WO2015001157A1 - Motor de combustión interna - Google Patents

Motor de combustión interna Download PDF

Info

Publication number
WO2015001157A1
WO2015001157A1 PCT/ES2014/070535 ES2014070535W WO2015001157A1 WO 2015001157 A1 WO2015001157 A1 WO 2015001157A1 ES 2014070535 W ES2014070535 W ES 2014070535W WO 2015001157 A1 WO2015001157 A1 WO 2015001157A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
auxiliary piston
engine
internal combustion
cylinder
Prior art date
Application number
PCT/ES2014/070535
Other languages
English (en)
French (fr)
Inventor
Benoit Laurent PHILIPPE
Original Assignee
Philippe Benoit Laurent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philippe Benoit Laurent filed Critical Philippe Benoit Laurent
Priority to EP14820399.5A priority Critical patent/EP3018321B1/en
Priority to MX2016000179A priority patent/MX366114B/es
Priority to KR1020167002020A priority patent/KR20160027023A/ko
Priority to US14/902,486 priority patent/US9976451B2/en
Priority to CN201480048425.8A priority patent/CN105683527B/zh
Priority to JP2016522670A priority patent/JP6410813B2/ja
Priority to CA2917530A priority patent/CA2917530A1/en
Publication of WO2015001157A1 publication Critical patent/WO2015001157A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/36Valve-gear or valve arrangements, e.g. lift-valve gear peculiar to machines or engines of specific type other than four-stroke cycle
    • F01L1/38Valve-gear or valve arrangements, e.g. lift-valve gear peculiar to machines or engines of specific type other than four-stroke cycle for engines with other than four-stroke cycle, e.g. with two-stroke cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/30Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of positively opened and closed valves, i.e. desmodromic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L5/00Slide valve-gear or valve-arrangements
    • F01L5/04Slide valve-gear or valve-arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L5/045Piston-type or cylinder-type valves arranged above the piston and coaxial with the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/12Rotary or oscillatory slide valve-gear or valve arrangements specially for two-stroke engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • F02B75/042Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning the cylinderhead comprising a counter-piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/02Formulas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is related to an internal combustion engine, of spontaneous or induced ignition, with a two-stroke cycle and provided with a volumetric pump to assist in the emptying and filling of the cylinder; where the volumetric pump is constituted by an auxiliary piston of alternative movement placed in opposition to the engine piston, sharing the same cylinder.
  • Patents US 779116, US 1616064, US 4206727 and WO 2009/135274 A3 describe such systems, consisting essentially of:
  • a piston engine / connecting rod / crankshaft assembly which conventionally uses the mechanical energy produced during combustion and expansion of the fresh air-fuel mixture.
  • a cylinder in which the engine piston travels, this cylinder being provided with a side exhaust port, the opening of which occurs when the engine piston exposes it at the end of its expansion stroke.
  • a cylinder head that closes the cylinder in its upper part, which is provided with intake ports with non-return valves.
  • An auxiliary piston placed in the same cylinder, between the cylinder head and the engine piston and in opposition to it, this auxiliary piston being provided with transfer ports with respective non-return valves.
  • a combustion chamber between the lower face of the auxiliary piston, the upper face of the engine piston and the cylinder.
  • An intake chamber between the inner face of the cylinder head, the upper face of the auxiliary piston and the cylinder.
  • the auxiliary piston is operated on the side of the cylinder head in synchronization with the engine piston, remaining motionless in its highest position against the cylinder head during the essential part of the expansion stroke of the engine piston and performing a full swinging stroke during the rest of each functional cycle of the engine, while the engine piston discovers the exhaust port at the end of the expansion stroke, until it performs the compression stroke.
  • the crankshaft performs a complete (360 °) turn.
  • the auxiliary piston simultaneously sweeps the residual gases from the combustion chamber to the exhaust, and the admission of the fresh air-fuel mixture into the intake chamber, preventing that there is a mixture between them.
  • the air-fuel mixture progressively passes from the intake chamber to the combustion chamber through the open transfer ports when the valves of the same are opened.
  • the intake chamber is at a minimum volume, the fresh air-fuel mixture being transferred to the combustion chamber; and the engine piston approaches its upper dead center, ready to start the combustion phase.
  • the present invention proposes a two-stroke internal combustion engine of the type indicated above, with constructive solutions that meet the objectives of:
  • auxiliary piston Optimize the mechanisms of action of the auxiliary piston and its components, for a total control of the times of admission, escape and transfer, also allowing the operation at high revolutions.
  • the objective of locating a spark plug and / or a fuel injector in the cylinder head is achieved by means of a particular mechanism for transferring the load through the auxiliary piston.
  • the transfer of the load from the intake chamber to the combustion chamber is carried out by ports in the auxiliary piston, whose opening and closing are operated by a conventional valve, similar to those used in the intake and exhaust of four-stroke engines.
  • This type of valve remains in a closed position (upwards) against its seat, by the force of a spring, and is opened with a downward movement, either passively by pressure difference between the upper face and the lower face, overcoming the force of retention of the spring, or by mechanical action of a cam.
  • Such a valve cannot remain in the open position during combustion, which makes it impossible to directly communicate between the cylinder head and the combustion chamber in the combustion phase, in engines of this type.
  • the transfer valve is replaced by a piston (hereinafter referred to as a secondary piston) tightly fitted in a cylindrical housing located inside the auxiliary piston, where it can perform a reciprocating motion. relative to said auxiliary piston, in such a way that in its downward movement that secondary piston occludes transfer ports located in the side wall of the housing in the auxiliary piston, and in its upward stroke it discovers said ports, allowing load transfer of fresh air-fuel mixture between the intake chamber and the combustion chamber.
  • a piston hereinafter referred to as a secondary piston
  • the movement of the secondary piston is, therefore, inverse to that of a conventional valve, since being in a retracted position when opening the transfer ports, said secondary piston does not break into the combustion chamber and, therefore, can remain in this position during the combustion phase, making it possible to place a spark plug, a fuel injector, and / or a preheating spark plug, in the cylinder head just in front of one of the transfer ports, that is to say in a position centered on of the combustion chamber and communicating with it.
  • the tightness between intake and combustion chambers in the position of closed transfer ports is not achieved by contact on a seat as in the case of a conventional valve, but by the adjustment of diameters between said piston secondary and its housing in the auxiliary piston, or providing the secondary piston with one or several sealing rings properly located.
  • This new kinematics of actuation of the opening and closing of the transfer ports is associated with an intake chamber whose dead volume is geometrically equal to zero, that is to say that when the auxiliary piston is in its upper dead center, it is totally in contact with the cylinder head, without leaving any remaining cavity, so that:
  • the entire fresh charge of the air-fuel mixture is transferred to the combustion chamber when the auxiliary piston reaches its top dead center.
  • the intake ports which are located in the cylinder head, are provided with determined valves, each of them, by a flexible sheet, whose opening and closing are caused by the pressure difference between the manifold of admission and the admission chamber.
  • Figures 1 show a section of an engine formed according to the invention, whose functional assembly has a motor piston, an auxiliary piston and a secondary piston.
  • Figures 2A, 2B, 2C and 2D show the successive positions of the engine in the different phases of a functional cycle thereof.
  • Figure 2E is an enlarged detail of the upper part of Figure 2C.
  • Figure 3 shows a section of the engine provided with a particular actuation mechanism of the auxiliary piston assembly and the secondary piston, which determines constant strokes of these.
  • Figures 4A, 4B, 4C, 4D and 4E show the intake, sweep, expansion and compression volumes in an engine operating cycle, which determine asymmetric intake, compression and expansion volumetric shifts.
  • Figure 5 shows a section of the engine provided with an actuation mechanism of the auxiliary piston and the secondary piston, which determines variable strokes thereof.
  • Figure 5A is an enlarged top view of a longitudinal section of the tilting assembly of the previous figure.
  • Figures 6A, 6B and 6C show the motor of Figure 5 in different operating positions.
  • Figure 7 is a sectional detail of the upper part of an engine according to the invention, with a spark plug and a fuel injector arranged in the cylinder head of the engine.
  • the object of the invention relates to a two-stroke internal combustion engine, formed, as seen in Figure 1, by a cylinder (1) provided with a port of Exhaust (2) and closed superiorly by a cylinder head (3), going in the lower part of said cylinder (1) a crankshaft (4), to which is attached, by means of a connecting rod (5), a motor piston (6 ), while at the top, passing in sliding assembly through the cylinder head (3), an auxiliary piston (7) is arranged that separates an intake chamber (8) and a combustion chamber (9).
  • the auxiliary piston (7) axially determines on the side of the combustion chamber a housing (10) that communicates with the intake chamber (8) through transfer ports (1 1), being included with tightness adjustment, by means of one or more sealing rings (12.1), in said housing (10), a secondary piston (12) that is capable of opening and closing the transfer ports (11) in a reciprocating motion between a position delayed upwards of support against a stop (13) and an advanced position down.
  • a secondary piston (12) that is capable of opening and closing the transfer ports (11) in a reciprocating motion between a position delayed upwards of support against a stop (13) and an advanced position down.
  • intake ports (14) which are provided with respective non-return leaf valves (15).
  • FIG 3 shows a motor according to the invention, which operates as explained above, being provided with a particular mechanism for actuating the assembly formed by the auxiliary piston (7) and the secondary piston (12), which incorporate at its upper end , respectively, two connecting rods (16, 17), by means of which they are joined, respectively, to one end of two tilting arms (18, 19), whose centers of rotation (20, 21) are preferably coincident; said swingarm arms (18, 19), on the other end, with respective cam sets (22, 22.1) and (23, 23.1) of demodomic type with complementary profiles, which through said swingarms (18, 19 ) induce a vertical reciprocating movement of the auxiliary piston (7) and the secondary piston (12).
  • Said cams (22, 22.1) and (23, 23.1) are driven by the crankshaft (4) by means of a transmission (not shown) of known type (chain, timing belt, gears) with a ratio of 1: 1.
  • Demodromic cams are more suitable than a classic cam and spring system, due to the important travel of the auxiliary piston (7) and the consequent inertia that it generates at high revolutions. The following explains how, by adjusting the geometry of the auxiliary piston assembly (7) and the secondary piston (12), a compression ratio different from that of expansion.
  • Figures 4A, 4B, 4C, 4D and 4E show the intake, sweep, expansion and compression volumes of the engine, where:
  • V a C a x ⁇ (Di 2 -D 2 2 ) / 4
  • C a auxiliary piston stroke.
  • Di large diameter or main diameter of the auxiliary piston (7), which when set in the same cylinder (1) as the engine piston (6), is identical to the latter.
  • Residual volume which represents the fraction of residual gases that is not swept by the auxiliary piston (7), since it has a maximum stroke generally lower than that of the engine piston (6) and, therefore, recycled in the following cycle :
  • V R V e - V b
  • V c V a + V R
  • V c C e x ⁇ - C a x ⁇ (D 2 2 ) / 4 + V M
  • the compression ratio (p c ) is less than the expansion ratio (p e ), since the compression volume (V c ) is less than the expansion volume (V e ) by an amount C to x ⁇ (D 2 2 ) / 4.
  • the volumetric displacements are asymmetric, and in this way an Atkinson type thermodynamic cycle is determined, so that having determined the respective strokes C e of the engine piston (6) and C a of the auxiliary piston (7) (being the second always inferior to the first), the expansion is prolonged with respect to the admission according to a factor that will depend on the Di / D 2 ratio, which is given by the geometry of the auxiliary piston (7).
  • the Di / D 2 ratio which is given by the geometry of the auxiliary piston (7).
  • auxiliary piston (7) restores positive work through its drive mechanism formed by the set of demodromic cams (22, 22.1; 23, 23.1) illustrated in Figure 3.
  • Another objective of the present invention is, by means of a variable stroke drive of the auxiliary piston assembly (7) and secondary piston (12), to fully control the engine load; so that by being able to perform a volumetric displacement of admission exactly equal to the volume of load required for the required engine power, the following improvements are obtained with respect to a conventional four-stroke engine (in particular of the Otto type):
  • P e / P e 1 - [C a X ⁇ (D 2 2 ) / (C e X ⁇ (D, ⁇ ] in this case has a C to variable value directly proportional to the motor load.
  • a compression ratio (p c ) high to low load compatible with the maximum permissible pressure for the mechanical resistance of the engine's mobile components, and also compatible with the auto-ignition limit when it comes to a gasoline engine, since this limit is determined, not only by the pressure, but also by the temperature in the combustion chamber (9), obviously lower than partial load.
  • Figure 5 represents a motor that is also within the object of the invention, provided with a particular mechanism for actuating the auxiliary piston (7) and the secondary piston (12) with variable stroke, which achieves the objectives described above.
  • the auxiliary piston (7) is connected by a connecting rod (16) with one end of a main swing arm (24), which is provided with a hollow cylindrical portion (25) on which a bushing (26), the which can perform a sliding movement along said hollow cylindrical portion (25).
  • the bushing (26) is mounted on a joint (27) that allows oscillating movements of the said bushing assembly (26) and the main swing arm (24); while the bushing assembly (26) and the joint (27), is attached to a sliding support (28), and can be moved linearly and parallel to the axis of the hollow cylindrical portion (25) of the main swing arm (24), when the auxiliary piston (7) is in its upper dead center; a condition that is essential for the auxiliary piston (7) to reach the same top dead center regardless of the value of its stroke.
  • the other end of the main swing arm (24) is connected, by means of a joint (29), to a piston (30) placed in a position approximately parallel to the cylinder (1) of the engine, said piston (30) being mounted on guides (31), so that it can perform a linear reciprocating movement generated by a set of demodromic cams (32, 32.1) located in relation to the ends thereof and which are driven by the crankshaft (4) of the engine.
  • the reciprocating movement of the piston (30) is transmitted to the auxiliary piston (7) through the main swing arm (24), with a variable gear ratio according to the position of the bushing (26) with the sliding support (28), making a stroke of variable amplitude of said auxiliary piston (7).
  • a variable gear ratio according to the position of the bushing (26) with the sliding support (28), making a stroke of variable amplitude of said auxiliary piston (7).
  • the play of the demodromic cams (32, 32.1), which causes the movement of the auxiliary piston (7) has the advantage, over other possible mechanisms, of being able to efficiently recover the positive work delivered by said auxiliary piston (7) during the engine compression phase stroke.
  • the secondary piston (12) is connected by another connecting rod (17) to one end of a secondary swing arm (33), which is located inside the hollow cylindrical portion (25) of the swing arm main (24), with a respective joint (34) therein, the other end of this secondary swing arm (33) being connected, by means of a respective joint, to a corresponding piston (30.1) parallel to the piston (30) and which It is mounted in turn on sliding guides, and can also perform a reciprocating movement driven by a set of demodomic cams (35, 35.1) that act on the ends thereof.
  • Figures 6A, 6B and 6C represent said engine of Figure 5, with the auxiliary piston (7) in respective positions, at 25, 50 and 100% of the intake charge of fresh air-fuel mixture in the engine, and the corresponding position in each case of the bushing (26) with the sliding support (28). These positions are determined by the engine throttle control (not shown).
  • the engine can be equipped with a turbocharger, whose turbine is connected to the exhaust port (2), to be impelled by the exhaust gases, while the compressor, which is driven by said turbine, is connected to the intake ports (14).
  • auxiliary piston (7) which perfectly separates the combustion chamber (9) from the intake chamber (8), preventing any short-circuiting of the fresh air-fuel mixture load towards the exhaust, the entire flow driven by the turbo compressor is retained in the engine and does a positive job during the intake stroke in case of sufficient boost pressure, which provides a performance improvement over a two-stroke semi diesel type engine, where the sweep of The exhaust gases and the intake of the fresh air-fuel mixture are made by an external volumetric compressor or a turbocharger, operating with the exhaust and intake ports open simultaneously and communicating.
  • a motor with a single cylinder (1) has been considered, but the features of the invention are equally applicable for a motor with multiple cylinders, in line, in V, etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Motor de combustión interna, provisto con un cigüeñal (4) y uno o varios cilindros (1) provistos en su pared con lumbreras de escape (2) y cerrados en la parte superior por una culata (3) provista con lumbreras de admisión (14); yendo en cada cilindro (1) un pistón motor (6) unido al cigüeñal (4) y un pistón auxiliar (7) coaxial y opuesto al pistón motor (6), delimitando una cámara de admisión (8) y una cámara de combustión (9); determinando dicho pistón auxiliar (7) axialmente por el lado de la cámara de combustión (9) un alojamiento (10) que comunica con la cámara de admisión (8) a través de lumbreras de transfer (11), en cuyo alojamiento (10) va incluido un pistón secundario (12) que abre y cierra las lumbreras de transfer (11) en un movimiento de vaivén entre una posición retrasada y una posición avanzada.

Description

DESCRIPCION
MOTOR DE COMBUSTIÓN INTERNA Sector de la técnica
La presente invención está relacionada con un motor de combustión interna, de encendido espontáneo o inducido, con ciclo de dos tiempos y provisto de una bomba volumétrica para asistir al vaciado y llenado del cilindro; en donde la bomba volumétrica se constituye por un pistón auxiliar de movimiento alternativo colocado en oposición al pistón motor, compartiendo el mismo cilindro.
Estado de la técnica Los motores convencionales de dos tiempos, de encendido provocado, están provistos de un cárter-bomba para efectuar las operaciones de barrido/expulsión de los gases residuales de combustión y admisión/transfer de la mezcla fresca aire-combustible. Este sistema presenta el inconveniente de provocar una mezcla parcial entre dichos gases residuales y la mezcla fresca aire-combustible, produciéndose como consecuencia una fuga de una fracción de dicha mezcla fresca aire-combustible hacia el escape, lo cual es una causa muy determinante de bajo rendimiento, elevado consumo y emisiones contaminantes, de este tipo de motores.
Las patentes US 779116, US 1616064, US 4206727 y WO 2009/135274 A3, describen sistemas de este tipo, constituidos esencialmente por:
Un conjunto pistón motor/biela/cigüeñal, que aprovecha de forma convencional la energía mecánica que se produce durante la combustión y expansión de la mezcla fresca aire-combustible.
Un cilindro, en el cual se desplaza el pistón motor, estando provisto este cilindro con una lumbrera de escape lateral, cuya apertura se produce cuando el pistón motor la deja al descubierto en el final de su carrera de expansión. - Una culata que cierra el cilindro en su parte superior, la cual está provista de unas lumbreras de admisión con válvulas anti-retorno. Un pistón auxiliar colocado en el mismo cilindro, entre la culata y el pistón motor y en oposición a éste, estando provisto este pistón auxiliar de unas lumbreras de transfer con respectivas válvulas anti-retorno.
Esta construcción delimita:
Una cámara de combustión, entre la cara inferior del pistón auxiliar, la cara superior del pistón motor y el cilindro.
Una cámara de admisión, entre la cara interior de la culata, la cara superior del pistón auxiliar y el cilindro.
El pistón auxiliar es actuado por el lado de la culata de forma sincronizada con el pistón motor, quedando inmóvil en su posición más alta contra la culata durante la parte esencial de la carrera de expansión del pistón motor y realizando una carrera completa de vaivén durante el resto de cada ciclo funcional del motor, mientras que el pistón motor descubre la lumbrera de escape en el final de la carrera de expansión, hasta que realiza la carrera de compresión. Para realizar un ciclo funcional completo, el cigüeñal efectúa una vuelta completa (360°).
Durante su carrera descendente, al aproximarse al pistón motor, el pistón auxiliar realiza, simultáneamente, un barrido de los gases residuales desde la cámara de combustión hacia el escape, y la admisión de la mezcla fresca aire-combustible en la cámara de admisión, impidiendo que se produzca una mezcla entre ambos.
Durante la carrera ascendente del pistón auxiliar, con la lumbrera de escape ya cerrada, la mezcla aire-combustible pasa progresivamente de la cámara de admisión a la cámara de combustión a través de las lumbreras de transfer abiertas al abrirse las válvulas de las mismas.
Al final de la carrera ascendente del pistón auxiliar, la cámara de admisión queda con un volumen mínimo, habiéndose transferido la mezcla fresca aire-combustible a la cámara de combustión; y el pistón motor se acerca a su punto muerto superior, a punto para iniciar la fase de combustión.
A pesar de la ventaja de eliminar la fuga de mezcla fresca aire-combustible hacia el escape, propio de los motores de dos tiempos con cárter-bomba, el tipo constructivo descrito presenta, no obstante, algunos inconvenientes que justifican el desinterés de la industria hacia el mismo hasta el día de hoy, como por ejemplo:
La complejidad constructiva se ve aumentada respecto de un motor convencional de dos tiempos, llegando a equipararse a la de un motor de cuatro tiempos, cuando, sin embargo, no se obtienen ventajas respecto a éstos últimos en el rendimiento.
No es posible ubicar una bujía o un inyector en la culata, debido a la presencia del pistón auxiliar que separa a la culata de la cámara de combustión en todo momento. Por eso la bujía o el inyector de carburante se ubican lateralmente en la pared del cilindro, lo cual es adverso para una combustión homogénea y completa, con un nivel mínimo de emisiones contaminantes.
Objeto de la invención
La presente invención propone un motor de combustión interna de dos tiempos del tipo anteriormente indicado, con unas soluciones constructivas que cumplen con los objetivos de:
Ubicar una bujía y/o un inyector de carburante en el centro de la culata, para garantizar una calidad de combustión en fase con las exigencias actuales.
Realizar una cinemática de carreras asimétricas, con un desplazamiento volumétrico de expansión superior al desplazamiento volumétrico de compresión, efectuando un ciclo termodinámico de tipo Atkinson o Miller.
Realizar la regulación directa de la potencia del motor sin estrangulamiento en la admisión, eliminando por completo las pérdidas por bombeo a carga parcial que se producen en los motores convencionales de encendido provocado.
- Obtener una relación de compresión variable en función de la carga del motor, en particular, decreciente desde un valor máximo a carga parcial, hasta un valor mínimo a plena carga, haciendo posible optimizar el rendimiento termodinámico en todas las condiciones. - Obtener una relación de expansión constante en valor absoluto, independientemente de la carga, y como consecuencia de la relación de compresión variable, un cociente expansión/compresión creciente desde un valor unitario a carga parcial, hasta valores de aproximadamente 50% de sobre expansión a plena carga.
- Optimizar los mecanismos de actuación del pistón auxiliar y sus componentes, para un control total de los tiempos de admisión, escape y transfer, permitiendo además el funcionamiento a altas revoluciones. El objetivo de ubicar una bujía y/o un inyector de carburante en la culata, se consigue mediante un mecanismo particular de transfer de la carga a través del pistón auxiliar.
Según el estado anterior de la técnica, el transfer de la carga desde la cámara de admisión hacia la cámara de combustión se realiza por unas lumbreras en el pistón auxiliar, cuya apertura y cierre se operan mediante una válvula convencional, similar a las que se usan en la admisión y escape de los motores de cuatro tiempos. Este tipo de válvula permanece en posición cerrada (hacia arriba) contra su asiento, mediante la fuerza de un muelle, y es abierta con un movimiento hacia abajo, bien pasivamente por diferencia de presión entre la cara superior y la cara inferior, venciendo la fuerza de retención del muelle, o bien por actuación mecánica de una leva. Una válvula de este tipo no puede permanecer en posición abierta durante la combustión, lo cual hace imposible realizar una comunicación directa entre la culata y la cámara de combustión en la fase de combustión, en los motores de este tipo. De acuerdo con un primer aspecto de la presente invención, la válvula de transfer es sustituida por un pistón (llamado en lo sucesivo pistón secundario) ajustado con estanqueidad en un alojamiento cilindrico situado en el interior del pistón auxiliar, donde puede realizar un movimiento de vaivén relativo a dicho pistón auxiliar, de tal manera que en su carrera hacia abajo ese pistón secundario ocluye unas lumbreras de transfer ubicadas en la pared lateral del alojamiento en el pistón auxiliar, y en su carrera hacia arriba descubre dichas lumbreras, permitiendo el transfer de carga de mezcla fresca aire-combustible entre la cámara de admisión y la cámara de combustión.
El movimiento del pistón secundario es, por lo tanto, inverso al de una válvula convencional, ya que al estar en una posición retraída cuando abre las lumbreras de transfer, dicho pistón secundario no irrumpe en la cámara de combustión y, por consiguiente, puede permanecer en esta posición durante la fase de combustión, haciendo posible colocar una bujía de encendido, un inyector de carburante, y/o una bujía de precalentamiento, en la culata justo frente a una de las lumbreras de transfer, es decir en una posición centrada respecto de la cámara de combustión y comunicando con ella.
Con el pistón secundario según la invención, la estanqueidad entre cámaras de admisión y combustión en posición de lumbreras de transfer cerradas, no se consigue por contacto sobre un asiento cómo en el caso de una válvula convencional, sino por el ajuste de diámetros entre dicho pistón secundario y su alojamiento en el pistón auxiliar, o bien proveyendo al pistón secundario de uno o varios aros de estanqueidad debidamente situados.
Esta nueva cinemática de accionamiento de la apertura y cierre de las lumbreras de transfer, se asocia a una cámara de admisión cuyo volumen muerto es geométricamente igual a cero, es decir que cuando el pistón auxiliar se encuentra en su punto muerto superior, está totalmente en contacto con la culata, sin dejar ninguna cavidad remanente, de forma que:
La totalidad de la carga fresca de la mezcla aire-combustible es transferida a la cámara de combustión cuando el pistón auxiliar llega a su punto muerto superior.
No hay posibilidad de propagación de la combustión hacia la cámara de admisión, aun cuando las lumbreras de transfer están abiertas.
Según un aspecto adicional de la invención, las lumbreras de admisión, que se hallan en la culata, están provistas de válvulas determinadas, cada una de ellas, por una lámina flexible, cuya apertura y cierre son provocados por la diferencia de presión entre el colector de admisión y la cámara de admisión. Dichas válvulas de lámina presentan las ventajas de ocupar muy poco espacio y de tener una inercia extremadamente leve. Además de lo visto anteriormente en cuanto a la posibilidad de ubicar un inyector de carburante para que actúe directamente en la cámara de combustión en relación con las lumbreras de transfer del pistón auxiliar, condición esencial en el caso de un motor de encendido espontáneo (Diesel), también es posible en el caso de un motor de encendido provocado (Otto), ubicarlo de forma que se inyecte el carburante en la cámara de admisión en cualquier momento cuando el pistón auxiliar está en movimiento, por ejemplo durante la carrera de admisión, dando tiempo para vaporizar el carburante antes de que la mezcla fresca aire-combustible esté transferida a la cámara de combustión.
Descripción de las figuras Las figuras 1 muestran una sección de un motor formado según la invención, cuyo conjunto funcional posee un pistón motor, un pistón auxiliar y un pistón secundario.
Las figuras 2A, 2B, 2C y 2D muestran las posiciones sucesivas del motor en las diferentes fases de un ciclo funcional del mismo.
La figura 2E es un detalle ampliado de la parte superior de la figura 2C.
La figura 3 muestra una sección del motor provisto con un particular mecanismo de actuación del conjunto del pistón auxiliar y el pistón secundario, que determina unas carreras constantes de éstos.
Las figuras 4A, 4B, 4C, 4D y 4E muestran los volúmenes de admisión, de barrido, de expansión y de compresión en un ciclo de funcionamiento del motor, que determinan unos desplazamientos volumétricos de admisión, compresión y expansión asimétricos.
La figura 5 muestra una sección del motor provisto con un mecanismo de actuación del pistón auxiliar y el pistón secundario, que determina unas carreras variables de éstos.
La figura 5A es una vista superior ampliada de una sección longitudinal del conjunto basculante de la figura anterior.
Las figuras 6A, 6B y 6C muestran el motor de la figura 5 en distintas posiciones del funcionamiento. La figura 7 es un detalle en sección de la parte superior de un motor según la invención, con una bujía y un inyector de carburante dispuestos en la culata de cierre del motor.
Descripción detallada de la invención El objeto de la invención se refiere a un motor de combustión interna de dos tiempos, formado, como se observa en la figura 1 , por un cilindro (1) provisto con una lumbrera de escape (2) y cerrado superiormente por una culata (3), yendo en la parte inferior de dicho cilindro (1) un cigüeñal (4), al que va unido, por medio de una biela (5), un pistón motor (6), mientras que en la parte superior, pasando en montaje deslizante a través de la culata (3), va dispuesto un pistón auxiliar (7) que separa una cámara de admisión (8) y una cámara de combustión (9).
El pistón auxiliar (7) determina axialmente por el lado de la cámara de combustión un alojamiento (10) que comunica con la cámara de admisión (8) a través de unas lumbreras de transfer (1 1), yendo incluido con ajuste de estanqueidad, mediante uno o más aros de estanqueidad (12.1), en dicho alojamiento (10), un pistón secundario (12) que es capaz de abrir y cerrar las lumbreras de transfer (11) en un movimiento de vaivén entre una posición retrasada hacia arriba de apoyo contra un tope (13) y una posición avanzada hacia abajo. En la culata (3) se hallan definidas además unas lumbreras de admisión (14), las cuales se hallan provistas con unas respectivas válvulas de lámina (15) antirretorno.
Con ello así, el comportamiento del motor durante un ciclo funcional, es el siguiente:
Durante la fase de combustión, hasta que se abre la lumbrera de escape (2) por el desplazamiento del pistón motor (6) a su punto muerto inferior, el pistón auxiliar (7) y el pistón secundario (12) permanecen inmóviles en su posición alta, estando las lumbreras de transfer (1 1) abiertas y teniendo la cámara de admisión en ese momento un volumen cero, como se observa en la figura 2A; de manera que puede ir dispuesta una bujía (36) y/o en su caso un inyector de carburante (36.1), enfrente de una de las lumbreras de transfer (1 1) y en comunicación con la cámara de combustión (9), como se observa en la figura 7.
- Cuando comienza la apertura de la lumbrera de escape (2) al acercarse el pistón motor (6) a su punto muerto inferior, el pistón secundario (12) se desplaza hacia abajo, provocando el cierre de las lumbreras de transfer (11), como se observa en la figura 2B; y en esas condiciones se produce la apertura de la lumbrera de escape
(2), antes de que el pistón auxiliar (7) empiece su carrera hacia abajo.
- Cuando el pistón motor (6) llega a su punto muerto inferior, dejando abierta la lumbrera de escape (2), el pistón auxiliar (7) se desplaza hacia abajo, provocando, simultáneamente, el barrido de los gases residuales desde la cámara de combustión
(9) hacia la lumbrera de escape (2) y la introducción de una nueva carga de mezcla fresca aire-combustible en la cámara de admisión (8) a través de las lumbreras de admisión (14), estando las válvulas de lámina (15) abiertas, como se observa en la figura 2C. En esas condiciones, el pistón secundario (12) mantiene las lumbreras de transfer (1 1) cerradas durante toda la fase de escape mientras sigue la carrera hacia abajo del pistón auxiliar (7), evitando así el cortocircuito de la mezcla fresca aire- combustible con los gases residuales, durante las fases de admisión y barrido.
- Cuando el pistón auxiliar (7) se encuentra en su posición inferior, el pistón motor (6) se desplaza hacia arriba y produce el cierre de la lumbrera de escape (2), de manera que, después de producirse dicho cierre de la lumbrera de escape (2), el pistón secundario (12) se desplaza a su vez hacia arriba, abriendo las lumbreras de transfer
(1 1) , como se observa en la figura 2D; produciéndose a continuación también el desplazamiento hacia arriba del pistón auxiliar (7). La carrera del pistón secundario
(12) y del pistón auxiliar (7) hacia arriba, se produce acompañando al pistón motor (6) en la fase de compresión; de manera que al reducirse progresivamente el volumen de la cámara de admisión (8) hasta un valor igual a cero, al final de la carrera del pistón auxiliar (7), la totalidad de la carga fresca de mezcla aire- combustible es transferida hacia la cámara de combustión (9). La figura 3 muestra un motor según la invención, que funciona conforme lo explicado anteriormente, estando provisto de un mecanismo particular de actuación del conjunto formado por el pistón auxiliar (7) y el pistón secundario (12), los cuales incorporan en su extremo superior, respectivamente, sendas bieletas (16, 17), mediante las cuales se unen, respectivamente, a un extremo de sendos brazos basculantes (18, 19), cuyos centros de rotación (20, 21) son preferentemente coincidentes; relacionándose dichos brazos basculantes (18, 19), por el otro extremo, con respectivos juegos de levas (22, 22.1) y (23, 23.1) de tipo desmodrómico con perfiles complementarios, las cuales a través de dichos brazos basculantes (18, 19) inducen un movimiento de vaivén vertical del pistón auxiliar (7) y del pistón secundario (12). Dichas levas (22, 22.1) y (23, 23.1) son accionadas por el cigüeñal (4) mediante una transmisión (no representada) de tipo conocido (cadena, correa dentada, engranajes) con una relación de 1 :1. Las levas desmodrómicas son más adecuadas que un sistema clásico de leva y muelle, debido al recorrido importante del pistón auxiliar (7) y la consecuente inercia que genera a altas revoluciones. A continuación se expone cómo, ajustando la geometría del conjunto del pistón auxiliar (7) y el pistón secundario (12), se consigue una relación de compresión diferente de la de expansión.
En las figuras 4A, 4B, 4C, 4D y 4E, se representan los volúmenes de admisión, de barrido, de expansión y de compresión del motor, en donde:
Volumen de admisión: Va = Ca x Π (Di2-D2 2)/4 Ca = carrera del pistón auxiliar.
Di = diámetro grande o diámetro principal, del pistón auxiliar (7), que al ajustarse en el mismo cilindro (1) que el pistón motor (6), es idéntico al de éste.
D2 = diámetro pequeño del pistón auxiliar (7), que pasa a través de la culata (3), representando la sección del pistón auxiliar (7) expuesta a la atmósfera (o a la presión que reina en el cárter del motor, al igual que la parte inferior del pistón motor (6)). Volumen barrido: Vb = Ca x Π (D! 2)/4
De lo que se desprende que Va < V y que cuanto mayor es el diámetro pequeño (D2) del pistón auxiliar (7) menor es el volumen de admisión respecto del volumen de barrido. Volumen de expansión: Ve = Ce x Π (Di2)/4 + VM
Ce = carrera de expansión o carrera del pistón motor (6).
VM = Volumen muerto = volumen mínimo de la cámara de combustión, cuando el pistón motor (6) y el pistón auxiliar (7) están ambos en su punto muerto superior.
Considerando que la carrera del pistón motor (6) en la fase de expansión se realiza al estar el pistón auxiliar (7) inmóvil en su posición alta, el volumen de expansión (Ve) siempre tiene un valor constante independientemente del valor de la carrera (Ca) del pistón auxiliar (7). Por lo tanto, la relación de expansión es constante e igual a: pe = Ve / VM
Volumen residual, que representa la fracción de los gases residuales que no es barrida por el pistón auxiliar (7), al tener éste una carrera máxima generalmente inferior a la del pistón motor (6) y, por lo tanto, reciclada en el ciclo siguiente: VR = Ve - Vb
Volumen de compresión: Vc = Va + VR Vc = Ce x Π - Ca x Π (D2 2)/4 + VM
Relación de compresión: pc = Vc / VM
Observándose que la relación de compresión (pc) es inferior a la relación de expansión (pe), al ser el volumen de compresión (Vc) inferior al volumen de expansión (Ve) en una cantidad Ca x Π (D2 2)/4.
Resulta por lo tanto que: pe / ρΘ = 1 - [Ca x Π (D2 2)/ (Ce x Π (D1 2)+4VM)]
Es decir, que los desplazamientos volumétricos son asimétricos, y de esta forma se determina un ciclo termodinámico de tipo Atkinson, de manera que habiendo determinado las carreras respectivas Ce del pistón motor (6) y Ca del pistón auxiliar (7) (siendo la segunda siempre inferior a la primera), la expansión es prolongada respecto a la admisión según un factor que dependerá de la relación Di/D2, la cual viene dada por la geometría del pistón auxiliar (7). Con un valor significativo del diámetro pequeño D2 del pistón auxiliar, de entre el 25% y el 60% del valor del diámetro grande Di , se consigue un factor de sobre expansión de entre 1 , 15 y 1 ,5 veces la compresión.
Otra consecuencia de dicha geometría particular del pistón auxiliar (7), es que durante la carrera de compresión, dicho pistón auxiliar (7) restituye un trabajo positivo a través de su mecanismo de accionamiento formado por el conjunto de levas desmodrómicas (22, 22.1 ; 23, 23.1) ilustradas en la figura 3.
Durante la carrera de compresión, independientemente de la carga, el pistón motor (6) requiere un trabajo (negativo) equivalente a: í1-2 PdV, con V! - V2 = Ce x Π (D^
Mientras que, debido al equilibrio de presiones entre la cámara de combustión (9) y la cámara de admisión (8), durante la carrera de compresión, el pistón auxiliar (7) restituye un trabajo (positivo) equivalente a: ír-2' Pdv, con Vr - V z = Ca x Π (D2 2)/4
Por lo tanto, el trabajo neto requerido para la carrera de compresión es:
Figure imgf000013_0001
Otro objetivo de la presente invención es, mediante un accionamiento de carrera variable del conjunto pistón auxiliar (7) y pistón secundario (12), controlar totalmente la carga del motor; de modo que al poder realizar un desplazamiento volumétrico de admisión exactamente igual al volumen de carga necesario para la potencia del motor requerida, se obtienen las siguientes mejoras respecto a un motor convencional de cuatro tiempos (en particular del tipo Otto):
- Al no requerir una mariposa de gases para variar la potencia, se eliminan por completo las pérdidas por bombeo a carga parcial, mejorando sustancialmente el rendimiento en dichas condiciones.
En comparación con los motores de cuatro tiempos de encendido provocado, que presentan una reducción de la relación de compresión efectiva a carga parcial por no llenar la cámara a presión atmosférica, lo cual provoca una pérdida de rendimiento termodinámico asociada a una degradación de la calidad de la combustión, en el motor con pistón auxiliar de carrera asimétrica y variable según la invención, cuando éste hace un recorrido inferior al máximo, también reduce en la misma proporción el barrido de gases residuales de la combustión anterior, pero los gases residuales permanecen en la cámara de combustión y son reciclados sumándose a la carga fresca de mezcla aire-combustible en el ciclo siguiente, de manera que la relación de compresión efectiva no se ve reducida a carga parcial. Además se consigue una estratificación entre la parte reciclada de los gases residuales y la parte fresca de mezcla aire-combustible (evitando que se mezclen), gracias a una introducción progresiva de la mezcla fresca aire-combustible durante toda la carrera de compresión. Todo lo cual permite mantener una calidad de combustión y un rendimiento termodinámico altos, en cualquier condición. Además, asociando la geometría de desplazamientos volumétricos asimétricos a un accionamiento de carrera variable, se consigue variar la relación de compresión en función de la carga. La ley que relaciona la relación de compresión con la de expansión:
Pe / Pe = 1 - [Ca X Π (D2 2)/ (Ce X Π (D,^ ] tiene en este caso un valor Ca variable directamente proporcional a la carga del motor.
De modo que: pc / pe = 1 cuando Ca = 0, es decir cuando el pistón auxiliar (7) no bombea nada. Pe / pe < 1 , si Ca > 0, es decir que la relación de compresión disminuye a medida que la carrera de admisión (Ca) (o sea la carga) aumenta, pasando de un ciclo Otto convencional a un ciclo Miller o Atkinson de expansión prolongada respecto a la compresión.
De esta manera, con un motor según la presente invención es posible tener:
Una relación de compresión (pc) alta a baja carga, compatible con la presión máxima admitida para la resistencia mecánica de los componentes móviles del motor, y compatible también con el límite de autoencendido cuando se trata de un motor de gasolina, ya que este límite viene determinado, no solo por la presión, sino también por la temperatura en la cámara de combustión (9), obviamente inferior a carga parcial.
Una relación de compresión (pc) que se va reduciendo a medida que la carga aumenta, permitiendo contener la presión máxima de combustión y crear un ciclo termodinámico donde la expansión es mayor que la compresión, es decir un ciclo
Miller o Atkinson, que tienen un rendimiento superior al de un ciclo Otto convencional.
Igualmente se observa que cuanto mayor es el diámetro pequeño (D2) respecto del diámetro grande (Di), del pistón auxiliar (7), mayor es la variación de la relación compresión/expansión en asociación con la carrera variable del pistón auxiliar (7). De manera que en el diseño del pistón auxiliar (7) de un motor según la invención, en particular con respecto a la relación entre el diámetro grande (D^ y el diámetro pequeño (D2) del pistón auxiliar (7), la variación de su carrera (Ca) y el valor del volumen muerto (VM), permiten ajustar y optimizar el comportamiento termodinámico a la función como motor Otto, como motor Diesel, como motor estacionario, como motor de automóvil con amplia variación de carga, etc.; permitiendo también reducir el nivel de emisiones de óxidos de nitrógeno, en particular en un motor de encendido espontáneo (Diesel).
La figura 5 representa un motor que también se halla dentro del objeto de la invención, provisto de un mecanismo particular de actuación del pistón auxiliar (7) y del pistón secundario (12) con carrera variable, que consigue los objetivos descritos anteriormente. El pistón auxiliar (7) se halla conectado mediante una bieleta (16) con un extremo de un brazo basculante principal (24), el cual está provisto de una porción cilindrica hueca (25) sobre la que va un casquillo (26), el cual puede realizar un movimiento de deslizamiento a lo largo de dicha porción cilindrica hueca (25). El casquillo (26) está montado en una articulación (27) que permite movimientos de oscilación del conjunto de dicho casquillo (26) y el brazo basculante principal (24); mientras que el conjunto del casquillo (26) y la articulación (27), va unido a un soporte corredera (28), pudiendo ser desplazado linealmente y paralelamente al eje de la porción cilindrica hueca (25) del brazo basculante principal (24), cuando el pistón auxiliar (7) está en su punto muerto superior; condición que es indispensable para que el pistón auxiliar (7) alcance el mismo punto muerto superior independientemente del valor de su carrera.
El otro extremo del brazo basculante principal (24) está conectado, mediante una articulación (29), a un émbolo (30) colocado en una posición aproximadamente paralela al cilindro (1) del motor, estando montado dicho émbolo (30) en unas guías (31), de manera que puede efectuar un movimiento lineal de vaivén generado por un juego de levas desmodrómicas (32, 32.1) situadas en relación con los extremos del mismo y que son accionadas por el cigüeñal (4) del motor.
El movimiento de vaivén del émbolo (30) se transmite al pistón auxiliar (7) a través del brazo basculante principal (24), con una desmultiplicación variable según la posición del casquillo (26) con el soporte corredera (28), realizando una carrera de amplitud variable de dicho pistón auxiliar (7). De esta manera es posible conseguir, por ejemplo, una variación continua de entre un 10% y un 100% de la carrera máxima del pistón auxiliar (7). El juego de las levas desmodrómicas (32, 32.1), que provoca el movimiento del pistón auxiliar (7), presenta la ventaja, sobre otros mecanismos posibles, de poder recuperar de forma eficiente el trabajo positivo entregado por dicho pistón auxiliar (7) durante la carrera de la fase de compresión del motor.
Por otra parte, el pistón secundario (12) está conectado por medio de otra bieleta (17) a un extremo de un brazo basculante secundario (33), el cual está ubicado en el interior de la porción cilindrica hueca (25) del brazo basculante principal (24), con una respectiva articulación (34) en el mismo, estando conectado el otro extremo de este brazo basculante secundario (33), mediante una respectiva articulación, a un correspondiente émbolo (30.1) paralelo al émbolo (30) y que va montado a su vez en unas guías de deslizamiento, pudiendo realizar igualmente un movimiento de vaivén accionado por un juego de levas desmodrómicas (35, 35.1) que actúan sobre los extremos del mismo. Al tener su articulación (34) dentro de la porción cilindrica hueca (25) del brazo basculante principal (24), el brazo basculante secundario (33) transmite al pistón secundario (12), a la vez, el movimiento de carrera del pistón auxiliar (7) y su carrera relativa con éste, merced al accionamiento que realizan las levas (35, 35.1). En la figura 5A se observa como en la práctica, con el fin de equilibrar los esfuerzos generados en el brazo basculante principal (24), se ha desdoblado el émbolo (30) en dos elementos colocados simétricamente respecto al brazo basculante secundario (33) y su correspondiente émbolo (30.1). Las figuras 6A, 6B y 6C representan dicho motor de la figura 5, con el pistón auxiliar (7) en respectivas posiciones, a 25, 50 y 100% de la carga de admisión de mezcla fresca aire- combustible en el motor, y la posición correspondiente en cada caso del casquillo (26) con el soporte corredera (28). Dichas posiciones son determinadas por el mando del acelerador del motor (no representado).
Habiendo fijado el diámetro grande (D^ del pistón auxiliar (7), el hecho de aumentar el diámetro pequeño (D2) de dicho pistón auxiliar (7), favorece las características para mejorar el rendimiento en toda la gama de potencias, es decir reducir la relación de compresión y aumentar el cociente expansión/compresión a medida que la carga aumenta; pero tiene el inconveniente de reducir la cilindrada efectiva, es decir la potencia específica del motor. Para contrarrestar este inconveniente se puede equipar el motor con un turbocompresor, cuya turbina se conecta a la lumbrera de escape (2), para ser impelida por los gases de escape, mientras que el compresor, que es accionado por dicha turbina, se conecta a las lumbreras de admisión (14). Gracias al pistón auxiliar (7), que separa perfectamente la cámara de combustión (9) de la cámara de admisión (8), impidiendo cualquier cortocircuito de la carga de mezcla fresca aire-combustible hacia el escape, la totalidad del flujo impulsado por el compresor del turbo queda retenido en el motor y efectúa un trabajo positivo durante la carrera de admisión en caso de una presión de sobrealimentación suficiente, lo cual proporciona una mejora de rendimiento respecto de un motor de dos tiempos de tipo semi diesel, donde el barrido de los gases de escape y la admisión de la mezcla fresca aire-combustible se hacen mediante un compresor volumétrico exterior o un turbocompresor, operando con las lumbreras de escape y admisión abiertas simultáneamente y comunicándose. En las descripciones precedentes e ilustraciones de los dibujos, a efectos de simplificar se ha considerado un motor con un solo cilindro (1), pero las características de la invención son aplicables igualmente para un motor con múltiples cilindros, en línea, en V, etc.

Claims

REIVINDICACIONES
1. - Motor de combustión interna, provisto de un cigüeñal (4) y uno o varios cilindros (1), estando cada cilindro (1) provisto con un pistón motor (6) unido al cigüeñal (4) y que puede efectuar un movimiento alternativo dentro del cilindro (1); una culata (3) que cierra la parte superior del cilindro (1) y que está provista con lumbreras de admisión (14); unas lumbreras de escape (2) ubicadas en la pared del cilindro (1); y un pistón auxiliar (7) coaxial y opuesto al pistón motor (6), delimitando una cámara de combustión (9) entre dicho pistón auxiliar (7), el cilindro (1) y el pistón motor (6) y una cámara de admisión (8) entre dicho pistón auxiliar (7), el cilindro (1) y la culata (3), estando dotado dicho pistón auxiliar (7) de un movimiento alternativo mecánicamente sincronizado con el pistón motor (6), para provocar la expulsión de los gases residuales de la cámara de combustión (9) a través de la lumbrera de escape (2) y simultáneamente la introducción de una carga fresca de mezcla aire-combustible en la cámara de admisión (8) a través de las lumbreras de admisión (14); caracterizado en que el pistón auxiliar (7) determina axialmente por el lado de la cámara de combustión (9) un alojamiento (10) que comunica con la cámara de admisión (8) a través de unas lumbreras de transfer (1 1), yendo incluido en dicho alojamiento (10) un pistón secundario (12) que abre y cierra las lumbreras de transfer (1 1) en un movimiento de vaivén, respectivamente entre una posición retrasada hacia arriba y una posición avanzada hacia abajo.
2. - Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que el pistón secundario (12) ajusta con estanqueidad respecto de la pared del alojamiento (10) mediante unos aros de estanqueidad (12.1).
3.- Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que en la culata (3) se dispone una bujía (36) y/o un inyector de carburante (36.1), enfrente de una de las lumbreras de transfer (1 1) y en comunicación con la cámara de combustión (9) cuando el pistón auxiliar (7) se encuentra en su posición más próxima a la culata (3).
4.- Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que las lumbreras de admisión (14) están provistas con unas válvulas de lámina (15) antirretorno.
5.- Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que el pistón auxiliar (7) pasa en montaje deslizante a través de la culata (3).
6. - Motor de combustión interna, de acuerdo con las reivindicaciones 1 y 5, caracterizado en que el pistón auxiliar (7) posee un diámetro grande (D^ que ajusta en el interior del cilindro (1) y un diámetro pequeño (D2) que pasa a través de la culata (3) y que es superior a la cuarta parte del diámetro grande (D^.
7. - Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que el pistón auxiliar (7) se dispone conectado a un extremo de un brazo basculante (18), el cual por el otro extremo se relaciona con un juego de levas (22, 22.1) de tipo desmodrómico que inducen un movimiento de basculacion a dicho brazo basculante (18); mientras que el pistón secundario (12) se dispone conectado a un extremo de otro brazo basculante (19), el cual por su otro extremo se relaciona con un respectivo juego de levas (23, 23.1) de tipo desmodrómico que inducen a su vez un movimiento de basculacion a este brazo basculante (19).
8.- Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que el movimiento alternativo del pistón auxiliar (7), mecánicamente sincronizado con el pistón motor (6), es de amplitud o carrera variable.
9.- Motor de combustión interna, de acuerdo con las reivindicaciones 1 y 8, caracterizado en que el pistón auxiliar (7) y el pistón secundario (12) se disponen relacionados con un mecanismo que permite variar la carrera de sus movimientos de vaivén hacia arriba y hacia abajo, yendo conectado el pistón auxiliar (7) a un extremo de un brazo basculante principal (24), el cual por su otro extremo va conectado a un émbolo (30) que es actuado en movimiento hacia arriba y hacia abajo por un juego de levas desmodrómicas (32, 32.1), poseyendo dicho brazo basculante principal (24) una porción cilindrica hueca (25), sobre la cual va un casquillo (26) deslizante montado en una articulación (27) unida a un soporte corredera (28) que permite un desplazamiento lineal según una dirección paralela al eje de la porción cilindrica hueca (25) del brazo basculante principal (24) cuando éste se encuentra en su posición determinada por la posición del pistón auxiliar (7) más próxima a la culata (3); mientras que el pistón secundario (12) va conectado a un extremo de un brazo basculante secundario (33), el cual por su otro extremo va conectado a un respectivo émbolo (30.1) paralelo al émbolo (30) y que es actuado a su vez en movimiento hacia arriba y hacia abajo por un correspondiente juego de levas desmodrómicas (35, 35.1), estando este brazo basculante secundario (33) montado en una articulación (34) que se halla en el interior de la porción cilindrica hueca (25) del brazo basculante principal (24).
10.- Motor de combustión interna, de acuerdo con la primera reivindicación, caracterizado en que se dispone un turbocompresor, cuya turbina se conecta a la lumbrera de escape (2), y cuyo compresor se conecta a las lumbreras de admisión (14).
PCT/ES2014/070535 2013-07-02 2014-06-30 Motor de combustión interna WO2015001157A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14820399.5A EP3018321B1 (en) 2013-07-02 2014-06-30 Internal combustion engine
MX2016000179A MX366114B (es) 2013-07-02 2014-06-30 Motor de combustión interna.
KR1020167002020A KR20160027023A (ko) 2013-07-02 2014-06-30 내연기관
US14/902,486 US9976451B2 (en) 2013-07-02 2014-06-30 Internal combustion engine
CN201480048425.8A CN105683527B (zh) 2013-07-02 2014-06-30 内燃机
JP2016522670A JP6410813B2 (ja) 2013-07-02 2014-06-30 内燃エンジン
CA2917530A CA2917530A1 (en) 2013-07-02 2014-06-30 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330985 2013-07-02
ES201330985A ES2531587B1 (es) 2013-07-02 2013-07-02 Motor de combustión interna

Publications (1)

Publication Number Publication Date
WO2015001157A1 true WO2015001157A1 (es) 2015-01-08

Family

ID=52143147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070535 WO2015001157A1 (es) 2013-07-02 2014-06-30 Motor de combustión interna

Country Status (9)

Country Link
US (1) US9976451B2 (es)
EP (1) EP3018321B1 (es)
JP (1) JP6410813B2 (es)
KR (1) KR20160027023A (es)
CN (1) CN105683527B (es)
CA (1) CA2917530A1 (es)
ES (1) ES2531587B1 (es)
MX (1) MX366114B (es)
WO (1) WO2015001157A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597699B2 (ja) * 2017-04-11 2019-10-30 トヨタ自動車株式会社 内燃機関
IT201900000439A1 (it) * 2019-01-11 2020-07-11 Giampaolo Oddi Motore a combustione interna
EP3980632A1 (en) * 2019-06-04 2022-04-13 Salvatore FIORETTI Synchronous two-stroke "servo piston" service unit with floating ring for endothermic engines
CN110454274B (zh) * 2019-08-20 2021-06-22 湖南大兹动力科技有限公司 一种具有多种点火模式的内燃机
US11136916B1 (en) * 2020-10-06 2021-10-05 Canadavfd Corp (Ltd) Direct torque control, piston engine
CN112483271B (zh) * 2020-11-18 2023-03-14 中车工业研究院有限公司 发动机及其控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US779116A (en) 1900-11-14 1905-01-03 Gaston A Bronder Gas-engine.
US1174624A (en) * 1915-06-09 1916-03-07 Frederick A Seitz Internal-combustion engine.
GB191505587A (en) * 1915-04-13 1916-03-09 Francis Heron Rogers Gas Engine.
US1485483A (en) * 1919-05-03 1924-03-04 Brown William G Internal-combustion engine
US1616064A (en) 1924-03-25 1927-02-01 Purdy Asa Robert Internal-combustion engine
US2139457A (en) * 1935-08-09 1938-12-06 Patchett George William Internal combustion engine
US2316790A (en) * 1941-09-02 1943-04-20 Henri J Hickey Internal combustion engine
US2445148A (en) * 1946-07-23 1948-07-13 Raymond E Minnix Combined pump and motor cylinder coaxial
US4169435A (en) * 1977-06-23 1979-10-02 Faulconer Edward L Jr Internal combustion engine and method
US4206727A (en) 1977-12-12 1980-06-10 Miguel Siegien Two-stroke-cycle engine having an auxiliary piston and valve arrangement, and its associated drive mechanism
DE19637044A1 (de) * 1996-09-12 1998-04-09 Karl Dr Ing Bittel Optimal gesteuerte Brennkraftmaschine
WO2009135274A2 (en) 2008-05-08 2009-11-12 Omer Muftic Two-cycle engine with combined valve with piston

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191005587A (en) * 1910-03-05 1910-10-13 Edward Christopher Blackstone Improvements in Root Cutters.
US1063520A (en) * 1910-06-11 1913-06-03 White Company Internal-combustion engine.
GB191313133A (en) * 1913-06-06 1914-06-04 John Campbell Mcintosh Improvements in the Valves and Valve Gear of Internal Combustion Engines.
US2019161A (en) * 1933-05-10 1935-10-29 Serste Jacques Egide Valve gear for explosion and internal combustion engines working on any cycle
US2535532A (en) * 1941-09-24 1950-12-26 Onera (Off Nat Aerospatiale) Two-cycle low-boiling fuel injection engine
GB960054A (en) * 1962-04-26 1964-06-10 Walter Reginald Longcroft Neal Improvements in or relating to two-stroke internal combustion engines
JPS60125303U (ja) * 1984-02-02 1985-08-23 富士重工業株式会社 内燃機関の動弁装置
JPH01134009A (ja) * 1987-11-19 1989-05-26 Yoshiari Takagi Dohcエンジン
JPH06193451A (ja) * 1992-12-22 1994-07-12 Yamaha Motor Co Ltd 2サイクルエンジン
JP3517221B2 (ja) * 2001-03-16 2004-04-12 今在家精工株式会社 エンジンのリード弁装置
DE502008001806D1 (de) * 2007-07-27 2010-12-30 Waertsilae Nsd Schweiz Ag Zweitakt-Dieselbrennkraftmaschine
US8910606B2 (en) * 2009-11-23 2014-12-16 Pinnacle Engines, Inc. Positive control (desmodromic) valve systems for internal combustion engines

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US779116A (en) 1900-11-14 1905-01-03 Gaston A Bronder Gas-engine.
GB191505587A (en) * 1915-04-13 1916-03-09 Francis Heron Rogers Gas Engine.
US1174624A (en) * 1915-06-09 1916-03-07 Frederick A Seitz Internal-combustion engine.
US1485483A (en) * 1919-05-03 1924-03-04 Brown William G Internal-combustion engine
US1616064A (en) 1924-03-25 1927-02-01 Purdy Asa Robert Internal-combustion engine
US2139457A (en) * 1935-08-09 1938-12-06 Patchett George William Internal combustion engine
US2316790A (en) * 1941-09-02 1943-04-20 Henri J Hickey Internal combustion engine
US2445148A (en) * 1946-07-23 1948-07-13 Raymond E Minnix Combined pump and motor cylinder coaxial
US4169435A (en) * 1977-06-23 1979-10-02 Faulconer Edward L Jr Internal combustion engine and method
US4206727A (en) 1977-12-12 1980-06-10 Miguel Siegien Two-stroke-cycle engine having an auxiliary piston and valve arrangement, and its associated drive mechanism
DE19637044A1 (de) * 1996-09-12 1998-04-09 Karl Dr Ing Bittel Optimal gesteuerte Brennkraftmaschine
WO2009135274A2 (en) 2008-05-08 2009-11-12 Omer Muftic Two-cycle engine with combined valve with piston

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018321A4

Also Published As

Publication number Publication date
US20160138441A1 (en) 2016-05-19
KR20160027023A (ko) 2016-03-09
EP3018321A4 (en) 2016-08-24
EP3018321B1 (en) 2018-02-21
ES2531587B1 (es) 2015-11-12
EP3018321A1 (en) 2016-05-11
CN105683527B (zh) 2018-06-19
ES2531587A1 (es) 2015-03-17
MX366114B (es) 2019-06-26
JP2016526635A (ja) 2016-09-05
MX2016000179A (es) 2016-04-20
US9976451B2 (en) 2018-05-22
CN105683527A (zh) 2016-06-15
CA2917530A1 (en) 2015-01-08
JP6410813B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2015001157A1 (es) Motor de combustión interna
EP1819912B1 (en) Reciprocating machine
EP3190259A2 (en) Variable compression ratio systems for opposed-piston internal combustion engines, and related methods of manufacture and use
ES2700131T3 (es) Válvula de transferencia de corredera de carrete en motor de ciclo dividido
ES2639422T3 (es) Motor de combustión interna de carrera diferencial mejorada
AU2018101638A4 (en) Internal combustion engine with paired, parallel, offset pistons
US7500462B2 (en) Internal combustion engine
US9074618B2 (en) Premixed compression self-ignition engine
US7428886B1 (en) Two-cycle engine and compressor
WO2006038086A2 (en) V-twin configuration having rotary mechanical field assembly
US9074527B2 (en) Counterpoise engine
US7188598B2 (en) Rotary mechanical field assembly
JP5662996B2 (ja) 燃焼前サイクルにおける加圧システム
US6941903B2 (en) System and method for adding air to an explosion chamber in an engine cylinder
CN103732882B (zh) 旋转引擎泵或压缩器
US3608307A (en) Compound internal combustion engine with re-expansion cylinder
RU2617519C1 (ru) Двигатель внутреннего сгорания
US9404428B1 (en) Variable-expansion-ratio engine
KR900007462B1 (ko) 내연기관
GB2272941A (en) Two-stroke engine.
JPH0122443B2 (es)
TR201806918T4 (tr) İçten Yanmalı Motor
ITBS20110161A1 (it) Motore rotativo a ciclo diesel
JPS5925862B2 (ja) 内燃機関
MXNL06000032A (es) Motor toroidal de combustion interna y metodo de operacion del mismo.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201508844

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016522670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2917530

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/000179

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14902486

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032909

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167002020

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014820399

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015032909

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151229