvercle 1 1 , dans une direction latérale x.
Pour ce faire, une structure anti-déversement 14, représentée de manière détaillée sur la figure 4, est constituée d'un voile de renfort 15, formé d'un seul tenant, s'étendant entre le panneau de fond 10 et le panneau de couvercle 11. Le voile de renfort 15 s'étend le long d'une face latérale du bloc isolant 3, 7 et centré le long de celle-ci. Le voile de renfort 15 présente une forme générale parallélépipédique présentant deux grandes faces, dont l'une est tournée vers l'intérieure du bloc isolant 3, 7 et l'autre est tournée vers l'extérieur, et quatre bords, dont deux sont disposés respectivement en vis-à-vis du panneau de couvercle 11 et du panneau de fond 10.
Le voile de renfort 15 est découpé de sorte à former deux jambes de force 16a, 16b, formant un X lorsqu'elles sont observées selon une direction orthogonale à la face latérale. En d'autres termes, les jambes de force 16a, 16b s'étendent le long des diagonales des grandes faces du voile de renfort 15.
Le voile de renfort 15 comporte, par ailleurs, des colonnes porteuses 17a, 17b, 17c, au nombre de trois sur la figure 4, s'étendant dans la direction d'épaisseur du bloc isolant 3, 7. Les colonnes porteuses 17a, 17b, 17 permettent ainsi de reprendre les efforts de compression. Les colonnes porteuses 17a, 17b, 17c sont chacune disposées dans l'alignement d'une des rangées de piliers 13 et, de préférence, disposées de manière équidistante des piliers 13 adjacents. Les colonnes porteuses 17a, 17b, 17c présentent en outre une raideur en compression sensiblement équivalente à celle d'un pilier 13. Ainsi, l'implantation d'un tel voile de renfort 15 n'altère pas la répartition équilibrée des efforts de compression.
Enfin, le voile de renfort 15 comporte une poutre supérieure 18a et une poutre inférieure 18b parallèles et perpendiculaires à la direction d'épaisseur du bloc isolant 3, 7. La poutre supérieure 18a s'étend contre le panneau de couvercle 1 1 et la poutre inférieure 18b s'étend contre le panneau de fond 10. Ces poutres 18a, 18b permettent d'obtenir une surface de portée optimale du voile de renfort 15 sur le panneau de couvercle 11 et sur le panneau de fond 10.
Le voile de renfort 15 présente une pluralité d'ouvertures 19 ménagées dans chaque espace trilatéral s'étendant entre une colonne porteuse 17a, 17b, une jambe de force 16a, 16b et l'autre jambe de force 16b, 16a ou une poutre supérieure 18a ou inférieure 18b. La présence de telles ouvertures 19 permet de limiter l'impact du voile de renfort 15 sur les performances d'isolation thermique. Les ouvertures 19 présentent au niveau des intersections entre les jambes de force 16a, 16b et/ou entre une jambe de force 16a, 16b et une colonne porteuse 17a, 17b, 17c et/ou entre une colonne porteuse 17a, 17b, 17c et une poutre supérieure 18a ou inférieure 18b, des congés. En d'autres termes, les ouvertures 19 présentent une forme générale triangulaire dont les zones d'angles présentent des raccords arrondis. De tels congés ou raccords arrondis permettent de limiter les concentrations de contraintes.
Le voile de renfort 15 peut être réalisé en bois, par exemple, contreplaqué, ou en matériau composite comportant une matrice plastique renforcée de fibres. Le voile de renfort 15 peut être fixé au panneau de fond 10 et au panneau de couvercle 11 par tout moyen approprié, tel que l'agrafage et/ou le collage par exemple. A titre d'exemple, l'épaisseur du voile de renfort 5 est comprise entre 9 et 30 millimètres.
Il a été démontré qu'un bloc isolant renforcé équipé de tels voiles de renfort 15 présentait une raideur face à un effort de cisaillement exercé tangentiellement sur le panneau de couvercle 11 qui est environ quatre fois supérieure à la raideur d'un bloc isolant standard.
Le bloc isolant 3, 7 renforcé, illustré sur la figure 5, est sensiblement similaire à celui illustré sur la figure 3 mais diffère toutefois en ce que les voiles porteurs 15 présentent une longueur plus importante et comporte quatre colonnes porteuses 17a, 17b, 17c, 17d.
Le bloc isolant 3, 7 renforcé, représenté sur la figure 6, comporte quatre structure anti-déversement 14 s'étendant chacune le long d'une face latérale respective. Les efforts latéraux s'exerçant sur le panneau de couvercle 11 perpendiculairement aux rainures 12 de logement des supports de soudure sont plus importants que les efforts latéraux s'exerçant parallèlement auxdites rainures 12. Aussi, les voiles de renfort 15 s'étendant le long des faces latérales perpendiculaires aux rainures 12 présentent une longueur plus importante que les voiles de renfort 15 s'étendant le long des faces latérales parallèles aux rainures 12. Les voiles de renfort 15 les plus longs présentent ici trois colonnes porteuses 17a, 17b, 17c alors que les voiles de renfort 15 les plus courts ne comportent que deux colonnes porteuses 17a, 17b.
Par ailleurs, le bloc isolant 3, 7 comporte à ses coins des piliers 20 présentant une forme de L dont la barre inférieure horizontale forme une surface de retenue apte à coopérer avec des organes de retenue 4, 8.
Le bloc isolant 3, 7 renforcé, représenté sur la figure 7, est équipé de deux structures anti-déversement 21 , selon un second mode de réalisation, s'étendant le long de deux faces latérales opposées. Chaque structure anti-déversement 21 comporte deux voiles de renfort 22 alignés le long d'une face latérale du bloc isolant 3, 7. Les voiles de renfort 22 s'étendent, dans la direction d'épaisseur, entre le panneau de fond 10 et le panneau de couvercle 1 1. Les voiles de renfort 22 sont disposés de part et d'autre d'un plan médian perpendiculaire à la face latérale le long duquel ils sont alignés. Les voiles de renfort 22 s'étendent ici au niveau des extrémités des faces latérales des blocs isolants 3, 7. Les voiles de renfort 15 présentent une dimension, dans la direction orthogonale aux deux faces latérales adjacentes à ladite face latérale renforcée, supérieure à la dimension des piliers dans cette direction. Dans un mode de réalisation, cette dimension est plus de deux fois supérieure à celle des piliers 13. Ainsi, les voiles de renfort 22 confèrent au bloc isolant 3, 7, une raideur dans la direction x.
Un bloc isolant renforcé équipé de tels voiles de renfort 22 peut présenter une raideur face à un effort de cisaillement exercé tangentiellement sur le panneau de couvercle 11 qui est environ trois fois supérieure à la raideur d'un bloc isolant standard.
Le bloc isolant 3, 7 renforcé, illustré sur la figure 8, comporte quatre structures anti-déversement 21 comprenant chacune deux voiles de renfort 22 et équipant chacune une des faces latérales du bloc isolant. Les structures antidéversement 21 sont sensiblement similaires à celle décrites en relation avec la figure 7 et comportent chacune deux voiles de renfort 22 alignés le long de chaque face latérale, et disposés au niveau de leurs extrémités. Dans ce mode de réalisation, les voiles de renfort 22 présentent en outre un décrochement formé dans un bord latéral du voile de renfort 22, adjacent à un angle du bloc isolant 3, 7. Ce décrochement ménage dans les voiles de renfort une patte 23 qui porte une surface d'appui apte à coopérer avec les organes de retenue 4, 8.
Comme les voiles de renfort 15 du mode de réalisation des figures 3 à 6, les voiles de renfort 22 peuvent être réalisés en bois ou en matériau composite comportant une matrice plastique renforcée de fibres. En outre, les voiles de renfort 22 peuvent être fixés au panneau de fond 10 et au panneau de couvercle 11 par tout moyen approprié, tel que l'agrafage et/ou le collage par exemple.
Dans le mode de réalisation représenté sur la figure 9, les bords des voiles de renfort 22 qui sont disposés en vis-à-vis du panneau de couvercle 11 et du panneau de fond 10 présentent une forme crénelée dont les merlons 24 s'emboîtent dans des logements de forme complémentaire ménagés dans le panneau de couvercle 11 et le panneau de fond 10. Ainsi, la résistance au cisaillement est augmentée. Notons qu'une telle coopération entre voile de renfort et panneau de couvercle 1 1 et panneau de fond 10 est également applicable aux voiles de renfort 15 des figures 3 à 6. La figure 10 illustre un bloc isolant 3, 7 renforcé, équipé d'une structure anti-déversement 25 selon un troisième mode de réalisation.
La structure anti-déversement 25 comporte deux jambes de force formées par des câbles 26a, 26b disposés en forme de X et s'étendant chacun entre le panneau de fond 10 et le panneau de couvercle 11. Les câbles 26a, 27 b s'étendent le long d'une face latérale du bloc isolant 3, 7 et se déploient le long de ses diagonales. Chaque câble 26a, 26b présente une première extrémité fixée au panneau de couvercle 11 et une second extrémité fixée au panneau de fond 10. Les câbles 26a, 26b sont, par exemple, des câbles métalliques. La structure anti- déversement 25 comporte en outre des dispositifs de mise sous tension mécanique des câbles 26a, 26b.
La figure 1 1 représente des moyens de fixation d'un câble 26a selon un mode de réalisation. Les moyens de fixation comportent un corps de fixation 27 présentant un orifice de passage du câble 26a. Le corps de fixation 27 comporte une tige cylindrique et une tête de retenue 28. Le panneau de couvercle 1 1 comporte un orifice permettent le passage de la tige cylindrique du corps de fixation 27 et présentant un lamage pour recevoir la tête de retenue 28. L'extrémité du câble 26a coopère avec un embout de butée 28 permettent de bloquer l'extrémité du câble 26a sur le corps de fixation 27.
La figure 12 représente un moyen de fixation d'un câble 26a coopérant avec un dispositif de mise sous tension mécanique dudit câble 26a. Le moyen de fixation du câble 26a est sensiblement similaire à celui qui est décrit en relation avec la figure 11. Le moyen de fixation du câble 26a comporte un corps de fixation 27 qui comprend une tige cylindrique reçue à l'intérieur d'un orifice du panneau de fond 10 et une tête de retenue 28 reçue dans un lamage ménagé dans ledit orifice de passage de la tige cylindrique.
Le dispositif de mise sous tension comporte un ressort hélicoïdal 30 et un écrou 29 de réglage de la tension. L'extrémité du câble 26a présente un filetage permettant de recevoir l'écrou 29. Le ressort hélicoïdal 30 est monté sur l'extrémité du câble 26a en appui, d'une part, contre le corps de fixation 30 et, d'autre part, contre l'écrou 29. Le ressort hélicoïdal 30 exerce ainsi une force de traction sur le câble 26a. L'extrémité du câble 30 porte également une boule 31 assurant le maintien du ressort hélicoïdal 30 et de l'écrou 29 sur l'extrémité du câble 26a. Notons que, dans un mode de réalisation alternatif, non représenté, il est possible de prévoir des dispositifs de mise sous tension mécanique à chacune des extrémités des câbles 26a, 26b.
Dans les modes de réalisation représentés sur les figures 13 à 24, la structure de renfort 25 ne comporte qu'un dispositif de mise sous tension 32, disposé à proximité de l'intersection entre les deux câbles 26a, 26b et permettant de mettre sous tension, simultanément les deux câbles 26a, 26b. Ce dispositif de mise sous tension 32 est représenté de manière détaillée sur les figures 14 et 15. Le dispositif de mise sous tension 32 comporte deux plaques parallèles 33a, 33b qui sont chacune pourvues de deux orifices permettant respectivement le passage de l'un et l'autre des deux câbles 26a, 26b. La distance entre les deux plaques 33a, 33b est réglable afin d'assurer une tension adéquate des câbles 26a, 26b. Pour ce faire, une vis filetée 34 est introduite au travers d'orifices ménagés dans les plaques 33a, 33b et permet ainsi de les connecter à distance variable. Dans le mode de réalisation représenté, l'orifice de réception de l'extrémité filetée de la vis 34, ménagé dans la plaque 33a, est pourvu d'un taraudage. Aussi, la rotation de la vis filetée 34 entraîne le rapprochement ou l'éloignement de la plaque 33a par rapport à la plaque 33b. Le dispositif de mise sous tension 32 comporte également un écrou 35 permettent de bloquer la rotation de la vis 34 lorsque la tension des câbles 26a, 26b est correctement réglée.
Les figures 16, 17 et 18 représentent plusieurs moyens de fixation d'une extrémité d'un câble 26a, 26b.
Sur la figure 16, les moyens de fixation comportent un corps de fixation 27 présentant un orifice de passage du câble 27. L'extrémité du câble 26a coopère avec une boule de butée 31 permettant de bloquer l'extrémité du câble 26a sur le corps de fixation 27. Le corps de fixation 27 présente une tête de retenue 28 et une tige cylindrique 28 filetée. La tige cylindrique 28 filetée traverse le panneau de fond 10 ou de couvercle 11 au travers d'un orifice et coopère avec un écrou 36. La tête de retenue 28 est noyée dans un lamage ménagé dans le panneau de fond 10 ou de couvercle 11.
Sur la figure 17, la fixation de l'extrémité du câble 26a est assurée par un étrier 37 comportant une section en U prolongée de part et d'autre par des pattes 38, 39 destinées à venir reposer contre la face interne du panneau de couvercle 11 ou du panneau de fond 10. La section en U forme une cage de logement d'une boule de butée 31 solidaire de l'extrémité du câble 26a. L'étrier 37 comporte une fente 40 de passage du câble 26a. Des orifices 41 , 42 permettant le passage d'organes de fixation, tels que des vis, non représentés, sont ménagés dans la patte 39.
Sur la figure 18, la fixation de l'extrémité d'un câble 26a, équipée d'une boule de butée 31 , est assurée par un corps de fixation 43 comportement un logement de réception de la boule de butée 31. Le logement est défini par une jupe cylindrique 44 dont l'une des extrémités est prolongée par une collerette de retenue 45 et dont l'autre extrémité est close par un fond 46. Le fond 46 présente un orifice de passage du câble 26a. Le corps de fixation 43 passe au travers d'un orifice ménagé dans le panneau de couvercle 11 ou de fond 10. L'orifice ménagé dans le panneau de couvercle 11 ou de fond 10 présente un lamage dans lequel est reçue la collerette de retenue 45.
Les figures 19 à 21 représentent un bloc isolant 3, 7 renforcé selon un autre mode de réalisation. Ce mode de réalisation diffère de celui décrit en relation avec la figure 13 par la structure des moyens de fixation des extrémités des câbles 26a, 26b. Ces moyens de fixation sont représentés, de manière détaillée, sur les figures 20 et 21. Les moyens de fixations comportent un étrier 46 présentant un profil en forme de U, prolongé par des ailes de retenue 47a, 47b s'étendant perpendiculairement aux barres verticales du U. Le panneau de couvercle 11 ou de de fond 10 présente des rainures débouchant sur le bord dudit panneau 11 , 10 et dans lesquelles peuvent coulisser les barres verticales 48a, 48b du U. Les ailes de retenue 47a, 47b permettent de retenir l'étrier 46 au panneau de couvercle 11 ou de fond 10. L'étrier 46 comporte en outre un orifice circulaire 49 permettant le passage de la boule de butée 31 portée par l'extrémité du câble 26 et communiquant avec un trou oblong 50 permettant le passage du câble 26a. Le trou oblong présente une dimension transversale inférieures à celle de la boule de butée 31 afin de retenir l'extrémité du câble 26a à l'étrier 46.
Comme illustré sur la figure 22, lorsqu'une structure de renfort à câbles
26a, 26b est utilisée, il est nécessaire de réserver un espace entre le bord des panneaux de couvercle 11 et de fond 10 et les piliers 13 de bord, pour permettre le passage des câbles 26a, 26b. Les figures 23 et 24 illustrent des moyens de fixation d'une extrémité d'un câble 26a selon un autre mode de réalisation. Dans ce mode de réalisation, les moyens de fixation comportent une plaque interne 50 et une plaque externe 51 disposées respectivement contre la face interne et la face externe du panneau de fond 10 ou du panneau de couvercle 11 et fixées l'une à l'autre au travers du panneau de fond 10 ou du couvercle 11 via une pluralité d'organes de fixation, tels que des rivets par exemple, non représentés, passant au travers des orifices 57. Les orifices 57 sont ménagés dans des zones matricées 54, 55, 56 de la plaque externe 51 , faisant saillie à l'intérieur du panneau de couvercle 11 ou de fond 10 et venant contre la plaque interne 50. Une des zones matricées 56 présente une forme oblongue pénétrant à l'intérieur d'un orifice oblong, de forme complémentaire, ménagé dans le panneau de fond 10 ou de couvercle 11. Une telle forme oblongue, s'étendant perpendiculairement à la face latérale équipée dudit dispositif de renfort à câbles, est particulièrement avantageuse pour la reprise des efforts de traction s'exerçant sur les câbles 26a, 26b. La plaque interne 50 comporte un orifice circulaire 52 permettant le passage de la boule de butée 31 portée par l'extrémité du câble 26 et communiquant avec un trou oblong 53 permettant le passage du câble 26a.
La figure 25 illustre un bloc isolant 3, 7 renforcé équipé d'une structure anti- déversement 58 selon un autre mode de réalisation. Dans ce mode de réalisation, la structure anti-déversement 58 comporte deux jambes de force formées par des barres métalliques 59a, 59b rigides, disposées en forme de X. Les barres métalliques s'étendent le long d'une face latérale du bloc isolant 3, 7 et s'étendent chacune entre le panneau de fond 10 et le panneau de couvercle 11. De manière à optimiser l'encombrement des barres métalliques 59a, 59b, celles-ci sont planes et disposées de telle sorte que leurs tranches soient tournées en vis-à-vis du panneau de fond 10 ou du panneau de couvercle 11. Lesdites barres métalliques 59a, 59b portent à leurs extrémités des tiges filetées 60. Les tiges filetées 60 passent au travers d'un corps de fixation 61 solidaire du panneau de fond 10 ou de couvercle 11 et coopèrent avec un écrou 62 permettant de mettre sous tension mécanique les barres métalliques 59a, 59b. Les barres métalliques 59a, 59b sont, par exemple, réalisées en acier inoxydable.
Les figures 28 à 51 illustrent des blocs isolants 3, 7 renforcés équipés de structures de renfort 63 à sangle. Les structures de renfort 63 comportent deux jambes de forces, disposés en X, s'étendant le long d'un bord latéral du bloc isolant 3, 7 qui sont formées par une ou plusieurs sangles soumises à une précontrainte de traction dans leur direction longitudinale. De telles sangles sont, par exemple, réalisées en acier.
Dans le mode de réalisation représenté sur les figures 28 à 30, la structure de renfort 63 est formée par une sangle 64, en boucle fermée, montée d'une part autour du panneau de fond 10, d'autre part, autour du panneau de couvercle 11 et disposée en X au centre de la face latérale du bloc isolant 3, 7. En d'autres termes, la sangle 64 est disposée sensiblement en forme de « 8 » dont la boucle supérieure est montée autour du panneau de couvercle 11 et la boucle inférieure est montée autour du panneau de fond 10. Afin de permettre le passage de la sangle 64 au niveau des coins du bloc isolant 3, 7, les panneaux de couvercle 11 et de fond 10 sont découpés, au niveau de leurs angles adjacents à la face latérale équipée d'une telle structure anti-déversement 63 à sangle.
Les panneaux de fond 10 et de couvercle 11 présentent, au niveau de chacune de ses découpes d'angle, une ou plusieurs cornières métalliques 65, telle que représentée sur la figure 29. Les cornières métalliques 65 permettent d'empêcher le matage des panneaux de fond 10 et de couvercle 11.
Par ailleurs, l'on observe, sur la figure 30, que la sangle 64 est vrillée sur 180° au niveau de chacune de ses portions s'étendant entre les panneaux de fond 10 et de couvercle 11 et formant les jambes de force. Ainsi, au niveau du croisement entre ses portions diagonales, les portions de sangle 64 s'étendent l'une contre l'autre dans un plan vertical. Ainsi, les forces de traction sollicitant les portions diagonales de la sangle 64 s'exercent exactement dans le plan de la face latérale.
Les figures 31 à 49 illustrent des modes de réalisation de blocs isolants 7 renforcés destinés à être intégrés à la barrière d'isolation thermique primaire, dans lesquels le panneau de fond 10 est pourvue de rainures 66. Ces rainures 66 sont destinées à permettre le passage des supports de soudure et des bords relevés des virures métalliques de la membrane d'étanchéité secondaire 5.
Dans le mode de réalisation des figures 31 à 33, la structure de renfort 63 comporte une sangle ouverte 67. La sangle 67 est montée autour de la plaque de répartition 11a du panneau de couvercle 11 et prise en sandwich entre les éléments de la structure en sandwich du panneau de couvercle 11. D'autre part, les deux extrémités de la sangle 67 sont fixées contre la face externe du panneau de fond 10, à proximité de ses coins. Ainsi, la sangle 67 ne s'étend pas au travers des rainures 66 formées dans le panneau de fond 10.
Par ailleurs, les panneaux de couvercle 11 et de fond 10 sont découpés, au niveau de leurs angles, adjacents à la face latérale équipée de la sangle 67, afin de ménager un espace de passage de la sangle 67. En outre, les panneaux de couvercle 11 et de fond 10 présentent, au niveau de chacune de leurs découpes d'angle, une cornière métallique 65, telle que représentée sur la figure 33. Comme représenté sur la figure 32, la sangle 67 est également vrillée sur 180° au niveau de chacune de ses portions s'étendant entre les panneaux de fond 10 et de couvercle 11.
Dans le mode de réalisation représenté sur les figures 31 à 33, le bloc isolant 7 comporte un élément 68 de guidage de la sangle 67. L'élément 68 comporte une embase qui enjambe la rainure 66. L'embase 68 est également pourvue d'une fente 69 permettant le passage des supports de soudure et des bords relevés des virures métalliques de la membrane d'étanchéité secondaire 5. L'embase 68 porte une surface supérieure de guidage de la sangle 67 permettant d'éviter un contact entre la sangle 67 et le support de soudure de la membrane secondaire et deux ailes latérales 82a, 82b permettant d'assurer le maintien de la sangle 67 dans le plan de la face latérale du bloc isolant 7. Dans un mode de réalisation, l'élément de guidage 68 est mis en place après la fixation des deux extrémités de la sangle 67 sur le panneau de fond 10 et permet ainsi de mettre sous tension mécanique la sangle 67.
Dans le mode de réalisation représenté sur les figures 34 à 36, la structure de renfort 63 est formée par une sangle 83, en boucle fermée, disposée en forme de « 8 ». La sangle 83 est, d'une part, montée autour de la plaque de répartition 11a du panneau de couvercle 11 et prise en sandwich entre les éléments de la structure « sandwich » du panneau de couvercle 11. D'autre part, la sangle 83 passe au travers des rainures 66 et est montée autour d'un élément central 84 du panneau de fond 10, bordé par les deux rainures 66. La sangle 83 est également vrillée sur 180° au niveau de chacune de ses portions s'étendant entre le panneau de fond 10 et le panneau de couvercle 10, tel que représenté sur la figure 35. En outre, la structure « sandwich » du panneau de couvercle 10 est pourvue, au niveau de ses coin, d'un jeu de deux cornières 65 permettant de protéger respectivement une arête inférieure et une arête supérieure du panneau de couvercle 11 , contre le matage.
Dans le mode de réalisation représenté sur les figures 37 et 38, la structure de renfort 63 comporte deux sangles 87, à boucle fermée, dont une seule est présentée. Chaque sangle 87 traverse, en diagonale, chacune des faces latérales et passe alternativement sur ou au travers une zone d'angle du panneau de couvercle 11 puis sur ou au travers une zone d'angle du panneau de fond 1 1. Afin de faciliter la mise en place des sangles 87, le panneau de couvercle 11 présente au niveau de ses quatre zones d'angles des rainures 88 de passage de sangle 87, débouchant sur deux faces latérales du bloc isolant 7 adjacentes. Ainsi, en n'utilisant que deux sangles, il est possible d'équiper chacune des faces latérales du bloc isolant 7 avec deux portions de sangles disposés en X, entre le panneau de couvercle 1 1 et le panneau de fond 10, et formant deux jambes de force.
Dans le mode de réalisation illustré sur les figures 39 et 40, la structure de renfort 63 comporte une sangle 89 ouverte. La sangle 89 est montée autour de la plaque de répartition 11a du panneau de couvercle 11 et prise dans la structure du panneau de couvercle 11. Par ailleurs, le bloc isolant 7 comporte une poutre 90 s'étendant contre le panneau de fond 10, le long du bord longitudinal renforcé, équipé de ladite structure de renfort 63. Les poutres 90 sont équipées, au niveau des rainures 66 formées dans le panneau de fond 10, de fentes permettant le passage des supports de soudure de la membrane secondaire 5. La sangle 89 s'étend le long des éléments latéraux 92, 93, passe au travers des rainures 66 et est fixée entre la poutre 90 et la surface interne des éléments latéraux 92, 93 du panneau de fond 10. Ainsi, l'utilisation d'une telle poutre 90 est particulièrement avantageuse en ce qu'elle permet d'assurer la fixation des extrémités de la sangle 89, tout en raidissant le panneau de fond 10.
Dans le mode de réalisation des figures 41 à 43, la structure de renfort 63 anti déversement comporte une sangle 94, en boucle fermée. La sangle 94 est montée autour de la plaque de répartition 11a du panneau de couvercle 11 et prise dans la structure du panneau de couvercle 11. Par ailleurs, le bloc isolant 7 comporte des poutres 95, 96, 97 s'étendant le long de la face longitudinale renforcée, sur chacun des éléments central 84 et latéraux 93, 94 du panneau de fond 10. Le bloc isolant 7 comporte, en outre, des dispositifs 98 de guidage de la sangle 94 positionnée au niveau des rainures 66 du panneau de fond 10. Les dispositifs 98 de guidage de sangle comporte une embase fixée sur le panneau de fond 10 portant un axe cylindrique 99 de guidage de la sangle et deux ailes latérales 100a, 100b permettant d'assurer le maintien de la sangle 94 dans le plan de la face latérale du bloc isolant 3. La sangle 94 longe la surface externe des éléments latéraux 92, 93 puis est guidée vers la surface intérieure de l'élément central 84 du panneau de fond 10 par l'axe cylindrique 99 des dispositifs de guidage 98.
Dans le mode de réalisation illustré sur les figures 44, 45 et 46, le bloc isolant 7 comporte une cornière de plaquage 101 agencée pour plaquer la sangle 89, contre le panneau de fond 10 au niveau des angles du panneau de fond 10. Cette cornière de placage 102 porte en outre une platine supérieure 103 permettant de recevoir un élément d'appui des organes de retenue primaire 8.
Dans le mode de réalisation illustré sur les figures 47, 48 et 49, le bloc isolant 7 comporte quatre structures de renfort 63 anti-déversement s'étendant chacune le long d'une face latérale du bloc isolant 7.
Les structures de renfort anti-déversement 63 s'étendant le long des faces latérales parallèles aux rainures 12, 66 comportent chacune une sangle 104, en boucle fermée, disposée en forme de 8, qui est d'une part prise dans la structure du panneau de couvercle 11 et d'autre part, montée autour du panneau de fond 10. Le bloc isolant 7 comporte en outre des poutres 105 s'étendant le long des faces latérales perpendiculaires aux rainures 12, 66, contre le panneau de fond 10.
Comme représenté sur la figure 48, le panneau de fond 10 présente des entailles 108 permettant le passage de la sangle 106. Ainsi, la zone d'angle 109 du panneau de fond 10 est agencée pour former une surface de retenue apte à coopérer avec un élément d'appui des organes de retenue primaire 8.
Les structures de renfort anti-déversement 63 s'étendant le long des faces latérales perpendiculaires aux rainures 12, 66 comportent chacune une sangle 106, en boucle fermée, disposée en forme de 8. La sangle 106 est prise dans la structure du panneau de couvercle 11. Par ailleurs, la sangle 106 passe au travers des rainures 66 formées dans le panneau de fond 10 et est montée autour de l'élément central 84 du panneau de fond 10. Le bloc isolant 7 comporte ici une poutre 107 s'étendant le long du bord de l'élément central 84. Par ailleurs, tel que représenté sur la figure 49, le bloc isolant comporte une pluralité de pontets de fixation s'étendant à cheval entre un élément latéral 92, 93 du panneau de fond 10 et l'élément central 84 et assurant la fixation des éléments latéraux 92, 93 audit élément central 84.
Dans le mode de réalisation représenté sur la figure 50, le bloc isolant 3, 7 comporte quatre structures de renfort anti-déversement 63 s'étendant chacune le long de leur face latérale respective. Les quatre structures de renfort 63 sont ici identiques et comportent chacune une sangle 107, en boucle fermée. La sangle 108 est disposée en forme de « 8 » et est, d'une part, prise dans la structure composite du panneau de couvercle 11 et, d'autre part, montée autour du panneau de fond 10.
Notons que les caractéristiques de plusieurs des structures de renfort 63 à sangle telles que décrites précédemment en relation avec les figures 28 à 50 peuvent être combinées.
La figure 51 illustre une paroi de cuve équipée de blocs isolants 3, 7 renforcés équipés de structures de renfort anti-déversement 63 à sangle. Les blocs isolants 3 de la barrière thermiquement isolante secondaire 2 s'appuient sur la structure porteuse 1 , par l'intermédiaire d'éléments de résine polymérisable 110 disposés de manière ponctuelle ou sous forme de boudins. Les blocs isolants 7 sont retenus sur la structure porteuse 1 par des organes de retenue secondaires 4 disposés aux quatre coins des blocs isolants 3. Les organes de retenue secondaires 4 comportent un insert taraudé 111 et un élément d'appui 112 venant prendre en sandwich les coins du panneau de fond 10 des blocs isolants 3.
Par ailleurs, les organes de retenue secondaires 4 portent une tige 113 s'étendant dans la direction d'épaisseur de la cuve et à l'extrémité de laquelle est montée une platine métallique 114.
Des supports de soudure sont positionnés dans les rainures formées sur le panneau de couvercle 11 des blocs isolants 7 et les virures métalliques à bords relevés de la membrane d'étanchéité secondaire 5 sont soudées sur les supports de soudure et sur les platines métalliques 114.
La platine 114 porte en outre un goujon 115 permettant la fixation d'une plaque de retenue 116 de sorte à plaquer les coins des blocs isolants 3 de la barrière d'isolation thermique primaire 6 entre la plaque de retenue 1 16 et la platine métallique 1 14. Ces éléments forment les organes de retenue primaires 8. Lorsque les blocs isolants 3 de la membrane d'isolation thermique primaire 6 ont été mis en place, les virures à bords relevés de la membrane d'étanchéité primaire 9 sont alors soudées sur des supports de soudure positionnés dans des rainures formées dans le panneau de couvercle 11 des blocs isolants 7.
Dans le mode de réalisation représenté, des panneaux 117, 118 sont disposés verticalement entre les blocs isolants et permettent d'isoler thermiquement les intervalles entre les blocs isolants 3, 7 voisins, notamment afin de limiter le transfert thermique par convection entre les blocs-isolants 3, 7. De tels panneaux 117, 118 sont réalisés en laine de verre, en polystyrène ou en mousse polymère telle que de la mousse de polyuréthane, de la mousse de polyéthylène ou de la mousse de polychlorure de vinyle.
Les figures 52 à 57 illustrent de manière schématique des parois de barrière d'isolation thermique primaire 6 et/ou secondaire 2 comportant des blocs isolants standards 119, tel que représenté sur la figure 2, c'est-à-dire des blocs isolants qui ne sont pas équipés de structure de renfort anti-déversement, et des blocs isolants renforcés 120, tels que décrits en relation avec l'un des modes de réalisation illustrés sur les figures 3 à 50. Sur les figures 52 à 57, les blocs isolants renforcés 120 sont hachurés afin de les distinguer des blocs isolants standards 119.
Sur la figure 52, les blocs isolants standards 119 et renforcés 120 sont agencés selon une disposition en damier, les blocs standards 119 et renforcés 120 étant disposés de manière alternée, un bloc standard 1 19 succédant à un bloc renforcé 120.
Sur la figure 53, le calepinage comporte une alternance de deux types de colonnes C1 , C2 et une alternance de deux types de rangés R1 , R2. Les colonnes de type C1 sont constituées d'une alternance de trois blocs isolants standards 119 puis d'un bloc isolant renforcé 120. Les colonnes de type C2 sont constituées d'une alternance d'un bloc isolant standard 119 et d'un bloc isolant renforcé 120. Les rangées de type R1 sont constituées d'une alternance d'un bloc isolant standard 1 19 et d'un bloc isolant renforcé 120. Les rangées de type R2 sont constituées d'une alternance de trois blocs isolants standards 119 puis d'un bloc isolant renforcé 120. En outre, les blocs isolants renforcés 120 des colonnes C1 appartiennent également aux rangés de type R2 tandis que les blocs isolants renforcés 120 des colonnes C2 appartiennent également aux rangés de type R1. Sur la figure 54, le calepinage comporte une alternance d'une colonne de type C1 et d'une colonne de type C2. Les colonnes de type C1 ne comportent que des blocs isolants standards 20. Les colonnes de type C2 comportent une alternance d'un bloc isolant standard 119 et d'un bloc isolant renforcé 120.
Sur la figure 55, le calepinage comporte une alternance d'une rangée de type R1 ne comportant que des blocs isolants standards 119 et d'une rangée de type R2 ne comportant que des blocs isolants renforcés 120.
Sur la figure 56, le calepinage comporte une alternance de deux rangées de type R1 ne comportant que des blocs isolants standards 119 et d'une rangée de type R2 ne comportant que des blocs isolants renforcés 120.
Sur la figure 57, le calepinage comporte une alternance de deux rangées de type R1 et d'une rangée de type R2. Les rangées de type R1 comportent une alternance de trois blocs isolants standards 119 et d'un bloc isolant renforcé 120. Les blocs isolants renforcés des rangées de type R1 sont alignés en colonne et forment des colonnes de type C1 ne comportant que des blocs isolants renforcés 120. Les rangées de type R2 ne comportent que des blocs isolants renforcés 120.
L'agencement des blocs isolants standards 119 et des blocs isolants renforcés 120 selon l'un des motifs de calepinage décrits ci-dessus permet une reprise des efforts tangentiels, exercés sur le panneau de couvercle des blocs isolants standards, sur les blocs isolants renforcés. Pour ce faire, le jeu entre les blocs isolants standards 119 et les blocs isolants renforcés 120 est suffisamment faible pour que les efforts latéraux exercés sur le panneau de couvercle d'un bloc isolant standard 1 19 soient repris sur un bloc isolant renforcé 120 voisin avant que les piliers du bloc isolants standard 119 ne déversent.
De tels agencements permettent d'obtenir un renfort de la barrière thermiquement isolante sans pour autant équiper la totalité des blocs isolants d'une structure de renfort. De tels agencements sont donc particulièrement économiques. En outre, ils permettent de limiter l'impact négatif des structures de renfort sur la dégradation des performances d'isolation thermique.
Selon un mode de réalisation représenté sur la figure 58, la cuve présente, en coupe selon un plan vertical et/ou transversal, une section de forme octogonale. Ainsi, la cuve présente une paroi de fond 121 et un plafond 122 horizontaux, des parois verticales 123 et des parois inclinés 124, 125 reliant les parois verticales 123 à la paroi de fond 121 ou au plafond 122. Dans un mode de réalisation avantageux, l'agencement des blocs isolants standards 119 et des blocs isolants renforcés 120 selon l'un des motifs de calepinage décrits ci-dessus n'est utilisé que pour la réalisation des parois qui sont les plus soumises aux effets du « sloshing » induisant des chocs dynamique de fluide, c'est-à-dire les parois inclinés 124, 125 et le plafond 122. Par ailleurs, dans un mode de réalisation, les parois latérales d'extrémité 126, verticales, présentent une zone supérieure 128 et une zone inférieure 127 équipées d'un agencement selon l'un des motifs de calepinage décrit ci-dessus. Les zones supérieures 128 et inférieures 127 s'étendent, par exemple, sur des hauteurs de cuve équivalentes à celles des parois inclinés 124, 125.
La technique décrite ci-dessus pour réaliser une barrière d'isolation thermique peut être utilisée dans différents types de réservoirs, par exemple pour constituer une barrière d'isolation thermique primaire ou secondaire d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 59, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une membrane d'étanchéité primaire destinée à être en contact avec le GNL contenu dans la cuve, une membrane d'étanchéité secondaire agencée entre la membrane d'étanchéité primaire et la double coque 72 du navire, et deux barrières thermiquement isolantes agencées respectivement entre la membrane d'étanchéité primaire et la membrane d'étanchéité secondaire et entre la membrane d'étanchéité secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 59 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante de stockage d'un fluide comportant une barrière d'isolation thermique (2, 6) et une membrane d'étanchéité (5, 9) supportée par la barrière d'isolation thermique (2, 6), la barrière d'isolation thermique (2, 6) comportant une pluralité de blocs isolants (3, 7) parallélépipédiques juxtaposés présentant deux faces principales et quatre faces latérales et comprenant chacun :
- un panneau de fond (10) et un panneau de couvercle (11 ), espacés selon une direction d'épaisseur du bloc isolant (3, 7) et définissant les faces principales du bloc isolant (3, 7), le panneau de couvercle (11 ) présentant une surface de support pour recevoir la membrane d'étanchéité (5, 9);
- une pluralité de piliers (13) interposés entre lesdits panneaux de fond (10) et de couvercle (1 ) et s'étendant dans la direction d'épaisseur ; et
- une garniture calorifuge disposée entre les piliers (13) ;
ladite pluralité de blocs isolants(3, 7) comportant au moins un bloc isolant (3, 7) renforcé équipé d'au moins une structure de renfort anti-déversement (14, 21 , 25, 58, 63), s'étendant longitudinalement le long d'une face latérale renforcée dudit bloc isolant (3, 7) renforcé, entre le panneau de fond (10) et le panneau de couvercle (11 ), la structure de renfort anti-déversement (14, 21 , 25, 58, 63) étant d'une part fixée contre le panneau de fond (10) et d'autre part fixée contre le panneau de couvercle (11 ), la structure de renfort anti-déversement (14, 21 , 25, 58, 63) présentant une raideur en cisaillement, pour un effort de cisaillement exercé sur le panneau de couvercle dans une direction orthogonale aux plans des faces latérales adjacentes à ladite face latérale renforcée, supérieure à celle d'un pilier (13).
2. Cuve selon la revendication 1 , dans laquelle la structure de renfort anti-déversement (21 ) comporte deux voiles de renfort (22) alignés, s'étendant le long de la face latérale renforcée, et disposés dans la direction d'épaisseur du bloc isolant renforcé (3, 7) entre le panneau de fond (10) et le panneau de couvercle (11 ), lesdits voiles de renfort (22) étant disposés de part et d'autre d'un plan médian orthogonal à la face latérale renforcée et présentant chacun une dimension, dans la direction orthogonale aux deux faces latérales adjacentes à ladite face latérale renforcée, supérieure à une dimension d'un pilier (13) dans cette direction.
3. Cuve selon la revendication 2, dans laquelle la dimension de chacun des voiles de renfort (22) dans la direction orthogonale aux deux faces latérales adjacentes à ladite face latérale renforcée, est plus de deux fois supérieure à celle d'un pilier (13).
4. Cuve selon la revendication 2 ou 3, dans laquelle les bords des voiles de renfort (22) qui sont disposés en vis-à-vis du panneau de couvercle (11 ) et du panneau de fond (10) présentent une forme crénelée dont les merlons (24) s'emboîtent dans des logements de forme complémentaire ménagés dans le panneau de couvercle et le panneau de fond.
5. Cuve selon la revendication 1 , dans laquelle la structure de renfort anti-déversement (14, 25, 58, 63) comporte deux jambes de force (16a, 16b, 26a, 26b, 59a, 59b, 64, 67, 83, 87, 89, 94, 89, 104, 106) disposées diagonalement, en forme de X, et s'étendant chacune entre le panneau de fond (10) et le panneau de couvercle (11 ).
6. Cuve selon la revendication 5, dans laquelle les deux jambes de force (16a, 16b) sont formées d'un seul tenant dans un voile de renfort (15) s'étendant entre le panneau de fond (10) et le panneau de couvercle (11 ).
7. Cuve selon la revendication 6, dans laquelle le voile de renfort (15) comporte, en outre, au moins deux colonnes porteuses (17a, 17b, 17c, 17d) s'étendant parallèlement dans la direction d'épaisseur du bloc isolant (3, 7) renforcé.
8. Cuve selon la revendication 7, dans laquelle les piliers (13) alignés selon une pluralité de rangées et dans laquelle les colonnes porteuses (17a, 17b, 17c, 17d) sont chacune disposées dans l'alignement d'une rangée de piliers (13).
9. Cuve selon la revendication 7 ou 8, dans laquelle le voile de renfort (15) comporte une poutre supérieure (18a) et une poutre inférieure (18b) s'étendant respectivement contre le panneau de couvercle (1 1 ) et le panneau de fond (11 ) et une pluralité d'ouvertures (19) s'étendant dans les espaces formés entre les jambes de force (16a, 16b), les colonnes porteuses (17a, 17b, 17c, 17d) et les poutres supérieure et inférieure (18a, 18b).
10. Cuve selon la revendication 9, dans laquelle les ouvertures (19) présentent des congés de liaison au niveau des intersections entre les deux jambes de force (16a, 16b) et/ou au niveau des intersections entre les poutres supérieure (18a) et inférieure (18b) et les colonnes porteuses (17a, 17b, 17c, 17d) et/ou les jambes de force (16a, 16b).
1 1. Cuve selon la revendication 5, dans laquelle les jambes de force (16a, 16b) sont des câbles (26a, 26b) comprenant une première extrémité fixée au panneau de couvercle (11 ) et une seconde extrémité fixée au panneau de fond (11 ), et dans laquelle la structure de renfort anti-déversement (25) comporte un dispositif de mise sous tension mécanique des câbles (26a, 26b).
12. Cuve selon la revendication 5, dans laquelle les jambes de forces sont formées par une sangle (64, 67, 83, 87, 89, 94, 89, 104, 106) soumise à une précontrainte de traction selon sa direction longitudinale.
13. Cuve selon la revendication 5, dans laquelle les jambes de force sont des barres métalliques (59a, 59b) présentant une première extrémité fixée au panneau de couvercle (11 ) et une seconde extrémité fixée au panneau de fond (10).
14. Cuve selon l'une quelconque des revendications 1 à 13, dans laquelle le bloc isolant (3, 7) renforcé comporte deux structures de renfort antidéversement (14, 21 , 25, 58, 63) s'étendant longitudinalement le long de deux faces latérales opposées.
15. Cuve selon la revendication 14, dans laquelle le bloc isolant (3, 7) renforcé comporte quatre structures de renfort anti-déversement (14, 21 , 25, 58, 63) s'étendant chacune le long d'une face latérale respective du bloc isolant (3, 7) renforcé.
16. Cuve selon l'une quelconque des revendications 1 à 15, dans laquelle la pluralité de blocs isolants comporte une pluralité de blocs isolants standards (1 19) et une pluralité de blocs isolants renforcés (120), les blocs isolants standards étant des blocs isolants qui ne sont pas équipés d'au moins une structure de renfort anti-déversement, lesdits blocs isolants renforcés (120) étant répartis selon un motif régulier.
17. Cuve selon la revendication 16, dans laquelle le motif régulier de répartition des blocs isolants renforcés (120) est agencé de telle sorte qu'un effort de cisaillement exercé sur le panneau de couvercle d'un bloc isolant standard soit repris sur un bloc isolant renforcé (120) voisin avant que ledit bloc isolant standard (120) ne déverse.
18. Navire (70) pour le transport d'un fluide, le navire comportant une double coque (72) et une cuve (71 ) selon l'une quelconque des revendications 1 à 17 disposée dans la double coque.
19. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 18, dans lequel on achemine un fluide à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
20. Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 18, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
PCT/FR2014/051674 2013-07-02 2014-06-30 Cuve etanche et thermiquement isolante de stockage d'un fluide WO2015001240A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167002286A KR102125733B1 (ko) 2013-07-02 2014-06-30 유체 저장을 위한 밀폐 단열 탱크
AU2014285934A AU2014285934B2 (en) 2013-07-02 2014-06-30 Sealed and thermally insulating tank for storing a fluid
CN201480035492.6A CN105324600B (zh) 2013-07-02 2014-06-30 用于储存流体的密封隔热罐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356445A FR3008164B1 (fr) 2013-07-02 2013-07-02 Cuve etanche et thermiquement isolante de stockage d'un fluide
FR1356445 2013-07-02

Publications (2)

Publication Number Publication Date
WO2015001240A2 true WO2015001240A2 (fr) 2015-01-08
WO2015001240A3 WO2015001240A3 (fr) 2015-04-02

Family

ID=49293679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051674 WO2015001240A2 (fr) 2013-07-02 2014-06-30 Cuve etanche et thermiquement isolante de stockage d'un fluide

Country Status (5)

Country Link
KR (1) KR102125733B1 (fr)
CN (1) CN105324600B (fr)
AU (1) AU2014285934B2 (fr)
FR (1) FR3008164B1 (fr)
WO (1) WO2015001240A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103500A1 (fr) * 2014-12-15 2017-06-22 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
WO2017207938A1 (fr) * 2016-06-01 2017-12-07 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
CN107856808A (zh) * 2017-10-23 2018-03-30 金玉顶 一种船体结构及其制造方法
WO2019077253A1 (fr) * 2017-10-20 2019-04-25 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones
FR3072760A1 (fr) * 2017-10-20 2019-04-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052229B1 (fr) * 2016-06-01 2018-07-06 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
FR3084439B1 (fr) * 2018-07-26 2022-01-07 Gaztransport Et Technigaz Paroi de cuve etanche autoporteuse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501559B1 (fr) * 1969-07-19 1975-01-18
FR2813111B1 (fr) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
FR2826630B1 (fr) * 2001-06-29 2003-10-24 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante avec aretes longitudinales obliques
US9365266B2 (en) * 2007-04-26 2016-06-14 Exxonmobil Upstream Research Company Independent corrugated LNG tank
FR2987424B1 (fr) * 2012-02-23 2016-06-10 Gaztransport Et Technigaz Caisse isolante comportant un espace d’ecoulement
FR2991660B1 (fr) * 2012-06-07 2014-07-18 Gaztransp Et Technigaz Element calorifuge de cuve etanche et thermiquement isolee comportant un panneau de couvercle renforce

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103500A1 (fr) * 2014-12-15 2017-06-22 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
KR102624276B1 (ko) 2014-12-15 2024-01-12 가즈트랑스포르 에 떼끄니가즈 밀봉 탱크 내 단열 벽을 제조하기에 적합한 단열 블록
KR20180094925A (ko) * 2014-12-15 2018-08-24 가즈트랑스포르 에 떼끄니가즈 밀봉 탱크 내 단열 벽을 제조하기에 적합한 단열 블록
WO2017207938A1 (fr) * 2016-06-01 2017-12-07 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
FR3052227A1 (fr) * 2016-06-01 2017-12-08 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
KR20190039675A (ko) * 2016-06-01 2019-04-15 가즈트랑스포르 에 떼끄니가즈 다면체 지지 구조체에 통합된 실링 및 단열 탱크와 절연 블록
KR102332824B1 (ko) 2016-06-01 2021-11-30 가즈트랑스포르 에 떼끄니가즈 다면체 지지 구조체에 통합된 실링 및 단열 탱크와 절연 블록
CN111417816A (zh) * 2017-10-20 2020-07-14 气体运输技术公司 具有若干区域的密封热绝缘罐
FR3072758A1 (fr) * 2017-10-20 2019-04-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones
KR20200083496A (ko) * 2017-10-20 2020-07-08 가즈트랑스포르 에 떼끄니가즈 복수의 영역을 갖는 밀폐 및 단열 탱크
FR3072760A1 (fr) * 2017-10-20 2019-04-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones
JP2021500511A (ja) * 2017-10-20 2021-01-07 ギャズトランスポルト エ テクニギャズ 複数の領域を持つ密閉断熱タンク
RU2753857C1 (ru) * 2017-10-20 2021-08-24 Газтранспорт Эт Технигаз Герметичный и теплоизоляционный резервуар с несколькими областями
WO2019077253A1 (fr) * 2017-10-20 2019-04-25 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones
CN111417816B (zh) * 2017-10-20 2021-12-28 气体运输技术公司 具有若干区域的密封热绝缘罐
JP7082662B2 (ja) 2017-10-20 2022-06-08 ギャズトランスポルト エ テクニギャズ 複数の領域を持つ密閉断熱タンク
US11480298B2 (en) 2017-10-20 2022-10-25 Gaztransport Et Technigaz Sealed and thermally insulating tank with several areas
KR102614343B1 (ko) 2017-10-20 2023-12-15 가즈트랑스포르 에 떼끄니가즈 복수의 영역을 갖는 밀폐 및 단열 탱크
AU2018353475B2 (en) * 2017-10-20 2024-04-11 Gaztransport Et Technigaz Sealed and thermally insulating tank with several areas
CN107856808A (zh) * 2017-10-23 2018-03-30 金玉顶 一种船体结构及其制造方法

Also Published As

Publication number Publication date
KR102125733B1 (ko) 2020-06-23
WO2015001240A3 (fr) 2015-04-02
FR3008164A1 (fr) 2015-01-09
AU2014285934B2 (en) 2019-03-07
CN105324600B (zh) 2017-06-09
AU2014285934A1 (en) 2016-01-07
CN105324600A (zh) 2016-02-10
FR3008164B1 (fr) 2016-10-21
KR20160029809A (ko) 2016-03-15

Similar Documents

Publication Publication Date Title
EP3362732B1 (fr) Cuve étanche et thermiquement isolante
EP3803187B1 (fr) Cuve etanche et thermiquement isolante
WO2017103500A1 (fr) Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
WO2015001240A2 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2021074435A1 (fr) Cuve étanche et thermiquement isolante
EP3320256A1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
WO2017207938A1 (fr) Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
WO2016166481A2 (fr) Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant
WO2018087466A1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage
EP2880356B1 (fr) Paroi de cuve etanche et thermiquement isolante comportant des elements porteurs espaces
WO2017207904A1 (fr) Cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
EP2986885B1 (fr) Cuve étanche et thermiquement isolante
FR3090810A1 (fr) Système d’ancrage pour cuve étanche et thermiquement isolante
WO2015001230A2 (fr) Élément calorifuge convenant pour la réalisation d'une barrière isolante dans une cuve étanche et isolante
WO2013182776A1 (fr) Element calorifuge de cuve etanche et thermiquement isolee comportant un panneau de couvercle renforce
WO2020115406A1 (fr) Cuve etanche et thermiquement isolante
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2022233907A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
FR3094453A1 (fr) Installation de stockage pour gaz liquéfié
FR3077513A1 (fr) Pilier entretoise

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035492.6

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014285934

Country of ref document: AU

Date of ref document: 20140630

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002286

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14745197

Country of ref document: EP

Kind code of ref document: A2