WO2015000286A1 - Système et procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée - Google Patents

Système et procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée Download PDF

Info

Publication number
WO2015000286A1
WO2015000286A1 PCT/CN2014/000642 CN2014000642W WO2015000286A1 WO 2015000286 A1 WO2015000286 A1 WO 2015000286A1 CN 2014000642 W CN2014000642 W CN 2014000642W WO 2015000286 A1 WO2015000286 A1 WO 2015000286A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
teaching aid
physical teaching
spatial orientation
information
Prior art date
Application number
PCT/CN2014/000642
Other languages
English (en)
Chinese (zh)
Inventor
熊剑明
Original Assignee
央数文化(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 央数文化(上海)股份有限公司 filed Critical 央数文化(上海)股份有限公司
Publication of WO2015000286A1 publication Critical patent/WO2015000286A1/fr

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/06Electrically-operated educational appliances with both visual and audible presentation of the material to be studied

Definitions

  • the camera device is configured to perform video collection on a real environment after the augmented reality application is started;
  • the information processing apparatus further includes:
  • the three-dimensional rendering module is configured to control, according to the current spatial orientation information, the virtual object to perform synchronous display in a corresponding position in the video image.
  • the augmented reality application employs multi-thread programming, including a background thread for running a video capture operation and a main thread for running other functional operations.
  • the identification information is a two-dimensional code.
  • the three-dimensional interactive learning system prestores at least one template pattern, each of the template patterns corresponding to one of the three-dimensional models; and the identification module is configured to extract the Determining, by the predetermined image matching algorithm, whether the two-dimensional code matches the template pattern by using a predetermined image matching algorithm, and if yes, determining that the matching three-dimensional model corresponding to the template pattern is the physical teaching aid Corresponding said three-dimensional model -
  • 1 is a pixel value of the template pattern, which is a pixel value of the two-dimensional code; when S ; approaches 1, r approaches 1 and the extracted two-dimensional code is The template patterns are compared in N different orientations respectively; or
  • E s is the average gray level of the two-dimensional code
  • E t is the average gray level of the template pattern
  • the present invention also provides a three-dimensional interactive learning method based on augmented reality, including steps having -
  • the step of the information processing apparatus calculating the spatial orientation information of the physical teaching aid further includes:
  • the information processing device when the user moves the entity teaching aid in a real environment, the information processing device performs moving object tracking on the entity teaching aid, and calculates current spatial orientation information of the entity teaching aid in real time;
  • the step of placing the virtual object in a corresponding position in the video image according to the spatial orientation information of the physical teaching aid further includes:
  • the information processing device controls the virtual object to perform synchronous display on a corresponding position in the video image according to the current spatial orientation information.
  • the augmented reality application employs multi-thread programming, including a background thread for running a video capture operation and a main thread for running other functional operations.
  • the step of the information processing device calculating the spatial orientation information of the physical teaching aid further includes:
  • the information processing device calculates two-dimensional spatial orientation information of the physical teaching aid in the physical teaching aid space coordinate system; and converts the two-dimensional spatial orientation information into an imaging device according to the calibration parameter of the imaging device Three-dimensional spatial orientation information of the spatial coordinate system;
  • step of displaying the virtual object in a corresponding position in the video image according to the spatial orientation information of the physical teaching aid further comprising:
  • the information processing device displays the virtual object at a corresponding position in the video image according to the three-dimensional spatial orientation information.
  • the information processing device root is based on a real-time rendering frame rate, and each time an M frame is rendered, the camera device acquires an image, which is processed by the information processing device. Processing the image; from the 0th frame to the first period of the N*M frame, the information processing apparatus obtains the spatial orientation information of the physical teaching aid N times; the information processing apparatus is at the first During the second period from the NM frame to the 2N*M frame, the information processing apparatus constructs the N-time Bezier curve by using the result of the first N times of visual capture, thereby estimating any frame. The spatial orientation information of the physical teaching aid is applied to the virtual object.
  • the physical teaching aids are teaching cards, teaching books, and teaching dies.
  • the identification information is a two-dimensional code.
  • the step of the information processing apparatus identifying the identification information on the entity teaching aid and analyzing the three-dimensional model corresponding to the identification information includes :
  • the information processing device extracts the two-dimensional code on the entity teaching aid, and identifies whether the two-dimensional code matches the template pattern by a predetermined image matching algorithm;
  • the formula of the image matching algorithm is:
  • T ⁇ is the pixel value of the template pattern, S ; is the pixel value of the two-dimensional code; when approaching 1, r approaches 1 and the extracted two-dimensional code Comparing with the template pattern in N different orientations; or
  • E s is the average gray level of the two-dimensional code
  • E t is the average gray level of the template pattern
  • the present invention provides a three-dimensional interactive learning system and method based on augmented reality in order to solve the problem of low interest and poor teaching effect of the existing multimedia teaching device.
  • the system passes the camera.
  • the device performs video capture to display the real environment on the display device; at this time, the user can move the physical teaching aid with the identification information to the shooting range of the camera device, and the system identifies the identification information and the spatial orientation information of the physical teaching aid, the entity
  • the teaching aid is preferably a teaching card, and the identification information is preferably a two-dimensional code; then the system acquires the three-dimensional model corresponding to the identification information and renders it into a corresponding virtual object, and places the virtual object on the video image according to the spatial orientation information of the physical teaching aid.
  • the corresponding position in the display is mixed with the real environment.
  • the invention introduces the augmented reality technology into the multimedia teaching device, and superimposes the real environment and the virtual object into the same scene in real time, and the two kinds of information complement and superimpose each other, thereby bringing a new experience of the sensory effect to the user, and simultaneously utilizing Human instinct for three-dimensional spatial cognition to improve the user's learning ability and memory ability, thereby improving the teaching effect.
  • the user can move the entity teaching aids at will, the system will track the position of the physical teaching aids, and control the virtual objects to be synchronized according to the real space movements. Description
  • FIG. 1 is a schematic structural diagram of a three-dimensional interactive learning system based on augmented reality according to the present invention
  • FIG. 2 is a schematic diagram showing a calculation principle of spatial orientation information of a physical teaching aid according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the principle of a contour extraction algorithm in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the principle of a quadrilateral detection algorithm in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the principle of a quadrilateral coordinate algorithm in an embodiment of the present invention.
  • FIG. 6 is a corresponding relationship diagram between a template plane and an imaging plane in the embodiment of the present invention -
  • FIG. 7 is a schematic diagram showing the principle of comparing a two-dimensional code and a template pattern in four different orientations in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a principle of delay rendering in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the principle of multi-thread operation of an augmented reality application according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a three-dimensional interactive learning method based on augmented reality according to the present invention.
  • FIG. 11 is a flow chart of a preferred augmented reality based three-dimensional interactive learning method of the present invention. Detailed ways
  • the three-dimensional interactive learning system 100 includes an information processing device 10, a camera device 20, a display device 30, and at least one physical teaching aid 40, wherein:
  • Each of the entity teaching aids 40 is provided with an identification information, and each of the identification information corresponds to a three-dimensional model.
  • the physical teaching aid 40 is preferably a teaching card, such as a literacy card and an identification card.
  • the physical teaching aid 40 can also be a teaching book, a teaching mold, and the like.
  • the identification information is preferably a two-dimensional code, and the two-dimensional code can be composed of various characters, patterns, and the like.
  • the physical teaching aid 40 corresponds to at least one vocabulary, object, phenomenon and the like.
  • the camera device 20 is configured to perform video collection on a real environment after the augmented reality application is started.
  • the imaging device 20 preferably employs a camera. What is more, at the same time, the ordinary camera and the infrared camera are used as the camera device 20, which form complementary advantages and solve the fatal problem that the two-dimensional code input fails when the light in the real environment is weak.
  • the augmented reality application refers to various types of application categories of knowledge education, such as nature, ocean, universe, and the like.
  • Each augmented reality application can have specific interactions and game logic.
  • various multimedia resources are used according to specific application logic, including three-dimensional models, images, sound effects, animations, and other special effects (for example, when the literacy card appears in the video image, the corresponding three-dimensional model is displayed and Trigger smoke effects).
  • Users can learn basic information about each augmented reality application through the application browser, and select and execute the augmented reality application of interest.
  • the display device 30 is configured to display a video image of a real environment.
  • the display device 30 can be a screen of a computer, a communication terminal, or a television.
  • the information processing device 10 may be a computer, a communication terminal, a television, etc., and the communication terminal may be Description
  • the information processing device 10 further includes -
  • the identification module 11 is configured to identify the identification information on the physical teaching aid 40 when the user moves the physical teaching aid 40 to the shooting range of the imaging device 20, and analyze the three-dimensional model corresponding to the identification information.
  • the three-dimensional model is pre-existing in the three-dimensional interactive learning system 100.
  • the orientation calculation module 12 is configured to calculate spatial orientation information of the physical teaching aid 40.
  • the orientation calculation module 12 is configured to calculate the two-dimensional spatial orientation information of the physical teaching aid 40 in the physical teaching aid spatial coordinate system. And according to the calibration parameters of the camera device 20, the two-dimensional spatial orientation information is converted into a three-dimensional spatial orientation of the space coordinate system of the camera device.
  • the three-dimensional rendering module 13 is configured to render a virtual three-dimensional model and other virtual environments, preferably for acquiring a three-dimensional model corresponding to the identification information, and rendering the three-dimensional model to generate a corresponding virtual object, and according to the spatial orientation information of the physical teaching aid 40.
  • the virtual object is placed at a corresponding position in the video image, and the virtual object and the real environment are mixed and displayed in the display device 30.
  • the three-dimensional rendering module 13 is configured to display the virtual object in a corresponding position in the video image according to the three-dimensional spatial orientation information of the physical teaching aid 40.
  • the orientation calculation module 12 of the information processing apparatus 10 is configured to perform moving object tracking on the physical teaching aid 40 when the user moves the physical teaching aid 40 in the real environment, and calculate the current spatial orientation of the physical teaching aid 40 in real time. information.
  • the three-dimensional rendering module 13 is configured to control the synchronous display of the virtual object in the corresponding position in the video image according to the current spatial orientation information.
  • the user can move the entity teaching aid 40 at will, the system 100 will perform position tracking on the physical teaching aid 40, and control the virtual object to be synchronously displayed according to the action of the physical teaching aid 40 in the real space, so as to achieve the purpose of the user to control the free movement of the virtual object.
  • the invention is derived from computer graphics recognition control technology and three-dimensional model instant rendering technology.
  • computer graphics recognition control technology provides an important application premise for augmented reality systems, camera calibration technology, moving object tracking technology and spatial registration technology of 3D objects for the consistency and real-time interaction of virtual and real space Provided the possibility.
  • the pre-created 3D virtual object is placed according to the spatial position information provided by the two-dimensional code, and is mixed and displayed with the real environment;
  • the user can control the free movement of the virtual object by moving the two-dimensional code (ie, the physical teaching aid).
  • the user moves the physical teaching aid (such as a literacy card with a two-dimensional code) in real space, and the virtual objects projected on the image captured by the camera on the screen are synchronized according to the real space motion.
  • the present invention can provide a more vivid sensory experience for the user by using multimedia forms such as text, sound, pictures, animation, and movies.
  • multimedia forms such as text, sound, pictures, animation, and movies.
  • the present invention solves the problem that children are boring in the process of learning vocabulary, objects, phenomena, and the like, and provides a visually sensory experience with a whole new fun. Project virtual objects onto the screen and let illusory objects appear in the real world. At the same time, humans can observe objects, understand and learn various kinds of knowledge through the natural reaction of humans to 3D space.
  • the physical teaching aid 40 is a quadrilateral literacy card
  • the camera device 20 is a camera.
  • the literacy card spatial orientation is extracted to calculate the literacy card space coordinate system (origin 0 nieth, coordinate axis is X tract, Y n , Z a ) is the representation in the reference coordinate system.
  • the method for extracting the spatial orientation of the literacy card specifically includes - [0101] 1) marking the connected region in the video image. First, the image needs to be binarized.
  • a fixed threshold binarization For example, a pixel whose luminance value is higher than 100 is set to 1, and the others are set to 0. Then, a progressive scan (from left to right, top to bottom) is performed on the binary image, and pixels having the same pixel value and adjacent pixels are marked with the same number as the connected region.
  • Contour extraction algorithm As shown in FIG. 3, for each connected region, the uppermost and leftmost edge points (dark pixels in FIG. b) are first found as the starting point of the contour search. Then search in the possible 8 directions (Fig. a) and find the pixels with the same label as the next contour point. The first search starts from direction 2 (because the starting point is already at the top and left), and when it is turned counterclockwise to direction 4, the pixels with the same label are found as the new contour point. The starting direction of the next search is (this direction +5) modulo 8 , so the second search starts from direction 1 and turns to direction 3 to find a new contour point (Fig. c). Other contour points are derived by analogy until the algorithm returns to the starting point.
  • Quadrilateral detection algorithm As shown in FIG. 4, first traverse the entire contour point sequence, find the point farthest from the starting point (number 0), mark it, and then pair (0, n t ) and ( ⁇ respectively) Two segments of , 0) are processed. At (0, ⁇ ), the connection from the search point and the farthest point 0 ⁇ point, if the distance exceeds a given width value, it indicates that new vertices found, labeled ⁇ 2, then continue processing (0 , ) and ( ⁇ 2 , ⁇ ,) segments. In the recursive process, if three vertices are found (including a total of four vertices at the starting point), the outline is proved to be a quadrilateral.
  • Quadrilateral coordinate algorithm using camera calibration parameters, the two-dimensional coordinates of the image space are converted into three-dimensional coordinates of the camera space,
  • ( Xl , Yl ) is the image pixel coordinate (the origin is in the upper left corner of the image), and ( X(:, y c ) is the representation of the image pixel in the camera coordinate system; s ⁇ Sy is the scaling factor, and the unit is Pixels per pixel (pixel/mm), ( Cl , c y ) is the pixel coordinate of the camera coordinate system z.
  • imaging The z coordinate of all points on the plane is f. From this, the representation of the four vertices P0 ⁇ P3 of the quadrilateral in the image in the camera coordinate system can be calculated, as shown in Fig. 5.
  • the three-dimensional interactive learning system 100 prestores at least one template pattern, each template pattern corresponding to a three-dimensional model.
  • the identification module 11 is configured to extract the two-dimensional code on the physical teaching aid 40, and identify whether the two-dimensional code matches the template pattern by using a predetermined image matching algorithm, and if yes, determine that the three-dimensional model corresponding to the matched template pattern is the three-dimensional corresponding to the physical teaching aid 40. model.
  • the literacy card is taken as an example to describe the two-dimensional code identification in detail:
  • Each detected quadrilateral image area is compared with a template pattern in the system database to find the best match, and the number of the template pattern is recorded.
  • the template pattern has a uniform resolution, such as 32*32, so before the comparison, the quadrilateral image region needs to be normalized, that is, the rectangular projection is transformed into a square region by using the perspective projection homography matrix transformation.
  • the coordinates ( Xi , y , ) of the projection point on the imaging plane can be obtained by the homography matrix (Equation 3), and ( Xl , The pixel value of y ; ) is given (x t , y t ).
  • the average gray level of the entire image may be first counted and the average gray level subtracted from a single pixel value, as shown in Equation 5.
  • the present invention adopts a delayed rendering technique, first backs up a plurality of two-dimensional code recognition results before the current frame, and delays the motion of the virtual object by a corresponding number of frames, thereby reserved for real-time processing of video input.
  • FIG. 10 is a flowchart of a three-dimensional interactive learning method based on augmented reality according to the present invention, which can be implemented by the three-dimensional interactive learning system 100 shown in FIG. 1, and includes the following steps:
  • Step S102 After the augmented reality application is started, video capture is performed on the real environment by the camera device 20.
  • Step S105 the information processing apparatus 10 calculates spatial orientation information of the physical teaching aid 40.
  • Step S106 the information processing apparatus 10 acquires the three-dimensional model corresponding to the identification information, and renders the three-dimensional model to generate a corresponding virtual object, and according to the spatial orientation of the physical teaching aid 40.
  • the information is displayed by placing the virtual object at a corresponding position in the video image.
  • the information processing apparatus 10 extracts the two-dimensional code on the entity teaching aid 40, and identifies whether the two-dimensional code matches the template pattern by a predetermined image matching algorithm.
  • E s is the average gray level of the two-dimensional code
  • E t is the average gray level of the template pattern
  • FIG. 11 is a flowchart of a three-dimensional interactive learning method based on the augmented reality of the present invention, which can be implemented by the three-dimensional interactive learning system 100 shown in FIG. 1.
  • the information processing apparatus 10 in this embodiment uses a computer and a camera.
  • the device 20 employs a camera
  • the display device 30 employs a computer screen
  • the physical teaching aid 40 employs a teaching card
  • the teaching card is provided with a two-dimensional code.
  • the method includes the steps of -
  • Step S112 the user starts an AR application.
  • Step S115 the user moves the teaching card in front of the camera, and the teaching card is provided with a two-dimensional code.
  • the user can now move the QR code to the shooting range of the camera and move the position of the QR code at will.
  • Step S118 the user provides the three-dimensional information implied in the real background image through interaction, so that the 3D virtual object can directly interact with the three-dimensional information, thereby greatly improving the interactive entertainment of the system.
  • the entity teaching aid is preferably a teaching card
  • the identification information is preferably a two-dimensional code
  • the system acquires the three-dimensional model corresponding to the identification information and renders it into a corresponding virtual object, and virtualizes according to the spatial orientation information of the physical teaching aid.
  • Objects are placed at corresponding locations in the video image for display in a mixed environment with the real environment.
  • the invention introduces the augmented reality technology into the multimedia teaching device, and superimposes the real environment and the virtual object into the same scene in real time, and the two kinds of information complement and superimpose each other, thereby bringing a new experience of the sensory effect to the user, and simultaneously utilizing Human instinct for three-dimensional spatial cognition to improve the user's learning ability and memory ability, thereby improving the teaching effect.
  • the user can move the entity teaching aids at will, the system will track the position of the physical teaching aids, and control the virtual objects to be synchronously displayed according to the actions of the real space, so as to achieve the purpose of free movement of the virtual objects controlled by the user, and generate rich interactions.
  • the effect of entertaining and entertaining are examples of entertaining and entertaining.
  • the invention is especially suitable for multimedia interactive teaching of children and adolescents.
  • the invention may, of course, be embodied in a variety of other embodiments, and various modifications and changes can be made in accordance with the present invention without departing from the spirit and scope of the invention. These respective changes and modifications are intended to fall within the scope of the appended claims.

Abstract

L'invention concerne un système et un procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée. Le système comprend un dispositif de traitement d'informations, un dispositif de photographie, un dispositif d'affichage et au moins un outil d'enseignement physique. L'outil d'enseignement physique comporte des informations d'identification. Le dispositif de photographie est utilisé pour capturer une vidéo de l'environnement réel après qu'une application de réalité augmentée est activée. Le dispositif de traitement d'informations comprend : un module d'identification, utilisé pour identifier les informations d'identification sur l'outil d'enseignement physique ; un module de calcul d'orientation, utilisé pour calculer des informations d'orientation spatiale de l'outil d'enseignement physique ; et un module de restitution tridimensionnelle, utilisé pour acquérir un modèle tridimensionnel correspondant aux informations d'identification, restituer le modèle, générer un objet virtuel correspondant, placer l'objet virtuel dans une position correspondante d'une image vidéo selon les informations d'orientation spatiale de l'outil d'enseignement physique, et afficher l'objet virtuel. De cette manière, la présente invention peut superposer l'environnement réel et l'objet virtuel dans un même scénario en temps réel, fournir une expérience de détection plus vive pour l'utilisateur, et améliorer un effet d'enseignement par utilisation de l'instinct humain de connaissance de l'espace tridimensionnel.
PCT/CN2014/000642 2013-07-03 2014-07-04 Système et procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée WO2015000286A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310275818.X 2013-07-03
CN201310275818.XA CN103366610B (zh) 2013-07-03 2013-07-03 基于增强现实的三维互动学习系统及方法

Publications (1)

Publication Number Publication Date
WO2015000286A1 true WO2015000286A1 (fr) 2015-01-08

Family

ID=49367850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000642 WO2015000286A1 (fr) 2013-07-03 2014-07-04 Système et procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée

Country Status (2)

Country Link
CN (1) CN103366610B (fr)
WO (1) WO2015000286A1 (fr)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366610B (zh) * 2013-07-03 2015-07-22 央数文化(上海)股份有限公司 基于增强现实的三维互动学习系统及方法
US9704295B2 (en) * 2013-11-05 2017-07-11 Microsoft Technology Licensing, Llc Construction of synthetic augmented reality environment
CN103777757B (zh) * 2014-01-15 2016-08-31 天津大学 一种结合显著性检测的在增强现实中放置虚拟对象的系统
CN104933278B (zh) * 2014-03-20 2018-08-10 中国科学院软件研究所 一种用于言语障碍康复训练的多通道交互方法和系统
GB201404990D0 (en) * 2014-03-20 2014-05-07 Appeartome Ltd Augmented reality apparatus and method
CN110246850B (zh) * 2014-07-23 2022-12-02 索尼公司 显示装置
CN104102412B (zh) * 2014-07-24 2017-12-12 央数文化(上海)股份有限公司 一种基于增强现实技术的手持式阅览设备及其方法
WO2016030848A2 (fr) * 2014-08-28 2016-03-03 Mehta Uday Procédé et système d'apprentissage, de suivi et d'évaluation basés sur la réalité augmentée
CN104219584B (zh) * 2014-09-25 2018-05-01 广东京腾科技有限公司 基于增强现实的全景视频交互方法和系统
CN104269079A (zh) * 2014-09-30 2015-01-07 张启熙 基于镜面反射和增强现实技术的移动终端幼教系统及方法
CN104665529B (zh) * 2015-02-13 2016-06-08 南通明德塑胶有限公司 一种益智型智能早教地垫识别方法
CN104778869A (zh) * 2015-03-25 2015-07-15 西南科技大学 即时更新三维可视化教学系统及其建立方法
CN106156152A (zh) * 2015-04-15 2016-11-23 北京赛伯传奇科技有限公司 图像识别浏览器
CN106156708A (zh) * 2015-04-15 2016-11-23 北京赛伯传奇科技有限公司 精准图像识别系统
CN104835060B (zh) * 2015-04-29 2018-06-19 华为技术有限公司 一种虚拟产品对象的对比方法和装置
CN104851327A (zh) * 2015-05-30 2015-08-19 河南科技大学 一种政治教学系统
CN104899808A (zh) * 2015-06-25 2015-09-09 盐城金意光电科技有限公司 一种适用于儿童启蒙教育的系统及方法
CN106708249B (zh) * 2015-07-31 2020-03-03 北京智谷睿拓技术服务有限公司 交互方法、交互装置及用户设备
CN105139701A (zh) * 2015-09-16 2015-12-09 华中师范大学 一种互动式幼儿教学系统
CN105261041A (zh) * 2015-10-19 2016-01-20 联想(北京)有限公司 一种信息处理方法及电子设备
CN106571072A (zh) * 2015-10-26 2017-04-19 苏州梦想人软件科技有限公司 基于增强现实幼教卡片的实现方法
CN105430311A (zh) * 2015-11-16 2016-03-23 上海尚镜信息科技有限公司 红外跟踪投影系统和方法
CN105323252A (zh) * 2015-11-16 2016-02-10 上海璟世数字科技有限公司 基于增强现实技术实现互动的方法、系统和终端
CN105405168A (zh) * 2015-11-19 2016-03-16 青岛黑晶信息技术有限公司 一种实现三维增强现实的方法及装置
CN105844979A (zh) * 2015-12-15 2016-08-10 齐建明 增强现实图书、基于增强现实图书的教育系统和方法
CN105608934B (zh) * 2015-12-21 2018-09-04 大连新锐天地传媒有限公司 Ar儿童故事早教舞台剧系统
CN107025830A (zh) * 2016-01-29 2017-08-08 北京新唐思创教育科技有限公司 一种教学实验的模拟方法及装置
CN105786178B (zh) * 2016-02-23 2019-04-09 广州视睿电子科技有限公司 场景对象信息呈现方法和系统
CN105590483A (zh) * 2016-02-29 2016-05-18 陈怡帆 实体教具和app相结合的儿童教学产品及其教学方法
CN105719519A (zh) * 2016-04-27 2016-06-29 深圳前海勇艺达机器人有限公司 一种分等级教学功能的机器人
CN106023692A (zh) * 2016-05-13 2016-10-12 广东博士早教科技有限公司 一种基于娱乐交互的ar趣味学习系统及方法
CN106127858B (zh) * 2016-06-24 2020-06-23 联想(北京)有限公司 一种信息处理方法及电子设备
CN106127860A (zh) * 2016-06-29 2016-11-16 大连新锐天地传媒有限公司 基于增强现实的三维引擎中富媒体文件的展现方法及系统
CN106251404B (zh) * 2016-07-19 2019-02-01 央数文化(上海)股份有限公司 方位跟踪方法、实现增强现实的方法及相关装置、设备
CN106056992A (zh) * 2016-07-20 2016-10-26 广东沃赛科技有限公司 Ar增强现实教学系统
CN106057002B (zh) * 2016-08-04 2019-03-29 杭州欢度科技有限公司 一种课堂教学互动系统
CN106251714B (zh) * 2016-08-26 2021-11-16 新道科技股份有限公司 一种仿真教学系统和方法
CN106128212B (zh) * 2016-08-27 2019-02-12 大连新锐天地传媒有限公司 基于增强现实技术的书法学习系统及方法
CN107798703B (zh) * 2016-08-30 2021-04-30 成都理想境界科技有限公司 一种用于增强现实的实时图像叠加方法以及装置
CN106408667B (zh) * 2016-08-30 2019-03-05 西安小光子网络科技有限公司 基于光标签的定制现实方法
CN106408666B (zh) * 2016-08-31 2019-06-21 重庆玩艺互动科技有限公司 混合现实实境演示方法
CN106601043A (zh) * 2016-11-07 2017-04-26 爱可目(北京)科技股份有限公司 一种基于增强现实的多媒体互动教育设备及方法
CN106780680A (zh) * 2016-11-28 2017-05-31 幻想现实(北京)科技有限公司 基于增强现实技术的三维动画生成方法、终端及系统
CN106843473B (zh) * 2016-12-30 2020-04-10 武汉市马里欧网络有限公司 基于ar的儿童涂色系统及方法
CN108427498A (zh) * 2017-02-14 2018-08-21 深圳梦境视觉智能科技有限公司 一种基于增强现实的交互方法和装置
CN107133896A (zh) * 2017-05-22 2017-09-05 浙江精益佰汇数字技术有限公司 多人互动的基于虚拟现实技术的沉浸式教学平台与实现方法
CN109240484A (zh) * 2017-07-10 2019-01-18 北京行云时空科技有限公司 一种增强现实系统中的交互方法、装置及设备
CN109285434A (zh) * 2017-07-20 2019-01-29 上海健康医学院 一种人体呼吸形态的互动学习系统
CN107316531A (zh) * 2017-08-15 2017-11-03 科盾科技股份有限公司北京分公司 一种模拟训练系统及其客户端
CN107743221A (zh) * 2017-10-30 2018-02-27 上海麦界信息技术有限公司 一种基于3d模式的电视节目互动方法
CN107742266A (zh) * 2017-11-02 2018-02-27 北京善学云科技有限公司 一种基于增强现实的教学系统
CN109754644A (zh) * 2017-11-06 2019-05-14 彼乐智慧科技(北京)有限公司 一种基于增强现实技术的教学方法及系统
CN107888934A (zh) * 2017-11-22 2018-04-06 广东电网有限责任公司教育培训评价中心 一种基于ar技术的变电技能直播系统
CN108022301B (zh) * 2017-11-23 2020-05-19 腾讯科技(上海)有限公司 一种图像处理方法、装置以及存储介质
CN109903391A (zh) * 2017-12-10 2019-06-18 彼乐智慧科技(北京)有限公司 一种实现场景交互的方法及系统
CN108053493B (zh) * 2017-12-25 2022-03-01 北京软通智慧城市科技有限公司 数字模型获得方法及装置
CN108269307B (zh) * 2018-01-15 2023-04-07 歌尔科技有限公司 一种增强现实交互方法及设备
CN108257218A (zh) * 2018-01-17 2018-07-06 北京网信云服信息科技有限公司 信息交互控制方法、装置及设备
CN108364504B (zh) * 2018-01-23 2019-12-27 浙江中新电力工程建设有限公司自动化分公司 增强现实三维互动学习系统及控制方法
CN108427499A (zh) * 2018-02-13 2018-08-21 视辰信息科技(上海)有限公司 一种ar系统及ar设备
CN108536282A (zh) * 2018-03-02 2018-09-14 上海易武数码科技有限公司 一种基于多用户条形码动作捕捉的增强现实互动方法及装置
CN108389249B (zh) * 2018-03-06 2022-07-19 深圳职业技术学院 一种多兼容性的vr/ar空间教室及其构建方法
CN108492360B (zh) * 2018-03-22 2022-07-26 北京软通智慧科技有限公司 一种数字模型生成方法及装置
CN108417116A (zh) * 2018-03-23 2018-08-17 四川科华天府科技有限公司 一种可视化编辑的智能课堂设计系统及设计方法
CN108492632A (zh) * 2018-03-23 2018-09-04 四川科华天府科技有限公司 一种基于情景化教学的课堂教学系统
CN108389452A (zh) * 2018-03-23 2018-08-10 四川科华天府科技有限公司 一种电化情景教学模型及教学方法
CN108648266B (zh) * 2018-05-04 2022-04-05 钱俊达 一种全通透扫描3d空间模型的管理方法和系统
CN110478892A (zh) * 2018-05-14 2019-11-22 彼乐智慧科技(北京)有限公司 一种三维交互的方法及系统
CN110544311B (zh) * 2018-05-29 2023-04-25 百度在线网络技术(北京)有限公司 安全警示方法、装置及存储介质
CN108665744A (zh) * 2018-07-13 2018-10-16 王洪冬 一种智能化的英语辅助学习系统
CN108877340A (zh) * 2018-07-13 2018-11-23 李冬兰 一种基于增强现实技术的智能化英语辅助学习系统
CN109189210A (zh) * 2018-08-06 2019-01-11 百度在线网络技术(北京)有限公司 混合现实交互方法、装置及存储介质
CN109102047B (zh) * 2018-08-08 2021-08-06 深圳市易晨虚拟现实技术有限公司 基于adt积木的摆放效果展示方法及其系统
CN109063799B (zh) * 2018-08-10 2020-06-16 珠海格力电器股份有限公司 设备的定位方法和装置
CN110858134B (zh) * 2018-08-22 2023-04-28 阿里巴巴集团控股有限公司 数据、显示处理方法、装置、电子设备和存储介质
CN108874156A (zh) * 2018-08-30 2018-11-23 合肥虹慧达科技有限公司 增强现实交互系统及其使用方法
CN109215413A (zh) * 2018-09-21 2019-01-15 福州职业技术学院 一种基于移动增强现实的模具设计教学方法、系统及移动终端
CN109360275B (zh) * 2018-09-30 2023-06-20 北京观动科技有限公司 一种物品的展示方法、移动终端及存储介质
CN109389538A (zh) * 2018-09-30 2019-02-26 武汉比城比特数字科技有限公司 一种基于ar技术的智慧校园教育装备管理系统
CN111223187A (zh) * 2018-11-23 2020-06-02 广东虚拟现实科技有限公司 虚拟内容的显示方法、装置及系统
CN110009952A (zh) * 2019-04-12 2019-07-12 上海乂学教育科技有限公司 基于增强现实的自适应学习移动终端及学习方法
CN110119202B (zh) * 2019-04-24 2024-01-19 彼乐智慧科技(北京)有限公司 一种实现场景交互的方法及系统
CN110322568A (zh) * 2019-06-26 2019-10-11 杜剑波 用于专业教学的增强现实系统以及方法
CN110727350A (zh) * 2019-10-09 2020-01-24 武汉幻石佳德数码科技有限公司 一种基于增强现实的物体识别方法、终端设备及存储介质
CN110865708B (zh) * 2019-11-14 2024-03-15 杭州网易云音乐科技有限公司 虚拟内容载体的交互方法、介质、装置和计算设备
CN110930805A (zh) * 2019-12-20 2020-03-27 国网湖北省电力公司咸宁供电公司 变电站三维仿真系统
CN110992745A (zh) * 2019-12-23 2020-04-10 英奇源(北京)教育科技有限公司 一种基于体感设备辅助幼儿认识四季的互动方法及其系统
US11361754B2 (en) 2020-01-22 2022-06-14 Conduent Business Services, Llc Method and system for speech effectiveness evaluation and enhancement
WO2021197016A1 (fr) * 2020-04-01 2021-10-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Système et procédé permettant d'améliorer des sujets dans des vidéos
CN111459050B (zh) * 2020-04-08 2023-03-24 北华大学 一种基于双网互联的智慧仿真型护理教学系统及教学方法
CN111752391A (zh) * 2020-06-30 2020-10-09 广州志胜游艺设备有限公司 一种虚拟互动方法及计算机可读存储介质
CN112017129A (zh) * 2020-08-28 2020-12-01 湖南尚珂伊针纺有限公司 一种高效率袜子数字模型生产装置
US11494996B2 (en) 2020-11-30 2022-11-08 International Business Machines Corporation Dynamic interaction deployment within tangible mixed reality
CN112598938A (zh) * 2020-12-28 2021-04-02 深圳市艾利特医疗科技有限公司 基于增强现实的认知功能训练系统、方法、装置、设备及存储介质
CN113282171B (zh) * 2021-05-14 2024-03-12 中国海洋大学 一种甲骨文增强现实内容交互系统、方法、设备及终端
US11568612B2 (en) 2021-06-08 2023-01-31 International Business Machines Corporation Personalized reactive augmented reality association
CN113689577A (zh) * 2021-09-03 2021-11-23 上海涞秋医疗科技有限责任公司 虚拟三维模型与实体模型匹配的方法、系统、设备及介质
CN114596217A (zh) * 2022-01-24 2022-06-07 周琦 教具制造偏差解析系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156808A (zh) * 2011-03-30 2011-08-17 北京触角科技有限公司 增强现实实时虚拟饰品试戴系统及方法
CN102509348A (zh) * 2011-09-26 2012-06-20 北京航空航天大学 一种共享增强现实场景的真实物体多方位表示方法
CN103093225A (zh) * 2013-01-05 2013-05-08 武汉矽感科技有限公司 二维码图像的二值化方法
CN103366610A (zh) * 2013-07-03 2013-10-23 熊剑明 基于增强现实的三维互动学习系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110379A (zh) * 2011-02-22 2011-06-29 黄振强 多媒体增强现实读物
CN102411854B (zh) * 2011-09-01 2014-01-29 苏州梦想人软件科技有限公司 基于增强现实的课堂教学混合技术应用系统及方法
CN202331859U (zh) * 2011-10-13 2012-07-11 苏州梦想人软件科技有限公司 一种基于增强现实技术的学习系统
CN103035135B (zh) * 2012-11-27 2014-12-10 北京航空航天大学 基于增强现实技术的儿童认知系统及认知方法
CN102945637A (zh) * 2012-11-29 2013-02-27 河海大学 一种基于增强现实的嵌入式教学模型及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156808A (zh) * 2011-03-30 2011-08-17 北京触角科技有限公司 增强现实实时虚拟饰品试戴系统及方法
CN102509348A (zh) * 2011-09-26 2012-06-20 北京航空航天大学 一种共享增强现实场景的真实物体多方位表示方法
CN103093225A (zh) * 2013-01-05 2013-05-08 武汉矽感科技有限公司 二维码图像的二值化方法
CN103366610A (zh) * 2013-07-03 2013-10-23 熊剑明 基于增强现实的三维互动学习系统及方法

Also Published As

Publication number Publication date
CN103366610B (zh) 2015-07-22
CN103366610A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2015000286A1 (fr) Système et procédé d'apprentissage interactif tridimensionnel basés sur la réalité augmentée
CN106462242B (zh) 使用视线跟踪的用户界面控制
Lv et al. Multimodal hand and foot gesture interaction for handheld devices
CN108875633B (zh) 表情检测与表情驱动方法、装置和系统及存储介质
US20180224948A1 (en) Controlling a computing-based device using gestures
CN107688391B (zh) 一种基于单目视觉的手势识别方法和装置
TWI654539B (zh) 虛擬實境交互方法、裝置與系統
CN103336576B (zh) 一种基于眼动追踪进行浏览器操作的方法及装置
CN111417983A (zh) 基于事件相机的可变形对象跟踪
US10698475B2 (en) Virtual reality interaction method, apparatus and system
TW201324235A (zh) 手勢輸入的方法及系統
US10853651B2 (en) Virtual reality interaction method, apparatus and system
US20150277570A1 (en) Providing Onscreen Visualizations of Gesture Movements
WO2022174594A1 (fr) Procédé et système de suivi et d'affichage de main nue basés sur plusieurs caméras, et appareil
CN104035557A (zh) 一种基于关节活跃度的Kinect动作识别方法
WO2016070800A1 (fr) Simulation de balle virtuelle, et procédé de commande de dispositif mobile
CN115008454A (zh) 一种基于多帧伪标签数据增强的机器人在线手眼标定方法
JP2016099643A (ja) 画像処理装置、画像処理方法および画像処理プログラム
WO2023124691A1 (fr) Affichage de scène de réalité augmentée
WO2017147826A1 (fr) Procédé de traitement d'image destiné à être utilisé dans un dispositif intelligent, et dispositif
Umeda et al. Real-time manga-like depiction based on interpretation of bodily movements by using kinect
CN103729060B (zh) 多环境虚拟投影互动系统
KR20120092960A (ko) 가상 캐릭터 제어 시스템 및 방법
Min et al. Virtual-Physical Interaction System
KR101526049B1 (ko) 가상 생태공원 가시화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM DATED 19.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14819772

Country of ref document: EP

Kind code of ref document: A1